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Methods and algorithms

Our code SeisSol uses an ADER-DG method,
which is suitable for linear hyperbolic PDEs; e.g.
the elastic wave equations:

The 2004 Sumatra-Andaman earthquake

An extreme event in every respect:
» Failure of 1300 km—1500 km of the Sumatra subduction zone
» 8 minutes of shaking
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"ot OX; ! Largest model has 221 million elements (111 billion degrees of freedom) with 400 m fault

The numerical scheme consists of element-local resolution and 1.3—2.2 km material layer resolution [2].

and small matrix chain multiplications. Data
exchange only happens between immediate
face-neighbours.
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As a remedy we use clustered LTS [1, 2]:
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Figure 1 : Elements are partitioned into time clusters for a
more regular update scheme suitable for modern hardware.

Code generation
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We use an embedded domain-specific language
(eDSL), specifically written for matrix chain
products [3], to generate our
computation-intensive kernels:

» Automatic detection of irrelevant matrix entries
In matrix chain products
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Figure 2 : Partial kernel before (top) and after (bottom)
removing irrelevant entries in matrix chain products.
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Results

» Automatic determination of zero-paddings for
aligned loads and stores

» Enabling block decompositions for structured
sparse matrices

» Automatic solution of matrix chain ordering

» Scenario matches key observations: magnitude, slip distribution, and displacement.
» 2.2 Hz frequency content.
» Splay faults generate additional displacement.

» New high-resolution sea-floor displacement output is used as initial condition for
tsunami models:
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Figure 3 : Comparison of simulated water height with satellite data [4]. Surface displacement output of
SeisSol is used as initial condition.
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Performance

M SuperMUC Phase 2, 3072 nodes,
2x Intel Xeon E5-2697 v3 / node,
Infiniband FDR14 interconnect with 4:1 pruned
fat tree topology.

S Shaheen Il, 6174 nodes,
2x Intel Xeon E5-2698 v3 / node, Cray Aries
interconnect with Dragonfly topology.

C Cori, 9688 nodes,
1x Intel Xeon Phi 7250 / node, Cray Aries
interconnect with Dragonfly topology.
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Figure 4 : Shared memory performance for 100000
elements.
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Figure 5 : Strong scaling with 221 million elements and 5th
degree polynomials.
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Figure 6 : Local time-stepping reduces time to solution.

Reproducible science

SeisSol is selected

for the SC18 Student Cluster @”)3 &18
Competition Reproducibility e\)

Challenge. The foundation P
Is the artifact appendix in [2].

hpc
inspires.

Continuous integration

Continuous integration (Cl) strongly helps in the
development process of SeisSol, simply because
our software is tested automatically and thus
more often.

Low effort Cl for code consistency across
developers and simple build or unit tests:

0 git Travis CI

High effort Cl for complex tests such as (sparse)
build matrix of all configurations and nightly
convergence tests:
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