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Motivation: Design optimization of a SCRAMJET
Provided by Sandia National Laboratories

• No rotating elements for compression
• Air compressed dynamically
• Supersonic mixture and combustion

• (Some) challenges:
− Low throughput time

vs.
mixture and self-ignition

− Compressibility effects
− Stable combustion for constant thrust

• [Javier Urzay, 2018]:

The challenge of enterprising supersonic

combustion in scramjet is [...] as difficult

as lighting a match in a hurricane.

Inlet 

Isolator / Combustor 

Exhaust Nozzle 
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SNOWPAC 1

Robust optimization problem statement
• Find robust solution with respect to uncertainty

• Using measures of robustness R, e.g. E,V,CVaR.

• E.g., weigh expected gain vs. confidence: maxE−λV1
2

R∗ω = R(x∗,ω) =
Rc

ω(x)≤0
min

Rc(x,ω)≤0
R f (x,ω)

Features of SNOWPAC:

0. Extension of NOWPAC: Derivative-free nonlinear constraint optimization method using

trust-regions (deterministic)

1F. Augustin, Y. Marzouk, A trust-region method for derivative-free nonlinear constrained stochastic optimization. 2017
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Derivative-free optimization using NOWPAC 2

• Non-intrusive optimization framework

• Trust region approach for nonlinearly-constrained DFO

• Build fully linear surrogate models of objective and constraints

• Find improved designs by minimizing surrogate models

Inner Boundary Convexification

• New way of handling constraints using an inner

boundary path
− The inner boundary path is an additive convex

function to the constraints

• Global convergence to a first-order locally

optimal design

2F. Augustin, Y. Marzouk, NOWPAC: A path-augmented constraint handling approach for nonlinear derivative-free optimization.

2014
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SNOWPAC 1

Robust optimization problem statement

R∗ω = R f (x∗,ω) =
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Rc(x,ω)≤0
R f (x,ω)

Features of SNOWPAC:
0. Extension of NOWPAC: Derivative-free nonlinear constraint optimization method using

trust-regions (deterministic)

1. Estimate robustness measures: Use sampling, e.g. R f
ω = E[fω(x)]≈ Rf = 1

N ∑
N
i=1 f (x,θi) + εN

NEW: Leverage multilevel estimators.

1F. Augustin, Y. Marzouk, A trust-region method for derivative-free nonlinear constrained stochastic optimization. 2017
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SNOWPAC – Gaussian process surrogate
Build Gaussian process surrogate

• Use black box evaluations to build global Gaussian

process surrogates

• Replace noisy black box evaluations by GP mean:

R̃ = α ·µGP + (1−α) ·Rω

Gaussian Process

-15 -10 -5 0 5 10 15
-1

-0.5

0

0.5

1

1.5

f exact
training data (70)
gp mean
gp 2std

• Replace noise estimate by:

invisible placeholder

b) Heuristic: ε̃ = α ·2σGP(x) + (1−α) · εN , where α = e−
√

σ2
GP(x)

with

– GP mean: µGP(x) = kxX[KXX + σ
2
n I]−1R

– GP variance: σ
2
GP(x) = kxx−kxX[KXX + σ

2
n I]−1kXx
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evaluations⇒∆k+1 ≥
√

λtεN

3. Introduce Gaussian process surrogates: Mitigate effect of noise εN

4. Only feasible trial points, i.e. Rc
ω(xk+1)≤ 0, should be accepted

⇒ Feasibility restoration mode:
mc

k (x)≤τ

min
mc

k (x)≤τ

‖x−xk‖≤∆k

∑
i∈I

(mci
k (x)2 + λgmci

k (x))

1F. Augustin, Y. Marzouk, A trust-region method for derivative-free nonlinear constrained stochastic optimization. 2017
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SNOWPAC – Example
minE[ sin(x−1 + θ1) + sin(

1
2

y −1 + θ1)2] +
1
2

(x +
1
2

)2−y

s.t. E[−4x2(1 + θ2)−10θ3] ≤ 25−10y ,θi ∼U (θi |−1,1), i = 1, ...4

E[−2y2(1 + θ4)−10(θ4 + θ2)]≤ 20x−15,x(0) = (x (0),y (0)) = (4,3).

(1)

• Locally smoothed black box functions within the trust region
• Optimal design (red cross), exact constraints (red dotted lines)
• Objective (blue lines), constraints (black lines)
• Current design and trust region (green dot and circle)
• GP points (yellow dots), scaling factor γ (gray shade)
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SNOWPAC – Near-optimal smoothing
Build Gaussian process surrogate

• Use black box evaluations to build global Gaussian

process surrogates

• Replace noisy black box evaluations by GP mean:

R̃ = α ·µGP + (1−α) ·Rω

Gaussian Process

-15 -10 -5 0 5 10 15
-1

-0.5

0

0.5

1

1.5

f exact
training data (70)
gp mean
gp 2std

• Replace noise estimate by:

NEW a) Analytic: ε̃ = 2 ·min
α

RMSE(R̃), where α = argmin
α

RMSE(R̃)NEW

b) Heuristic: ε̃ = α ·2σGP(x) + (1−α) · εN , where α = e−
√

σ2
GP(x)

with

– GP mean: µGP(x) = kxX[KXX + σ
2
n I]−1R

– GP variance: σ
2
GP(x) = kxx−kxX[KXX + σ

2
n I]−1kXx
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SNOWPAC – Near-optimal smoothing
MSE:

MSEα(R̃) = BIAS(R̃)2 +V[R̃]

= [α(µGP[R]−Rω)]2 + α
2V[µGP] + (1−α)2V[R] + α(1−α)2cov[µGP,R]

Optimal α :

α
∗ =

V[R]−cov[µGP,R]

(µGP[R]−Rω)2 +V[µGP] +V[R]−2cov[µGP,R]

Optimal estimator:

R̃ = α
∗ ·µGP + (1−α

∗) ·Rω

ε̃ = 2 ·
√

MSEα∗(R̃)

Approximations:

• V[R] = (εR
2 )2

• V[µGP] = kxX[KXX + σ2
n I]−1(εR

2 )2

• cov[µGP,R] = (εR
2 )2

∑
N
i=1 kx∗xi (kxix∗+ δi∗σ

2
i )−1̃

• µGP[R]−Rω = E[µGP]−Rω ≈ E[µGP[R̂]]−µGP[R]
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SNOWPAC – Benchmark setup

• Benchmark comparison of performance of SNOWPAC

to COBYLA, NOMAD, SPSA and KWSA

• Use 8 CUTEst benchmark problems with added noise

minRN [f (x) + ω1]

s.t. RN [ci(x) + ω2,i ]≤ 0,

and approximate robustness measures with N ∈ {200,1000,2000} samples of

ω1,ω2,i ∼U [−1,1]

• Limit max number of black box evaluations to 1000N

• Comparison of results from 100 repeated optimization runs

• Use data profile [Moré/Wild2009] to compare performance dS(α) = 1
2400

∣∣∣{p ∈P :
tp,S

np+1 ≤ α

}∣∣∣
− Based on |P|= 8 ·100 ·3 = 2400 optimization runs
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Summary:

• NOWPAC – Derivative-free trust region methods for constrained nonlinear optimization
• SNOWPAC – Stochastic derivative-free optimization using Gaussian process surrogates
⇒ New analytic approach for noise reduction
• DAKOTA – Design Analysis Kit for Optimization and Terascale Applications
⇒ New standard error estimates for MLMC used in SNOWPAC.

Future work and open questions:

• Alternatives for surrogate model (e.g. RBF surrogates)

• Integrate new developments for Gaussian process surrogates (e.g. non-stationary kernels)

• Investigate MLMC and MC behavior for benchmark problem

Links:

• SNOWPAC: bitbucket.org/fmaugust/nowpac

• Dakota: dakota.sandia.gov
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