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Part I.

Introduction

1. Non-technical explanation of “random media”

This thesis is in the wider research area of random media. Here the starting point is a well-
understood but unrealistic model. To make it more realistic, one can introduce a random
perturbation – the so-called “random environment” or “random medium”. We then try
to understand which properties of the original model are retained by the disturbed model.

A good analogy is to think of water that is being drained through the ground. In the
homogeneous model, the earth is made up of fine sand without impurities, so that the flow
of water is uniform everywhere. In the inhomogeneous case, there are large rocks buried
in the ground, so that the water is forced to circumvent these obstacles and drain through
gaps between the rocks. Intuitively, we expect that if the rocks are small, then the flow
of water will still be roughly uniform everywhere, while large obstacles force the water to
follow only certain paths prescribed by the rocks.

In this work, we mostly discuss the discrete-time random polymer model and some con-
tinuous-time generalizations. Those models have a parameter that adjusts the strength of
the disturbance, with small values indicating weak disorder (small rocks) and large values
indicating strong disorder (large rocks). The two regimes are naturally characterized by
whether a certain limit is positive, which happens whenever the parameter is below a
critical value. The main aim in the field is to show that the properties of the unperturbed
model hold below the critical value and to understand the unusual behavior of the model
in strong disorder. Many important questions are still open.

We study the “disastrous” case, where we allow environments that are more “degenerate”
than what is typically assumed in the literature. Here some standard techniques break
down, and we need to introduce new ideas to verify certain characteristics of the models.
While this often leads to significantly longer and more technical proofs, we believe that
the extra effort provides important insight into the core of the argument.

2. Overview of the results

This thesis is based on three publications: [30] (published in Electronic Journal of Prob-
ability, joint work with Nina Gantert), [28] (to appear in Annals of Applied Probability,
joint work with Ryoki Fukushima) and [40] (submitted). The content is, for the most
part, identical to the published versions, but we have significantly modified the presenta-
tion to improve readability and provide an easier understanding. Moreover, we have tried
to highlight common aspects between the models by using similar structure and notation,
whenever possible. Most figures are new, and we have added some minor results and
examples.
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In Part I, we introduce some important mathematical tools that will be used repeatedly
throughout this thesis. This comprises several types of stochastic orders (Section 3.1),
an improved version of the well-known superadditive lemma (Theorem H) as well as two
concentration inequalities (Theorems I and J).

Moreover, we introduce the discrete-time random polymer model (Section 4), which is
closely related to the continuous-time models from Parts II and IV. As motivation for
studying those models, we discuss an open problem for the disastrous case of the discrete-
time model (Section 4.4). Finally, we demonstrate the use of Strassen’s theorem (Theorem
C) by proving a stochastic comparison result for partition functions (Theorem 4.4).

Parts II and III are both based on [30]. More precisely, the main result (Theorem 8.1)
from Part III builds on the preparation from Part II, specifically Proposition 5.6(iii). We
decided to split the discussion into two parts, because we think that the preparation is of
independent mathematical interest and because the structure of Part II closely resembles
that of Part IV.

In Part II we discuss a single particle moving as a (continuous-time) random walk on the
integer lattice Zd in the presence of a random environment ω of space-time disasters. We
say that the particle is killed if it hits a disaster, and study the behavior of its quenched
survival probability. It is known (Theorem K) that the survival probability decays ex-
ponentially at a deterministic rate p, which can be regarded as the free energy of this
model. As a technical preparation for the main results, we consider the probability that
the random walk survives, conditioned on its endpoint, and prove a moment bound for
this quantity, uniformly over all endpoints (Proposition 5.2). Using this, we then apply
well-known techniques to show a concentration inequality (Proposition 5.3); continuity of
the free energy p in the jump rate of the random walk (Proposition 5.5); and the existence
of the point-to-point free energy (Proposition 5.6). The final two results are not contained
in the published version of [30].

In Part III we consider the branching random walk corresponding to the single-particle
model from Part II – that is, in addition to the previous dynamics, each particle branches
into two independent descendants at a fixed rate. All particles are affected by the same
environment. We give a complete characterization of the regime of global survival (Theo-
rem 8.1), i.e., of the set of parameters such that the branching process does not eventually
die out. The free energy p from Part II plays an important role in this characterization.
We find three regimes of parameters (Definition 8.3), and in two of them the main result
follows quickly with the help of our preparation from Part II (Section 9). The critical case
takes the most effort, and here we adapt a technique originally developed for the critical
contact process (Section 10).

Part IV is based on [28]. We study the natural generalization of the model from Part II
to Euclidean space Rd. The random walk is replaced with Brownian motion, which gets
killed with probability p upon hitting a disaster of ω, for some fixed p ∈ [0, 1]. Existence
of the free energy p is only known (Theorem M) for the “soft” version of the model, i.e.
for p < 1. We show that it also exists in the case p = 1 (Theorem 11.6), and moreover
that it is continuous at the transition from “soft” to “hard” disasters (Theorem 11.9).

2



As mentioned before, the approach here is somewhat parallel to that of Part II, in that
most of the work is in a technical moment bound on the survival probability with some
additional restrictions (Proposition 11.3). The main results then follow by well-established
techniques.

Interestingly, while Propositions 5.2 and 11.3 are similar statements for their respective
models, we find that the difficulties lie in different parts of the proof: On the lattice, the
logarithmic survival probability (with constrained endpoint) is known to have exponential
moments (Lemma 6.4), but it is hard to prove a bound uniformly in the constraint. In
Rd on the other hand, we observe that both the Brownian bridge and the environment
are invariant under affine scalings, and that therefore the survival probability (with con-
strained endpoint) has the same law for all endpoints. See the discussion at the beginning
of Section 12.2. However, in continuous space the logarithmic survival probability is not
integrable (Proposition 11.2), and much of the work is devoted to overcoming this.

Part V is based on [40]. We present a stochastic comparison result (Theorem 15.1) that
has applications for all models described so far, and that we believe is a universal feature of
processes in space-time random environments: that more randomness in the random walk
driving the model implies less randomness in the partition function. For example, in the
model from Part II, we show that a higher jump rate in the random walk implies a larger
survival probability, see (16.10). That is, the survival probability has a slower decay rate.
We prove the main result in an abstract setup (Section 15), and then discuss consequences
for the respective models (Section 16) and limitations of this approach (Section 17).

Notational convention: In this thesis, we use c and C to denote positive constants
whose values may change from line to line.

3. Mathematical background

3.1. Stochastic orders

We will use stochastic orders at various later points, so in this section we collect some
important results. We refer to [50] for a survey on the topic.

3.1.1. The monotone stochastic order

The relation X �st Y between random variables is a precise way of saying that X takes
smaller values than Y .

Definition 3.1. Let X and Y be real random variables. We say X �st Y (Y stochastically
dominates X) if, for every t ∈ R,

P(X ≤ t) ≥ P(Y ≤ t). (3.1)

Note that �st depends only on the distributions of X and Y , and we also write P �st Q
if P and Q are the laws of X and Y . Several equivalent criteria are known:

Theorem A ([50, Theorem 1.2.4]). The following are equivalent:

3



(i) X �st Y .

(ii) E[f(X)] ≤ E[f(Y )] for every increasing f : R→ R.

(iii) There exists a coupling (X̂, Ŷ ) such that X
d
= X̂ and Y

d
= Ŷ , and such that almost

surely X̂ ≤ Ŷ .

It can be hard to verify (3.1) in practice, because the distribution functions may be too
complicated. We therefore introduce a stronger relation �lr, which has the advantage that
it can be checked directly from the densities of X and Y . For simplicity, we only discuss
discrete random variables.

Definition 3.2. Let Λ ⊆ R be countable, and X and Y real random variables supported
on Λ. We say X �lr Y (Y dominates X in the likelihood ratio order) if, for every k, l ∈ Λ
with k ≤ l,

P(X = l)P(Y = k) ≤ P(X = k)P(Y = l).

Taking A = R in the following theorem shows that �lr is indeed stronger than �st.

Theorem B ([50, Theorem 1.4.6]). Let A ∈ B(R) be such that P(X ∈ A) > 0 and
P(Y ∈ A) > 0. Then X �lr Y implies

P(X ∈ ·|X ∈ A) �st P(Y ∈ ·|Y ∈ A).

3.1.2. The convex stochastic order

We discuss the convex order X �cx Y , which intuitively means that Y has more random-
ness than X.

Definition 3.3. Let X and Y be real random variables. We say X �cx Y (X is smaller
in convex order) if, for every f : R→ R convex,

E[f(X)] ≤ E[f(Y )]. (3.2)

The concave order �cv is obtained by replacing “convex” by “concave” in the previous
definition. Clearly, X �cv Y if and only if Y �cx X, so it is enough to discuss one of these
relations.

Note that if Y is any random variable and X := E[Y ], then X �cx Y follows from Jensen’s
inequality. This is an elementary demonstration of the statement “Y has more randomness
than X” mentioned before. In general, this becomes precise with the following result:

Theorem C ([50, Theorem 1.5.20]). The following are equivalent:

(i) X �cx Y .

(ii) There exists a coupling (X̂, Ŷ ) such that X̂
d
=X and Ŷ

d
=Y , and such that almost

surely E[Ŷ |X̂] = X̂.
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Here the implication (ii) =⇒ (i) follows almost immediately from Jensen’s inequality, see
also the proof of Corollary 15.2 below.

Note that in the previous example, the coupling can be constructed as (X̂, Ŷ ) := (E[Y ], Y ).
In practice, however, the coupling can be quite complicated and it is often easier to verify
(3.2) using analytic techniques (see for example [55, Lemma 2.2]). In this thesis, we
generally prefer to prove convex comparison using the implication (ii) =⇒ (i) (see Theorem
4.4, Lemma 6.3 and Theorem 15.1).

Next, we introduce tools for proving �cx without having to construct the coupling.

3.1.3. The majorization order

The relation presented in this section is not a stochastic ordering in the usual sense. We
refer to [47] for a survey on the topic.

Consider a finite set Λ with K elements, and let p, q ∈ M<∞(Λ) be finite measures on
Λ. Let moreover π and σ be bijections π, σ : {1, . . . ,K} → Λ, chosen in such a way that
i 7→ p(π(i)) and i 7→ q(σ(i)) are decreasing. In other words, π and σ encode the relative
orders of the weights of p and q.

Definition 3.4. We say p �M q (p is majorized by q) if, for all k = 1, . . . ,K,∑k
i=1 p(π(i)) ≤∑k

i=1 q(σ(i)) (3.3)

and if equality holds for k = K.

Intuitively, p �M q means that the mass of q is distributed more unevenly than in p. To
illustrate this, let us restrict to probability measures for a moment. Then we observe that
the minimal element with respect to �M is the uniform distribution on Λ (where the mass
is spread evenly among all sites), while all Dirac measures (where all mass is concentrated
on one site) are maximal. The relation �M is used, for example, to compare how “fair”
wealth is distributed within societies.

Theorem D ([47, Theorems 1.A.4 and 4.B.1]). Let p, q ∈ M1(Λ). The following are
equivalent:

(i) p �M q.

(ii) There exists a doubly stochastic matrix Π ∈ RΛ×Λ such that p = q · Π (where q and
p are interpreted as row-vectors).

(iii) For all continuous, convex functions f : [0, 1]→ R∑
a∈Λ f(p(a)) ≤∑a∈Λ f(q(a)).

The equivalence (i)⇐⇒ (iii) relates the majorization order to the convex order discussed
before. This is not necessarily helpful in itself, because verifying µ �M ν can be equally
hard in practice. We recall a criterion for preservation of �M :

5



Theorem E ([47, Theorems 5.A.17 and 5.A.17a]). Let Λ = {1, . . . ,K}, Λ′ = {1, . . . ,K ′}.
Let A ∈ RK×K′ be such that every permutation of a column of A is also a column of A.
That is, for every k′ ∈ {1, . . . ,K ′} and every permutation π : {1, . . . ,K} → {1, . . . ,K}
there exists l′ ∈ {1, . . . ,K ′} such that

A(π(k), k′) = A(k, l′) for all k ∈ {1, . . . ,K}.
Then p �M q implies (p ·A) �M (q ·A).

Next, we discuss the situation where Λ itself is a partially ordered set, i.e., there exists a
partial order �Λ on Λ.

Definition 3.5. A function f : Λ→ R is �Λ-decreasing if a �Λ b implies f(a) ≤ f(b). A
set A ⊆ Λ is �Λ-decreasing if its indicator function 1A is �Λ-decreasing, i.e. if a �Λ b and
b ∈ A imply a ∈ A.

We state a sufficient criterion for �M based on �Λ-decreasing sets:

Theorem F ([7, Theorem 3]). Let p, q ∈M1(Λ). Assume that p and q are �Λ-decreasing,
and that for every �Λ-decreasing set A ⊆ Λ

p(A) ≤ q(A). (3.4)

Then p �M q.

Note that if Λ ⊆ R and �Λ is the usual relation “≤”, then p and q are ≤-decreasing if
i 7→ p(i) and i 7→ q(i) are decreasing on Λ, and (3.4) is the same as (3.3) in the definition.

3.2. Superadditivity

The superadditive lemma is well-known:

Theorem G (Superadditive lemma). Let (a(t))t≥1 be a real sequence such that, for all
s, t ≥ 1,

a(s+ t) ≥ a(s) + a(t). (3.5)

Then limt→∞
a(t)
t = A, where A := supt≥1

a(t)
t ∈ R ∪ {∞}.

A similar statement holds if a small error term is introduced in (3.5):

Theorem H ([38, Theorem 2]). Let (a(t))t≥1 be a sequence such that, for all s, t ≥ 1,

a(s+ t) ≥ a(s) + a(a)− b(s+ t). (3.6)

Assume that t 7→ b(t) is increasing and that
∫∞

1
b(t)
t2

dt < ∞. Then the limit A :=

limt→∞
a(t)
t exists in R ∪ {∞}, and for all t ≥ 1

a(t) ≤ tA− b(t) + 4t

∫ ∞
2t

b(s)

s2
ds. (3.7)

Note that if (a(t))t≥1 is superadditive, then A = supt≥1
at
t implies that the upper bound

a(t) ≤ tA
is valid for every t ≥ 1. If the sequence is only almost-superadditive in the sense of (3.6),
then the corresponding bound is provided by (3.7).
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3.3. Concentration inequalities

We present two concentration inequalities that will be useful to control the fluctuations of
the logarithmic partition function logZt(ω) around its expectation E[logZt].

Let us briefly explain the approach, for simplicity in the case t ∈ N. In both cases, the
idea is to divide the environment until time t into time-slices (of equal size) and to show
that no time-slice has a large influence on logZt. More precisely, let ω be an environment.
For k = 1, . . . , t we let ω(k) denote an environment that agrees with ω, except that the
kth time-slice is independently resampled. For both concentration inequalities, we need to
show that ∣∣ logZt(ω)− logZt(ω

(k))
∣∣

cannot be too large (in some sense). The actual statements are quite technical, so we do
not go into any more detail.

Theorem I ([46, Theorem 2.1]). Let X1, X2, . . . be a sequence of super-martingale differ-
ences with respect to some filtration F = (Ft : t ∈ N), and assume that there exists K > 0
such that for all k = 1, . . . , t, almost surely,

E
[
e|Xk|

∣∣Fk−1

]
≤ K. (3.8)

Then, for any u ≥ 0,

P
(∣∣∣ t∑

k=1

Xk

∣∣∣ ≥ tu) ≤
2e

− tu2

K(1+
√
2)2 if u ∈ [0,K)

2e
− tu

(1+
√
2)2 if u ≥ K

. (3.9)

Theorem J ([6, Theorem 15.5] ). Let ξ = {ξk : k = 1, . . . , t} be an independent sequence of
random variables (not necessarily real), and let ξ′ = {ξ′k : k = 1, . . . , t} be an independent

copy of ξ. We write ξ̂(k) for the sequence

ξ̂(k) :=
(
ξ1, . . . , ξk−1, ξ

′
k, ξk+1, . . . , ξt

)
.

Let f be a measurable, real function of ξ, and define

V+(ξ) :=
t∑

k=1

E
[(
f(ξ)− f(ξ̂ (k))

)2
+

∣∣σ(ξ)
]

V−(ξ) :=

t∑
k=1

E
[(
f(ξ)− f(ξ̂ (k))

)2
−
∣∣σ(ξ)

]
.

Then, for any q ∈ N, there exists a universal constant C(q) such that

E
[(
f(ξ)− E[f(ξ)]

)2q
+

]
≤ C(q)E

[
V q

+

]
E
[(
f(ξ)− E[f(ξ)]

)2q
−
]
≤ C(q)E

[
V q
−
]
.
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4. The discrete-time random polymer model

The random polymer model has been studied extensively, see for example the surveys [10],
[23] or [14]. Since it is the discrete-time version of the models from Parts II and IV, we
will use it as a reference point in our discussion in the remainder of this thesis.

After introducing the model, we explain the standard technique for proving the existence
and continuity of the so-called free energy (Section 4.3), which is an important observable
of such models. We also discuss why this approach fails in the disastrous case and how
this motivated our research on disastrous models in continuous time (Section 4.4).

We introduce the random polymer model in somewhat greater generality than what is
common in the literature – this does not change the behavior of the model in a substantive
way, but it will be useful later on to illustrate some of our results.

4.1. Definition of the model

Let Ω := [0,∞)N×Z
d
, F the sigma-field generated by the cylinder functions on Ω, and P a

probability measure on (Ω,F). We assume that P(ω(0, 0) > 0) > 0 and that

ω = {ω(t, i) : t ∈ N, i ∈ Zd} is i.i.d..

Let M1(Zd) denote the set of probability measures on Zd, and for p ∈ M1(Zd) write P p

for the law of a random walk with increment distribution p. More precisely, let I denote
the set of paths x : N → Zd and G the sigma-field generated by the coordinate processes.
Then P p is a probability measure on (I,G) such that X(0) = 0 and (X(t+ 1)−X(t))t∈N
is i.i.d. with common law p.

Fix a parameter β ≥ 0 called the inverse temperature. The interaction between envi-
ronment and random walk is described by a family (F βt )t∈N, defined by

F βt : Ω× I → R+, (ω, x) 7→
t∏

s=1

ω(t, x(t))β. (4.1)

For ω ∈ Ω, we consider the polymer measure µβ,pω,t ∈ M1(I), that is the (random)

probability measure on (I,G) with weights proportional to F βt :

µβ,pω,t (dx) =
(
Zβ,pt (ω)

)−1
F βt (ω, x)P p(dx). (4.2)

Here Zβ,pt (ω) is the normalizing factor, called the partition function, with

Zβ,pt : Ω→ R+, ω 7→ Ep
[
F βt (ω,X)

]
. (4.3)

The term “polymer”, used for example in the title of this thesis, always refers to a path
sampled according to the polymer measure.

8



4.2. Motivation

By definition, µβ,pω,t is a random perturbation of P p, where the (exponential) weight of a
path is proportional to the environment “collected” up to time t. The polymer is attracted
by large values of ω and repelled by small values. What makes this model challenging is
that this “maximization” of F βt (ω, x) is counteracted by the entropic cost P p(dx) of the
path x.

The inverse temperature β controls the strength of the perturbation. Consequently, we
expect that µβ,pω,t behaves like P p for β small (if the disorder is not strong enough to
overcome the diffusive behavior of P p), and localizes at an optimal path for β large (if the

cost P p(dx) is dominated by the F βt (ω, x)-term).

This picture is by now mostly confirmed: If we assume E[ω(0, 0)β + ω(0, 0)−β] < ∞ and
restrict to simple random walk, then it is known that there is a phase transition between
the two regimes, at least in dimension d ≥ 3. More precisely, there exists a critical
βc ∈ (0,∞) such that µβω,t satisfies a central limit theorem for β < βc (see [17, Theorem
1.2]), and localizes for β > βc (see [13, Theorem 1.1] or [10, Theorem 6.1]). In low
dimensions (d = 1 and d = 2) the critical inverse temperature is βc = 0 (see [43, Theorems
1.4 and 1.6]), and localization occurs for all β > 0. Here we say that localization occurs if

maxi∈Zd µ
β
ω,t(Xt = i) does not decay to zero.

It turns out that to understand the behavior of µβ,pω,t , it is helpful to first study the nor-

malizing constant, Zβ,pt (ω). Roughly speaking, µβ,pω,t behaves similar to the unperturbed
measure P p if and only if the martingale

W β,p
t (ω) :=

Zβ,pt (ω)

E[ω(0, 0)β]t
(4.4)

converges in L1. Since F βt has product form, a natural approach is to analyze whether the

partition function Zβ,pt has an exponential growth rate. Clearly, a necessary criterion for

W β,p
∞ (ω) := limt→∞W

β,p
n (ω) > 0 is

lim
t→∞

1

t
logZβ,pt (ω) = logE[ω(0, 0)β], (4.5)

and in fact it is conjectured that this is also sufficient, see [10, Open Problem 3.2(i)]. The
limit on the l.h.s. exists almost surely under mild assumptions, which we discuss in the
next section, and it is equal to a deterministic constant p(β, p), called the free energy.

In summary, analyzing the free energy is a first step towards understanding the martingale
limit W β,p

∞ , which is itself a step towards understanding the long-term behavior of the
polymer measure µβ,pt,ω .

4.3. The free energy

We explain a well-known technique to show the existence of the limit in (4.5). The same
approach will be useful later on in our discussion of related models, where we have to
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deal with additional issues caused, for example, by having continuous time/space or less
integrability.

Proposition 4.1. Assume E[ω(0, 0)β] <∞.

(i) Assume in addition that E[logω(0, 0)] > −∞. There exists p(β, p) ∈ R such that

lim
t→∞

1

t
E
[

logZβ,pt
]

= p(β, p).

(ii) Assume in addition that E[ω(0, 0)−β] <∞ and let ε ∈ (0, 1/2). There exists C(β) >
0 such that, for all t ∈ N and p ∈M1(Zd),

P
(∣∣ logZβ,pt − E[logZβ,pt ]

∣∣ ≥ t1/2+ε
)
≤ e−C(β)t2ε

Moreover, 0 < infβ∈[β1,β2]C(β) ≤ supβ∈[β1,β2]C(β) <∞ for all β1 < β2.

(iii) Under the assumptions of (ii), almost surely

lim
t→∞

1

t
logZβ,pt = p(β, p).

Sketch of the proof. Part (i): The space-time shift θt,i : Ω→ Ω is defined by

(θt,iω)(s, j) := ω(s+ t, i+ j).

The Markov property of P p implies

Zβ,ps+t(ω) =
∑
i∈Zd

Ep
[
F βs (ω,X)1{X(s) = i}

]
Zβ,pt (θs,iω)

= Zβ,ps (ω)
∑
i∈Zd

µβ,pω,s(X(s) = i)Zβ,pt (θs,iω).

Here µβ,pω,s is the polymer measure defined in (4.2). After taking logarithms, we can apply
Jensen’s inequality to get

logZβ,ps+t(ω) ≥ logZβ,ps (ω) +
∑
i∈Zd

µβ,pω,s(X(s) = i) logZβ,pt (θs,iω).

It is clear that logZβ,pt (θs,iω) has the same law as logZβ,pt (ω), and that it is independent

of µβ,pω,s(X(s) = i), for any i ∈ Zd. Taking expectation therefore shows that

aβ,p(t) := E[logZβ,pt ]

is superadditive, i.e. satisfies (3.5). The first conclusion then follows from Theorem G. To
see that the limit is finite, we again use Jensen’s inequality:

E
[

logZβ,pt (ω)
]
≤ logE

[
Zβ,pt

]
= logE

[ t∏
s=1

E
[
ω(s,X(s))β

]]
= t logE

[
ω(0, 0)β

]
.
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Part (ii): Let Fs := σ(ω(r, i) : r ≤ s, i ∈ Zd) and observe that

logZβ,pt − E[logZβ,pt ] =
t∑

s=1

E
[

logZβ,pt
∣∣Fs]− E

[
logZβ,pt

∣∣Fs−1

]
=:

t∑
s=1

Vs.

In order to apply Theorem I, we need to show that there exists K, independent of t, such
that almost surely for all s = 1, . . . , t

E
[
e|Vs|

∣∣Fs−1

]
< K.

This is shown in [46, Lemma 6.4] for the case of simple random walk, and the same proof
works without change for general increment distributions.
Part (iii): Let

At :=
{∣∣ logZβ,pt (ω)− E[logZβ,pt ]

∣∣ ≥ t3/4}
and note that P(At) ≤ e−C(β)t1/2 by part (ii). The Borel–Cantelli lemma shows that
P(At infinitely often) = 0, so there exists T (ω) such that for all t ≥ T (ω)∣∣∣1

t
logZβ,pt (ω)− 1

t
E[logZβ,pt ]

∣∣∣ ≤ t−1/4.

The conclusion then follows by part (i).

Remark 4.2. In fact, the assumption E
[
ω(0, 0)β

]
is not necessary to guarantee p(β, p) <∞.

In [48, Theorem 1.1] they show that (in the case of simple random walk) it is enough that∫ t

0
P
(
ω(0, 0) > et

)1/d
dt <∞.

In this thesis we are mostly concerned with repulsive environments, so we do not ask for
optimal conditions on the upper tail of the environment.

Remark 4.3. Adapting a technique from [58] for directed first-passage percolation, one can
show that, for any K > 0,

[0,∞)×MK
1 (Zd)→ R, (β, p) 7→ p(β, p)

is continuous. Here MK
1 (Zd) denotes the set of all probability measures supported on

Zd∩ [−K,K]d. We refer to Proposition 5.5 and Theorem 11.9 below for details (in related,
continuous-time models).

4.4. The disastrous case

We have deviated from the notation commonly used in the literature by including the
increment distribution p as a parameter, and also by defining the partition function in a
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different (but equivalent) way – the standard notation can be recovered by considering
environment η(t, i) := logω(t, i) and partition function

Zβ,pt (η) = Ep
[
eβ

∑t
s=1 η(s,X(s))

]
. (4.6)

We are using (4.3) instead of (4.6) because in this way it is easier to include the disastrous
case, which we are most interested in. Here and in the following, we will use the term
“disastrous” if

P
(
P (F βt (ω,X) = 0) > 0

)
. (4.7)

It is easy to see that, if β > 0, then the random polymer model is disastrous if and only
if P(ω(0, 0) = 0) > 0. If p has compact support, then (4.7) implies that also

P
(
Zβ,pt (ω) = 0

)
> 0.

This clearly violates both the assumptions and the spirit of Proposition 4.1, since in
particular logZβ,pt is not integrable.

The models discussed later (Parts II and IV) are also disastrous in the sense of (4.7),
but because they are in continuous time they still satisfy Zt(ω) > 0 almost surely – note
that this takes care of the most immediate obstacle to repeating the proof of Proposition
4.1. In fact, we find that after overcoming substantial additional problems, the same basic
approach can be used to show the existence of the free energy for those models.

In the remainder of this section, we discuss the disastrous case of the discrete-time random
polymer model. For simplicity, we fix β = 1 and P p the law of simple random walk. We
consider a Bernoulli environment P∞, with

P∞(ω(0, 0) = 0) = 1− P∞(ω(0, 0) = 1) = q ∈ (0, 1). (4.8)

The reason for writing P∞ instead of P will become clear later. Let O(ω) := {(t, i) ∈
N× Zd : ω(t, i) = 1} denote the set of admissible space-time sites and

Nt(ω) :=
{
x : ω(s, x(s)) ∈ O(ω) for all s = 1, . . . , t

}
the set of nearest-neighbor paths x of length t in O, starting in the origin. Note that |Nt|
is the number of open paths in directed site percolation, and that the partition function
can be written as

Zt(ω) = E[Ft(ω,X)] =
|Nt(ω)|

2d
.

That is, if the free energy (4.5) exists, it corresponds to the growth rate of the number of
open paths in directed site percolation. However, observe that

P∞
(
∃t ∈ N s.t. O ∩ ({t} × {−t, . . . , t}) = ∅

)
> 0,
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and in this case |Nt(ω)| = 0 for all t large enough. We therefore consider

{O ↔ ∞} :=
{
∃x : (t, x(t)) ∈ O for all t ∈ N

}
the event that there exists an infinite nearest-neighbor path x in O, starting in the origin.
This event has positive probability for all q > qc, where qc denotes the critical probability
in oriented site percolation. Clearly Zt(ω) > 0 for all t on {O ↔ ∞}, and it was recently
shown that the free energy exists on this event:

Theorem ([31, Theorem 1.1]). For every q > qc there exists p(q,∞) ∈ R such that
P∞(·|O ↔ ∞)-almost surely

lim
t→∞

1

t
logZt(ω) = p(q,∞).

Observe that the approach used in Proposition 4.1 does not seem to be well-suited for
this type of result, because logZt is not integrable with respect to P∞. Moreover, if
we replace P∞ by P∞(·|O ↔ ∞) to fix this problem, we lose the i.i.d. structure of the
environment, which is also an essential ingredient. The proof in [31] instead relies on an
intricate combination of various techniques developed in the study of the contact process
and oriented percolation.

We close this discussion by mentioning an open problem: It would be desirable to know
whether the disastrous model (4.8) can be approximated by the more tractable soft-
obstacle model. That is, fix q > qc and write Pγ for the environment with Pγ(ω(0, 0) =
1) = q and

Pγ(ω(0, 0) = e−γ) = 1− q.

We can apply Proposition 4.1 for every γ <∞, and thus find a constant p(q, γ) such that
Pγ-almost surely

lim
t→∞

1

t
logZt(ω) = p(q, γ).

To the best of our knowledge, it is not known whether p(q,∞) = limγ→∞ p(q, γ).

Continuity in the zero-temperature limit was a partial motivation in our study of the
Brownian polymer model in Part IV, where we follow the superadditive approach from
Proposition 4.1. In that model, we find that the additional randomness from continuous
time is enough to overcome the non-integrability of the logarithmic partition function. We
will discuss further results on the zero-temperature limit in Section 11.3.

Finally, we mention that even though we do not carry out the proof here, our results also
show continuity in the zero-temperature limit for the lattice-model from Part II.
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4.5. Concave comparison of the partition function

We provide an example that illustrates the power of Theorem C. In Part V we show a
second comparison result (Theorem 15.1) for partition functions, see also the discussion
in Section 16.1. More results about stochastic orders for the random polymer model can
be found in [52].

The theorem below is a discrete-time version of [29, Lemma 2.2] for the continuous-time
random walk from Part II, see also the discussion before Lemma 6.3.

Let J = {J1, J2, . . . } denote a partition of Zd. We call an element J ∈ J an equivalence
class. We write PJ for the environment which has the same marginals as P, and which is
constant over each equivalence class and independent between different equivalence classes.

Let J and K be two partitions. We say that K is finer than J if for every K ∈ K there
exists J ∈ J such that K ⊆ J . In this way, the coarsest partition is Jmax := {Zd}, where
all sites are in the same equivalence class, while the finest partition is Jmin := {{i} : i ∈ Zd},
where each site forms its own equivalence class. Observe that PJmin agrees with the i.i.d.
environment from the previous sections, while under PJmax the environment is the same
at every site. Thus, it makes sense to say that PJmin has more randomness than PJmax .

The following result makes this precise by using the convex stochastic order. Moreover,
we show that we can compare more partitions than just the extremal elements Jmax and
Jmin.

Theorem 4.4. Let J and K be two partitions of Zd, and assume that K is finer than J .
Moreover, for A ⊆ Zd, let Zβ,p,At denote the restricted partition function, where F βt has
been replaced by

F β,At (ω, x) := F βt (ω, x)1{xt ∈ A}.

Assume E[ω(0, 0)β] <∞. For f : R+ → (−∞,∞] convex and t ∈ N,

EK[f(Zβ,p,At )] ≤ EJ [f(Zβ,p,At )].

Proof. Let us write J = {J1, J2, . . . } and K = {K0,K1, . . . }. By considering a sequence of
intermediate partitions, it is enough to assume Ji = Ki for every i ≥ 2, and J1 = K0∪K1.
We construct a coupling (ω, ω̂) with marginals PK and PJ , and such that almost surely

E
[
Zβ,p,At (ω̂)

∣∣σ(Zβ,p,At (ω))
]

= Zβ,p,At (ω). (4.9)

The claim then follows from the implication (ii) =⇒ (i) in Theorem C. Let ω be an
environment with law PK. Observe that we could obtain ω̂ by deciding, for every time s,
whether to take the value ω(s,K0) or ω(s,K1) for ω̂(s+ 1, J1). That is, we can obtain an
environment with law PJ by setting ω̂ equal to ω on N× Zd \ {(s, J1)}, and

P
(
ω̂(s, J1) = ω(s,K0)

)
= P

(
ω̂(s, J1) = ω(s,K1)

)
= 1/2.
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This does not result in a coupling with the desired property (4.9), but we will use a
similar idea. Let us introduce some notation. For s = 0, . . . , t and (u1, . . . , us) ∈ {0, 1}s,
let ω(u1, . . . , us) denote the environment defined by

(ω(u1, . . . , us))(r, i) =

{
ω(r, i) if (r, i) /∈ {1, . . . , s} × J1

ω(r,Kur) else.

That is, the value of ω(u1, . . . , us) at (r, J1) is either ω(r,K0) or ω(r,K1), depending on
ur. See also Figure 1 for an illustration. For s = 0 we set ω(∅) := ω. Moreover, let
ω(u1, . . . , us) be defined as ω(u1, . . . , us) for all sites except {s+ 1} × J1, where we set

ω(u1, . . . , us)(s+ 1, J1) ≡ 1.

That is, in ω(u1, . . . , us) we have censored the environment at {s+ 1} × J1. Let

α(ω, u1, . . . , us) :=
Ep
[
F β,At (ω(u1, . . . , us), X)1{Xs+1 ∈ K0}

]
Ep
[
F β,At (ω(u1, . . . , us), X)1{Xs+1 ∈ K0 ∪K1}

] ,
where we define α(ω, u1, . . . , us) := 1

2 if the denominator is zero. Since α(ω, u1, . . . , us) ∈
[0, 1], we can choose U1, . . . , Ut ∈ {0, 1}t successively using those probabilities. More
precisely, we choose the sequence with P(U1 = 0|σ(ω)) := α(ω,∅) and, for s ≥ 1,

P
(
Us+1 = 0

∣∣σ(ω,U1, . . . , Us)
)

:= α(ω,U1, . . . , Us).

We claim that, for every s = 0, . . . , t− 1,

E
[
Zβ,p,At (ω(U1, . . . , Us, Us+1))

∣∣σ(ω,U1, . . . , Us)
]

= Zβ,p,At (ω(U1, . . . , Us)). (4.10)

Indeed, observe that for i ∈ {0, 1},
Zβ,p,At (ω(U1, . . . , Us, i)) =Ep[F β,At (ω(U1, . . . , Us), X)1{Xs+1 /∈ J1}]

+ ω(s+ 1,Ki)E
p[F β,At (ω(U1, . . . , Us), X)1{Xs+1 ∈ J1}].

Note that (4.10) obviously holds if the second expectation on the r.h.s. is zero, so let us
assume that this is not the case. The first term does not depend on i, and therefore

E[Zβ,p,At (ω(U1, . . . , Us, Us+1))|σ(ω,U1, . . . , Us)]

=Ep[F β,At (ω(U1, . . . , Us))1{Xs+1 /∈ J1}]
+ α(ω,U1, . . . , Us)E

p
[
F β,At (ω(U1, . . . , Us, 0), X)1{Xs+1 ∈ J1}

]
+
(
1− α(ω,U1, . . . , Us)

)
Ep
[
F β,At (ω(U1, . . . , Us, 1), X)1{Xs+1 ∈ J1}

]
=Ep[F β,At (ω(U1, . . . , Us))1{Xs+1 /∈ J1}]

+ ω(s+ 1,K0)Ep
[
F β,At (ω(U1, . . . , Us), X)1{Xs+1 ∈ K0}

]
+ ω(s+ 1,K1)Ep

[
F β,At (ω(U1, . . . , Us), X)1{Xs+1 ∈ K1}

]
=Ep[F β,At (ω(U1, . . . , Us))1{Xs+1 /∈ J1}]

+ Ep
[
F β,At (ω(U1, . . . , Us), X)1{Xs+1 ∈ K0}

]
+ Ep

[
F β,At (ω(U1, . . . , Us), X)1{Xs+1 ∈ K1}

]
=Ep[F β,At (ω(U1, . . . , Us))].

(4.11)
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We then set ω̂ := ω(U1, . . . , Ut), and claim that (ω, ω̂) is the desired coupling.

First, note that the coupling property (4.9) follows by repeatedly applying (4.10) and
the tower-property. To see that ω̂ has law PJ , note that since α(ω, u1, . . . , us) uses the
censored environment ω(u1, . . . , us), α(ω, u1, . . . , us) does not depend on the value of ω on
{s+ 1} × J1. Since ω(s+ 1,K0) and ω(s+ 1,K1) are independent and have the same law
as ω(0, 0), we indeed get

ω(s+ 1, Us+1)
d
=ω(0, 0).

1 2 3 4 5 6 7

b

a

1 2 3 4 5 6 7

b

a

1

Figure 1: Illustration of the construction in the case where K0 = {a} and K1 = {b} are
two singleton sets. The environment takes four values, illustrated by different shapes. We
show the original environment ω (above) and the modification ω(1, 1, 0, 0) (below).
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Part II.

Random walk among space-time
disasters

5. Introduction

5.1. Motivation

We consider an environment ω consisting of random space-time points (t, i) ∈ R+ × Zd,
which we interpret as a disaster occurring at site i at time t. Independently of ω, we
let X = {X(t) : t ≥ 0} denote a continuous-time simple random walk on Zd. We say
that X survives until time t if it avoids all disasters up to time t, i.e., if its graph does
not intersect the environment ω. We study the exponential decay rate of the survival
probability, conditioned on the environment. See Figure 2 for a realization of environment
and random walk, and Figure 3 for the corresponding quenched survival probability.

5.2. Definition of the model

We introduce the model in slightly more generality: Let I denote a countable state space
and Ω the set of locally finite point measures on R+ × I. We identify ω ∈ Ω with its
support, i.e. we regard it as a random set of space-time points (t, i) ∈ R+ × I. Let (ω,P)
denote the Poisson point process with unit intensity on R+ × I.

Moreover, let (X,P ) denote a continuous-time Markov process on I with bounded gener-
ator A. Given an environment ω, the extinction time τ(ω) is the hitting time of ω:

τ(ω) := inf
{
t ≥ 0: (t,X(t)) ∈ ω

}
.

Note that while the notation does not reflect this, τ(ω) is a random variable with respect
to both X and ω. If I is equal to the integer lattice Zd, we write P κ for the law of simple
random walk with jump rate κ > 0. More precisely, let ∆ denote the discrete Laplacian
on Zd, acting on functions f : Zd → R by

(∆f)(i) =
1

2d

∑
‖j−i‖1=1

(f(j)− f(i)). (5.1)

Then P κ is the Markov process with generator κ∆. It is known that the quenched survival
probability P κ(τ(ω) ≥ t) decays exponentially with a deterministic rate:

Theorem K ([55]). There exists p(κ) ∈ (−∞,−1] such that, almost surely and in L1,

p(κ) = lim
t→∞

1

t
E[logP κ(τ(ω) ≥ t)] = lim

t→∞
1

t
logP κ(τ(ω) ≥ t).
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t

Z/−8,...,8

10

0

1

Figure 2: A realization of an environment ω on the torus Z/{−8,...,8}, with crosses indi-
cating the space-time disasters. In addition, we have drawn a nearest-neighbor path that
does not touch any disasters in [0, 10], and thus survives until time 10.

Z/−8,...,8logP (τ(ω) ≥ t)
t10

1

Figure 3: We show the logarithmic survival probability corresponding to the environment
from Figure 2. Every jump in the plot corresponds to a disaster of ω. The decay rate p(κ)
is the asymptotic slope of this graph, which is deterministic.
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Remark 5.1. In fact, [55] only shows the L1-convergence in the previous theorem, although
the almost-sure statement is used in the literature (for example in [49]). We note that it
can be proved along the same lines as in Proposition 4.1, using Proposition 5.3.

Note that p(κ) also depends on the dimension d, but we do not include this in the notation.
The model has originally been introduced in [55] as a special case of the parabolic Anderson
model with Lévy noise. We are not going to use this perspective in our discussion, but let
us briefly outline this connection for completeness: Let ω and A be as before, and consider
the following system of PDEs with stochastic noise:

uω(0, ·) ≡ 1,

uω(dt, i) = (Auω(t, ·))(i) dt− uω(t−, i)ω(dt, i) for t ∈ R ≥ 0, i ∈ I, (5.2)

This PDE has a unique strong solution [29, Theorem 1.2] satisfying uω(t, 0)
d
=P (τ(ω) ≥ t).

More precisely, for fixed t > 0, let
←
ω ∈ Ω denote the time-reversal of ω, i.e. for s ∈ [0, t]

(s, i) ∈ ←ω ⇐⇒ (t− s, i) ∈ ω.

Then by [55, Lemma 2.1] the solution uω to (5.2) has the Feynman-Kac representation

uω(t, 0) = P (τ(
←
ω) ≥ t). (5.3)

5.3. Related literature

More general space-time environments are discussed in Section 16.2. The model can
also be studied with Zd replaced by Rd and X replaced by Brownian motion, which we
discuss in Part IV (for disastrous environments) and Section 16.3 (for general Poissonian
environments). Replacing instead continuous time R+ by discrete time N, we arrive at the
(directed) random polymer model, which we have discussed in Section 4.1.

The term “parabolic Anderson model” usually refers to the “static” version of (5.2), i.e.,
to the case where ω is constant in time. The “static” model has quite different behavior
from the “dynamic” version, see also the discussion in Section 17.1.

5.4. The main results

Our results are based on the following uniform moment bound, which is interesting in its
own right:

Proposition 5.2. For every δ ∈ (0, 1) and κ > 0, there exists C(κ, δ) ∈ (0,∞) such that

sup
i∈Zd

E
[(
P κ(τ(ω) ≥ 1|X(t) = i)

)−δ ] ≤ C(κ, δ). (5.4)

Moreover, supκ∈[κ0,κ1]C(κ, δ) <∞ for every 0 < κ0 < κ1 <∞.

As a first consequence, we obtain a concentration inequality:
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Proposition 5.3. For all t ∈ N, i ∈ Zd and u > 0

P
(∣∣ logP κ(τ(ω) ≥ t,X(t) = i)− E[logP κ(τ(ω) ≥ t,X(t) = i)]

∣∣ > ut
)

≤

2 exp
(
− tu2

4C(κ,1/2)(1+
√

2)2

)
if u ≤ 2C(κ, 1/2)

2 exp
(
− tu

2(1+
√

2)2

)
if u > 2C(κ, 1/2)

(5.5)

The same statement holds with P κ(τ(ω) ≥ t,X(t) = i) replaced by P κ(τ(ω) ≥ t).
Remark 5.4. For simplicity, we only state the result for t ∈ N, but it is not hard to obtain
a concentration inequality for all t > 0. See Remark 7.1 for a sketch of the necessary
changes. Moreover, the final part of the proof of Proposition 11.4 in Section 13.2 contains
a detailed argument for a related model.

Observe that, somewhat surprisingly, the bound in (5.5) does not depend on i ∈ Zd. This
is important in the proof of the following result:

Proposition 5.5. (i) For every 0 < κ0 < κ1 < ∞ and ε ∈ (0, 1/2), there exist C, t0
such that for all κ ∈ [κ0, κ1] and t ≥ t0

p(κ)− Ct−1/2+ε ≤ 1

t
E
[

logP κ(τ(ω) ≥ t)
]
≤ p(κ). (5.6)

(ii) κ 7→ p(κ) is continuous.

Note that the continuity of κ 7→ p(κ) is already known [29, Corollary 4.1] for the soft-
obstacle version of our model, where the random walk gets killed with probability p ∈ (0, 1)
whenever it hits a disaster. Next, we show the existence of the point-to-point free energy:

Proposition 5.6. (i) For every i ∈ Rd and κ > 0, there exists p(κ, i) ∈ (−∞,−1] such
that almost surely

p(κ, i) = lim
t→∞,t∈N

1

t
logP κ(τ(ω) ≥ t,X(t) = btic)

= lim
t→∞

1

t
E
[

logP κ(τ(ω) ≥ t,X(t) = btic)
]
.

(5.7)

On the other hand, almost surely

lim inf
t→∞

1

t
logP κ(τ(ω) ≥ t,X(t) = btic) = −∞.

(ii) For every κ > 0, the function i 7→ p(κ, i) is concave and therefore continuous.

(iii) p(κ, 0) = p(κ).

Let us quickly comment on part (iii), which will be crucial in our discussion of a re-
lated branching random walk in Part III. Note that if {τ(ω) ≥ t} and {X(t) = 0} were
independent under P κ, then it would be clear that

P κ(τ(ω) ≥ t,X(t) = 0)
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has the same decay rate as P κ(τ(ω) ≥ t) – it follows from the fact that the return probabil-
ity of simple random walk decays polynomially. However, note that under P κ(·|τ(ω) ≥ t)
the random walk tries to move to parts of the environment with few disasters, which will
drive it further away from the origin. Indeed, in dimension d = 1, using KPZ scaling ex-
ponents that are conjectured for a wide class of related models, we can expect that under
P κ(·|τ(ω) ≥ t),

max
s∈[0,t]

|X(s)| ≈ t2/3.

This is much larger than the traversal fluctuations of P κ, which are of order t1/2. We thus
expect that the return probability P κ(X(t) = 0|τ(ω) ≥ t) decays polynomially, but faster
than P κ(X(t) = 0).

5.5. Outline

Section 6 contains preparations for the uniform moment bound (Proposition 5.2):

• In Section 6.1, we prove majorization (recall Section 3.1.3) for the parity of multi-
nomial random variables – no random walks or random environments appear in this
section. At first glance, it is not clear how this result relates to Proposition 5.2, but
it is a crucial ingredient: We will use it to compare the survival probability of two
random walks, under the assumption that one has (stochastically) more jumps than
the other.
• This comparison is valid for random walk in state space I = Z/2. In Section 6.2, we

show that the survival probability in Z/2 is smaller than in Zd, in the sense of the
concave stochastic order.
• Finally, in Section 6.3 we give a lower bound for the survival probability in Z/2,

where explicit computations are possible.

The results in Sections 6.2 and 6.3 are already proved in [55] using analytic methods. For
our purpose, we need slightly more general statements, and we give different proofs using
probabilistic techniques.

The main results are then proved in their respective subsections of Section 7.

6. Preparation

6.1. Majorization for the parity of multinomial vectors

This section does not contain random environments or random walks, and instead we
discuss majorization for the multinomial distribution. Discrete intervals are denoted by

JNK := {0, . . . , N}.

Fix N ∈ N and weights p0, . . . , pN , with p0 + · · ·+ pN = 1 and such that

0 ≤ p0 ≤ p1 ≤ · · · ≤ pN ≤ 1. (6.1)
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Let Pk denote the multinomial distribution with k trials, each of which has result r with
probability pr. More precisely, let B1, B2, . . . be i.i.d. random variables with values in
JNK and P (Bk = r) = pr, and set

Mk(r) :=
∑k

l=1 1{Bl = r}. (6.2)

Let Pk denote the law of the (N + 1)-dimensional vector Mk = (Mk(0), . . . ,Mk(N)). The
parities of Mk are denoted by

M̂k :=
(
1{Mk(0) is odd}, . . . ,1{Mk(N) is odd}

)
∈ {0, 1}JNK.

Let P̂k denote the law of M̂k, and Eeven (resp. Eodd) the set of configurations π ∈ {0, 1}JNK

with an even (resp. odd) number of ones. A first observation is

P̂k(Eeven) =

{
1 if k is even

0 if k is odd.
(6.3)

To motivate the main result of this section, we prove that for k, l of the same parity,

k ≤ l =⇒ P̂l �M P̂k. (6.4)

Since �M is a transitive relation, it is enough to check this for l = k + 2. Indeed, in this
case we consider the matrix Π ∈ RJNK×JNK defined, for π, σ ∈ {0, 1}JNK, by

Π(π, σ) :=


∑N

r=0 p
2
r if π = σ

2prps if {t ∈ JNK : πt 6= σt} = {r, s}, with r 6= s

0 else.

Clearly Π is symmetric, and thus doubly stochastic. Moreover, we now have P̂l = P̂k · Π,
and (6.4) therefore follows from the implication (ii) =⇒ (i) in Theorem D. Note that,
using the construction (6.2), we can write

Π(π, σ) = P
(
M̂k+2 = σ

∣∣M̂k = π
)
.

The aim of this section is to extend (6.4) to mixtures of P̂k: If K is an integer-valued
random variable, we write P̂K for the corresponding mixture of P̂1, P̂2, . . . , defined by

P̂K(π) :=

∞∑
k=0

P (K = k)P̂k(π). (6.5)

We prove the following generalization of (6.4):

Theorem 6.1. Assume that K and L are integer-valued random variables with

P(K is even) = P(L is even) ∈ {0, 1}.

Furthermore, assume that K �st L. Then P̂L �M P̂K .
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Let us first mention that this does not follow from (6.4), because �M is not stable under
taking mixtures.

To see that some assumptions are necessary, it is enough to consider N = 0. Define
probability measures µ1 := δ{0} and µ2 := δ{1} on {0, 1}, and random variables K,L by
P (K = 1) = P (K = 2) = 1/2 and P (L = 2) = 1. Then µ2 �M µ1 and K �st L, but

µL = δ{1} 6�M 1
2(δ{0} + δ{1}) = µK .

We will prove Theorem 6.1 with the help of Theorem F, so we start by introducing a
partial order � on {0, 1}JNK. We set

(π0, . . . , πN ) � (σ0, . . . , σN ) ⇐⇒ ∑k
l=0 πl ≤

∑k
l=0 σl for all k = 0, . . . , N

We verify that P̂k satisfies the assumptions of Theorem F, for every k:

Lemma 6.2. Fix k ∈ N.

(i) P̂k is �-decreasing, i.e. π � σ implies

P̂k(π) ≥ P̂k(σ) (6.6)

(ii) Let A ⊆ {0, 1}JNK be �-decreasing, i.e. σ ∈ A and π � σ imply π ∈ A. Then

P̂k+2(A) ≤ P̂k(A). (6.7)

Both (6.6) and (6.7) are stable under mixtures, so the conclusion follows directly:

Proof of Theorem 6.1. We check that P̂K and P̂L satisfy the assumptions of Theorem F.
First, the definition (6.5) of P̂K and (6.6) directly imply that P̂K and P̂L are �-decreasing.
Moreover, if A is �-decreasing, then k 7→ P̂k(A) is a decreasing function. Therefore
K �st L implies

P̂L(A) ≤ P̂K(A)

by the implication (i) =⇒ (ii) in Theorem A.

It remains to show the lemma:

Proof of Lemma 6.2. In this proof we will interpret a configuration π ∈ {0, 1}JNK as a
subset of JNK. For S ⊆ JNK we write Mk(S) :=

∑
i∈SMk(i). We recall the following fact

about a binomial random variable Binn,p with n trials and success probability p:

P (Binn,p is even) =
1

2

(
1 + (1− 2p)n

)
. (6.8)

Part (i): Let π � σ ∈ {0, 1}JNK. For S, T ⊆ JNK disjoint, we consider the function

fST (r) := P
(
Mk(i) is even ∀i ∈ S,Mk(j) is odd ∀j ∈ T

∣∣Mk(S ∪ T ) = r
)
.

23



Whenever S or T is the empty set, we drop it from the notation and just write fT or fS .
We first consider two special cases:

Case 1: Assume that π ⊆ σ, and write σ \ π =: {a1, . . . , a2m}. Let

A := {τ : π ⊆ τ ⊆ σ},

and set Sj := {a2j−1, a2j}. Then

P̂k(π) = P̂k(A)Êk
[∏m

j=1 f
Sj (Mk(Sj))

∣∣A]
P̂k(σ) = P̂k(A)Êk

[∏m
i=1 fSj (Mk(Sj))

∣∣A].
Clearly fSj (m) is only positive if m is even, and in this case (6.8) implies

fSj (m) = P (Binm,p is even) ≥ P (Binm,p is odd) = fSj (m)

Here p = pa2j−1/(pa2j−1 + pa2j ). This implies P̂k(π) ≥ P̂k(σ).

Case 2: Assume |π| = |σ|, and that π and σ only differ in two coordinates. That is,
π = α ∪ {a} and σ = α ∪ {b} for some b < a and α ⊆ JNK. Let

B :=
{
τ ⊆ JNK : α ⊆ τ ⊆ α ∪ {a, b}

}
.

and observe

P̂k(π) = P̂k(B)Êk
[
f ba
(
Mk({a, b})

)∣∣B]
P̂k(σ) = P̂k(B)Êk

[
f ab
(
Mk({a, b})

)∣∣B] (6.9)

Observe that f ba (m) = f ab (m) = 0 if m is even, and if m is odd

f ba(m) = P (Binm,p is even) ≥ P (Binm,p is odd) = fab (m)

Here p = pb/(pa + pb), and we use that a > b and (6.1) imply p ≤ 1
2 . Together with (6.9)

we thus also get P̂k(π) ≥ P̂k(σ).

General case: Observe that for any π � σ, we can find π0 � · · · � πr such that π0 = π
and πr ⊆ σ, and with the property that πi+1 and πi only differ in two coordinates, as
defined above. See Figure 4 for an illustration.

Part (ii): We construct a coupling (πk, πk+2) with marginals P̂k and P̂k+2, and such that
almost surely

πk � πk+2. (6.10)

Let (B,A) be a random variable with

P
(
(B,A) = (b, a)

)
= 2papb1{b < a}+ p2

a1{a = b}
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and let M be an independent multinomial random variables with law Pk. On {A = B},
we define

πk = πk+2 =
(
1{M(0) is odd}, . . . ,1{M(N) is odd}

)
. (6.11)

On the other hand, on {B < A} we define all coordinates of πk and πk+2 except A and
B as in (6.11). Set R := M(A) + M(B) and p := pB

pA+pB
, and let U be an independent

uniform random variable. We define

πk(B) := 1{U ≤ P (BinR,p is odd)}
πk+2(B) := 1{U ≤ P (BinR,p is even)}

and, for l ∈ {k, k + 2},
πl(A) := R− πl(B) mod (2). (6.12)

We first check that (πk, πk+2) has the correct marginals. Note that we can sample a
realization of the multinomial distribution Mk+2 with k+ 2 trials by sampling M together
with two additional balls A and B as described above. If the extra balls end up in the
same bin, then the parity of all coordinates of M and Mk+2 will agree, and we can take
πk = πk+2. If they do not fall in the same bin, then adding balls A and B will flip the
parity of both M(A) and M(B). So conditioned on {M(A) + M(B) = R}, πk(B) and
πk+2(B) indeed have the correct laws, which then forces us to choose πk(A) and πk+2(A)
as in (6.12).

Next, we check that the coupling property (6.10) holds. Note that (6.1) and B < A imply
p = pB

pA+pB
≤ 1

2 . Together with (6.8), we have

P (BinR,p is odd) =
1

2
− 1

2
(1− 2p)R ≤ 1

2
≤ P (BinR,p is even).

This gives πk(B) ≤ πk+2(B), which implies πk � πk+2. More precisely, if R is even

(πk(B), πk(A)) = (1, 1) =⇒ (πk+2(B), πk+2(A)) = (1, 1)

so that πk � πk+2. If R is odd,

(πk(B), πk(A)) = (1, 0) =⇒ (πk+2(B), πk+2(A)) = (1, 0).

On the other hand, on {(πk(B), πk(A)) = (0, 1)} we can have either πk+2 = πk or
(πk+2(B), πk+2(A)) = (1, 0). In both cases πk � πk+2 holds.
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1
Figure 4: Consider configurations π := (0, 0, 0, 0, 0, 1, 1, 1) and σ := (1, 1, 0, 1, 0, 1, 0, 1),
which satisfy π � σ. We find intermediate configurations π = π0 � π1 � π2 � π3 � π4 = σ
such that each intermediate pair falls into case 1 (π0 → π1 → π2 → π3) or case 2 (π3 → π4).

6.2. Comparison to smaller state spaces

We show the survival probability is smaller (in the sense of the concave stochastic order)
if the environment is more degenerate (i.e., has less randomness). This result is the
continuous-time analog to Theorem 4.4, and therefore we only sketch the proof. A different
proof using analytic techniques can be found in [55, Lemma 2.2] (under slightly different
assumptions).

Assume that J = {J1, J2, . . . } is a partition of I. As in Section 4.5, we write PJ for
the law of an environment with the same marginals as P, and such that disasters happen
simultaneously at all sites in the same equivalence class. The environment in different
equivalence classes is independent.

Lemma 6.3. Let J and K be two partitions of I, and assume that K is finer than J . That
is, for every K ∈ K there exists J ∈ J such that K ⊆ J . Moreover, let f : (0,∞)→ R be
convex and A ⊆ Zd. Then

EK
[
f
(
P (τ(ω) ≥ t,X(t) ∈ A)

)]
≤ EJ

[
f
(
P (τ(ω) ≥ t,X(t) ∈ A)

)]
. (6.13)

Proof. Write J = {J1, J2, . . . } and K = {K0,K1,K2, . . . }. By considering a sequence of
intermediate partitions, we can assume J1 = K0 ∪K1 and Ji = Ki for all i ≥ 2. We write

Zκt,A := P κ(τ(ω) ≥ t,X(t) ∈ A).

We construct a coupling (ω, ω̂) with marginals PK and PJ , and such that almost surely

E
[
Zκt,A(ω̂)

∣∣σ(Zκt,A(ω))
]

= Zκt,A(ω). (6.14)
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1

Figure 5: Illustration for the construction in the case K0 = {a}, K1 = {b} and J1 = {a, b},
with disasters depicted as (black or white) circles. In the environment ω (upper picture)
disasters occur at either K0 or K1, while in ω(0, 0, 1, 1, 1, 0, 0, 1) (lower picture) the first 8
disasters are either duplicated or removed.

Let ω have law PK. Let T1 < T2 < · · · < TN denote the disaster times at K0 ∪ K1 and
D1, D2, . . . the location of the disasters. That is, we set Dj equal to 0 if the disaster at
time Tj occurs at K0, while Dj = 1 otherwise.

For (u1, . . . , uk) ∈ {0, 1}k, we write ω(u1, . . . , uk) for the environment where the disasters
corresponding to T1, . . . , Tk are either duplicated or removed, according to u1, . . . , uk.
More precisely, ω(u1, . . . , uk) contains a disaster at time Tj at K0 ∪K1 if Dj = uj , while
Dj 6= uj implies that there is no disaster at time Tj . See Figure 5 for an illustration.
Furthermore, we write ω(u1, . . . , uk) for the environment where, in addition, the disaster
at time Tk+1 is removed.

We will define ω̂ := ω(U1, U2, . . . , UN ) for some random choice of U1, . . . , UN . More pre-
cisely, given U1, . . . , Uk, we set Uk+1 := 0 with probability

α(ω,U1, . . . , Uk) :=
E[Zκt,A(ω(U1, . . . , Uk))1{X(Tk+1) ∈ K0}]

E[Zκt,A(ω(U1, . . . , Uk))1{X(Tk+1) ∈ K0 ∪K1}]

and Uk+1 := 1 otherwise. Note that in contrast to the discrete-time situation, the denom-
inator is almost surely positive. The same calculation as in (4.11) shows that

E[Zκt,A(ω(U1, . . . , Uk, Uk+1))|σ(ω,U1, . . . , Uk)] = Zκt,A(ω(U1, . . . , Uk)).

Now (6.14) follows the tower-property, and the conclusion follows from the implication
(ii) =⇒ (i) in Theorem C.
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6.3. Survival probability on Z/2

We estimate the survival probability on Z/2 = {0, 1}, using a variation of the argument
from [29, Lemma 2.4].

Lemma 6.4. Let I = {0, 1}, and P κ̄ the law of a simple random walk X on {0, 1} with
jump rate κ̄ > 0, started in 0.

(i) For every δ ∈ (0, 1), there exists c(κ̄, δ) such that, for i ∈ {0, 1},

E
[(
P κ̄(τ(ω) ≥ 1, X(1) = i)

)−δ] ≤ c(κ̄, δ). (6.15)

Moreover, supκ̄∈[κ̄0,κ̄1] c(κ̄, δ) <∞ for all 0 < κ̄0 < κ̄1 <∞.

(ii) E
[(
P κ̄(τ(ω) ≥ t)

)−1]
=∞ for every t > 0.

(iii) For every δ ∈ (0, 1),

sup
t∈[0,1]

E
[(
P κ̄(τ(ω) ≥ t,X(t) = 0)

)−δ]
<∞. (6.16)

Proof. Part (i): For ω ∈ Ω, let N := |ω ∩ ([0, 1] × I)| denote the number of disasters
until time 1, and observe that N has Poisson distribution with parameter 2. Let T1 <
· · · < TN denote the disaster times, and for convenience introduce T0 := 0 and TN+1 := 1.
The interarrival times are denoted by ∆0, . . . ,∆N , where ∆k := Tk+1 − Tk. Finally, let
D1, . . . , DN denote the sites of the disasters, and set D0 := 0 and DN+1 := i. The Markov
property for P κ̄ implies

P κ̄(τ(ω) ≥ 1, X(1) = i) =
∏N
k=0 P

κ̄
(
X(∆k) = Dk+1 −Dk mod 2

)
≥∏N

k=0 P
κ̄
(
X(∆k) = 1

)
≥ e−κ̄κ̄N+1∏N

k=0 ∆k

We have used that for simple random walk on I = {0, 1}, for any t ≥ 0,

P κ̄(X(t) = 0) ≥ 1
2 ≥ P κ̄(X(t) = 1) ≥ e−κ̄tκ̄t.

Note that, conditioned on {N = n}, (T1, . . . , Tn) has the same law as the order statistics
of n independent random variables, uniformly distributed on [0, 1]. Let

βn(δ) :=
1

n!
E
[ N∏
k=0

∆−δk

∣∣∣N = n
]

=

∫ 1

0
s−δ1

∫ 1

s1

s−δ2 · · ·
∫ 1

sn

s−δn (1− sn)−δdsn . . . ds2 ds1

=
Γ(1− δ)n+1

Γ((n+ 1)(1− δ)) .
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For the last equality, observe that βn(δ) is the normalizing constant in a Dirichlet distri-
bution with n+ 1 categories and parameters (1− δ, . . . , 1− δ), see [41, Definition 24.25].
Note in particular that βn(δ) decays superexponentially. Now we can estimate

E
[(
P κ̄(τ(ω) ≥ 1, X(1) = i)

)−δ]
≤ eκ̄δ

(
P(N = 0)κ̄−δ +

∑
n≥1

P(N = n)E
[ N∏
k=0

∆−δk

∣∣∣N = n
]
κ̄−(n+1)δ

)
≤ eδκ̄−2

(
κ̄−δ +

∑
n≥1

2−nκ̄−δ(n+1)βn(δ)
)

=: c(κ̄, δ).

The first factor is increasing in κ̄ while the second factor is decreasing, which shows that
c(κ̄, δ) is bounded over compact sets.

Part (iii): This follows by a modification of the previous argument. Let

Nt := |ω ∩ ([0, t]× I)|

and write ∆
(t)
0 , . . . ,∆

(t)
Nt

for the interarrival times in [0, t]. A substitution shows

E
[∏Nt

k=0

(
∆

(t)
k

)−δ∣∣∣Nt = n
]

= t(1−δ)n−δE
[∏N

k=0

(
∆

(1)
k

)−δ∣∣∣N1 = n
]
.

Moreover, recalling that P κ̄(τ(ω) ≥ t,X(t) = 0) ≥ 1/2 on {Nt = 0}, we get

E
[(
P κ̄(τ(ω) ≥ t,X(t) = 0)

)−δ]
≤ P(Nt = 0)2δ + eκ̄δ

∑
n≥1

P(Nt = n)E
[∏Nt

k=0

(
∆

(t)
k

)−δ∣∣∣Nt = n
]
κ̄−(n+1)δ

≤ e−2t
(

2δ +
∑
n≥1

2ntn+(1−δ)n−δκ̄−δ(n+1)βn(δ)
)
.

This expression is finite since βn(δ) decays superexponentially. Moreover, the exponent of
t is non-negative for n ≥ 1, which shows that the last line is bounded for t ∈ [0, 1].

Part (ii): On {T1 < t,D1 = 0},

P (τ(ω) ≥ t) ≤ P (X(T1) = 1) = e−κ̄T1
∞∑
k=0

(κ̄T1)2k+1

(2k + 1)!
= e−κ̄T1 sinh(κ̄T1).

Note that sinh(t) ≤ 2t for t ≤ t0. Since T1 is exponentially distributed, we get

E
[
P (τ(ω) ≥ t)−1

]
≥ 1

2
E
[
T−1

0 1{T1 < t ∧ t0, D1 = 0}
]

=∞.

Remark 6.5. The same proof shows that the non-integrability of P κ(τ(ω) ≥ t)−1 also
holds with state space I = Zd. This should be compared with Proposition 11.2 for the
continuous-space version of this model.
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6.4. The uniform moment bound

We define an equivalence relation ≡ on Zd by

(i1, . . . , id) ≡ (j1, . . . , jd) ⇐⇒ i1 = j1 mod 2.

Let J0 and J1 denote the two equivalence classes of ≡, with 0 ∈ J0 and e1 ∈ J1. We write
P≡ for the law of the degenerate environment corresponding to partition J = {J0, J1}, as
introduced in the beginning of Section 6.2.

Proof of Proposition 5.2. Observe that if ω has law P≡, then P κ/2(τ(ω) ≥ t) has the same
law as the survival probability of a simple random walk on Z/2 with jump rate κ/(2d).
Moreover, P κ/2(τ(ω) ≥ 1, X(1) ∈ Ji) has the same law as the quantity in (6.15), for
i ∈ {0, 1}, where κ̄ = κ/(2d). Now for i ∈ Zd,

E
[(
P κ(τ(ω) ≥ 1|X(1) = i)

)−δ]
≤ E≡

[(
P κ(τ(ω) ≥ 1|X(1) = i)

)−δ]
(6.17)

≤ E≡
[(
P κ/2(τ(ω) ≥ 1|X(1) ≡ i)

)−δ]
(6.18)

≤ c
(
κ/(2d), δ

)
. (6.19)

Indeed, after multiplying both sides by P κ(X(t) = i)−δ, we see that (6.17) is (6.13) with
f(x) = x−δ while (6.19) is (6.15). Finally, (6.18) will be proved in Lemma 6.6 below. The
boundedness of C(κ, δ) := c(κ/(2d), δ) over compact sets was shown in Lemma 6.4.

Lemma 6.6. For all i ∈ Zd and f : (0, 1]→ R convex

E≡
[
f
(
P κ(τ(ω) ≥ 1|X(1) = i)

)]
≤ E≡

[
f
(
P κ/2(τ(ω) ≥ 1|X(1) ≡ i)

)]
.

Proof. We treat the case i ≡ 0, since i ≡ e1 is identical. We write

ω ∩ ([0, 1]× {0, e1}) =
{

(T1, D1), . . . , (TN , DN )
}

where T1 < · · · < TN . Let F := σ(N,T1, . . . , TN ), and write PT1,...,TN≡ resp. ET1,...,TN≡ for the
conditional law resp. expectation with respect to F . Note that (D1, . . . , DN ) is uniformly
distributed on {0, e1}N under PT1,...,TN≡ . We define two configurations in {0, 1}JNK:

Π(ω) := (1D1≡0,1D2 6≡D1 , . . . ,1DN 6≡DN−1
,1DN≡i)

R(X) := (1X(T1)6≡0,1X(T2)6≡X(T1), . . . ,1X(TN )6≡X(TN−1),1X(1)6≡X(TN )).

Note that R(X)(i) = 1 if X switches sites in [Ti, Ti+1), for i ∈ JNK. Moreover, Π(ω)(i)
is equal to one if and only if {τ(ω) ≥ 1, X(1) ≡ i} requires X to switch sites in [Ti, Ti+1)
(using T0 := 0 and TN+1 := 1 for convenience). That is, if ω has law P≡, then

{τ(ω) ≥ 1, X(1) ≡ i} = {R(X) = Π(ω)}.
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Moreover, recalling the definition of Eeven from (6.3), we observe

P κ(R(X) ∈ Eeven|X(1) = i) = P κ/2(R(X) ∈ Eeven|X(1) ≡ i) = P(Π(ω) ∈ Eeven) = 1.

For the first two probabilities, this follows from i ≡ 0, and for Π(ω) this is a direct
consequence of the definition. Now, since Π(ω) is uniformly distributed on Eeven under
PT1,...,TN≡ , we can write, for any f := (0, 1]→ R,

ET1,...,TN≡
[
f(P κ(τ(ω) ≥ 1|X(1) = i))

]
= 2−N

∑
π∈Eeven

f(p(π))

ET1,...,TN≡
[
f(P κ/2(τ(ω) ≥ 1|X(1) ≡ i))

]
= 2−N

∑
π∈Eeven

f(q(π))
(6.20)

where p and q are probability measures on Eeven satisfying, for π ∈ {0, 1}JNK,

p(π0, . . . , πN ) := P κ
(
R(X) = (π0, . . . , πN )

∣∣X(1) = i
)

q(π0, . . . , πN ) := P κ/2
(
R(X) = (π0, . . . , πN )

∣∣X(1) ≡ i
)
.

Let #X denote the number of jumps of X in [0, 1], i.e.

#X :=
∣∣{t ∈ [0, 1] : X(t) 6≡ X(t−)}

∣∣,
and define

P̂k(π0, . . . , πN ) := P
(
R(X) = (π0, . . . , πN )|#X = k

)
.

We observe that this definition agrees with the definition from Section 6.1: Indeed, condi-
tioned on #X = 2k, each jump occurs in [Tl, Tl+1) with probability Tl+1−Tl, independently
of the other jumps, and the process switches sites in [Tl, Tl+1) if and only if there is an
odd number of jumps in [Tl, Tl+1).

Moreover, observe that p and q are mixtures of P̂k, as defined in (6.5). More precisely, let
K and L be integer-valued random variables with

P (K = 2k) := P κ/2(#X = 2k|X(1) ≡ i)
P (L = 2k) := P κ(#X = 2k|X(1) = i),

(6.21)

and note that p = P̂K and q = P̂L. In Lemma 6.7 below we will prove K �st L, and thus
the conclusion follows from (6.20) and Theorem 6.1.

Lemma 6.7. Let K and L be as in (6.21). Then K �st L

Proof. It is easier to show K �lr L, which by Theorem B implies K �st L. We have to
check that for k, l even with |i1| ≤ k ≤ l,

P κ(#X = k|X(1) = i)P κ/2(#X = l|X(1) ≡ i)
≤ P κ(#X = l|X(1) = i)P κ/2(#X = k|X(1) ≡ i)
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We apply the definition of conditional probability and cancel the terms that appear on
both sides, noting also that P κ/2(X(1) ≡ i|#X = l) = 1. Then we can rewrite the
equation as

P (Zk = i1)

P (Zl = i1)
≤ P

(
Poi(κd ) = l

)
P
(

Poi( κ2d) = k
)

P
(

Poi(κd ) = k
)
P
(

Poi( κ2d) = l
) = 2l−k.

Here (Zt)t∈N is a discrete time simple random walk on Z, and we write Poi(λ) for a
Poissonian random variable with parameter λ. But this inequality holds, since by the
Markov property

P (Zl = i1) ≥ P (Zk = i1)P (Zl−k = 0) ≥ P (Zk = i1)2−(l−k).

7. Proof of the main results

The ideas up to this point have been specific to the random walk among disasters discussed
in this part. We had to developed careful estimates to take care of the strong degeneracy
caused by considering a disastrous environment, while at other times properties of the
model have simplified the analysis – for example, we have often used without comment
that t 7→ logP κ(τ(ω) ≥ t) is non-positive and decreasing.

We will now apply these estimates to prove the main results from Section 5.4. For the most
part, the techniques in this section are variations of well-known ideas from the literature on
random polymers and related models. To emphasize the general nature of the arguments,
and to make the notation more concise, we will often write

Zκt (ω) := P κ(τ(ω) ≥ t)
Zκt,i(ω) := P κ(τ(ω) ≥ t,X(t) = i).

(7.1)

7.1. The concentration inequality

We follow the argument from [18, Proposition 3.2.1].

Proof of Proposition 5.3. We will only prove the first statement, since the proof of the
concentration inequality for logZκt is almost identical. Let Ft = σ(ω ∩ [0, t] × Zd), and
note that

logZκt,i(ω)− E[logZκt,i(ω)] =
∑t

s=1 Vs,

where Vs := E[logZκt,i(ω)|Fs] − E[logZκt,i(ω)|Fs−1]. For T ⊆ R+, we define a truncated
environment ωT by

ωT := ω ∩ (T × Zd).
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That is, ω[s−1,s)c agrees with the untruncated environment ω, except for [s − 1, s) × Zd,
where ω[s−1,s)c does not have any disasters. Observe that

E[logZκt,i(ω[s−1,s)c)|Fs−1] = E[logZκt,i(ω[s−1,s)c)|Fs]
and therefore

Vs = E
[

log
Zκt,i(ω)

Zκt,i(ω[s−1,s)c)

∣∣∣Fs]− E
[

log
Zκt,i(ω)

Zκt,i(ω[s−1,s)c)

∣∣∣Fs−1

]
.

Note that both expectations are non-positive. We compute, using Jensen’s inequality,

E
[
e

1
2
Vs
∣∣Fs−1

]
≤ E

[
E
[( Zκt,i(ω)

Zκt,i(ω[s−1,s)c)

)−1/2∣∣∣Fs−1

]
Fs−1

]
= E

[( Zκt,i(ω)

Zκt,i(ω[s−1,s)c)

)−1/2∣∣∣Fs−1

]
,

and similarly,

E
[
e−

1
2
Vs
∣∣Fs−1

]
≤ E

[
E
[( Zκt,i(ω)

Zκt,i(ω|[s−1,s)c)

)−1/2∣∣∣Fs]Fs−1

]
= E

[( Zκt,i(ω)

Zκt,i(ω[s−1,s)c)

)−1/2∣∣∣Fs−1

]
.

Now observe that we can write

Zκt,i(ω)

Zκt,i
(
ω[s−1,s)c)

= P κ(τ(ω) ≥ t
∣∣τ(ω[s−1,s)c) ≥ t,X(t) = i

)
=
∑
j,k∈Zd

νj,k(ω)αj,k(ω)

where

νj,k(ω) := P κ
(
X(s− 1) = j,X(s) = k

∣∣τ(ω[s−1,s)c) ≥ t,X(t) = i
)

αj,k(ω) := P κ
(
τ(ω) ≥ t

∣∣τ(ω[s−1,s)c) ≥ t,X(s− 1) = j,X(s) = k
)
.

Clearly

αj,k(ω)
d
=P κ(τ(ω) ≥ 1|X(1) = k − j),

so that we can apply the uniform moment bound from Proposition 5.2. More precisely,
let F∗ := σ(ω[s−1,s)c) ⊇ Fs−1, and observe that νj,k(ω) is F∗-measurable while αj,k(ω) is
independent of F∗, for any j, k. Then Proposition 5.2 shows that, almost surely,

E
[( Zκt,i(ω)

Zκt,i(ω[s−1,s)c)

)−1/2∣∣∣F∗] ≤∑
j,k

νj,k(ω)E
[
αj,k(ω)−1/2

]
≤ sup

j,k
E
[
αj,k(ω)−1/2

]
≤ C(κ, 1/2).

The first inequality follows from Jensen’s inequality. The tower property then shows that

E
[
e

1
2
|Vt|∣∣Fk−1

]
≤ C(κ, 1/2)

almost surely, and the conclusion follows from Theorem I.
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Remark 7.1. Let us quickly sketch the necessary changes to get rid of the assumption
t ∈ N. Writing

At(ω) :=
(
Zκbtc,i(ω)

)−1
Zκt,i(ω)

we observe{
| logZκt,i(ω)− E[logZκt,i]| > 2ut

}
⊆
{
| logZκbtc,i(ω)− E[logZκbtc,i]| > ut

}
∪
{
| logAt − E[logAt]| > ut

}
.

(7.2)

Moreover, note that

At ≥ P κ
(
τ(ω) ≥ t,X(t) = i

∣∣τ(ω) ≥ btc, X(btc) = i
) d

=Zκt−btc,0

Thus, to bound the probability of the second event in (7.2), it is enough to observe that
there exist C > 0 such that, for all t > 0,

E[logAt] ≥ −2 logE
[
A
−1/2
t

]
≥ −2 logE

[
(Zκt−btc,0)−1/2

]
> −C.

We have used Jensen’s inequality and (6.16).

7.2. Continuity of the free energy

The continuity of κ 7→ p(κ) follows by adapting an argument of [58] for first-passage
percolation. We start with the following Lemma:

Lemma 7.2. There exist t0 and C0 such that, for all κ ∈ [κ0, κ1] and t ≥ t0,

E[logZκ2t] ≤ 2E[logZκt ] + C0t
1/2+ε. (7.3)

Proof. First note that for all t, κ > 0

E[logZκt (ω)] ≥ E[logP κ(τ(ω) ≥ dte)]
≥ E

[
log
∏dte
k=1 P

κ
(
τ(θk−1,0ω) ≥ 1, X(1) = 0

)]
≥ −2dte logE

[(
P κ(τ(ω) ≥ 1, X(1) = 0)

)−1/2 ]
≥ −2dte logC(κ, 1/2).

(7.4)

Here θt,jω is the shifted environment, with (s, k) ∈ θt,jω if and only if (s + t, j + k) ∈ ω.
In the second line we used Jensen’s inequality and the third inequality follows from the
uniform moment bound 5.4. Thus, using standard large deviation estimates, we can choose
γ large enough that

sup
κ∈[κ0,κ1]

lim sup
t→∞

1

t
logP κ(‖X(t)‖ ≥ γt) ≤ −2 sup

κ∈[κ0,κ1]
logC(κ, 1/2)− 1. (7.5)
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We have also used that C(κ, 1/2) is bounded over compact intervals. Now we have

Zκ2t(ω) ≤
∑
‖i‖≤γt

Zκt,i(ω)Zκt (θt,iω) + P κ(‖X(t)‖ ≥ γt).

We consider events

B0 :=
{
Zκt (θt,0ω) = max

{
Zκt (θt,iω) : ‖i‖ ≤ tγ

}}
,

B1 :=
{
| logZκt (ω)− E[logZκt ]| ≤ t1/2+ε

}
,

B2 :=
{
| logZκt (θt,0ω)− E[logZκt ]| ≤ t1/2+ε

}
,

B3 :=
{
| logZκ2t(ω)− E[logZκ2t]| ≤ (2t)1/2+ε

}
.

Since {Zκt (θt,iω) : i ∈ Zd} is stationary,

P(B0) ≥ (1 + 2γt)−d.

On the other hand, by Proposition 5.3, for all

t ≥ t′0 :=
(

2 sup
κ∈[κ0,κ1]

C(κ, 1/2)
)− 1

1/2−ε

we get

P(B1 ∩ B2 ∩ B3) ≥ 1− 6 exp
(
− t2ε

4(1 +
√

2)2 supκ∈[κ0,κ1]C(κ, 1/2)

)
.

We thus find t′′0 ≥ t′0 such that B := B0∩B1∩B2∩B4 has positive probability, for all t ≥ t′′0
and all κ ∈ [κ0, κ1]. In particular, B 6= ∅ and we can choose ω ∈ B. From ω ∈ B0,

Zκ2t(ω) ≤
∑
‖i‖≤tγ

Zκt,i(ω)Zκt (θt,iω) + P κ(‖X(t)‖ ≥ γt)

≤ Zκt (ω)Zκt (θ0,tω) + P κ(‖X(t)‖ ≥ γt).

Moreover, since ω ∈ B1 ∩B2 ∩B3, we get can replace the logarithm of the probabilities by
their expectation with the error terms, which gives

E[logZκ2t]− (2t)1/2+ε ≤ 2E[logZκt ] + 2t1/2+ε + log
(

1 +
P κ(‖X(t)‖ ≥ γt)
e2E[logZκt ]−2t1/2+ε

)
.

By (7.5) and (7.4), the second term in the logarithm converges to zero exponentially fast,
uniformly in κ.

Proof of Proposition 5.5. Part (i): First note that the upper bound follows directly from
the definition

p(κ) := sup
t>0

1

t
E[logZκt ]
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in the superadditive lemma. For the lower bound, we apply (7.3) repeatedly, which shows
that for any k ∈ N,

E[logZκt ] ≥ 1

2
E
[

logZκ2t
]
− C0t

1/2+ε

≥ 1

4
E
[

logZκ4t
]
− C0t

1/2+ε2−2(1/2−ε) − C0t
1/2+ε

≥ · · ·

≥ 1

2k
E
[

logZκ2kt
]
− C0t

1/2+ε∑k−1
i=0 2−i(1/2−ε)

Since ε ∈ (0, 1/2), the sum in the last line converges for k →∞, and we get

E[logZκt ]

t
+ Ct−1/2+ε ≥ lim

k→∞

E[logZκ
2kt

]

2kt
= p(κ).

Part (ii): Take a sequence (κn)n∈N with limn→∞ κn = κ∞. Using part (i), we find C > 0
such that for n ∈ N ∪ {∞} and t ≥ t0,

p(κn)− Ct−1/4 ≤ 1

t
E[logZκnt ] ≤ p(κn).

Now fix δ > 0, and choose t ≥ t0 large enough for Ct−1/4 < δ. Then, for all n ∈ N,

|p(κn)− p(κ∞)| ≤ 2δ +
1

t

∣∣E[logZκnt ]− E[logZκ∞t ]
∣∣.

The second term now converges to zero for n→∞. To see this, note that almost surely

lim
n→∞

P κn(τ(ω) ≥ t) = P κ∞(τ(ω) ≥ t)

Moreover, Lemmas 6.4 and 6.3 imply that (logZκnt )n∈N∪∞ is bounded in L2. In particular,
the family is uniformly integrable and we can interchange expectation and limit.

7.3. Existence of the point-to-point free energy

To show the existence of p(κ, i), we will show that

t 7→ E[logZκt,btic(ω)]

is almost-superadditive. The following Lemma is needed to take care of a small discretiza-
tion error that appears because in general b(s+ t)ic 6= bsic+ btic.

Lemma 7.3. For every i ∈ Rd, there exists C, t0 > 0 such that for all t ≥ t0 and all
j ∈ Zd with ‖j‖∞ ≤ 1,

−C(1 + log+ t) ≤ E[logZκt,btic]− E[logZκt,btic+j ] ≤ C(1 + log+ t). (7.6)
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Proof. It is enough to prove the claim for j = e1. Observe that (see [39, p. 359]) there
exists C > 0 such that for all ‖k‖ ≤ t,

P κ(X(1) = k)

P κ(X(1) = k + e1)
∈
[ 1

Ct
,Ct

]
.

This implies that, for all ‖k‖ ≤ γt,
P κ
(
X(t) = btic

∣∣X(t− 1) = k
)

P κ
(
X(t) = btic+ e1

∣∣X(t− 1) = k
) ∈ [ 1

Ctγ
,Ctγ

]
.

Moreover, a similar calculation as in (7.4) shows that there exists c > 0 such that, for
k ∈ {0, e1},

lim inf
t→∞

1

t
E
[

logZκt,btic+k
]
≥ −c.

Let γ be large enough that

lim sup
t→∞

P κ(‖X(t)‖ ≥ γt) ≤ −c− 1. (7.7)

Finally, writing

At(ω) := (Zκt,btic)
−1P κ(τ(ω) ≥ t− 1, X(t) = btic),

we have

Zκt,bticAt ≥ P κ
(
τ(ω) ≥ t− 1, ‖X(t− 1)‖ ≤ γ(t− 1), X(t) = btic

)
=

∑
‖k‖≤γ(t−1)

Zκt−1,kP
κ
(
X(t) = btic

∣∣X(t− 1) = k
)

≥ (Ctγ)−1
∑

‖k‖≤γ(t−1)

Zκt−1,kP
κ
(
X(t) = btic+ e1

∣∣X(t− 1) = k
)

= (Ctγ)−1P κ
(
τ(ω) ≥ t− 1, ‖X(t− 1)‖ ≤ γ(t− 1), X(t) = btic+ e1

)
≥ (Ctγ)−1

(
Zκt,btic+e1 − P

κ
(
‖X(t− 1)‖ > γ(t− 1)

))
.

Taking logarithm and expectation gives

E[logZκt,btic] ≥ E[logZκt,btic+e1 ]− E[logAt]− C(1 + log+ t)

+ log
(

1− P κ(‖X(t− 1)‖ > γ(t− 1))

E[logZκt,btic+e1 ]

)
Our choice of γ in (7.7) ensures that the second term in the logarithm converges to zero
exponentially fast. Moreover, the same calculation as in the proof of Proposition 5.3 shows
that, uniformly in t,

E[logAt] = −E
[

logP κ
(
τ(ω) ≥ t

∣∣τ(ω) ≥ t− 1, X(t) = btic
)]
≤ C.

This shows the lower bound in (7.6). The argument for the upper bound is identical.
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Proof of Proposition 5.6. Part (i): Fix i ∈ Rd, and recall that θt,kω denotes the environ-
ment shifted in space-time by (t, k). From the Markov property of P κ,

Zκs+t,b(s+t)ic(ω) ≥ Zκs,bsic(ω)Zκt,b(s+t)ic−bsic(θ
s,bsicω)

Noting that ‖bsi+ tic−bsic−btic
∥∥
∞ ≤ 1, we can thus apply the perturbation result from

Lemma 7.3. We obtain that for all t ≥ t0,

E[logZκs+t,b(s+t)ic(ω)] ≥ E[logZκs,bsic(ω)] + E[logZκt,btic(ω)]− bs+t,

where bt := C(1 + log+ t). Therefore t 7→ E[logZκt,btic] is almost-superadditive in the sense

of (3.6). The claim follows by Theorem H.

To show that (1
t logZκt,btic)t∈N converges to p(κ, i) almost surely, note that, by Proposition

11.4 and the Borel–Cantelli lemma, we find t0(ω) ∈ N such that for all t ∈ N with t ≥ t0,∣∣ logZκt,btic − E[logZκt,btic]
∣∣ ≤ t3/4.

Finally, we show that the almost sure convergence cannot hold without the restriction to
the integers. For simplicity, we only discuss the case i = 0. Let T1 < T2 < . . . denote the
disaster times at the origin, and define tn := Tn + e−n

2
. Observe that

{τ(ω) ≥ tn, X(tn) = 0} ⊆ {X(Tn) 6= X(tn)},

and since P κ(X(t) 6= 0) ∼ κt for t ↓ 0, we have

Zκtn,0 ≤ P κ(X(tn) 6= X(Tn)) ≤ Cκe−n2
.

This shows lim inft→∞ logZκt,0 ≤ lim infn→∞−n2

tn
= −∞ almost surely. For the last equal-

ity, we use that tn
n → 1 almost surely by the law of large numbers.

Part (ii): Fix i, j ∈ Rd. Similarly to before, the Markov property for P κ gives

Zκ2t,bti+tjc(ω) ≥ Zt,btic(ω)Zκt,bti+tjc−btic(θ
t,bticω).

Applying again the perturbation result from Lemma 7.3, we thus get

E[logZ2t,bti+tjc] ≥ E[logZt,btic] + E[logZt,btjc]− C(1 + log+ t).

Dividing by 2t and taking the limit t→∞ then shows

p(κ, i+ j) ≥ 1

2
p(κ, i) +

1

2
p(κ, j).

Part (iii): From the definition it is clear that p(κ, 0) ≤ p(κ). For the proof of

lim inf
t→∞

1

t
E[logZκt,0] ≥ p(κ) (7.8)
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we follow the argument of [8, Proposition 2.4]. Note that, for i ∈ Zd and t ∈ N,

Zκ2t,0(ω) ≥ Zκt,i(ω)Zκt,−i(θ
t,iω)

and therefore
E[logZκ2t,0] ≥ 2E[logZκt,i]. (7.9)

Now fix γ > 0 large enough that

p(κ) = lim
t→∞

1

t
E
[

logPω(τ ≥ t, ‖X(t)‖ ≤ γt)
]
. (7.10)

Take now ε := t−3/4 and apply the fractional moment method:

E
[

logP (τ(ω) ≥ t, ‖X(t)‖ ≤ γt)
]

=
1

ε
E
[

log
(
P (τ(ω) ≥ t, ‖X(t)‖ ≤ γt)ε

)]
≤ 1

ε
logE

[
P (τ(ω) ≥ t, ‖X(t)‖ ≤ γt)ε

]
=

1

ε
logE

[( ∑
‖i‖≤γt

Zκt,i(ω)
)ε]

≤ 1

ε
logE

[ ∑
‖i‖≤γt

(
Zκt,i(ω)

)ε]
=

1

ε
log

∑
‖i‖≤γt

E
[
eε(logZκt,i(ω)−E[logZκt,i])

]
eεE[logZκt,i],

(7.11)

where the first inequality is Jensen’s inequality, and the second inequality comes from
the general estimate

(∑N
j=1 aj

)ε ≤ ∑N
j=1 a

ε
j for non-negative a1, . . . , aN and 0 < ε < 1.

Moreover, using the concentration inequality (Proposition 5.3), we find c, t0 > 0 such that
for all t ≥ t0

E
[
eε(logZκt,i(ω)−E[logZκt,i])

]
≤ 1 +

∫ ∞
1

P
(∣∣ logZκt,i(ω)− E[logZκt,i]

∣∣ ≥ t3/4 log r
)

dr ≤ c.

Both c and t0 depend only on the constants in (5.5), and are therefore uniform in i ∈ Zd.
Combining this with (7.11) and (7.9) gives

E[logPω(τ ≥ t, ‖X(t)‖ ≤ γt)] ≤ 1

ε
log c+

1

ε
log

∑
‖i‖≤γt

eεE[logZκt,i]

≤ 1

ε
log c+

1

ε
log(1 + 2γt)d +

1

2
E[logZκ2t,0].

Dividing by t and taking limits, taking into account (7.10), gives (7.8).
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Part III.

Branching random walk among
space-time disasters

8. Introduction

8.1. Motivation

We consider a branching random walk in Zd in an environment consisting of random space-
time disasters. That is, fix a realization ω ⊆ R+ × Zd of the environment from Part II.
Given ω, we consider a process Z = (Z(t))t≥0 that evolves as follows:

• Initially one particle occupies the origin.
• Each particle independently moves as a simple random walk with jump rate κ > 0.
• Each particle independently branches at rate λ > 0, i.e., at rate λ > 0 the particle

dies and is replaced by a random number of descendants at the same site. The
number of descendants is sampled according to some fixed offspring distribution
q ∈M1(N).
• A disaster (t, i) ∈ ω kills all particles that occupy site i at time t.

The model thus has parameters κ (jump rate), λ (branching rate) and q (offspring dis-
tribution). An easy calculation (see Lemma 9.1) shows that the model is related to the
survival probability from Part II by the following relation:

Eω[|Z(t)|] = eλt(m−1)P κ(τ(ω) ≥ t). (8.1)

Here |Z(t)| denotes the total number of particles and m :=
∑

k∈N kq(k) is the expected
number of descendants. From the previous section, we already know that P κ(τ(ω) ≥ t)
has (deterministic) exponential decay rate p(κ). In the following we will show that this is
enough to characterize the regime of global survival as a function of the parameters. More
precisely, we will show that

Z survives with pos. prob. ⇐⇒ Eω[|Z(t)|]→∞ exponentially fast.

⇐⇒ λ(m− 1) + p(κ) > 0.
(8.2)

The first equivalence is known for a wide class of branching processes, see for example [1,
Theorem A.2] for the corresponding result for Galton-Watson processes. Note that the
previous statement does not specify with respect to which measure the survival probability
is positive. There are two natural candidates:

• Write Pκ,λ,q for the joint law of environment ω and branching process Z. We have
annealed survival if Pκ,λ,q(Z survives) > 0.

• Write P κ,λ,κω for the law of Z in a fixed realization of the environment. We have
quenched survival if P κ,λ,qω (Z survives) > 0 for almost all ω.
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Clearly quenched survival implies annealed survival. It turns out that the two concepts are
equivalent and, in particular, we find a zero-one law for the event {P κ,λ,qω (Z survives) > 0}.

8.2. Definition of the model

We will prove the main result under the assumptions

m :=
∑∞

k=0 kq({k}) <∞ and q(1) < 1. (8.3)

If fact, our result also applies in the case m =∞, see Remark 8.5.

A particle v is a finite sequence of integers, i.e. an element of N∗ :=
⋃∞
k=0 Nk. We write ∅

for the element of length zero, called the root particle. Proceeding recursively, we interpret
(v1, . . . , vk) as the vk-th child of (v1, . . . , vk−1). The height |v| of a particle v = (v1, . . . , vk)
is the length of this sequence, |v| := k.

We associate to every particle v ∈ N∗ an exponential clock of rate λ, and whenever a clock
rings the particle is removed and replaced by its children, where the number of children is
distributed according to q. The clocks and the numbers of descendants are independent.
We will write V(t) ⊆ N∗ for the set of particles that are alive at time t, starting with
V(0) = {∅}.
Next, we extend this by associating to each particle v ∈ V(t) a position X(t, v) in Zd.
Independently of everything else, each particle performs simple random walk in continuous
time with jump rate κ, starting at its birth time until the time it is replaced by its children.
The root initially starts at the origin, and all other particles start at the position of their
parent at the time of birth.

For v ∈ V(t), it will be convenient to extend X(t, v) to a function X(·, v) : [0, t] → Zd,
where for s ∈ [0, t] we set X(s, v) equal to the position occupied at time s by the unique
ancestor of v in V(s). Given ω ∈ Ω and a realization V = (V(t))t≥0 of the branching
random walk, we define

Z(t) :=
{
v ∈ V(t) : (s,X(s, v)) /∈ ω for all s ∈ [0, t)

}
⊆ V(t).

That is, Z(t) contains all particles v such that no disaster occurred along the trajectory
of v before time t. Note that, since we did not assume q(0) = 0, it is possible that a
particle has zero children, and the process may die out even without the influence of the
environment.

We write P for the law of the environment, and P κ,λ,q for the law of the branching random
walk (V, X). We write P κ,λ,qω for the quenched law of Z given ω, and the annealed law
is obtained by integrating over the environment

Pκ,λ,q(Z ∈ ·) :=

∫
Ω
P κ,λ,qω (Z ∈ ·)P(dω).
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8.3. Related literature

After our paper [30] had been published, we became aware that a related model has also
been studied in [35, 36]. We refer to Section 8.6 for an in-depth discussion on those results.

Branching random walks in time-dependent environments have been studied extensively
in the context of the parabolic Anderson model, see [33, 27]. However, most papers
consider the solution to an SDE with random potential which describes the behavior
of the expectation of the number of particles in a branching random walk in random
environment, and not the actual particle system (a notable exception where the two models
are compared, is [53]).

In addition, most papers have non-degeneracy conditions on the killing rates which are
violated by our environment. In particular, we point out that our model differs from the
branching random walks considered in [18] not only because time is continuous instead of
discrete, but also because disasters in the environment were excluded, see [18, Formula
(1.7)]. The possibility of killing many particles at the same site at once makes our model
interesting, but also creates some technical difficulties.

For a survey on the parabolic Anderson model and random walks in random potential, we
refer to [42].

8.4. Further notation

Here we collect notation that will be useful in the proof of Theorem 8.1 below.

We first extend the definition of Z to allow for more than one initial particle. For η =
(η(i))i∈Zd , let Zη denote the process as defined before, started with η(i) particles at site i,
all of which evolve independently but in the same environment. If A ⊆ Rd and R ≥ 0 is an
integer, we record the special configuration (A,R) where each site i ∈ A ∩ Zd is occupied
by R particles, that is for i ∈ Zd

(A,R)(i) := R1A∩Zd(i). (8.4)

We use ZA instead of Z(A,1) for the process started from exactly one particle on every site
in A ∩ Zd. For t > 0 and a configuration η, we use

Z{t}×η =
(
Z{t}×η(s)

)
s≥t (8.5)

to denote the process started at time t with η(i) particles occupying each site i, and we

use Z{t}×A if η is equal to (A, 1). If η ∈ RZd
+ , we write

{η ≤ Z(t)} :=
{
η(i) ≤

∣∣Z(t) ∩ {i}
∣∣ for all i ∈ Zd

}
. (8.6)

for the event that every site i is occupied by at least η(i) particles at time t. If η = 1C

for some C ⊆ Zd, this is simply written as

{C ⊆ Z(t)} := {(C, 1) ≤ Z(t)} =
{

for all i ∈ C there is v ∈ Z(t) with X(t, v) = i
}
.
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Moreover, for B ⊆ Rd, we use (ZB(t))t≥0 for the truncated process consisting of all
particles that have never left B, i.e.

ZB(t) :=
{
v ∈ Z(t) : X(s, v) ∈ B for all s ∈ [0, t]

}
. (8.7)

Finally, for t ∈ R+ and A ⊆ Rd, we use

Z(t) ∩A := {v ∈ Z(t) : X(t, v) ∈ A}. (8.8)

for the set of particles of Z occupying a site i ∈ A at time t.

8.5. The main result

We consider two types of survival:

{Z survives} := {|Z(t)| ≥ 1 for infinitely large t}
{Z survives locally} := {|Z(t) ∩ {0}| ≥ 1 for infinitely large t}

The following is the main result, which confirms the intuition from (8.2).

Theorem 8.1. If λ(m− 1) + p(κ) > 0, then almost surely P κ,λ,qω (Z survives locally) > 0.
On the other hand, if λ(m− 1) + p(κ) ≤ 0, then Pκ,λ,q(Z survives) = 0.

In particular, we have the following consequences:

Corollary 8.2. (i) Annealed and quenched survival are equivalent, i.e.

P
(
P κ,λ,qω (Z survives) > 0

)
= 1 ⇐⇒ Pκ,λ,q(Z survives) > 0.

In particular, P(P κ,λ,qω (Z survives) > 0) ∈ {0, 1}. Moreover, the same statements
hold for local survival.

(ii) Global and local survival are equivalent, i.e.

Pκ,λ,q(Z survives) > 0 ⇐⇒ Pκ,λ,q(Z survives locally) > 0.

In analogy to classical branching processes, we define three regimes:

Definition 8.3. We say that Z is

subcritical λ(m− 1) + p(κ) < 0,
critical if λ(m− 1) + p(κ) = 0,

supercritical λ(m− 1) + p(κ) > 0.

We point out that our proof shows that the number of particles grows exponentially on
the event of survival:

Corollary 8.4. Assume λ(m − 1) + p(κ) > 0. Then for every c ∈ (0, λ(m − 1) + p(κ)),
almost surely

{Z survives} =
{

lim inf
t→∞

|Z(t)|e−ct =∞
}
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The proof can be found at the end of Section 9.

Remark 8.5. Note that, by an obvious truncation argument, the assumption m <∞ can
be dropped: if m =∞, then our result implies that P κ,λ,qω (Z survives) > 0 almost surely.

In Section 9 we prove relation (8.1) and the non-critical cases of Theorem 8.1. The sub-
critical case follows immediately from the first moment method. For the supercritical case,
we compare Z to an embedded Galton-Watson process with i.i.d. offspring distributions.
This section is relatively short, but builds heavily on the preparation from Part II, in
particular Proposition 5.6. The proof in the critical case in Section 10 will take up the
remainder of our discussion. We will explain its strategy in Section 10.1.

8.6. The critical regime with infinitely many particles

In this section, we discuss the relation between Theorem 8.1 and the results from [35, 36].
The model discussed in those works is related to the annealed version of our process.

We start by presenting their notation: Consider transition probabilities (p(i, j))i,j∈Zn and
(q(i, j))i,j∈Zn , rates b, d and m (corresponding to the rate of birth, death and movement)
as well as a parameter p ∈ (0, 1) measuring cooperation between individuals. All results
are in dimensions n ≥ 3 and under the assumption b = d. Let (ηt)t≥0 denote a Markov
process in NZn with the following dynamics:

• At rate m a particle at site i jumps according to p(i, ·).
• At rate b a particle at site i gives birth to one descendant, whose position has law
q(i, ·). The parent particle is not removed from the system.
• Each particle dies at rate (1− p)d.
• At rate pd all particles occupying the same site are killed. This corresponds to the

disasters from our model.

All of these transitions happen independently. Up to some restrictions, we can translate
this notation to our model:

• We have assumed that disasters occur at rate 1, so we compare our model to the
process (η̃t)t≥0 obtained from η by re-scaling time, i.e. η̃t := ηt/dp.
• The jump rate m/dp in the re-scaled model corresponds to κ. We restrict to simple

random walk, i.e. we assume that p(i, ·) is the uniform distribution over the neighbors
of i.
• We only allow descendants at the same site as their parents, so we assume that q(i, ·)

is the Dirac-distribution in i.
• Each individual dies at rate (1 − p)/p, and has one descendant at rate b/dp (in

addition to itself). In our model, this corresponds to λ = ((1 − p)d + b)/dp and
offspring distribution q with q({0}) = 1− q({2}) = (1− p)d/((1− p)d+ b).

Inserting those parameters in the expression from Theorem 8.1 yields

p
(m
dp

)
+ 1 +

b− d
dp

.
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Since p(κ) ≤ −1 and p = q by assumption, the model is either critical or subcritical (in
the sense of Definition 8.3). In particular, Theorem 8.1 shows that every finite initial
configuration dies out eventually. In [35, 36], the initial configuration η0 is sampled with
distribution µ ∈ M1(NZn), which is assumed to be ergodic and translation-invariant.
That is, in contrast to our model there are always infinitely many occupied sites, and the
question is whether the system dies out locally:

Theorem L. There exists 0 < p∗ < 1 such that

(i) For p ∈ (p∗, 1) there is local extinction, i.e. Pp(ηt ∈ ·) d−→ δ0, the Dirac-measure on
0 ∈ NZn.

(ii) For p ∈ (0, p∗) the system is persistent, i.e. there exists a non-degenerate invariant

measure ν ∈M1(NZn) such that Pp(ηt ∈ ·) d−→ ν.

From the monotonicity of p 7→ p(m/dp) (see Corollary 16.6), we find that there exists p̂
such that the model is critical for p ≤ p̂, and subcritical for p > p̂. The fact that criticality
holds for p = p̂ follows from the continuity of p 7→ p(m/dp) (see Proposition 5.5).

It seems reasonable to expect p̂ = p∗, but this question remains open. Note, however,
that local extinction is also conjectured at p = p∗, see [37]. This would imply that in the
critical regime 0 < p ≤ p̂ both persistence (for 0 < p < p̂ ) and local extinction (for p = p̂ )
can occur.

9. The non-critical cases

The following lemma explains the connection between the branching random walk and the
decay rate p(κ) from the previous section.

Lemma 9.1 (Many-to-one Lemma). For all ω ∈ Ω and t ≥ 0,

Eκ,λ,qω [|Z(t)|] = eλt(m−1)P κ(τ(ω) ≥ t)
Eκ,λ,qω [|Z(t) ∩ {0}|] = eλt(m−1)P κ(τ(ω) ≥ t,X(t) = 0).

Proof. Let us explicitly write

τ(ω, x) := inf{t ≥ 0: (t, x(t)) ∈ ω}

for the extinction time of a trajectory x : R+ → Zd. Note that, for every particle v ∈ N∗,

{v ∈ Z(t)} = {v ∈ V(t)} ∩ {τ(ω,X(·, v)) ≥ t}.

Since the movement of particles is independent of the branching, the probability of the
second event is P κ(τ(ω) ≥ t), independently of v ∈ V(t). Therefore

Eκ,λ,qω [Z(t)] =
∑
v∈N∗

Eω
[
1{v ∈ V(t)}1{τ(ω,X(·, v)) ≥ t}

]
= P κ(τ(ω) ≥ t)E[|V(t)|]
= P κ(τ(ω) ≥ t)eλ(m−1).
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The expected number E[|V(t)|] of particles without disasters can be computed using stan-
dard arguments. The second claim follows by an analogous calculation.

Proof of Theorem 8.1 (subcritical case). Assume −ε := λ(m − 1) + p(κ) < 0. For almost
all ω, we find T = T (ω) such that for all t ≥ T

eλt(m−1)P κ(τ(ω) ≥ t) ≤ e− ε2 t.

Then, by the Markov inequality and Lemma 9.1,∑
t∈N

P κ,λ,qω (|Z(t)| ≥ 1) ≤ T (ω) +
∑

t≥T (ω)

Eκ,λ,qω [|Z(t)|] ≤ T (ω) +
∑

t≥T (ω)

e−
ε
2
t <∞.

From Borel–Cantelli, we get P κ,λ,qω (Z survives) ≤ P κ,λ,qω (|Z(t)| ≥ 1 i.o.) = 0.

Proof of Theorem 8.1 (supercritical case). Assume

λ(m− 1) + p(κ) > 0 . (9.1)

We will find a branching process with i.i.d. offspring distributions embedded in Z and
show that it has positive survival probability. More precisely, for large T we introduce a
process (A(k))k∈N such that A(k) ⊆ Z(kT ) for all k ∈ N, and such that almost surely

P κ,λ,qω (A survives) > 0.

Recalling Proposition 5.6(iii), we find T ∈ N such that

E
[

logP κ(τ(ω) ≥ T,X(T ) = 0)
]

+ λT (m− 1) > 0. (9.2)

We define A(0) := Z(0) and

A(k) :=
{
v ∈ Z(kT ) : X(iT, v) = 0 for all i = 0, . . . , k

}
That is, for A we only consider particles which at times T, 2T, 3T, . . . return to the origin.
Recall that we use (Z(k−1)T,{0}(t))t≥(k−1)T to denote a branching random walk started at
time (k − 1)T with one particle at the origin, and moreover that Z(t) ∩ {0} denotes the
set of particles occupying the origin at time t.

Claim. Fix ω ∈ Ω. Then {|A(k)| : k ∈ N} is an inhomogeneous Galton-Watson process

with offspring distributions (q
(k)
ω )k∈N, where q

(k)
ω ∈M1(N) is defined by

q(k)
ω ({j}) = P κ,λ,qω

(∣∣Z(k−1)T,{0}(kT ) ∩ {0}
∣∣ = j

)
, j ∈ N.

Proof of the claim. Observe that every particle in generation k of A is the descendant of
some particle (possibly itself) in generation k − 1. For v ∈ A(k − 1), we let Nk−1(v)

denote the number of descendants of v in A(k). We point out that q
(k)
ω is the law of

Nk−1(v). From the definition of the model, Nk−1(v) and Nk−1(w) are independent for
v 6= w ∈ A(k − 1), conditioned on ω. Moreover, since every v ∈ A(k − 1) occupies the
origin at time (k − 1)T , the law of Nk−1(v) does not depend on v ∈ A(k).
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We note that q
(k)
ω only depends on the environment in [(k − 1)T, kT ), so that (q

(k)
ω )k is

an i.i.d. sequence in M1(N). We write m
(k)
ω for the expectation of q(k), and note that by

Lemma 9.1

m(k)
ω = eλT (m−1)P κ(τ(θ(k−1)T,0ω) ≥ T,X(T ) = 0).

Thus (9.2) gives E[logm
(k)
ω ] > 0. By a well-known result on branching processes with i.i.d.

offspring distributions, see [56, 57], the survival probability of (|A(k)|)k∈N is positive for
almost all environments, provided the following non-degeneracy condition holds:

E[log(1− q(1)
ω (0))] > −∞ (9.3)

To see this, note that |Z(T )∩{0}| = 1 if the root-particle does not branch in [0, T ], avoids
all disasters and returns to the origin. That is, we have the following lower bound:

1− q(1)
ω (0) = Pω(Z(T ) ∩ {0} 6= ∅)

≥ e−λTP (τ(ω) ≥ T,X(T ) = 0)

≥ e−λT ∏T
i=1 P (τ(θi−1ω) ≥ 1, X(1) = 0)

Proposition 5.2 and Jensen’s inequality show that the logarithm of the last line is inte-
grable.

Proof of Corollary 8.4. This follows from [57, Theorem 5.5(iii)], applied to (A(k))k≥0.

10. The critical case

10.1. Outline

We adapt the technique used in [5] to show that the critical contact process dies out.
The same approach has been used in [32] for a discrete time, non-degenerate version of
our model. In this section, we provide the main part of the proof, while two essential
propositions will be proved in the remainder of this section.

Proof of Theorem 8.1 (critical case). Fix κ, λ and q such that

λ(m− 1) + p(κ) = 0 (10.1)

and assume for contradiction that

Pκ,λ,q(Z survives) > 0. (10.2)

We first observe that, using the subcritical part of Theorem 8.1, for every µ < λ

Pκ,µ,q(Z survives) = 0. (10.3)

In the following, we will discuss subsets A ⊆ Rd of sites, with the understanding that an
intersection with Zd has to be taken wherever appropriate. For example, in the next display
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[−n, n]d should be replaced by {−n, . . . , n}d and [L, 3L] × [−L,L]d−1 by {L, . . . , 3L} ×
{−L, . . . , L}d−1. The aim is to improve the readability of formulas.

To arrive at the contradiction, we compare Z to an embedded oriented percolation, which
we now introduce. Recall the notation from Section 8.4. For s, L, T ∈ R+, j ∈ Zd and
n, S ∈ N, let

As,j(L, T, n, S) :=

{
∃i ∈ [L, 3L]× [−L,L]d−1, t ∈ [5T, 6T ]

such that (i+ [−n, n]d, S2) ≤ Z{s}×(j+[−n,n]d,S2)

[−5L,5L]×[−3L,3L]d−1(t).

}
(10.4)

In words, A0,0(L, T, n, S) is the event that starting from configuration ([−n, n]d, S2) at
time 0, the initial particles will propagate such that at some time t ∈ [5T, 6T ] we find a
copy i + [−n, n]d of [−n, n]d where every site is occupied by at least S2 particles. The
truncation ensures that we only consider particles which do not leave the space-time box
[0, T ] × [−5L, 5L] × [−3L, 3L]d−1. The additional parameters s, j correspond to a space-
time shift of the initial configuration. See Figure 6 for an illustration.

−5L 2L 3L 5LL−L 0

T

5T

6T

1

Figure 6: Illustration of the event As,j(L, T, n, S) in d = 1, with S = 1. The black
bars represent intervals [−n, n] where every site is occupied by at least one particle. The
dotted boxes represent the origin and target areas [0, T ]×[−L,L] and [5, T ]×[L, 3L], while
the dashed box is the truncation [0, 6T ] × [−5T, 5T ]. Only particles which contribute to
As,t(L, T, n, S) are shown.

The main task in the remainder of this section is to show that this event has high proba-
bility, uniformly over some set of initial configurations:

Proposition 10.1. Assume (10.2). For every ε > 0, there exist L, T > 0 and n, S ∈ N
such that

inf
s∈[0,T ],j∈[−L,L]d

Pκ,λ,q
(
As,j(L, T, n, S)

)
> 1− ε. (10.5)

48



Using As,j , we can introduce an embedded oriented percolation η = (η(k, l))k,l∈N2 . We
follow the arguments from [45, Chapter I.2]. Consider shifted copies of the box [0, T ] ×
[−L,L]d that appeared in (10.4): For k, l ∈ N2, let

B(k, l) :=
(
5kT, (−2k + 4l)L, 0, . . . , 0

)
+ [0, T ]× [−L,L]d (10.6)

See Figure 7 below. We call (k, l) ∈ N2 occupied, if there exist (t, i) ∈ B(k, l) such that

(i+ [−n, n]d, S2) ≤ Z([−n,n]d,S2)(t).

We call a path (k0, l0), . . . , (km, lm) in N2 an oriented path from (k0, l0) to (km, lm), if
kh+1 = kh + 1 and either lh+1 = lh or lh+1 = lh + 1, for all h = 0, . . . ,m− 1. We write

η(k, l) =

{
1 if there is an oriented path (0, 0)→ (k, l) using only occupied sites

0 else.

This defines a random variable η ∈ {0, 1}N2
from every realization of Z([−n,n]d,S2). More-

over, Z dominates η in the sense that

{η(k, l) = 1 infinitely often} ⊆ {Z survives}

Now let ξ ∈ {0, 1}N2
denote independent site percolation. That is, every site (k, l) 6= (0, 0)

is occupied independently with probability p ∈ (0, 1), and we set ξ(k, l) := 1 if and only if
(k, l) is reachable from (0, 0) along an oriented path of occupied pairs. Let Pp denote the
law of ξ. We show that ξ is dominated by η, for some choice of p:

Proposition 10.2. Assume (10.5). There exists p = p(ε) such that ξ �st η, where ξ is
independent oriented site percolation with parameter p. Moreover, p(ε) ↑ 1 for ε ↓ 0.

Here ξ �st η means that there exists a coupling (ξ̂, η̂) such that η
d
= η̂ and ξ

d
= ξ̂, and almost

surely ξ̂(k, l) ≤ η̂(k, l) for all (k, l) ∈ N2.

We can now derive a contradiction: Fix ε > 0 such that p(2ε) is larger than the critical
parameter of oriented site percolation, i.e. such that

{ξ(k, l) = 1 infinitely often}

has positive probability. Next, use Proposition 10.1 to choose L, T , n and S such that
(10.5) holds for this value of ε. Since As,j(L, T, n, S) is a local event, its probability
depends continuously on the parameters, and thus we can find µ < λ such that also

inf
s∈[0,T ],j∈[−L,L]d

Pκ,µ,q
(
As,j(L, T, n, S)

)
> 1− 2ε.

Proposition 10.2 therefore shows

Pκ,µ,q
(
Z([−n,n]d,S2) survives

)
≥ Pκ,µ,q(η(k, l) = 1 i.o.) ≥ Pp(2ε)(ξ(k, l) = 1 i.o.) > 0.

Clearly, this also implies Pκ,µ,q(Z{0} survives) > 0 and thus contradicts (10.3).
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In the remainder of this section we will prove the missing results:

• The comparison to oriented percolation in Proposition 10.2 follows from standard
arguments for interacting particle systems, see Section 10.2.

It remains to show Proposition 10.1, which is the technical core of the proof. We proceed
along the following steps:

• In Section 10.3 we collect some technical results which are necessary to choose L, T ,
n and S in Proposition 10.9.
• In Section 10.4 we discuss the numbers N and M of particles leaving a space-time

box through the top and the faces.

– This notation is defined rigorously in Section 10.4.1.
– In Section 10.4.2 we use well-known techniques for branching processes to show

that on the event of survival, N +M has to be large.
– We need to show that both N and M are large on the event of survival (and

not just one of them). This will following with the help of an FKG-inequality,
which we derive in Section 10.4.3.

• In Section 10.5 we state an auxiliary result, and use it to prove Proposition 10.1.
• Finally, Section 10.6 contains the proof of the auxiliary result. Depending on ε, we

have to treat two cases, one of which is fairly easy (Section 10.6.2). The other case
makes use of all preparation outlined here (Section 10.6.1).

Note that throughout this section the parameters κ, λ and q are fixed, and we assume
(10.1) and (10.2). We will sometimes drop them from the notation, and write P instead
of Pκ,λ,q.

10.2. Comparison to oriented percolation

Proof of Proposition 10.2. We consider a truncation corresponding to B(k, l):

B(k, l) :=
(
5kT, (−2k + 4l)L, 0, . . . , 0

)
+ [0, 6T ]× [−5L, 5L]× [−3L, 3L]d−1

We now recursively construction an auxiliary process (η̃(k, l))(k,l)∈N2 that is dominated by
η (that is, η̃(k, l) ≤ η(k, l) for every k, l). Assume that the first k levels {η̃(k′, l′) : k′ ≤
k, l′ ≤ k} have been constructed.

If η̃(k, l) = η̃(k, l − 1) = 0, then we set η̃(k + 1, l) := 0. Assume that η̃(k, l) = 1. This
implies η(k, l) = 1, so by the definition of η we find (tk,l, ik,l) ∈ B(k, l) such that at time tk,l
every site of ik,l+[−n, n]d is occupied by at least S2 particles (in the underlying branching
random walk). If there is more than one such pair, we choose the one that has the smallest
time-coordinate. We set η̃(k+1, l) := 1 if there exists (tk+1,l, ik+1,l) ∈ B(k+1, l) such that

([−n, n]d + ik+1,l, S
2) ≤ Z{tk,l}×(ik,l+[−n,n]d,S2)

B(k,l)
(tk+1,l).
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B2,2

(t1, i1) + {0} × [−n, n]d

B1,1

1

Figure 7: Illustration for the comparison to oriented percolation. The black bars repre-
sent shifted copies of {0} × [−n, n] where each site is occupied by at least one particle.
The dashed box represents the truncation from (10.5), and we observe that two trunca-
tion boxes are disjoint whenever they are well-separated. As before, only particles which
contribute to the construction are drawn.

See Figure 7 for an illustration. Observe that, up to space-time shifts, this is the same
event as in (10.5), so that

Pκ,λ,q(η̃(k + 1, l) = 1|η̃(k, l) = 1) > 1− ε.

We have to deal with the problem that η̃(k+ 1, l) and η̃(k+ 1, l′) are not independent for
l 6= l′, given σ(η(k′, l) : k′ ≤ k, l ≤ k), since the truncation boxes B(k+1, l) and B(k+1, l′)
are in general not disjoint. Observe however that |l − l′| > 2 implies

B(k + 1, l) ∩ B(k + 1, l′) = ∅,

and therefore, conditioned on σ(η(k′, l) : k′ ≤ k, l ≤ k), the families (η̃(k + 1, l))l∈S1 and
(η̃(k + 1, l))l∈S2 are independent whenever

min{|l1 − l2| : l1 ∈ S1, l2 ∈ S2} > 2.

Now [45, Theorem B26] shows that we can couple (η̃(k+1, l))l=0,...,k+1 with an independent
family of Bernoulli random variables (ξ(k + 1, l))l≤k+1 such that η̃ dominates ξ, and such
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that if either ξ(k, l − 1) = 1 or ξ(k, l) = 1, then ξ(k + 1, l) = 1 with probability at least

p(ε) := (1− 5
√
ε).

Since η in turn dominates η̃, this gives the claim.

10.3. Elementary preparations

Recall that we have fixed λ, κ and q such that (10.2) holds. In Lemma 10.3 below we
show some simple consequences of this assumption:

• Part (i): By enlarging the initial configuration, the survival probability gets arbi-
trarily close to 1.
• Part (ii): Consider particles that survive locally (using only two sites) until time 1.

With high probability, there are many such particles, provided the number of initial
particles at the origin is large enough.
• Part (iii): With high probability, starting from many particles occupying the origin,

we end up with a configuration where every site of [−n, n]d is occupied by many
particles at time 1.

Lemma 10.3. (i) For every ε > 0 there is n ∈ N with

P
(
Z [−n,n]d survives

)
> 1− ε.

(ii) Recall (8.8). For every ε > 0 and M ∈ N, there is N ∈ N such that

P
(∣∣Z({0},N)

{0,e1} (1) ∩ {0}
∣∣ ≥M) > 1− ε.

(iii) Recall (8.6). For every ε > 0 and n, S ∈ N, there is an N ∈ N such that

min
v∈{0,ne1}

{
P
(
(v + [−n, n]d, S) ≤ Z({0},N)

v+[−n,n]d
(1)
)}

> 1− ε.

Proof. Part (i): Define a collection (Yi)i∈Zd with Yi := 1{Z{i} survives}. We have

P
(
|Z [−n,n]d(t)| > 0 ∀t

)
= P

( ∑
i∈[−n,n]d

Yi > 0
)

= E
[
Pω

( ∑
i∈[−n,n]d

Yi > 0
)]

Writing Sn :=
∑

i∈[−n,n]d Yi, we have

Pω
(
Sn = 0

)
≤ Pω (|Sn − Eω[Sn]| ≥ Eω[Sn]) ≤ Varω(Sn)(

Eω[Sn]
)2 (10.7)

Now, due to the spatial ergodic theorem (see [44, Theorem 4.9]), almost surely

1

|[−n, n]d ∩ Zd|Eω[Sn]→ E[Y0] > 0.
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On the other hand, almost surely

1

|[−n, n]d ∩ Zd|Varω
(
Sn
)

=
1

|[−n, n]d ∩ Zd|
∑

i∈[−n,n]d

Varω(Yi)→ E
[
Varω(Y0)

]
where we used the fact that {Yi, i ∈ Zd} are independent with respect to Pω. We conclude
from (10.7) that Pω(Sn = 0)→ 0 almost surely and therefore P (Sn = 0)→ 0 as well.
Part (ii): For a particle v, let B(v) denote the event that v

• does not branch before time 1
• satisfies X([0, 1], v) ⊆ {0, e1} and X(1, v) = 0
• and is not killed by the environment until time 1.

For α ∈ (0, 1], let A(α) := {Pω(B(∅)) ≥ α}. Note that the events A(α) are increasing
as α ↓ 0 and that their union over all α ∈ (0, 1] ∩ Q has probability 1. Fix η such that
(1− η)2 ≥ 1− ε, and α > 0 small enough that P(A(α)) ≥ 1− η.

Now take ω ∈ A(α). Then, starting with N initial particles at the origin, the number
of particles v such that B(v) occurs dominates the number of successes of a binomial
random variable with N trials and success probability α. We can thus find N such that,
with probability at least 1− η, this number is larger than M . Then

P
(∣∣Z({0},N)
{0,e1} (1) ∩ {0}

∣∣ ≥M) ≥ P(A(α)) inf
ω∈A(α)

Pω(#{v ∈ Z({0},N)(0) : B(v) occurs} ≥M)

≥ (1− η)2 ≥ 1− ε.

Part (iii): Fix ε, n, S. The arguments for both probabilities in the minimum are identical,
so we only show that, for N large enough,

P
(
([−n, n]d, S) ≤ Z({0},N)

[−n,n]d
(1)
)
> 1− ε

Consider

R(i) := Pω
(
|Z{0}

[−n,n]d
(t)| = 1 for all t ∈ [0, 1], |Z{0}

[−n,n]d
(1) ∩ {i}| = 1

)
.

That is, R(i) is the (quenched) probability that one initial particle started in the origin
survives, does not branch or leave [−n, n]d until time 1, and occupies site i at time 1. Let

A(α) :=
{

min
i∈[−n,n]d∩Zd

R(i) ≥ α
}

Fix η > 0 such that (1 − η)2 > 1 − ε, and note that by the same argument as above, we
find α > 0 such that P(A(α)) ≥ 1− η.

For i ∈ [−n, n] ∩ Zd, let WN (i) count the number of particles in Z({0},N)(0) that satisfies
the event in the definition of R(i). Observe that, for ω ∈ A(α), the collection {WN (i) : i ∈
[−n, n]d ∩Zd} dominates a multinomial random variable with N trials and |[−n, n]d ∩Zd|
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categories, each of which occurs with probability at least α. Thus we find N such that,
for ω ∈ A(α),

Pω
(

min
i∈[−n,n]∩Zd

WN (i) ≥ S
)
≥ 1− η.

Together with P(A(α)) ≥ 1− η, this finishes the proof.

We prove an auxiliary result that is needed for the FKG-inequality, see Remark 10.7

Lemma 10.4. Let m,S ≥ 1 and consider random vector (X0, . . . , Xm) taking values in
{0, 1}m+1 (not necessarily independent). Then

m∏
i=0

P
(
Xi = 0

)S ≤ P (Xi = 0 for all i) +
( m

m+ 1

)(m+1)S
.

Proof. For I ⊆ JmK = {0, . . . ,m}, let us define

pI := P ({i : Xi = 0} = I).

We need to show that

m∏
i=0

(
pJmK +

∑
{i}⊆I(JmK

pI

)S
≤ pJmK +

( m

m+ 1

)(m+1)S
. (10.8)

Define q by qJmK := pJmK, qI := 0 for |I| < m and

qJmK\{i} :=
1− pJmK

m+ 1
for i = 0, . . . ,m.

Observe that the l.h.s. of (10.8) takes a maximum over all admissible values of {pI : I 6=
JmK} at q, and it is enough to check that(m+ pJmK

m+ 1

)(m+1)S
≤ pJmK +

( m

m+ 1

)(m+1)S
.

Since the function on the l.h.s. is convex in pJmK while the r.h.s. is linear, the conclusion
follows by checking that the inequality indeed holds for pJmK equal to 0 and to 1.

10.4. Space-time boxes

10.4.1. Notation

We can think of (Zη(t))0≤t≤T as a process in space-time, which we emphasize by writing

[0, T ]×Zη :=
{

(t, v) : 0 ≤ t ≤ T, v ∈ Zη(t)
}
⊆ [0, T ]× N∗.
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For convenience, we define the sign of zero to be 1, that is

sign(i) := 1i≥0 − 1i<0 for i ∈ Z. (10.9)

For L ∈ N and T > 0, we now consider a space-time box B ⊆ R+ × Zd of the form

B(L, T ) := [0, T ]× [−L,L]d.

We denote the top of this box by

T(L, T ) := {T} × [−L,L]d

and, for u ∈ {±ei : i = 1, . . . , d} =: U , the face in direction u by

F(L, T, u) := [0, T ]×
(

[−L,L]i−1 × {0} × [−L,L]d−i + Lu
)
.

The boundary ∂B of B by consists of the top and the sides, that is

∂B(L, T ) := T(L, T ) ∪⋃u∈U F(L, T, u).

Note that the bottom {0} × [−L,L]d of the box is not part of the boundary. We further
subdivide B(L, T ) into 2d smaller boxes of equal sizes. That is, for θ ∈ Θ := {±1}d, let

B(L, T, θ) := {(t, i1, . . . , id) : sign(i1) = θ1, . . . , sign(id) = θd}.

The orthants are obtained by intersecting these boxes with the top resp. the faces of B.
That is, for u ∈ U and θ ∈ Θ,

T(L, T, θ) := T(L,B) ∩ B(L, T, θ)

F(L, T, u, θ) := F(L,B, u) ∩ B(L, T, θ).

See Figure 8 for an illustration in d = 2. We will omit the dependence on L and T if it is
clear from the context.
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Z2

t

F(−e1)

T(e1, 1,−1)

F(e1, 1, 1)

1
Figure 8: The space-time box B in dimension 2, with one face and two orthants marked.

Let now η be an initial configuration. For u ∈ U and θ ∈ Θ, let

Nη(L, T, u, θ) :=
∣∣{(t, v) ∈ [0, T ]×Zη : X(t, v) ∈ F(L, T, u, θ), X(s, v) /∈ ∂B for s < t}

∣∣
(10.10)

count the number of particles leaving B through F(L, T, u, θ). That is, Nη(L, T, u, θ)
is the number of times such that a particle of Zη hits ∂B for the first time at some
(t, i) ∈ F(L, T, u, θ). Furthermore, for θ ∈ Θ, let Mη(L, T, θ) count the particles exiting B
through T(L, T, θ), that is

Mη(L, T, θ) :=
∣∣{v ∈ Zη(T ) : X(T, v) ∈ T(L, T, θ), X(s, v) /∈ ∂B for s < T}

∣∣. (10.11)

We interpret Mη(L, T ) (respectively Nη(L, T )) as 2d-dimensional (resp. d2d-dimensional)
vectors, and

∑
Mη (resp.

∑
Nη) always refers to summation over the coordinates:∑
Mη(L, T ) :=

∑
θ∈Θ

Mη(L, T, u, θ)∑
Nη(L, T ) :=

∑
u∈U ,θ∈Θ

Nη(L, T, u, θ).

10.4.2. The number of particles on the boundary

In part (i) of the next lemma, we show that Z survives if and only if the number of
particles is unbounded, which is a common feature of branching processes. Interpreting Z
as a random process embedded in space-time, this means that many particles occupy the
top of a space-time box.
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Lemma 10.5. (i) For every configuration η, almost surely

{Zη survives} =
{

lim
t→∞
|Zη(t)| =∞}.

(ii) Let (Tj)j and (Lj)j be two sequences increasing to infinity. Then for any configura-
tion η, almost surely{

Zη survives
}
⊆
{

lim
j→∞

∑
Nη(Lj , Tj) +

∑
Mη(Lj , Tj) =∞

}
.

Proof. We define

α := P
(
(ω ∩ [0, 1]× {0}) 6= ∅

)
β := P

(
|V{0}(t)| = |V{0}(t) ∩ {0}| = 1 for all t ∈ [0, 1]

)
Part (i): Note that “⊇” is elementary. For the other inclusion, note that Zη dies out if
every particle v ∈ Zη(t) does not move or branch in [t, t+ 1], and if there is a disaster in
[t, t+ 1] at X(t, v). For v ∈ Zη(t), these events have probabilities α and β, and we get

P
(
ZA dies out|σ(ZAs : s ≤ t)

)
≥ (αβ)|Z

A(t)|.

For t → ∞, the l.h.s. converges to 1{Zη dies out} ∈ {0, 1}. But, since αβ > 0, the r.h.s.
only converges to zero on {|Zηt | → ∞}. This shows that, almost surely,

{Zη survives} ⊆
{

lim
t→∞
|Zη(t)| =∞

}
.

Part (ii): We consider the space-time box Bj := [0, Tj ] × [−Lj + 1, Lj − 1]d. We denote
by FLj ,Tj the sigma algebra generated by the environment in Bj as well as the branching
times and positions of particles inside Bj . We consider the particles that exit Bj ,

Ej :=
{

(s, v) ∈ [0, T ]×Zη : ‖X(s, v)‖∞ = Lj , ‖X(r, v)‖∞ < Lj for all r < s
}

∪
{

(T, v) ∈ {T} × Zη : ‖X(r, v)‖ < Lj for all r ≤ T
}
.

Here ‖ · ‖∞ denotes the maximum norm. Note that (s, v) ∈ Ej implies that the particle v
has just left Bj (for the first time) at time s, either through one of the sides or through the
top. Clearly Ej is FLj ,Tj measurable and we have |Ej | =

∑
Nη(Lj , Tj) +

∑
Mη(Lj , Tj).

By the same argument as before,

P(Zη dies out|FLj ,Tj ) ≥ (αβ)|Ej |. (10.12)

Moreover, taking j → ∞, the l.h.s. converges to zero on {Zη survives}, and therefore
almost surely

{Zη survives} ⊆
{

lim
j→∞

|Ej | =∞
}
.
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10.4.3. An FKG-inequality

We prove that two independent trees in the same environment satisfy an FKG-inequality:

Theorem 10.6. Let η1 and η2 be two configurations, and Vη11 and Vη22 two independent
realizations of the process started from η1 resp. η2. We let Zη11 , Mη1

1 and Nη1
1 (resp.

Zη22 , Mη2
2 and Nη2

2 ) be the random variables corresponding to V1 (resp. V2). Moreover let

f, g : N(2d) × N(d2d) → R+ be increasing. Then

E
[
f
(
Mη1

1 , Nη1
1

)
g
(
Mη2

2 , Nη2
2

)]
≥ E

[
f
(
Mη1

1 , Nη1
1 )
]
E
[
g(Mη2

2 , Nη2
2 )
]

(10.13)

An intuitive explanation is that if many particles of Vη11 survive, then the environment is
probably not too hostile, which improves the chance that many particles of Vη22 are alive.

Proof of Theorem 10.6. Let H := σ(Vη11 ,Vη22 ). We will show that almost surely

E
[(
Mη1 , Nη1

)
g
(
Mη2 , Nη2

)∣∣H] ≥ E
[
f
(
Mη1 , Nη1

)∣∣H]E[g(Mη2 , Nη2
)∣∣H] (10.14)

Note that in the previous line the expectation is only over the environment, while the
branching processes are fixed. The claim follows by integrating (10.14) and using the
independence of Vη11 and Vη22 . Now conditioned on H, we can find K ∈ N and

0 = U0 < U1 < · · · < UK < UK+1 = T

such that both trees are constant on [Uk, Uk+1) for all k = 0, . . . ,K. That is, neither Vη11

nor Vη22 jumps or branches in [0, T ] \ {U1, . . . , UK}. Consider

χ(k, i) := 1{ω ∩ ([Uk, Uk+1)× {i}) = ∅}

the indicator function of the event that there is no disaster in [Uk, Uk+1) at site i. Let G :=
σ(χ(k, i) : 0 ≤ k ≤ K, i ∈ Zd), and note that Mη1 , Nη1 ,Mη2 and Nη2 are G-measurable
and increasing in χ. Thus by the assumptions, f(Mη1 , Nη1) and g(Mη2 , Nη2) are also
increasing in χ. Now (10.14) follows from the usual FKG inequality, see [44, Corollary
2.12]. The law of χ satisfies the FKG lattice condition because it is a product measure.

Remark 10.7. Note that our application below would be much easier if Theorem 10.6 held
for the same tree, i.e., with V1 equal to V2. The corresponding statement holds for the
contact process, for which this technique was originally developed, see display (13) in [5].
The branching random walk, however, does not satisfy an FKG-inequality. To understand
why, consider the situation with one initial particle, without disasters or branching. Then
there will always only be exactly one particle, which can only exit the space-time box
once. Thus for example the events {M(θ1) ≥ 1} and {M(θ2) ≥ 1} are actually negatively
associated, for every θ1 6= θ2. We are grateful to an anonymous referee for pointing out
this problem.

We have introduced the parameter S in (10.4) to deal with this problem, with the help of
the following Corollary:
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Corollary 10.8. For any L,K,K ′ ∈ N, T > 0, any configuration η and any S ∈ N,∏
θ∈Θ

P
(
MSη(L, T, θ) ≤ K

)
≤ P

(∑
Mη(L, T ) ≤ 2dK

)
+ (2d)−2dS (10.15)

∏
θ∈Θ,u∈U

P
(
NSη(L, T, u, θ) ≤ K

)
≤ P

(∑
Nη(L, T ) ≤ d2dK

)
+ (d2d)−d2dS (10.16)

and
P
(∑

NSη(L, T ) ≤ K
)
P
(∑

MSη(L, T ) ≤ K ′
)

≤P
(∑

Mη(L, T ) +
∑

Nη(L, T ) ≤ K +K ′
)

+ 4−S
(10.17)

Proof. We only give the proof of (10.15), since the other claims follow in the same way.
We have∏

θ∈Θ

Pω(MSη(L, T, θ) ≤ K) ≤
∏
θ∈Θ

(
Pω(Mη(L, T, θ) ≤ K)

)S
≤ Pω

(
Mη(L, T, u, θ) ≤ K for all θ ∈ Θ

)
+ (2d)−2dS

≤ Pω
(∑

Mη(L, T ) ≤ 2dK
)

+ (2d)−2dS

(10.18)

The second inequality is by Lemma 10.4, and the third inequality is elementary. To see
the first inequality, observe ZSη can be interpreted as S independent copies of Zη, in the
same environment. Therefore{

MSη(L, T, θ) ≤ K
} d
⊆
{
M̃i ≤ K for i = 1, . . . , S

}
,

where M̃i are independent copies of Mη(L, T, θ). The claim follows by taking expectation
in (10.18), and applying Theorem 10.6 to the l.h.s..

10.5. Proof of the key proposition

We now start proving Proposition 10.1. For ε > 0, we find δ > 0 such that

min
{(

1− (3δ)(2d)−1
)(

1− (2δ)(d2d)−1
)

(1− δ)3, 1− 3δ
}
≥ (1− ε)1/10. (10.19)

Using Lemma 10.3, we find n ∈ N such that

P
(
Z [−n,n]d survives

)
≥ 1− δ2. (10.20)

Moreover, let S be an integer such that

max
{(

1− 1

d2d

)d2dS
,
(

1− 1

2d

)2dS
, 4−S

}
≤ δ2

2
.

We state an auxiliary proposition:
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Proposition 10.9. There exist L, T > 0 such that

Pκ,λ,q
(
∃i ∈ [L+ n, 2L+ n]× [0, 2L]d−1, t ∈ [T + 2, 2T + 2]

such that (i+ [−n, n]d, S2) ≤ Z([−n,n]d,S2)

[−L,3L]×[−3L,3L]d−1(t)

)
> (1− ε)1/10. (10.21)

This proposition will be proved in the next section.

Proof of Proposition 10.1. Note that the event (10.21) already looks very similar to the
event As,j . It remains to show that the bound is uniform in the initial configuration. Let
L′ and T ′ be large enough that (10.21) holds, and set L := 2L′+n and T := 2T ′. Observe
that, by symmetry, we can replace the target area [L′+ n, 2L′+ n]× [0, 2L′]d−1 in (10.21)
by

WL,n(w) := [w1(L′ + n), w1(2L′ + n)]× [0, 2w2L
′]× · · · × [0, 2wdL

′],

for any direction w ∈ {±1}d. Here an interval [b, a] is to be interpreted as [a, b] if a < b.
We now repeatedly apply the result from Proposition 10.9, each time making a suitable
choice for the direction w. See Figure 9 for an illustration.

More precisely, we choose space-time sites (sk, jk)k∈N and directions (wk)k∈N, starting with
(s0, j0) = (s, j) as in the statement of the proposition. Assuming that we have constructed
(s0, j0), . . . , (sk, jk), we choose wk = (wk1 , . . . , w

k
d) in the following way:

• For the first coordinate, if j0
1 , . . . , j

k < L + L′ + n, then wk1 := 1. Otherwise we
choose alternating signs, i.e. wk1 := −wk−1

1 .
• For all other coordinates l 6= 1, choose wkl := − sign(jkl ).

Then, given (sk, jk) and direction wk, consider the event{
∃i ∈ jk + WL′,n(wk), t ∈ sk + [T ′ + 2, 2T ′ + 2]

such that (i+ [−n, n]d, S2) ≤ Z(jk+[−n,n]d,S2)

jk+[−wk1L′,3wk1L′]×[−3L′,3L′]d−1(t)

}
.

If this event succeeds, we set (sk+1, jk+1) equal to (i, t). If there is more than one such
pair, we choose the one with minimal time-coordinate – this ensures that the steps are
independent. Moreover, we note that our choice of direction ensures that

• |jkl | ≤ 2L′ ≤ L for l = 2, . . . , d, for all k ≥ 0.
• jk1 ∈ [L, 3L] for all k ≥ 4: Note that jk1 ≥ L+ L′ + n after at most 4 iterations, and

the alternating the sign of u ensures that L ≤ jl1 ≤ 3L for all l ≥ k.
• sk ∈ [5T, 6T ] for some 4 ≤ k ≤ 10: After 4 iterations we have s4 ∈ [4T ′+8, 8T ′+8] ⊆

[2T, 4T ]. Moreover, the duration of one iteration is [T ′ + 2, 2T ′ + 2] ⊆ [T/2, T ], so
we reach the target interval after at most 10 iterations.

Each iteration has success probability at least (1 − ε)1/10, and since we need at most 10
successes the total success probability is at least 1− ε.
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−L′ L′ 3L′ 5L′0

T ′

10T ′

12T ′

L−L

1
Figure 9: In the auxiliary Proposition 10.9 we have shown that starting from configuration
{sk}× (jk + [−n, n]) (depicted as black bars), there is high probability of finding a shifted
copy of [−n, n] centered in the target box (sk, jk) + WL′,n(wk) (depicted as small, dotted
boxes at the end of the arrows). We have drawn two “trajectories” to illustrate that
4–10 iterations are enough to reach [5T, 6T ] × [L, 3L], from any initial configuration in
[0, T ]× [−L,L].

10.6. Proof of the auxiliary proposition

One of the following two statements is true, and we give separate proofs in each case:

∃L ∈ N : P
(
Z([−n,n]d,S)
L survives

)
≥ 1− 2δ (local case)

∀L ∈ N : P
(
Z([−n,n]d,S)
L survives

)
< 1− 2δ. (non-local case)

Intuitively, in the local case we can restrict the process to a large box without decreasing
the survival probability too much, whereas in the non-local case all truncations of Z have
small survival probability.

10.6.1. The non-local case

Proof of Proposition 10.9. We start by choosing L and T . We first identify a suitably
large number R to apply Lemma 10.5: Let

α := min
v∈{0,ne1}

{
P
(

(v + [−n, n]d, S2) ≤ Z{0}
v+[−n,n]d

(1)
)}

. (10.22)
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and choose R1 such that (1−α)R1 < δ. By part (iii) of Lemma 10.3, we find R2 such that

min
v∈{0,ne1}

{
P
(

(v + [−n, n]d, S2) ≤ Z({0},R2)

v+[−n,n]d
(1)
)}

> 1− δ.

Finally, due to part (ii) of Lemma 10.3, we can choose R3 large enough that

P
(∣∣Z({0},R3)

{0,e1} (1) ∩ {0}
∣∣ ≥ R2

)
> 1− δ.

Now set R := ((4n)dR1 ∨ nR3)2. From Lemma 10.5(i) and the definition of n, we obtain

lim
T→∞

lim
L→∞

P
(∑

M [−n,n]d(L, T ) > 2dR
)

= lim
T→∞

P(|Z [−n,n]d(T )| > 2dR) ≥ 1− δ2.

That is, for all T ≥ T0 there exists L(T ) such that for L ≥ L(T )

P
(∑

M ([−n,n]d,S)(L, T ) > 2dR
)
≥ P

(∑
M [−n,n]d(L, T ) > 2dR

)
≥ 1− δ. (10.23)

We have shown that, by choosing L and T large enough, the probability of finding 2dR
particles at the top of a box [0, T ]× [−L,L]d can be made large. We want a similar result
for the number of particles leaving through the sides of [0, T ] × [−L,L]d. Using (10.23)
and the definition of the non-local case, we can define two increasing sequences (Lk)k≥0

and (Tk)k≥0, starting with T0 as introduced before in (10.23), and L0 := L(T0) + 1. We
proceed by

Lk+1 := max
{
Lk + 1, L(Tk + 1)

}
Tk+1 := inf

{
T > Tk : P

(∑
M ([−n,n]d,S)(Lk+1, T ) > 2dR

)
< 1− 2δ

}
.

Observe that since T 7→ P(
∑
M [−n,n]d(L, T ) > 2dR) is continuous, for all k ∈ N

P
(∑

M ([−n,n]d,S)(Lk, Tk) ≤ 2dR
)

= 2δ. (10.24)

Note that B(L, T ) has a total number of (d + 1)2d orthants in its boundary. We apply
part (i) of Lemma 10.5 with the sequences (Lk)k and (Tk)k defined before, which gives

lim inf
k→∞

P
(∑

N [−n,n]d(Lk, Tk) +
∑

M [−n,n]d(Lk, Tk) >(d+ 1)2dR
)

≥ P(Z [−n,n]d survives).

Thus, using (10.20), there exists k0 such that for all k ≥ k0

P
(∑

N [−n,n]d(Lk, Tk) +
∑

M [−n,n]d(Lk, Tk) ≤ (d+ 1)2dR
)
≤ 3

2
δ2.

We set L := Lk0 and T := Tk0 , which finishes the constructive part of the proof.
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Next, we claim that, for any choice of θ ∈ Θ and u ∈ U ,

P
(
M ([−n,n]d,S2)(L, T, θ) ≤ R

)2d ≤ 3δ (10.25)

P
(
N ([−n,n]d,S2)(L, T, u, θ) ≤ R

)d2d ≤ 2δ. (10.26)

Note that, the (annealed) laws of N ([−n,n]d,S2)(L, T, u, θ) and M ([−n,n]d,S2)(L, T, u, θ) do
not depend on θ or u. Therefore (10.25) follows from (10.15) together with (10.24) and
the definition of S. For the second claim, note that

3

2
δ2 ≥ P

(∑
N [−n,n]d(L, T ) +

∑
M [−n,n]d(L, T ) ≤ (d+ 1)2dR

)
≥ P

(∑
N ([−n,n]d,S)(L, T ) ≤ d2dR

)
P
(∑

M ([−n,n]d,S)(L, T ) ≤ 2dR
)
− δ2

2
.

For the second inequality we have used (10.17) and the definition of S. Using (10.24), we
get

P
(∑

N ([−n,n]d,S)(L, T ) ≤ d2dR
)
≤ δ. (10.27)

Now (10.26) follows from (10.16) and the definition of S.

With these estimates, we can now verify (10.21): We need to bound the probability of
finding a copy of [−n, n]d shifted to the correct space-time location where every site is
occupied by at least S2 particles. From now on, we keep

θ := (1, . . . , 1) ∈ Θ

fixed. We show that each of the following steps occurs has high probability:

1. The tree Z([−n,n]d,S2) has many particles leaving through F(e1, θ).

2. There exist (t, i) ∈ F(e1, θ) such that the particles occupying i at time t grow into a
fully occupied copy {t+ 1} × (i+ ne1 + [−n, n]d, S2) of ([−n, n]d, S2).

3. Consider now the box B :=
(
[0, T ]× [−L,L]d

)
+ (t + 1, i + ne1). The tree growing

from {t+1}× (i+ne1 +[−n, n]d, S2) will have many descendants that leave through
the top T(e1, θ) of B.

4. There exists (t, i) ∈ T(e1, θ) that grows into a new copy of the box {t + 1} × (i +
[−n, n]d, S2).

See also Figure 10 for an illustration. We have already estimated the probability of the
first step in (10.26). For the second step, we have to consider the set R of space-time-
points in F(e1, θ) where a particle leaves [0, T ]× [−L,L]d for the first time, i.e.

R :=
{

(t, i) ∈ F(e1, θ) : ∃v ∈ Z([−n,n]d,S2)
L (t) s.t. i = X(t, v), X(s, v) /∈ ∂B ∀s < t

}
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−1L 1L 2L0

T1T

2T

First step

Second step (case B)

Third step

Fourth step (case A’)

1
Figure 10: To prove (10.21) we show that each step depicted above has high probability.
For the second and fourth step, we use that if a space-time box has many particles on
its boundary, then either many well-separated sites are occupied by at least one particle
(case A/A’) or there is one site that is occupied by many particles (case B/B’).

That is, N ([−n,n]d,S2)(e1, θ) = |R|. For (t, i) ∈ R, let Et,i be the event that the particle
exiting B in (t, i) grows into a shifted copy of [−n, n]d, using only particles that do not
move far away:

Et,i :=
{(

(t, i+ ne1) + [−n, n]d, S2
)
≤ Z{t}×{i}

i+ne1+[−n,n]d
(1)
}
.

We show that this happens with high probability:

P
(⋃

(t,i)∈RE(t,i)

∣∣N ([−n,n]d,S2)(e1, θ) > R
)
≥ (1− δ)2 (10.28)

Assuming (10.28) and recalling (10.26), we then have

P

(
∃i ∈ {L+ n} × [0, L]d−1, t ∈ [0, T + 1]

s. th.(i+ [−n, n]d, S2) ≤ Z([−n,n]d,S2)

[−L,L+2n]×[−L−n,L+n]d−1(t)

)
≥
(

1− (2δ)(d2d)−1
)

(1− δ)2

(10.29)

Proof of (10.28). We need to deal with the correlations between Et,i and Es,j , for (t, i) 6=
(s, j) ∈ R. We will consider two cases: Either R contains many space-time points that
are far apart (then events are independent), or there is one area where many particles exit
(then we will use Lemma 10.3(ii)–(iii)).
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We introduce a tiling F(e1, θ) ⊆
⋃

(t,i)∈I
(
(t, i) +H

)
of F(e1, θ), with

I :=
(
N× {L} × nZd−1

)
∩ F(e1, θ)

H := [0, 1]× {0} × [0, n)d−1

On {N ([−n,n]d,S2)(e1, θ) > R}, one of the following statements holds:

(case A) There exist at least
√
R distinct indices (t, i) ∈ I such that R∩

(
(t, i) +H

)
6= ∅.

(case B) There exists (t0, i0) ∈ I such that
∣∣R∩ ((t0, i0) +H

)∣∣ ≥ √R.

First consider case A: Since
√
R ≥ (4n)dR1, we can find R1 distinct indices (s1, j1),

. . . , (sR1 , jR1) ∈ I such that |sl − sk| ≥ 2 and ‖jl − jk‖∞ ≥ 4n for l 6= k. Choose (in some
deterministic way) (tl, il) ∈ R ∩ (sl, jl) + H. Because of the truncation, Etl,il and Etk,ik
are independent for k 6= l. Moreover, recalling (10.22),

P
(
Etk,ik

∣∣N ([−n,n]d,S2)(e1, θ) > R
)
≥ α

Now (10.28) follows from the definition of R1. In case B, there is j0 ∈ {0} × [0, n− 1)d−1

such that ∣∣R∩ [t0, t0 + 1]× {i0 + j0}
∣∣ ≥ √R

n
≥ R4

Let G be the event that

• at least R3 of those particles survive until time t0 + 1
• while not leaving the set {i0 + j0, i0 + j0 + e1},
• and occupying i0 + j0 at time t0 + 1.

By our choice of R4 and part (ii) of Lemma 10.3,

P(G) ≥ P
(∣∣∣Z({0},R4)

{0,e1} (1) ∩ {0}
∣∣∣ ≥ R3

)
≥ 1− δ. (10.30)

Moreover, by our choice of R3 and part (iii) of Lemma 10.3, we find

P
(

(ne1 + [−n, n]d, S2) ≤ Z{t0+1}×({i0+j0},R3)

ne1+[−n,n]d
(t0 + 2)

)
≥ 1− δ. (10.31)

Combining (10.30) and (10.31) finishes the proof.

Third step: We now write P for P conditioned on the event in (10.29), and denote the
first such pair by (t, i). From now on, we consider the process(

ZL(s)
)
s≥t :=

(
Z{t}×(i+[−n,n]d,S2)

i+[−L,L]d
(s)
)
s≥t

started from {t}× (i+ [−n, n]d, S2). Observe that under P, the process ZL is independent
of the process up to time t. We consider a shifted space-time box

B := (t, i) + [0, T ]× [−L,L]d.
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and let M count the number particles of ZL that leave B through T. By (10.25) we have

P(M(θ) ≥ R) ≥ 1− (3δ)2−d (10.32)

Fourth step: Let

R :=
{
v ∈ ZL(T ) : (T,X(T, v)) ∈ T(θ), (s,X(s, v) /∈ ∂B for s ∈ [0, T )

}
denote the set of particles of Z that leave B through the orthant in direction θ of the top
T. Note that, in contrast to R before, R is a set of nodes, since two particles can exit
through the same site. For v ∈ R, let

Ev :=
{

(X(v, T ) + [−n, n]d, S2) ≤ Z{t+T}×{X(v,T )}
X(v,T )+[−n,n]d

(t+ T + 1)
}

As before, we will show

P
(⋃

v∈REv
∣∣M(θ) ≥ R

)
≥ 1− δ. (10.33)

Combining (10.33) with (10.32) then gives

P
(
∃i ∈ i+ [0, L]d s. th. (i+ [−n, n]d, S2) ≤ ZL(t+ T + 1)

)
≥
(

1− (3δ)(d2d)−1
)

(1− δ).
(10.34)

Since i + i ∈ [L + n, 2L + n] × [0, 2L]d−1 and t + T + 1 ∈ [T + 2, 2T + 2], the claim now
follows from (10.34), (10.29) and our choice of δ.

Proof of (10.32). Similar to before, one of these two cases will occur:

(Case A’) There are distinct particles v1, . . . , v√R ∈ R, all of which occupy distinct sites.

(Case B’) There are distinct particles v1, . . . , v√R ∈ R, all of which occupy the same site.

In case A’ we have
√
R ≥ (4n)dR1, so that we find particles v̂1, . . . , v̂R1 in R satisfying,

for i 6= j,

‖X(v̂i, T )−X(v̂j , T )‖∞ ≥ 2n+ 1.

Because of the truncation, E v̂i and E v̂j are independent for i 6= j, under P. Moreover, by
definition of α, we have

P(Ev̂i |M(e1,−θ) ≥ R) ≥ α

for i = 1, . . . , R1, and thus (10.33) follows from the definition of R1. On the other hand,
in case B’ our choice of R3 directly implies (10.33).
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10.6.2. The local case

Proof of Proposition 10.9 in the local case: Take L ∈ N large enough such that the con-

dition of the local case holds. On {Z([−n,n]d,S2)
L survives}, let (vk)k∈N be a sequence of

particles with vk ∈ Z([−n,n]d,S2)
L′ (k) (chosen in some deterministic way). For k ∈ N, let

Ak :=
{

((L+ n)e1 + [−n, n]d, S2) ≤ Z{k}×{X(k,vk)}
[−L,3L]×[−3L,3L]d−1((k + 1))

}
.

That is, Ak is the event that we spontaneously generate the desired particles in time
[k, k + 1], starting from one particle at time k at site X(k, vk). Since X(tk, vk) can take
only finitely many values, we have

α := inf
k

ess inf P(Ak|Fk) > 0 (10.35)

where Ft denotes the sigma-field of environment and branching process up to time t. Let
T ∈ N be large enough that (1− α)T ≤ δ, and observe that

{
Z([−n,n]d,S2)
L survives

}
∩

2T+2⋃
k=T+2

Ak

⊆
{
∃i ∈ [L+ n, 2L+ n]× [0, 2L]d−1, t ∈ [T + 2, 2T + 2]

such that (i+ [−n, n]d, S2) ≤ Z([−n,n]d,S2)

[−L,3L]×[−3L,3L]d−1(t)

}
.

The definition of α and our choice of T show that the event on the l.h.s. has probability
at least (1− δ2)(1− δ) ≥ 1− ε.
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Part IV.

Brownian motion among space-time
disasters

11. Introduction

11.1. Motivation

In this section, we study the continuous-space analogue of the model from Part II.

The environment ω is a collection of random space-time disasters (t, x) ∈ R+×Rd, and we
replace the random walk on Zd by d-dimensional Brownian motion B. The intersection
between the graph of B and ω is almost surely empty, so to define the extinction time of
B it is natural to enlarge ω in the space-coordinate, i.e., to define

D :=
⋃

(s,x)∈ω
{s} × U(x). (11.1)

Here U(x) ⊆ Rd is the ball of unit volume around x. Observe that the enlargement is only
in the space-coordinate, and that each disaster still has “duration” zero. The extinction
time of B is the hitting time of the enlarged obstacle set D, i.e. the first time t such that
B(t) is close to x, for some disaster (t, x) ∈ ω, see Figure 11.

As in Part II, we are primarily interested in the (quenched) decay rate of the survival
probability, see Figure 12. More precisely, we show that the survival probability (almost
surely) decays at a deterministic exponential rate p.

We also consider a “soft” version of these dynamics, where B gets killed with a certain
probability p ∈ (0, 1) whenever it hits a disaster. The “disastrous” model described above
then corresponds to the case p = 1. As a second result, we show that the decay rate p is
a continuous function of p, even at the boundary p ↑ 1.

Note that this is somewhat surprising, as one might think that two cases behave quite
differently – after all, for p < 1 the Brownian motion can handle unfavorable parts of the
environment simply by crossing some disasters, even if this carries some cost. For p = 1
on the other hand, we have to “counteract” the degeneracy of the environment using only
the spatial freedom of Brownian motion.

We have already discussed a similar transition from soft to hard disasters in discrete time
in Section 4.4, where the question of continuity in the zero-temperature limit is an open
problem. This question was a partial motivation for our work on Brownian polymers, which
can be seen as the natural generalization to continuous time and space: It is reasonable
to conjecture that continuous time/space help smooth out the strong degeneracy of a
disastrous environment, and indeed this is what we prove.
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t

R/[−10,10]

10

1

Figure 11: Example for an environment ω on the torus R/[−10,10], together with a sur-
viving path: The circles represent disasters and the bars the enlarged obstacle set D. The
graph of B does not intersect D, and we therefore say that B survives (up to time 10).

R/[−10,10]

logP (τ(ω) ≥ t)
10 t

1

Figure 12: Plot of the quenched survival probability in the environment ω from above.
Every jump in the graph corresponds to a disaster of ω.
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11.2. Definition and known results

Let Ω denote the set of locally finite point measures on R+ × Rd. As always, we identify
ω ∈ Ω with its support, i.e. we will regard ω ⊆ R+×Rd. Let (ω,P) denote the Poisson point
process with unit intensity on R+ × Rd, and let (B,P ) denote d-dimensional Brownian
motion. We will interpret P as a probability measure on I, the set of càdlàg paths
b : R+ → Rd.

Let β ∈ [0,∞] be the inverse temperature of the model. We will refer to β < ∞ as
positive temperature, and to β = ∞ as the zero-temperature case. For b ∈ I and
t ≥ 0, we define the tube Vt(b) of volume t around b by

Vt(b) :=
{

(s, x) ∈ [0, t)× Rd : x ∈ U(b(s))
}
.

Recall that U(x) is the unit volume ball centered around x ∈ Rd, and note that∣∣{s ∈ [0, t) : (s,B(s)) ∈ D}
∣∣ = |Vt(B) ∩ ω| = ω(Vt(B)).

For the last expression, recall that ω is a measure on R+×Rd. Let ξ denote an exponential
random variable of parameter 1, independent of B but defined on the same probability
space. We introduce the extinction time

τβ(ω) :=

{
inf
{
t ≥ 0: β|ω ∩ Vt(B)| ≥ ξ

}
if β <∞

inf
{
t ≥ 0: ω ∩ Vt(B) 6= ∅

}
if β =∞.

(11.2)

Note that, as in Part II, the notation does not reflect that τβ(ω) is also a random variable
depending on B. An easy calculation shows that in positive temperature

P (τβ(ω) ≥ t) = E
[
e−β|Vt(B)∩ω|] (11.3)

while in the zero-temperature case

P (τ∞(ω) ≥ t) = P (Vt(B) ∩ ω = ∅).

Let us also introduce the polymer measure, i.e. the random probability measure µtω,β
on I defined by

µtω,β(B ∈ ·) := P (B ∈ ·|τβ(ω) ≥ t). (11.4)

Under this measure, the polymer is repulsed by the environment. In positive temperature,
we can try to understand (11.4) by comparing the entropic cost of avoiding the disasters to
the cost of intersections with the environment. This is more difficult in zero temperature,
since the Brownian motion is not allowed to intersect the environment and the influence
of the disasters is therefore larger.

Remark 11.1. In the earlier works [16, 19, 15, 11, 20] on Brownian directed polymers, the
partition function in positive temperature is defined by (11.3). However, in those works,
there is no negative sign in front of β, and general β ∈ R are considered. Since we focus
on the disastrous case, we have chosen to deviate from their notation.
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We study the logarithmic decay rate of the survival probability P (τβ(ω) ≥ t). Existence
and continuity are known in positive temperature:

Theorem M ([16, Theorem 2.2.1]). For every β ∈ [0,∞) there exists p(β) ∈ (−∞, e−β−1]
such that almost surely

lim
t→∞

1

t
E
[

logP (τβ(ω) ≥ t)
]

= lim
t→∞

1

t
logP (τβ(ω) ≥ t) = p(β). (11.5)

Moreover, β 7→ p(β) is continuous.

In the following, we will extend this existence and continuity result to the zero-temperature
case. This does not seem to follow from the methods in [16], due to the following issues:

• In positive temperature, logP (τβ(ω) ≥ t) is integrable and standard arguments
show that t 7→ E[logP (τβ(ω) ≥ t)] is superadditive. However, in zero temperature
logP (τ∞(ω) ≥ t) is not integrable, see Proposition 11.2 below.
• Finally, an easy application of Hölder’s inequality yields that β 7→ p(β) is convex,

and therefore continuous. But convexity tells us nothing about continuity at the
boundary β =∞.

Let us observe why the integrability of logP (τ∞(ω) ≥ t) is violated:

Proposition 11.2. For any t > 0, E[logP (τ∞(ω) ≥ t)] = −∞.

Proof. Let F be the first disaster time close to the origin:

F (ω) := inf
{
t ≥ 0: ω ∩

(
[0, t]× 1

2U(0)
)
6= ∅

}
.

Note that the Brownian motionB gets killed ifB(F (ω)) ∈ 1
2U(0), see Figure 13. Therefore,

on {F < t},

P (τ∞(ω) ≥ t) ≤ P
(
B(F (ω)) /∈ 1

2U(0)
)
≤ exp

(
− C

F (ω)

)
.

Since F is exponentially distributed,

E[logP (τ∞(ω) ≥ t)] ≤ −CE
[
F−1

1{F < t}
]

= −∞.

1
4

− 1
4

F

1
2

1

Figure 13: The time of the first dis-
aster (black circle) close to the ori-
gin is denoted by F (ω). Notice that
the Brownian motion has to move
at least distance 1/4 until time F in
order to survive.
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The proof of this proposition suggests that the non-integrability is caused by the possibility
of having a disaster near the starting point of the Brownian motion. It is reasonable to
think that this is the only source of non-integrability, and we will in fact confirm this
intuition in the proof. For an illustration, note that in Figure 12 the cost of avoiding the
first disaster is much larger than that of any other disaster.

11.3. Related literature

The Brownian polymer model was introduced in [16] and has since been studied by many
authors. We refer to [20] for a recent survey of known results.

In this section we discuss other works on the zero-temperature limit. There are not so
many results in this direction for the discrete-time random polymer model. This is mainly
because we have a simple answer in a large class of settings. To see this, let us consider
the case of nearest neighbor simple random walk. Deviating slightly from the notation in
Section 4, the environment is given by real-valued random variables ω = (ω(s, i))s∈N,i∈Zd
and the polymer measure is defined by

µtω,β(x) =
1

Zβt (ω)
exp

(
− β

t∑
s=1

ω(s, x(s))
)
1{x ∈ Nt},

where Nt denotes the set of nearest neighbor paths of length t on Zd. Now if the time
constant for the directed first passage percolation

µ = lim
t→∞

1

t
min
x∈Nt

t∑
s=1

ω(s, x(s))

is non-zero, then it is easy to deduce a continuity result

lim
β→∞

lim
t→∞

1

βt
logZβt (ω) = −µ.

On the other hand, if ess inf ω = 0 and the set {(s, i) : ω(s, i) = 0} percolates, then we

have µ = 0. In this case, Z∞t (ω) := limβ→∞ Z
β
t (ω) is the number of open paths in

directed site percolation, and limt→∞ 1
t logZ∞t (ω) represents the exponential growth rate.

As mentioned in the discussion in Section 4.4, the existence of this limit is proved in [31],

but it is not known whether it equals limβ→∞ limt→∞ 1
t logZβt (ω).

Two recent works [12, 51] study this type of problem in a non-nearest neighbor model on
N× Zd defined by

P tω,β(x) =
1

Zβt (ω)
exp

(
−

t∑
s=1

[
βω(s, x(s)) + |x(s− 1)− x(s)|α

])
(11.6)

and proved the continuity of the free energy at β =∞. In this case, logZβt (ω) is integrable
and hence the existence follows from the superadditivity argument.
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Finally, there is a recent work [3] where the zero-temperature limit of the polymer measure
is discussed for the model on N× R defined by

µtω,β(dx) =
1

Zβt (ω)
exp

(
− β

t∑
s=1

[
ω(s, x(s)) + |x(s− 1)− x(s)|2

] ) t∏
s=1

dx(s).

In the preceding works [2, 4], the infinite volume polymer measure is constructed for every
given asymptotic slope, at zero and positive temperature, respectively. Then in [3], it
is shown that as β → ∞, not only the free energy but also the infinite volume polymer
measure converges. This model is similar to our model, since the polymer measure in (11.4)
has a heuristic representation

µtω,β(dx) =
1

Zβt (ω)
exp

(
− βω(Vt)−

1

2

∫ t

0
|ẋ(s)|2ds

)
dx.

However, we do not multiply the term
∫ t

0 |ẋ(s)|2ds by β and thus the two models behave
quite differently as β →∞. The zero temperature model in [2] is of last passage percolation
type and concentrates on a single path, whereas our result implies that the entropy is non-
degenerate at zero temperature.

11.4. The main results

In view of Proposition 11.2, it is natural to consider a modified death time where the
disasters up to time 1 are not taken into account. For I ⊂ R+, let us write ωI for the
restriction ω|I×Rd as a measure, and define

τ1
β(ω) := τβ(ω[0,1]c) =

{
inf
{
t ≥ 1: β |ω[0,1]c ∩ Vt(B)| ≥ ξ

}
for β <∞,

inf
{
t ≥ 1: |ω[0,1]c ∩ Vt(B)| ≥ 1

}
for β =∞.

(11.7)

It is convenient to restrict the Brownian motion to a domain growing at polynomial speed:

At :=
{

sup
0≤s≤t

|B(s)−B(0)| ≤ dte2
}
. (11.8)

The probability of Act is bounded by exp(−ct3) by the reflection principle and hence it
should be much smaller than the survival probability. We state the key technical estimate
that will be used in the main results:

Proposition 11.3. For every p ∈ N, there exists C > 0 such that for all β ∈ [0,∞], all
t ≥ C and r, s > 0 such that 1 ≤ r ≤ r + s ≤ t and either r + s ≤ t− 1 or r + s = t,

E
[∣∣∣ logP

(
τ1
β(ω) ≥ t

∣∣τ1
β(ω[r,r+s]c) ≥ t,At

)∣∣∣p ] ≤ C(1 + sp) + C(1 + log+ t)C . (11.9)

That is, we control the cost of surviving in the time-slice [r, r + s] × Rd, conditioned on
surviving all disasters until time t outside [r, r + s]× Rd.

With the help of this estimate, we obtain a polynomial concentration bound for the loga-
rithmic survival probability, uniformly in β:
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Proposition 11.4. For every ε ∈ (0, 1/2) and r ∈ N, there exists t0 > 0 such that for all
t ≥ t0 and β ∈ [0,∞],

P
(∣∣logP (τ1

β(ω) ≥ t,At)− E[logP (τ1
β ≥ t,At)]

∣∣ ≥ t1/2+ε
)
≤ t−r. (11.10)

Remark 11.5. For β ∈ (0,∞), an exponential concentration bound is obtained in [16,
Theorem 2.4.1(b)]. However, it does not cover the case β =∞ since it contains a constant
that degenerates at β =∞.

We show the existence of the decay rate p in zero temperature:

Theorem 11.6. There exists p(∞) ∈ (−∞,−1] such that

(i) limt→∞ 1
tE[logP (τ1

∞(ω) ≥ t,At)] = p(∞).

(ii) Almost surely, limt→∞ 1
t logP (τ∞(ω) ≥ t) = p(∞).

We point out, that both the restriction to At and the truncation of the environment are
only present in part (i), while the almost sure limit in part (ii) is for the unrestricted
survival probability. To close this gap, we therefore need an argument that the limit is
not affected by replacing τ∞ with the modified extinction time τ1

∞, i.e. that almost surely

lim
t→∞

1

t

∣∣ logP (τ∞(ω) ≥ t,At)− logP (τ1
∞(ω) ≥ t,At)

∣∣ = 0. (11.11)

Notice that we can replace the interval [0, 1] in the modification (11.7) by [0, ε], for any
ε > 0, and that we can show, for any ε > 0,

lim
t→∞

1

t
E
[

logP
(
τ∞(ω[0,ε]c) ≥ t,At

)]
= p(∞).

Thus, it seems natural to use that almost surely

logP (τ∞(ω[0,ε]c) ≥ t,At)
ε↓0−−→ logP (τ∞(ω) ≥ t,At).

However, the problem is that we first take a limit t→∞. We would have to justify that

P
(
B(ε) ∈ [−R,R]

∣∣τ∞(ω[0,ε]c) ≥ t,At
)

decays subexponentially, for R some large constant. Our methods do not give enough
control over this measure, and (11.11) will instead follow from the following result:

Proposition 11.7. Assume d = 1. There exists a random variable A(ω) ∈ (0,∞) such
that, for all x ∈ R,

P
(
B(2) ∈ dx, τ∞(ω) ≥ 2

)
≥ A(ω)P

(
B(1) ∈ dx

)
.

That is, we provide a (random) bound on the additional cost of the disasters in [0, 1]×R.
We expect that A(ω) is small, since Proposition 11.2 in particular implies E[logA] = −∞,
but for our purposes A(ω) > 0 will be enough.
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Remark 11.8. Note that except for this point, the proofs of our results are almost identical
for d = 1 and d ≥ 2. For this reason, and to keep the notation simple, we carry out the
proofs mostly in the one-dimensional setting. We were not able to prove Proposition
11.7 in dimensions other than d = 1, and for this reason we provide a different proof of
(11.11) in higher dimensions. We postpone the description of the necessary modifications
in dimensions d ≥ 2 to Section 13.6.

Finally, we show that the continuity from Theorem M also extends to the boundary β =∞:

Theorem 11.9. (i) For every ε ∈ (0, 1/2), there exists t0 > 0 such that for all t ≥ t0
and β ∈ [0,∞],

−t1/2+ε ≤ E
[

logP (τ1
β(ω) ≥ t,At)

]
− tp(β) ≤ tε. (11.12)

(ii) limβ→∞ p(β) = p(∞).

11.5. Outline

In this section, we explain the high-level structure of the proofs. The necessary prepara-
tions for Proposition 11.3 are carried out in Section 12, which is the technical core of the
argument. Let us sketch the main steps:

In Section 12.1, we provide a bound for the first moment of the logarithmic survival
probability in a space-time tube. To deal with the non-integrability from Proposition
11.2, we condition on the first disaster time F , so that the resulting bound also depends
on F . In fact, it is convenient to replace Brownian motion by the Brownian bridge, and
consequently the bound also depends on the time L of the last disaster.

In Section 12.2 we strengthen this to higher moments by duplicating the tube strategy.
More precisely, we study the logarithmic survival probability in time interval [r, r + s],
assuming that the endpoints (B(r), B(r + s)) have some arbitrary law ν. We apply the
result from the previous section in a large number of parallel tubes (see Figure 15), and use
the fact that it is unlikely to have small survival probability in each of them. The resulting
bound depends on the cost of spreading out over multiple tubes, i.e., on a quantity M(ν)
measuring the dispersion of ν, see (12.24).

In order to prove Proposition 11.3, we need to consider the situation where the endpoints
(B(r), B(r+ s)) are distributed according to a random probability measure νω depending
on the environment outside [r, r + s] × R. In Section 12.3, we therefore estimate the
dispersion M(νω) of this measure.

Finally, Section 12.4 contains the proof of Proposition 11.3, making use of all preparations
up to this point.

The role of Proposition 11.3 is very similar to the uniform moment bound (Proposition
5.2) in Part II, and we will use it repeatedly in the proofs of the main results in Section
13:
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• In Section 13.1 we show that t 7→ E[logP (τ1
∞(ω) ≥ t,At)] defines an almost-

superadditive sequence in the sense of Theorem H.
• In Section 13.2 we prove the concentration inequality (Proposition 11.4).
• In Section 13.3 we prove the bound on the cost of replacing τ∞ with the modified

extinction time τ1
∞ in dimension d = 1 (Proposition 11.7).

• In Section 13.4 we combine those results and prove Theorem 11.6 in d = 1.
• In Section 13.5 we prove continuity at β =∞ (Theorem 11.9). We follow the same

argument as on the lattice (Proposition 5.5), using a technique from [58].
• The extra work for the proof of Theorem 11.6 in dimension d ≥ 2 is carried out in

Section 13.6.

12. Preparation

12.1. Survival probability in a tube

In this section, we provide a lower bound for the survival probability of the Brownian
motion, which is conditioned to end at a fixed point and restricted to a tube.

We start by introducing some notation. We write P r,x;s,y for the Brownian bridge measure
between (r, x) and (s, y). For technical reasons, we consider a sequence of nested intervals:

• x and y will be chosen from J (5) := [−5
2 ,

5
2 ],

• the Brownian motion will be restricted to J (6) := [−3, 3],
• then the survival probability depends only on the disasters in J (7) := [−7

2 ,
7
2 ],

• J (5) is divided into J = {J (1)
−2 , . . . , J

(1)
2 }, where J

(1)
x := x+ [−1

2 ,
1
2).

The role of J (7) is to ensure independence of the survival probabilities in different tubes
in our duplication strategy, see Figure 15. For t > 0, let Ft denote the first disaster in
[0, t]× J (7), that is,

Ft := inf
{
r ∈ [0, t] : ∃z ∈ J (7) such that (r, z) ∈ ω

}
with the convention Ft = t if ω ∩ ([0, t]× J (7)) = ∅. Similarly we let

Lt := sup
{
r ∈ [0, t] : ∃z ∈ J (7) such that (r, z) ∈ ω

}
denote the last disaster in [0, t] × J (7), where we set Lt = 0 if there is no such disaster.
The following lemma provides a lower bound on the survival probability in [0, t]× J (6):

Lemma 12.1. There exists C > 0 such that the following hold almost surely:

(i) For all x, y ∈ J (5),

E
[
logP 0,x;t,y

(
τ∞(ω) ≥ t, B(s) ∈ J (6) for all 0 ≤ s ≤ t

) ∣∣∣ Ft, Lt]
≥ −C

(
t+ 1{Ft < t}(F−1

t + (t− Lt)−1)
)
,

(12.1)
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(ii) E
[
logP

(
τ1
∞(ω) ≥ t, B(s) ∈ J (6) for all 0 ≤ s ≤ t

)]
≥ −C(t+ 1).

Remark 12.2. In contrast to the situation in Figure 15, the tube is assumed to be “parallel”
to the time axis. However, this is not restrictive, as we can change the terminal point of
the Brownian bridge by applying a time-space affine transformation which leaves the law
of ω invariant, see also Figure 16. We include this generalization to Lemma 12.6.

The term F−1
t (resp. (t−Lt)−1) is the cost for the Brownian motion to avoid the first (resp.

last) disasters in [0, t]× J (7). This justifies the intuition discussed after Proposition 11.2,
that a disaster appearing immediately after the starting point is the only source of non-
integrability. To see the reason why the cost is inverse proportional to Ft, we state simple
estimates for Brownian motion without proof, which we will use repeatedly.

Lemma 12.3. There exists C > 0 such that for every s, t > 0 and x, y ∈ {−2, . . . , 2},
almost surely on {B(t) ∈ J (1)

x },

P
(
B(s+ t) ∈ J (1)

y and B(u+ t) ∈ J (6) for all u ∈ [0, s]
∣∣∣ B(t)

)
≥
{
e−

C
s
−Cs if x 6= y,

e−Cs if x = y.

(12.2)

We are going to bound the probability in (12.1) from below by constructing a specific
survival strategy for the Brownian motion. We will introduce various terminologies in
the course of describing the strategy. Given an environment ω, we can find Ti ≥ 0 and
Di ∈ J (7) such that

ω ∩
(
R+ × J (7)

)
=
{(
T0, D0

)
,
(
T1, D1

)
, . . .

}
and such that T0 < T1 < . . . . We denote the interarrival times by ∆0 := T0 and

∆i := Ti − Ti−1

for i ≥ 1, which are independent exponential random variables with parameter 7. We say

that J
(1)
x ∈ J is contaminated by (Tj , Dj) if

J (1)
x ∩ U(Dj) 6= ∅.

It is simple to check that if J
(1)
x ∈ J is not contaminated by (Tj , Dj) and B(Tj) ∈ J (1)

x , then
the Brownian motion is not affected by the disaster at time Tj . Clearly every disaster can
contaminate at most two sites, and since |J | = 5, there exists a sequence (s(0), s(1), . . . ) ∈
{0, 1, . . . , 4}N such that J

(1)
s(j) is not contaminated by (Tj , Dj) or (Tj+1, Dj+1). See Fig-

ure 14. The interval J
(1)
s(j) is safe in the sense that the Brownian motion can survive during

[Tj , Tj+2) simply by staying there.

Note that if there is no disaster in [0, t] × J (7) (that is, on {Ft = t} = {Ft = t, Lt = 0}),
we get (12.1) from Lemma 12.3, since

P (τ∞(ω) ≥ t) ≥ P
(
B(s) ∈ J (6) for all s ∈ [0, t]

)
≥ e−Ct.
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∆1 ∆2 ∆3 ∆4 ∆5 ∆6 ∆7

J
(1)
−2

J
(1)
−1

J
(1)
0

J
(1)
1

J
(1)
2

1
Figure 14: An illustration of the survival strategy until the first regeneration time R1.
In this figure we have ρ1 = 5. At every disaster time, (typically) two intervals are contam-
inated (marked by the thick lines). The left ends of the striped regions are safe intervals.
The arrows indicate to which interval the Brownian motion is supposed to move.

For the remainder of this section we therefore discuss the case {Ft < t} = {Ft < t, Lt > 0}.

The first interval: The survival strategy up to T0 = Ft is prescribed by the event

S(0) :=
{
B(T0) ∈ J (1)

s(0) and B(u) ∈ J (6) for u ∈ [0, T0]
}
. (12.3)

From the estimates in Lemma 12.3, we get

logP (S(0)) ≥ −C(Ft + F−1
t ).

Renewal construction: After T0 = Ft, we define the sequence of survival strategies by
using a renewal structure. Let ρ0 := 0 and for i ≥ 0,

ρi+1 = inf
{
j > ρi + 1: ∆j > ∆j−1

}
.

We write the corresponding disaster time by

Ri := Tρi .

We now recursively define events S(i) (i ≥ 1) as follows: B(u) ∈ J (6) for all u ∈ [Ri−1, Ri),
and in addition

B(Tj) ∈ J (1)
s(j) for j = ρi−1, . . . , ρi − 2; (S1)

B(u) ∈ J (1)
s(ρi−2) for u ∈ [Tρi−2, Tρi−1]; (S2)

B(Tρi) ∈ J
(1)
s(ρi)

. (S3)
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In words, the Brownian motion moves to the next safe interval in each time interval
(Tj , Tj+1) except for j = ρi − 2. Note that we may have ρi = ρi−1 + 2, and then the
step (S1) is to be skipped. The second step (S2) is possible in this case since we have

B(Tρi−2) = B(Tρi−1) ∈ J (1)
s(ρi−1) by the definition of S(0) (i = 1) and S(i− 1) (i ≥ 2). Now

on the event {ρ1 = k} (k ≥ 2), Lemma 12.3 yields

logP (S(1) | S(0)) ≥ −C
∑

i=1,...,k
i 6=k−1

∆−1
i − C

k∑
i=1

∆i. (12.4)

It is important that the term ∆−1
k−1 = max{∆−1

1 , . . . ,∆−1
k } is omitted from the first sum

on the r.h.s., due to the unusual strategy in (S2) above. Indeed, if that sum was taken
over 1 ≤ i ≤ k, it would be the sum of inverse exponential random variables, which is not
P-integrable. On the other hand, the other terms {∆−1

1 , . . . ,∆−1
k−2,∆

−1
k } gain one extra

degree of integrability from the knowledge that they are the k− 1 smallest members from
the collection {∆−1

1 , . . . ,∆−1
k }.

Last interval: It remains to prescribe the behavior after the last renewal time before
time t. Let us denote by

N(s) :=

∞∑
i=1

1{Ti ≤ s} and

M(s) :=

∞∑
i=1

1{Ri ≤ s}

the numbers of disasters and renewals up to time s, respectively. We further set

σ := N(Lt)−M(Lt) = the number of disasters in [RM(Lt), Lt]× J (7)

U := Lt −RM(Lt) = the duration from the last renewal to Lt.

Then the survival strategy in [RM(Lt), t] is prescribed by the event T defined as follows:

B(u) ∈ J (6) for all u ∈ [RM(Lt), t], and in addition

B(Tj) ∈ J (1)
s(j) for j = M(Lt), . . . , N(Lt)− 1, (S4)

B(u) ∈ J (1)
s(Nt−1) for u ∈ [TN(Lt)−1, Lt)), (S5)

B(t) = y. (S6)

In the case where the last disaster time Lt is a renewal time, both (S4) and (S5) are to
be skipped. In words, the strategy T for the terminal part is the same as for the previous

cases except that we choose to remain in J
(1)
s(N(Lt)−1) after the last disaster before Lt,

regardless of whether a renewal occurs after Lt or not. Then exactly as in (12.4), on the
event {σ = n}, we have

logP 0,x;t,y(T | S(0), . . . ,S(M(Lt)))

≥ −C
(
n−1∑
i=1

∆−1
i +

n∑
i=1

∆i + (t− Lt) + (t− Lt)−1

)
,
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where the last term (t − Lt)
−1 appears since the Brownian motion has to move from

J
(1)
s(N(Lt)−1) to the endpoint y during [Lt, t]. Note that since there is no renewal in

[RM(Lt), Lt], the strategy T makes the Brownian motion survive without moving in the

shortest interval among {[Tj , Tj+1]}N(Lt)−1
j=M(Lt)

. Therefore for the same reason as before, we

can expect that the sum
∑n−1

i=1 ∆−1
i gains an extra degree of integrability.

Collecting the above strategies, we define

St := S(0) ∩
M(Lt)⋂
i=1

S(i) ∩ T .

Then the probability that the Brownian motion survives in the tube [0, t]×J (6) is bounded
from below by

logP 0,x;t,y(τ∞(ω) ≥ t, B(s) ∈ J (6) for all 0 ≤ s ≤ t)
≥ logP (St)

= logP (S(0)) +

M(Lt)∑
i=1

logP (S(i) | S(i− 1)) + logP (T | S(0), . . . ,S(M(Lt))).

(12.5)

Expectation conditioned on {Ri}i≥1: The previous intuition about “extra integrabil-
ity” will be made precise in Lemma 12.4 below. Using Part (iii), it is then not hard to
show that

E
[

logP (S(i) | S(i− 1))
]
<∞.

Unfortunately, we also have to take into account that the number of summands M(Lt) in
(12.5) is random, which makes the argument more complicated. We found that, instead
of conditioning directly on M(Lt), it is easier to first estimate

E [logP (S(i) | S(i− 1)) | Ri] , (12.6)

which does not depend on the other renewals. Similarly, the last term in (12.5) also
depends on RM(Lt) through U , and hence we will consider

E
[

logP (T | S(0), . . . ,S(M(Lt))) | U,Lt
]
. (12.7)

In Lemma 12.5 we will provide bounds on (12.6) and (12.7) in terms of Ri and U , and
later in the proof of Lemma 12.1 we will show that the random sum over those bounds is
integrable.

To this end, it is instrumental to understand the inter-dependence among {∆i}i≥1, {ρi}i≥0

and {Ri}i≥1.

Lemma 12.4. The following hold:
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(i) Both

{ρj}j≥1 under P and{(
∆ρj+k

)
k=1,...,ρj+1−ρj : j ≥ 1

}
under P(·|ρj : j ≥ 1)

are independent families.

(ii) The ρj+1 − ρj (j ≥ 1) has the same law as ρ1, which is given by

P(ρ1 = k) =
k − 1

k!
for all k ≥ 2.

Moreover, conditioned on {ρ1 = k}, R1 − R0 is Gamma distributed with parameter
(k, 7). That is, it has probability density

7k

(k + 1)!
rk−1e−7r

1{r ≥ 0}.

(iii) Let {Ei}i∈N be independent exponential random variables with rate 7. Conditioned
on {ρ1 = k, Tk − T0 = s},

∑
i={1,...,k}\{k−1}

∆−1
i

d
=

1

s

k∑
i=2

∑k
j=1Ej∑i

j=1
1
k−jEj

Proof. The first assertion follows from the fact that (ρj)j≥1 are stopping times for the
process (Ti)i≥0.

To prove the second and third assertions, it is useful to realize the interarrival times in
such a way that the dependence structure between ρ1, Tk−T0 =

∑k
i=1 ∆i and ∆−1

i is clear.

To this end, let (∆
(k)
i )ki=1 be an increasing order statistics of independent Exp(7) random

variables and let π be a uniform random variable on the permutations Sk of {1, 2, . . . , k},
which is independent of ∆(k). Then we can realize the interarrival times as

(∆i)1≤i≤k =
(

∆
(k)
π(i)

)
1≤i≤k

. (12.8)

Now, since {ρ1 = k} depends only on π, we find

P(ρ1 = k) = P(∆1 > ∆2 > · · · > ∆k−1 and ∆k−1 < ∆k) =
k − 1

k!

by simply counting the number of permutations satisfying the above order. For the same

reason, {ρ1 = k} is independent of
∑k

i=1 ∆i =
∑k

i=1 ∆
(k)
i , which is Gamma distributed

with parameter (k, 7). Thus the second assertion is proved.

Finally,
∑k

i=1 ∆i is independent of {∆j/
∑k

i=1 ∆i}kj=1, see [24, Theorem IX.4.1]. Therefore,

conditioned on {ρ1 = k,
∑k

i=1 ∆i = s}, we have

∑
i∈{1,...,k}\{k−1}

∆−1
i

d
=

1

s

k∑
i=2

(
∆̃

(k)
i∑k

i=1 ∆̃
(k)
i

)−1

, (12.9)
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where ∆̃(k) is an independent copy of ∆(k). The third assertion follows from the following
distributional identity proved in [54, §1]:

(
∆̃

(k)
1 , ∆̃

(k)
2 , . . . , ∆̃

(k)
k

)
d
=
( E1

k − 1
,

2∑
j=1

Ej
k − j , . . . ,

k∑
j=1

Ej
k − j

)
.

Now we state the bounds on the conditional expectations mentioned before.

Lemma 12.5. (i) There exists C > 0 such that almost surely,

E
[

logP (S(1) | S(0))
∣∣ ρ1, R1

]
≥ −C

(
R1 +

ρ3
1

R1

)
, (12.10)

and

E
[

logP (T | S(0), . . . ,S(M(Lt)))
∣∣U, σ, Lt]1{U > 0}

≥ −C
(
U +

σ3

U
+ (t− Lt) + (t− Lt)−1

)
.

(12.11)

(ii) There exists C > 0 such that almost surely,

E
[

logP (S(1) | S(0))
∣∣R1

]
≥ −C

(
R1 +R−1

1

)
, (12.12)

and

E
[

logP (T | S(0), . . . ,S(M(Lt)))
∣∣U,Lt]1{U > 0}

≥ −C
(
U + U−1 + (t− Lt) + (t− Lt)−1

)
.

(12.13)

Proof. Part (i): By (12.4) and Lemma 12.4, we get for ω ∈ {ρ1 = n+ 2, Tn+2−T0 = s},

logP (S1 | S0) ≥ −C
(
s+

∑
i=1,...,n+2
i 6=n+1

1

∆i

)

d
=−C

(
s+

1

s

n+2∑
i=2

∑n+2
j=1 Ej∑i

j=1
1

n+2−jEj

)
.

(12.14)

Thus it suffices to show that the expectation over {E1, . . . , En+2} in the last line is bounded
by (n+ 1)3. To this end, we first bound the expectation of the sum as follows:

E
[ n+2∑
i=2

∑n+2
j=1 Ej∑i

j=1
1

n+2−jEj

]
≤

n+2∑
i=2

(n+ 2− i)E
[∑n+2

j=1 Ej∑i
j=1Ej

]
=

n+2∑
i=2

(n+ 2− i)
(

1 + E
[ n+2∑
j=i+1

Ej

]
E
[( i∑

j=1

Ej

)−1])
.

(12.15)
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This is the point where we use the extra integrability brought by omitting i = 1, which
corresponds to the largest value of {∆−1

i }ni=1. Indeed, since
∑i

j=1Ej is Gamma distributed
with parameters (i, 1), for i ≥ 2, we can compute

E
[ n+2∑
j=i+1

Ej

]
= n+ 2− i and E

[( i∑
j=1

Ej

)−1]
=

1

i− 1
.

Substituting into (12.15), we arrive at

E
[ n+2∑
i=2

∑n+2
j=1 Ej∑i

j=1
1

n+2−jEj

]
≤ n

n+2∑
i=2

n+ 1

i− 1
≤ (n+ 1)3.

The proof of (12.11) is essentially the same. We assume U > 0 and σ = n. Then recall
that by (12.1), we have

logP (T | S(0), . . . ,S(M(Lt))) ≥ −C
( n−1∑
i=1

∆−1
i + U + (t− Lt) + (t− Lt)−1

)
.

Since the interarrival times of disasters in [RM(Lt), Lt] are decreasing, the largest member

of {∆−1
i }ni=1 is omitted in the sum on the right-hand side. This is the same situation as

in Lemma 12.4-(iii), and thus conditioned on U , we have∑
i=1,...,n−1

∆−1
i

d
=U−1

n∑
i=2

∑n
j=1Ej∑i

j=1
1

n−jEj
.

Then the same computation as in the previous case yields the desired bound.

Part (ii): In order to take an expectation over ρ1 conditioned on R1, we estimate the
conditional probability

P(ρ1 = n+ 2 | R1 = r) = P(ρ1 = n+ 2 | Tρ1 − T0 = r)

=
P(ρ1 = n+ 2, Tn+2 − T0 = r)

P(Tρ1 − T0 = r)
,

where here and in what follows, conditions like Tn+2−T0 = r should be understood in the
sense of probability density. Since {ρ1 = n+ 2} and Tn+2 − T0 are independent, by using
Lemma 12.4, we can bound the numerator from above by

P(ρ1 = n+ 2, Tn+2 − T0 = r) ≤ (n+ 1)

(n+ 2)!

(7r)n+1

(n+ 1)!
e−7r. (12.16)

On the other hand, the denominator is bounded from below by

P(ρ1 = 2, T2 − T0 = r)

= P(T1 − T0 < T2 − T1, T2 − T0 = r)

= 1
2P(T2 − T0 = r)

= 3
2re
−7r.

(12.17)
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Combining (12.16) and (12.17), we find the bound

P(ρ1 = n+ 2 | R1 = r) ≤ (n+ 1)

(n+ 2)!

(7r)n+1

(n+ 1)!

2

3r
≤ 4

(7r)n

(n!)2
.

In particular, we get that if R1 ≤ 1
7 then

P(ρ1 = n+ 2|R1) ≤ 4

(n!)2

and consequently,

E
[
ρ3

1

∣∣ R1

]
=
∞∑
n=0

(n+ 2)3P(ρ1 = n+ 2 | R1) ≤
∞∑
n=0

4
(n+ 2)3

(n!)2
<∞. (12.18)

If R1 >
1
7 , then we use n! ≥

(
n
2

)n
2 to see that for all n >

√
28R1, we have

P(ρ1 = n+ 2 | R1) ≤ 4

n32n

and consequently,

E
[
ρ3

1

∣∣ R1

]
≤ 282R2

1 + 4
∑

n>
√

28R1

(n+ 2)3

n32n
. (12.19)

Since the sum on the right-hand side converges, we can combine the two estimates (12.18)
and (12.19) to find C > 0 such that for all R1 > 0,

E
[
ρ3
∣∣ R1

]
≤ C(1 +R2

1).

Plugging this in (12.10), we get (12.12).

Finally, (12.13) follows in a similar way. We consider the probability of {σ = n} condi-
tioned on {U = u, Lt = l}, which can be written as

P(σ = n | U = u, Lt = l)

=
P
(∑M(l)+n+1

i=M(l)+1 ∆i = u,∆M(l)+1 > · · · > ∆M(l)+n+1

)
P
(∑M(l)+σ+1

i=M(l)+1 ∆i = u,∆M(l)+1 > · · · > ∆M(l)+σ+1

) .
The two events in the numerator are independent and hence the numerator is bounded
(in the sense of density) from above by

1

(n+ 1)!

1

n!
(7u)ne−7u. (12.20)
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On the other hand, the denominator is bounded from below by considering the special
case σ = 0:

P

(
M(l)+σ+1∑
i=M(l)+1

∆i = u,∆M(l)+1 > · · · > ∆M(l)+σ+1

)
≥ P

(
∆M(l)+1 = u

)
= 7e−7u.

(12.21)

From (12.20) and (12.21), we find that

P(σ = n | U = u, Lt = l) ≤ 1

n+ 1

(7u)n

(n!)2
.

The rest of the argument is the same as for (12.12).

We are now ready to prove the main result of this section:

Proof of Lemma 12.1. Part (i): Note that on {M(t) = m}, we have

logP (St) = logP (S(0)) +
m∑
i=1

logP (S(i) | S(i− 1)) + logP (T | S(0), . . . ,S(m)).

By using the bounds (12.12) and (12.13) and denoting Ri − Ri−1 by ∆Ri, we get on
{Ft < t}

E [logP (St) | Ft, Lt] ≥ −C
(
Ft + F−1

t + E
[M(t)∑
i=1

∆Ri + U
]

+ E
[M(t)∑
i=1

(∆Ri)
−1 + U−1

]
+ (t− Lt) + (t− Lt)−1

)
.

(12.22)

Since we have Ft +
∑M(t)

i=1 ∆Ri + U + (t − Lt) = t by definition, it remains to show that
the third expectation in (12.22) is bounded by Ct. We use that A′i �st Ai �st ∆Ri, where
Ai is Gamma distributed with parameter (2, 7) and A′i is exponentially distributed with
parameter 7, respectively. Since

(r1, . . . , ri) 7→
1

r1
P(r1 + · · · ri ≤ t)

is decreasing, the above stochastic domination implies

E

[
M(t)∑
i=1

(∆Ri)
−1

]
=

∞∑
i=1

E
[
(∆R1)−1

1{∆R1 + · · ·+∆Ri ≤ t}
]

≤
∞∑
i=1

E
[
A−1

1 1{A1 +A′2 + · · ·+A′i ≤ t}
]
.
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By using the form of the probability density of A1, we find

E
[
A−1

1 1{A1 +A′2 + · · ·+A′i ≤ t}
]

=

∫ ∞
0

a−1P(a+A′2 + · · ·+A′i ≤ t)49ae−7ada

= 7P(A′1 + · · ·+A′i ≤ t)

and hence

E

[
M(t)∑
i=1

(∆Ri)
−1

]
= 7

∞∑
i=1

P(A′1 + · · ·+A′i ≤ t).

The sum on the right-hand side is the expectation of a Poisson process with intensity 7
on [0, t], which is equal to 7t.

Part (ii): We follow the same strategy as in (i), but we skip (S6) in our strategy. Then
we obtain the bound

E
[
logP (τ1

∞(ω) ≥ t, B(s) ∈ J (6) for all 0 ≤ s ≤ t)
∣∣∣ Ft] ≥ −C(t+ 1{Ft < t}F−1

t ).

Since Ft(ω[0,1]c) ≥ 1, we are done.

12.2. Higher moments with general endpoints distribution

In this section we use Lemma 12.1 to get bounds on higher moments for the survival
probability with more general initial and terminal distribution for the Brownian bridge.
We first introduce some more notation. Given 0 ≤ r < s and ν ∈ M(R2), we denote by
P ν,r,s the law of the Brownian bridge in the interval [r, s] with initial and terminal points
chosen according to ν. More precisely, recall that P r,x;s,y denotes the Brownian bridge
between (r, x) and (s, y). Let

P ν,r,s(·) :=

∫
R2

P r,x;s,y(·)ν(d(x, y)). (12.23)

As mentioned in Section 11.5, we will derive our moment bound by considering the survival
probability in disjoint tubes. For x ∈ R and i ≥ 1, let

J (5)
x (i) := x+ 7i+ [−5

2 ,
5
2 ] ⊆ R,

J (6)
x (i) := x+ 7i+ [−3, 3] ⊆ R,

and for a given probability measure ν ∈M(R2) and p ≥ 1,

Mp(ν) := sup
x,y∈R

min
i=0,...,p

ν(J (5)
x (i)× J (5)

y (i)). (12.24)

This is a measure of (local) dispersion of ν. If Mp(ν) is large, then under P ν,r,s, there is

a good chance to find the initial and terminal points of the Brownian motion in J
(5)
x (i)×

J
(5)
y (i), for each i = 0, 1, . . . , p. See also Figure 15.
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Figure 15: Illustration for the du-
plication strategy, with black bars
indicating the beginning and end
of the tubes. The survival prob-
ability in each tube is controlled
by Lemma 12.1. If the distribu-
tion of (B(r), B(s)) is sufficiently
dispersed, then we can choose the
best tube among many to construct
a good survival strategy in [r, s].

Note that from our choice of J (7), the tubes connecting J
(5)
x (i) and J

(5)
y (i) are independent

for different i. Since we can apply Lemma 12.1 to get a lower bound on the survival
probability for each tube by itself, we should be able to get a better bound on the survival
probability in the time interval [r, s]. The following lemma confirms this intuition:

Lemma 12.6. For every p ≥ 1 there exists C > 0 such that for any 0 ≤ r < s, t ∈ [0, s−r],
and ν ∈M(R2),

E
[∣∣logP ν,r,s(τ∞(ω[r,s]) ≥ r + t)

∣∣p] ≤ C(1 + tp) + | logMp(ν)|p. (12.25)

If in addition ν is supported on [−A,A]2 ⊆ R2 for some A ≥ 7(3+p)
2 , then

E
[∣∣logP ν,r,s

(
τ∞(ω[r,s]) ≥ r + t, |B(u)| ≤ A for all u ∈ [r, r + t]

)∣∣p]
≤ C(1 + tp) + | logMp+2(ν)|p.

(12.26)

Proof. We assume that the supremum in (12.24) is attained at x, y ∈ R, and set

νi(d(u, v)) :=
ν|
J
(5)
x (i)×J(5)

y (i)
(d(u, v))

ν
(
J

(5)
x (i)× J (5)

y (i)
) .

Then we have

P ν,r,s(τ∞(ω[r,s]) ≥ r + t)

≥ max
i=0,...,p

∫
(u,v)∈J(5)

x (i)×J(5)
y (i)

P r,u;s,v(τ∞(ω[r,s]) ≥ r + t)ν(d(u, v))

= max
i=0,...,p

ν
(
J (5)
x (i)× J (5)

y (i)
)
P νi,r,s(τ∞(ω[r,s]) ≥ r + t)

≥ min
i=0,...,p

ν
(
J (5)
x (i)× J (5)

y (i)
)

max
i=0,...,p

P νi,r,s(τ∞(ω[r,s]) ≥ r + t).
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t

Rd

(r, x)

(0, 0)

(s, y)

(s− r, 0)

1
Figure 16: The law of ω is invariant under the affine transformation that maps (r, x) to
(0, 0) and (s, y) to (r− s, 0). Note that the shifted tube connecting {r}× (x+ [−3, 3]) and
{s} × (y + [−3, 3]) is mapped onto [0, s− r]× J (6), the tube considered in Lemma 12.1.

In order to apply Lemma 12.1 to the probability in the last line, we perform a time-space
affine transformation that maps (r, x) to (0, 0) and (s, y) to (s− r, 0) (see Figure 16), and

write ω̄ for the image of ω and ν̄i ∈M(J
(5)
0 (i)2) for the image measure of νi, respectively.

Under this transformation, ω̄ has the same law as ω while P νi,r,s is transformed to P ν̄i =
P ν̄i,0,s−r. Therefore we have

P νi,r,s(τ∞(ω[r,s]) ≥ r + t) ≥ P ν̄i(τ∞(ω̄) ≥ t, B(u) ∈ J (6)
0 (i) for all 0 ≤ u ≤ t) (12.27)

and for different i’s, the probabilities on the right-hand side depend on ω̄ in disjoint sets
and hence are independent under P. Let us introduce

Xi :=
∣∣∣logP ν̄i

(
τ∞(ω̄) ≥ t, B(u) ∈ J (6)

0 (i) for all 0 ≤ u ≤ t
)∣∣∣ , (12.28)

so that we can write

| logP ν,r,s(τ∞(ω[r,s]) ≥ r + t)|p ≤ 2p−1
(
| logMp(ν)|p +

(
min

i=0,...,p
Xi

)p)
.

It remains to bound the p-th moment of mini=0,...,pXi. Recall that ω̄ has the same law as
ω and that Xi = X0 ◦ θ0,7i, where θ0,7i is the time-space shift operator. To simplify the
notation, we write Fi,t and Li,t for Ft◦θ0,7i and Lt◦θ0,7i, respectively. Then by Lemma 12.1,
we have the following upper bound on the first moment of Xi for i = 0, 1, . . . , p:

E[Xi | Fi,t, Li,t] ≤ c1

(
t+ 1{Fi,t < t}

( 1

Fi,t
+

1

t− Li,t

))
,

where c1 > 0 is a constant. In this proof we keep the constants indexed and clarify
their dependence on parameters. Using Jensen’s inequality, the above bound and that the
marginal laws of Fi,t and Li,t are the exponential law with rate 7 truncated at t, we obtain
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that for any ε > 0 there exists c2(ε) such that for all i = 0, . . . , p,

E
[
(Xi − c1t)

1−ε
+

]
≤ c1E

[
1{Fi,t < t}

( 1

Fi,t
+

1

t− Li,t

)1−ε]
≤ c2(ε).

This bound and the Markov inequality yield

P
(
(Xt − c1t)+ ≥ u

)
≤ c2(ε)uε−1

for all i = 0, . . . , p and u > 0. As a consequence, if we choose ε sufficiently small, we have

P
(

min
i=0,...,p

(Xi − c1t)+ ≥ u
)

=

p∏
i=0

P
(
(Xi − c1t)+ ≥ u

)
≤ c2(ε)p+1u−p−1/2

for all u > 0. We have used that X0, . . . , Xp are independent. This tail bound then gives

E
[(

min
i=0,...,p

Xi

)p]
≤ E

[(
min

i=0,...,p
(Xi − c1t)+ + c1t

)p]
≤ c3(p)

(
tp + E

[(
min

i=0,...,p
(Xi − c1t)+

)p])
≤ c3(p)

(
tp + c2(ε)p+1

∫ ∞
0

pup−1u−p−1/2du
)

≤ c4(ε, p)(tp + 1).

(12.29)

This completes the proof of the first assertion. The second assertion is essentially proved
in the above argument once we account for some issues with the boundary. Note that the
bound (12.26) is trivial unless Mp+2(ν) > 0, and in that case we again write (x, y) for the
values where the supremum in (12.24) is attained. Since A is large enough, we observe
that among {

J (5)
x (i)× J (5)

y (i) : i = 0, . . . , p+ 2
}

there are at least p+ 1 indices i0, . . . , ip such that

J (6)
x (ij)× J (6)

y (ij) ⊆ [−A,A]2 for all j = 0, . . . , p.

For such an index ij we note that the event considered in (12.28) ensures that the Brownian
motion does not leave [−A,A] in [r, r+ t]. We then obtain (12.26) by the same calculation
as in (12.29) where mini=0,...,pXi has to be replaced by minj=0,...,pXij .

12.3. Midpoint distribution of the polymer

In order to prove Proposition 11.3, we will apply Lemma 12.6 to the midpoint distribution
under the polymer measure

νr,s,tω,β (d(x, y)) := P
(
(B(r), B(s)) ∈ d(x, y)

∣∣ τ1
β(ω[r,s]c) ≥ t,At

)
∈M(R2) (12.30)

Thus we need to estimate the dispersion Mp of this measure, which is the goal of this
section:
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Lemma 12.7. Let p ≥ 0 and q ≥ 1. There exists C > 0 such that for all β ∈ [0,∞] and
all 1 ≤ r− ≤ r+ ≤ t such that either r+ ≤ t− 1 or r+ = t,

E
[∣∣∣logMp

(
νr
−,r+,t
ω,β

)∣∣∣q] ≤ C(1 + log+ t)C . (12.31)

Proof. Let us recall the notation

J (1)
x = x+

[
1
2 ,

1
2

)
,

J (5)
x (i) = x+ 7i+

[
−5

2 ,
5
2

]
,

J (6)
x (i) = x+ 7i+ [−3, 3],

Mp(ν) = sup
x,y∈R

min
i=0,...,p

ν
(
J (5)
x (i)× J (5)

y (i)
)
.

Observe first that, thanks to the truncation At, for every 0 ≤ r < s ≤ t and every ω, there
exist x, y ∈ R such that

νr,s,tω,β

(
J (1)
x × J (1)

y

)
≥ ct−4. (12.32)

The bound (12.31) for p = 0 follows by setting r = r− and s = r+. In order to prove (12.31)

for p ≥ 1, we need to find sets of intervals {J (5)
x (i)}pi=0 and {J (5)

y (i)}pi=0 for which

min
i∈{0,1,...,p}

νr
−,r+,t
ω,β

(
J (5)
x (i)× J (5)

y (i)
)

is not too small. Our strategy is to use (12.32) for some r < r− and s > r+ first, and then
sprinkle the mass on the time-intervals [r, r−] and [r+, s], see also Figure 17. To this end,
we have to find r < r− < r+ < s and x, y ∈ R such that

• (12.32) is satisfied,
• there are no obstacles inside [r, r−] and [r+, s], close to (r, x) or (s, y) (that is, in the

gray areas in Figure 17).

The latter condition ensures that the disasters do not prevent sprinkling the mass. For
now, let us assume that r− ≥ 2 and r+ ≤ t− 1. We denote r−0 := r−− 1 and r+

0 := r+ + 1
and for i ≥ 1,

r−i := r−0 +
6

π2

i∑
j=1

j−2 and r+
i := r+

0 −
6

π2

i∑
j=1

j−2. (12.33)

Note that r−i < r− and r+
i > r+ for all i. From (12.32), we know that there exists (j+

i , j
−
i )

such that

ν
r−i ,r

+
i ,t

ω,β

(
J

(1)

j−i
× J (1)

j+i

)
≥ ct−4. (12.34)
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j+1

j−1
j+2

j−2 j+3

j−3
j+4

j−4

r+r− r+1r−1 r+2r−2 r+3r−3 r+4r−4 r+5r−5

1

Figure 17: An illustration of the resam-
pling procedure to find S±G . The dots
represent disasters, and the gray areas
corresponds to S±i . The short, black

intervals J
(1)

j−i
× J

(1)

j+i
have not-too-small

probability under the polymer measure.
In this figure, we have G = 4 since S+

4

and S−4 are free of disasters.

r−G r−G+1 r−

j−G

S−
G

J
(6)
− (0, 0), ..., J−(0, p)

J
(6)
− (1, 0), ..., J−(1, p)

J
(6)
− (2, 0), ..., J−(2, p)

1

Figure 18: An illustration for p = q =
2. Since S−G contains no disasters, the

mass can be sprinkled from J
(1)

j−G
(small

black bar) onto the long black bar at
time r−G+1. To see that it can fur-
ther be sprinkled onto three consecutive,
medium-sized black bars at time r−, we
divide the tubes into bundles of three.
By the same argument as in Lemma 12.6,
it is unlikely that the survival probabil-
ity is small in all bundles.

For i ≥ 0, let λi : [0,∞)→ R be the affine linear function with λi(r
−
i ) = j−i and λi(r

+
i ) =

j+
i , and introduce the slanted space-time boxes

S±i :=
{

(u, x) : u ∈ [r±i , r
±
i+1), λi(u)− 7

2 ≤ x ≤ λi(u) + 7(p+ 1)(q + 1)− 7
2

}
. (12.35)

Here we interpret the time-interval [r+
i , r

+
i+1) as (r+

i+1, r
+
i ] by a slight abuse of notation.

The same convention applies in the rest of this proof. Let us define the event

Ci :=
{
ω ∩ (S+

i ∪ S−i ) = ∅
}
.

Observe that since the boxes S±i are disjoint and have decreasing volume, the events are
independent and P(Ci) ≥ P(C0) > 0 for all i ≥ 0. Therefore G := inf{i ≥ 0: Ci holds}
has a geometric tail,

P(G ≥ i) ≤ (1− P(C0))i. (12.36)

In particular G is almost surely finite and hence j−G and j+
G are well-defined. Now for
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k ∈ {0, . . . , q}, l ∈ {0, . . . , p} and u ≥ 0, let

J (5)(k, l, u) := J
(5)
λG(u)+7(p+1)k(l),

J (6)(k, l, u) := J
(6)
λG(u)+7(p+1)k(l),

and for ± ∈ {+,−}, consider space-time tubes

J
(6)
± (k, l) :=

{
(u, x) : u ∈ [r±G+1, r

±], x ∈ J (6)
± (k, l, u)

}
,

J
(6)
± (k) := J

(6)
± (k, 0) ∪ · · · ∪ J (6)

± (k, p).

See also Figure 18. We define the events

A±1 (k, l) :=
{

(u,B(u)) ∈ SG for all u ∈ [r±G, r
±
G+1], B(r±G+1) ∈ J (5)

± (k, l, r±G+1)
}
,

A±2 (k, l) :=
{

(u,B(u)) ∈ J (6)
± (k, l) \ D for all u ∈ [r±G+1, r

±], B(r±) ∈ J (5)
± (k, l, r±)

}
,

where D is the set of disasters defined in (11.1). In words, A−1 (k, l) is the event that

the Brownian motion moves from J
(1)

j−G
to the left end of the tube J

(6)
− (k, l) in [r−G, r

−
G+1],

without leaving S−G . This guarantees survival since by the definition of G, there are no
disasters in S−G . On the other hand, A−2 (k, l) is the event that the Brownian motion

survives inside tube J
(6)
− (k, l) in [r−G+1, r

−]. We set

A(k, l) := A−1 (k, l) ∩ A−2 (k, l) ∩ A+
2 (k, l) ∩ A+

1 (k, l).

By definition, we know that Mp(νr
−,r+,t
ω,β ) is bounded from below by the maxk∈{0,1,...,q}

minl∈{0,1,...,p} of the following probability:

νr
−,r+,t
ω,β

(
J (5)(k, l, r−)× J (5)(k, l, r+)

)
def
= P

(
(B(r−), B(r+)) ∈ J (5)(k, l, r−)× J (5)(k, l, r+)

∣∣∣ τ1
β(ω[r−,r+]c) ≥ t,At

)
≥ P

(
(B(r−G), B(r+

G)) ∈ J (1)

j−G
× J (1)

j+G
,A(k, l)

∣∣∣ τ1
β(ω[r−G ,r

+
G]c) ≥ t,At

)
,

where in the last line, we have used that

A(k, l) ∩
{
τ1
β(ω[r−G ,r

+
G]c) ≥ t

}
⊆
{
τ1
β(ω[r−,r+]c) ≥ t

}
.

Let us introduce the distribution

αx1,y1(dx2,dy2) := P r
−
G+1,x1;r+G+1,y2

(
(B(r−), B(r+)) ∈ d(x2, y2)

)
.

and denote

px1,y1(dx2, dy2) := P r
−
G ,x1;r+G,y1

(
B(r−G+1) ∈ dx2, B(r+

G+1) ∈ dy2, (u,B(u)) ∈ S−G ∪ S+
G

for all u ∈ [r−G, r
−
G+1] ∪ [r+

G+1, r
+
G]
)
.
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Note that r−G+1 − r−G = r+
G − r+

G+1 = 6/(π2(G+ 1)2) and therefore

inf
(x1,y1)∈J(1)

j−
G

×J(1)

j+
G

{∫
J
(5)
− (k,l,r+G+1)×J(5)

+ (k,l,r−G+1)
px1,y1(dx2, dy2)

}
≥ e−cG2

.

Note also that since S−G and S+
G are slanted parallel to the line connecting (r−G, j

−
G) and

(r+
G, j

+
G), we can apply an affine transformation and use invariance of the Brownian bridge

to see that this estimate does not depend on the distance between j−G and j+
G . Using the

above notation and estimate, we get

P
(

(B(r−G), B(r+
G)) ∈ J (1)

j−G
× J (1)

j+G
,A(k, l)

∣∣∣ τ1
β(ω[r−G ,r

+
G]c) ≥ t,At

)
=

∫
J
(1)

j−
G

×J(1)

j+
G

ν
r−G ,r

+
G,t

ω,β (d(x1, y1))

∫
J(5)(k,l,r−G+1)×J(5)(k,l,r+G+1)

px1,y1(dx2,dy2)

∫
J(5)(k,l,r−)×J(5)(k,l,r+)

αx2,y2(dx3, dy3)P r
−
G+1,x2;r−,x3

(
A−2 (k, l)

)
P r

+,y3;r+G+1,y2
(
A+

2 (k, l)
)

≥ νr
−
G ,r

+
G,t

ω,β

(
J

(1)

j−G
× J (1)

j+G

)
e−cG

2
inf

x2,x3,y2,y3
P r
−
G+1,x2;r−,x3

(
A−2 (k, l)

)
P r

+,y3;r+G+1,y2
(
A+

2 (k, l)
)
,

where the infimum is over J (5)(k, l, r−G+1)× J (5)(k, l, r−)× J (5)(k, l, r+)× J (5)(k, l, r+
G+1).

Recalling (12.34) and noting that G has all moments by (12.36), we only need to prove
that mink∈{0,1,...,q}maxl∈{0,1,...,p} of

Zk,l :=
∣∣∣ log inf

(x2,x3,y2,y3)
P r
−
G+1,x2;r−,x3

(
A−2 (k, l)

)
P r

+,y3;r+G+1,y2
(
A+

2 (k, l)
) ∣∣∣

has all moments. Now letting F±k and L±k denote the first and last disasters in J
(6)
± (k),

respectively, we get from (12.1) that there exists C > 0 such that

E
[

max
l∈{0,1,...,p}

Zk,l

∣∣∣ω[r−G+1,r
+
G+1]c , F

+
k , F

−
k , L

+
k , L

−
k

]
≤ C

(
1 + 1{F−k < r− − r−G+1}

( 1

F−k
+

1

r− − L−k

)
+ 1{F+

k < r+
G+1 − r+}

( 1

F+
k

+
1

r+
G+1 − L+

k

))
.

Then we argue in the same way as in the proof of Lemma 12.6 to obtain

E
[(

min
k∈{0,1,...,q}

max
l∈{0,1,...,p}

Zk,l

)q]
≤ C.

This finishes the proof for r− ≥ 2 and r− ≤ t− 1.

In the case r− < 2, we use the interval [0, 1], which is free of disasters, in place of [r−G, r
−
G+1],

and set j−i = 0 for all i ≥ 0. More precisely, define r+
i as above and let j+

i be such that

ν
1,r+i ,t
ω,β

(
R× J (1)

j+i

)
≥ Ct−2.
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Let λi be the linear function with λi(0) = 0 and λi(r
+
i ) = j+

i and define S+
i as in (12.35).

Using an affine transformation similar to before, we see that there exists C > 0 (inde-

pendent of ω, i or j+
i ) such that for all y ∈ J

(1)

j+i
and all k = 0, . . . , (p + 1)(q + 1) − 1,

P 0,0;r+i ,y
(
B(1) ∈ J (5)

λi(1)(k), B(r+
i+1) ∈ J (5)

λi(r
+
i+1)

(k), (u,B(u)) ∈ S+
i for all u ∈ [r+

i+1, r
+
i ]
)

= P 0,0;r+i ,y−j
+
i

(
B(1) ∈ J (5)

0 (k), B(r+
i+1) ∈ J (5)

0 (k), (u,B(u)) ∈ S̃+
i for all u ∈ [r+

i+1, r
+
i ]
)

≥ C−1e−Ci
2
,

(12.37)

where S̃i := [r+
i+1, r

+
i ] × [−7

2 , 7(p + 1)(q + 1) − 7
2 ]. Now let G := inf{i ≥ 0: Si ∩ ω = ∅}

and note that G has a geometric tail, so that in particular j+
G is well-defined. By the same

consideration as before, it follows that

min
k=0,...,(p+1)(q+1)−1

ν
1,r+G+1,t

ω,β

(
J

(5)
λG(1)(k)× J (5)

λG(r+G+1)
(k)
)
≥ C−1e−CG

2
t−2. (12.38)

The rest of the argument is identical to before.

Finally, in the case r+ = t, we simply restrict to x = y in (12.24) to get

Mp(νr
−,t,t
ω,β ) ≥ C sup

x∈R
min

i=0,...,p
P
(
B(r−) ∈ J (5)

x (i), B(t) ∈ J (5)
x (i)

∣∣∣ τ1
β(ω[r−,t]c) ≥ t

)
.

Since we do not need to consider the survival strategy after time t, we can modify the
previous argument by setting r+

i = t and j+
i = j−i for all i ≥ 0 to show that

E
[(

log sup
x∈R

min
i=0,...,p

P
(
B(r−) ∈ J (5)

x (i), B(t) ∈ J (5)
x (i)

∣∣∣τ1
β(ω[r−,t]c) ≥ t

))q]
≤ C(1 + log+ t)C .

12.4. Proof of the key proposition

The key proposition now follows easily from our preparation in Lemmas 12.6 and 12.7.

Proof of Proposition 11.3. We define a random probability measure ν(ω) by

ν(ω)(d(x, y)) := P
((
B(r + s), B(s)) ∈ d(x, y)

∣∣ τ1
β(ω[r,r+s]c) ≥ t,At

)
. (12.39)

Then we can write

E
[∣∣logP

(
τ1
β(ω) ≥ t

∣∣ τ1
β(ω[r,r+s]c) ≥ t,At

)∣∣p ]
≤ E

[∣∣∣ logP ν(ω),r,r+s
(
τ1
∞(ω[r,r+s]) ≥ t, sup

t′∈[r,r+s]
|B(t′)| ≤ t2

)∣∣∣p ].
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Since ν(ω) depends only on the environment outside of [r, r + s] × R, we may integrate
ω[r,r+s] conditionally on ν(ω). Then, by using (12.26) and part (i) of Lemma 12.7, we can
find C > 0 such that the above r.h.s. is bounded by

C(1 + sp) + E
[
| logMp+2(ν(ω))|p

]
≤ C(1 + sp) + C(1 + log+ t)C .

13. Proof of the main results

13.1. Almost-superadditivity of the mean

With the key proposition we can bound the error-term in the almost-superadditive lemma:

Proposition 13.1. Let aβ(t) := E[logP (τ1
β(ω) ≥ t,At)]. For every ε ∈ (0, 1/2), there

exists t0 > 0 such that for all β ∈ [0,∞] and s, t ≥ t0,

aβ(s+ t) ≥ aβ(s) + aβ(t)− (s+ t)ε. (13.1)

Proof of Proposition 13.1. We introduce a variation of the truncation At: For s, t ≥ 0, let

Ats :=
{

sup{|B(r)| : 0 ≤ r ≤ s} ≤ dte2
}
.

We define a random distribution

µ(ω)(dx) := P (B(s) ∈ dx | τ1
β(ω) ≥ s,As+ts ) ∈M(R)

and we write Pµ for the law of Brownian motion with initial distribution µ. Then

aβ(s+ t) = E
[

logP (τ1
β(ω) ≥ s+ t,As+t)]

= E
[

logP (τ1
β(ω) ≥ s,As+ts )

]
+ E

[
logPµ(ω)(τβ(θs(ω)) ≥ t,As+tt )

]
=: E

[
logP (τ1

β(ω) ≥ s,As+ts )
]

+ E
[

logPµ(ω)(τ1
β(θs(ω)) ≥ t,As+tt )

]
+ b(s, t)

≥ aβ(s) + E
[

logPµ(ω)(τβ(θs(ω)) ≥ t,At)
]

+ b(s, t),

where the remainder term is, by Proposition 11.3,

b(s, t) := E
[

logP
(
τ1
β(ω) ≥ s+ t

∣∣ τ1
β(ω[s,s+1]c) ≥ s+ t,As+t

) ]
≥ −C(1 + log+(s+ t))C .

Now (13.1) follows from Jensen’s inequality:

E
[

logPµ(ω)(τ1
β(θs(ω)) ≥ t,At)

]
≥ E

[ ∫
E[logP δx

(
τ1
β(θs(ω)) ≥ s,At

)
]µ(ω)(dx)

]
= aβ(t).

95



13.2. The concentration inequality

Proof of Proposition 11.4. First consider the case t ∈ N. We regard ω as the sum of
independent random measures ω =

∑
i≥0 ω[i,i+1] and apply Theorem J. Let ω and ω′ be

two independent realizations of the environment, and for i = 1, . . . , t, let

ωi := ω[i,i+1]c + ω′[i,i+1].

That is, ωi is obtained by resampling the disasters of ω in [i− 1, i)× R. We set

X := logP (τ1
β(ω) ≥ t,At),

Xi := logP (τ1
β(ωi) ≥ t,At).

Then, from Theorem J and Jensen’s inequality, there exists C > 0, depending only on q,
such that

E
[
|X − E[X]|2q

]
≤ CE

[( t−1∑
i=0

E
[
((X −Xi)

+)2
∣∣∣ω] )q]+ CE

[( t−1∑
i=0

E
[
((X −Xi)

−)2
∣∣∣ω])q]

≤ Ctq−1
t−1∑
i=0

(
E
[
((X −Xi)

+)2q
]

+ E
[
((X −Xi)

−)2q
])
.

(13.2)

Since (X − Xi)
+ and (X − Xi)

− have the same law, we focus on the first one. In our
setting, we have

(X −Xi)
+ = 1{Xi ≤ X}

(
logP

(
τ1
β(ω) ≥ t,At

)
− logP

(
τ1
β(ωi) ≥ t,At

))
≤ 1{Xi ≤ X}

(
logP

(
τ1
β(ω[i,i+1]c) ≥ t,At

)
− logP

(
τ1
β(ωi) ≥ t,At

))
≤
∣∣logP

(
τ1
β(ωi) ≥ t

∣∣ τ1
β(ω[i,i+1]c) ≥ t

)∣∣ .
Noting that the r.h.s. depends only on ωi that has the same law as ω, we may apply
Proposition 11.3 to find a constant C > 0 independent of t and β such that

E
[(

(X −Xi)
+
)2q] ≤ E

[∣∣logP
(
τ1
β(ω) ≥ t

∣∣ τ1
β(ω[i,i+1]c) ≥ t,At

)∣∣2q]
≤ C(1 + log+ t)Cq.

Substituting this into (13.2), we obtain

E
[∣∣X − E[X]

∣∣2q] ≤ Ctq(1 + log+ t)Cq

and the desired bound (11.10) for t ∈ N follows readily.

It remains to show that it suffices to consider t ∈ N. By Proposition 11.3, we find C > 0
such that for all t ≥ 1 and all β ∈ [0,∞],

E
[

logP (τβ(ω) ≥ t,At)
]
− E

[
logP (τβ(ω) ≥ dte,At)

]
≤ C(1 + log+ t)C .
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Moreover by the same proposition with p = 2q + 2, we see that for t sufficiently large,

P
(

logP (τ1
β(ω) ≥ t,At)− logP (τ1

β(ω) ≥ dte,At) ≥ t
1
2

)
≤ t−(q+1)E

[(
logP (τ1

β(ω) ≥ t,At)− logP (τ1
β(ω) ≥ dte,At)

)2q+2
]

≤ t−(q+ 1
2

).

(13.3)

These two bounds allow us to extend (11.10) to t ∈ R+.

13.3. Disasters close to the starting point

Proof of Proposition 11.7. First note that there exists C > 0 such that, for all x ∈ R,

P (B(2) ∈ dx) ≥ CP (B(1) ∈ dx)eCx
2
. (13.4)

The factor eCx
2

can be regarded as a gain from the 1 extra time. We are going to impose
the additional constraint {τ∞(ω) ≥ 2} on the l.h.s. and show that the additional cost is
much smaller than the gain. More precisely, we show that there exists K(ω) such that for
some (deterministic) c > 0 and all x ≥ K(ω),

P 0,0;2,x(τ∞(ω) ≥ t) ≥ c−1 exp
(
−c|x| 32

)
. (13.5)

To see this, denote by λk the linear function with λk(0) = 0 and λk(2) = 5k, and let
Sk ⊆ R+ × R denote the slanted time-space box

Sk :=
{

(s, x) : s ∈ [0, 2], x ∈ [λk(s)− 4, λk(s) + 4]
}
. (13.6)

We write Rk := |ω∩Sk| for the number of disasters in Sk, and 0 < T
(k)
1 < · · · < T

(k)
Rk

< 2 for

the corresponding ordered disaster times. It is convenient to further define T
(k)
0 := 0 and

T
(k)
Rk+1 := 2. As in Section 12.1, we also consider the interarrival times between disasters:

∆
(k)
i := T

(k)
i+1 − T

(k)
i for i = 0, . . . , Rk.

Note that by our convention ∆0 = T
(k)
1 and ∆Rk = 2− T (k)

Rk
. Let us define events

Ek := {Rk ≤ C log |k|},
Fk :=

{
min

i=0,...,Rk
∆

(k)
i > k−

5
4

}
.

Since Rk is Poisson distributed with parameter 8, which has an exponentially decaying
tail, we find C > 0 such that ∑

k∈Z
P(Eck) <∞.
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Thus we have P(E) = 1 for E := {Ek for all but finitely many k} by the Borel–Cantelli
lemma. Next, note that Fck is nothing but the event that the Poisson process with rate 8
on [0, 2] has a point in the k−5/4 neighborhood of the boundary or has two points within
distance k−5/4. It is easy to see that such probability decays like P(Fck) ≤ ck−5/4.

Setting F := {Fk for all but finitely many k} and using the Borel–Cantelli lemma again,
we find that P(E ∩ F) = 1. Now for ω ∈ E ∩ F , we find K(ω) ≥ 2 such that for all

|k| ≥ K(ω), we have Rk ≤ C log |k| and min{∆(k)
0 , . . . ,∆

(k)
Rk
} > k−5/4. Observe that

every x ∈ R is contained in [5k(x) − 3, 5k(x) + 3] for some k(x) ∈ Z, and in particular
(2, x) ∈ Sk(x). Then for all x with |k(x)| ≥ K(ω), we use the estimates from Lemma 12.3
to get

P 0,0;2,x(τ∞(ω) ≥ t) ≥ P 0,0;2,x(τβ(ω) ≥ 2, B(u) ∈ λk(x)(u) + [−3, 3] for u ∈ [0, 2])

≥ exp
(
− c−

Rk∑
i=0

c

∆
(k)
i

)
≥ exp

(
− c− c|k|

5
4 log |k|

)
.

(13.7)

This finishes the proof of (13.5).

For x ∈ R with |k(x)| ≤ K(ω), we can still use the second line in (13.7) as a lower bound.
Therefore we conclude that

P (B(2) ∈ dx, τ∞(ω) ≥ 2)

≥ P (B(1) ∈ dx)

(
C inf
x∈Zd

eCx
2−c|x|3/2 ∧ min

|k|≤K(ω)
exp

(
− c−

Rk∑
i=0

c

∆
(k)
i

))
.

(13.8)

13.4. Existence of the free energy in dimension d = 1

Proof of Theorem 11.6. Part (i): In Proposition 13.1 we have shown that

t 7→ E[logP (τ1
∞(ω) ≥ t,At)]

is almost-superadditive in the sense of (3.6). Thus, the conclusion follows from Theorem H.
Part (ii): The almost sure convergence

lim
t→∞,t∈N

1

t
logP (τ1

∞(ω) ≥ t,At) = p(∞)

along t ∈ N follows by choosing r = 2 in Proposition 11.4 and the Borel–Cantelli lemma.
Let us extend this convergence to t ∈ R+. Note that the definition of the truncation
in (11.8) implies At = Adte. Therefore we have

P (τ1
∞(ω) ≥ dte,Adte) ≤ P (τ1

∞(ω) ≥ t,At) ≤ P (τ1
∞(ω) ≥ btc,Adte).
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On the other hand, one can easily deduce from Proposition 11.3 and the Borel–Cantelli
lemma that almost surely,

logP (τ1
∞(ω) ≥ btc,Adte) = logP (τ1

∞(ω[btc,dte]c) ≥ dte,Adte)
≤ logP (τ1

∞(ω) ≥ dte,Adte) + t1/2

for all sufficiently large t. Combining the above two bounds, we find

lim
t→∞

1

t
logP (τ1

∞(ω) ≥ t,At) = p(∞).

Next we get rid of At. Note that Lemma 12.1 implies p(∞) > −∞ while P (Act) ≤ e−ct
3
.

It follows that almost surely,

lim
t→∞

1

t
logP (τ1

∞(ω) ≥ t,At) = lim
t→∞

1

t
logP (τ1

∞(ω) ≥ t) = p(∞).

Finally, we replace τ1
∞ by τ∞. By definition, it is clear that P (τ∞(ω) ≥ t) ≤ P (τ1

∞(ω) ≥ t),
and therefore we only have to show that almost surely

lim inf
t→∞

1

t
logP (τ∞(ω) ≥ t) ≥ p(∞). (13.9)

Using Proposition 11.7, we find that

P (τ∞(ω) ≥ t) =

∫
R
P 2,x(τ∞(ω) ≥ t− 2)P (B(2) ∈ dx, τ∞(ω) ≥ 2)

≥ A(ω)

∫
R
P 2,x(τ∞(ω) ≥ t− 2)P (B(1) ∈ dx)

≥ A(ω)P (τ1
∞(θ1,0ω) ≥ t− 1).

(13.10)

Since limt→∞ t−1 logP (τ1
∞(θ1,0ω) ≥ t− 1) = p(∞) almost surely, we are done.

13.5. Continuity of the free energy

Proof of Theorem 11.9. Part (i): The upper bound in (11.12) follows from (13.1) together
with the bound (3.7) in the almost-superadditive lemma (Theorem H), which gives

aβ(t)

t
≤ p(β) + 4

∫ ∞
2t

s−(2−ε)ds ≤ p(β) + 4
2−ε t

−(1−ε).

For the lower bound, we first prove that there exists t0 such that for all t ≥ t0,

aβ(2t) ≤ 2aβ(t) + Ct1/2+ε. (13.11)

To this end, we define for all x ∈ [−dte2, dte2 − 1] ∩ Z,

px := P (B(t) ∈ [x, x+ 1), τ1
β(ω) ≥ t,At),

µx(ω)(dx) := P (B(t) ∈ dx | B(t) ∈ [x, x+ 1), τ1
β(ω) ≥ t,At) ∈M1([x, x+ 1)),

Xx := Pµx(ω)(τ1
β(θt(ω)) ≥ t,At),

Yx := P δx(τ1
β(θt(ω)) ≥ t,At),
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where as before Pµ denotes the law of Brownian motion started with B(0) distributed
according to µ. Moreover we consider events

B0 :=
{
Y0 = max{Yx : x ∈ [−t2, t2] ∩ Z}

}
,

B1 :=
{∣∣ logP (τ1

β(ω) ≥ 2t,A2t)− E[logP (τ1
β(ω) ≥ 2t,A2t)

∣∣ ≤ (2t)1/2+ε
}
,

B2 :=
{∣∣ logP (τ1

β(ω) ≥ t,At)− E[logP (τ1
β(ω) ≥ t,At)]

∣∣ ≤ t1/2+ε
}
,

B3 :=
{
|Y0 − E[Y0]| ≤ t1/2+ε

}
.

Since {Yx : x ∈ Z} is a stationary sequence, we have

P(B0) ≥ (2t2 + 1)−1. (13.12)

Note that there exists C > 0 such that for all µ ∈M([0, 1]) and all x ∈ R,

P δ0(B(1) ∈ dx) ∨ P δ1(B(1) ∈ dx) ≥ CPµ(B(1) ∈ dx).

This implies that almost surely for all x ∈ [−dte2, dte2 − 1] ∩ Z,

Yx ∨ Yx+1 ≥ CXx.

By Proposition 11.10, there exists C > 0 such that for all t and all β ∈ [0,∞]

P(B1 ∩ B2 ∩ B3) ≥ 1− Ct−3. (13.13)

Combining (13.12) and (13.13), we find that B := B0∩B1∩B2∩B4 has positive probability
for all sufficiently large t. In particular, it is non-empty and we can pick an ω ∈ B. Then,
since ω ∈ B0, we have

P (τ1
β(ω) ≥ 2t,A2t)

≤
∑

x∈[−t2,t2]∩Z
pxXx + P

(
sup
r∈[0,t]

|B(r)| > dte2 or sup
r∈[t,2t]

|B(r)−B(t)| > dte2
)

≤ C
∑

x∈[−t2,t2]∩Z
px(Yx ∨ Yx+1) + 2e−Ct

3

≤ CP (τ1
β(ω) ≥ t,At)Y0 + 2e−Ct

3
.

Next, by using ω ∈ B1∩B2∩B3, we can replace the logarithm of the probabilities by their
P-expectation with the error terms, which yields for t sufficiently large,

aβ(2t)− (2t)1/2+ε ≤ 2aβ(t) + 2t1/2+ε + log
(
1 + 2e−t

3+2aβ(t)
)

+ C

≤ 2aβ(t) + 2t1/2+ε + 2e−t
3+2C(1+t) + C

≤ 2aβ(t) + Ct1/2+ε,
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where we have used Lemma 12.1(ii) in the second inequality. This finishes the proof of
(13.11), and by applying it repeatedly we obtain, for any k ∈ N,

aβ(t) ≥ 1
2aβ(2t)− Ct1/2+ε

≥ 1
4aβ(4t)− Ct1/2+ε2−2(1/2−ε) − Ct1/2+ε

≥ . . .
≥
(

1
2

)k
aβ(2kt)− Ct1/2+ε

∑k−1
i=0 2−i(1/2−ε)

By assumption ε < 1/2, so that the sum in the last line converges for k →∞ and we get

aβ(t)

t
+ Ct−(1/2−ε) ≥ lim

k→∞
aβ(2kt)

2kt
= p(β).

Part (ii): Fix an arbitrary δ > 0. By part (i), we find t0 > 0 such that for all β ∈ [0,∞],∣∣∣aβ(t)

t
− p(β)

∣∣∣ ≤ δ.
Since aβ(t) is the expectation of a random variable depending on the disasters in a finite
area, it is clear that β 7→ aβ(t) is continuous. So there exists β0 such that for all β ≥ β0,

|p(β)− p(∞)| ≤ 2δ +
1

t
|aβ(t)− a∞(t)| ≤ 3δ.

This implies the desired continuity.

Remark 13.2. When d ≥ 2, we have

P(B0) ≥ (1 + t2d)−1

instead of (13.12) and we have to replace (13.13) by

P(B1 ∩ B2 ∩ B3) ≤ Ct−2d−1.

This causes no problem since Proposition 11.4 gives arbitrary fast polynomial decay.

13.6. Existence of the free energy in dimension d ≥ 2

In this section, we prove the almost sure convergence

lim
t→∞

1

t
logP (τ∞(ω) ≥ t) = p(∞)

in dimension d ≥ 2. As mentioned in Remark 11.8, the only point that requires an extra
argument is (13.9).

Note that Proposition 11.7 does not generalize to higher dimensions: For k ∈ Zd, let Lk

denote the last disaster in a multi-dimensional version of the time-space box from (13.6).
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Then almost surely, there exists a point k ∈ Zd with ‖k‖ ≤ K such that 2−Lk < K−d+1/2

for all sufficiently large K. If x is behind the last disaster for such k, then in d ≥ 3 the
second line in (13.7) is smaller than exp(−cKd−1/2) = o(exp(−CK2)) and hence cannot
be compensated by the factor eCx

2
in (13.4). The problem in this argument is that we

have too many k’s.

We solve this problem in the following steps:

• First restrict B(1) to an essentially one-dimensional slab H0,
• then show that this restriction does not affect the limit.

For k = (k2, . . . , kd) ∈ Zd−1, let

Hk := R×
[
k2 − 1

2 , k2 + 1
2

)
× · · · ×

[
kd − 1

2 , kd + 1
2

)
and set

bt(ω,k) := P
(
τ1
∞(ω) ≥ t, B(1) ∈ Hk,At

)
.

An easy extension of Proposition 11.7 shows that there exists some positive and finite
random variable A′(ω) such that for all x ∈ H0 and t ≥ 2,

P (τ∞(ω) ≥ 2, B(2) ∈ dx,At) ≥ A′(ω)P (B(1) ∈ dx,At).

Then, by the same argument as in (13.10), we have

P (τ∞(ω) ≥ t,At) ≥ P (τ∞(ω) ≥ t, B(2) ∈ H0,At)
≥ A′(ω)bt(θ

1,0(ω),0).

Thus (13.9) follows once we show that P-almost surely,

lim inf
t→∞

1

t
log bt(ω,0) ≥ p(∞). (13.14)

The proof of (13.14) is divided into the following two lemmas, which are analogous to
Proposition 11.4 and the lower bound in Theorem 11.9(i):

Lemma 13.3. There exists t0 > 0 such that for all t ≥ t0,

P
(∣∣ log bt(ω,0)− E[log bt(ω,0)]

∣∣ ≥ t3/4) ≤ t−2d−1. (13.15)

Lemma 13.4. There exists t0 > 0 such that for all t ≥ t0,

E[log bt(ω,0)] ≥ E[logP (τ1
∞(ω) ≥ t,At)]− t3/4. (13.16)

Proof of Lemma 13.3. The proof is almost identical to that of Propositions 11.4. Let us
introduce a multidimensional version of the notation used before:

J (1)
x := x+

[
−1

2 ,
1
2

)d
,

J (5)
x (i) := x+ 7ie1 +

[
−5

2 ,
5
2

)
×
[
−1

2 ,
1
2

)d−1
,

Mp(ν) := sup
x,y∈Rd

min
i=0,...,p

ν
(
J (5)
x (i)× J (5)

y (i)
)
,
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where e1, . . . , ed denotes the canonical basis of Rd. With these definitions, Lemmas 12.1
and 12.6 readily extend to d ≥ 2. Moreover, Lemma 12.7 holds for

ν̂ r
−,r+,t
ω,∞ (d(x, y)) := P

(
(B(r−), B(r+)) ∈ d(x, y)

∣∣ τ1
∞(ω[r−,r+]c) ≥ t,At, B(1) ∈ H0

)
in place of νr

−,r+,t
ω,∞ . Given these ingredients, we can follow the same argument to prove

Proposition 11.4.

Let us explain how to verify Lemma 12.7 for ν̂. Since (12.32) holds with ν replaced by
ν̂, the proof of Lemma 12.7 works without change in the case r− ≥ 2. The case r− < 2
requires some care because we need to sprinkle the mass on the time interval [0, 1] under
the additional constraint {B(1) ∈ H0}. We define r+

i as in Section 12.3 and choose j+
i

such that

ν̂
1,r+i ,t
ω,∞

(
H0 × J (1)

j+i

)
≥ Ct−d. (13.17)

Then, define λi(u) = (λ1
i (u), λ2(u)) with λ1

i : R+ → R and λ2
i : R+ → Rd−1 such that

• λi(r+
i ) = j+

i ,
• λ1

i is linear (λ1
i (0) = 0),

• λ2
i is piecewise affine linear with λ2

i (0) = λ2
i (1) = 0.

Using this definition, we can replace ν by ν̂ in (12.38). Observe that, unlike in the one-
dimensional case, S+

i is not a slanted time-space box in the last d−1 coordinates. This is in
order to ensure {B(1) ∈ H0}. As a consequence, we have to consider the Brownian bridge
conditioned on {B(1) ∈ H0} in (12.37). However, this does not impose any additional
cost since we have the same conditioning in the definition of ν̂. For the coordinates in
time and e1-direction, we can apply an affine transformation and we get (12.38) for ν̂.

Proof of Lemma 13.4. We argue in a similar way to the proof of Theorem 11.9(i). Let us
introduce events

B0(t) :=
{
bt(ω,0) ≥ max

k∈{−t2,...,t2}d−1
bt(ω,k)− e−Ct3

}
,

B1(t) :=
{∣∣ log bt(ω,0)− E[log bt(ω,0)]

∣∣ ≤ t3/4},
B2(t) :=

{∣∣ logP (τ1
∞(ω) ≥ t,At)− E[logP (τ1

∞(ω) ≥ t,At)]
∣∣ ≤ t3/4}.

Note that from here on out t should be replaced by dte, which we omit to ease the notation.
Proposition 11.4 and (13.15) yield that for all t large enough

P(B1(t)c ∪ B2(t)c) ≤ 2t−2d−1. (13.18)

Moreover we claim that

P(B0(t)) ≥
(
1 + 2t2

)−(d−1)
. (13.19)
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Postponing the claim for the moment, note that from (13.18) and (13.19), we get that
B0(t) ∩ B1(t) ∩ B2(t) has a positive probability for all t large enough. In particular the
intersection is not empty and we can choose ω ∈ B0(t) ∩ B1(t) ∩ B2(t). Therefore

E[logP (τ1
∞(ω) ≥ t,At)] ≤ logP (τ1

∞(ω) ≥ t,At) + t3/4

= log
( ∑

k={−t2,...,t2}d−1

bt(ω,k)
)

+ t3/4

≤ log
(

(2t2 + 1)d
(
elog bt(ω,0) + e−Ct

3
))

+ t3/4

≤ log
(

(2t2 + 1)d
(
eE[log bt(ω,0)]+t3/4 + e−Ct

3
))

+ t3/4,

where the first and the last inequality follow from ω ∈ B1(t) ∩ B2(t), and the second
inequality follows from ω ∈ B0(t). From Lemma 12.1(ii), we see that E[log bt(ω,0)] decays
linearly, which finishes the proof of (13.16).

It remains to show (13.19). This is intuitively obvious since bt(ω,0) should have the
highest chance to be the maximum as it imposes least constraint on [0, 1], and there
are (1 + 2t2)(d−1) candidates. To make this argument rigorous, it is better to drop the
truncation At and work with

ct(ω,k) := P
(
τ1
∞(ω) ≥ t, B(1) ∈ Hk

)
.

For k ∈ Zd−1, let ωk := θ0,(0,k)(ω) be obtained by shifting ω by (0,k) ∈ Zd in space, and
let K = K(ω) be the random index such that

ct(ωK, 0) = max
k={−t2,...,t2}d−1

ct(ωk, 0).

Then by this definition, for every k ∈ {−t2, . . . , t2}d−1,

ct(ωK,k) =

∫
H0

P 1,z+(0,k)(τ1
∞(ωK) ≥ t)P (B(1) ∈ (0,k) + dz)

≤
∫
H0

P 1,z+(0,k)(τ1
∞(ωK) ≥ t)P (B(1) ∈ dz)

= ct(ω(0,−k), 0)

≤ ct(ωK, 0).

Here we use P s,x for the law of Brownian motion started at time s with initial distribution
δx. Together with P (Act) ≤ e−Ct

3
, we get

bt(ωK, 0) ≥ ct(ωK, 0)− e−Ct3 = max
k={−t2,...,t2}d−1

ct(ωK,k)− e−Ct3

≥ max
k={−t2,...,t2}d−1

bt(ωK,k)− e−Ct3 .
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Now let L be independent of ω and uniformly distributed on {−t2, . . . , t2}d−1, and set
ω̃ := ωL. Since ω̃ has the same distribution as ω, we have

P(B0(t)) = P
(
bt(ω̃, 0) ≥ max

k={−t2,...,t2}d−1
bt(ω̃,k)− e−Ct3

)
≥ P

(
L = K(ω)

)
= (1 + 2t2)−(d−1)

and we are done.
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Part V.

Stochastic comparison in space-time
random environments

14. Introduction

14.1. Motivation

We discuss a question that is relevant to all models introduced up to this point. We
start by presenting an intuition, using the random walk among disasters from Part II.
Recall from (5.3) that the quenched survival probability P κ(τ(ω) ≥ t) has the same law
as uω(t, 0), the solution to

u(0, ·) ≡ 1,

u(dt, i) = κ (∆u)(t, i)dt− u(t−, i)ω(dt, i) for t ≥ 0, i ∈ Zd.
(14.1)

Since the jump rate κ appears as a parameter in this model, it is natural to ask whether
we can compare solutions for different values of κ.

Consider the following interpretation for the dynamics: Initially, every site has mass one.
Whenever (t, i) ∈ ω for some t ≥ 0, all mass currently at site i is removed from the system
(that is, the mass at site i is set to zero). On the other hand, the Laplacian ∆ spreads the
mass at i to the neighboring sites at rate κ. We think of the environment ω as a random
disorder which is smoothed by the Laplacian. The parameter κ adjusts the strength of
this smoothing, and we expect that (in some sense) the solution to (14.1) is less random
if κ is larger, and indeed we will prove this.

Let us try to make this a bit more precise: Observe that, since X ≡ 0 under P 0, we can
approximate, for κ ↓ 0,

P κ(τ(ω) ≥ t) ≈ 1{ω ∩ ([0, t]× {0}) = ∅}. (14.2)

On the other hand, if the jump rate is high, then the random walk can visit a large part
of the environment before time t, so from the spatial ergodicity of ω we expect, for κ ↑ ∞,

P κ(τ(ω) ≥ t) ≈ E[P κ(τ(ω) ≥ t)] = e−t. (14.3)

At the qualitative level, we note that (14.2) depends on a small part of the environment
and therefore has large fluctuations, while (14.3) is (almost) deterministic. In Theorem
15.1 we will see that this observation holds more generally and not only for the extremal
cases κ ≈ 0 and κ ≈ ∞. More precisely, we show that κ 7→ P κ(τ(ω) ≥ t) is increasing in
concave stochastic order, i.e. for all κ1 ≤ κ2 and all real, concave functions f

E
[
f
(
P κ1(τ(ω) ≥ t)

)]
≤ E

[
f
(
P κ2(τ(ω) ≥ t)

)]
. (14.4)
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The function f(x) = log(x) is of special importance since it corresponds to the free energy,
see Theorem K.

Note that the concave stochastic order is a measure of the “riskiness” of random variables.
To see why P κ1(τ(ω) ≥ t) has more risk than P κ2(τ(ω) ≥ t) for κ1 ≤ κ2, note that the
survival probability is small if disasters in the environment form a trap close to the origin.
Here the term “trap” refers to a configuration of disasters that forces the random walk to
behave atypically to avoid it. A high jump rate is helpful because it allows the random
walk more flexibility to go around problematic areas. However, (14.2) shows that a high
jump rate is not optimal for every ω, since there are environments with no disasters at the
origin, see also Figure 19. In that sense, we can view a low jump rate as an all-or-nothing
gamble where the survival probability is large if there is no trap, and small otherwise.

0

Zd

t

1

Figure 19: Example of an environment
where the survival probability is maxi-
mal at κ ≈ 0. Note that this is only true
if the random walk starts at the origin –
if it starts at any other site, then a high
jump rate is better.

An alternative interpretation is that P κ(τ(ω) ≥ t) represents a variational problem where
one has to balance out the benefit of moving to a “good” part of the environment with
the entropic cost of the random walk behaving “atypical”. In that interpretation, a high
jump rate is helpful because the random walk can move to good parts of the environment
with smaller cost.

Writing Z(ω) := P κ(τ(ω) ≥ t) for the partition function, we show that the implication

“more randomness in X” =⇒ “less randomness in Z” (14.5)

is a universal property of all the models discussed before. We will present the result in an
abstract way that is suitable for discrete and continuous time, and where the underlying
random walk moves in an abelian group. Our aim is to identify which assumptions are
necessary, regardless of the specific features of the model.

14.2. Outline

In Section 14.3 we will introduce notation that is suitable for a general class of models,
using the random walk from Part II as an ongoing example. In Section 15 we state and
prove the main result (Theorem 15.1). We then discuss implications for various models:

• The discrete-time random polymer model (Section 16.1)
• Continuous-time random walk in Lévy-type environments (Section 16.2)
• Brownian motion in Poissonian environments (Section 16.3)
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• Discrete-time branching random walk in space-time environments (Section 16.4).
• Continuous-time branching random walk among disasters (Section 16.5)

Finally, we discuss limitations of our result: Note that (14.1) is more commonly studied
with ω replaced by a random field which is static in time or has long-time correlations.
Here we do not expect that the implication (14.5) holds, see the discussion in Section 17.1.

Moreover, recall the convolution property of the continuous-time random walk: If X and
X ′ are independent random walks of jump rates κ and κ′, then X +X ′ is a random walk
of jump rate κ+ κ′. This fact is crucial in the proof of Theorem 15.1, but we expect that
one can also obtain a comparison between partition functions under weaker assumptions.
In Section 17.2 we make a conjecture for the optimal criterion, and in Section 17.3 we
show that our criterion is indeed necessary and sufficient if the integer lattice is replaced
by a tree.

14.3. Definition of the model

The notation presented here is suitable for models in discrete and in continuous time, and
on the lattice Zd as well as in Euclidean space Rd. Let T be equal to N or R+ and let I
be a commutative group. We use “+” for the group action and 0 for the neutral element.
Let I denote the set of càdlàg paths x : T → I. For x, y ∈ I, we use x + y to denote the
path obtained by coordinate-wise addition

(x+ y)(t) := x(t) + y(t).

By a slight abuse of notation, we also use 0 for the trivial path x ≡ 0.

Let G be the smallest sigma field such that all projections x 7→ x(t) are G-measurable.
Moreover, let (Ω,F) be a probability space and let{

θx : x ∈ I
}

be a family of F-measurable bijections θx : Ω → Ω. An element ω ∈ Ω is called an
environment while θx is called the shift associated to the path x.

Example (Random walk among disasters). Let T = R+, I = Zd and Ω the set of locally
finite subsets of R+ × Zd. For x ∈ I and ω ∈ Ω, the shifted environment θxω is obtained
by moving all disasters in ω according to the displacement of x. That is,

(t, i) ∈ ω ⇐⇒ (t, i− x(t)) ∈ (θxω). (14.6)

Definition 14.1. Let F : Ω×I → R+ be F⊗G-measurable. We say that F is consistent
if F (ω, x+ y) = F (θyω, x) for every ω ∈ Ω, x, y ∈ I.

Definition 14.2. Let F : Ω× I → R+ be consistent. We call

Z(ω) :=

∫
I
F (ω, x)P (dx). (14.7)

the partition function of P ∈M1(I).
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Let P be a probability measure on (Ω,F) and write E for its expectation.

Example (Continued). For ω ∈ Ω, x ∈ I, let

Ft(ω, x) := 1{(s, x(s)) /∈ ω for all s ∈ [0, t]} (14.8)

the indicator function of the event that x survives until time t. Note that Ft is consistent:
For ω ∈ Ω, x, y ∈ I

Ft(ω, x+ y) = 1 ⇐⇒ (s, x(s) + y(s)) /∈ ω for all s ∈ [0, t]

⇐⇒ (s, x(s)) /∈ (θyω) for all s ∈ [0, t] ⇐⇒ Ft(θ
yω, x) = 1.

Let P denote the Poisson point process with unit intensity on R+ × Zd and P κ the law of
the continuous time simple random walk with jump rate κ. Then the partition function
Zκt (ω) of P κ agrees with the quenched survival probability P κ(τ(ω) ≥ t) from Part II.

We make the following assumptions:

Assumption A1 (Shift invariance). P(A) = P
(
(θx)−1(A)

)
for all A ∈ F , x ∈ I.

Assumption A2 (Integrability). E[F (·, 0)] <∞.

The partition function is a well-defined random variable:

Lemma 14.3. Let Z be the partition function of P ∈ M1(I) and P such that (A1) and
(A2) hold. Then Z is F-measurable and E[Z] <∞. In particular, P-almost surely Z <∞.
Moreover, if Z ′ is the partition function of P ′ ∈M1(I), then E[Z] = E[Z ′].

This follows easily from Fubini’s theorem and the definition of consistency, so we skip the
proof.

We have now finished setting up the model. Next, we need to make the notion “X has
more randomness” from (14.5) precise, so we introduce an order relation for probability
measures on I. Note that, since I inherits the group structure from I, we can define a
convolution on I:

Definition 14.4. Let P,Q ∈ M1(I). Then P ∗ Q is the law of X + Y , where X and Y
are independent and have laws P and Q.

This defines an order �∗ on M1(I):

Definition 14.5. For P 1, P 2 ∈ M1(I) we write P 2 �∗ P 1 if P 2 = P 1 ∗ Q for some
Q ∈M1(I).

Example (Continued). Assumption (A2) is clear from Ft ≤ 1 while (A1) follows from
the spatial invariance of P. The annealed partition function is indeed independent of κ:

E[Zκt ] = E[Ft(ω, 0)] = P
(
|ω ∩ ([0, t]× {0})| = 0

)
= e−t

Moreover, P κ ∗ P κ′ = P κ+κ′ and therefore P κ2 �∗ P κ1 whenever κ1 ≤ κ2.
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Remark 14.6. It is somewhat counter-intuitive to use P 2 �∗ P 1 if P 2 is more random than
P 1, but we adopt this notation for consistency with the majorization order �M (recall
Section 3.1.3) that will play a role later.

Remark 14.7. Note that �∗ is a reflexive and transitive relation, i.e. it defines a pre-order
on M1(I). We can extend �∗ to a partial order by identifying P 1 and P 2 if there exists

a deterministic z ∈ I such that P 1 is the law of P 2(·+ z). In this case Z1 d
=Z2, where Z1

(resp. Z2) is the partition function of P 1 (resp. P 2).

15. The main result

The following result confirms the informal implication (14.5):

Theorem 15.1. Assume (A1) and (A2), and let P 1, P 2 ∈ M1(I) with Z1 resp. Z2 the
partition function of P 1 resp. P 2. Assume that

P 2 �∗ P 1.

There exists a coupling (Ẑ1, Ẑ2) such that Ẑi
d
=Zi for i = 1, 2, and almost surely

Ẑ2 = E
[
Ẑ1
∣∣Ẑ2

]
. (15.1)

Proof. From Definition 14.5 we find Q ∈M1(I) such that

P 2 = P 1 ∗Q. (15.2)

Let ω and Y be independent with laws P and Q, define ω̂ := θY ω and

Ẑ1 :=

∫
I
F (ω̂, x)P 1(dx)

Ẑ2 :=

∫
I×I

F (ω, x+ y)P 1(dx)Q(dy).

From (15.2) it is clear that Ẑ2 d
=Z2. Moreover Y and ω are independent so (A1) yields

ω̂
d
=ω. We therefore have Ẑ1 d

=Z1 as well, and setting A := σ(ω) we compute

E
[
Ẑ1
∣∣A] =

∫
I

∫
I
F (θyω, x)P 1(dx)Q(dy)

=

∫
I

∫
I
F (ω, x+ y)P 1(dx)Q(dy) = Ẑ2.

We have used the consistency of F in the second equality. Since Ẑ2 is A-measurable,
(15.1) follows from the tower property of conditional expectation.

Corollary 15.2. The assumptions of Theorem 15.1 imply Z1 �cv Z2. That is, for all
f : R+ → [−∞,∞) concave

E
[
f(Z1)

]
≤ E

[
f(Z2)

]
. (15.3)
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Proof. First note that the expectations on both sides are well-defined in [−∞,∞) by the
concavity of f and (A2). There is nothing to do if the l.h.s. equals −∞, so in the following
we can assume f(Z1) ∈ L1. Using the coupling from Theorem 15.1,

E
[
f(Z2)

]
= E

[
f
(
Ẑ2
)]

= E
[
f
(
E[Ẑ1|Ẑ2]

)]
≥ E

[
E
[
f
(
Ẑ1
)∣∣Ẑ2

]]
= E

[
f
(
Ẑ1
)]

= E
[
f(Z1)

]
.

The inequality is by Jensen’s inequality for conditional expectations. The second-to-last
equality follows from the tower-property of conditional expectation, using f(Z1) ∈ L1.

Remark 15.3. Note that this also follows from the implication (ii) =⇒ (i) in Theorem C.
We carry out the proof because we want to stress that f may take the value −∞.

16. Applications

In this section we discuss implications of Theorem 15.1 for various models.

16.1. The discrete-time random polymer model

Recall the notation from Section 4.1. We set T := N, I := Zd and Ω := [0,∞)T×I , and fix
an inverse temperature β ≥ 0. Let P be i.i.d. with

E
[
ω(0, 0)β

]
<∞. (16.1)

For ω ∈ Ω, x ∈ I, we define the shifted environment θxω by

(θxω)(t, i) := ω(t, i+ x(t)).

That is, θx acts on ω by shifting the environment in each “time-slice” according to the
corresponding displacement of x. Assumption (A1) follows because P is i.i.d. and (A2)

follows from (16.1). Let us check that F βt , defined in (4.1), is consistent:

F βt (ω, x+ y) =
t∏

s=1

(
ω(s, x(s) + y(s))

)β
=

t∏
s=1

(
(θyω)(s, x(s))

)β
= F βt (θyω, x).

In discrete time the order �∗ does not have a natural interpretation as a jump rate. We
can, for example, compare random walks with binomial increment distributions:

Example. Let X resp. Y be such that X(t+1)−X(t) ∼ Bin(at, pt) and Y (t+1)−Y (t) ∼
Bin(bt, pt) for all t ∈ N, for at, bt ∈ N and pt ∈ [0, 1]. Then Y �∗ X holds if at ≤ bt for
all t ∈ N.

From Theorem 15.1 we get the following consequence:

Corollary 16.1. Let p, q ∈ M1(I) be such that p �∗ q. Then for all f : R → [−∞,∞)
concave

E
[
f(Zβ,qt )

]
≤ E

[
f(Zβ,pt )

]
(16.2)
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Remark 16.2. We point out that the assumptions can be weakened: It is enough if P is
independent in time and stationary in space, i.e. if ω(t, ·) and ω(s, ·) are independent for
s 6= t, and for each t ∈ N, i ∈ I

{ω(t, j) : j ∈ I} d
={ω(t, i+ j) : j ∈ I}.

Note that we have not assumed P(ω(0, 0) > 0) = 1, so that Corollary 16.1 also holds for
the disastrous case (in the sense of (4.7)). If we exclude this case, then the free energy
exists and we obtain another comparison result:

Corollary 16.3. Assume (16.1) and E[logω(0, 0)] > −∞, so that the free energy p(β, p)
exists for all p ∈M1(Zd) by Proposition 4.1. Then p �∗ q implies

p(β, q) ≤ p(β, p).

We obtain a second consequence of Corollary 16.1 by considering the martingale (W β,p
t )t∈N

from (4.4). Since W β,p is non-negative, the almost sure limit limt→∞W
β,p
t =: W β,p

∞ exists,
and by Kolmogorov’s 0-1 law

P
(
W β,p
∞ > 0

)
∈ {0, 1}. (16.3)

It is known that W β,p converges in L1 if and only if P(W β,p
∞ > 0) = 1, see [17, Proposition

3.1]. Recall from the discussion in Section 4.2 that the behavior of the polymer measure

has a phase transition, characterized by whether W β,p
∞ converges in L1 or not. We use the

dichotomy (16.3) to show that the phase transition is monotone in �∗:

Corollary 16.4. Assume (16.1). If W β,q
∞ > 0 and p �∗ q, then also W β,p

∞ > 0.

Proof. Consider the fractional moments of W β,p, i.e. the supermartingales{
(W β,p

t )1/2 : t ∈ N
}
.

Since this processes is L2-bounded, it is uniformly integrable, and therefore

E
[
(W β,q
∞ )1/2

]
= lim

t→∞
E
[
(W β,q

t )1/2
]
≤ lim

t→∞
E
[
(W β,p

t )1/2
]

= E
[
(W β,p
∞ )1/2

]
.

The inequality follows from Corollary 16.1. So if W β,q
∞ > 0, then E

[
(W β,p
∞ )1/2

]
> 0, which

by the zero-one-law implies W β,p
∞ > 0 almost surely.

To the best of our knowledge, Corollaries 16.3 and 16.4 are the first results in this di-
rection, possibly because in discrete time there is no natural parameter that corresponds
to the jump rate in continuous time. At present, the only work on stochastic orders in
the context of the random polymer model seems to be [52]. However, in that work the
underlying random walk is kept fixed, and the comparison is between environments at
different temperatures.
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16.2. Random walk in a Lévy-type random environment

We extend the model from Part II to more general environments than Poissonian disasters.

Let T = R+, I = Zd and Ω the set of ω : T × I → R such that for every i ∈ I the mapping
t 7→ ω(t, i) is càdlàg with jump sizes bounded from below by −1, i.e. such that

ω(i, t) ≥ ω(i, t−)− 1 for all t ∈ T.
Let F be the smallest sigma-field such that all projections ω 7→ ω(t, i) are measurable,
and (ω,P) a collection of independent Lévy processes. That is, let σ2 ≥ 0 and let ρ ∈
M<∞([−1,∞)) be a finite measure, satisfying

R :=

∫
[−1,∞)

(1 + r)ρ(dr) <∞. (16.4)

Let {B(·, i) : i ∈ I} be a family of independent Brownian motions and η an independent
Poisson point process on R+ × I × [−1,∞) with intensity measure

λ [0,∞) ⊗ µI ⊗ ρ.
Here λ [0,∞) denotes the Lebesgue measure on R+ and µI the counting measure on I. Let

ω(t, i) := −σ
2

2
t+ σB(t, i) +

∫
[0,t]×{i}×[−1,∞)

r η(d(s, j, r)) (16.5)

As before, we identify η with its support, i.e., we write (s, i, r) ∈ η if η({(s, i, r)}) = 1.
Note that this is equivalent to ω(·, i) having a jump of size r at time s.

Let I denote the set of right-continuous paths x : R+ → I having finitely many jumps in
every compact interval, and G the sigma field generated by the coordinate processes on I.
For ω ∈ Ω, x ∈ I and t ∈ R+ we define

Ft : Ω× I → R+, (ω, x) 7→ eHt(ω,x)+H′t(ω,x)Gt(ω, x), (16.6)

where

Ht(ω, x) :=
∑

i∈I
∫ t

0 1{x(s) = i}B(ds, i)

H ′t(ω, x) :=
∫

[0,t]×I×(−1,∞) 1{x(s) = i} log(1 + r)η(d(s, i, r))

Gt(ω, x) :=1
{ ∫

[0,t]×I×{−1} 1{x(s) = i}η(d(s, i, r)) = 0
}
.

Note that, if x has jump times 0 = s0 < s1 < · · · < sN < sN+1 = t in [0, t], we can write

Ft(x, ω) = e−
σ2

2
t
N∏
k=0

eB(sk+1,x(sk))−B(sk,x(sk)) ×
∏

(s,i,r)∈η∩x
(1 + r).

Here the second product is over all (s, i, r) in η that lie on the graph of x, i.e. over all
(s, i, r) ∈ η with s ∈ [0, t] and x(s) = i. The definition is similar to (4.1), but observe
that the factors in the product depend on the increments of ω along the path x. We have
chosen this presentation for consistency with the existing literature.

Let us give an interpretation for the factors in Ft(ω, x):
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• To maximize the first product, the path needs to mostly visit regions where the
Brownian motion component of ω is increasing.
• If (s, i,−1) ∈ η and x(s) = i, then immediately Ft(ω, x) = 0. We can therefore

interpret (s, i,−1) ∈ η as a disaster at space-time site (s, i).
• Similarly, we think of (s, i, r) ∈ η for some r ∈ (−1, 0) as a soft obstacle at (s, i),

where the process survives with probability (1 + r) ∈ (0, 1).
• The event (s, i, r) ∈ η for r > 0 can be interpreted as a bonus at (s, i), that will

result in a contribution (1 + r) > 1. To maximize Ft, the path x should collect such
bonuses.

Observe that if we choose intensity measure ρ := δ{−1}, then the model agrees with the
random walk among disasters from Part II.

Let A be a bounded generator on I, P the law of the corresponding Markov chain on
(I,G), and Zt the partition function of P . By Lemma 14.3, (16.4) and our choice for the
deterministic drift-term in (16.13), we can compute the annealed partition function as

E[Zt] = et(R−1). (16.7)

We point out that the partition function Zt satisfies the same Feynman-Kac representation,

Zt(ω)
d
=uω(t, 0),

as in the disastrous case, see [29, Theorems 2.1 and 2.2]. Here uω is the solution to (14.1)
with ω as defined in (16.13).

We finish the definition of the model by specifying shifts {θx : x ∈ I}. Similar to the
previous section, θx acts on ω by shifting each time-slice according to the displacement of
the random walk. More precisely, for t ∈ T, i ∈ I,

(θxω)(t, i) :=
∑
j∈I

∫ t

0
1{j = i+ x(s)}ω(ds, j).

We write θxB resp. θxη for the Brownian motion resp. the jump part of the shifted
environment. We check that Ht is consistent: For ω ∈ Ω, t > 0 and x, y ∈ I

Ht(ω, x+ y) =
∑
j∈I

∫ t

0
1{x(s) + y(s) = j}B(ds, j)

=
∑
i,j∈I

∫ t

0
1{x(s) = i}1{j = i+ y(s)}B(ds, j)

=
∑
i∈I

∫ t

0
1{x(s) = i}(θyB)(ds, i)

= Ht(θ
yω, x).
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A similar calculation for H ′t and Gt shows that Ft is consistent. Moreover, (A2) follows
from (16.7). Finally, since ω(·, i) has independent increments and P is spatially homoge-

neous, it is clear that (θxω)(·, i) d
=ω(·, i) for all i ∈ I. Note that (θxω)(·, i) is a function of

the increments of ω in

gx(i) := {(t, x(t) + i) : t ∈ T} ⊆ T × I
the graph of x shifted by i. Clearly gx(i) ∩ gx(j) = ∅ for i 6= j, and this together with
the independent increments of ω implies that (θxω)(·, i) and (θxω)(·, j) are independent.
These considerations show that (A1) is satisfied.

Remark 16.5. Note that, in contrast to [29], we have chosen to present the model only in the
case where the intensity measure ρ is finite, i.e., ω(·, i) has finitely many discontinuities
in every bounded interval. The reason is to keep the notation simple by avoiding the
compensated jump measure, but Corollary 16.6 below also holds in the general case.

As before, we focus on the case of simple random walk, where A is the discrete Laplacian
κ∆, see (5.1). Let P κ denote the law of the Markov process corresponding to κ∆ and
write Zκt for the partition function of P κ. In Section 14.3 we have already observed that
P κ is �∗-decreasing, i.e. κ1 ≤ κ2 implies P κ2 �∗ P κ1 . Thus, from Theorem 15.1 we obtain
the following consequence:

Corollary 16.6. For every t > 0, κ1 ≤ κ2 and f : R→ [−∞,∞) concave

E[f(Zκ1t )] ≤ E[f(Zκ2t )].

Remark 16.7. Similar to the situation in discrete time, we can consider slightly more
general settings: It is enough to assume that ω has independent increments, not necessarily
stationary in time.

We discuss some consequences: Note that the conclusion of Theorem K also holds for the
environment discussed above, see [55, 29, 21, 22]. That is, there exists p0(κ) ∈ R such
that almost surely and in L1

lim
t→∞

1
tE[logZt(ω)] = lim

t→∞
1
t logZt = p0(κ). (16.8)

We also consider the rth-annealed Lyapunov exponent,

lim
t→∞

1
t logE

[
(Zκt )r

]1/r
=: pr(κ). (16.9)

Existence of this limit follows from the sub-/superadditive lemma. As a direct consequence
of Corollary 16.6,

κ 7→ pr(κ) is


increasing if r < 1

constant if r = 1

decreasing if r > 1

. (16.10)

Moreover, as in Section 16.1, we can consider the martingales (W κ
t )t≥0 defined by

W κ
t := Zκt e

−t(R−1).

The same argument as in Section 16.1 shows
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Corollary 16.8. Assume that (W κ1
t )t≥0 converges in L1. Then (W κ2

t )t≥0 converges in L1

for all κ1 ≤ κ2.

16.3. Brownian motion in a Poissonian environment

In this section, we discuss a generalization of the model from Part IV.

Recall that in the previous section, the environment had a Brownian-motion component,
i.e., an i.i.d. collection {B(·, i) : i ∈ Zd} of Brownian motions indexed by the sites of Zd.
The natural generalization to continuous space is to consider environments with a space-
time white noise component, which however introduces considerable technical difficulties.
In the following, we therefore restrict ourselves to Poissonian environments, and refer to
[9] for a discussion of Brownian motion in a space-time white noise environment.

Let T = R+, I = Rd and Ω the set of locally finite point measures on R+×Rd×[−1,∞). Let
(ω,P) denote the Poisson point process on Ω with intensity measure λ [0,∞)⊗λRd ⊗ ρ(dr).

Here λ [0,∞) (resp. λRd) denotes the Lebesgue measure on [0,∞) (resp. Rd) and ρ is a
finite measure on [−1,∞) such that

R :=

∫
[−1,∞)

(1 + r)ρ(dr) <∞. (16.11)

In particular, for β ∈ [0,∞], let Pβ denote the environment with intensity measure

ρ :=

{
δ{−1+e−β} if β <∞
δ{−1} if β =∞.

We set

Ht(ω, x) :=
∫

[0,t]×Rd×(−1,∞) 1{i ∈ U(x(s))} log(1 + r)ω(d(s, i, r))

Gt(ω, x) := 1
{ ∫

[0,t]×Rd×{−1} 1{i ∈ U(x(s))}ω(d(s, i, r)) = 0
}

Ft(ω, x) := eHt(ω,x)Gt(ω, x).

Here U(i) denotes the ball of unit volume around i ∈ Rd. We define the shifted environment
θxω by the relation

(s, i, r) ∈ ω ⇐⇒ (s, i− x(s), r) ∈ θxω.

The same proof as in Section 16.2 shows that Ft is consistent and that (A1) and (A2) are
satisfied.

Let now P σ
2

be the law of Brownian motion with variance σ2 and write Zσ
2

t for the
partition function of P σ

2
. It is well-known that P σ

2
1 ∗ P σ2

2 = P σ
2
1+σ2

2 , so that σ2 7→ P σ
2

is
decreasing in �∗. Applying Theorem 15.1, we therefore get the following consequence:

Corollary 16.9. For σ2
1 ≤ σ2

2 and f : R→ [−∞,∞) concave,

E
[
f
(
Z
σ2
1

t

)]
≤ E

[
f
(
Z
σ2
2

t

)]
.
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Remark 16.10. As before, we point out that the assumptions can be relaxed, since it is
enough that the environment has independent increments and is stationary in space. In
particular, the conclusion also holds if ω is replaced by ω[0,1]c , the modified environment
considered in Part IV.

Observe that if ω has law Pβ, then Z1
t (ω) has the same law as P (τβ(ω) ≥ t), the quenched

survival probability from Part IV. A re-run of Theorem 11.6 shows that, for any σ2 > 0
and β ∈ [0,∞], there exists p(β, σ2) ∈ (−∞, e−β − 1] such that Pβ-almost surely

lim
t→∞

1

t
Eβ
[

logZσ
2

t (ω[0,1]c)
]

= lim
t→∞

1

t
logZσ

2

t (ω) = p(β, σ2). (16.12)

Thus, from Corollary 16.9, we see that σ2 7→ p(β, σ2) is increasing for every β ∈ [0,∞].

16.4. Branching random walk in discrete time

The random polymer model has a natural connection to branching processes in space-
time random environments. In this section we show that Theorem 15.1 can be applied
to prove a phase transition for this model. Let T = N, I = Zd and Ω the set of η =
{η(t, i) : t ∈ T, i ∈ I}, with η(t, i) ∈ M1(N) for every t ∈ T, i ∈ I. For η ∈ Ω, we define
ω = ω(η) ∈ [0,∞)T×I by

ω(t, i) :=
∑
k∈N

kη(t, i)({k}). (16.13)

In words, an element η ∈ Ω defines an offspring distribution for every space-time site and
ω(η) is the expected number of descendants. We assume

E
[
ω(0, 0) + ω(0, 0)−1

]
<∞, (16.14)

P
(
η(0, 0)({0}) > 0

)
> 0, (16.15)

P
(
η(0, 0)({0, 1}) < 1

)
> 0. (16.16)

Let p ∈ M1(I) be an increment distribution and let ({X(t) : t ∈ N}, P p) denote the
corresponding random walk, as defined in Section 4.1.

Given η ∈ Ω, we consider a branching process Z = {Z(t, i) : t ∈ T, i ∈ I} with values in
NT×I that is informally defined in the following way:

• At time t = 0, there is one particle at the origin, i.e. Z(0, i) = 1{i = 0}.
• Suppose the process has been defined until time time t and consider a particle that

in generation t occupies site i:

– For generation t + 1, this particle is replaced by a random number of descen-
dants, which are sampled according to the offspring distribution η(t, i).

– Each descendant then independently moves from i to a random site i+D, where
the displacement D has law p.

• This procedure is applied independently for each particle in generation t, and we let
Z(t+ 1, j) denote the number of particles that occupy site j in generation t+ 1.
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We use P pη to denote the law of Z for a fixed realization of η, and Pp for the joint law of
η and Z. As in Part III, we are interested in the event

{Z survives} :=
{

For every t ∈ N there exists i ∈ Zd such that Z(t, i) > 0
}
.

Clearly, Pp(Z survives) = 1 if (16.15) does not hold. If (16.15) holds but (16.16) fails,
then Pp(Z survives) = 0. We may thus exclude those trivial cases. Assuming (16.14)–
(16.16), the event {Z survives} can be characterized using the free energy, similar to Part
III. That is, define Ft : Ω× I → R+ by

Ft(η, x) =

t∏
s=1

(ω(η))(s, x(s))

and let Zpt denote the partition function of P p associated with Ft. In [18, Lemma 1.4]
they show the following analogue to Lemma 9.1: For η ∈ Ω,

Epη

[∑
i∈I
Z(t, i)

]
= Zpt (η). (16.17)

From (16.14) and Proposition 4.1, there exists p(p) ∈ R such that

lim
t→∞

1

t
E[logZpt ] =: p(p).

It is thus intuitively clear that we can expect different behavior depending on the sign of
p(p). As in Theorem 8.1, this is indeed enough to characterize global survival:

Theorem N ([18, Theorem 2.1.1] and [32, Theorem 1]). Assume (16.14)–(16.16). Then

Pp(Z survives) > 0 ⇐⇒ p(p) > 0. (16.18)

Combining this with Corollary 16.6, we thus have the following consequence:

Corollary 16.11. Assume (16.14)–(16.16). Then p �∗ q implies

Pq(Z survives) > 0 =⇒ Pp(Z survives) > 0.

Remark 16.12. Note that we cannot expect the stronger conclusion

“Pq(Z survives) ≤ Pp(Z survives)”.

To see this, consider two classical Galton-Watson processes (Zn)n∈N and (Z ′n)n∈N, each
with constant deterministic offspring distribution. Corollary 16.3 corresponds to a first
moment comparison, i.e. we assume E[Z1] ≤ E[Z ′1]. It is well-known that a Galton-Watson
process Z has positive survival probability if and only if E[Z1] > 0, and therefore we can
conclude that P(Z survives) > 0 implies P(Z ′ survives) > 0. There are, however, examples
where E[Z1] < E[Z ′1] but P(Z survives) > P(Z ′ survives), see below.
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Example. Let Z(k) = (Z
(k)
n )n∈N be a classical Galton-Watson process with

P
(
Z

(k)
1 = k2

)
= 1− P

(
Z

(k)
1 = 0

)
=

1

k
.

Then E
[
Z

(k)
1

]
= k, and therefore P(Z(k) survives) > 0 for all k ≥ 2. Moreover, since

P
(
Z(k) survives

)
≤ P

(
Z

(k)
1 6= 0

)
, we have

P
(
Z(k) survives

)
< P

(
Z(2) survives

)
for k large enough. On the other hand, we clearly have E

[
Z

(k)
1

]
> E

[
Z

(2)
1

]
for all k ≥ 2.

16.5. Branching random walk among disasters

Recalling Theorem 8.1, the same conclusion holds for the branching random walk among
disasters from Part III:

Corollary 16.13. Under the assumptions of Theorem 8.1, for λ > 0, q ∈ M1(N) and
κ1 ≤ κ2,

Pλ,κ1,q(Z survives) > 0 =⇒ Pλ,κ2,q(Z survives) > 0.

17. Outlook

In this section, we discuss two possible ways in which Theorem 15.1 might be generalized:

(a) One can try to weaken the assumption that the environment has independent incre-
ments (which is implicit in (A1)). This is particularly interesting for the parabolic
Anderson model, which is often studied in the case where the environment has long-
time correlations.

(b) One can also try to weaken the relation �∗, so that in Theorem 15.1 we obtain
Z1 �cv Z2 for more partition functions. Here it is particularly interesting to consider
the discrete-time setting, where �∗ is a rather unnatural condition.

We will keep the discussion of (a) short since one cannot expect the conclusion of Theorem
15.1 to hold in this case (Section 17.1). For (b), we argue that the notion of majorization
from Section 3.1.3 is a natural candidate to extend �∗. We conjecture that, under some
additional assumptions, it is necessary and sufficient for the conclusion of Theorem 15.1
(Section 17.2). As evidence for this conjecture, we then prove that �M is indeed optimal
if we consider random walks on trees instead of on the lattice (Section 17.3).

17.1. Environments with long-time correlations

We consider the parabolic Anderson model

u(0, ·) ≡ 0,

u(dt, i) = κ (∆u)(t, i)dt+ u(t−, i)ω(dt, i) for all t ∈ R+, i ∈ Zd

with environment ω = {ω(t, i) : t ∈ R+, i ∈ Zd}, but this time we do not assume that ω
has independent increments. Examples include:
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1. Static environment: Let {ξ(i) : i ∈ Zd} be i.i.d. real random variables satisfying
some integrability conditions, and set ω(t, i) := ξ(i)t for t ∈ R+, i ∈ Zd.

2. Independent simple random walks: We consider a field {η(t, i) : t ∈ R+, i ∈ Zd}
where η(t, i) counts the number of particles occupying site i. Assume that the
initial values η(0, ·) are independent and Poisson distributed, and that afterwards all
particles independently move as simple random walks. We set ω(dt, i) := βη(t, i)dt
with β some (positive or negative) parameter.

3. Simple exclusion process/voter model: We consider a field {η(t, i) : t ∈ R+, i ∈
Zd} with values in {0, 1}, where η(0, ·) is i.i.d. Bernoulli, while the field afterwards
evolves according to the simple exclusion process/the voter model. We again define
ω(dt, i) := βη(t, i)dt for β some (positive or negative) parameter.

Note that we have only informally presented these examples, and we refer to [34, 27, 26] as
well as the survey [42] for a precise definition and an overview of known results. We point
out that in these models it is already an interesting problem to study the annealed partition
function E[Zκt ], while in our setup the annealed partition function does not depend on κ
(recall Lemma 14.3).

Intuitively, for these models we expect that the environment exhibits islands with signifi-
cantly larger values than in an average environment and which are persistent over a long
time. Let us, for example, consider a static environment taking two values a < b ∈ R:

P(ξ(0) = a) = 1− P(ξ(0) = b) = p ∈ (0, 1)

Then (in dimension one) we can expect that among the sites [−
√
t,
√
t] ∩ Z there exists

some interval I with ξ ≡ b, whose length is of order log(t). Now both

• the probability of moving from the origin to the center of I before time εt and
• the probability of not leaving I in [εt, t]

are subexponential. We therefore expect that u(t, 0) ≈ ebt+o(t) for large t. While this
localization strategy gives the optimal contribution in the first order of Zt, it is not im-
mediately clear that it is the optimal strategy. This is however known in closely related
models, see for example [25].

Note that the behavior is qualitatively different from before: the optimal strategy is to
immediately move to an area where the environment is good and then never again leave
this area. It is intuitively clear that for the second part of this strategy, a low jump rate
κ is better. We thus expect Zκt to be (in some sense) decreasing in κ, at least for t large.

We expect the same phenomenon for the other models: For example, consider an envi-
ronment consisting of independent random walks that have repulsive interaction with the
random walk (Example 2 with β < 0). This model was considered in [26], where it was
shown [26, Proposition 2.1] that

E[Zκt ] ≤ E[Z0
t ] for all κ > 0.

In the physics literature, this phenomenon is known under the name “Pascal’s principle”,
see the discussion in [26].
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Similarly, in [27, Section 1.4] they discuss the attractive case of Example 2, and conjecture
that the free energy p0(κ) is first increasing and then decreasing in the jump rate κ.

Heuristically, we believe that the concave order is not the correct criterion: Recall that
for the random walk among disasters, the quenched survival probability takes small values
if there is a trap in the environment. A high jump rate was thus beneficial because it
provides a “hedge” against such a scenario by spreading the mass over a large part of the
environment. On the other hand, in a static environment the partition function Zκt is large
if the environment has a persistent island of large values. In that situation, having a low
jump rate is beneficial, because we can take full advantage of the benefit without being
forced to move away. This is an indication that in the static case, the correct notion is to
study κ 7→ E[f(Zκt )] for f convex (i.e., risk-seeking) instead of concave (i.e., risk-averse).

It is an interesting question for future research to investigate the transition between static
environments and the Lévy-type environments covered by Theorem 15.1. More precisely,
for κ1 ≤ κ2 one might conjecture that if the environment has long-time correlations (as
in Examples 1–3) then Zκ2t �cx Zκ1t , while Zκ1t �cv Zκ2t holds if the environment has
correlations that decay fast in time.

17.2. Weakening the convolution property

In this section, we only discuss the one-dimensional random polymer model, so let T = N,
I = Z, Ω := [−1,∞)T×I , Ft and Zpt as in Section 4.1, with β = 1.

Assume for simplicity that p, q ∈M1(I) are compactly supported increment distributions,
and recall that in Corollary 16.1 we have seen that p �∗ q implies Zqt �cv Zpt . As explained
in Section 14.1, we interpret p �∗ q as p having more randomness than q. That is, under
P p the mass is spread out more evenly than under P q, i.e. it is distributed over a larger
set of paths. In this section we ask if this is enough. More precisely:

Question. Under what conditions on p and q do we have Zqt �cv Zpt for all P satisfying
(A1) and (A2)?

Recall the majorization order from Section 3.1.3. We observe that p �M q is necessary:

Proposition 17.1. Assume Zqt �cv Zpt for all P satisfying (A1) and (A2). Then p �M q.

Proof. We construct a suitable environment: For r ∈ {−K, . . . ,K}, define ω(r) ∈ Ω by

ω(r)(t, i) =

{
0 if t = 1 and i 6≡K r
1 else.

Here ≡K denotes equivalence in Z/{−K,...,K}, the torus of size 2K + 1. In words, at
time t = 1 there are hard obstacles on {−K, . . . ,K} \ {r} and the environment is trivial
everywhere else. Note that for all t ≥ 1,

Zpt (ω(r)) = p(r).
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Let P be the uniform distribution on {ω(−K), . . . , ω(K)}, which clearly satisfies (A1) and
(A2). By assumption, for every concave function f ,

(2K + 1)E[f(Zpt )] =
K∑

r=−K
f(Zpt (ω(r))) =

K∑
r=−K

f(p(r))

≤
K∑

r=−K
f(q(r)) =

K∑
r=−K

f(Zqt (ω(r))) = (2K + 1)E[f(Zqt )].

This is equivalent to p �M q by the implication (iii) =⇒ (i) in Theorem D.

Let us also point out that the relation �∗ from Definition 14.5 is stronger than �M , i.e.
p �∗ q implies p �M q. This follows from the previous proposition together with Theorem
15.1, or it can be checked directly (see [47, Proposition 12.N.1]).

However, �M is not a sufficient criterion on its own: Note that if p is obtained from q by
permuting the weights in {−K, . . . .,K}, then p �M q and q �M p. So if �M was sufficient,

we would get Zpt �cv Zqt �cv Zpt , hence Zpt
d
=Zqt . But on the lattice this is clearly not true

for t > 1. Let us therefore place some restriction on the order of the weights:

Assumption A3. Both p and q are symmetric and unimodal, i.e. the functions i 7→ p(i)
and i 7→ q(i) are symmetric and decreasing for i ≥ 0.

We conjecture that this is enough:

Conjecture 17.2. Assume (A3). Then p �M q if and only if Zqt �cv Zpt for all P
satisfying (A1) and (A2).

We close by mentioning a model where we expect monotonicity, but for which Theorem
15.1 does not apply: In [12, 51] the authors consider an i.i.d. Bernoulli environment of
hard obstacles, i.e.

P(ω(0, 0) = 0) = 1− P(ω(0, 0) = −1) = p ∈ (0, 1).

For α > 0, let Pα denote the random walk with increment distribution

Pα(X(t+ 1) = i|X(t) = j) = C(α)e−|i−j|
α
,

where C(α) is the normalizing constant. They show that there exists p(α) ∈ (−∞, 0] such
that almost surely

lim
t→∞

1
tE[logZαt ] = lim

t→∞
1
t logZαt = p(α).

Observe that in this case, large values of α mean that the increments concentrate mostly
on {−1, 0, 1} while for α→ 0 the distribution becomes more spread out. One would thus
expect that p(α) is decreasing in α.
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17.3. A comparison result for random walks on trees

In this section, we show that �M is a necessary and sufficient criterion for polymers on
trees. We begin by defining the model: Let V denote the K-ary tree. That is, V is cycle-
free and has a distinguished vertex o of degree K, while all other vertices have degree
K + 1. We say that o is the root and write |v| for the graph-distance between v and o.
We call |v| the height of v and let Vt denote the set of vertices of height t. For v ∈ V and
i ∈ {1, . . . ,K}, we let (v, i) denote the ith descendant of v, and we write D(v) for the set
of descendants of v.

A path in V is a function x : N→ V such that |x(t)| = t and x(t+ 1) ∈ D(x(t)) for every
t ∈ N. That is, a path moves away from the root in each step. Let I denote the set
of paths on V . An elementary observation is that if x, y ∈ I satisfy x(s) 6= y(s), then
x(t) 6= y(t) for all t ≥ s. Clearly this is a special property of the tree which does not hold
on the lattice.

Let Ω := [−1,∞)V denote the set of environments and define Ft as in (4.1). Since there
is no group structure on I we have to re-define (A1):

Definition 17.3. A shift is a bijection θ : V → V such that if v is a descendant of w,
then θ(v) is a descendant of θ(w).

In words, shifts are bijections that respect the tree structure.

Assumption A4. P is invariant under all shifts θ. That is for all A ∈ F and all shifts θ

P({ω(v) : v ∈ V } ∈ A) = P({ω(θ(v)) : v ∈ V } ∈ A).

Note that this assumption is satisfied for the canonical example of an i.i.d. environment.
We introduce a special class of shifts:

Definition 17.4. A shift θ is called elementary if there exist v ∈ V and a permutation
π of {1, . . . ,K} such that θ(w) = w if w is not a (strict) descendant of v, and such that
θ(w) = (v, π(a), v′) if w = (v, a, v′) is a descendant of v.

In words, an elementary shift permutes all subtrees attached to the node v according to
the permutation π, and leaves everything else unchanged. See Figure 20 for an illustration.
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1
Figure 20: In the case K = 3 and (π(1), π(2), π(3)) = (2, 3, 1) the elementary shift
θ associated to v and π permutes the subtrees attached to the descendants of v while
keeping the rest of the tree untouched.

We finish the model by defining random walks on V : For p ∈ M1({1, . . . ,K}), let P p

denote the law of the Markov chain with increment distribution p. That is, X(0) = o and
for every t ∈ N, a ∈ {1, . . . ,K}

P p(X(t+ 1) = (v, a)|X(t) = v) = p(a).

In anticipation of the proof of Theorem 17.5, we also introduce inhomogeneous random
walks: If p = {p(v) : v ∈ V } is a collection of increment distributions on {1, . . . ,K}, we
write P p for the Markov chain with transition probabilities

P p
(
X(t+ 1) = (v, a)

∣∣X(t) = v
)

= p(v)(a).

We can now state the main result of this section:

Theorem 17.5. Let p, q ∈ M1({1, . . . ,K}) and write Zpt resp. Zqt for the partition
function of P p resp. P q. Then p �M q if and only if Zqt �cv Zpt for all P satisfying (A2)
and (A4).

Proof of “⇐”. This is identical to the proof of Proposition 17.1, since only the first step
of the random walk is relevant in that proof.

Proof of “⇒”. We show Zqt+1 �cv Zpt+1. Let V t denote the set of node of height at most

t and fix an enumeration V t = {v1, v2, . . . , vN} such that i 7→ |vi| is decreasing. Note
that this ensures that all descendants of vi in V t are contained in {v1, . . . , vi}, for every
i = 1, . . . , N . Our aim is to incrementally transform P q into P p. We consider a sequence
of inhomogeneous random walks P r0 , . . . , P rN such that from P ri to P ri+1 we only change
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the increment distribution at one node. More precisely, for i = 0, . . . , N and v ∈ V t let

r
(vj)
i :=

{
p if j < i

q else.
(17.1)

In particular P r0 = P q and P rN = P q. Let Wi denote the partition function of P ri , and
note that it is enough to show for all i = 0, . . . , N − 1

Wi �cv Wi+1. (17.2)

Let x be a path that visits vi, and note that if F|vi|(ω, x) = 0, then Ft(ω, y) = 0 for all
t ≥ |vi| and all paths y visiting vi. So on {F|vi|(ω, x) = 0}, there is nothing to prove since
Wi(ω) = Wi+1(ω). We therefore assume F|vi|(ω, x) > 0, and in this case we can write

Wi(ω) = A(ω) + b(ω)
∑K

a=1 q(a)Ŵi(a, ω)

Wi+1(ω) = A(ω) + b(ω)
∑K

a=1 p(a)Ŵi(a, ω),

where

Ŵi(a, ω) := E ri
[Ft+1(ω,X)

F|vi|(ω,X)

∣∣∣X(|vi|+ 1) = (vi, a)
]

A(ω) := Eri
[
Ft+1(ω,X)1{X(|vi|) 6= vi}

]
b(ω) := Eri

[
F|vi|(ω,X)1{X(|vi|) = vi}

]
.

In words, A(ω) is the contribution from paths that do not visit vi. The contribution from
paths that do visit vi can be split into the common part b(ω) (collected at the nodes

o→ vi) and the remaining contribution Ŵi(a, ω) depending on which descendant of vi the
path visits at time |vi|+ 1. Note that such a decomposition is only possible on trees.

For π a permutation of {1, . . . ,K}, let θπ denote the elementary shift (recall Definition
17.4) associated to vi and π. Let ω(π) be the environment obtained by

(ω(π))(v) := ω(θπ(v)).

By (A4), ω(π) has the same law as ω. Moreover, by our choice of enumeration and (17.1),
we know that all descendants of vi have the same increment distribution, so that

Ŵi(a, ω(π)) = Ŵi(π
−1(a), ω). (17.3)

Let S denote the set of permutations of {1, . . . ,K}, and for π ∈ S define

c(π, ω) :=

K∑
a=1

p(a)Ŵi(a, ω(π))

d(π, ω) :=
K∑
a=1

q(a)Ŵi(a, ω(π))

In what follows, we regard c(·, ω) and d(·, ω) as K!-dimensional real vectors.

125



Claim. For all ω, it holds that c(·, ω) �M d(·, ω).

Let us first see how we can apply the claim: Let

C(π, ω) := Wi+1(ω(π)) = A(ω(π)) + b(ω(π))c(ω, π) = A(ω) + b(ω)c(π, ω),

D(π, ω) := Wi(ω(π)) = A(ω(π)) + b(ω(π))d(ω, π) = A(ω) + b(ω)d(π, ω).

We have used that ω and ω(π) disagree only on the descendants of vi, so that A(ω) =
A(ω(π)) and b(ω) = b(ω(π)). From the claim it is clear that

C(·, ω) �M D(·, ω).

Due to Theorem D, for all f concave,

1

|S|
∑
π∈S

f(C(π, ω)) ≥ 1

|S|
∑
π∈S

f(D(π, ω)). (17.4)

Let ω and Π be independent, ω with distribution P and Π chosen uniformly from S. By
(A4), we see that ω(Π) has law P as well, and from (17.4),

E[f(Wi+1(ω))] = E
[ 1

|S|
∑
π∈S

f(Wi+1(ω(π)))
]

≥ E
[ 1

|S|
∑
π∈S

f(Wi(ω(π)))
]

= E[f(Wi(ω))].

This proves (17.2).

Proof of the claim. Consider the matrix M ∈ [0,∞){1,...,K}×S defined by

M(a, π) := Ŵi(a, ω(π)).

Interpreting p and q as K-dimensional row vectors, we can write c = pM and d = qM .
The claim then follows Theorem E, which states that it is enough to check the following:
If m = (m1, . . . ,mK) is a column of M and σ ∈ S, then

m̂ := (mσ(1), . . . ,mσ(K))

is also a column of M . To see this, let m be the column corresponding to π ∈ S, i.e.
ma = Ŵi(a, ω(π)). Then from (17.3),

(m̂)a = mσ(a) = Ŵi(σ(a), ω(π)) = Ŵi(a, ω(σ−1 ◦ π)).

Thus, m̂ is the column corresponding to σ−1 ◦ π ∈ S.

126



List of Figures

1. Coupling in Theorem 4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2. Random walk among disasters on the lattice . . . . . . . . . . . . . . . . . . 18
3. Quenched survival probability on the lattice . . . . . . . . . . . . . . . . . . 18
4. Transforming a configuration in Lemma 6.2 . . . . . . . . . . . . . . . . . . 26
5. Coupling in Lemma 6.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6. The event As,j(L, T, n, S) in Proposition 10.1 . . . . . . . . . . . . . . . . . 48
7. Embedded oriented percolation in Proposition 10.2 . . . . . . . . . . . . . . 51
8. Orthants of a space-time box . . . . . . . . . . . . . . . . . . . . . . . . . . 56
9. Stabilization in Proposition 10.1 . . . . . . . . . . . . . . . . . . . . . . . . 61
10. Proof of Proposition 10.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
11. Brownian motion among disasters in Rd . . . . . . . . . . . . . . . . . . . . 69
12. Quenched survival probability in Rd . . . . . . . . . . . . . . . . . . . . . . 69
13. First disaster time in Proposition 11.2 . . . . . . . . . . . . . . . . . . . . . 71
14. Survival strategy in Lemma 12.1 . . . . . . . . . . . . . . . . . . . . . . . . 78
15. Duplication construction in Lemma 12.6 . . . . . . . . . . . . . . . . . . . . 87
16. Affine transformation in Lemma 12.6 . . . . . . . . . . . . . . . . . . . . . . 88
17. Resampling procedure in Lemma 12.7 . . . . . . . . . . . . . . . . . . . . . 91
18. Sprinkling the mass in Lemma 12.7 . . . . . . . . . . . . . . . . . . . . . . . 91
19. Trap for the random walk on the lattice . . . . . . . . . . . . . . . . . . . . 107
20. Elementary shifts on trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

127



References

[1] Krishna B. Athreya and Peter E. Ney. Branching processes. Dover Publications, Inc.,
Mineola, NY, 2004.

[2] Yuri Bakhtin. Inviscid Burgers equation with random kick forcing in noncompact
setting. Electron. J. Probab., 21(37):50, 2016.

[3] Yuri Bakhtin and Liying Li. Zero temperature limit for directed polymers and in-
viscid limit for stationary solutions of stochastic Burgers equation. J. Stat. Phys.,
172(5):1358–1397, 2018.

[4] Yuri Bakhtin and Liying Li. Thermodynamic limit for directed polymers and sta-
tionary solutions of the Burgers equation. Comm. Pure Appl. Math., 72(3):536–619,
2019.

[5] Carol Bezuidenhout and Geoffrey Grimmett. The critical contact process dies out.
Ann. Probab., 18(4):1462–1482, 1990.
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exponent. Ann. Inst. Henri Poincaré Probab. Stat., 50(4):1231–1275, 2014.

[28] Ryoki Fukushima and Stefan Junk. Zero temperature limit for the brownian directed
polymer among poissonian disasters. arXiv preprint arXiv:1810.09600, 2018.

129



[29] Tasuku Furuoya and Tokuzo Shiga. Sample Lyapunov exponent for a class of linear
Markovian systems over Zd. Osaka J. Math., 35(1):35–72, 1998.

[30] Nina Gantert and Stefan Junk. A branching random walk among disasters. Electron.
J. Probab., 22(67):1–34, 2017.
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