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Motivation

• Heterogeneous Environments commonplace in HPC
– NVidia Tesla GPUs, Intel Xeon Phi, …
– New: Application-specific hardware (Google Tensor Processing Units, Microsoft 

Catapult, Anton 2)

• Reconfigurable fabric commonly used in embedded scenarios
– Performance comparable to ASICs
– May be reconfigured at run time.
– Special case: Reconfigurable fabric and CPU on the same chip
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Invasive Computing
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The InvasIC Hardware Architecture

• Heterogeneous Multipro-
cessor System-on-Chip

• Tiled Architecture
– RISC Tiles
– i-Core Tiles
– Memory & I/O Tiles
– No inter-tile cache coherence

• Connected through 
Network-on-Chip

• Heterogeneous Memory
– Tile-local Memory
– Global memory (Off-Tile, via NoC)
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OctoPOS – The Invasive Operating System

• Parallel Operating System 
tailored for systems with 
1000+ cores

• Non-traditional threading 
scheme: i-lets
– Run-to-Completion semantics with 

cooperative scheduling
– Exclusive resource access
– Binding of i-let to execution context 

only at blocking operations
– Recycling of execution contexts: 

Little Overhead for creation, 
scheduling and dispatch
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InvadeX10 – The Invasive Language

• Asynchronous Partitioned Global Address Space (APGAS)
– Activities within an X10 Place may freely access objects allocated by activities 

spawned in the same Place
– Global Reference to objects in other places possible
– Remote objects not accessed directly, instead creation of copies or place-shift
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• Natural fit for InvasIC
– Activities � i-lets
– Places � Tiles
– Serialization � Direct Cloning

• Invasive Compiler x10i
– Implements Resource-awareness 

(invade, infect, retreat)
– Direct use of OctoPOS APIs
– Emits Assembly (SPARC, x86)



SWE-X10 – Shallow Water Equations in X10

• Proxy Application for simulation of shallow water waves
• Compute propagation of tsunamis given initial displacement
• Simulate inundation of coastal areas
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Image: Bachelor-Lab Tsunami Simulation
http://www5.in.tum.de/wiki/index.php/Tsunami_Simulation
_-_Winter_15



SWE-X10 - Discretization

• Finite volume scheme on a Cartesian grid with piecewise 
constant unknown quantities and Eulerian time step
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SWE-X10 - Discretization
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SWE-X10 - Discretization
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i-Core

• Combination of “normal” CPU core and application-specific 
accelerators (through FPGA fabric)
– Realized through Custom Instructions (CI)
– May be loaded at run time by application
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Acceleration of SWE-X10 using i-Core

• Custom Instruction for computation of approximate solutions 
of Riemann Problems (f-Wave solver)

• Pipelined Accelerators (for operations used in solver): 
– FP_MAC (3-5cy), 
– FP_DIV (6 cy), 
– FP_SQRT (5 cy), 
– FP_UTIL (3 cy)

• Performs all 54 floating point operations as single CI
– Data-flow graph with 97 nodes/operations
– 5 accelerators used: 2x FP_MAC, 1x FP_DIV, 1x FP_SQRT and 1x FP_UTIL

• Configuration at application startup
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Adaptions in SWE-X10

44

Tile-Local Memory

Previous

Current

Next



Adaptions in SWE-X10

45

Tile-Local Memory

Previous

Current

Next

L0
L1



Adaptions in SWE-X10

46

Tile-Local Memory

Previous

Current

Next

L0
L1

H0



Adaptions in SWE-X10

47

Tile-Local Memory

Previous

Current

Next

L0
L1

H0 ⏎

Ln+1

Vn-1,n



Adaptions in SWE-X10

48

Tile-Local Memory

Previous

Current

Next

L0
L1

H0 ⏎

Ln+1

Sn-1

Vn-1,n

Hn



Adaptions in SWE-X10

49

Tile-Local Memory

Previous

Current

Next

L0
L1

H0 ⏎

Ln+1

Sn-1

Cn-1

Vn-1,n

Hn



Adaptions in SWE-X10

50

Tile-Local Memory

Previous

Current

Next

L0
L1

H0 ⏎

Ln+1

Sn-1

Cn-1

Vn-1,n

Hn



Adaptions in SWE-X10

51

Tile-Local Memory

Previous

Current

Next

L0
L1

H0 ⏎

Ln+1

Sn-1

Cn-1

Vn-1,n

Hn



Adaptions in SWE-X10
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Evaluation

• Two Potential sources of performance gain:
– Tile-local memory
– i-Core

• Single iteration on one patch with 60x60 grid cells 
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LEON GM LEON TLM i-Core GM i-Core TLM
Speedup 1 1,75 2,01 4,82
Execution time [ms] 2049 1169 1017 425
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Outlook

• Model HLLE Riemann solver – enable coastal flooding
• Evaluate whole-system performance benefits
• Scale to and evaluate with larger hardware configuration (e.g. 

4x4 tiles with ~64 cores multiple i-Cores)
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Thank you.

Questions?
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