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Abstract

Post-quantum cryptography is of high interest in recent years since some algorithms based

on quantum computing already threaten the security of classical public-key cryptosys-

tems, such as RSA. From a long-term security point of view, cryptosystems should stay

secure against quantum-computing attacks. Code-based cryptosystems are among the

promising candidates. The McEliece system with Goppa codes, which was proposed in

1970s, is the most famous code-based cryptosystem and still stays secure today. The

structure of Goppa codes can be well-hidden in McEliece system so that attacking a

McEliece system with Goppa codes is similar to the problem of doing nearest distance

decoding a generic linear codes, which is NP-complete.

there’s line for a blank line.

In this thesis, we investigate the minimum distance, wild property and decoding algo-

rithms of Goppa codes; we present a collaborative decoding for interleaved Goppa codes

(IGC). The collaborative decoding increases the decoding radius beyond half of the min-

imum distance. We integrate the wild property into IGC and show that we can collab-

oratively correct more errors for binary Goppa code than the Patterson decoder, which

was known as the best decoder for binary Goppa codes. We revisit the McEliece system

and investigate some well-known existing attacks. A new variant of the McEliece system,

IntMcEliece, using wild IGC, is proposed as another output of this thesis. Some instances

of parameter selection and key size are presented at the end of this thesis.

1





Acknowledgements

I would like to express my sincere appreciation to my supervisors, Lukas Holzbaur and

Sven Puchinger, for their insightful and excellent guidance, their patience, their continu-

ous support throughout all stages of my Master’s thesis and their detailed comments on

the drafts of this thesis. I am very grateful for the precious time they have spent for me.

We have had about 20 meetings in person or via Skype about my thesis since I started

this May and I didn’t count all the scattered small conversations and the occassions when

I just visited their offices by chance with some minor problems that occured along the

way. Not only their patience and engagement, but also their passion for research and

their innovative ideas, motivated me to devote myself more to my thesis. Without their

guidance and help throughout the research and writing process, I would not have been

able to reach these results and gain so much from this experience. Special thanks go to

Lukas for offering me this topic that combines algebraic coding and cryptography - it

does interest me a lot and has extended the area of my study.

this is a blank line written in white.

I would also like to express my sincere gratitude to Prof. Antonia Wachter-Zeh who

introduced me to the field of algebraic coding. I learned the concept of “finite fields” for

the first time in her lecture Channel Coding. Had it not been for her great teaching, I

would not have applied to do my research internship and Master’s thesis both in this field.

I would further like to thank her for her careful concerns of the progress of my thesis,

for her encouragement and constructive advice when I encountered some difficulties and

for the finantial support for me to go to the summer school in Turku, Finnland and

the ACCT conference in Kaliningrad, Russia, which made these 7 months an even more

unforgettable memory.

this is a blank line written in white.

I want to thank Sergey Bezzateev and Vladimir Sidorenko for the fruitful discussions at

the early stages of my thesis.

this is a blank line written in white.

My sincere gratitude also goes to all the colleagues working on the 2nd to 4th floors in

the building N4. They have organized a lot of valuable workshops, seminars and fantastic

extra curricular activities, which immensely enriched my Master’s experience at TUM.

3



Special thanks go to Lukas, Sven, Julian Renner, Andreas Lenz and Patrick Schulte for

talking to me in German patiently from time to time to help me practice. Dafür bin ich

euch zutiefst dankbar!

this is a blank line written in white.

I started working in the student lab N2406 since last October and have spent more than

half of my Master’s time there. I want to say thanks to the students whom I have met

in that room and shared interesting conversations with during my stay, especially to

Wafa Labidi and Thomas Wiegart, who have listened to me a lot and given me lots of

encouragement and help throughout the year.

this is a blank line written in white.

Many thanks to Lisa, Elfie, Shiying, Keyue, Hanbo, Yining and all my friends in distance

or in neighbour, for their kindness, friendship and understanding. Thank you for filling

up my life with joy and pleasure all the time.

this is a blank line written in white.

Last but definitely not least, I want to express my gratitude, even though words cannot

express all of it, to my mother who unconditionally loves me and supports me, and to my

father who has always been enlightening and inspiring me in my heart in every decision

that I have made for myself.

4



1 Introduction

1.1 Cryptosystem

Cryptography or cryptology is a prolonged practice and study of how to achieve secure

communication without any outside sources interfering, reading, or altering the trans-

mitted message. The security goals include data confidentiality, integrity, authentication

and non-repudiation. We focus on data confidentiality in this thesis. Cryptosystems are

methods or protocols used by two parties, often referred as Alice and Bob (which in real

life are typically digital devices, e.g., computers, mobile phones, smart cards, etc.), that

prevent a third party Eve from reading their private message.

The cryptosystems can be classified into symmetric cryptosystems and asymmetric cryp-

tosystems according to whether Alice and Bob share the same secret key.

The widely-used symmetric cryptosystems nowadays are DES, AES, etc.

In asymmetric cryptosystems, also known as public-key cryptosystems, each party has

two keys: a public key and a private key. Suppose Alice publishes her public key so

that everyone can access it in order to encrypt a secret message then send to her. Only

Alice who possesses the secret key can decrypt the ciphertext to the secret message. A

public-key system should be constructed such that the calculation of the secret key is

computationally infeasible from the public key. The secrecy of the private key usually

relies on certain intractable mathematical problems. For instance, the well-known RSA

cryptosystem [RSA78] is based on the large prime factorization problem. The Diffie-

Hellman key exchange protocol [Mer78] and ElGamal encryption [Elg85] are based on

the discrete logarithm problem. Moreover, the Elliptic-curve cryptography relies on the

inability to compute the multiplicand points given the origin and product on an elliptic

curve.

Post-Quantum Cryptosystems

In recent years, quantum computing [Ben80] and the concept of quantum computers

[Deu85] lead technology into a new era of machines’ computational ability. Though the

development of quantum computers is still in its infancy, both practical and theoreti-

cal research on quantum computing is prosperous. Some algorithms based on quantum

5



1 Introduction

computing can potentially break most conventional cryptosystems deployed in practice

nowadays. For instance, Shor’s algorithms [Sho94] are quantum algorithms that solve

prime factorization and discrete logarithm problems in polynomial-time. Shor intro-

duced a similar algorithm which can quickly find the multiplicands on an elliptic curve.

All the previously mentioned public-key cryptosystems are therefore broken by Shor’s al-

gorithms. Not only asymmetric, but symmetric cryptosystems also become “victims” of

quantum computing. Grover’s quantum mechanical algorithm [Gro96] can find a certain

item in a size-N database by using
√
N quantum queries. This reduces the security level

of AES and SHA by a factor of 2 [BL17].

Facing the threat of Shor’s and Grover’s quantum computing algorithms, post-quantum

cryptosystems should be deployed before large-scale quantum computers arrive. The

National Institute of Standards and Technology (NIST) addressed to the public and an-

nounced the launch of a Post-Quantum Cryptography (PQC) bidder competition, which

is scheduled for adoption in 2020 - 2022 [Moo17]. The submission phase finished in

November, 2017. Works within the competition are conducted mainly in 5 different di-

rections:

• Code-based Cryptography;

• Lattice-based Cryptography;

• Multivariate Cryptography;

• Hash-based Signatures;

• Isogeny-based Signatures.

Thereinto, roughly 1/4 studies were conducted in the area of code-based cryptography

[KKL+18]. Quantum computers do not seem to give any significant improvements in

attacking code-based systems.

1.2 Related Works

The first code-based public-key cryptosystem was introduced in 1978 by McEliece [JM78].

The public key specifies a random binary Goppa code. The system provides faster en-

cryption and decryption schemes because of efficient encoding and decoding methods of

Goppa codes. However, the key size is much larger (e.g. several hundred KB for 128

bits sevurity level) than classical public-key cryptosystems (e.g. RSA needs < 1 KB for

128 bits security level), which is a severe drawback of the McEliece system, but in turn

motivates a lot of research on reducing the key size. Some works proposed to use other

6



1.3 Contributions and Outline

classes of codes as alternatives to Goppa codes, such as Reed-Solomon (RS) codes (broken

[MSOS92]), quasi-dyadic (QD) Goppa codes [MB09] (broken [Per12]), quasi-cyclic (QC)-

LDPC/MDPC codes [MTSB13] (broken [DK18]). Unbroken proposals with smaller key

size include McEliece system using twisted RS codes [BBPR18], Gabidulin-Paramanov-

Tretjakov (GPT) system [GPT91] using rank-metric codes or twisted rank-metric codes

[PRWZ18] and a repair [WZPR18] of the Faure-Loidreau Public-Key System [FL06]. A

new variant of the McEliece system, “Interleaved McEliece”, with interleaved Goppa codes

(IGC) was proposed by Elleuch, Wachter-Zeh and Zeh in [EWZZ18]. The new variant in-

creases the error correction capability, however faces a decoding attack that may severely

reduce its security.

The McEliece system based on Goppa codes is still unbroken after hundreds of attacking

and defending researches over 40 years.

Goppa codes [Gop70, Gop71] form a large class of algebraic error-correcting codes, named

after their inventor, Valery Denisovich Goppa. E. Berlekamp summarized the properties

of Goppa codes in [Ber73], before the original papers were translated into English.

Goppa codes are described in terms of a Goppa polynomial g(x) of degree r and a code

locator set L. Goppa codes form a subclass of alternant codes [MS78, Ch. 12], which are

subfield subcodes of generalized RS codes [RS60]. Therefore, a Goppa code of length n

over Fq contains the codewords, which are elements in Fnq , of the corresponding RS code

of length n over Fqm . This gives an essential fact that decoders of RS codes can be used to

decode Goppa codes. Irreducible Goppa codes, where g(x) is an irreducible polynomial,

are considered exceptionally good codes in that they meet the Gilbert-Varshamov bound.

Decoding algorithms of Goppa codes have been persistently investigated from 1970s until

today. Sugiyama et al. showed an algebraic decoding algorithm of solving the key equa-

tions by Euclid’s algorithm in [SKHN75]. Patterson introduced a new algorithm in [Pat75]

with an extra “key equation degree reduction” step. This algorithm decodes up to r errors

for binary Goppa codes, while syndrome-based decoders can only decode up to
⌊
r
2

⌋
errors.

Barreto et al. [BML13] came up with a probabilistic algorithm which generalized Patter-

son’s algorithm over any prime field Fp to increase the decoding radius of Goppa codes

from
⌊
r
2

⌋
to
⌊

2
pr
⌋
. Moreover, several list decoding approaches [ABC11, Ber11, BHNW13]

were proposed in order to decode at the radius over the half of the minimum distance.

1.3 Contributions and Outline

There are three main contributions of this thesis:

• a probabilistic decoding algorithm for square-free interleaved Goppa codes (IGC)

that can decode over half of the minimum distance. For binary square-free Goppa

7



1 Introduction

codes, the proposed decoding algorithm can correct more errors than Patterson’s

decoder.

• implemention of a GoppaCode class and several decoder classes for Goppa codes in

SageMath, which may be useful for further researches on Goppa codes.

• propose IntMcEliece as a repair of the “Interleaved McEliece” [EWZZ18]. The

repair effectively defends the system against Stern’s attack, which may dramatically

reduce the security level of the “Interleaved McEliece”..

This thesis is organized as follows.

In Chapter 2 we first recall the definition of Goppa codes and discuss two special classes

of Goppa codes and their properties. Then we review some known bounded minimum

distance (BMD) decoding algorithms for Goppa codes, including RS syndrome-based de-

coder, Patterson decoder for binary square-free Goppa codes and p-ary Patterson decoder

for non-binary square-free Goppa codes.

In Chapter 3 we recap the structure of the McEliece system and Wild McEliece. Several

attacks that decrease the security level of McEliece system are described as well.

In Chapter 4 we give the definiton of interleaved Goppa codes and introduce a col-

laborative decoding algorithm that can decode beyond half of the minimum distance.

The algorithm is probabilistic. We investigate the failure probability via simulations and

compare the results with the bound on failure probability of decoding interleaved Reed-

Solomon codes. At the end of this chapter, we present a GoppaCode class and several

decoder classes in SageMath that are implenmented by the author.

In Chapter 5 we introduce IntMcEliece, which is a repair of the Interleaved McEliece

from [EWZZ18]. This repair increase the error correction capability comparing to the

previous system by integrating the wild Goppa codes and defends itself against the finding

low-weight codewords attack by an “error encoding scheme” in encryption. The advantage

of IntMcEliece is shown by comparing its key size with that of wild McEliece at 80, 128,

256 bits security.

8



2 Goppa Codes

In this chapter, we first recall the definition of Goppa codes and show two special Goppa

codes classes and their properties. Then we review some known BMD decoding algorithms

for Goppa codes.

2.1 Definition

Definition 2.1.1. Let q be a prime power and m,n, r be some integers such that rm ≤
n ≤ qm. Fix a code locator set L = {α0, . . . , αn−1} containing n distinct elements from

Fqm and a Goppa polynimial g(x) ∈ Fqm [x] of degree r such that g(αi) 6= 0,∀αi ∈ L.

Denote a rational function

Rc(x) =

n−1∑
i=0

ci
x− αi

(2.1)

with any vector c = (c0, . . . , cn−1).

A Goppa code Γ(L, g) is defined by

Γ(L, g) =
{

c | Rc(x) ≡ 0 mod g(x), ∀c ∈ Fnq
}
. (2.2)

If g(x) has no multiple irreducible factors then Γ(L, g) is called a square-free or separable

Goppa code. In addition, if g(x) is an irreducible polynomial then Γ(L, g) is called an

irreducible Goppa code.

A linear code can be also represented by its parity check matrix. In the following theorem

we show the parity check matrix of a Goppa code.

Theorem 2.1.1 (Parity Check Matrix over Fqm). The parity check matrix of a Goppa

9



2 Goppa Codes

code Γ(L, g) is

H = CXY

=


gr

gr−1 gr
...

...
. . .

g1 g2 · · · gr




1 1 · · · 1

α1 α2 · · · αn
...

...
. . .

...

αr−1
1 αr−1

2 · · · αr−1
n





g(α1)−1

g(α2)−1

. . .

g(αn)−1


.

(2.3)

H̃ = XY is an equivalent parity check matrices of Γ(L, g).

Proof. The inverse of (x− αi) exists in Fqm/g(x) (since αi is not a root of g(x), so that

gcd(x− αi, g(x)) = 1), which is

(x− αi)−1 ≡ −g(x)− g(αi)

x− αi
g(αi)

−1 mod g(x),

since

(x− αi)−1(x− αi) + (g(x)− g(αi))g(αi)
−1 ≡ 1 mod g(x).

Therefore c is a codeword of Γ(L, g) iff

n−1∑
i=0

ci
g(x)− g(αi)

x− αi
g(αi)

−1 = 0 (2.4)

as a polynomial of x (without mod g(x)). We can write g(x) =
r∑
j=0

gjx
j , with gj ∈ Fqm

and gr 6= 0. Then

g(x)− g(αi)

x− αi
=

r∑
j=0

gjx
j −

r∑
j=0

gjα
j
i

x− αi

=
gr(x

r − αri ) + · · ·+ g1(x− αi)
x− αi

= gr(x
r−1 + xr−2αi + · · ·+ αr−1

i ) + · · ·+ g2(x+ αi) + g1

= grx
r−1 + (gr−1 + αigr)x

r−2 + · · ·+ (g1 + · · ·+ grα
r−1
i )

Equating the coefficients of xr−1, . . . , 1 to zero in (2.4) we can see that c is a codeword

10



2.2 Properties

of Γ(L, g) iff cHT = 0, where

H =


grg(α1)−1 · · · grg(αn)−1

(gr−1 + α1gr)g(α1)−1 · · · (gr−1 + αngr)g(αn)−1

...
. . .

...

(g1 + · · ·+ grα
r−1
1 )g(α1)−1 · · · (g1 + · · ·+ grα

r−1
n )g(αn)−1


= CXY.

Since C is a lower-triangular matrix with non-vanishing diagonal elements, it is invertible.

Thus H = CXY and H̃ = XY both define the same Γ(L, g).

Parity Check Matrix over Fq Goppa codes are codes over Fq. A parity check matrix

HGoppa with elements from Fq is obtained by replacing each entry (an element from Fqm)

of H or H̃ by its vector representation over Fq.

Example 1 (Obtaining HGoppa from H). Consider a binary Goppa code, i.e. q = 2, of

length n = 8 and m = 3. The parity check matrix over F23 is given as

H =

[
1 α2 α4 α2 α α α4 1

0 α3 α6 α5 α5 α6 α3 1

]
, (2.5)

where α is a primitive element of F23 and the primitive polynomial of F23 is x3 + x+ 1.

Hence a corresponding parity check matrix over F2 is

HGoppa =



1 0 0 0 0 0 0 1

0 0 1 0 1 1 1 0

0 1 1 1 0 0 1 0

0 1 1 1 1 1 1 1

0 1 0 1 1 0 1 0

0 0 1 1 1 1 0 0


. (2.6)

2.2 Properties

Theorem 2.2.1. A Goppa code Γ(L, g) defined by Definition 2.1.1 is a linear code over

Fq. The characteristic parameters of a Goppa code Γ(L, g) are:

• length n = |L|,

• dimension k ≥ n−mr, r = deg g(x),

• minimum distance d ≥ r + 1.

11



2 Goppa Codes

Proof. Assume two codewords c(1) and c(2) of Γ(L, g). It holds that Rc(i)(x) ≡ 0

mod g(x), i = 1, 2 according to Definition 2.1.1. For any vector c′ = ac(1) + bc(2), a, b ∈
Fq,

Rc′(x) =
n−1∑
i=0

ac
(1)
i + bc

(2)
i

x− αi
= a

n−1∑
i=0

c
(1)
i

x− αi
+ b

n−1∑
i=0

c
(2)
i

x− αi
= aRc(1)(x) + bRc(i)(x).

It follows that Rc′(x) ≡ 0 mod g(x) and therefore c′ is also a codeword of Γ(L, g).

The length is given by definition.

The redundancy n− k of a code is the number of linearly independent rows of its parity-

check matrix HGoppa. Since HGoppa has rm rows, the redundancy n − k ≤ rm. Thus,

the dimension is k ≥ n− rm.

Suppose c is a nonzero codeword of Γ(L, g) with weight ≤ r. Then H̃cT = XYcT = 0.

Set bT = YcT since Y is diagonal and invertible. Therefore XbT = 0, which is impossible

since X is Vandermonde and therefore any r columns are linearly independent.

Theorem 2.2.2. A Goppa code Γ(L, g) is the restriction to Fq of a generalized Reed-

Solomon code GRS(L,V) of dimension n− r, where L is the set of evaluation points and

V = {v1, . . . , vn} is the set of column multipliers of GRS with

vi =
g(αi)∏

j 6=i
(αi − αj)

, i = 1, . . . , n. (2.7)

Proof. (i) Denote by ·|Fq the restriction to Fq. Take u ∈ GRS(L,V)|Fq. Then

ui = vif(αi) =
f(αi)g(αi)∏
j 6=i

(αi − αj)
,

where f(x) is a polynomial of degree < n− r. Thus

n−1∑
i=0

ui
x− αi

=
1

n−1∏
i=0

(x− αi)

n−1∑
i=0

f(αi)g(αi)
∏
j 6=i

(x− αj)
αi − αj

.

Let

N(x) =

n−1∑
i=0

f(αi)g(αi)
∏
j 6=i

(x− αj)
αi − αj

.

Then N(αi) = f(αi)g(αi) for i = 0, . . . , n−1. Also degN(x) ≤ n−1 and deg f(x)g(x) ≤
n − 1. Since the polynomial N(x) − f(x)g(x) is determined by its values at n points,

12
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N(x) = f(x)g(x). Therefore

n−1∑
i=0

ui
x− αi

=
f(x)g(x)

n−1∏
i=0

(x− αi)

and hence u ∈ Γ(L, g). Thus

Γ(L, g) ⊃ GRS(L,V)|Fq.

(ii) The converse is similar.

Other properties: there exist long Goppa codes that meet Gilbert-Varshamov bound

[MS78, Theorem 3, Ch. 12]; extended Goppa codes are cyclic [BM73, TZ75].

2.3 Special Cases of Goppa Codes

2.3.1 Binary Square-free Goppa Codes

A binary square-free Goppa code is defined in Definition 2.1.1 with restrictions that q = 2

and g(x) has no multiple irreducible factors.

Theorem 2.3.1. A binary square-free Goppa code Γ(L, g) has minimum distance

d ≥ 2r + 1,

where r is the degree of its Goppa polynomial g(x).

Proof. We recap the proof from [MS78, Ch. 12, p. 341].

Let c = (c0, . . . , cn−1) be a codeword of weight w in Γ(L, g), with cp1 = · · · = cpw = 1

(here {p1, . . . , pw} ⊆ {0, . . . , n − 1} denote the nonzero positions in the codeword), and

define

fc(x) =

w∏
i=1

(x− αpi).

The formal derivative of fc is

f ′c(x) =
w∑
i=1

∏
j 6=i

(x− αpj )

13



2 Goppa Codes

Then Rc(x) from (2.1) becomes

Rc(x) =
w∑
i=1

1

x− αpi
=

w∑
i=1

∏
j 6=i

(x− αpj )

w∏
i=1

(x− αpi)
=
f ′c(x)

fc(x)
. (2.8)

Since the αi are distinct from the definition of Γ, fc(x) and f ′c(x) have no common factors

so that (2.8) is in the simplest form. Since g(αi) 6= 0, fc(x) and g(x) are relatively prime.

So from (2.8)

Rc(x) ≡ 0 mod g(x) ⇐⇒ g(x)|f ′c(x).

For fc(x), f ′c(x) ∈ F2m [x], f ′c(x) contains only even powers and is a perfect square polyno-

mial. For example, let α be a primitive element of F23 , f(x) = α3x5+α2x2+α6x ∈ F23 [x],

then the formal derivative of f(x) is f ′(x) = α3x4 + α6 = (α5x2 + α3)2. Let ḡ(x) be the

lowest degree perfect square which is divisible by g(x). Then

g(x)|f ′c(x) ⇐⇒ ḡ(x)|f ′c(x).

We can deduce that

c ∈ Γ(L, g) ⇐⇒ Rc(x) ≡ 0 mod g(x)

⇐⇒ ḡ(x)|f ′c(x).

Since Goppa codes are linear codes, the minimum distance

d = min
c∈Γ(L,g)

c 6=0

wt(c) = min
c∈Γ(L,g)

c 6=0

deg fc(x) = min
c∈Γ(L,g)

c 6=0

deg f ′c(x) + 1.

If c 6= 0, deg f ′c(x) ≥ deg ḡ(x). Hence,

d ≥ deg ḡ(x) + 1.

Suppose g(x) is has no multiple irreducible factors, i.e., Γ(L, g) is a square-free binary

Goppa code, so that ḡ(x) = g(x)2. Then the minimum distance d of Γ(L, g)

d ≥ 2 deg g(x) + 1

14



2.3 Special Cases of Goppa Codes

2.3.2 Wild Goppa Codes

The wild Goppa codes were analyzed in 1976 by Sugiyama, Kasahara, Hirasawa and

Namekawa [SKHN76] and suggested to be used in wild McEliece Cryptosystem in 2011

by Bernstein, Lange and Peters [BLP11b].

Definition 2.3.1 (Wild Goppa Codes). Let q be a prime power and m,n be integers

such that n ≤ qm. Let L be a set of n distinct elements of Fqm and g(x) be a monic

square-free polynomial in Fqm [x] such that g(α) 6= 0, ∀α ∈ L. Goppa codes Γ(L,gq) and

Γ(L, gq−1) are called wild Goppa codes.

The following theorem formally states that given a monic square-free polynomial g(x),

the Goppa codes Γ(L,gq) and Γ(L, gq−1) over Fq are the same. The proof of this special

property of wild Goppa codes has already appeared in [SKHN76, Wir88] and also been

modified in [BLP11b].

Theorem 2.3.2 (Wild Goppa Codes Parameters). Let r = deg(gq−1). The wild Goppa

codes Γ(L,gq) and Γ(L, gq−1) are the same codes. These codes are q-ary codes of

• length n,

• dimension k ≥ n− rm, and

• minimum distance d ≥ q
q−1r + 1.

Proof. Here we recap the proof shown in [BLP11b].

If
∑
i

ci
x−αi

= 0 in Fqm [x]/gq then certainly
∑
i

ci
x−αi

= 0 in Fqm [x]/gq−1.

Conversely, consider any c ∈ Fnq such that
∑
i

ci
x−αi

= 0 in Fqm [x]/gq−1. Find an extension

K of Fqm so that g splits into linear factors in K[x]. Then
∑
i

ci
x−αi

= 0 in Kqm [x]/gq−1,

so
∑
i

ci
x−αi

= 0 in Kqm [x]/(x − a)q−1 for each factor (x − a) of g. The elementary series

expansion
1

x− bi
= − 1

(bi − a)
− x− a

(bi − a)2
− (x− a)2

(bi − a)3
− · · ·

then implies∑
i

ci
(bi − a)

+ (x− a)
∑
i

ci
(bi − a)2

+ (x− a)2
∑
i

ci
(bi − a)3

+ · · · = 0

in Kqm [x]/(x− a)q−1; i.e.,
∑
i

ci
(bi−a) = 0,

∑
i

ci
(bi−a)2

= 0, · · · ,
∑
i

ci
(bi−a)q−1 = 0. Now take

the q-th power of equation
∑
i

ci
(bi−a) = 0, and use the fact that ci ∈ Fq so that cqi = ci, to

obtain
∑
i

ci
(bi−a)q = 0. Work backwards to see that

∑
i

ci
(bi−a) = 0 in Kqm [x]/(x− a)q.

15



2 Goppa Codes

By hypothesis g is the product of its distinct linear factors (x − a). Therefore gq is the

product of the coprime polynomials (x − a)q, and
∑
i

ci
(bi−a) = 0 in Kqm [x]/(x − a)q; i.e.,∑

i

ci
(bi−a) = 0 in Fqm [x]/(x− a)q.

The parameters follows from Theorem 2.2.1.

2.4 Bounded Minimum Distance Decoders of Goppa Codes

Bounded minimum distance (BMD) decoders can decode up to half of the minimum

distance d. Such decoders guarantee to give a unique codeword when the number of

errors is t ≤
⌊
d−1

2

⌋
. Goppa codes are linear codes. Syndrome decoding is an efficient

method to decode linear codes because of their linear structures. We mainly discuss the

syndrome-based decoders for Goppa codes.

2.4.1 RS Syndrome-based Decoder

As stated in Theorem 2.2.2, Goppa codes are subfield subcodes of generalized RS codes.

We therefore can use the decoders of RS codes to decode Goppa codes.

Uniquely decoding RS codes was initialized by [Pet60, GZ61] and involves works from [Chi64,

Ber68, Mas69, For66, SKHN75]. A detailed overview of their contributions can be found

in [Czy11, Ch. 4].

Definition 2.4.1 (RS Syndrome). Given a GRS(L,V) and a received word r = c + e,

where c ∈ GRS , the syndrome polynomial S(x) is given by

S(x) =
n∑
i=0

rivi
1− αix

mod xd−1, (2.9)

where ri is the i-th entry of r and αi ∈ L, vi ∈ V.

Alternatively, given the parity check matrix HGRS of GRS, the coefficients of S(x) can

be computed by

S(x) =
d−2∑
i=0

six
i,

where the si are the entries of the syndrome vector s = rHT
GRS.

Definition 2.4.2 (RS Key Equation). Assume E is the set of error positions, namely,

E = {i|ei 6= 0}. Define the error locator polynomial (ELP) as

Λ(x) :=
∏
i∈E

(1− αix)

16



2.4 BMD Decoders

and the error evaluator polynomial (EEP) as

Ω(x) :=
∑
i∈E

eivj
∏

j∈E\{i}

(1− αjx).

The GRS key equation consists of the following equations:

Ω(x) ≡ Λ(x)S(x) mod xd−1 (2.10)

gcd(Λ(x),Ω(x)) = 1

deg Ω(x) < deg Λ(x) ≤ d− 1

2
. (2.11)

Algorithm 2.1: RS Syndrome-based Decoder

Data: A received word r = c + e with c ∈ Γ(L, g) and the super code GRS(L,V)
(see Theorem 2.2.2) of Γ(L, g)

Result: Correct codeword c ∈ Γ(L, g)
1 Calculate syndrome polynomial S(x);
2 Solve the RS key equation to obtain ELP Λ(x) and EEP Ω(x);
3 Determine the error locations and value by Forney’s formula:

ei =

−
αi
vi
·
Ω(α−1

i )

Λ′(α−1
i )

if Λ(α−1
i ) = 0

0 otherwise

, i = 0, 1, . . . , n− 1,

where λ′(x) is the formal derivative of the polynomial λ(x);
4 Return c = r− e.

Algorithm 2.1 summarizes the syndrome-based decoding algorithm of generalized RS

codes from [Rot06, Ch. 6]. Step 2 can be done by solving a linear system of equations

(LSE), which is constructed by equating the coefficients of 1, . . . , xd−2 from left-hand-side

(LHS) to those from right-hand-side (RHS) of (2.10). The resulting algorithm is known

as Peterson-Gorenstein-Zierler algorithm ([Rot06, Sec. 6.3.1]), whose time complexity

is cubic in d. More efficient alternatives are the extended Euclidean algorithm ([Rot06,

Sec. 6.4]) and the Berlekamp-Massey algorithm ([Rot06, Sec. 6.7]), whose complexities are

quadradic in d. All these algorithms give the unique solution of Λ(x),Ω(x) that satisfies

the key equation.
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Decoding Radius of RS Syndrome-based Decoder

Theorem 2.4.1 (Decoding Radius of RS Syndrome-based Decoder). For a Goppa code

Γ(L, g) with deg(g) = r, Algorithm 2.1 returns the correct codeword if

wt(e) ≤
⌊r

2

⌋
.

Proof. The Goppa code has minimum distance d = r + 1 (Theorem 2.2.1). From (2.11)

we can see that deg(Λ) is at most r
2 . The degree of Λ(x) is defined by the number of

errors wt(e), which is an integer. Thus, at most
⌊
r
2

⌋
error can be corrected by solving

the GRS key equation.

Corollary 2.4.1. For a wild Goppa code Γ(L, gq−1) with deg(gq−1) = r, Algorithm 2.1

returns the correct codeword if

wt(e) ≤
⌊

q

q − 1
· r

2

⌋
.

Proof. Follows from Theorem 2.3.2 and Therem 2.4.1.

2.4.2 Patterson Decoder for Binary Squary-free Goppa codes

In the summary [Ber73] from Berlekamp, the syndrome and key equation for decoding

Goppa codes are defined slightly different from those of RS codes.

Definition 2.4.3 (Goppa Syndrome). Given a Goppa code Γ(L, g) and a received word

r = c + e with c ∈ Γ(L, g), the syndrome polynomial s(x) is defined as

s(x) :=

n−1∑
i=0

ei
x− αi

mod g(x) (2.12)

and can be calculated from the received word r by

s(x) =

n−1∑
i=0

ri
x− αi

mod g(x). (2.13)

Definition 2.4.4 (Goppa Key Equation). Assume E is the set of error positions, namely,

E = {i|ei 6= 0}. Define ELP σ(x) and EEP η(x) respectively as

σ(x) :=
∏
i∈E

(x− αi)
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Algorithm 2.2: Patterson Decoder

Data: a binary square-free Goppa code Γ(L, g) and received word r
Result: Correct codeword c ∈ Γ(L, g)

1 Calculate syndrome polynomial s(x);
2 if 1

s(x) mod g(x) = x then

3 set σ(x) = x and go to step 7;

4 Calculate v(x) =
√

1
s(x) + x mod g(x);

5 Find a0(x), a1(x) s.t.
a0(x) ≡ v(x) a1(x) mod g(x) (2.15)

using extended Euclidean algorithm with restrictions

deg(ai) ≤
⌊
r − i

2

⌋
, i = 0, 1; (2.16)

6 Compute σ(x) by

σ(x) = a0(x)2 + xa1(x)2; (2.17)

7 Return the c where

ci =

{
ri + 1 if σ(αi) = 0

ri otherwise
, i = 0, . . . , n− 1.

η(x) :=
∑
i∈E

ei
∏

j∈E\{i}

(x− αj).

The Goppa key equation consists of the following equations:

η(x) ≡ σ(x)s(x) mod g(x), (2.14)

gcd(σ(x), η(x)) = 1,

deg η(x) < deg σ(x) ≤ r

2
.

Patterson [Pat75] proposed an algorithm for binary square-free Goppa codes based on

the Goppa key equation, which is summarize in Algorithm 2.2.

Theorem 2.4.2. Algorithm 2.2 is correct for binary square-free Goppa codes.

Proof. As a proof, we recap the derivation of the algorithm.

Consider a binary square-free Goppa code Γ(L, g). Since the error value could only be 1

in binary codes, the EEP η(x) is equal to σ′(x), the formal derivative of σ(x). Therefore
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(2.14) becomes

σ′(x) ≡ σ(x)s(x) mod g(x). (2.18)

Being a polynomial in characteristic 2, σ(x) in module g(x) can be written as (2.17) for

some a0(x), a1(x) with degree restrictions (2.16) and hence

σ′(x) = 2a0(x)a′0(x) + a1(x)2 + 2xa1(x)a′1(x) = a1(x)2. (2.19)

Substituting σ(x) and σ(x)′ in (2.18) by (2.17) and (2.19) respectively, we obtain

a1(x)2 ≡ (a0(x)2 + xa1(x)2)s(x) mod g(x),

whence

a0(x) ≡

√
1

s(x)
+ x a1(x) mod g(x) (2.20)

Let v(x) ≡
√

1
s(x) + x mod g(x) we obtain (2.15).

If 1
s(x) = x, σ(x) = x is the solution, since (2.18) directly holds in this case. Otherwise,

there surely exists a unique nonzero polynomial v(x) if g(x) is square-free (referring to

Theorem 2.4.1 for p = 2).

Solving (2.15) for a0(x) and a1(x) is equivalent to the problem of finding two polyno-

mials a1(x) and β(x) such that gcd(v(x), g(x)) = a1(x)v(x) + β(x)g(x), where a0(x) =

gcd(v(x), g(x)). This problem can be solved by extended Euclidean algorithm with the

degree restrictions (2.16).

Since (2.18) holds only when errors are binary vectors and v(x) exists if and only if g(x)

is square-free, we can conclude that Patterson decoder only works for binary square-free

Goppa codes.

Remark. A binary square-free Goppa code Γ(L, g) is equivalent to Γ(L, g2) (see Sec-

tion 2.3.2 wild Goppa codes). We can also decode Γ(L, g) by applying RS syndrome-based

decoder on Γ(L, g2) but with larger computational costs.

Decoding Radius of Patterson Decoder

Theorem 2.4.3 (Decoding Radius of Patterson Decoder). For a binary square-free

Goppa code Γ(L, g) with deg(g) = r, Algorithm 2.2 returns the correct codeword if

wt(e) ≤ r.

Proof. From the definition of ELP σ(x), we can see that the number of correctable errors
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wt(e) = deg(σ(x)). In Patterson decoder, since σ(x) is calculated from a0(x) and a1(x)

by (2.17) and degrees of a0(x) and a1(x) are restricted by (2.16). It follows that

deg(σ(x)) = max{2 · deg(a0), 2 · deg(a1) + 1}

≤ max{2 ·
⌊r

2

⌋
, 2 ·

⌊
r − 1

2

⌋
+ 1}

= r

2.4.3 p-ary Patterson Decoder for Squary-free Goppa codes

A nondeterministic decoding algorithm for square-free Goppa codes Γ(L, g) over Fp is

proposed by Barreto et al. in [BML13], where p is a prime. We summerize the algorithm

in Algorithm 2.3 and refer it as p-ary Patterson Decoder.

The derivation of this algorithm is similar to that of Patterson decoder and is given

in [BML13]. Here we show that the p-ary Patterson decoder works only for square-free

Goppa codes.

Lemma 2.4.1. Let p be a prime and m be an integer. Given a polynomial g(x) ∈ Fpm [x],

for any polynomial h(x) ∈ Fpm [x], p
√
h(x) exist in Fpm [x]/g(x) if and only if g(x) is

square-free.

Proof. Being a polynomial in characteristic p, we can write h(x) by

h(x) = h0(x)p + xh1(x)p + x2h2(x)p + · · ·+ xp−1hp−1(x)p.

Then,

p
√
h(x) = h0(x) + p

√
xh1(x) + ( p

√
x)2h2(x) + · · ·+ ( p

√
x)p−1hp−1(x) mod g(x). (2.21)

We can write

g(x) = g0(x)p + xg1(x)p (2.22)

since it is also a polynomial in characteristic p. Therefore,

p
√
x = −g0(x)

g1(x)
mod g(x) exists ⇐⇒ g1(x)−1 mod g(x) exists

⇐⇒ gcd(g(x), g1(x)) = 1.
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Algorithm 2.3: p-ary Patterson Decoder

Data: A Goppa code Γ(L, g) over Fp with g(x) being square-free and a received
codeword r

Result: a list of corrected codewords c ∈ Γ(L, g) (∅ upon failure)
1 Calculate the syndrome polynomial s(x)
2 S ← ∅
3 foreach φ← 1 to p− 1 do
4 # guess the correct scale factor φ
5 foreach k ← 1 to p− 1 do

6 Calculate uk(x) = xk − φkxk−1

s(x) mod g(x);

7 Calculate vk(x) = p
√
uk(x) mod g(x);

8 Build the lattice Λ(Aφ) whose basis Aφ is
g(x)
−v1(x) 1

...
. . .

−vp−1 1

 ;

9 Reduce the basis of Λ(Aφ);
10 foreach i← 1 to p do
11 Let a denote the i-th row of the reduced basis of Λ(Aφ);
12 foreach j ← 0 to p− 1 do

13 if deg(aj) > b (t−j)
p c then

14 try next i; # not a solution

15 Calculate σφ(x) =
∑

j x
jaj(x)p;

16 Compute the set J ⊂ L such that σφ(αj) = 0;
17 e ← 0 of length n;
18 foreach j ∈ J do
19 Compute the multiplicity µj of αj ;
20 ej ← φµj ;

21 if
n−1∑
i=0

ei
x−αi

mod g(x) ≡ 0 then

22 S ← S ∪ {r− e};

23 Return S.

From (2.22), the formal derivative of g(x) is

g′(x) = pg0(x)p−1 + g1(x)p + pxg1(x)p−1 = g1(x)p,
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2.4 BMD Decoders

since we work in characteristic p. Because of gcd(g1(x), g1(x)p) = g1(x),

p
√
x = −g0(x)

g1(x)
mod g(x) exists ⇐⇒ gcd(g(x), g1(x)p) = 1

⇐⇒ gcd(g(x), g′(x)) = 1.

It is easy to see that

gcd(g(x), g′(x)) = 1 ⇐⇒ g(x) is square-free.

Once we obtain p
√
x, p
√
h(x) can be calculated from (2.21).

It follows from Lemma 2.4.1 that Step 7 can be done only if g(x) is square free. Thus

p-ary Patterson decoder (Algorithm 2.3) works only for square-free Goppa codes.

In step 7, if g(x) is square-free but not irreducible, s(x) may not be invertible modulo

g(x) but is invertible modulo each of the irreducible factors of g(x). In this case, vk(x)

can be calculated by modulo each of irreducible factors of g(x) and then recovered via

the Chinese Remainder Theorem.

In step 9, Mulders and Stojohann’s algorithm [MS03] can be used to do the lattice reduc-

tion to find candidate solutions ak.

Decoding Radius of p-ary Patterson Decoder

It is shown in [BML13] that without knowing the error magnitudes distribution, the

maximum number of errors that can be corrected by the p-ary Patterson decoder is
⌊

2
pr
⌋
.

However, this is not a guaranteed decoding radius. By choosing the error magnitudes to

be equal, up to r errors can be corrected with high probability.
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3 Code-based Cryptosystem - McEliece

System

This chapter recaps the structure of the McEliece System and Wild McEliece. Several

attacks that effectively decrease the security level of the McEliece system are also covered.

3.1 System Description

The McEliece cryptosystem is a code-based public-key system proposed by Robert J.

McEliece in 1978 [JM78]. It is one of the promising candidates for post-quantum cryp-

tography.

The McEliece cryptosystem works like this:

• Key generation (Alice)

– Choose a t-error-correcting linear [n, k] code with generator matrix G,

– Generate a random-looking matrix Gpub by Gpub = SGP, where S is a random

full-rank scramble matrix and P is a random permutation matrix,

– Publish the public key (Gpub, t) and keep the secret key (G,S,P) secret.

• Encryption (Bob)

Generate the ciphertext y=m·Gpub+e, where m is a plaintext vector and e is an

error vector of weight t.

• Decryption (Alice)

– Inverse permutation: y′ = yP−1;

– Correct errors: m′ = D(y′), where D(·) is an efficient decoding algorithm of

the secret code correcting t errors;

– Inverse scramble: m = m′S−1.

Notice that the inverse of a permutation matrix is again a permutation matrix and right-

multiplying a permutation matrix to a vector does not change the weight of the vector,

i.e., wt(e) = wt(eP−1).
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3 McEliece System

Eve can not reveal the plaintext from the ciphertext efficiently since Gpub generates a

obfuscated code and decoding a random-looking code is a hard problem.

Figure 3.1 gives an illustration of the principle of the McEliece cryptosystem, where the

red letters m, e,G,S,P should be kept secret and the blue letters Gpub, t, y are accessible

by public.

Bob

Gpub, t

Alice

S, G, P, t

Eve

Gpub, t

ciphertext:
y=m·Gpub+e

Credit: [EWZZ18]

Figure 3.1: Principle of the McEliece cryptosystem.

Work Factor & Security Level

In principle every computational cryptographic method is breakable, just a matter of time

and effort. Work factor (WF) is the number of bit operations that a certain adversarial

algorithm needs to do in order to break a cipher.

Security level (SL) is a measure of the strength that a cryptographic algorithm achieves.

Denote the work factor of the fastest attack by W . The security level of a cryptosystem

is defined by SL = log2(W ) and is usually represented in “bits”, that is, n-bits security

means that the fastest attack would have to perform 2n bit operations to break the cipher.

3.2 Attacks

As we can see from Figure 3.1, Eve can access to both Gpub and the ciphertext y. Eve

has two ways to retrieve the secret plaintext m from y:

• find out the secret code from the public code, i.e., retrieve G from Gpub;

• decode y without knowning an efficient decoding algorithm for the public code.

Attacks of the first type are called structural attacks. These attacks are customized for

specific code classes, such as Sidelnikov-Shestakov attack [MSOS92] on RS codes. If the

secret generator matrix G or an equivalent efficiently recognizable representation of the
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3.2 Attacks

underlying secret code can be retrieved in sub-exponential time, this code should not be

used in the McEliece system. The structural attack on Goppa codes can be only done

by testing the equivalence between all Goppa codes and the code generated by G. The

complexity is exponential to the field order m and the degree r of the Goppa polynomial.

Thus, Goppa codes are secure codes against structural attack.

The second type is called decoding attack. In the following we will describe how to correct

errors in a random-looking code without any obvious structure.

3.2.1 Information Set Decoding Attack

The information set decoding (ISD) attack relies on the “encoding-and-comparison” de-

coding algorithm proposed by Eugene Prange in 1962 [Pra62]. The idea is to find an

information set I of coordinates with |I| = k. Denote by yI the positions indexed by I
in y and by Gpub,I the columns indexed by I in Gpub. The ISD algorithm hopes that

yI contains only error-free positions. The original message can then be computed by

m = yI ·G−1
pub,I .

Algorithm 3.1: Information Set Decoding

Data: Generator matrix Gpub of size k × n, ciphertext y, number of errors t
Result: Secret plaintext m

1 Choose an I ⊂ {0, . . . , n− 1}, |I| = k that has never been chosen

2 if wt
((

yI ·G−1
pub,I

)
·Gpub − y

)
= t then

3 Return m = yI ·G−1
pub,I

4 else
5 Repeat from step 1

Theorem 3.2.1 (Work Factor of ISD). The work factor of Algorithm 3.1 on an McEliece

system with binary codes and parameters (n, k, t) is

WISD(n, k, t) = k3 ·
(
n
k

)(
n−t
k

) .
Example 2. The security level of original parameters (n = 1024, k = 524, t = 50)

porposed by McEliece against ISD attack is 80.71 bits.

The ISD algorithm is the best method to decode an arbitrary linear code. The first

analysis was done by McEliece in [JM78]. Several improvements were done by Lee and

Brickell in [LB88], by Leon in [Leo88] and by Stern in [Ste89].
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3 McEliece System

The ISD attack on McEliece system can be reduced into a another problem: finding low-

weight codewords (FLWCW) problem. Stern’s algorithm [Ste89] is originally an algorithm

for finding low-weight codewords. We do not show in detail how to find the low weight

codewords. For the interest, please refer to [Ste89, Pet10]. We just give the complexity

of Stern’s algorithm in terms of number of bit operations in Lemma 3.2.1.

Lemma 3.2.1 (Bit Operations of Stern’s algorithm [Ste89]). The number of bit operations

of finding a codeword of weight t of an [n, k, t] code by Stern’s algorithm is

FLWCW(n, k, t) =

(
n
k

)(
t

2p

)(
n−t
k−2p

) · 4p(
2p
p

) · (
n−k
λ

)(
n−k−t+2p

λ

)
·

1

2
(n− k)3 + k(n− k)3 + 2λp

(
k/2

p

)
+

2p(n− k)
(
k/2
p

)2
2λ

 ,

where p, λ are parameters to optimize the complexity. Usually p is a small positive integer

and λ =
⌈
log2

(
k′/2
p

)⌉
[Pet10].

Algorithm 3.2 shows the idea of using Stern’s algorithm to attack the McEliece system.

Algorithm 3.2: Stern’s Attack

Data: Generator matrix Gpub of size k × n, ciphertext y, number of errors t
Result: Secret plaintext m

1 Append y to Gpub to form a new generator matrix G′ =

(
Gpub

y

)
of an [n, k + 1, t]

code C’;
2 Find the lowest-weight codeword e in the code C’ by Stern’s algorithm [Ste89];
3 Set I ⊂ {0, 1, . . . , n− 1}\supp(e);

4 Return m = yI ·G−1
pub,I .

Corollary 3.2.1 (Work Factor of Stern’s Attack). The work factor of Algorithm 3.2 on

an McEliece system with parameters (n, k, t) is

WS(n, k, t) = k3 + FLWCW(n, k + 1, t).

Proof. k3 comes from step 4 and the other component comes from step 2.

Example 3. The security level of original parameters (n = 1024, k = 524, t = 50) against

Stern’s attack is 67.95 bits (p = 4).

Bernstein, Lange and Peters improve Stern’s attack in [BLP08]. This improvement takes

only 260.5 bit operations on the original McEliece parameters (n = 1024, k = 524, t = 50).
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3.2 Attacks

Finiasz and Sendrier presented in [FS09] “a lower bound on the effective work factor of

exsiting and coming attacks”, which computed 259.9 as a bound for the original McEliece

parameters. Bernstein, Lange and Peters introduced ball-collision attack in [BLP11a],

where they came up with a new simpler lower bound on the work factor of their ball-

collision attack:

W ≥ min

{
1

2

(
n

t

)(
n− k
t− p

)−1(k
p

)− 1
2

: 0 ≤ p ≤ min{t, k}

}

The ball collision is actually a further improvement of Stern’s attack. Figure 3.2 shows the

principles of the improvements of ISD attack: allowing errors to appear in the information

set. Further, we may refer all these attacks shown in Figure 3.2 as ISD-based attacks and

Algorithm 3.1 as naive ISD algorithm.

Credit: [BLP11a]

Figure 3.2: Improvements of ISD attack. There are w errors in total. ISD allows no
errors in the information set. The improvements in turn allows more errors
in different segments to give better work factor of the algorithm.

The aforementioned attacks only concern about F2. Peters generalized the Lee-

Brickell’s, Stern’s algorithms over arbitrary fields Fq in [Pet10]. Pradeep investigated

in [Pra18] the work factor of the generalized algorithms from [Pet10]. We conclude the

results of [Pra18] by Lemma 3.2.2.

Lemma 3.2.2 (Work Factor of ISD Attacks in Fq). For general field size q, the work

factor increases by a factor of (log2 q)
2 for ISD and more than (log2 q)

2 for its improve-

ments.
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3 McEliece System

Following from Lemma 3.2.2, we suggest that the bound on the work factor should also

increase by a factor of (log2 q)
2 for general q, as stated in Theorem 3.2.2.

Theorem 3.2.2 (Lower Bound on Work Factor). The work factor W of ISD-based algo-

rithms on an McEliece system with parameters (n, k, t) over Fq is

W ≥WB(n, k, t) = min

{
1

2

(
n

t

)(
n− k
t− p

)−1(k
p

)− 1
2

(log2 q)
2 : 0 ≤ p ≤ min{t, k}

}

Remark. This bound is rather heuristic because the bound for binary codes given in [BLP11a]

is not proven, either. But it is in a very simple form, easy to compute and lower-bounds

the best known attack: ball-collision attack. So we recommend to use this bound as a

security measure for selecting the parameters of the McEliece system.

Further, we will use this formula to evaluate the security level of the McEliece system

with Goppa codes.

Example 4. The security level of original parameters (n = 1024, k = 524, t = 50) against

this bound is 49.69 bits (p = 5).

3.3 Wild McEliece

Wild McEliece is a variant of the McEliece system using wild Goppa codes (see Sec-

tion 2.3.2) to reduce the key size of the McEliece system. It was proposed by Bernstein,

Lange and Peters in [BLP11b].

The wild Goppa codes Γ(L, gq−1) over Fq can be uniquely decoded by the RS syndrome-

based decoder (Algorithm 2.1) or a newly proposed Goppa Key Equation Decoder (Algo-

rithm 4.1) in Section 4.3.1 when t ≤
⌊

q
q−1 ·

r
2

⌋
errors happen, where r = deg(gq−1). Note

that the improvement of decoding radius in wild McEliece is only effective for non-binary

Goppa codes, since the binary square-free Goppa codes that the original McEliece uses

which are wild Goppa codes by default.

3.4 Attacks on Wild McEliece

3.4.1 Structural Attack

Polynomial Search Attack

There are approximately qmr/r monic irreducible polynomials g of degree r in Fqm [x],

and therefore approximately qmr/r choices of gq−1. One can marginally expand the space
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3.4 Attacks on Wild McEliece

of polynomials by considering more general square-free polynomials g, but here we focus

on irreducible polynomials for simplicity.

An attacker can try to guess the Goppa polynomial gq−1 and then apply Sendriers support-

splitting algorithm [Sen00] to compute the support L.

Square Code Operation

In 2013, Faugère, Umaña, Otmani, Perret and Tillich showed in [FnO+13] that a square

code operation:

C = C1 ? C2 := {u ? v := (u1v1, u2v2, . . . , unvn), ∀u ∈ C1,v ∈ C2}

can be used to distinguish high rate Goppa codes from a random code because the di-

mension of the square of the dual is much smaller than that of a ramdom code. The

worst case possibility is that this distinguisher somehow allows an inversion attack faster

than decoding attacks. However, the distinguisher stops working at 8 errors for n = 1024

(where orinial McEliece parameter has already 50 errors) and at 20 errors for n = 8192

(where for such long length codes, we usually choose the Goppa codes that can decode

more than 100 errors).

In a recent paper [COT17], Couvreur, Otmani and Tillich introduced a polynomial-time

attack on wild Goppa codes over quadratic extensions. It turns out that the wild Goppa

codes with m = 2 can be distinguished from random codes by observing that the square

code of some of their shortenings have a small dimension compared to squares of random

codes of the same dimension.

3.4.2 Parameters Selection Against Structural Attacks

We suggest the following restrictions on selecting parameters of wild Goppa parameters to

defense wild McEliece and its possible variants against the structural attacks mentioned

above:

• Keep qmr/r extremly large, e.g., ≥ 2128, so that guessing gq−1 has neglegible chance

of success;

• Keep L noticeably smaller than Fqm , so that the support-splitting algorithm takes

a guess of L as another input along with g;

• Keep m large (at least > 2) and keep q s.t. qm is sufficiently large, e.g., ≥ 2048;

• Keep code rate R = n/k noticeably away from 0 and 1 (optional, since the high-rate

code distinguisher stops working when too many errors occurs).
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3 McEliece System

3.4.3 Decoding Attack

The most effective attack on the original McEliece cryptosystem is the ISD attack. As a

generic decoding method, ISD does not rely on any particular code structure. ISD-based

attacks also appear to be the top threat to wild McEliece and determine its security level.

The exact complexity of ISD is not easy to state concisely, since there are a lot of im-

provements. We rely on the bound in Theorem 3.2.2 to evaluate the security level of wild

McEliece with parameters n, k, t, q.

Note that the number of errors t is at most
⌊

q
q−1 ·

r
2

⌋
in a Γ(L, gq−1) wild McEliece

with r = deg(gq−1), while being at most
⌊
r
2

⌋
in a Γ(L, g) McEliece with r = deg(g).

The increasing of error positions results in a better security level of wild McEliece. Or

alternatively, for the same security level, wild McEliece needs smaller key size than the

McEliece system.

32



4 Interleaved Goppa Codes

In this chapter we give the definiton of interleaved Goppa codes and introduce a prob-

abilistic decoding algorithm that can decode more than half of the minimum distance

errors. The failure probability is investigated by simulations with several codes. At

the end of this chapter, a GoppaCode class and several decoder classes implenmented in

SageMath are presented.

4.1 Definition

Definition 4.1.1 (Interleaved Goppa Codes). Let Γ(L, g) denote a Goppa code as defined

in Definition 2.1.1. An `-interleaved Goppa code (IGC) is denoted by IΓ(L, g, `) and

defined by

IΓ(L, g, `) =




c(1)

c(2)

...

c(`)

 , ∀c(i) ∈ Γ(L, g), i = 1, . . . , `

 .

4.2 Burst Errors

Burst errors are error patterns that corrupt continuous positions in data streams. If we

transmit the codewords of IGC column by column as data streams, then retrieve the

received streams into ` × n arrays, the burst errors can be seen as error matrices that

corrupt columns of the codewords of IΓ, as illustrated in Figure 4.1. This can be also

seen as ` Goppa codewords being corrupted at the same positions. Hence, a collaborative

decoding strategy can be applied, which locates the errors jointly in all words instead of

locating them independently in the several words. This allows to uniquely locate up to t

errors, in many cases even if t is greater than the half the minimum distance of Γ.
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4 Interleaved Goppa Codes

Credit: [WZ17]

Figure 4.1: Illustration of burst errors on interleaved codes.

Consider an IΓ(L, g, `) over Fq. Assume we observe a received word

R =


r(1)

r(2)

...

r(`)

 =


c(1)

c(2)

...

c(`)

+


e(1)

e(2)

...

e(`)

 = C + E,

where C ∈ IΓ(L, g, `) and E ∈ F`×nq . We define wt(E) by the number of non-zero columns

of E.

4.3 Decoding of Interleaved Goppa codes

4.3.1 Goppa Key Equation Decoder

Before we explain the concept of collaboratively decoding for IGC, we first introduce

another BMD decoder of Goppa codes, the Goppa Key Equation Decoder, besides the

ones in Chapter 2. The collaboratively decoding is based on this decoder.

We follow the definitions of Goppa syndrome polynomial s(x), ELP σ(x), EEP η(x) and

Goppa key equation from Definition 2.4.3 and 2.4.4. Unlike Patterson decoder doing a

“polynomial splitting” on σ(x), we will directly solve the Goppa key equation.

Solving the key equation is equivalent to solving a LSE with coefficients of σ(x), η(x) and

g(x).

In the following, we will show how to set up and solve the LSE.

Setting up LSE for Goppa Key Equation

We can write the polynomials with their coefficients explicitly by g(x) =
r∑
i=0

gix
i, s(x) =

r−1∑
i=0

six
i, σ(x) =

t∑
i=0

σix
i and η(x) =

t−1∑
i=0

ηix
i.
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4.3 Decoding of Interleaved Goppa codes

Then σ(x)s(x) (without mod g(x)) can be written as

σ(x)s(x) =(σ0s0) + (σ1s0 + σ0s1)x+ · · ·

+ (σtsr−t−1 + σt−1sr−t + · · ·+ σ0sr−1)xr−1

+ (σtsr−t + · · ·+ σ1sr−1)xr + · · ·

+ (σtsr−1)xr+t−1.

(4.1)

The coefficients of xi in (4.1) can be expressed by the multiplication of a matrix M with

entries si and a vector σ = (σ0, . . . , σt):

M · σT =



s0

s1 s0 0
...

...
. . .

st−1 st−2 · · · s0

st st−1 · · · s1 s0

...
... · · ·

...
...

sr−1 sr−2 · · · sr−t sr−t−1

sr−1 · · · sr−t+1 sr−t
. . .

. . .
...

sr−1 sr−2

sr−1

 t

·


σ0

σ1

...

σt

 . (4.2)

Taking mod g(x) into account, the xr, · · · , xr+t−1 terms in (4.1) should disappear and

their coefficients will appear in the coefficients of 1, · · · , xt−1 with some modification

according to g(x). Identically, the last t rows of M in (4.2) should be modified into the

upper part of M.

Notice that b · xi mod g(x) = b · (xi mod g(x)) where b ∈ Fqm is a constant. We pre-

calculate the residues of xi+r mod g(x) for 0 ≤ i ≤ t − 1 and store the coefficients as

column in a look-up table (LUT) A, which is a r×t matrix. The entry Aij is the coefficient

of xi in the residue of xj+r mod g(x), for 0 ≤ i ≤ r − 1, 0 ≤ j ≤ t.

Let M′ ·σT contain the coefficients of xi in σ(x)s(x) mod g(x), where M′ is the modified

upper r rows of M and is of size r× (t+ 1). Each entry M ′ij of M′ is calculated from M

and the LUT A by the following rule:

M ′ij = Mij +
t−1∑
l=0

Ail ·Ml+r,j , (4.3)
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4 Interleaved Goppa Codes

for 0 ≤ i ≤ r − 1, 0 ≤ j ≤ t.
We denote the upper r rows of M by Mup and lower t rows by Mlo. Then equivalently,

M′ can be calculated by

M′ = Mup + A ·Mlo

Then, equating the coefficients in (2.14) we get the following LSE for unknowns σi and

ηi:

M′ · σT =



M ′00 M ′01 · · · M ′0,t−1

M ′10 M ′11 · · · M ′1,t−1
...

... · · ·
...

M ′t−1,0 M ′t−1,1 · · · M ′t−1,t−1

M ′t,0 M ′t,1 · · · M ′t,t−1
...

... · · ·
...

M ′r−1,0 M ′r−1,1 · · · M ′r−1,t−1


·


σ0

σ1

...

σt

 =



η0

η1

...

ηt−1

0
...

0

 r − t

(4.4)

Given the LSE (4.4), we first solve the lower r − t equations to obtain the σi. It can

be seen that σ0 = σ1 = · · · = σt = 0 is a trivial solution. In order to get a non-trivial

solution, we set σ0 = 1 and obtain the following LSE
M ′t,1 · · · M ′t,t−1

... · · ·
...

M ′r−1,1 · · · M ′r−1,t−1


︸ ︷︷ ︸

S

·


σ1

...

σt

 = −


M ′t,0

...

M ′r−1,0

 (4.5)

Once the σ(x) is known, the decoding is almost done. Algorithm 4.1 summarizes all steps

of our Goppa key equation decoder.

Remark. For binary Goppa codes, we only execute the first step 1 - 4, since as long

as we know the error positions, we can correct the error by flipping the bits at the error

positions.

Remark (t is known). The readers may notice that generally in a decoding problem

the number of errors is not known to the decoder. Since we consider the application in

McEliece system, where t is a system parameter known to Alice who decodes the received

words, we regard t as a known algorithm input. Otherwise, t can be also searched by the

algorithm itself but we do not consider this step here.

Remark (Euclid’s Algorithm). Instead of solving the LSE by Gaussian elimination, the

key equation can be solved more efficiently by the extended Euclidean algorithm (EEA).

36



4.3 Decoding of Interleaved Goppa codes

Algorithm 4.1: Goppa Key Equation Decoder

Data: Γ(L, g), received word r and the number of errors t = wt(e)
Result: Correct codeword c ∈ Γ(L, g)

1 Calculate the syndrome polynomial s(x) given r by (2.13);
2 Setting up the LSE (4.5) according to (4.2) - (4.4);
3 Do Gaussian Elimination to obtain the solution (σ1, . . . , σt) of (4.5);
4 Calculate ELP by σ(x) = σtx

t + · · ·+ σ1x+ 1;
5 Calculate EEP by η(x) ≡ σ(x)s(x) mod g(x);
6 Determine the error vector e by

ei =

−
η(αi)

σ′(αi)
if σ(αi) = 0

0 otherwise

, i = 0, 1, . . . , n− 1,

where σ′(x) is the formal derivative of σ(x).
7 Return c = r− e

EEA was used by Sugiyama et. al. in [SKHN75] to solve the key equation. They also

showed the algorithm gives the unique solution.

Decoding Radius of Goppa Key Equation Decoder

Theorem 4.3.1 (Decoding Radius of Goppa Key Equation Decoder). For a Goppa code

Γ(L, g) with deg(g) = r, Algorithm 4.1 returns the unique and correct codeword if

wt(e) ≤
⌊r

2

⌋
.

Proof. From the LSE (4.5) we see that we have t unknowns and r − t equations. To

have a unique solution we need that rank(S) = t in (4.5). This is only possible when

the number of unknowns is less than the number of linearly independent equations, i.e.,

t ≤ r − t.

Corollary 4.3.1. For a wild Goppa code Γ(L, gq−1) with deg(gq−1) = r, Algorithm 4.1

returns the correct codeword if

wt(e) ≤
⌊

q

q − 1
· r

2

⌋
.

Proof. Follows from Theorem 2.3.2 and Therem 4.3.1.
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4 Interleaved Goppa Codes

4.3.2 Collaborative Decoding

Assume a codeword C ∈ IΓ(L, g, `) is corrupted by an error E with wt(E) = t and we

receive R = C + E. As shown in Section 4.3.1, each row r(i) of R gives a key equation

η(i)(x) ≡ σ(x)s(i)(x) mod g(x), (4.6)

hence each also gives an LSE
M ′t,1

(i) · · · M ′t,t−1
(i)

... · · ·
...

M ′r−1,1
(i) · · · M ′r−1,t−1

(i)


︸ ︷︷ ︸

S(i)

·


σ1

...

σt

 = −


M ′t,0

(i)

...

M ′r−1,0
(i)


︸ ︷︷ ︸

T(i)

. (4.7)

Note that σ(x) is the same for all syndromes since every row has the same error positions.

For collaborative decoding we concatenate the LSEs from each row in the following way

to build a new LSE 
S(1)

S(2)

...

S(`)


︸ ︷︷ ︸

S

·


σ1

...

σt

 = −


T(1)

T(2)

...

T(`)


︸ ︷︷ ︸

T

. (4.8)

Solving the key equation (4.6) with i = 1, . . . , ` for σ(x) can be seen as a Multi-sequence

Linear Feedback Shift-Register (MLFSR) synthesis problem. J. S. R. Nielsen proposed

in [Nie13] using Module Minimisation to solve this problem, which is a quasi-linear meth-

ods with complexity O(`3r log(r) log(log(r))), while solving the LSE (4.8) has complexity

O(`3r3).

Algorithm 4.2 summarizes the procedure of collaboratively decoding for interleaved Goppa

codes.

Decoding Radius of Goppa Key Equation Decoder

Theorem 4.3.2 (Guaranteed Decoding Radius of Collaboratively Decoding). For an

IΓ(L, g, `) with deg(g) = r, Algorithm 4.2 guarantees to return a unique and correct

codeword only if

wt(E) ≤
⌊r

2

⌋
.

Proof. If wt(E) ≤
⌊
r
2

⌋
, collaborative decoding can be done by decoding each row of R

seperately, which gives the unique and correct codeword, following from Theorem 4.3.1.
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4.3 Decoding of Interleaved Goppa codes

Algorithm 4.2: Collaboratively Decoding

Data: IΓ(L, g, `), received word R and the number of errors t
Result: Correct codeword C ∈ IΓ or decoding failure

1 foreach r(i) do

2 Calculate the syndrome polynomial s(i)(x);

3 Compute S(i) and T(i) in (4.7) according to (4.2) - (4.4);

4 Construct the LSE (4.8);
5 Do Gaussian Elimination to obtain the solution (σ1, . . . , σt) of (4.8);
6 Calculate ELP by σ(x) = σtx

t + · · ·+ σ1x+ 1;

7 foreach s(i)(x) do

8 Calculate EEPs by η(i)(x) ≡ σ(x)s(i)(x) mod g(x);

9 Determine the error vector e(i) by

e
(i)
i =

−
η(i)(αi)

σ′(αi)
if σ(αi) = 0

0 otherwise

, i = 0, 1, . . . , n− 1,

where σ′(x) is the formal derivative of σ(x).

10 Return

C =

r(1) − e(1)

...

r(`) − e(`)

 .

Theorem 4.3.3 (Maximum Decoding Radius of Collaboratively Decoding). For an

IΓ(L, g, `) with deg(g) = r, the maximum decoding radius of Algorithm 4.2 is

wt(E) ≤ tmax =

⌊
`

`+ 1
· r
⌋
. (4.9)

Proof. From (4.7), we can see each S(i) gives r − t rows. To find a solution from the

LSE (4.8) with t unknowns, the matrix S must at least have t rows. Thus, t ≤ `(r − t).
However, we can find a unique solution of the LSE (4.8) only if rank(S) = t. This is not

guaranteed when wt(E) >
⌊
r
2

⌋
.

Corollary 4.3.2. Consider a wild IGC IΓ(L, gq−1, `), where deg(gq−1) = r. The maxi-

mum decoding radius of Algorithm 4.2 for IΓ(L, gq−1, `) is

wt(E) =≤ tmax =

⌊
`

`+ 1
· q

q − 1
· r
⌋
.
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4 Interleaved Goppa Codes

Proof. Follows from Theorem 2.3.2 and Theorem 4.3.3

4.4 Probability of Decoding Failure

We can see from Theorem 4.3.2 and 4.3.3 that when
⌊
r
2

⌋
< t = wt(E) ≤

⌊
`
`+1 · r

⌋
, the

decoder can not guarantee to return a correct codeword. When rank(S) < t, the decoder

may give a wrong solution or multiple solutions. We define both consequences as decoding

failures.

In following we present a bound on failure probability of decoding interleaved Goppa

codes and show some simulation results of the failure probability of our decoder when

decoding wild IGC for
⌊

q
q−1 ·

r
2

⌋
< t ≤

⌊
`
`+1 ·

q
q−1 · r

⌋
.

4.4.1 Bounds on Probability of Decoding Failure

In [SSB09], Schmidt, Sidorenko and Bossert came up with an upper bound on the failure

probability of decoding interleaved Reed-Solomon (IRS) codes, in which a codeword is

composed of ` codewords of an RS code. Since Goppa codes are subspace subcodes of RS

codes, we will investigate whether the bound of decoding IRS codes is also the bound for

decoding IGC.

Theorem 4.4.1 (Failure Probability of Decoding IRS Codes). Assuming that all error

matrices E ∈ F`×nqm with t non-zero columns are equally likely, the failure probability of

collaboratively decoding interleaved Reed-Solomon codes can be bounded from above by

Pf (`, t) ≤

(
(qm)` − 1

qm

(qm)` − 1

)t
· (qm)−(`+1)(tmax−t)

qm − 1
, (4.10)

where tmax = `
`+1 · r.

From the simulation results in Figure 4.2 - 4.7 we can see that the failure probability of

decoding IGC when the error matrices are over Fq violates the bound for IRS codes.

Sidorenko derived a failure probability of decoding interleaved alternant code in [Sid18].

Theorem 4.4.2 (Failure Probability of Decoding Interleaved Alternant Codes). Assum-

ing that all error matrices E ∈ F`×nq with t non-zero columns are equally likely, the failure

probability of decoding an interleaved [n, n − µr]q, 1 ≤ µ ≤ m alternant code can be

upper-bounded by

Pf (`, t) ≤

(
q` − 1

qm

q` − 1

)t
· q
−(`µ+m)(tmax−t)

qm − 1
,

where tmax = `µ
`µ+mr.

40



4.4 Probability of Decoding Failure

Since the effect of µ on the failure probability is not clear, we plotted all the bounds

calculated by µ = 1, . . . ,m in Figure 4.2 - 4.7 to verify the correctness of the bound in

Theorem 4.4.2.

4.4.2 Simulation Results

The simulations are done with wild IGC. Algorithm 4.3 shows how the simulations were

operated.

Algorithm 4.3: Simulation Procedure

Data: Code parameters (r,m, q, `) s.t. q − 1|r
Result: Decoding Failure Probability

1 Construct an IΓ(L, gq−1, `), where L = Fqm\{0} and deg(gq−1) = r;

2 Calculate tmin =
⌊

q
q−1 ·

r
2

⌋
and tmax =

⌊
`
`+1 ·

q
q−1 · r

⌋
;

3 foreach t← tmin to tmax do
4 for i← 0 to iterations do
5 Generate an error matrix E with t non-zero columns;

6 Decode R = C + E (C ∈ IΓ) using Algorithm 4.2 and obtain Ĉ;

7 if Ĉ 6= C then
8 fail+ = 1

9 Calculate Pf (`, t) = fail
iterations

.

In order to investigate the effects of error value and error pattern on the failure probability,

we chose four kinds of error matrices:

• E ∈ F`×nq with t non-zero columns;

• E ∈ F`×nq with t non-zero columns and being full-rank, i.e., rank(E) = min{`, t};

• E ∈ F`×nqm with t non-zero columns;

• E ∈ F`×nqm with t non-zero columns and being full-rank.

We executed the simulations with parameters (r,m, q) = (6, 7, 2) and (r,m, q) = (14, 4, 3)

for ` = 2, . . . , 10. Since the simulation iterations are 2123, it returns 0 when the failure

probability is lower than 4.7 × 10−4. We chose the results with non-zero experimen-

tal failure probability to present here, that are, (r,m, q) = (6, 7, 2) for ` = 2, 3, 5 and

(r,m, q) = (14, 4, 3) for ` = 2, 3, 6.

Figure 4.2, 4.3 and 4.4 present the simulation results of (r,m, q) = (6, 7, 2) for l = 2, l = 3

and l = 5 respectively. The first four entries in the label box represents the experimental

failure probability. The red curve “th. IRS (qm)” is calculated by the theoretical bound
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` = 2: r = 6,m = 7, [127, 85, >= 13]2 wild IGC
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Figure 4.2: Failure probability of collaboratively decoding [127, 85, >= 13]2 wild IGC for
l = 2. The red curve “th. IRS (qm)” is calculated from Theorem 4.4.1. The
last 7 olive curves are drawn according Theorem 4.4.2.

inTheorem 4.4.1. The olive curves (the last 7 labels) are drawn according Theorem 4.4.2.

Figure 4.5, 4.6 and 4.7 present the simulation results of (r,m, q) = (14, 4, 3) for l = 2,

l = 3 and l = 6 respectively.

From the figures we can see that restricting the errors to be full-rank slightly reduces the

failure probability. If the error value is in the extension field Fqm , the failure probability

reduces significantly to the failure probability of decoding IRS codes. This indicates that

the value of errors has more impact on the rank of S in (4.8).

It can be seen that neither of the bound presented in Theorem 4.4.1 or 4.4.2 matches the

simulation results. A new bound of decoding IGC should be developed, which is left for
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Figure 4.3: Failure probability of collaboratively decoding [127, 85, >= 13]2 wild IGC for
l = 3.

work in future.

4.5 Implementations of Goppa Codes and Decoders In

SageMath

4.5.1 GoppaCode Class

A class of Goppa codes was implemented in SageMath [The18] (referred as Sage). Sage is

a free open-source mathematics software system. There are abundant libaries supporting

research in algebra, finite fields, coding theory and related areas.

The class GoppaCode is defined in Goppa code.py which is appended in Appendix (only
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Figure 4.4: Failure probability of collaboratively decoding [127, 85, >= 13]2 wild IGC for
l = 5.

in electronic version) (the source code can be also found in our public reposity https://

bitbucket.org/LiaLiu0128/decodinginterleavedgoppacodes/src/master/). A Goppa

code object can be initialized by a tuple (L, g). For example, by

L = GF(2^3).list()

x = polygen(GF(2^3))

g = x^2 + x + 1

GC = GoppaCode(L, g)

an [8, 2, 5] binary Goppa code object is constructed in Sage. In this example g(x) =

x2+x+1 is an irreducible polynomial over F23 . There is an advantage to use an irreducible
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Figure 4.5: Failure probability of collaboratively decoding [80, 24, >= 22]3 wild IGC for
l = 2.

polynomial over Fqm to construct Goppa codes. Because no root of the irreducible polyno-

mial lies in Fqm , we can then take L = Fqm and obtain an [n = qm, k ≥ qm−rm, d ≥ r+1]

Goppa code over Fq.
The parameters, parity check matrices H̃ and HGoppa (in (2.3)) and the GRS supercode

can be accessed by calling the attributes of the object.

# continue the previous example

n = GC.length()

k = GC.dimension()

d = GC.minimum_distance()

H_ext = GC.parity_check_matrix_ext()

H_base = GC.parity_check_matrix()
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Figure 4.6: Failure probability of collaboratively decoding [80, 24, >= 22]3 wild IGC for
l = 3.

RS = GC._RS()

The results of H ext and H base are shown in (2.5) and (2.6) respectively.

The reason of including the GRS supercode as an attribute of GoppaCode class is that

we can then directly use the well-developed decoders of the GeneralizedReedSolomonCode

class in Sage.

4.5.2 Decoder Classes

Several decoder classes have been implemented in Sage by the author as tools for inves-

tigating decoding algorithms of Goppa codes and IGC in Goppa code.py. These decoder

classes are designed for the GoppaCode class. Some of them corresponds to the decoding

algorithms explained in previous sections. For convenience of usage, we give the mappings
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Figure 4.7: Failure probability of collaboratively decoding [80, 24, >= 22]3 wild IGC for
l = 6.

between the decoder classes and the corresponding sections.

1. RSSyndromeDecoder - GRS Syndrome-based Decoder (Section 2.4.1)

2. GoppaSyndromeDecoder - Goppa Key Equation Decoder (Section 4.3.1)

3. PattersonDecoder - Patterson Decoder (Section 2.4.2)

4. GeneralizedPattersonDecoder - p-ary Patterson Decoder (Section 2.4.3)

5. RSSuperCodeDecoder1

6. IntGoppaSyndromeDecoder - Collaboratively Decoding (Section 4.3.2)

1RS supercode decoder makes use of the existing decoder of the supper GeneralizedReedSolomonCode

to decode GoppaCode.
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4 Interleaved Goppa Codes

7. IRSDecoder2

The RSSyndromeDecoder employs Peterson-Gorenstein-Zierler algorithm for Λ(x) and

the GoppaSyndromeDecoder sets up LSE (4.2)-(4.4) for σ(x). Besides, we retain an

alternative approach, so-called lattice reduction, for both of them. Lattice reduction

works as the following: put the GRS syndrome polynomial S(x) (2.9) or Goppa syndrome

polynomial s(x) (2.13) in a polynomial matrix[
1 S(x)

0 xd−1

]
or

[
1 s(x)

0 g(x)

]
.

Then, bring the lattice spanned by the rows of the matrix above into its weak Popov form

via the functions in Johan lib.py in Appendix (only in electronic version) (this can be also

found in our public repository). Johan lib.py is part of the codinglib [Nie17] implemented

by Johan S. R. Nielsen. The left-most entry of the row, whose leading position3 is 0, is

the desired Λ(x) or σ(x). For further interests in lattice reduction and its application in

decoding algorithms, please refer to [MS03, Nie13].

A good implementation of Patterson decoder has been done by Roering in [Roe13], from

which several functions are used in the PattersonDecoder class.

The source code of the decoders is also contained in GoppaCode.py.

In the following some examples of how to use the decoders are given.

# given a Goppa code GC, a received word r and the number of errors t

c1 = GC.decode_to_code((r,t), "RSSyndromeDecoder")

c2 = GC.decode_to_code((r,t), "GoppaSyndromeDecoder")

c3 = GC.decode_to_code(r, "PattersonDecoder") # default decoder

c4 = GC.decode_to_code(r, "GeneralizedPattersonDecoder")

# c4 is a list of possible codewords

c5 = GC.decode_to_code(r, "RSSuperCodeDecoder")

The default decoder of GoppaCode is PattersonDecoder, namely, GC.decode to code(r)

is equivalent to GC.decode to code(r, "PattersonDecoder").

IntGoppaSyndromeDecoder and IRSDecoder are two decoders implemented for collabo-

ratively decoding interleaved Goppa codes. For a received word R = C + E, where each

row of C is a codeword of Goppa code GC and E has t non-zero column, decoding of R

can be done by

C1 = GC.decode_to_code((R,t), "IntGoppaSyndromeDecoder")

2IRS decoder deploys the Algorithm 4.2 but uses RS syndrome S(x), ELP Λ(x) and EEP Ω(x).
3The index of the entry that has the greatest degree.
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C2 = GC.decode_to_code((R,t), "IRSDecoder").
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5 Interleaved McEliece System

A new variant of McEliece system with interleaved Goppa codes (IGC) was proposed by

Elleuch, Wachter-Zeh and Zeh in [EWZZ18]. In this chapter we modify the vairant with

wild Goppa codes. The new system will be denoted by IntMcEliece in further use. We

first give a formal system discription for the setup and then discuss the attacks faced by

IntMcEliece. Finally we show the key size of the new IntMcEliece at 80, 128, 256-bits

security compared to wild McEliece.

5.1 IntMcEliece: System Description

Our proporsed system is an instantiation of the McEliece public-key cryptosystem using a

wild `-interleaved Goppa code IΓ(L, gq−1, `) over Fq with parameters [n, k ≥ n−mr, d ≥
q
q−1 · r + 1]q.

Figure 5.1 illustrates the IntMcEliece.

Bob

Gpub, tInt, `

Alice

S, G, P, tInt, `

Eve

Gpub, tInt, `

ciphertext:

Y=M·Gpub+E

Credit: [EWZZ18]

Figure 5.1: Key and information distribution of IntMcEliece.

Similar to McEliece system, the IntMcEliece consists of three part: Key Generation,

Encryption and Decryption.

First, the key generation is done by Alice.

Key Generation (Alice):

• Choose parameters:
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– A prime power q;

– Integers m,n, r such that q−1|r, rm ≤ n ≤ qm and n−rm
n is noticeably distinct

from 0 and 1;

– Locators set L = {α0, α1, . . . , αn−1} ⊆ Fqm (i.e. n distinct elements from Fqm);

– Irreducible monic polynomial g(x) ∈ Fqm [x] of degree r
q−1 such that g(αi) 6=

0,∀αi ∈ L;

– Integer ` and calculate tInt =
⌊

`
`+1 ·

q
q−1 · r

⌋
;

• Generate the following matrices:

– S ∈ Fk×kq : random non-singular matrix, called scrambler matrix ;

– G ∈ Fk×nq : generator matrix of Γ(L, gq−1);

– P ∈ Fn×nq : random permutation matrix;

• Compute Gpub = SGP;

• Define the key pair :

– Public key: (Gpub, tInt, `);

– Private key: (S,G,P).

Compared to the variant of McEliece in [EWZZ18], which firstly proposed to use IGC as

the secret code, IntMcEliece releases the restriction q > 2 in choosing parameters. The

restriction was because for q = 2 the decoder of interleaved codes cannot decode more

errors than the Patterson decoder which can correct up to r errors uniquely for binary

Goppa codes. In this new IntMcEliece, we consider wild Goppa codes. Binary square-free

Goppa codes are actually also wild Goppa codes so that we can collaboratively decode

binary interleaved Goppa code more than Patterson decoder with high probability.

this is a blank line written in white.

Second, Bob is responsible for the encryption. Rather than encoding one message and

adding one random error vector of weight t, in the new system Bob needs to encode `

messges and add ` error vectors whose non-zero positions form a basis of an “error code”.

Encryption (Bob):
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Input: Gpub, tInt, `

Output: Ciphertext Y ∈ F`×nq

• Form a matrix M ∈ F`×kq with plaintexts;

• Generate error matrix:

– Choose a code CE of length tInt, dimension ≥ ` over Fq s.t. its minimum

distance dE is the largest among all possibilities;

– Choose a basis of CE to form a matrix Ebasis ∈ F`×tIntq ;

– Generate a zero matrix E ∈ F`×nq ;

– Randomly replace tInt columns of E by the columns of Ebasis;

• Encryption: Y = MGpub + E.

In our new IntMcEliece, Bob has to generate the errors from a basis of a code rather than

randomly choosing a matrix with tInt non-zero columns. This is to prevent the security

level from being reduced too much by Stern’s attack (see Algorithm 5.2).

this is a blank line written in white.

At last, the decryption is executed by Alice.

Decryption (Alice):

Input: S,G,P, ciphertexts Y ∈ F`×nq

Output: Plaintexts M ∈ F`×kq ;

• Inverse permutation: R = YP−1 = MSG + EP−1;

• Decoding: M′ = D(R), where D(·) is an efficient decoding algorithm for the `-

interleaved Goppa code up to tInt errors;

• Inverse scramble M = M′S−1.

One can use the collaboratively decoding (see Section 4.3.2) as D(·). However, as in-

vestigated in Section 4.4, it is possible that decoding fails, even if the error matrix is

full-rank. Nevertheless, in the simulation results presented in Section 4.4, the full-rank

error matrices are arbitrary full-rank matrices. Whether using a basis of a code could

further reduce the failure probability of collaboratively decoding is left for future work.
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5.2 Attacks

5.2.1 Structural Attack

Metzner-Kapturowski Attack

Metzner and Kapturowski presented an algorithm in [MK90] that decodes efficiently any

interleaved code if the interleaving order ` is equal to the number of error positions tInt and

the error matrix E has full rank, just by applying Gaussian elimination on the product

of the parity-check matrix and the corrupted codeword.

This principle can therefore be applied as follows to break our system if ` ≥ tInt and E is

full-rank:

• Calculate Hpub from Gpub such that Hpub has full rank and Gpub ·HT
pub = 0 (i.e.,

Hpub is a parity-check matrix of the public code generated by Gpub);

• Consider the ` ciphertexts Y ∈ F`×nq . The rows y(i) of Y are codewords of the

public code corrupted by rows of a full-rank burst error.

• Decode all rows y(i) with Hpub according to the algorithm from [MK90] which then

provides the ` secret messages in cubic time.

This general decoding principle therefore provides an attack to our system if ` ≥ tInt and

rank(E) = tInt. From a high-level point of view, decoding a ”random” interleaved code

is an easy problem for larger interleaving orders and if the burst errors has full rank.

Thus, for parameter selection, to avoid this attack, we should choose ` < tInt and should

keep ` ”not too close” to tInt. Because according to [MK90], it might be possible to search

the whole solution space of the decoder from if l < tInt. Straight-forward, searching the

solution space would provide an attack of complexity O(n3qm(tInt−`)) which does not

decrease the security level if ` is significantly less than tInt.

Fortunately, the error matrix E in our system cannot be full-rank if ` = tInt, due to the

fact that the non zero columns of E come from a basis of a [tInt, `, dE]q. If ` = tInt, dE ≤ 1,

whence rank(E) = dE ≤ 1. And we desire larger dE to keep the security level large (see

Section 5.2.2), so we would have to keep ` small to find a dE as large as possible.

The Metzner-Kapturowski Attack is not a threat to our IntMcEliece.

Attacks on Wild Goppa Codes

Since we deploy wild Goppa codes in IntMcEliece and the Gpub is also part of the public

key of a wild McEliece, the attacks against wild McEliece, polynomial search attack and

square code operation mentioned in Section 3.4, can be also applied on IntMcEliece.
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We stress that the selection of parameters are crucial to defend our system from these

structural attacks. One should also follow the restrictions given in Section 3.4 when

selecting the paramters.

5.2.2 Decoding Attack

Besides structural attacks, what eavesdroppers may want to do is to reveal plaintext from

ciphertext without knowing any structure of the codes. Implementing this is equivalent

to decode a random code. Information set decoding (ISD) is the most efficient algorithm

decoding an arbitrary linear code.

Naive ISD Attack on IntMcEliece

The naive ISD attack against IntMcEliece works similarly as in Section 3.2.1 against the

original McEliece system. The difference is substituting t by tInt.

Algorithm 5.1: Naive ISD on IntMcEliece

Data: Generator matrix Gpub ∈ Fk×nq , ciphertext Y, number of errors tInt

Result: Secret plaintext M
1 Choose an I ⊂ {0, . . . , n− 1}, |I| = k that has never been chosen;
2 Choose any row y of Y;

3 if wt
((

yI ·G−1
pub,I

)
·Gpub − y

)
= tInt then

4 Return M = YI ·G−1
pub,I .

5 else
6 Repeat from step 1;

The work factor of naive ISD on IntMcEliece is

WISD = k3 ·
(
n
k

)(
n−tInt
k

) ,
followed from Theorem 3.2.1.

Note that since the error vector in y is of weight more than half distance, it is possible

that there are multiple sets I that fulfill the condition at step 3. One may need to check

whether the I fulfills the condisiton for the other rows, which may increase the work

factor of this naive ISD. Nevertheless, we assume the worst case for us that getting a

wrong I is of low probability.
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Finding Low-Weight Codewords (FLWCW) Attack

The naive ISD attack can be reduced to the FLWCW problem. Stern’s algorithm [Ste89]

is an algorithm for FLWCW.

Algorithm 5.2 shows how to use Stern’s algorithm to attack IntMcEliece.

Algorithm 5.2: Stern’s Attack on IntMcEliece

Data: Generator matrix Gpub of size k × n, ciphertext Y, number of errors tInt

Result: Secret plaintext M
1 Append Y to Gpub to form a new generator matrix GE of an [n, k + `, dE] code C;

G′ =

(
Gpub

Y

)
2 E ← ∅;
3 while |E| < tInt do
4 Find a low-weight code e in the code C by Stern’s algorithm [Ste89];
5 E ← E ∪ supp(e);

6 Set I = {0, 1, . . . , n− 1}\E ;

7 Return M = YI ·G−1
pub,I .

A low-weight codeword in step 4 means dE ≤ wt(e) < tInt.

Theorem 5.2.1 (Work Factor of Stern’s Attack on IntMcEliece). The work factor of

Algorithm 5.2 on an IntMcEliece with parameters (n, k, tInt, `, dE) is

WS,Int(n, k, tInt, `, dE) ≥ k3 + FLWCW(n, k + `, dE)

where FLWCW(·) is given in Lemma 3.2.1.

Remark. The work factor is given with a lower bound rather than exact value is because

when dE error positions are revealed, there are still tInt − dE error positions left to be

found out. But the tInt−dE is relatively much less than dE, thus it shows much less effect

on work factor than dE. We omit the effort for tInt − dE positions for the consideration

of the worst case. Moreover it is also possible that the Stern’s algorithm can give multiple

low-weight codewords at one time.

Subcode Attack

Tillich pointed out in [Til18] that another code C′ spanned by the error matrix E ∈ Fn×`q

is a subcode of C. The code C′ is an [n, `, dE]q code with supp(C′) = tInt, where supp(C′) =

{i s. t. ci 6= 0, i = 0, . . . , n− 1, ∀c ∈ C′}.
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Definition 5.2.1 (Support of Subcode Problem). Given a code C[n, k+ `, tInt], knowing

that there is subcode C′ of C such that dim(C′) = ` and supp(C′) = tInt, one wants to

recover the support of C′.

Thus, finding low-weight codewords problem can be reduced to the support of subcode

problem as discussed. This problem has been handled by Otmani and Tillich for the binary

case in [OT11]. In fact, the critical problem concerned in Otmani and Tillich’s attack is

still finding low-weight codewords in a code. They applied Dumer’s algorithm [Dum91],

which is an equivalent algorithm to Stern’s algorithm. So we can assume the subcode

attack has the same work factor as the Stern’s attack on IntMcEliece.

Fortunately, Otmani and Tillich’s algorithm is exponential in nature and can be easily

defeated when the rate of C is significantly larger than the rate of the subcode C′, i.e.,
k
n >

`
tInt

.

Lower Bound on the Work Factor of ISD-based Attacks on IntMcEliece

Bernstein, Lange and Peters proposed in [BLP11a] ball-collision attack, based on which

they came up with a lower bound on the work factor of ISD-based attacks working in F2.

A generalized lower bound for Fq is given in Theorem 3.2.2.

From the process of Stern’s attack on IntMcEliece, one can see that the security level is

determined by dE, rather than tInt. Thus, following from Theorem 3.2.2, Corollary 5.2.1

gives a lower-bound on the work factor of attacks on IntMcEliece.

Corollary 5.2.1 (Work Factor of Attacks on IntMcEliece). The work factor W of ISD-

based attacks on an IntMcEliece with parameters (n, k, tInt, `, dE) over Fq is

W ≥

{
1

2

(
n

dE

)(
n− k
dE − p

)−1(k
p

)− 1
2

(log2 q)
2 : 0 ≤ p ≤ min{dE, k}

}
.

We will use this lower bound to calculate the security level of IntMcEliece in next section.

5.3 Analysis of IntMcEliece

5.3.1 Selection of Ebasis in Encryption

In this section we will use some examples to show how to choose an “error code” CE.

Whether the “error code” scheme can improve the security level of IntMcEliece from the

McEliece system depends on whether a q-ary linear codes with parameters [n = tInt, k =

`, d = dE]q exists or not. As long as we fix the field size q, the degree of Goppa polynomial

r and the interleaving order `, we can calculate the error correction capability tInt of the
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`-interleaved Goppa code. Then we just need to find largest minimum distance of a code

over Fq of length tInt and dimension `.

Table 5.1 presents some examples of the largest possible choices of dE given r and `. The

column t is the error correction capability of the original McEliece system with Goppa

codes and twild is the error correction capability of wild McEliece. The “error code” length

is calculated by tInt =
⌊

`
`+1 ·

q
q−1 · r

⌋
and the minimum distance dE is found with the help

of CodeTables [Gra07], which is a website providing the largest minimum distance of any

linear code and the construction of such code.

q r t twild ` tInt dE

2

68 68 68

2 90 60
3 102 58
4 108 56
5 113 57
6 116 58
7 119 59
8 120 58

138 138 138

2 184 122
3 207 118
4 220 116
5 230 118
6 236 119
7 241 120
8 245 122
9 248 122

3 84 42 64

2 84 63
3 94 64
4 100 66
5 105 69
6 108 69
7 110 70
8 112 70

q r t twild ` tInt dE

3 54 27 40

2 54 40
3 60 41
4 64 42
5 67 43
6 69 43
7 70 43
8 72 44

4 54 27 36

2 48 38
3 54 40
4 57 41
5 60 43
6 61 42
7 63 43
8 64 43

5 100 50 62

2 83 69
3 93 75
4 100 79
5 104 81
6 107 82
7 109 82
8 111 83
9 112 82

Table 5.1: Examples of the error code CE given q, r. The column t and twild are the
error correction capabilities of the original McEliece system and wild McEliece
respectively. ` is the interleaving order, tInt is the capability of IntMcEliece
and dE is the largest minimum distance of a [tInt, `]q code.

The bold lines are the parameters of CE that achieve the best dE for a certain pair of

(q, r).

The error correction capability determines the security level of the McEliece system and

its variants when the length and polynomial degree of the deployed Goppa code are
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fixed. But for IntMcEliece, considering the Stern’s attack, it is dE, rather than tInt, that

determines the security level of IntMcEliece.

From the table we can roughly say that with binary Goppa codes, the IntMcEliece can

not increase the security level comparing to the original McEliece system. But for any

other Goppa codes with q > 2, the error correction capability of IntMcEliece is larger

than that of the original McEliece system or wild McEliece. Thus, we can speculate that

IntMcEliece gives higher security level compared to the original or wild McEliece when

q > 2.

If the tInt is out of the capability of CodeTables, one can also use Griesmer Bound (for

binary codes) or Gilvert-Varshamov Bound (for any q) to determine the existence of a

linear code.

Theorem 5.3.1 (Griesmer Bound). The length of shortest binary linear code of dimen-

sion k and minimum distance d is

n(k, d) ≥
k−1∑
i=0

⌈
d

2i

⌉
.

Theorem 5.3.2 (Gilbert-Varshamov Bound). Let n, k and d be integers satisfying 2 ≤
d ≤ n and 1 ≤ k ≤ n. If

d−2∑
i=0

(
n− 1

i

)
(q − 1)i < qn−k,

then there exists an [n, k] linear code over Fq with minimum distance at least d.

5.3.2 Key Size of IntMcEliece

In this section, we will compare the (n, k, twild) wild McEliece system and our proposed

(n, k, tInt) IntMcEliece in terms of the key size for some certain security level. The security

level of IntMcEliece depends on the minimum distance dE of the error code CE[tInt, `]q.

Table 5.2 presents some parameters for typical cryptosystem security levels (SL) (80, 128,

and 256 bits). The column R is the code rate. The bold font indicates the better scheme

that achieves smaller key size.

For each parameter pair we compute the size of the public key in systematic form as

k × (n− k). Note that we do not consider semantic attack, where an attacker can easily

get the plaintext from the first k bits of the ciphertext. So only when proper padding and

randomizing (so-called CCA2-conversion) are engaged, one could then use the systematic

public-key to encode the randomized plaintext.

As we predicted in the last section, IntMcEliece can not achieve smaller key size than

the original key size, since the minimum distance dE of the error code CE is smaller than
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SL
q m System r n k

twild or
R

Key size
[bits] (`, tInt, dE) [Bytes]

80
4 6

Wild McEliece
54

1681 1357 36 0.81 109 917
IntMcEliece 1288 964 (5, 60, 43) 0.75 78 084

3 7
Wild McEliece

54
1653 1275 40 0.77 95 485

IntMcEliece 1447 1069 (8, 72, 44) 0.74 80 057

128

2 12

McEliece 68 3250 2434 68 0.75 248 268
IntMcEliece 68 3926 3094 (2, 90, 60) 0.79 321 776 ?
IntMcEliece 80 3788 2828 (3, 119, 68) 0.75 339 360 ?
IntMcEliece 77 3656 2732 (2, 102, 68) 0.75 315 546 ?

3 8

wild McEliece
54

5094 4662 40 0.92 399 012
IntMcEliece 4042 3610 (8, 72, 44) 0.89 308 974
wild McEliece

84
2934 2262 63 0.77 310 476

IntMcEliece 2586 1914 (7, 110, 70) 0.74 254 824

4 6
wild McEliece

99
2493 1899 66 0.76 282 002

IntMcEliece 1890 1296 (8, 117, 82) 0.69 192 456

5 5
wild McEliece

100
2342 1842 62 0.79 267 312

IntMcEliece 1593 1093 (8, 111, 83) 0.69 158 617

256

2
13

McEliece 138 6975 5181 138 0.74 1 161 840
IntMcEliece 156 7815 5787 (2, 207, 138) 0.74 1 467 258 ?
IntMcEliece 160 8002 5922 (6, 274, 138) 0.74 1 529 720 ?
IntMcEliece 155 7769 5754 (10, 281, 138) 0.74 1 449 289 ?

14
McEliece

138
7460 5528 138 0.74 1 335 012

IntMcEliece 8929 6997 (2, 184, 122) 0.78 1 689 776 ?

3 9
wild McEliece

84
18230 17474 63 0.96 2 769 563

IntMcEliece 13642 12886 (7, 110, 70) 0.94 1 930 052

4 7
wild McEliece

222
5515 3961 148 0.72 1 538 849

IntMcEliece 4074 2520 (9, 266, 195) 0.62 979 020

5
7

wild McEliece
100

19058 18358 62 0.96 3 729 772
IntMcEliece 7949 7249 (8, 111, 83) 0.91 1 472 770

6
wild McEliece

204
5413 4189 128 0.77 1 488 163

IntMcEliece 4153 2929 (7, 223, 156) 0.71 1 040 542

Table 5.2: Key size of IntMcEliece and wild McEliece for 80, 128, 256-bits security level.

the error correction capability t of orginal McEliece system. But for any other q > 2, the

IntMcEliece always gives smaller key size compared to wild McEliece.

For q = 2, instead of leaving dE < t, we can also keep dE = t and increase r in IntMcEliece.

The examples marked with ? in Table 5.2 show the corresponding key size of these two

options. We can see that by properly choosing the interleaving order, the r required for

achieving a certain dE could be optimized, wherein the key size could be reduced.
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6 Conclusion

The McEliece system with Goppa codes, a promising candidate of post-quantum cryp-

tosystem, has remained remarkably secure, after hundreds of papers on attacking and

defending over 40 years. The encryption and decryption in the McEliece system are effi-

cient. The biggest disadvantage of the McEliece system for implementations in practice

is its key size. For fixed n and k, the secuirity level of the system depends on the error

correction capability of the Goppa codes it uses. In other words, for a required security

level, increasing the number of errors in the ciphertexts can effectively reduce the key

size.

this is a blank line written in white.

In this thesis, we investigated the properties of Goppa codes and wild Goppa codes. We

developed a probabilistic collaborative decoder for interleaved Goppa codes (IGC), which

can decode tInt errors with high probability, where tInt is more than half of minimum

distance. For binary square-free Goppa codes, this decoder can decode more errors than

the Patterson decoder. With the decoder, IGC can be used in the McEliece system

to increase the number of errors that can be added. However, with more ciphertexts

which are corrupted at the same positions, Stern’s attack can reduce the security level

dramatically if the errors are randomly generated.

We therefore proposed a new code-based public-key cryptosystem, so-called IntMcEliece,

where the errors are from a basis of an “error code”. The security level of IntMcEliece

depends on the minimum distance dE of the error code, rather than the number of error

positions tInt. Due to the limitation of finding a good error code over F2, IntMcEliece

still can not beat the original McEliece to have smaller key size for a certain security

level. Nevertheless, for any q > 2, IntMcEliece obtains much smaller key size than wild

McEliece, where the wild Goppa codes are used as the secrect code.

this is a blank line written in white.

Finally, we showed with some examples that for q > 2, the key size of IntMcEliece is 20%

less than that of wild McEliece for a certain security level. this is a blank line written in

white.

We close this thesis by summarizing the tasks that could be interesting topics for future

study.
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• Analyse the failure probability of the collaborative decoder for IGC precisely and

develop a bound on the failure probability;

• Investigate whether full-rank error matrices that form a basis of a code can reduce

the failure probability compared to non-full error matrices or full-rank matrices that

do not a basis;

• Survey whether algorithms similar to Metzner-Kapturowski’s algorithm that can

decode general interleaved codes for small interleaving order but full-rank errors

exist;

• Accurately analyse the work factor of ISD-based attacks on IntMcEliece and reform

the bound on the work factor by taking the interleaving order ` into account;

• Combine other decoding methods, like list decoding, with wild Goppa codes or IGC

to further increase the decoding radius.

62



Bibliography

[ABC11] D. Augot, M. Barbier, and A. Couvreur, “List-decoding of binary goppa

codes up to the binary johnson bound,” in 2011 IEEE Information Theory

Workshop, Oct 2011, pp. 229–233.

[BBPR18] P. Beelen, M. Bossert, S. Puchinger, and J. Rosenkilde, “Structural properties

of twisted reed-solomon codes with applications to cryptography,” CoRR, vol.

abs/1801.07003, 2018. [Online]. Available: http://arxiv.org/abs/1801.07003

[Ben80] P. Benioff, “The computer as a physical system: A microscopic quantum me-

chanical hamiltonian model of computers as represented by turing machines,”

Journal of Statistical Physics, vol. 22, pp. 563–591, May 1980.

[Ber68] E. Berlekamp, “Nonbinary bch decoding (abstr.),” IEEE Transactions on

Information Theory, vol. 14, no. 2, pp. 242–242, March 1968.

[Ber73] ——, “Goppa codes,” IEEE Transactions on Information Theory, vol. 19,

no. 5, pp. 590–592, September 1973.

[Ber11] D. J. Bernstein, “List decoding for binary goppa codes,” in Coding and Cryp-

tology, Y. M. Chee, Z. Guo, S. Ling, F. Shao, Y. Tang, H. Wang, and C. Xing,

Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 62–80.

[BHNW13] P. Beelen, T. Hholdt, J. S. R. Nielsen, and Y. Wu, “On rational interpolation-

based list-decoding and list-decoding binary goppa codes,” IEEE Transac-

tions on Information Theory, vol. 59, no. 6, pp. 3269–3281, 2013.

[BL17] D. J. Bernstein and T. Lange, “Post-quantum cryptography - dealing with

the fallout of physics success,” IACR Cryptology ePrint Archive, vol. 2017,

no. 314, p. 314, 2017.

[BLP08] D. J. Bernstein, T. Lange, and C. Peters, “Attacking and defending the

mceliece cryptosystem,” in Post-Quantum Cryptography, J. Buchmann and

J. Ding, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp.

31–46.

I

http://arxiv.org/abs/1801.07003


Bibliography

[BLP11a] ——, “Smaller decoding exponents: Ball-collision decoding,” in Advances in

Cryptology – CRYPTO 2011, P. Rogaway, Ed. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2011, pp. 743–760.

[BLP11b] ——, “Wild mceliece,” in Selected Areas in Cryptography, A. Biryukov,

G. Gong, and D. R. Stinson, Eds. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2011, pp. 143–158. [Online]. Available: https:

//cr.yp.to/codes/wild-20100721.pdf

[BM73] E. Berlekamp and O. Moreno, “Extended double-error-correcting binary

goppa codes are cyclic (corresp.),” IEEE Transactions on Information The-

ory, vol. 19, no. 6, pp. 817–818, November 1973.

[BML13] P. S. L. M. Barreto, R. Misoczki, and R. Lindner, “Decoding square-free

goppa codes over fp,” IEEE Transactions on Information Theory, vol. 59,

no. 10, pp. 6851–6858, 2013.

[Chi64] R. Chien, “Cyclic decoding procedures for bose- chaudhuri-hocquenghem

codes,” IEEE Transactions on Information Theory, vol. 10, no. 4, pp. 357–

363, October 1964.

[COT17] A. Couvreur, A. Otmani, and J. Tillich, “Polynomial time attack on wild

mceliece over quadratic extensions,” IEEE Transactions on Information The-

ory, vol. 63, no. 1, pp. 404–427, 2017.

[Czy11] S. Czynszak, “Decoding algorithms of reedsolomon code,” Dissertation,

School of Computing, Blekinge Institute of Technology, Karlskrona, Sweden,

10 2011. [Online]. Available: https://www.diva-portal.org/smash/get/diva2:

833161/FULLTEXT01.pdf

[Deu85] D. Deutsch, “Quantum theory, the church-turing principle and the universal

quantum computer,” Proc. Royal Society London Ser. A, pp. 96–117, 1985.

[DK18] V. Dragoi and H. T. Kalachi, “Cryptanalysis of a public key encryption

scheme based on qc-ldpc and qc-mdpc codes,” IEEE Communications Let-

ters, vol. 22, no. 2, pp. 264–267, Feb 2018.

[Dum91] I. Dumer, “On minimum distance decoding of linear codes,” vol. 1, 01 1991,

pp. 50–52.

[Elg85] T. Elgamal, “A public key cryptosystem and a signature scheme based on

discrete logarithms,” IEEE Transactions on Information Theory, vol. 31,

no. 4, pp. 469–472, July 1985.

II

https://cr.yp.to/codes/wild-20100721.pdf
https://cr.yp.to/codes/wild-20100721.pdf
https://www.diva-portal.org/smash/get/diva2:833161/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:833161/FULLTEXT01.pdf


Bibliography

[EWZZ18] M. Elleuch, A. Wachter-Zeh, and A. Zeh, “A public-key cryptosystem from

interleaved goppa codes,” 2018.

[FL06] C. Faure and P. Loidreau, “A new public-key cryptosystem based on the prob-

lem of reconstructing p–polynomials,” in Coding and Cryptography, O. Ytre-

hus, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 304–315.

[FnO+13] J. C. Faugère, V. G. U. na, A. Otmani, L. Perret, and J. P. Tillich, “A dis-

tinguisher for high rate mceliece cryptosystems,” IEEE Trans. Inf. Theory,,

vol. 59, no. 1, p. 68306844, Oct. 2013.

[For66] G. Forney, “Generalized minimum distance decoding,” IEEE Transactions

on Information Theory, vol. 12, no. 2, pp. 125–131, April 1966.

[FS09] M. Finiasz and N. Sendrier, “Security bounds for the design of code-based

cryptosystems,” in Advances in Cryptology – ASIACRYPT 2009, M. Matsui,

Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 88–105.

[Gop70] V. Goppa, “A new class of linear error correcting codes,” Problems of Infor-

mation Transmission, vol. 6, no. 3, pp. 207–212, 1970.

[Gop71] V. D. Goppa, “Rational representation of codes and (l,g) - codes,” Problems

of Information Transmission, vol. 7, no. 3, pp. 223–229, 1971.

[GPT91] E. M. Gabidulin, A. V. Paramonov, and O. V. Tretjakov, “Ideals over a

non-commutative ring and their application in cryptology,” in Advances in

Cryptology — EUROCRYPT ’91, D. W. Davies, Ed. Berlin, Heidelberg:

Springer Berlin Heidelberg, 1991, pp. 482–489.

[Gra07] M. Grassl, “Bounds on the minimum distance of linear codes and quan-

tum codes,” Online available at http://www.codetables.de, 2007, accessed

on 2018-12-09.

[Gro96] L. K. Grover, “A fast quantum mechanical algorithm for database search,”

in Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of

Computing, ser. STOC ’96. New York, NY, USA: ACM, 1996, pp. 212–219.

[Online]. Available: http://doi.acm.org/10.1145/237814.237866

[GZ61] D. Gorenstein and N. Zierler, “A class of error-correcting codes

in pm symbols,” Journal of the Society for Industrial and Applied

Mathematics, vol. 9, no. 2, pp. 207–214, 1961. [Online]. Available:

https://doi.org/10.1137/0109020

III

http://www.codetables.de
http://doi.acm.org/10.1145/237814.237866
https://doi.org/10.1137/0109020


Bibliography

[JM78] R. J. Mceliece, “A public-key cryptosystem based on algebraic coding the-

ory,” vol. 44, 05 1978.

[KKL+18] A. Kuznetsov, A. Kiian, M. Lutsenko, I. Chepurko, and S. Kavun, “Code-

based cryptosystems from nist pqc,” in 2018 IEEE 9th International Confer-

ence on Dependable Systems, Services and Technologies (DESSERT), May

2018, pp. 282–287.

[LB88] P. J. Lee and E. F. Brickell, “An observation on the security of mceliece’s

public-key cryptosystem,” in Advances in Cryptology — EUROCRYPT ’88,

D. Barstow, W. Brauer, P. Brinch Hansen, D. Gries, D. Luckham, C. Moler,

A. Pnueli, G. Seegmüller, J. Stoer, N. Wirth, and C. G. Günther, Eds. Berlin,

Heidelberg: Springer Berlin Heidelberg, 1988, pp. 275–280.

[Leo88] J. S. Leon, “A probabilistic algorithm for computing minimum weights of

large error-correcting codes,” IEEE Transactions on Information Theory,

vol. 34, no. 5, pp. 1354–1359, Sept 1988.

[Mas69] J. Massey, “Shift-register synthesis and bch decoding,” IEEE Transactions

on Information Theory, vol. 15, no. 1, pp. 122–127, January 1969.

[MB09] R. Misoczki and P. S. L. M. Barreto, “Compact mceliece keys from goppa

codes,” in Selected Areas in Cryptography, M. J. Jacobson, V. Rijmen, and

R. Safavi-Naini, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009,

pp. 376–392.

[Mer78] R. C. Merkle, “Secure communications over insecure channels,” Commun.

ACM, vol. 21, no. 4, pp. 294–299, Apr. 1978. [Online]. Available:

http://doi.acm.org/10.1145/359460.359473

[MK90] J. J. Metzner and E. J. Kapturowski, “A general decoding technique applica-

ble to replicated file disagreement location and concatenated code decoding,”

IEEE Transactions on Information Theory, vol. 36, no. 4, pp. 911–917, July

1990.

[Moo17] D. Moody, “The ship has sailed: The nist post-

quantum crypto ”competition”,” [Online], 2017. [On-

line]. Available: https://csrc.nist.gov/CSRC/media/Projects/

Post-Quantum-Cryptography/documents/asiacrypt-2017-moody-pqc.pdf

[MS78] F. J. MacWilliams and N. J. A. Sloane, The theory of error-correcting codes,

1978.

IV

http://doi.acm.org/10.1145/359460.359473
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/asiacrypt-2017-moody-pqc.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/asiacrypt-2017-moody-pqc.pdf


Bibliography

[MS03] T. Mulders and A. Storjohann, “On lattice reduction for polynomial

matrices,” Journal of Symbolic Computation, vol. 35, no. 4, pp. 377 – 401,

2003. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

S0747717102001396

[MSOS92] V. M. SIDELNIKOV and S. O. SHESTAKOV, “On insecurity of cryptosys-

tems based on generalized reed-solomon codes,” Discrete Mathematics and

Applications, vol. 2, pp. 439–444, 01 1992.

[MTSB13] R. Misoczki, J. Tillich, N. Sendrier, and P. S. L. M. Barreto, “Mdpc-mceliece:

New mceliece variants from moderate density parity-check codes,” in 2013

IEEE International Symposium on Information Theory, July 2013, pp. 2069–

2073.

[Nie13] J. S. R. Nielsen, “Generalised multi-sequence shift-register synthesis using

module minimisation,” CoRR, vol. abs/1301.6529, 2013. [Online]. Available:

http://arxiv.org/abs/1301.6529

[Nie17] ——, Codinglib for Sage, 2017. [Online]. Available: https://bitbucket.org/

jsrn/codinglib/

[OT11] A. Otmani and J.-P. Tillich, “An efficient attack on all concrete kks propos-

als,” in Post-Quantum Cryptography, B.-Y. Yang, Ed. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2011, pp. 98–116.

[Pat75] N. Patterson, “The algebraic decoding of goppa codes,” IEEE Transactions

on Information Theory, vol. 21, no. 2, pp. 203–207, 1975.

[Per12] E. Persichetti, “Compact mceliece keys based on quasi-dyadic srivastava

codes,” Journal of Mathematical Cryptology, vol. 6, pp. 149–169, 10 2012.

[Pet60] W. Peterson, “Encoding and error-correction procedures for the bose-

chaudhuri codes,” IRE Transactions on Information Theory, vol. 6, no. 4,

pp. 459–470, September 1960.

[Pet10] C. Peters, “Information-set decoding for linear codes over fq,” in Post-

Quantum Cryptography, N. Sendrier, Ed. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2010, pp. 81–94.

[Pra62] E. Prange, “The use of information sets in decoding cyclic codes,” Informa-

tion Theory, IRE Transactions on, vol. 8, pp. 5 – 9, 10 1962.

V

http://www.sciencedirect.com/science/article/pii/S0747717102001396
http://www.sciencedirect.com/science/article/pii/S0747717102001396
http://arxiv.org/abs/1301.6529
https://bitbucket.org/jsrn/codinglib/
https://bitbucket.org/jsrn/codinglib/


Bibliography

[Pra18] A. Pradeep, “Information set decoding for mceliece cryptosystem over fq,”

Technical University of Munich, Research Internship’s Report, Aug. 2018.

[PRWZ18] S. Puchinger, J. Renner, and A. Wachter-Zeh, “Twisted gabidulin codes in

the gpt cryptosystem,” 2018.

[Roe13] C. Roering, “Coding theory-based cryptography: Mceliece cryptosystems in

sage,” Thesis, College of Saint Benedict/Saint John’s University, Aug. 2013.

[Rot06] R. M. Roth, Introduction to Coding Theory. Cambridge University Press,

2006.

[RS60] S. Reed and G. Solomon, “Polynomial codes over certain finite fields,”

Journal of the Society for Industrial and Applied Mathematics, vol. 8, no. 2,

pp. 300–304, 1960. [Online]. Available: http://dx.doi.org/10.1137/0108018

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital

signatures and public-key cryptosystems,” Commun. ACM, vol. 21, no. 2,

pp. 120–126, Feb. 1978. [Online]. Available: http://doi.acm.org/10.1145/

359340.359342

[Sen00] N. Sendrier, “Finding the permutation between equivalent linear codes: the

support splitting algorithm,” IEEE Transactions on Information Theory,

vol. 46, no. 4, p. 11931203, 2000.

[Sho94] P. W. Shor, “Algorithms for quantum computation: discrete logarithms and

factoring,” in Proceedings 35th Annual Symposium on Foundations of Com-

puter Science, Nov 1994, pp. 124–134.

[Sid18] V. Sidorenko, “Failure probability for syndrome decoding interleaved alter-

nant codes,” Personal Communication, pp. 11–12, 2018.

[SKHN75] Y. Sugiyama, M. Kasahara, S. Hirasawa, and T. Namekawa, “A

method for solving key equation for decoding goppa codes,” Information

and Control, vol. 27, no. 1, pp. 87 – 99, 1975. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S001999587590090X

[SKHN76] ——, “Further results on goppa codes and their applications to constructing

efficient binary codes,” IEEE Transactions on Information Theory, vol. 22,

no. 5, pp. 518–526, September 1976.

VI

http://dx.doi.org/10.1137/0108018
http://doi.acm.org/10.1145/359340.359342
http://doi.acm.org/10.1145/359340.359342
http://www.sciencedirect.com/science/article/pii/S001999587590090X


Bibliography

[SSB09] G. Schmidt, V. R. Sidorenko, and M. Bossert, “Collaborative decoding of in-

terleaved reed-solomon codes and concatenated code designs,” IEEE Trans-

actions on Information Theory, vol. 55, no. 7, pp. 2991–3012, July 2009.

[Ste89] J. Stern, “A method for finding codewords of small weight,” in Coding Theory

and Applications, G. Cohen and J. Wolfmann, Eds. Berlin, Heidelberg:

Springer Berlin Heidelberg, 1989, pp. 106–113.

[The18] The Sage Developers, SageMath, the Sage Mathematics Software System

(Version 8.1.0), 2018, http://www.sagemath.org. [Online]. Available:

http://www.sagemath.org/index.html

[Til18] J.-P. Tillich, “Personal communication,” Aug. 2018.

[TZ75] K. Tzeng and K. Zimmermann, “On extending goppa codes to cyclic codes

(corresp.),” IEEE Transactions on Information Theory, vol. 21, no. 6, pp.

712–716, November 1975.

[Wir88] M. Wirtz, “On the parameters of goppa codes,” IEEE Transactions on In-

formation Theory, vol. 34, no. 5, pp. 1341–1343, Sept 1988.

[WZ17] A. Wachter-Zeh, “Coding theory in storage and network. chapter 1: Inter-

leaved reed-solomon codes,” Lecture Slides, Apr. 2017.

[WZPR18] A. Wachter-Zeh, S. Puchinger, and J. Renner, “Repairing the faure-

loidreau public-key cryptosystem,” 2018 IEEE International Symposium

on Information Theory (ISIT), Jun 2018. [Online]. Available: http:

//dx.doi.org/10.1109/ISIT.2018.8437561

VII

http://www.sagemath.org/index.html
http://dx.doi.org/10.1109/ISIT.2018.8437561
http://dx.doi.org/10.1109/ISIT.2018.8437561

	Introduction
	Cryptosystem
	Related Works
	Contributions and Outline

	Goppa Codes
	Definition
	Properties
	Special Cases of Goppa Codes
	Binary Square-free Goppa Codes
	Wild Goppa Codes

	BMD Decoders
	RS Decoder
	Patterson Decoder
	p-ary Patterson Decoder


	McEliece System
	System Description
	Attacks
	Information Set Decoding Attack

	Wild McEliece
	Attacks on Wild McEliece
	Structural Attack
	Parameters Selection Against Structural Attacks
	Decoding Attack


	Interleaved Goppa Codes
	Definition
	Burst Errors
	Decoding of Interleaved Goppa codes
	Goppa Key Equation Decoder
	Collaborative Decoding

	Probability of Decoding Failure
	Bounds on Probability of Decoding Failure
	Simulation Results

	Implementations of Goppa Codes and Decoders In SageMath
	GoppaCode Class
	Decoder Classes


	Interleaved McEliece System
	IntMcEliece: System Description
	Attacks
	Structural Attack
	Decoding Attack

	Analysis of IntMcEliece
	Selection of Ebasis in Encryption
	Key Size of IntMcEliece


	Conclusion
	Bibliography

