TUTl

DEPARTMENT OF INFORMATICS

TECHNICAL UNIVERSITY OF MUNICH

Interdisciplinary Project (IDP)

Performance Modelling for Auto-Tuning of
Molecular Dynamics Simulations

Sascha Sauermann

0

DEPARTMENT OF INFORMATICS

TECHNICAL UNIVERSITY OF MUNICH

Interdisciplinary Project (IDP)

Performance Modelling for Auto-Tuning of
Molecular Dynamics Simulations

Performanz Modellierung fiir Auto-Tuning
von Molekulardynamiksimulationen

Author: Sascha Sauermann
Supervisor: Univ.-Prof. Dr. Hans-Joachim Bungartz
Advisor: M.Sc. Fabio Gratl

Submission Date: January 20, 2019

I confirm that this interdisciplinary project (idp) is my own work and I have documented
all sources and material used.

Munich, January 20, 2019 Sascha Sauermann

Abstract

Computing pairwise short-range particle interactions is a time-consuming and unavoid-
able part of Molecular Dynamics simulations. For the parallelization of the Linked
Cell Algorithm there exist different traversal patterns having varying performance
depending on the parameters and state of the simulation.

We use Extra-P to create performance models from benchmarks and use them to
apply auto-tuning in Isl-mardyn. Thus we predict the optimal traversal given the
current state of the simulation and use it until reevaluation.

For single-parameter models the prediction is quite good but the prediction quality
declines fast for multi-parameter models. Additionally, the time required for bench-
marks also gets infeasible quickly when adding more and more dimensions to the
parameter space because the number of samples required grows exponentially.

We thus model the runtime depending only on the density. Auto-tuning with
this simple model on each MPI rank separately already delivers close to optimal
performance.

1ii

Contents

Abstract

1.

2.

5.

Introduction

Theory

2.1.
2.2.
2.3.
24.

Performance Models
Hypothesis Fitting

Coefficient of Determination: Adjusted R?2

Extra-P

Implemented Tools

3.1. Benchmarks of Isl-mardyn with Jube . . .
3.2. Job Combination
3.3. Converter for CSV to Extra-P Input
3.4. Automatic Model Creation from CSV Files
3.5. Model Visualization and Comparison . . .
3.6. Auto-Tuning in Isl-mardyn
Results

4.1. Cluster Configuration

4.2.
4.3.
44.
4.5.

Single-Parameter Models
Multi-Parameter Models
Missing Metric for Homogeneity
Rank-Local Auto-Tuning

Conclusion and Future Work

A. Appendix

List of Figures

List of Tables

Bibliography

iii

NI B = WO NN

O O ©

18

19

23

24

25

v

1. Introduction

Molecular dynamics (MD) simulations require a huge computational effort and thus
take a lot of time even on large clusters. It is therefore very important to optimize
the performance as even small improvements can accumulate for a simulation that
takes millions of steps. The most computing-intense part of a MD simulation is the
calculation of particle interactions between them.

There exist many different methods for traversing the simulation domain and calcu-
lating these interactions in parallel. As the performance of those traversals is depending
on the parameters and state of the simulation, there is no optimal traversal for all
possible simulations.

Our goal was to model the performance of traversals depending on the simulation
parameters and state. We want to predict the optimal traversal at any time within the
simulation and switch to it. This is called auto-tuning.

The following chapters start with a brief description of the theory of generating
performance models for software. Then follows an overview over the tools that were
used or created for this work. We conclude with an evaluation of the model quality and
a performance comparison of the auto-tuning implementation in Isl-mardyn versus
fixing a traversal for the whole simulation.

2. Theory

2.1. Performance Models

A performance model is an analytical model of a system or software that defines a
relation between input parameters and performance metrics. Possible metrics are for
example the speedup of computations, time to solution, the consumed resources or
response times. In the area of high-performance computing, typical parameters include
thread-, process- and node counts.

Performance models can be used for detecting bottlenecks and scalability bugs in
parallel software or for kernel selection. A kernel is the performance dominating part
of the software for increasing scale, like the force calculation in molecular dynamics
simulations.

The main problem for generating models is the infinite search space of possible
model functions. Fortunately, most performance models can be sufficiently represented
by only finite number of powers and logarithms of the parameters. This follows from
the way computer algorithms are constructed. [1]

Thus we can express all performance models in the so-called performance model normal
form (PMNF):

n
fx) = Y ek 2 ogy'(v)
k=1
Therefore we only have to find good values for the ¢, € R and the exponents a;, € A
and b, € B (with A,B C Q). According to the authors of [1], neither the number of
terms 1, nor the sets A and B need to be very large or random to get a good fitting
model.

By creating a set of plausible values for A and B we can thus limit the number of
possible model hypotheses for a fixed number of terms n. We get one hypothesis h,(f’b)
where a = (ag, a1, ...,a,) (equally for b) for each possible selection of our values from
A, B and therefore a set of hypotheses H,,.

2. Theory

2.2. Hypothesis Fitting

Fitting hypotheses to the performance data and then selecting the best hypothesis is an
important step in modeling. For this we first need measurements y of the performance
metric, that we want to model, for different values x of our parameter space. We get
therefore a collection of measurements (x;, ;) we call our data.

The first step is to split the data into a training and an evaluation set. One way to
assign the data to those sets is randomly selecting a fixed percentage for the evaluation
set and keep the remaining points as the training set.

We fit the hypotheses on the training data and compare them by their performance
on the evaluation data. When we just train on the complete data, the model might fit
to perfectly and will not generalize well to unseen data. This is called overfitting. To
decide which is the better model we evaluate them on the evaluation set and take the
one that performs the best.

Fitting a hypothesis to the data involves minimizing the residuals r; = y; — f(x;), the
differences between the estimated values f.(x;) and the observed values y;. This can be
done by various different methods, for example by minimizing the sum of least squares:
2=

(yi — fe(xi))?

™
NgE

Il
—_

1

Il
—_

For the most non-linear hypotheses there exists no closed form solution and thus results
in an numerical optimization problem. [4]

Next we validate the performance of the fitted model by calculating the error between
the estimated values and the observed values on the evaluation set. One possible error
estimator is the mean squared error (MSE):

Y-)

m & Yi e\ Xi

For a more accurate error estimate some form of cross-validation can be used. For
this the hypothesis is fitted multiple times, choosing a different part of the data for
the evaluation set each. The error estimate of the different validation steps are then
averaged.

A popular form of cross-validation is k-fold cross-validation. For this the data is split
into k equal sized chunks. For each step, one of them is chosen as the evaluation set
and the remaining chunks as the training set. After k steps, every chunk was once the
evaluation set and we can average the error estimates.

Special forms of k-fold cross-validation are leave-one-out cross-validation (k = m) and
hold-out cross-validation (k = 2).

2. Theory

The former is best used for a small amount of data points as every single point will
be the evaluation set once. This allows for a high accuracy but also takes the longest
time.

The latter uses just two chunks which results in fast evaluation bur lower accuracy:.
The Authors of [1] suggest that this method provides the best accuracy and time trade
off. The two chunks can easily be created by assigning adjacent points to different
chunks.

The best model hypothesis is then chosen as the one with the smallest error on the
evaluation set.

2.3. Coefficient of Determination: Adjusted R?

For regression models the R? coefficient is a measure that indicates what proportion of
the variation in the data of sample size m is explained by the model. It is calculated as
the fraction of the sum of squared errors (SSE) and the total sum of squares (SST):

R2— SSB _ Xl (yi— f(xi))?
SST — Ly (yi — Ly v))?

The problem with using R? for comparing the fit of two models is that it monotonously
approaches 1 when adding more and more terms. This is fixed by adjusting it to the
number of free variables p. This gets us the adjusted R?:

(1-R?)(m—1)
m—p-—1

R=1-

It is thus a measure in [0, 1] how good a model fits the given data adjusted for the
number of variables in the model, where a value of 1 is the perfect fit.

Increasing the number of terms therefore can have two effects on the value of the R
e If the additional term does improve the model, the Kz will increase.

o If the new term does not increase the explanatory power of the model, the R will
decrease.

2.4. Extra-P

Extra-P is a tool for performance modeling which primary goal is detecting scalability
bugs. It is designed to model performance measurements like e.g. FLOPS or com-
munication time depending on the number of processes. Creating models with other

2. Theory

parameters is possible, though. It can either be used as an extension to Scalasca using
the automatic creation of performance traces or stand-alone with self-supplied data
points.

Extra-P creates models by an iterative refinement approach using hold-out cross-
validation. We start with the PMNF that has only one term, i.e. n = 1 and perform the

following steps (assuming Fﬁ =0):
1. Create the model hypotheses H,, from a set of plausible values

2. Find the best hypothesis h;, by computing the best fitting values for ¢ and per-
forming k-fold cross validation

3. Compute the Fi for the best hypothesis h;,
4. Compare ﬁi with ﬁi_l

i =2 32 .
o If fit increased (R, > R,,_;), increase the number of terms n = n 4+ 1 and do
another iteration

o If fit decreased (Ki <= Fi,l), choose h; as the final model

3. Implemented Tools

The next sections contain a high-level description of the used and implemented tools.
Detailed explanations and user guides can be found in the respective Github reposito-
ries[10][9].

3.1. Benchmarks of Isl-mardyn with Jube

To create performance models of Isl-mardyn we, first of all, need some performance
measurements. We use the benchmarking environment Jube[5] to automate the creation
of input files and job scripts as well as extracting the measurements from Is1-mardyn’s
output.

To start simply we model only up to three parameters: density (p), cutoff radius (cr)
and the number of Lennard-Jones centers (Ic). We then chose five to ten values in a
sensible range for each one. Our parameter space is then the cartesian product of those
values i.e. a full grid. Additionally, we vary the applied cell traversal and perform
each measurement multiple times. This increases our parameter space by another two
dimensions.

For each of those grid points, Jube creates a Isl-mardyn input file and a job script for
the specified cluster.

After running all jobs of the benchmark, we use the parsing feature of Jube to get
a CSV file containing different performance measurements taken by Isl-mardyn. We
focus on the "Time to solution" measure for our models.

3.2. Job Combination

Using Jube we create a huge number of jobs with a very short runtime. As short-
running jobs produce a large scheduling overhead on shared clusters, they should be
combined to fewer long-running jobs.

For this purpose, a job combination script[9] was developed. It parses existing job
tiles and combines similar jobs considering restrictions of the cluster like wall time or
the maximum number of queued jobs. Combined scripts are then executed sequentially

3. Implemented Tools

within a single run. If sub-jobs fail or combined jobs time-out, a partial restart of the
unfinished sub-jobs with adapted wall times is possible.

3.3. Converter for CSV to Extra-P Input

The results of the benchmarks are stored as a CSV file and need to be converted
to an input file for Extra-P to create models. Our converter allows selecting which
parameters should be part of the model and which of the available metrics to model.
The parameters that are not used for modeling can be fixed to a specific value e.g. to
select the traversal that should be modeled.

This allows to create multiple models from one benchmark run and reuse as many
data points as possible.

3.4. Automatic Model Creation from CSV Files

As we want to create multiple models for the different traversals automatically, we
created yet another script for this. It takes the benchmark CSV file, filters and converts
it to Extra-P input and then runs the matching Extra-P modeling process.

The output of Extra-P consists of the model function, the adjusted R? and depending
on the input of the RSS and some means. The notation of the model does not follow
typical conventions though and thus cannot be processed by many popular parsers
for mathematical expressions. Problematic are for example notations like log?(p) or
—1+ —2x! + —3x2. We therefore standardize the notation and simplify it by removing
unnecessary exponents, etc.

As Extra-P only uses a single thread for modeling, different models are created in
parallel to minimize the time needed.

3.5. Model Visualization and Comparison

As we now have an easy way to create different models we want to evaluate and
compare them. For this a web-based visualizer was created using Dash and Plotly.[8] It
can be run remotely while forwarding the port via ssh to connect to it with the local
browser. This allows a responsive interface while still using fast CPUs for the modeling
process.

In this visualizer (see Figure 3.1) the parameters for the conversion described in
section 3.3 can easily be selected from the values occurring in the benchmarks. The
created models are then plotted against the real data to allow a visual evaluation of the
tit and comparison of the different traversals.

3. Implemented Tools

Multi-parameter models are also compared with a combination of single-parameter
models that are created assuming independence of the parameters.

Benchmark visualization

Variable 1 Variable 2 Metric Compare Repeat

density cutoff time traversal
Graph Fixed values
traversal

cellsincutoff

density

200 (]

) cutoff

o 100 2
time : traversal: slice (model)

ficenters

e Combined models
L E 6
L e 5.5
. s Label Model Error to 2D model
c08 (2! 9% (density™1 66667))*(14.8726+0.216404% (cutoff"2. 5)*log2(cutoff)) 3095.3151998560497
¢ 3060.83690766735

4
3.5 cutoff

3104 431021082647
115306938
120727606731

Classification

Adjusted R"2
0.00304613 Wrongly classified samples (percent) Ave. difference to real classification Min error Max error
0.0100598 50.91456034175864 7.772141402940046 0 138.30456628804042

04 3.7075+277
hs 16347100 (cutof)"2*(density) 0.775124
slice 16,5086 + 0.0033 14957 (cutoff 101827 (density) 0.760929
mp -48.3466 + 80.6065*Iog2(cutof)*(density"0.5) 0.716491

Figure 3.1.: Screenshot of visualizer: The visualizer is a simple Dash application that
allows for an easy exploration of the benchmarks. It creates models for the
selected parameters, metric, etc. and plots them against the original data.

3.6. Auto-Tuning in Isl-mardyn

As we can now automatically create models from benchmarks, we want to use them
to predict the fastest traversal for a given state in Isl-mardyn[7]. Isl-mardyn already
provides a traversal tuner class that allows switching the active one. This selection is
currently read from the input file for the simulation.

We extended the options in the input for activating auto-tuning and selecting the
number of steps between each reevaluation. At the start and at each reevaluation step,
the models for each applicable traversal are evaluated and the traversal with the fastest
predicted time is selected.

For traversals that have the same MPI communication scheme, different ranks can
select different local traversals.

4. Results

The benchmarks of Isl-mardyn were performed on the CooLMUCS3 cluster of the
Leibniz Supercomputing Center (LRZ), if not specified differently, on the most recent
version available at the time. The units of the parameters are according to Table 1 of [7].

All runs were performed with a static regular domain decomposition. The data points
used for the modeling are gathered by running ls1-mardyn with each configuration
from the parameter set and using the output from the internal timers as the result. Each
run was performed three to five times to get multiple data points for each configuration.
This reduces the influence that variance in the measurements has on the model.

4.1. Cluster Configuration

The LRZ has multiple linux clusters that are available for our computations. [6] We
used the CooLMUC2 and the CooLMUCS3 cluster for running the benchmarks. See
Table 4.1

CooLMUC2 CooLMUC3
Architecture Haswell Knights Landing
CPU Intel Xeon E5-2697 v3 Intel Xeon Phi 7210F
Frequency 2.6-3.6 GHz 1.3-14GHz
Cores per Node 28 64
Memory per Node 64 GB RAM 96 GB RAM / 16 GB HBM
Interconnect FDR14 InfiniBand Intel Omni-Path OPA1

Table 4.1.: Specifications of the CooLMUC2 and CooLMUCS3 cluster

4.2. Single-Parameter Models

For a first evaluation of the approach we have a look at single-parameter models. The
parameters for the benchmarks are chosen as follows:

e Cutoff radius (cr) in [2.0, 6.0]

4. Results

e Density (p) in [0.1,0.8]
e Lennard-Jones centers (Ic) in [1, 5]
e Traversal in [Full Shell, Half Shell, Midpoint, C08, C04]

The resulting models for time-to-solution look similar this (example for C08, cr=5,
ljc=2):
t(o) = 2.689 + 75.7957 - p'-66667
A first visual evaluation of the model against the data (see Figure 4.1) confirms that
most of the single-parameter models fit very well with an adjusted R? of close to 1.
100 traversal: c04 (model)
® traversal: c04 (data)

traversal: c08 {model)
80 ® traversal: cO8 (data)

traversal: hs (modsl)
e traversal: hs (data)

60 traversal: mp (model)
traversal: mp (data)
5 ’ .
= traversal: slice (model)
20 o e traversal: slice (data)
]
»
L
20
.
L
.
(4] - - - !
0.2 0.4 0.6 0.8
density

Figure 4.1.: Single-parameter models for runtime for a given density: This plot shows
the data and the generated models for varying density. The cutoff is fixed
to 5 and number of LJC to 2. The models fit the data quite good.

4.3. Multi-Parameter Models

Using the same measurements as in section 4.2, we can now use Extra-P to create
multi-parameter models. Unfortunately most of them do not fit our data at all. The

10

4. Results

respective adjusted R? can be as low as 0.01. Some models fit reasonably well with an
adjusted R? of around 0.75 and look similar to this (HS, ljc=2):

t(cr,p) = 13.846 + 0.00205082 - cr” - (log, (cr))? - p

We can see this easily when plotting the data and the models (see Figure 4.2).

® traversal: c04 (data)

150 traversal: c04 (model)

o ® traversal: cO8 (data)
[/] traversal: c08 (model)

100
@ traversal: hs (data)
[traversal: hs (model)
time 5% .

50 = traversal: mp (data)

" traversal: mp (model)

L] s . ® traversal: slice (data)

0 e ¢ g"‘ &

traversal: slice (model)

densllvn'r’

Figure 4.2.: Multi-parameter models for time(density, cutoff): This plot shows the
data and the generated models for varying density and cutoff. The number
of LJC is fixed to 2. Some models like the the one for the HS traversal fit
the data reasonably well, but others do not fit the data at all.

4.4. Missing Metric for Homogeneity

As discussed in the section 4.2 and section 4.3, we can create quite good models for
one and sometimes even two parameters. The next step would be to use them for an
automatic traversal selection in Isl-mardyn. We can consider two different approaches
for a first implementation:

e Statically selecting a traversal at the start depending on time invariant parameters

e Re-selecting the traversal every n steps depending on time variant parameters

11

4. Results

As the first approach would be quite simple and there would not be much to explore
further, we chose the second one.

Neither the cutoff radius nor the number of Lennard-Jones centers change over time,
but we expect the local density of the domain to change. Unfortunately, our density
metric measures the global density and is thus the same over the whole simulation.

One may create a scenario that has an in- or outflow of particles and therefore a
change in global density, but most real applications assume a closed or periodic domain.

We expect that the performance of the traversals varies for different distributions
of the particles in the domain, e.g. uniform distribution against particles clumping
together at one place. Thus, we looked at modeling a metric for the homogeneity of the
distribution instead of the density.

Considering multiple options, we found that simple metrics like the variance of
particles per cell do not work well. The best working metric we found is based on
the Voronoi partition of the domain as this models the empty space between particles.
This partitioning is basically the solution to the closest post office problem. The metric is
calculated as follows:

e Compute the Voronoi partitioning of the domain such that each cell contains
exactly one particle.

e Compute the area (volume for 3D) of each of those cells

e The metric for the homogeneity is then the variance of those areas

Figure 4.3 shows a Voronoi diagram of a uniform particle distribution and Figure 4.4
of a particle cluster for a 2-dimensional periodic domain (i.e. a torus). While the uniform
distribution leads to cells with about the same area, the particle cluster produces a
large variance of area sizes.

Although this works quite well as a metric, it is relatively expensive to compute as a
3-dimensional Voronoi partition has a worst case complexity of O(n?) for n particles.
[3] Implementing this in Isl-mardyn is also not a small task because periodic boundary
conditions have to be considered.

4.5. Rank-Local Auto-Tuning

A different way to circumvent the problem of the fixed global density, is to use the fact
that different MPI ranks process unique parts of the domain in Isl-mardyn. Therefore,
we can have an in- and outflow of particles from the perspective of each rank and thus
a changing rank-local density. Thus, we can select a different traversal for each rank
that is time-variant on this density.

12

4. Results

1.0

0.8 1

0.6 1

0.4 1

0.2 1

0.0 1

0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.3.: Voronoi partitioning for a uniform particle distribution: This figure
shows a uniform particle distribution for a periodic 2-dimensional do-
main [0,1] x [0, 1]. The variance of the areas around each particle is quite
low and thus this distribution leads to a metric close to zero.

1.0 A

0.8 1

0.6

0.4 1

0.2 1

0.0 4

0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.4.: Voronoi partitioning for a particle cluster: This figure shows Beta(a,)
distributed particles with « = (4,3) and B = (2,5) for a periodic 2-
dimensional domain [0,1] x [0,1]. Such a particle cluster leads to higher
variances in the areas of the Voronoi diagram and thus larger metrics.

13

4. Results

To get measurements for the performance of a single MPI rank, we ran different
benchmarks on the CoolMUC2 cluster with 8 OpenMP threads. The three selected
traversals have the same MPI communication scheme.

The parameters were selected as follows:

e Cutoff radius (cr): 2.5

e Density (p) in [0.01,0.9]

e Lennard-Jones centers (Ic): 1
e Traversal in [C08, C04, Sliced]

Instead of measuring the overall time of the simulation, here we measured the time the
force calculation in each time step took. We can now compare the performance of an
auto-tuning run with the performance of the three traversals on a per rank basis. We
chose a simple scenario for this purpose that results in large changes in the rank local
densities:

e Cutoff radius (cr): 4.0

e Lennard-Jones centers (Ic): 1

e Sphere of particles with a density of 0.85
e Rest of domain has density 0.0065

e 8 MPI ranks with 8 OpenMP threads each

The sphere is placed as such that it completely covers rank 0 with a few particles spilling
into the adjacent ranks. Over time it diffuses until we reach a uniform distribution over
the complete domain.

We now can plot the time each simulation step takes for each rank. For visual
simplicity and to get rid of the outliers, we plot a generalized additive model (GAM)
smoothing of the real data.

As seen in Figure 4.5, the time in each step is relative to the expected density
distribution. Although the auto-tuning run only rarely selects the optimal traversal (see
Figure 4.5 and Figure 4.6), the performance of the selected traversal is always very close
to the optimal one (see Figure 4.7).

We can also look at the absolute (see Figure 4.7) and relative differences (see Fig-
ure 4.8) between the auto-tuning run and the optimal traversal at any step. This
validates that the auto-tuning run is only up to 13ms slower each step. When also
looking at the relative differences, we can see that such small differences can mean that

14

4. Results

a step takes up to 23% longer. Comparing this result with earlier plots shows though
that those huge relative differences only occur when the times per step get quite small
anyways.

Time per step for rank 0
1250

1000

[%]

1S Traversal

c 750 .
a == Autotuning
2 — o4

g Co8

2 500 = Sliced

£

250

0 25000 50000 75000 100000
timestep

Figure 4.5.: Time per timestep: Rank 0: As the particles sphere starts out in this rank
we can see that each step takes quite long in the beginning. As the particles
diverge, the times normalize to about 100ms in the end for all traversals.
The auto-tuning run starts with C04 and switches to C08 after about 55000
steps although C04 is still a little bit better.

15

4. Results

Time per step for rank 6

120

100

Traversal
= Autotuning
80 — C04

- co8

time per step in ms

== Sliced

60

' tmestep
Figure 4.6.: Time per timestep: Rank 6: For other ranks we see the times per step
increasing as they contain more and more particles. In case of rank 6, we
interestingly never select the fastest traversal in the auto-tuning run but
instead start with C08 as the slowest one and switch then to sliced at about
step 75000. We are always quite close to the optimal traversal though.

Time difference between autotuning and fastest traversal

oS

rank.0

== rank.1
=== rank.2
== rank.3
== rank.4

== rank.5

delta per step in ms

rank.6

rank.7

0 25000 50000 75000 100000
timestep

Figure 4.7.: Time difference between auto-tuning and the fastest traversal: Plotting
the difference between the time per step for the auto-tuning run and the
fastest traversal in each step, shows that the absolute difference is always
quite small (less than 13ms). In some parts (e.g. around time step 50000)
we also select the optimal traversal.

16

4. Results

Relative difference between autotuning and fastest traversal

0.20

rank
= rank.0

I
[
o

=== rank.1
=== rank.2
=== rank.3

=== rank.4

I
.
1S}

=== rank.5

= rank.6

relative difference per step

=== rank.7

o
=)
a

0.00 —_—— e

0 25000 50000 75000 100000
timestep

Figure 4.8.: Relative difference between auto-tuning and the fastest traversal: Similar
to Figure 4.7, we can plot the relative difference to the fastest traversal. This
shows that the auto-tuning run was in some parts up to 23% slower.

17

5. Conclusion and Future Work

The generation of performance models for Is1-mardyn with Extra-P works quite well for
single-parameter models. When adding more parameters in the modeling process, the
prediction quality of the resulting models starts to decline quite fast tough. Additionally,
the number of benchmarks we must run to generate those also gets infeasible quite fast.
Thus, we cannot utilize multi-parameter models to make meaningful predictions.

Using a performance model to predict the optimal traversal for each MPI rank
(section 4.5) shows that this approach for auto-tuning can lead to promising results.
Our prediction is often quite close to the optimal traversal but if we could model more
parameters the prediction quality probably would increase significantly.

One should explore more sophisticated classification algorithm that works better with
many parameters for predicting the optimal traversal. Additionally, the benchmarking
should be improved before attempting to generate data for more than a few parameters
as the benchmarks with four varying parameters for this paper already took multiple
days.

The main problem here is that we take measurements for the time it takes to execute
n steps. This n must be large enough so that the fastest runs (few particles, small cutoff)
take at least some seconds. But this leads to the slowest runs (many particles, large
cutoff) taking hours. The best way to solve this would be modeling a metric that can be
benchmarked in a roughly fixed amount of time.

The metric for the homogeneity of the particle distribution based on the Voronoi
partitioning of the domain described in section 4.4 looks promising although difficult
to compute in 3 dimensions. There exist more efficient algorithms for 2-dimensional
Voronoi partitions though, like Fortunes algorithm (O(nlogn)). [2] An implementation
of the metric would also have to take the periodic boundary conditions into account
and thus calculate the partitioning on a 4D torus.

18

A. Appendix

Time per step for rank 1

400

300
1%}
£ Traversal
i == Autotuning
) — co4
@
8 200 cos
g = Sliced
=

100

0 25000 50000 75000 100000
timestep

Figure A.1.: Time per timestep: Rank 1: see Figure 4.6

19

A. Appendix

time per step in ms

time per step in ms

Time per step for rank 2

200
Traversal

150 === Autotuning
= C04
- | Co8
=== Sliced

100

50

0 25000 50000 75000 100000
timestep
Figure A.2.: Time per timestep: Rank 2: see Figure 4.6
Time per step for rank 3

160

120
Traversal
== Autotuning
== C04
- cos
=== Sliced

80

40

0 25000 50000 75000 100000
timestep

Figure A.3.: Time per timestep: Rank 3: see Figure 4.6

20

A. Appendix

time per step in ms

time per step in ms

Time per step for rank 4

200
Traversal
150 === Autotuning
— C04
- | Co8
=== Sliced
100
50
0 25000 50000 75000 100000
timestep
Figure A.4.: Time per timestep: Rank 4: see Figure 4.6
Time per step for rank 5
150
Traversal
== Autotuning
== C04
100 - cos
=== Sliced
50

0 25000 50000 75000 100000
timestep

Figure A.5.: Time per timestep: Rank 5: see Figure 4.6

21

A. Appendix

time per step in ms

90

70

50

Time per step for rank 7

0 25000 50000
timestep

Traversal
= Autotuning
== C04

- Ccos

=== Sliced

75000 100000

Figure A.6.: Time per timestep: Rank 7: See Figure 4.6

22

List of Figures

3.1.

4.1.
4.2.
4.3.
44.
4.5.
4.6.
4.7.
4.8.

Al
A2.
A3.
A4
Ab5.
Ab.

Screenshot of visualizer 8
Single-parameter models for runtime for a given density 10
Multi-parameter models for time(density, cutoff) 11
Voronoi partitioning for a uniform particle distribution 13
Voronoi partitioning for a particle cluster 13
Time per timestep: Rank 0 15
Time per timestep: Rank 6, .. 16
Time difference between auto-tuning and the fastest traversal 16
Relative difference between auto-tuning and the fastest traversal 17
Time per timestep: Rank 1 19
Time per timestep: Rank 2 20
Time per timestep: Rank 3 20
Time per timestep: Rank 4 21
Time per timestep: Rank 5 0 L 21
Time per timestep: Rank 7o oL 22

23

List of Tables

4.1. Specifications of the CooLMUC2 and CooLMUC3 cluster

24

Bibliography

(1]

A. Calotoiu, T. Hoefler, M. Poke, and F. Wolf. “Using automated performance
modeling to find scalability bugs in complex codes.” In: SC "13: Proceedings of the
International Conference on High Performance Computing, Networking, Storage and
Analysis. Nov. 2013, pp. 1-12. por: 10.1145/2503210.2503277.

S. Fortune. “A sweepline algorithm for Voronoi diagrams.” In: Algorithmica 2.1
(Nov. 1987), p. 153. 1ssn: 1432-0541. por: 10.1007/BF01840357.

M. J. Golin and H.-S. Na. “On the average complexity of 3D-Voronoi diagrams
of random points on convex polytopes.” In: Computational Geometry 25.3 (2003),
pp. 197-231. 1ssN: 0925-7721. por1: 10.1016/50925-7721(02)00123-2.

I. Griva, S. Nash, and A. Sofer. Linear and Nonlinear Optimization: Second Edition.
Other Titles in Applied Mathematics. Society for Industrial and Applied Mathe-
matics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104), 2009. 1sBN:
9780898717730.

Jiillich Supercomputing Centre. JUBE Benchmarking Environment. Nov. 26, 2018.
URL: https://www.fz-juelich.de/ias/jsc/EN/Expertise/Support/Software/
JUBE/_node.html.

Leibniz Supercomputing Centre. Overview of the Cluster Configuration. Dec. 15,
2018. URL: https://www.lrz.de/services/compute/linux-cluster/overview/.

C. Niethammer, S. Becker, M. Bernreuther, M. Buchholz, W. Eckhardt, A. Hei-
necke, S. Werth, H.-J. Bungartz, C. W. Glass, H. Hasse, J. Vrabec, and M. Horsch.
“ls1 mardyn: The Massively Parallel Molecular Dynamics Code for Large Sys-
tems.” In: Journal of Chemical Theory and Computation 10.10 (2014). PMID: 26588142,
pp. 4455-4464. por: 10.1021/ct500169q. eprint: http://dx.doi.org/10.1021/
ct500169q.

Plotly. Plotly. Dec. 16, 2018. URL: https://plot.ly/.

S. Sauermann. Repository job-combine. URL: https://github.com/ssauermann/
job-combine/.

S. Sauermann. Repository md-perfmod. URL: https://github.com/ssauermann/md-
perfmod/.

25

https://doi.org/10.1145/2503210.2503277
https://doi.org/10.1007/BF01840357
https://doi.org/10.1016/S0925-7721(02)00123-2
https://www.fz-juelich.de/ias/jsc/EN/Expertise/Support/Software/JUBE/_node.html
https://www.fz-juelich.de/ias/jsc/EN/Expertise/Support/Software/JUBE/_node.html
https://www.lrz.de/services/compute/linux-cluster/overview/
https://doi.org/10.1021/ct500169q
http://dx.doi.org/10.1021/ct500169q
http://dx.doi.org/10.1021/ct500169q
https://plot.ly/
https://github.com/ssauermann/job-combine/
https://github.com/ssauermann/job-combine/
https://github.com/ssauermann/md-perfmod/
https://github.com/ssauermann/md-perfmod/

	Abstract
	Contents
	Introduction
	Theory
	Performance Models
	Hypothesis Fitting
	Coefficient of Determination: Adjusted R2
	Extra-P

	Implemented Tools
	Benchmarks of ls1-mardyn with Jube
	Job Combination
	Converter for CSV to Extra-P Input
	Automatic Model Creation from CSV Files
	Model Visualization and Comparison
	Auto-Tuning in ls1-mardyn

	Results
	Cluster Configuration
	Single-Parameter Models
	Multi-Parameter Models
	Missing Metric for Homogeneity
	Rank-Local Auto-Tuning

	Conclusion and Future Work
	Appendix
	List of Figures
	List of Tables
	Bibliography

