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Abstract

Having reached a matured stage in shape design optimization for
single disciplinary problems in both academic and industrial envi-
ronments, the research community has paid great attention to multi-
disciplinary optimization (MDO) for complex applications. Motivated
by aerospace applications, this thesis targets specific class of MDO
problems, namely node-based shape optimization in fluid-structure
interaction.

Herein, Vertex Morphing as a consistent surface control technique
is used for node-based shape optimization. The suitability of this
technique has been assessed and demonstrated for a wide range of
engineering applications. Moreover, in this contribution, a consistent
formulation is presented for the implementation of numerous point-
wise no-penetration constraints over arbitrary surfaces which act as
bounding surfaces, also known as packaging constraints. To verify
the consistency of the derivations two applications of CFD shape
optimization in the automotive industry are presented.

Another main focus of this work is the consistent derivation of
adjoint-based gradients of force-based objective functionals, which
are defined on the deformed fluid-structure interface, with respect
to the shape design variables of the undeformed interface geometry.
For this purpose, all important aspects of the high-fidelity coupling
between fluid and structure are covered, from solution strategy for
direct and adjoint problems to criteria for mapping primal and ad-
joint fields between non-matching interface meshes. The novelty
in this work is the consistent derivation of sets of adjoint coupling
conditions which are immediately applicable to existing adjoint fluid
and structure solvers. This is performed independent of the adjoint
method, the discretization method, and the mathematical modelling
of the flow. This enables us to take the utmost advantage of sophisti-
cated single disciplinary adjoint solvers without the need to compute
expensive cross-derivatives.

In order to demonstrate the validity and generality of the deriva-
tions, three adjoint FSI frameworks are considered: FEM-based using
discrete adjoints, hybrid FEM-FVM-based using discrete-continuous
hybrid adjoints, and hybrid FEM-FVM-based using discrete adjoints.
The first one is used for benchmarking, studying adjoint solution
strategies, and for comparing alternative approaches in coupled shape
sensitivity analysis including a fully monolithic formulation. Whereas,
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the third framework is used for shape sensitivity analysis of a repre-
sentative aero-elastic wing based on the derived fully modular ap-
proach, which leverages primal and adjoint capabilities of available
open-source codes. This analysis also includes a critical compara-
tive assessment of consistent and conservative criteria for mapping
primal and adjoint fields between non-matching interface meshes.
Besides, special attention is paid to investigate the importance of
considering the mesh motion problem in the adjoint FSI analysis.
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Nomenclature

Domains, Boundaries and Configurations

Ω Computational domain

ΩS Structural domain

ΩF Fluid domain

Γ Wet fluid-structure interface

Ψ Boundary ofΣ

X Undeformed configuration

x Deformed configuration

X Spatial/nodal coordinates at the undeformed configuration

x Spatial/nodal coordinates at the deformed configuration

Superscripts and Subscripts

( · )i i th vector component

( · )i , j Matrix component at i th row and j th column

( · )Γ Quantity at the fluid-structure interface

( · )Γ ,i i th component of a vectorial quantity at the fluid-structure interface

( · )Ω Quantity inside the computational domain

( · )X Quantity evaluated at the undeformed configuration

( · )x Quantity evaluated at the deformed configuration
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Nomenclature

( · )1 X component

( · )2 Y component

( · )3 Z component

( · )S Variable/quantity belongs to the structure

( · )F Variable/quantity belongs to the fluid

( · )M Variable/quantity belongs to the fluid mesh motion

( · )V M Variable/quantity belongs to Vertex Morphing method
k ( · ) Value at k th iteration

Operators and Symbols

(̂·) Relaxed quantity

‖·‖/‖·‖2 L2 norm

· Vector inner product

× Vector cross product

⊗ Vector outer product

δ(·) First variation of a quantity

δ(··)(·) First variation of (·)w.r.t (··)
∂ (·)
∂ (··) Partial derivative of (·)w.r.t (··)
d (·)
d (··) Total derivative of (·)w.r.t (··)
∇(·) Spatial gradient operator

∇X (·) Spatial gradient operator acting on the undeformed configuration

∇x (·) Spatial gradient operator acting on the deformed configuration

∇(··)(·) Gradient of (·)with respect to (··)
∇· (·) Spatial divergence operator

(·)−1 Inverse of a tensor

(·)T Transpose of a tensor

κ(·) Condition number of a tensor

∆(·) Increment, change of (·) in one iteration

I Identity matrix

Shape Optimization

J Objective function to be minimized

Γ Design surface boundary of the computational domain Ω

X Γ Vector of nodal coordinates as shape design variables
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Nomenclature

Q State/primal vector

Γg Subset of Γ subject to no-penetration constraint

Γh Subset of Γ subject to slip constraint

g Vector of in-equality constraints

g a Vector of active in-equality constraints

g Γ Vector of in-equality no-penetration constraints over Γg

h Vector of equality constraints

g Γ Vector of equality slip constraints over Γh

r Residual vector of the state/primal governing equations

D j Damping direction at the jth node

X c p p Closest point projection (CPP) of a given point

p Feasible search direction

C Jacobian of the linearized constraints w.r.t the nodal coordinates

C m Jacobian of the linearized constraints w.r.t the design variables

L Lagrange function

λ Vector of Lagrange multipliers

T Projection matrix

ζ Penalty parameter

Vertex Morphing

s Control field/vector

F Filter function

r Filter radius

Σ portion of Γ lying within a sphere of specified radius centered at Γ

v V M VM design velocity

A Filtering mapping matrix

AF S Filtering mapping matrix in FSI on non-matching meshes

r V M Residual vector of VM parametrization

Fluid-Structure Interaction

R S Strong form of structure governing equations

R F Strong form of fluid governing equations

R M Strong form of fluid mesh motion governing equations
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Nomenclature

Q FSI State variables

w Fluid State variables

r S Full residual vector of structure

r F Full residual vector of fluid

r M Full residual vector of fluid mesh motion

r Full residual vector of FSI

f S ,i n t Vector of internal forces of structure

f S ,e x t Vector of external forces of structure

F Fluid solver

S Structure solver

M Mesh motion solver

δ Interface displacement residuals

H F S Consistent transformation matrix from structure and fluid

H S F Consistent transformation matrix from fluid to structure

Adjoint-based Shape Sensitivity Analysis

J Force-based objective function

d Force projection vector

d ∗ Modified force projection vector

J ∗ Force-based objective function with modified force projection vector

Ψ Vector of the adjoint variables associated with r

Ψ F Vector of the adjoint variables associated with r F

ΨS Vector of the adjoint variables associated with r S

ΨM Vector of the adjoint variables associated with r M

g F S I FSI adjoint-based shape gradient vector

g F Adjoint-based shape gradient vector of fluid problem

g S Adjoint-based shape gradient vector of structure problem

g M Adjoint-based shape gradient vector of fluid mesh motion problem

f S ,a Structural adjoint force (right-hand side of the adjoint structure problem)

f M ,a Domain-based fluid adjoint force for the adjoint mesh motion problem
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Abbreviations

MDO Multi-disciplinary optimization

FSI Fluid-structure interaction

VM Vertex Morphing

CAD Computer-aided design

NURBS Non-uniform rational B-spline
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CFD Computational fluid dynamics

CSD Computational structural dynamics

CS Control script
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AD Automatic differentiation
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Chapter 1

Introduction

Numerical design optimization has received great attention in academia
as well as in industry, where the aim is to maximize the ratio of the design
performance to the design cost. The latter, in particular, involves complex
reality and therefore issues like robustness, flexibility and automation of
the computational framework have to be addressed. Recent developments
in computational science, engineering and power have made it possible
to remove simplifying assumptions which may result in infeasible design
and even unphysical results. Typical examples can be found in multidis-
ciplinary design problems, particularly fluid-structure interaction (FSI)
problems where flexibility can have large impact on both the aerodynamic
response [1, 6, 41, 78, 89] and the sensitivity/gradient of the response with
respect to (w.r.t) design variables [7]. Among various research topics in
multidisciplinary design optimization (MDO) [58], FSI shape sensitivity
analysis and optimization, which are the main topics of discussion in this
work, have been active areas of research over the past two decades. The
origins of high-fidelity FSI optimization can be traced back to the works of
Giunta et al. [32] and Maute et al. [59], both of which optimized aero-elastic
wings with respect to few shape design variables.
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1 Introduction

1.1 Vertex Morphing for Node-based Shape Optimization

The shape parametrization techniques can be divided into two major
categories: CAD-based and CAD-free, each of which has its own pros and
cons. For example, the main advantage of the CAD-based approach over
the others is that it is intrinsically linked to the CAD model of design surface
at the cost of numerical differentiation of the CAD model w.r.t surface mesh.
On the other hand, node-based parametrization as a CAD-free approach
provides the richest design space which can result in shape modes that can
not be captured by a coarse CAD model. For a detailed comparison and
review of shape parametrization techniques, the reader is kindly referred
to [75].

Vertex Morphing (VM), a consistent shape control technique that en-
sures smooth shape transitions, was introduced recently by Hojjat et al.
[14, 39] as a node-based shape optimization tool to be used in industrial
design processes. Simply speaking, Vertex Morphing introduces a design
control space in which the mathematical optimization problem is defined
in parallel to the geometry space, where shape updates are applied. Then,
it defines a mapping, which enforces smoothness and the mesh quality cri-
terion, to perform transforms between the geometry space and the control
space. So far, the capabilities of this technique have been evaluated within
design cycles at the BMW group, Volkswagen AG [63], and ONERA [11]. As
the next step, packaging constraints (or, more generally, geometrical shape
constraints) are introduced into Vertex Morphing methodology without
loss of generality and robustness as an indispensable part of the industrial
design process.

Unlike shape parametrization techniques, optimization under manu-
facturing constraints, specially packaging constraints, has not been well
discussed and well reported in literature. A potential reason for this could
be that shape parametrization itself is challenging and is still a subject of
on-going research. Another reason could be the emergence of arbitrary
geometrical constraints from industry, which is still lacking a robust and
fully automated framework even for unconstrained shape optimization
[76]. Different types of manufacturing and geometrical constraints can be
found in literature. For example, Schmitt et al. [79, 80] enforced different
types of symmetry, curvature, and demolding constraints in a node–based
shape optimization technique. Thickness control has been investigated
by many researchers because of its importance for manufacturability [4,
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1.1 Vertex Morphing for Node-based Shape Optimization

37]. Furthermore, various types of level-set based shape (and topology)
optimization including feature control and geometric constraints can be
found in [3, 33, 46, 61, 92].

This work introduces the first successful inclusion of packaging con-
straints in the framework of Vertex Morphing. Herein, packaging con-
straints will be termed as bounding surfaces. This is of great practical
importance for maintaining precise control of packaging in industrial de-
sign processes. A comprehensive survey of packing (layout) problems and
algorithms can be found in [88] and the references therein. Regarding
the imposition of this type of manufacturing constraint, the constraint is
quantified at the nodes of the design surface mesh [point-wise constraint
[3, 28, 46]]. This is advantageous not only because of the strong imposi-
tion of the constraint [53] but also because of the shape parametrization
technique used in this work. An intuitive approach to enforce the afore-
mentioned point-wise geometrical constraints would be to formulate them
in the geometry space. Then, incorporate them into the shape optimiza-
tion problem in the design control space using the gradient projection
technique [51]. In this way, incorporation of constraints is consistent with
Vertex Morphing technique. To avoid numerical problems arising in the
gradient projection step, the linear least squares approximation to the
Lagrange multipliers is used. The properties of the aforementioned idea
are:

1. The no-penetration constraint is defined point-wise to satisfy the
constraint at every point of the optimization surface.

2. The feasibility of the shape is guaranteed at each optimization step
using the gradient projection technique.

3. All properties of the Vertex Morphing method discussed in [14, 38,
39] are preserved, which means that smooth geometries are always
generated regardless of how non-smooth the bounding surface is.

Finally, the results confirm that the proposed formulation provides
a consistent frame for node-based shape optimization under geometric
shape constraints.
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1 Introduction

1.2 Sensitivity Analysis Methods for Multidisciplinary
Shape Optimisation

Fluid-structure interaction (FSI) as a complex multiphysics problem has
received special attention from the research community not only because
of its applications but also because of its complicated and challenging
mathematics. Although a numerical solution of the primal FSI problem has
been intensely studied for a variety of aspects, the adjoint FSI problem and
especially black-box adjoint FSI coupling have not been well established
in the literature. In computational FSI and also this work, the following
topics have received considerable attention:

• Coupling Strategy: In general, the methods are classified into two
main categories, the monolithic methods [30, 73] and the partitioned
methods [19, 21, 27, 82]. The former method solves the whole primal
FSI problem in a single coupled system, while the later solves the fluid
and the structure separately by imposing the coupling conditions at
the interface. For comparisons of the partitioned and monolithic FSI
algorithms, the reader is referred to the following references [19, 35].

• Non-Conforming Interfaces: Due to the different physics, fluid and
structure may require different mesh resolutions resulting in the non-
matching interfaces. Therefore, in order to apply the interface bound-
ary conditions, mapping is required between the non-matching inter-
face meshes. Handling non-matching fluid and structural interface
discretizations is considered a critical requirement for the develop-
ment of a robust multi-disciplinary framework, especially when the
partitioned coupling strategy is followed. The papers by [20] and [91]
are recent works pertaining to this research topic in FSI.

Although there is a rich literature addressing the FSI problem (primal
problem), the adjoint FSI problem and especially adjoint coupling con-
ditions have not been covered in detail. Early attempts in adjoint-based
shape sensitivity analysis for FSI were made by [60], [55] and [70]. This topic
of research has been followed by [42, 56–58, 95]. Among recent trends and
developments in this area, the following works are notable and addressed
here. [77] established an open-source framework which is based on fixed-
point iterations for the adjoint variables of the coupled system using an AD
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1.2 Sensitivity Analysis Methods for Multidisciplinary Shape Optimisation

tool. The main benefit of such an approach is that there is no need to con-
struct the analytic Jacobian for the coupled physical problem. On the other
hand, the computational cost might hinder the applicability to realistic
problems. [47] presented a coupling framework for aeroelastic analysis and
optimization using discrete adjoint-based gradients. They systematically
derived the discrete adjoint corresponding to the steady aeroelastic anal-
ysis in a consistent way. Applicability of this approach might be limited
in a partitioned adjoint FSI environment due to the lack of availability
of the required cross-coupling/cross-dependent terms in every software
package. A literature review of the studies by various authors shows that
coupled-adjoint sensitivity analysis for high-fidelity aero-structural de-
sign is divided into two main formulations: a three-field formulation fol-
lowed by [10, 47, 77, 94] and a two-field formulation followed by [26, 36, 84].
Three-field formulation accounts for aerodynamic, structural, and mesh
deformation residuals in adjoint-based sensitivity analysis while two-field
formulation does not include mesh motion in the sensitivity analysis. As a
matter of fact, the mesh motion problem is only an auxiliary problem to
maintaining good mesh quality in the fluid mesh deformation step and
the FSI solution must be completely independent of the mesh and the
mesh motion of choice. To the author’s knowledge, there is no paper on
a detailed comparison between these two formulations. Filling this gap
serves as one of the main motivations of this work.

Although all mentioned references are concerned with the calculation
of coupled adjoint-based sensitivities for aero-elastic system, the following
issues have not been addressed in detail and are thus discussed within the
present contribution:

• Necessity of the fully coupled adjoint-based sensitivities. Our studies show
that, depending on the type of objective function, the amount of
interface flexibility and the flow behavior around the interface, un-
coupled adjoint-based sensitivities may deliver sufficiently accurate
gradients for shape optimization.

• Derivation of general and unique adjoint coupling conditions. Though
adjoint FSI analysis has been exploited by researchers, proper and
unique coupling conditions for adjoint FSI problems have not been
thoroughly discussed and documented in the literature. This work re-
views most representative scenarios for primal and adjoint problems
and derives respective adjoint boundary conditions.
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1 Introduction

• Clear distinction between deformed and undeformed configurations of
the interface. This is of high importance for aerodynamic shape op-
timization of the fluid-structure interface, because shape design
variables are defined on the undeformed interface while the ob-
jective is evaluated on the deformed interface. In most cases, the
objective function is evaluated on the deformed interface but the
optimal shape of the undeformed interface is of interest.

• Evaluation of mapping criterion, more specifically consistent and conser-
vative, for exchanging adjoint structural displacements and adjoint
forces across non-matching fluid and structure interfaces.

1.3 Outline

This thesis is structured as follows: In Chapter 2, the mathematical model of
the constrained shape optimization problem in the geometry space and the
control space of Vertex Morphing is presented. This includes a comprehen-
sive discussion of active constraint detection. Numerical benchmarking,
including discussions on numerical properties and different aspects of the
method, is presented in Section 2.5.

In Chapter 3, the stationary fluid-structure interaction problem is pre-
sented. This includes a review of well-known strategies for the solution
of the FSI problem. Next, criteria for mapping data fields between non-
matching grids is briefly discussed in the context of FSI. Based on the
introduced background, Chapter 4 focuses on the adjoint-based shape
sensitivity analysis for stationary FSI problems, including two-field-based
and three-field-based partitioning of the adjoint problem.

Chapters 5 and 6 present frameworks that are used to study important
aspects of the high-fidelity coupling between fluid and structure, from
solution strategies for adjoint problems to criteria for mapping primal
and adjoint fields between non-matching interface meshes. Last but not
least, Chapter 7 demonstrates and explores the applicability of the ideas
through challenging large scale applications. Finally, Chapter 8 gives main
conclusions of this work.
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Chapter 2

Node-based Shape Optimization
with Vertex Morphing

This chapter contains comprehensive discussions on the derivation and
theoretical background of Vertex Morphing parametrization and the treat-
ment of geometrical constraints, particularly slip condition over the bound-
ary of the design surface, as well as, no-penetration condition on the design
surface. Simply speaking, the goal is to find shapes/shape updates which
do not penetrate non-penetrative surfaces/obstacles (possibly overlaps)
while slide along the boundary edges of the design surface. In the following,
the described shape optimization problem is formulated in the geometry
space first, then it is posed in the framework of Vertex Morphing. This is
followed by numerical analyses of VM in terms of the conditioning of the
mapping operator and the feasibility of shapes generated by VM-based
shape optimization.

Material for the present chapter is partially derived from the publication
of the author and his coworkers([8]).

7



2 Node-based Shape Optimization with Vertex Morphing

2.1 Constrained Shape Optimization

The goal is to optimize a discrete surface and satisfy inequality and equality
constraints concurrently. Following the node-based approach [54], the
shape optimization problem of interest may be defined as

min
X Γ

J (X Γ ,Q (X Γ ))

subject to g j (X Γ ,Q (X Γ ))≤ 0, j = 1, . . . , mg .

gΓ , j (X Γg , j ) ∈ g , j = 1, . . . , mΓg
.

h j (X Γ ,Q (X Γ )) = 0, j = 1, . . . , mh .

hΓ , j (X Γh , j ) ∈h , j = 1, . . . , mΓh
.

r j (X Γ ,Q (X Γ )) = 0, j = 1, . . . , mΩ +mΓ .

(2.1)

where the terminology is taken from Figure 2.1, Γ ⊂ ∂ Ω is the design
boundary of the computational domain Ω; unless noted otherwise, X Γ

=
�

X Γ ,1, X Γ ,2, ..., X Γ ,mΓ

�

, X Γ ,i ∈R3 denotes the vector of nodal coordinates
of size 3mΓ as the design variable vector; J , g and h respectively denote the
objective function to be minimized, the vector of in-equality constraints
and the vector of equality constraints. Here, Γg and Γh are the subsets
of the boundary Γ which are subject to in-equality no-penetration con-
straints g Γ (X Γg

) and equality slip constraints hΓ (X Γh
), respectively. Also,

r denotes the residual of the state/primal governing equations which may
be non-linear, and Q denotes the state/primal vector. The geometric shape
constraints are formulated point-wise, which means for each mesh point
X Γ , j , scalar-valued constraints g j and h j are evaluated and satisfied sepa-
rately.

As a matter of fact, the intended geometrical constraints can be formu-
lated as follows:

hΓh , j (X Γh , j ) =D j ·∆X Γh , j = 0

gΓg , j (X Γg , j ) =−n c · [X Γg , j −X c p p (X Γg , j )]≤ 0
(2.2)

where the so-called gap function [49, 68] is used to formulate the no-
penetration constraint gΓg , j , D j and∆X Γh , j are, respectively, the damping
direction (e.g. D j = n Γh , j ) and the shape update at the jth node. X c p p is
determined based on the so-called closest point projection (CPP) of X Γg , j

8



2.1 Constrained Shape Optimization

Figure 2.1: A schematic of geometrically constrained shape optimization
problem including assessment of the no-penetration condition in two-
dimensional space.

onto the bounding surface and n c is the corresponding contact normal
vector. Here, n c is chosen to be the unit normal vector on the bounding
surface at X c p p . For an overview of the CPP, including potential pitfalls, see,
for example, [48, 49]. However, an approximate solution for finding X c p p

is the application of the kd-tree nearest neighbor search to the discrete
bounding surface for X Γg , j .

Since the no-penetration condition is required to be fulfilled com-
pletely in each optimization iteration, the fixed-radius nearest neighbor
search is used here. Therefore, the task is to find the closest point to X Γg , j

in the discrete bounding surface within a defined radius from X Γg , j . The
radius can be fixed during the optimization process or dynamically ad-
justed according to the maximum shape update. As a result, a buffer layer
next to the bounding surface/curve is introduced to prevent the potential
penetration in each design iteration.

9



2 Node-based Shape Optimization with Vertex Morphing

Figure 2.2: Notional schematic of the design surface (Γ ), the filter function
(F ), the integration area (Σ) and the boundary ofΣ (Ψ ).

2.2 Vertex Morphing Technique

This section presents the implementation and computational details of
our shape parametrization technique for numerical optimization. The
core idea is to transfer consistently shape optimization problem from the
spatial design space X Γ (the geometry space) to a new design space s Γ
using a desirable map. This means that the mathematical optimization
problem is solved in the new design space.

In a continuous manner, the three-dimensional geometry at point X 0 =
(X 1

0 , X 2
0 , X 3

0 ) of the optimization surface Γ is generated from the surface
control field s = (s 1, s 2, s 3) via a smoothing filter operation:

X 0 =

∫

Σ(s ,r )

F (X , X 0) s ⊗n ·dΣ =
∫

Σ(s ,r )

F (X , X 0) s dΣ (2.3a)

F (X , X 0) =
1

p
2πr

e
−





X −X 0







2

2 r 2 (2.3b)
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2.2 Vertex Morphing Technique

where F could be any reasonable filter (kernel) function, here moti-
vated by the probability density function;Σ is the portion of Γ which lies
within a sphere of radius r and center X 0; r is the filter radius (assumed to
be constant);





X −X 0





 is the Euclidean distance to the center of the filter
X 0; n is the unit normal vector to the surface; dΣ =n dΣ is the unit normal
component of the surface element. See Fig. 2.2 for a notional schematic
of the used notation. Note that, the subscript Γ is dropped to simplify the
notation and X is the continuous 3D vector with one component for each
spatial coordinate, i.e., X = (X 1, X 2, X 3). By selecting appropriate F and
r , one can control the properties of this mapping and, subsequently, the
produced shapes. Therefore, F and r can be regarded as design handles.

As seen in Eq. 2.3, Vertex Morphing constructs a nonlinear-mapping
that establishes correspondence between the control space where the
optimization problem is formulated and the geometry space where the
shape update is applied. In order to enforce the consistency in the mapping
[90], the following condition is applied:

∫

Σ

F (X , X 0) dΣ = 1.0 (2.4)

Consistency is the basic criterion for mapping algorithms which speci-
fies that a constant variation in the control field δs = (1,1,1) results in a
uniform update in the geometry δX 0 = (1, 1, 1) in this context.

Two key components in any gradient-based shape optimization method
are the geometry update (∆X 0) and the objective function gradient with
respect to (w.r.t.) the design variables ( d J

d s ). Since derivatives of the objec-
tive function are always computed w.r.t to the spatial coordinates d J

d X 0
, it is

required to compute the shape derivative, i.e., the derivative of the surface
coordinates w.r.t. control field d X 0

d s . From Eq. 2.3 one can determine the
continuous derivative of the shape X 0 with respect to the design parameter
s . For that purpose, the Leibniz theorem has to be applied to differentiate
the surface integral in Eq. 2.3, for the ith component of point X 0 the shape

11



2 Node-based Shape Optimization with Vertex Morphing

derivative reads as follows:

d X i
0

d s i
=

∫

Σ

�

F i +∇· (F i ⊗v V M ,i )− (∇·v V M ,i )F i
�

·dΣ

−
∮

Ψ

�

v V M ,i ×F i
�

·dΨ , i ∈ [1, 3]

(2.5a)

F i = F s i n (2.5b)

v V M ,i =
d X

d s i
(2.5c)

where Ψ is the edge or boundary of the domainΣ (see Fig. 2.2). The line
integral in the above equations can be safely neglected due to the fact that
the filter function F is by definition zero along the boundaryΨ . It should be
noted that the left and right sides of Eq. 2.5a are dependent of each other,
and, in fact, a partial differential equation (PDE) with an appropriate set
of boundary conditions should be solved to obtain the shape derivatives
for Vertex Morphing shape parametrization technique. The underlined
terms in Eq. 2.5a have been neglected so far in the literature [8, 14, 15, 39],
meaning that only the partial variation of the shape with respect to the
control has been taken into account, i.e.,

d X i
0

d s i
≈
∂ X i

0

∂ s i
=

∫

Σ

F (X , X 0) dΣ (2.6)

Note again that in the foregoing expressions for brevity the subscript
Γ is dropped. One can choose an arbitrary number of design variables to
discretize the design space. Unless noted otherwise, the control field is
discretized with the same discretization as the geometry to have the largest
design space possible for the optimization. Discretizing the governing
equation of Vertex Morphing in Eq. 2.3 leads to the following nonlinear
system of equations:

r V M (X Γ (s ), s ) = X Γ − A(X Γ ) . s Γ = 0 (2.7)

where r V M is the residual vector of Vertex Morphing parametrization,
X Γ = [X Γ ,1, X Γ ,2, ..., X Γ ,m ], X Γ ,i = (X 1

Γ ,i , X 2
Γ ,i , X 3

Γ ,i ) ∈R
3 denotes the vector

of nodal coordinates of size 3m , s Γ = [s Γ ,1, ..., s Γ ,m ], s Γ ,i = (s 1
Γ ,i , s 2

Γ ,i , s 3
Γ ,i )

12



2.2 Vertex Morphing Technique

∈ R3 is the vector of control variables, A is the filtering matrix which is
constructed based on the geometry X Γ and projects the control field onto
the geometry. The property of consistency in Eq. 2.4 is reflected as the unit
row sum in the operator A.

In the context of gradient-based shape optimization, depending on
the parametrization technique, one has to derive formulas/rules for the
geometry update as well as for the computation of gradients. The governing
equations of VM (Eqs. 2.3, 2.7) are nonlinear with respect to the geometry,
therefore a suitable solution strategy is needed to compute the updated
geometry from the updated control variables. Given the control field and
the objective gradients at the kth optimization iteration, the new design
may be calculated as:

k+1s Γ =
k s Γ +

k∆s Γ

= k s Γ + α
k∇s Γ J

(2.8)

Here α is the optimization step length. Having the new control field k+1s Γ ,
Newton methods can be used to compute the new discrete geometry k+1X Γ

iteratively until convergence as:

k+1,n+1X Γ =
k+1,n X Γ +

k+1,n∆X Γ

k+1,n∆X Γ = −
�

∂ k+1,n r V M

∂ k+1,n X Γ

�−1

· k+1,n r V M
(2.9)

herein, k and n are the current optimization and Newton iteration indices,
∂ k+1,n r V M

∂ k+1,n X Γ
is the Jacobian or tangent stiffness matrix of the Vertex Morphing.

Taking the total derivative of Eq. 2.7 with respect to the design geometry,
one gets

∂ k+1,n r V M

∂ k+1,n X Γ
= I −

∂ k+1,n A

∂ k+1,n X Γ
· k+1s Γ (2.10)

where I is an identity matrix of size 3mΓ × 3mΓ . A simplification, in
order to avoid computationally expensive process of determining the shape
update, is to use the incomplete linearization of the VM residuals as follows:

k+1,n∆X Γ ≈ −I · k+1,n r V M (2.11)

13



2 Node-based Shape Optimization with Vertex Morphing

By assuming that the filtering matrix A is invariant with respect to the new
geometry, equations 2.9 can be further simplified as:

k∆X Γ ≈ k A(k X Γ ) · k∆s Γ (2.12)

The above has appeared so far as the shape update rule in [8, 14, 15,
39]. Careful comparison of Eq. 2.12 with Eq. 2.9 reveals that the simplified
update rule does not require neither the inversion of the VM Jacobian nor
the control field itself, rather it requires only the control field update.

According to the chain rule of differentiation, the objective derivative
with respect to the shape controls reads:

d J

d k s Γ
=

d J

d k X Γ
·

d k X Γ

d k s Γ
(2.13)

where
d J

d k X Γ
and

d k X Γ

d k s Γ
are the objective derivatives with respect to mesh

coordinates and shape derivatives of Vertex Morphing, respectively. The
former is computed by adjoint methods in this case, and the latter can be
computed by differentiating the residual vector in Eq. 2.7 with respect to
the control vector:

d k r V M

d k s Γ
=

d k X Γ

d k s Γ
−
∂ k A

∂ k X Γ
· k s Γ ·

d k X Γ

d k s Γ
− k A = 0 (2.14)

and then solving the above for the shape gradients leads to:

d k X Γ

d k s Γ
=

�

I −
∂ k A

∂ k X Γ
· k s Γ

�−1

· k A (2.15)

Under the assumption that the mapping matrix does not change much
during shape optimization, the shape gradient reduces to the following
known expression [8, 14, 15, 39]:

d k X Γ

d k s Γ
≈ k A (2.16)

Comparing this expression with Eq. 2.15, it is observed that, as expected,
the approximated shape derivatives avoid not only matrix inverse but also
the need to compute the control field s Γ . An important observation is

14



2.3 Analogy of VM to CAD-based Parametrization

that the combination of the approximated shape update rule Eq. 2.12 and
the approximated shape derivatives Eq. 2.16 has the desired property of
conserving the objective value improvement as follows:

d J

d k X Γ
· k∆X Γ =

d J

d k X Γ
· k A · k∆s Γ =

d J

d k s Γ
· k∆s Γ (2.17)

where the left hand side is equal to the change in the objective due
to the geometry update and the right hand side is equal to the change in
the objective due to the control update. This equivalence can be seen as a
proof of the consistency between the problem formulation in the geometry
space and the problem formulation in the control space.

In the remainder of this thesis, wherever Vertex Morphing shape parametriza-
tion is used, the filtering matrix A itself will be used for the mapping of
the variation in the control parameters k∆s Γ to find the geometry update
k∆X Γ , and for the mapping of the nodal sensitivities from the geometry
space to the design control space using a transpose operation.

Finally, it is worth to mention that Vertex Morphing can preserve the main
features of the design surface. More precisely, it allows shape changes
which are not affecting the “design character”, aesthetic and geometrical
features. As mentioned previously, F and r are the design handles which
control the feature preservation. A good example is the preservation of
feature lines (sharp edges), which could be achieved by a proper choice
of radius r [38]. The reason for this is that all the features smaller than
the radius r are only subject to a bulk and rigid motion, without consider-
able shape deformation. Another example would be the thickness control
which results in the no self-penetration property of the design surface
during optimization. In this case, the wall thickness is seen as a design
feature and the surface points which are close to each other move together,
no matter to which side of the wall they belong. For details, the interested
reader is referred to [38].

2.3 Analogy of VM to CAD-based Parametrization

It is interesting to compare carefully Vertex Morphing as a consistent node-
based shape parametrization technique against CAD-based methods as

15



2 Node-based Shape Optimization with Vertex Morphing

Figure 2.3: VM (a node-based parametrization) vs. NURBS (a CAD-based
parametrization). The VM filter function is of order 2 and the NURBS basis
function is a third order polynomial.

actual industrial standard for shape optimization. Principally, CAD-based
parametrization for a surface geometry consists of four main parts [17, 67]
(see also Fig. 2.3):

• Control point set: It is a set of Cartesian coordinates which determine
the shape. In general, control point P i , j does not interpolate the
actual geometry but each point on the geometry is computed by a
weighted sum of a set of control points.
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2.3 Analogy of VM to CAD-based Parametrization

• Control mesh: It is basically the connectivity between the control
points. In other words, control mesh interpolates the control points.
Due to the non-interpolatory property of the control points, the
control mesh also does not lie on the actual geometry.

• Physical mesh: It is a structured discretization of the actual geometry.
Knot vectors Ξ and H define the resolution of the physical mesh in
the curvilinear directions ξ,η. By definition, control and physical
meshes require different resolutions.

• Basis function: Each control point is assigned a polynomial function
(basis function) which specifies the physical mesh intervals in which
the corresponding control point is active. A basis function is usually
denoted by Ni ,p in which i corresponds to the ith control point, and
p corresponds with the degree of the basis function.

In NURBS-based parametrization, the three-dimensional geometry
at point X 0 = (X 1

0 , X 2
0 , X 3

0 ) of the optimization surface Γ is computed as
follows:

X 0(ξ,η) =

∑k
i=1

∑l
j=1 Ni ,p (ξ)Nj ,q (η)wi , j P i , j

∑k
m=1

∑l
n=1 Nm ,p (ξ)Nn ,q (η)wm ,n

, 0¶ ξ,η¶ 1 (2.18)

where P i , j and wi , j are control points and the corresponding weights,
Ni ,p (ξ) and Nj ,q (η) are p -th and q -th degree B-spline basis functions de-
fined as:

p = 0,

Ni ,0(ξ) =

(

1, ξi ¶ ξ<ξi+1

0, otherwise

p ¾ 1,

Ni ,p (ξ) =

(

ξ−ξi
ξi+p−ξi

Ni ,p−1(ξ) +
ξi+p+1−ξ
ξi+p+1−ξi+1

Ni+1,p−1(ξ), ξi ¶ ξ<ξi+p+1

0, otherwise

Ξ = {0, . . . , 0
︸ ︷︷ ︸

p+1

, . . . ,ξi , . . . , 1, . . . , 1
︸ ︷︷ ︸

p+1

}k+p+1

17



2 Node-based Shape Optimization with Vertex Morphing

(2.19)

respectively,

q = 0,

Nj ,0(η) =

(

1, η j ¶η<η j+1

0, otherwise

q ¾ 1,

Nj ,q (ξ) =

(

η−η j

η j+q−η j
Nj ,q−1(η) +

η j+q+1−η
η j+q+1−η j+1

Nj+1,q−1(η), η j ¶η<η j+q+1

0, otherwise

H = {0, . . . , 0
︸ ︷︷ ︸

q+1

, . . . ,η j , . . . , 1, . . . , 1
︸ ︷︷ ︸

q+1

}l+q+1

(2.20)

As illustrated in Fig. 2.3, each control point P i , j has the influence area
determined by the assigned basis functions, i.e. Ni ,p and Nj ,q . The basis
functions are equal to zero everywhere except for the interval [ξi ,ξi+p+1)×
[η j ,η j+q+1), defining the area of influence of P i , j . For ease of comparison
against VM, the surface equation 2.18 can be cast into the compact form:

X 0(ξ,η) =
k
∑

i=1

l
∑

j=1

Ri , j (ξ,η)P i , j (2.21a)

Ri , j (ξ,η) =
Ni ,p (ξ)Nj ,q (η)wi , j

∑k
m=1

∑l
n=1 Nm ,p (ξ)Nn ,q (η)wm ,n

(2.21b)

where Ri , j (ξ,η) are so-called rational basis functions.
Now reconsider the geometry generation rule of VM in Eq. 2.3, where the
control space is discretized by m control points, and the Gaussian filter
function F is replaced with a polynomial function of order p :

X 0 =
m
∑

i=1

Ri (X 0, X i )s i (2.22a)

Ri (X 0, X i ) =
Fi ,p+1(X 0, X i )

∑m
j=1 Fj ,p+1(X 0, X j )

(2.22b)
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2.4 Shape Optimization in the Control Space

Fi ,p+1(X 0, X i ) =



















∫

Fi ,p dΓ =
∫
�

1− ‖X i−X 0‖
r

�p

dΓ ≈α
�

1− ‖X i−X 0‖
r

�p+1

,




X i −X 0





¶ r

0, otherwise

(2.22c)

As is evident from Fig. 2.3, like the NURBS-based parametrization, each
control point s i has the influence area determined by the assigned function,
i.e. Fi ,p . The filter function is equal to zero everywhere except for the por-
tion of Γ which lies within a sphere of radius r and center X i , defining the
area of influence of s i . In Eq. 2.22c, note carefully that, due to the surface
integral in the VM’s geometry definition (Eqs. 2.3), the polynomial-based
filter function of order p , i.e. Fi ,p , results in a higher order polynomial-based
shape function, i.e. Fi ,p+1.

Number of control points is one of important differences between the
presented shape parametrization techniques. While VM-based parametriza-
tion provides the richest design space for optimization, NURBS-based one
usually describes the surface with a limited number of control points, un-
less refinement is made. However consistency between design and analysis
in CAD-based optimization is considered to be a great advantage.

2.4 Shape Optimization in the Control Space

By knowing the mapping from the control space to the geometry space,
one can formulate the shape optimization problem with geometric shape
constraints in the control space. Mathematically the problem reads as
follows:

min
s Γ

J (X Γ (s Γ ),Q (X Γ ))

subject to g j (X Γ (s Γ ),Q (X Γ ))≤ 0, j = 1, . . . , mg .

gΓ , j (X Γg , j ) ∈ g , j = 1, . . . , mΓg
.

h j (X Γ (s Γ ),Q (X Γ )) = 0, j = 1, . . . , mh .

hΓ , j (X Γh , j ) ∈h , j = 1, . . . , mΓh
.

r j (X Γ (s Γ ),Q (X Γ )) = 0, j = 1, . . . , mΩ +mΓ .

(2.23)

Following gradient-based optimization procedure, the gradients of
the objective or constraint functions w.r.t. the design variables s Γ can be
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2 Node-based Shape Optimization with Vertex Morphing

obtained from Eqs. 2.13,2.16. As the optimization problem is solved in
several consecutive iterations, the new design in each iteration can be
calculated using:

k+1s Γ =
k s Γ +α

k p (2.24)

where k is the current optimization iteration number; k s Γ is the current
design vector; k+1s Γ is the new design vector which is unknown; α is the
step length and can be determined using the so-called line search; k p is the
feasible search direction here, the steepest-descent direction respecting
the constraints. One has to note that the constraints in Eq. 2.23 can be
divided broadly into two types viz. geometric and state constraints.

In large-scale optimal shape design of complex geometries, it is neces-
sary to fulfil the geometric and state constraint at each optimization step
while satisfying both surface smoothness and the mesh regularity criteria.
The state constraints have been classically and strongly enforced to the
shape optimization problems using the adjoint method, which is discussed
in detail in Chapter 4. To fulfil the geometric constraints, one can employ
the successful Rosen’s gradient projection method [34, Chapter 5], [71, 72],
which projects the descent direction ∇s J onto the subspace tangent to
the active inequality and equality constraints. To do this, it is required to
linearize the active inequality and equality constraints about the current
design k s Γ (remember that the optimization problem is defined in the
control space):







k g a

h







(mga +mh )×1

≈







d k g a
d k s Γ

d h
d k s Γ






· k s Γ − k b =k C m · k s Γ − k b ≈ 0 (2.25)

where at the kth iteration k g a is the vector of the active inequality
constraints, mga

is the number of active points on the design surface, k b
is a constant vector, k C m is the Jacobian of the linearized constraints with
respect to design variables. The major task is the calculation of k C m . This
can be done by linearizing Eq. 2.2 about the current geometry k X Γ and
then mapping the Jacobian matrix to the design space using matrix k A:
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k C m =







d k g a
d k X Γ

d h
d k X Γ






·

d (k X Γ )
d (k s Γ )

=k C . k A (2.26)

where k C is the Jacobian of the linearized constraints with respect
to the nodal coordinates. In an iterative solution, a feasible design is of
interest; this means that both designs k s and k+1s satisfy Eq. 2.25:

k C m · k p = 0 (2.27)

where k p is the unknown feasible search direction. Then, finding a steepest
descent direction satisfying Eq. 2.27 can be a solution to the following
optimization problem:

min
k p

(k p )T .∇k s J

subject to k C m .k p = 0

(k p )T . k p = 1

(2.28)

where∇k s J is computed from Eqs. 2.13,2.16. Note that∇k X Γ
J is com-

puted by the adjoint method therefore it fulfils the state constraints, i.e.,
k r (k X Γ ,k Q (k X Γ )) = 0. Simply speaking, k p has to be computed such that
the most negative directional derivative is achieved while satisfying the
constraints. Note that the linear sub-optimization problem in 2.28 is ba-
sically the particularization of the Sequential Linear Programming (SLP).
Among all constrained optimization methods, the so-called Lagrange func-
tion is used herein to transfer the constrained optimization 2.28 into a
unconstrained problem by augmenting the objective function with the
constraints as follows:

L = (k p )T .∇k s J − (k p )T · (k C m )
T ·λ− ((k p )T . k p −1)µ (2.29)

where λ and µ are the Lagrange multipliers associated with the given con-
straints. The solution of the above mentioned constrained optimization
problem has to satisfy the necessary Karush-Kuhn-Tucker (KKT) condi-
tions:
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d L

d k p
=∇k s J − (k C m )

T λ−2µk p = 0

d L

dλ
= (k p )T · (k C m )

T = 0

d L

dµ
= (k p )T . k p −1= 0

(2.30)

By solving this system of equations, we obtain:

kλ= (k C m .(k C m )
T )−1 · k C m ·∇k s J (2.31)

and

k p =
1

2µ

�

∇k s J − (k C m )
T · (k C m .(k C m )

T )−1 · k C m · ∇k s J
�

=
1

2µ

�

∇k s J − (k C m )
T ·k λ

�

=
1

2µ
T ∇k s J

(2.32)

where T is the projection matrix. Generally, the factor
1

2µ
does not play

any role in the search direction; therefore, the feasible search direction for
a minimization problem is

k p =−T ∇k s J (2.33)

Note that Eq. 2.31 requires the solution of a linear system of equations
of size (mh +mga

)× (mh +mga
), where mh and mga

are the numbers of
equality constraints and active inequality constraints, respectively.

For reasons of clarity and, in particular, brevity, the feasible search
direction is computed for the case of a single active constraint, as follows:

kλ=
∇k s ga ·∇k s J

∇k s ga ·∇k s ga

k p =∇k s J −k λ∇k s ga =∇k s J −

 

∇k s ga ·∇k s J




∇k s ga







!

·
∇k s ga




∇k s ga







(2.34)
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Figure 2.4: Gradient projection and correction.

Figure 2.4 represents the projection step schematically. As can be ob-
served from the figure, if the constraint is highly non-linear with respect to
design variables, the update in the tangent subspace, i.e. k+1s −k s =αk p ,
no longer follows exactly the constraint boundary. Therefore, a correction
move is required to bring the design update back to the feasible domain.
The projected descent direction may be corrected as:

k p c =k p −k β∇k s ga

kβ = k−1β +ζ · k ga

(2.35)

where k p c is the corrected feasible direction,ζ is the penalty parameter
and must be chosen large enough but remains of finite value.

Depending on the radius of influence in Eq. 2.3 and the number of
design variables, k A and, subsequently, k C m can be considerably large and
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sparse, which is the case for industrial shape optimization problems. Thus,
it makes sense to exploit sparsity by using iterative linear solvers for solving
Eq. 2.31. Since iterative solvers are more sensitive to the conditioning
of the problem, depending on the properties of the matrix k C m , special
attention has to be given to the choice of a robust and efficient iterative
solver. The next section covers this topic in detail. As a conclusion of this
section, Algorithm 1 outlines the steps and required computations for
constrained shape optimization by means of Vertex Morphing neglecting
the non-linearity of the mapping matrix.

2.5 Numerical Analysis of VM Mapping

This section particularly discusses the condition of the system of linear
equations in Eq. 2.31 which is directly linked to the condition of C m and,
subsequently, A. For simplicity, the superscript k that indicates the opti-
mization iteration number will be dropped from the notation in the upcom-
ing paragraphs. For the analysis purpose, Fig. 2.5 provides an introductory
example to verify our formulation and implementation of geometrical con-
straints. The objective is to minimize the difference between the discrete
shape X and the discrete target curve X t a r g e t inside the feasible domain:

J =
50
∑

i=1








X i −X t a r g e t
i








 (2.36)

0 1 2 3 4 5

1

1.5

2

Figure 2.5: Two-dimensional example of a node-based, geometrically con-
strained shape optimization.

In the figure, the infeasible domain is colored in gray. As expected and
can be seen from the figure, the discrete design curve gets very close to the
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Algorithm 1 Constrained shape optimization

1: procedure
//initialization

2: 0X Γ ← discretize design surface Γ
3: discretize bounding surface Γb

4: create kd-trees on Γ and Γb

//optimization loop
5: for k = 1, 2, . . . do
// solve state problem

6: k r (k X Γ ,Q (k X Γ )) = 0
// solve adjoint problem

7:
d J

d (k X Γ )
← calculate shape gradients of objective

// find active inequality constraints
8: k g j ≥ 0, j = 1, . . . , mga

.
// calculate shape gradients of active constraints

9: k C ←







d k g a
d k X Γ

d h
d k X Γ







(mh+mga )×3mΓ

// calculate mapping matrix

10: k A←
d (k X Γ ,i )
d (k s Γ )

=
∫

Σ

F (X , X i ) dΣ, i = 1, . . . , m .

//map gradients of objective to control space

11:
d J

d (k s Γ )
←

d J

d (k X Γ )
. k A

//map gradients of active constraints to control space
12: k C m ←k C . k A
// solve for Lagrange multipliers

13: minimize




(k C m )T λ−∇k s J = 0






2
// calculate projected descent direction

14: k p ←−T ∇k s J
// correct projected descent direction

15: k p c ← k p − (k C m )T · kβ ,k β = k−1β −ζ · [k g a ,k h ]T

//calculate design update
16: k∆s ←α k p c

//calculate geometry update
17: k∆X Γ ←k A . k∆s Γ
18: check convergence
19: end for
20: end procedure
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2 Node-based Shape Optimization with Vertex Morphing

boundary of the feasible domain but does not penetrate the obstacle (pos-
sibly overlaps). For this example and the subsequent shape optimization
problems, gradient-based shape optimization using the steepest-descent
technique with a constant step size is applied.

First we start with analyzing the operator matrix A, and then evaluate
the condition of the linear system in Eq. 2.31. Remember that F and r are
the design handles and they determine the numerical properties of A. For
example, the degree of sparsity of the matrix is inverse proportional to the
radius r . We now reconsider the two-dimensional example shown in Fig.
2.5 and study the 2-norm condition number κ of A for different filter radii
and mesh densities.

Fig. 2.6 shows semi-logarithmic diagrams of the dependency ofκ(A) on
the filter radius r and the grid resolution for the first and the last optimiza-
tion iteration. We can clearly see that the conditioning of A deteriorates as
either the filter radius or the mesh density is increased. This is expected
since the operator enforces geometrical dependency and smoothness lo-
cally; i.e., the denser the mesh in the r neighborhood of a node, the more
linear dependencies exist between the rows of matrix A. Another impor-
tant observation is that the final mapping matrix has a better condition
number than the initial one. This can be explained by referring to Eq. 2.3
and recognizing the fact that the filtering operator causes linear depen-
dencies between the rows of matrix A. In the next step, we investigate the
ill-conditioned character of the C m matrix, which is inherited from matrix
A. Attention should be drawn to the fact that this character directly affects
the conditioning of the following square system of equations (Eq. 2.31):

(C m .C T
m )λ=C m∇s J (2.37)

which is known as the system of normal equations associated with the
following least squares problem [74]:

minimize




C T
m λ−∇s J = 0







2
(2.38)

Note that Eq. 2.38 is an over-determined system, i.e., C T
m is a rectan-

gular matrix of size 3m ×n , where n is the number of active constraints.
Also note that if C m is poorly conditioned, then solving Eq. 2.37 can be a
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2.5 Numerical Analysis of VM Mapping
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Figure 2.6: Condition number of A vs. filter radius for different mesh reso-
lutions. Top: the first iteration, down: the last iteration.

computationally inefficient approach [74]. In fact, it can be shown that the
following relation holds [74]:

κ(C m .C T
m ) = κ

2(C m ) (2.39)

Assume, for example, thatκ(C m ) = 1e 8. Then Eq. 2.39 readsκ(C m .C T
m ) =

1e 16, leading to numerical problems in the solution of Eq. 2.37.
Fig. 2.7 shows the conditioning of the C m matrix at different radii and

mesh densities. Its behavior is similar to that of matrix A. From this, we
conclude that both C m and A are poorly conditioned matrices by nature.
Furthermore, the number of the columns in both matrices is equal to 3m ,
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2 Node-based Shape Optimization with Vertex Morphing
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Figure 2.7: Condition number of C m vs. filter radius for different mesh
resolutions.
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Figure 2.8: Shape update trajectories of a geometrically constrained opti-
mization using Vertex Morphing.

which can be too big owing to the node-based shape parametrization. On
the other hand, numerical investigations by Pyzara et al. [69] show that the
value of a condition number scales with the size of the matrix. Therefore,
the use of standard least squares iterative solvers is highly beneficial and
recommended for geometrically constrained shape optimization using
Vertex Morphing for industrial applications.

Finally, as a proof-of-concept design case, we study an illustrative exam-
ple depicted in Fig. 2.8. A uniform gradient field∇X J = (0,−1, 0) is applied
to a discretized horizontal line (design geometry space), resulting in a uni-
form and smooth translation of the vertices towards the infinity. However,
three circles and a horizontal line are put as non-penetrative obstacles
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2.5 Numerical Analysis of VM Mapping

in the way of the vertices in order to geometrically constrain this pseudo
optimization problem. In Fig. 2.8, the final shape after many optimization
iterations as well as the design trajectory of each vertex are drawn. Clearly,
the trajectories respect and satisfy the non-penetration condition over
the obstacles, while the design curve stays smooth and regular. An impor-
tant observation is that not only is the presented treatment of geometrical
constraints consistent with Vertex Morphing but Vertex Morphing also
provides a consistent frame for node-based shape optimization.
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Chapter 3

FSI: Governing Equations and
Solution Methods

This chapter starts with mathematical description of stationary fluid-structure
interaction problem including a continuous form of the governing equa-
tions and an appropriate set of steady coupling conditions at the fluid-
structure interface. Since the flow past rotating wind turbine blade is one
of the applications of interest, the system of fluid governing equations are
also transferred into a non-inertial reference frame that rotates with the
blade. This enables us to recover a steady solution for steady-state adjoint-
based shape sensitivity analysis. Without loss in generality, the equations
and the interface boundary conditions are then discretized and written in
discrete residual form. It is important to emphasize that all subsequent
derivations are independent of discretization method, e.g. finite-element
and finite-volume methods. This is followed by a review of well-known
strategies for the solution of the primal/direct FSI problem, including a
brief explanation of data mapping between non-matching meshes and
geometries in fluid-structure interaction.
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3 FSI: Governing Equations and Solution Methods

Figure 3.1: Notional schematic of the fluid domain ΩF , the structure do-
main ΩS and the interaction interface Γ , as well as the definition of the
interface surface normals. Left: the unreformed state, Right: the equilib-
rium state.

3.1 Continuous Fluid-Structure Interaction Problem

As illustrated in Figure 3.1, the system under consideration consists of three
main parts: fluid domainΩF , structural domainΩS and wet fluid–structure
interface Γ . Note that the superscripts F ,S denote that the variable/quan-
tity belongs to the fluid and structure respectively as the convention through-
out this text. As has been usually done and will be pursued here, Eulerian
and total Lagrangian approaches are used to describe fluid and structure
motions, respectively. Note that the same descriptions have conventionally
been used in single disciplinary solver implementations. A total Lagrangian
approach formulates structural governing equations R S with respect to the
undeformed configuration X while a Eulerian approach formulates fluid
governing equations R F with respect to the deformed configuration x . In
order to couple the governing equations, we require kinematic continuity
as well as the equilibrium of interface traction fields at the fluid-structure
interface. Here, the motion of the fluid domain is described by pseudo-
structural governing equations R M . Assuming steady-state conditions, the
continuous form of the problem can be written as:

R F
�

w , x F
�

= 0 in ΩF
x (3.1a)

R S
�

u S , X S
�

= 0 in ΩS
X (3.1b)

R M
�

u F , X F
�

= 0 in ΩF
X (3.1c)
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3.2 Governing Equations for Fluid

subject to

v Γ = 0 on Γx (3.1d)

u S
Γ −u F

Γ = 0 on Γ (3.1e)

X F
Ω +u F

Ω = x F
Ω in ΩF

X (3.1f)

X F
Γ +u F

Γ = x F
Γ on ΓX (3.1g)

σF ·n F +σS ·n S = 0 on Γx (3.1h)

where x and X denote the Cartesian coordinates of deformed and un-
deformed configurations, respectively. The quantity w denotes the state
variables of the fluid, typically velocities v with the pressure p or the den-
sity and the internal energy. The displacement fields u S and u F represent
the displacements in ΩS

X and in ΩF
X , respectively. The vector n is the unit

normal vector at the interface Γ .σ is the Cauchy stress tensor (i.e., stress
measured in the deformed configuration). Throughout this work, we use
the following conventions:

• The subscriptΩ designates the value of the fluid or structural parameter
inside the computational domain.

• The subscript Γ indicates the quantity at the fluid-structure interface,
e.g., u F

Γ denotes the displacement of the fluid interface.

• The subscripts x and X have been appended to the domains and the
interface to carefully distinguish between deformed and undeformed
configurations.

Note that above conditions are applied essentially independently of the
laws of continuum mechanics used to model the behavior of the fluid and
the structure.

3.2 Governing Equations for Fluid

R F represents the continuum equations that govern fluid flow. Principally,
any fluid flow problem could be formulated in any reference frame and
solved in that frame subsequently, as long as the boundary conditions
are kept consistent. As has been usually done and will be pursued here,
Eulerian frame of reference x is chosen to describe the fluid motion. An
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3 FSI: Governing Equations and Solution Methods

Eulerian reference frame can be inertial or moving with the body of in-
terest, for example, moving meshes in FSI and rotating reference frames
in rotor applications. Although in this work, only the two limiting cases
of an inviscid compressible fluid and a viscous incompressible fluid are
considered, the motion of fluid can be described by the full Navier–Stokes
compressible equations, from which all the types of governing flow equa-
tions can be derived in any reference frame (e.g., rotating reference frame).
Defining a conservative variable w = (ρF ,ρF v ,ρF E ), their steady-state
formulation for a viscous, compressible, Newtonian flow can be written in
the following form:

R F,1 =∇x · (ρF (v −vΩ)) = 0

[R F,2, R F,3, R F,4]T =∇x .(ρF v ⊗ (v −vΩ))+∇x p −∇x · (µF τ)−q = 0

R F,5 =∇x · (ρF (v −vΩ)E +p v −τ ·v − (µF /P r )Cp∇x T ) = 0

(3.2)

where ρF is the fluid density, v and vΩ (Unless explicitly stated other-
wise, vΩ = 0) respectively represent the flow velocity and the fluid domain
velocity in all dimensions, p is the physical pressure, q is a generic source
term vector, E is the total energy of the flow per unit mass, µF is the fluid
viscosity, P r is the Prandtl number, Cp is the specific heat, T is the tem-
perature, and τ is the viscous stress tensor and is defined as

τ=∇x v +∇x v T −
2

3
I
�

∇x ·v
�

(3.3)

Note that the operator∇x in the above equation and in Eq. 3.2 denotes
the derivatives with respect to the deformed configuration x. After having
solved the governing flow equations for a given set of boundary conditions,
the fluid Cauchy stress tensor reads

σF = p I −µF τ (3.4)

where I is the identity matrix. We have to remark that in the case of inviscid
flow, only the pressure field contributes to the stress tensor, furthermore,
the no-slip condition in Eq. 3.1d gets modified to the Euler slip condition
(i.e. v ·n F = 0). The flow passing over an isolated body which is rotating at
a constant angular velocity is intrinsically unsteady. However, the flow can
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3.3 Governing Equations for Structure

be approximated as a steady-state solution by transforming the system of
governing equations into a non-inertial reference frame that rotates with
the body of interest. This is advantageous because it simplifies the CFD
and shape sensitivity analyses and consequently makes the optimal shape
achievable. With this transformation, the following domain velocity and
source term are applied to the system in 3.2:

vΩ = ω × r , q =−ρF (ω×v ) (3.5)

whereω= {ω1,ω2,ω3} is the steady angular velocity of the rotating body
and r is the position vector pointing from the rotation center (x 1

o , x 2
o , x 3

o )
to a point (x 1, x 2, x 3) in the flow domain.

3.3 Governing Equations for Structure

Following a total Lagrangian approach, the static and continuous conser-
vation of momentum written in terms of the second Piola-Kirchhoff stress
S and the Lagrangian coordinates X of structural domain is

[R S ,1, R S ,2, R S ,3]T =∇X · (F · S )+ρS b = 0 (3.6)

Here, F = ∇X u S represents the deformation gradient; ρS is the density
of the structural domain; b is the volumetric body force. Note that ∇X

indicates the spatial gradient operator acting on the undeformed con-
figuration X. The second Piola-Kirchhoff stress tensor S is related to the
Green-Lagrangian strains via

S =C : E with E =
1

2

�

F T ·F − I
�

(3.7)

where C denotes the material tensor. Furthermore, since different stress
measures are used in Eq. 3.1h and Eq. 3.6, the following identity from
continuum mechanics [12] is applied:

n S
X · S dΓX =n S

x ·σ
S dΓx =−n F

x ·σ
F dΓx (3.8)

Last but not least, the equations governing the displacement of the fluid
domain can then be written as

[R M ,1, R M ,2, R M ,3]T =∇X ·σM = 0 (3.9)
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3 FSI: Governing Equations and Solution Methods

Considering the case of pseudo-linear elasticity,σM is defined as

σM =λtr
�

ε
�

u F
�

�

I +2µM ε
�

u F
�

(3.10)

where tr() is the trace operator, λ and µM are the Lame constants, and ε is
the strain tensor:

ε
�

u F
�

=
1

2

�

∇X u F + (∇X u F )T
�

(3.11)

3.4 Discrete Fluid-Structure Interaction Problem

In order to solve the explained coupled problem numerically, spatial dis-
cretization of the governing equations and all unknown fields is required.
Having discretized the fluid and structure domains with m F and mS nodes,
respectively, the residual form of the stationary FSI problem in Eq. 3.1 reads
independently of the spatial discretization scheme as follows:

r F
�

w , x F
�

=









�

r F
Ω

�

m F
Ω×1

�

r F
Γ

�

m F
Γ ×1









= [0]m F ×1 (3.12a)

r S
�

u S , X S , w , x F
�

=









�

r S
Ω

�

mS
Ω×1

�

r S
Γ

�

mS
Γ×1









= [0]mS×1

= f S ,e x t
�

w , x F
�

− f S ,i n t
�

u S , X S
�

(3.12b)

r M
�

u F , X F , u S
�

=









�

r M
Ω

�

m F
Ω×1

�

r M
Γ

�

m F
Γ ×1









= [0]m F ×1

= f M ,e x t − f M ,i n t
�

u F , X F
�

(3.12c)
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3.4 Discrete Fluid-Structure Interaction Problem

subject to

v Γ = 0 on Γx (3.12d)

r M
Γ =u S

Γ −u F
Γ = 0 on Γ (3.12e)

X F
Ω +u F

Ω = x F
Ω in ΩF

X (3.12f)

X F
Γ +u F

Γ = x F
Γ on ΓX (3.12g)

r S
Γ = f S ,e x t

Γ − f F
Γ = 0 on Γ (3.12h)

where r F , r S , and r M are the full residual vectors (including the internal
and the boundary values) of the fluid, the structure, and the mesh motion,
respectively. f S ,i n t and f S ,e x t are the vector of internal forces and the
vector of external forces in the structure, respectively, while f M ,i n t and
f M ,e x t are the same terms of the mesh motion. While f S ,e x t is composed
of the interface boundary forces due to the fluid flow f S ,e x t

Γ

�

w , x F
�

= f F
Γ

and the remaining f S ,e x t
Ω (other specified structural loads such as gravity),

f M ,e x t is generally zero. Note also that in Eq. 3.12, x F represents the nodal
coordinates of the fluid mesh in the deformed configuration, while X S

and X F are the nodal coordinates of the structural and fluid meshes in
the undeformed configuration, respectively. We emphasize that all of the
variable vectors in Eq. 3.12 are the discrete quantities composed of the
interface Γ and the remaining Ω contributions.

3.4.1 Primal solution strategies

Mathematically speaking, fluid-structure interaction problems have a high
degree of nonlinearity which is associated with the nonlinearities in the
governing equations of fluid and structure. For the solution of the obtained
nonlinear system of equations in Eq. 3.12, there are two main methods,
namely monolithic and partitioned. While the monolithic approach solves
for all primary unknowns in a single system of equations, the partitioned
approach breaks down the coupled problem into multiple partitioned
subsystems and a set of interface constraints. Although the monolithic
approach usually results in a robust and accurate numerical method, a
single software package needs to be able to model all the necessary physics.
Therefore, it is not possible to reuse any existing solvers. Instead, the parti-
tioned approach allows existing simulation programs of the each discipline
to be reused which brings big benefits: on the one hand, it reduces the time
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3 FSI: Governing Equations and Solution Methods

it takes to develop the software; on the other hand, the scope of FSI prob-
lems that can be solved is broadened. However, the partitioned approach
may suffer from numerical stability and accuracy issues. For a more thor-
ough review of the primal FSI coupling techniques, refer to [40]. To bring
out the full generality and completeness, both methods will be discussed
in the sequence. Last but not least, the issue of non-matching discrete
interfaces is addressed in the context of partitioned FSI.

Monolithic FSI

Simply speaking, we are looking for a vector of primary unknowns Q =
�

w , u S , u F
�

which satisfies the following system

r =







r F
�

w , x F
�

u F
�

�

r S
�

u S , w
�

r M
�

u F , u S
�






=







0

0

0






(3.13)

where r is the complete residual vector which consists of the residual
vectors of fluid, structure and mesh motion, respectively. In the next step,
the implicit residual vector r is linearized with respect to the unknown
solution vector Q and solved for using Newton’s method as

n+1Q = n Q +

�

−∂ n r

∂ n Q

�−1

· n r (3.14)

herein, n Q =
�

n w ,n u S ,n u F
�

is the value of primary unknowns at the end of

the nth iteration; ∂
n r

∂ n Q is the Jacobian or tangent stiffness matrix of the FSI
problem. Keeping in mind the dependences indicated in Eq. 3.12, in every
Newton-Raphson iteration, one clearly needs to solve for the following
linear system of equations

−

















∂ n r F

∂ n w 0 ∂ n r F

∂ n u F

∂ n r S

∂ n w
∂ n r S

∂ n u S
∂ n r S

∂ n u F

0 ∂ n r M

∂ n u S
∂ n r M

∂ n u F

































∆w

∆u S

∆u F

















=

















n r F

n r S

n r M

















(3.15)
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3.4 Discrete Fluid-Structure Interaction Problem

where ∂ n r F

∂ n u F is the derivative of the fluid residuals w.r.t the nodal displace-

ments of the fluid mesh, ∂
n r S

∂ n w and ∂ n r S

∂ n u F are the derivatives of the structure
residuals w.r.t fluid state vector and fluid nodal displacements, respectively,
and ∂ n r M

∂ n u S is the derivative of the mesh motion residuals w.r.t structure state
vector. The computation of these cross partial derivatives is expensive from
the computational and implementation point of view, therefore it puts a
burden on the coupling of the fluid and the structure governed by com-
plicated partial differential equations (PDE). On the other hand, having
the full and exact Jacobian matrix of the FSI problem is particularly advan-
tageous in terms of the consistent derivation and implementation of the
adjoint problem.

Partitioned FSI

The FSI problem stated continuously in Eq. 3.1 and discretely in Eq. 3.12
constitutes a coupled set of non-linear and linear subproblems that can
be solved separately and iteratively until the interface conditions, the equi-
librium of tractions and kinematic continuity, are satisfied. This results
in the so-called Gauss-Seidel fixed-point iterations for a strongly coupled
partitioned fluid-structure interaction. Among the partitioned coupling
techniques for FSI [9], we use the so-called Dirichlet–Neumann partitioned
procedure which is by far the most widely used strategy, both for simplicity
and because of wide range of applicability to single disciplinary solvers.
This technique treats the fluid domain as the Dirichlet partition, i.e. it
takes the prescribed interface displacements as the Dirichlet boundary
condition for the mesh motion problem, and the structure domain as the
Neumann partition loaded with interface fluid forces.

With the Dirichlet–Neumann partitioned procedure, we break down the
stationary FSI problem into the fluid, the structure and the mesh motion
subproblems which are treated by black box solvers as

f F
Γ =F (x F ) (3.16a)

u S
Γ = S( f F

Γ ) (3.16b)

x F =M(u S
Γ ) (3.16c)

In the equation, F represents the fluid solver that takes the new po-
sition of the fluid mesh x F as input and outputs the interface load f F

Γ

(nodal forces or tractions), S represents the structure solver that takes f F
Γ
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3 FSI: Governing Equations and Solution Methods

as input and outputs u S
Γ , and the mesh motion solver M which outputs

the deformed fluid mesh x F according to u S
Γ . A fixed point iteration can be

formulated either with one of S and F or both. For example, a non-linear
fixed point iteration can be formulated as

u S
Γ = S ◦ F ◦ M(u S

Γ ) (3.17)

meaning that the mesh motion problem is solved first with the given u S
Γ ,

then the fluid solver takes the new mesh and computes the interface forces,
finally the structure solver computes the interface displacements using
the output from the fluid f F

Γ . The output u S
Γ is fed back in an iterative way.

The interface residuals of one iteration is defined as

δ = S ◦ F ◦ M(u S
Γ )−u S

Γ (3.18)

When ‖δ‖2 is below a given tolerance ε, the fixed point iteration is con-
verged and the steady state of equilibrium is achieved.

Non-matching discretizations

The partitioned treatment of the FSI problem naturally enables us to han-
dle FSI problems with non-matching discrete interfaces, which is particu-
larly advantageous for large-scale high-fidelity FSI problems with different
mesh resolution requirements. When applying the coupling conditions to
non-matching meshes, mapping is needed before transferring the infor-
mation. Although development and assessment of mapping algorithms are
not in the scope of this work, we investigated the difference in accuracy be-
tween the so-called conservative and consistent mapping criteria [16, 25].
Whichever mapping algorithm is chosen to enforce coupling conditions
(Eqs. 3.12e and 3.12h) over non-matching interface meshes, its outcome
reads

u F
Γ =H F S ·u S

Γ

t S
Γ =H S F · t F

Γ

(3.19)

H F S transfers consistently the displacement of the structure interface
points X S

Γ to that of the fluid interface points X F
Γ , while H S F assigns the

fluid interface tractions t F
Γ to the structure interface tractions t S

Γ con-
sistently. In order to ensure that a constant displacement and constant

40



3.4 Discrete Fluid-Structure Interaction Problem

pressure fields are exactly interpolated over the interface, the coefficients
of the mapping matrix are renormalized to produce unit row sums. The
resulting matrix is the so-called consistent mapping matrix. The conserva-
tive mapping matrix can be derived from the interface energy conservation
equation and an existing displacement mapping matrix: given H F S , it is
derived as

f S ,e x t
Γ = (H F S )T · f F

Γ (3.20)

where f S ,e x t
Γ and f F

Γ are the interface forces from the structure and the
fluid, respectively. In this way, the discrete form of the energy conservation
at the interface is satisfied as the following relation holds:

( f S ,e x t
Γ )T ·u S

Γ = ( f
F
Γ )

T ·u F
Γ (3.21)

While the displacement is usually mapped using consistent mapping,
the force/traction can be mapped either consistently or conservatively.
Although a conservative load transfer guarantees the conservation of the
resultant force and energy, it can lead to spurious oscillations in the pres-
sure received by the structure. On the other hand, the consistent mapping
results in differences in the resultant force and energy. A thorough math-
ematical discussion of this topic can be found, for instance, in [16] and
[91]. A critical and comparative assessment of mapping criteria for certain
mapping algorithms is a part of this work and will be discussed in Sec. 6.3.
In this thesis, the following nomenclature is adopted for general data field
mapping between non-matching meshes in fluid-structure interaction:
consistent-conservative mapping which refers to mapping structure data
field (e.g., displacement field) consistently while mapping the fluid data
field (e.g., force field) conservatively, consistent-consistent mapping which
refers to mapping both structure and fluid data fields consistently.

Last but not least, Algorithm 2 details the Gauss-Seidel algorithm for
a stationary FSI problem with arbitrary non-matching interface meshes
using consistent-conservative mapping. In this algorithm, n denotes the
current iteration, and û S

Γ is the relaxed interface displacements. Due to
the simplicity of implementation and efficiency, the Aitken relaxation is
chosen as the default relaxation scheme in this work.

41



3 FSI: Governing Equations and Solution Methods

Algorithm 2 Partitioned (or iterative) work flow for stationary FSI using
consistent-conservative mapping

//initialize the mapping matrix between X F
Γ and X S

Γ
1: H F S

2: n = 1
//initialize interface displacements

3: n û S
Γ = 0

//FSI strong coupling loop
4: while ‖nδ‖2 > ε do
//map consistently the relaxed interface displacements

5: n û F
Γ =H F S · n û S

Γ
// solve mesh motion problem

6: n x F =M(n û F
Γ )

// solve fluid problem
7: n f F

Γ =F (n x F )
//map conservatively the interface forces

8: n f S ,e x t
Γ = (H F S )T · n f F

Γ
// solve structure problem

9: n u S
Γ = S(n f S ,e x t

Γ )
// compute interface displacement residuals

10: nδ =n u S
Γ −

n û S
Γ

11: compute n+1û S
Γ based on {1δ,2δ, · · ·,n δ} and {1u S

Γ ,2 u S
Γ , · · ·,n u S

Γ }
(relaxation, etc.)

12: n = n +1
13: end while

42



Chapter 4

Adjoint-based Shape Sensitivity
Analysis

Having chosen node-based shape parametrization, which provides the
richest design space possible for optimization of a discrete geometry, the
next step is to efficiently compute gradients of cost function with respect
to shape design variables, the so-called shape sensitivity analysis. Adjoint-
based shape sensitivity analysis, is still the most efficient and the state
of the art technique for the gradient computation and it is used in this
work. Adjoint-based shape sensitivity analysis is done either on the discrete
level, called discrete adjoint analysis, or on the continuous level, called
continuous adjoint analysis. A literature review on the studies from various
authors shows that the structures community most commonly uses the
discrete adjoint method while the fluid community is mostly driven by the
continuous adjoint method.

This chapter presents firstly the derivation of adjoint-based shape gra-
dients for the fluid-structure interaction problem (Chapter3) discretely.
Then cost function along with contributions from fluid and structure resid-
uals are differentiated continuously which results in a set of continuous
PDEs and boundary conditions and, most importantly, closed form expres-
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4 Adjoint-based Shape Sensitivity Analysis

sions for the fluid shape sensitivities.

4.1 Problem Formulation

Having obtained the equilibrium state of a static aeroelastic system, we
formulate the aeroelastic shape sensitivity analysis problem as follows:

We seek to compute the gradients of force-based objective functions de-
fined along the deformed fluid-structure interface Γx with respect to shape
design variables which specify the undeformed geometry of the interface.

Special attention has to be given to the following points: 1) the objective
is a force-based function which depends on the interface forces, 2) shape
design variables define the shape of the undeformed interface and the
nodal coordinates are considered as the design variables, 3) the balance
equations of the aeroelastic system are considered as equality constraints.
Keeping in mind that the structure is described by the total Lagrangian
approach while the fluid is described by the Eulerian formulation, the
shape optimization problem corresponding to the shape sensitivity analy-
sis problem of interest is defined as

min
X Γ

J
�

w , u S , x F
�

subject to

r =







r F
�

w , x F
�

r S
�

u S , w , x F , X Γ

�

r M
�

u F , u S , X Γ

�






=







0

0

0







(4.1)

where J denotes a force-based objective (drag, lift, strain energy etc.)
to be minimized; X Γ = [X Γ ,1, X Γ ,2, ..., X Γ ,mΓ

], X Γ ,i ∈R3 denotes the vector
of the interface nodal coordinates of size 3mΓ as the design variable vector;
r is the residual vector of the aeroelastic system. It should be noted that
r contains not only the discretized state equations of each subproblem
(Eqs. 3.12a-3.12c) but also the interface coupling conditions (Eqs. 3.12e-
3.12h) as indicated by dependencies in Eq. 4.1. Also note that in the above
formulation, we assumed that the interface meshes are matching, i.e. X F

Γ =
X S
Γ = X Γ and m F

Γ =mS
Γ =mΓ .
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4.2 Force-based Functionals

4.2 Force-based Functionals

In the context of CFD and FSI optimization, force-based objective function-
als (lift, drag, strain energy) are the most relevant and popular aerodynamic
surface integrals to be optimized. The fluid force acting on the deformed
fluid-structure interface in some arbitrary directions d (force projection
vector field) may be evaluated continuously as

J
�

w , u S , x F
�

=

∫

Γx

d ·
�

p I −µF τ
�

·n F dΓ (4.2a)

and discretely as

J =
m
∑

i=1

d T
i · f S ,e x t

Γ ,i =
m
∑

i=1

d T
i · f F

Γ ,i (4.2b)

where m is the total number of points on the interface; d i and f S ,e x t
Γ ,i / f F

Γ ,i
are respectively the force projection vector at node i and the aerodynamic
load from fluid to structure at node i . d could be a constant or spatially
varying vector field, which is chosen to relate the force on the surface to a
desired quantity of interest. For example, in the drag minimization d i is
chosen to be a unit vector opposite to the direction of the incoming flow.
Furthermore the strain energy of an aeroelastic system can be linearly
approximated by plugging the interface displacement field as the force
projection vector field in Eq. 4.2, i.e. d i =u S

Γ ,i . The nodal force projection
vectors relevant to the applications in Chapter 7 are compiled in Table
4.1 where α is the free-stream angle of attack, β is the side-slip angle, r i

is the position vector pointing from the rotation center (x 1
o , x 2

o , x 3
o ) to a

point (x 1
i , x 2

i , x 3
i ) on the interface, and u S

Γ ,i is the nodal displacement of
the objective surface.

4.3 Adjoint-based sensitivity analysis

The goal is to compute the sensitivity derivatives of an objective function
to a number of shape design variables, d J

d X Γ
, while satisfying a greater num-

ber of equality constraints which describe the state of equilibrium of the
system. The adjoint method has been shown to be the most efficient way
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4 Adjoint-based Shape Sensitivity Analysis

Table 4.1: Definitions of d i for different objective functions

Objective d i

Drag (cosαcosβ , sinαcosβ , sinβ )
Lift (−sinα, cosα, 0)

Total Power ω× r i

Strain Energy u S
Γ ,i

with a cost practically independent of the number of design variables. In
deriving the adjoint equations, there is principally the choice between a
fully discrete approach [29], a fully continuous approach [36] or a combina-
tion of the two called the hybrid adjoint approach[5, 86]. Upon examining
the literature, shape sensitivity analysis for structures is confined to finite
element-based discrete adjoint solvers whereas aerodynamic shape sensi-
tivity analysis is dominated by the finite volume-based continuous and
discrete adjoint solvers. In order to make a full exploitation of the actual
developments and implementations in single disciplinary adjoint solvers,
the following derivation of the adjoint FSI problem is performed in a gen-
eral way and independently of the used discretization and adjoint methods
for each discipline.

In this section, the adjoint system of the FSI problem of interest is con-
sistently derived in such a way that it inherits important characteristics of
the primal problem, particularly coupling strategy. Similar to the primal FSI
problem, the adjoint FSI problem is a coupled problem consisting of four
main parts namely adjoint fluid, adjoint structure, adjoint mesh motion
and adjoint coupling conditions. Hence, like any coupled system, it can be
solved with either the monolithic strategy or the partitioned strategy. If the
full and exact Jacobian matrix of the FSI problem is available from the final
converged iteration of primal analysis (Eq. 3.15), the adjoint FSI system
is then easily constructed by taking the transpose of the Jacobian. On the
other hand, if the full and exact Jacobian is not readily available or the pri-
mal problem is solved in a partitioned manner, the adjoint solution may be
achieved by a partitioned procedure capable of splitting the linear adjoint
FSI problem. As discussed in the introduction, there are two approaches
for partitioning the adjoint FSI problem: 1) Three-field formulation which
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4.3 Adjoint-based sensitivity analysis

accounts for aerodynamic, structural, and mesh deformation residuals
in adjoint-based sensitivity analysis, 2) two-field formulation which does
not include the mesh motion problem for the sensitivity analysis. For the
purposes of the present work, we will study the above three mentioned
coupling schemes. Before proceeding to the derivation of the adjoint FSI
problem, special attention needs to be given to the following remarks:

Remark 1. The adjoint problem of a coupled FSI system is also a coupled
system and it consists of sub-adjoint problems which are coupled at the
interface of fluid and structure via adjoint coupling conditions.

Remark 2. Mesh motion is only meant to preserve the mesh quality in
the discretized fluid domain, otherwise mesh motion and its adjoint do
not exist in the continuous (not discretized) primal and adjoint problems,
respectively.

Remark 3. As one of the findings in the literature and in this work, it is
worth mentioning that the fully discrete adjoint approach appears to be
the most accurate choice among the given alternatives. However, it also
requires memory and CPU-intense evaluations of the partial derivatives
and more importantly, their actual availability in a given code environment.
Since the required cross derivatives are not ready to use within already
available open-source multiphysics frameworks, an efficient approach that
is accurate enough has to be found. The requirement is that the intended
approach integrates easily into a partitioned co-simulation software envi-
ronment with adjoint capabilities in the single disciplinary solvers.

4.3.1 Monolithic adjoint FSI

If the tangent matrix of the aero-elastic system ∂ r
∂Q is available and accessi-

ble, then one can easily use it for the adjoint problem. Knowing r is the
complete residual vector of the coupled system, the Lagrange function
corresponding to the shape optimization problem in Eq. 4.1 reads

L (Q , x F , X Γ ) = J (Q , x F ) +ΨT · r (Q , x F , X Γ ) (4.3)

where superscript T denotes the transpose operator; Ψ =
�

Ψ F ,ΨS ,ΨM
�

is
the vector of the adjoint variables (Lagrange multipliers) associated with
the complete residual vector (r =

�

r F , r S , r M
�

). Remember J is a force-
based functional depending only on the primary unknowns Q and the
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4 Adjoint-based Shape Sensitivity Analysis

fluid mesh points x F (see Section 4.2). The total variation of L with respect
to the undeformed shape of the wet surface X Γ hence reads:

d L

d X Γ
=

d J

d X Γ
+ΨT ·

d r

d X Γ
(4.4)

Applying the chain rule of differentiation, the total derivative is as follows:

d L

d X Γ
=

�

∂ J

∂Q
+ΨT ·

∂ r

∂Q

�

·
d Q

d X Γ
+

�

∂ J

∂ x F
+ΨT ·

∂ r

∂ x F

�

·
d x F

d X Γ
|Q=c o n s t . +

�

ΨT ·
∂ r

∂ X Γ

�

·
d X Γ

d X Γ

(4.5)

where the first term on the right-hand side accounts for the sensitivities
of the state variables Q with respect to the coordinates of the grid points
on the interface in the undeformed state X Γ . The remaining terms on the
right-hand side stand for the shape sensitivities of the objective function
and the residual vector. To avoid having to calculate the computationally
expensive term d Q

d X Γ
, the term multiplying this quantity is set to zero to

give rise to the adjoint equation

�

∂ r

∂Q

�T

·Ψ =
�

−∂ J

∂Q

�T

(4.6)

where the right-hand side is the partial derivative of the functional with
respect to variations in state/primary variables. The main advantage of
monolithic over partitioned is that the adjoint system is easily derived by
taking the transpose of full tangent stiffness matrix.

Expanding the total derivative of the coupling conditions Eqs. 3.12f-
3.12g with respect to the design variables while keeping the fluid displace-
ment constant, we can write,

d x F

d X Γ
|u F =c o n s t . =









d x F
Ω

d X Γ

d x F
Γ

d X Γ









=









d X F
Ω

d X Γ
+ d u F

Ω

d X Γ

d X F
Γ

d X Γ
+ d u F

Γ

d X Γ









=







[0]m F
Ω×mΓ

I mΓ×mΓ






(4.7)

48



4.3 Adjoint-based sensitivity analysis

where the fact that X F
Ω does not depend on the design variables has

been used. Considering the above relationship, the non-zero terms in Eq.
4.5 read:

d L

d X Γ
=
∂ J

∂ x Γ
+ΨT ·

∂ r

∂ x Γ
+ΨT ·

∂ r

∂ X Γ
(4.8)

A further simplification is possible by expanding the shape derivatives of
the complete residual vector as

∂ r

∂ x Γ
=











∂ r F (w ,x F )
∂ x Γ

∂
�

f S ,e x t (w ,x F )− f S ,i n t (u S ,X S )
�

∂ x Γ
∂
�

f M ,e x t − f M ,i n t (u F ,X F )
�

∂ x Γ











=













∂ r F

∂ x Γ

[0]mS
Ω×mΓ

∂ f S ,e x t
Γ

∂ x Γ

[0]m F ×mΓ













(4.9a)

∂ r

∂ X Γ
=











∂ r F (w ,x F )
∂ X Γ

∂
�

f S ,e x t (w ,x F )− f S ,i n t (u S ,X S )
�

∂ X Γ

∂
�

f M ,e x t − f M ,i n t (u F ,X F )
�

∂ X Γ











=









[0]m F ×mΓ

− ∂ f S ,i n t

∂ X Γ

− ∂ f M ,i n t

∂ X Γ









(4.9b)

where we made use of the fact that only the wet boundary part of f S ,e x t is
a function of the deformed interface nodal coordinates x Γ , i.e.,

(ΨS
Ω)

T ·
∂ f S ,e x t

Ω

∂ x Γ
= [0]mS

Ω×mΓ

(ΨS )T ·
∂ f S ,e x t

∂ x Γ
= (ΨS

Γ )
T ·
∂ f S ,e x t

Γ

∂ x Γ

(4.10)

Finally, plugging 4.9 and 4.2 into 4.8, the coupled sensitivity equation is
obtained as follows:

49



4 Adjoint-based Shape Sensitivity Analysis

d L

d X Γ
=















∂ J ∗
∂ xΓ

︷ ︸︸ ︷

(ΨS
Γ +d )T ·

∂ f S ,e x t
Γ

∂ x Γ
+(Ψ F )T ·

∂ r F

∂ x Γ















︸ ︷︷ ︸

g ∗FΓ

+













−(ΨM )T ·
∂ f M ,i n t

∂ X Γ
︸ ︷︷ ︸

g M
Γ

−(ΨS )T ·
∂ f S ,i n t

∂ X Γ
︸ ︷︷ ︸

g S
Γ













,

or in short

g F S I
Γ = g ∗FΓ + g M

Γ + g S
Γ

(4.11)

where g ∗FΓ is the adjoint-based shape gradients of the fluid at the interface
while g M

Γ ,g S
Γ are the same term of the mesh motion and the structure at

the interface respectively, and J ∗ is the fluid force acting on the interface
in the direction of the modified force projection vector field,

d ∗ = d +ΨS
Γ (4.12)

We may now note the following points for the adjoint-based shape sensitiv-
ity analysis of an FSI problem formulated using the Eulerian-Lagrangian
approach (i.e. Eqs. 3.1 and 3.12):

1. The shape gradients of the fluid problem, including the modified
force-based objective function and the fluid residuals, are computed
in the deformed configuration. This is consistent with the primal
problem formulation.

2. Since the structure and fluid mesh motion problems are defined
and solved in the undeformed configuration, the gradients of their
residuals are computed with respect to the undeformed shape of
the interface.
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4.3.2 Partitioned adjoint FSI by three-field formulation

If the primal FSI problem is solved using a partitioned block Gauss-Seidel
method, then the coupled adjoint-based sensitivities can be calculated in
a partitioned way. In a manner consistent with the primal FSI problem,
we define a Lagrange function that augments the objective function to
incorporate the state constraints (Eq. 4.1):

L (w , u S , u F , x F , X Γ ) =

J
�

w , u S , x F
�

+ (Ψ F )T · r F (w , x F ) +

(ΨS )T ·
�

f S ,e x t
�

w , x F
�

− f S ,i n t
�

u S , X Γ

�

�

+

(ΨM )T · r M (u F , u S , X Γ )

(4.13)

Note that in the above equation, we replaced r S
�

u S , w , x F , X Γ

�

with its

expanded form f S ,e x t
�

w , x F
�

− f S ,i n t
�

u S , X Γ

�

. Please refer to Eq. 3.12 for
the mentioned dependencies in the residual vectors. The gradient of the
above Lagrangian with respect to design variables reads

d L

d X Γ
=

�

∂ J

∂w
·

d w

d X Γ
+
∂ J

∂ u S
·

d u S

d X Γ
+
∂ J

∂ x F
·

d x F

d X Γ

�

+

(Ψ F )T ·
�

∂ r F

∂w
·

d w

d X Γ
+
∂ r F

∂ x F
·

d x F

d X Γ

�

+

(ΨS )T ·

�

∂ f S ,e x t

∂w
·

d w

d X Γ
+
∂ f S ,e x t

∂ x F
·

d x F

d X Γ
−

∂ f S ,i n t

∂ u S
·

d u S

d X Γ
−
∂ f S ,i n t

∂ X Γ

�

+

(ΨM )T ·
�

∂ r M

∂ u F
·

d u F

d X Γ
+
∂ r M

∂ u S
·

d u S

d X Γ
+
∂ r M

∂ X Γ

�

(4.14)

Before proceeding with the derivation of adjoint equations and the
sensitivity equation, we expand d x F

d X Γ
by taking the total derivative of the

geometrical compatibility conditions in Eqs. 3.12f-3.12g

d x F

d X Γ
=

d X F

d X Γ
+

d u F

d X Γ
(4.15)
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After plugging the above equation in Eq. 4.14 and reordering the terms, we
obtain

d L

d X Γ
=

�

∂ J

∂w
+ (Ψ F )T ·

∂ r F

∂w
+ (ΨS

Γ )
T ·
∂ f S ,e x t

Γ

∂w

�

·
d w

d X Γ
+

�

∂ J

∂ u S
− (ΨS )T ·

∂ f S ,i n t

∂ u S
+ (ΨM )T ·

∂ r M

∂ u S

�

·
d u S

d X Γ
+

�

(ΨM )T ·
∂ r M

∂ u F
+
∂ J

∂ x F
+ (Ψ F )T ·

∂ r F

∂ x F
+

(ΨS
Γ )

T ·
∂ f S ,e x t

Γ

∂ x F

�

·
d u F

d X Γ
+





�

∂ J

∂ x F
+ (Ψ F )T ·

∂ r F

∂ x F
+ (ΨS

Γ )
T ·
∂ f S ,e x t

Γ

∂ x F

�

·
d X F

d X Γ
|Q=c o n s t .+

(ΨM )T ·
∂ r M

∂ X Γ
− (ΨS )T ·

∂ f S ,i n t

∂ X Γ

�

(4.16)

It must be mentioned that in the above derivations, we made use of the fact
that only the wet boundary part of f S ,e x t is a function of the flow variables
w and the nodal coordinates of the deformed fluid domain x F , i.e.,

(ΨS )T ·
∂ f S ,e x t

∂w
= (ΨS

Γ )
T ·
∂ f S ,e x t

Γ

∂w

(ΨS )T ·
∂ f S ,e x t

∂ x F
= (ΨS

Γ )
T ·
∂ f S ,e x t

Γ

∂ x F

(4.17)

While the terms multiplying d w
d X Γ

, d u S

d X Γ
and d u F

d X Γ
, respectively, are eliminated

respectively by satisfying the adjoint fluid problem, the adjoint structure
problem and the adjoint mesh motion problem, the expression in the last
brackets gives rise to the coupled shape gradients. This is in accordance
with the three-field formulation for the adjoint analysis of FSI, which ac-
counts for the adjoint mesh motion problem in contrast to the two-field
formulation. In the following subsections, three-field adjoint systems as
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well as coupled-adjoint sensitivity equations are presented and discussed
in detail.

• Coupled adjoint fluid problem: The Lagrange multipliers Ψ F and
ΨS
Γ are chosen such that the variation w.r.t. the fluid state variables

vanishes identically:

�

∂ r F

∂w

�T

·Ψ F =−

�

∂ J

∂w
+ (ΨS

Γ )
T ·
∂ f S ,e x t

Γ

∂w

�T

(4.18)

Observe that this equation is basically the well-known adjoint system
of equations for fluids, i.e.

�

∂ r F

∂w

�T

·Ψ F =−
�

∂ J

∂w

�T

, (4.19)

which is augmented by the fluid state variation of the interface force
vector projected onto the interface adjoint displacements. After plug-
ging the force-based functional Eq. 4.2 into Eq. 4.18, the coupled
adjoint fluid problem reads

�

∂ r F

∂w

�T

·Ψ F =−

�

(d +ΨS
Γ )

T ·
∂ f S ,e x t

Γ

∂w

�T

=−

�

(d ∗)T ·
∂ f S ,e x t

Γ

∂w

�T

=−
�

∂ J ∗

∂w

�

(4.20)

where d ∗ = d +ΨS
Γ is the modified force projection vector field. As a

result, we find that in the coupled adjoint sensitivity analysis there
is no need to compute the extra partial derivative and add it as a
source term to the adjoint fluid solution, instead the interface adjoint
displacements only need to be added to the force projection vector
field.

• Coupled adjoint structure problem: To avoid the computationally
expensive operation of computing variation of structure displace-
ments w.r.t the shape design variables, i.e. d u S

d X Γ
, the following system
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needs to be solved:
�

∂ f S ,i n t

∂ u S

�T

·ΨS =

�

∂ J

∂ u S
+ (ΨM )T ·

∂ r M

∂ u S

�T

= f S ,a (4.21)

where ∂ f S ,i n t

∂ u S is the symmetric tangential stiffness matrix of structure;
f S ,a (the right-hand side of the adjoint structure problem) is inter-
preted as the structural adjoint force. Note that since the tangent
matrix is a symmetric self-adjoint matrix, the same primal structural
solver can be reused with a given adjoint force. For the force-based
functional defined in Eq. 4.2, the structural adjoint force (the right-
hand side of Eq. 4.21) is calculated as follows:

f S ,a
ΩS = [0]mS

Ω×1

f S ,a
Γ =

�

�

f S ,e x t
Γ

�T ·
∂ d

∂ u S
Γ

+d T ·
∂ f S ,e x t

Γ

∂ u S
Γ

+ (ΨM
Γ )

T ·
∂ r M

Γ

∂ u S
Γ

�T

(4.22)

where (ΨM )T · ∂ r M

∂ u S in Eq. 4.21 is replaced with (ΨM
Γ )

T · ∂ r M
Γ

∂ u S
Γ

in Eq. 4.22

due to the fact that only the interface residuals of the mesh motion
problem depend on the interface structural displacements (see Eq.
3.12e). Note that the term ∂ d

∂ u S
Γ

is zero for a pure aerodynamic force

objective and it is the identity matrix for the strain energy objective.
Furthermore, as the external force applied to the structure does not
depend explicitly on the structural displacements, the term multiply-

ing
∂ f S ,e x t

Γ

∂ u S
Γ

vanishes. Finally, the last term in Eq. 4.22 can be simplified

by taking the partial derivative of Eq. 3.12e with respect to the inter-
face structural displacements as follows:

∂ r M
Γ

∂ u S
Γ

= I mΓ×mΓ
(4.23)

When we take the above-mentioned findings into account, we obtain
for the structural adjoint force at the kth node on the interface

f S ,a
Γ ,k =

∂ d k

∂ u S
Γ ,k

· f S ,e x t
Γ ,k + ΨM

Γ ,k (4.24)
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where d k , u S
Γ ,k and ΨM

Γ ,k are the force projection vector, structural
displacement and fluid adjoint displacement at the node k, respec-
tively. Considering the general expression for the uncoupled adjoint
structure problem:

�

∂ r S

∂ u S

�T

·ΨS =

�

−
∂ f S ,i n t

∂ u S

�T

·ΨS =−
�

∂ J

∂ u S

�T

(4.25)

and comparing it to Eq. 4.21, we can conclude that the coupled
adjoint structure displacements can be computed using a single
disciplinary adjoint structural solver with contributions from the
fluid adjoint displacements over the FSI interface.

• Coupled adjoint mesh motion problem: As the last step in the three-
field-based adjoint analysis, we solve for the fluid adjoint displace-
ments using

�

∂ r M

∂ u F

�T

·ΨM =

−

�

d T ·
∂ f S ,e x t

Γ

∂ x F
+ (Ψ F )T ·

∂ r F

∂ x F
+ (ΨS

Γ )
T ·
∂ f S ,e x t

Γ

∂ x F

�T (4.26)

Since the pseudo-linear elasticity equations are used to describe
the motion of the fluid domain, the residual vector r M is composed
primarily of the vectors of external and internal forces as written
in Eq. 3.12c. As a result, the coupled adjoint mesh motion problem
simplifies to:

�

∂ f M ,i n t

∂ u F

�T

·ΨM =

�

∂ J ∗

∂ x F
+ (Ψ F )T ·

∂ r F

∂ x F

�T

= f M ,a (4.27)

where ∂ f M ,e x t

∂ u F = 0 is applied due to full Dirichlet boundary condi-

tions for the mesh motion (i.e. f M ,e x t = 0), ∂ f M ,i n t

∂ u S is the symmetric
tangential stiffness matrix of mesh motion. Note that in arriving at
the above equation, we have merged the first and the last terms on
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4.3 Adjoint-based sensitivity analysis

the right-hand side of Eq. 4.26. An important observation is that the
right-hand side is a body-force-like term and here we name it the
domain-based fluid adjoint force f M ,a for the adjoint mesh motion
problem.

Given that the adjoint-based sensitivity of a general and uncoupled
fluid problem w.r.t to the fluid domain reads:

g F =

�

∂ J

∂ x F
+ (Ψ F )T ·

∂ r F

∂ x F

�T

, (4.28)

the reader can easily verify that the domain-based fluid adjoint force
f M ,a is basically the adjoint-based and domain-based sensitivity of
the coupled force-based functional J ∗, i.e.

g ∗F = f M ,a =

�

∂ J ∗

∂ x F
+ (Ψ F )T ·

∂ r F

∂ x F

�T

(4.29)

Note carefully that g ∗F is a vector of dimension 3m F .

• Coupled sensitivity equation: Having systematically derived strongly
coupled adjoint systems, we compute the coupled shape sensitivities
from the remaining non-zero terms in Eq. 4.16 as follows:

d L

d X Γ
=

�

(ΨS
Γ +d )T ·

∂ f S ,e x t
Γ

∂ x F
+ (Ψ F )T ·

∂ r F

∂ x F

�

·
d X F

d X Γ
|Q=c o n s t .+

(ΨM )T ·
∂ r M

∂ X Γ
− (ΨS )T ·

∂ f S ,i n t

∂ X Γ

(4.30)
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which may be further simplified by the fact that ∂ f M ,e x t

∂ X Γ
= 0 and

introducing Eq. 4.7 as:

d L

d X Γ
=
∂ J ∗

∂ x Γ
+ (Ψ F )T ·

∂ r F

∂ x Γ
︸ ︷︷ ︸

g ∗FΓ

−(ΨM )T ·
∂ f M ,i n t

∂ X Γ
︸ ︷︷ ︸

g M
Γ

−(ΨS )T ·
∂ f S ,i n t

∂ X Γ
︸ ︷︷ ︸

g S
Γ

=g ∗FΓ + g M
Γ + g S

Γ

(4.31)

where J ∗ is the force-based functional with the modified force pro-
jection vector field (i.e. d ∗ = d +ΨS

Γ ). In the above, one distinguishes
between the derivatives w.r.t the deformed interface shape and the
gradients w.r.t undeformed interface shape. This is exactly consistent
with the formulation of the primal problem.

The following remarks highlight some of the important observations about
partitioned adjoint-based sensitivity analysis for FSI using three-field for-
mulation:

Remark 4. Comparing Eq. 4.31 with Eq. 4.11 shows that the closed-form ex-
pression for the sensitivity equation is independent of the solution strategy
for the adjoint FSI problem.

Remark 5. By careful inspection of Eqs. 4.27-4.31, it turns out that the
adjoint-based and domain-based sensitivities of the coupled fluid prob-
lem,

g ∗F =







g ∗FΩ

g ∗FΓ






= f M ,a , (4.32)

contribute not only to the coupled adjoint mesh motion problem but also
to the coupled shape sensitivities.

Table 4.2 summarizes the findings and outcome of partitioned adjoint-
based sensitivity analysis for FSI using three-field formulation. Note that
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the coupled adjoint equations are represented in a residual form, e.g., r F,a

is the discrete residuals of the coupled adjoint fluid problem. Based on

Figure 4.1: Schematic representation of FSI shape sensitivity analysis using
black box adjoint solvers and the three-field formulation.

the above discussions and findings, we conclude that there exist adjoint
quantities to be exchanged between the adjoint solvers. Analogous to
the primal problem (see Section 3.4.1), the partitioned adjoint-based FSI
sensitivity analysis in Table 4.2 can be implemented by single disciplinary
adjoint solvers in a black box manner. Figure 4.1 illustrates the flows of
information in the three-field-based adjoint shape sensitivity analysis,
where

• AF is the adjoint fluid solver that takes the modified force projection
vector field as input and outputs the domain-based adjoint sensitivity
g ∗F that contains the internal and the boundary values.

• AM is the adjoint mesh motion solver whose input is the domain-
based fluid adjoint force/sensitivity f M ,a = g ∗F and outputs are
the interface fluid adjoint displacement ΨM

Γ and the adjoint-based
gradients of the mesh motion problem w.r.t the interface shape (i.e.
g M
Γ ).

• AS is the adjoint structure solver which receives the structural ad-
joint force f S ,a and outputs the interface structural adjoint displace-
ment ΨS

Γ and the adjoint-based gradients of the structure problem
w.r.t the interface shape (i.e. g S

Γ ).

Given non-matching meshes at the interface, Algorithm 3 outlines the steps
and required computations in a Gauss-Seidel solution process, where n
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4.3 Adjoint-based sensitivity analysis

denotes the current iteration and Ψ̂
S

Γ is the relaxed interface structural
adjoint displacements. In this algorithm, consistent–conservative map-
ping procedure is employed to transfer the interface structural adjoint
displacements consistently and the interface fluid adjoint displacements
conservatively.

Algorithm 3 Work flow of a block Gauss-Seidel coupling algorithm for the
adjoint FSI problem summarized in Table 4.2

//initialize the mapping matrix between X F
Γ and X S

Γ
1: H F S

2: n = 1
//initialize interface adjoint structure displacements

3: n Ψ̂
S

Γ = 0
//adjoint FSI strong coupling loop

4: while





n r Γ







2
> ε do

// map consistently interface adjoint structure displacements and
modify force projection vector field

5: n d ∗ = d +H F S · n Ψ̂
S

Γ
// solve adjoint fluid problem

6: n g ∗F =AF (n d ∗)
// solve adjoint mesh motion problem

7: nΨM
Γ =AM(n g ∗F )

//map conservatively fluid adjoint displacements on the interface and
calculate interface structural adjoint force

8: n f S ,a
Γ =

∂ d
∂ u S

Γ
· f S ,e x t

Γ + (H F S )T · nΨM
Γ

// solve adjoint structure problem
9: nΨS

Γ =AS(n f S ,a )
// compute adjoint structure displacement residuals on the interface

10: nδ =n ΨS
Γ −

n Ψ̂
S

Γ

11: compute n+1Ψ̂
S

Γ based on {1δ,2δ, · · ·,n δ} and {1ΨS
Γ ,2ΨS

Γ , · · ·,n ΨS
Γ }

(relaxation, etc.)
12: n = n +1
13: end while
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4.3.3 Partitioned adjoint FSI by two-field formulation

In many black box adjoint solvers, shape gradients are calculated and ac-
cessible only for the surface (boundary) points, and therefore, the domain-
based fluid adjoint force f M ,a is not available to solve the coupled adjoint
mesh motion problem (Eq. 4.27). On the other hand, the mesh motion
problem is only an auxiliary problem to maintaining good mesh quality
in the fluid mesh deformation step and it essentially does not exist in the
continuous form of FSI problem. With the condition that the aero-elastic
solution is mesh independent, it is a valid assumption to completely ignore
the mesh motion problem in the coupled adjoint sensitivity analysis, the
so-called two-field formulation of the adjoint FSI problem. In the case
of matching meshes at the interface, the Lagrange function of two-field
formulation is defined as follows:

L (w , u S , x Γ , X Γ ) =

J
�

w , u S , x Γ
�

+ (Ψ F )T · r F (w , x Γ ) +

(ΨS )T ·
�

f S ,e x t
�

w , x Γ
�

− f S ,i n t
�

u S , X Γ

�

�

(4.33)

Based on two-field formulation, we assume that the variation of the internal
fluid displacements with respect to the shape design variables is zero, while
no assumption is made about the variation of the fluid displacements on
the interface, i.e.

d u F
Ω

d X Γ
≈ [0]m F

Ω×mΓ
(4.34a)

d u F
Γ

d X Γ
=

d u S
Γ

d X Γ
6= [0]mΓ×mΓ

(4.34b)

and the total derivative of the geometrical compatibility conditions in Eqs.
3.12f-3.12g is subsequently approximated via

d x F
Ω

d X Γ
=

d u F
Ω

d X Γ
+

d X F
Ω

d X Γ
=

d u F
Ω

d X Γ
≈ [0]m F

Ω×mΓ
(4.35a)

d x F
Γ

d X Γ
=

d x Γ
d X Γ

=
d u F

Γ

d X Γ
+

d X F
Γ

d X Γ
=

d u S
Γ

d X Γ
+ I mΓ×mΓ

(4.35b)

where matching interface meshes is assumed. The gradient of the mesh-
independent Lagrangian in Eq. 4.33 with respect to the design variables
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reads

d L

d X Γ
=

�

∂ J

∂w
+ (Ψ F )T ·

∂ r F

∂w
+ (ΨS

Γ )
T ·
∂ f S ,e x t

Γ

∂w

�

·
d w

d X Γ
+

�

∂ J

∂ u S
+ (ΨS )T ·

∂ f S ,e x t

∂ x Γ
·

d u S
Γ

d u S
− (ΨS )T ·

∂ f S ,i n t

∂ u S
+

�

∂ J

∂ x Γ
+ (Ψ F )T ·

∂ r F

∂ x Γ

�

·
d u S

Γ

d u S

�

·
d u S

d X Γ
+

�

∂ J

∂ x Γ
+ (Ψ F )T ·

∂ r F

∂ x Γ
+ (ΨS

Γ )
T ·
∂ f S ,e x t

Γ

∂ x Γ
− (ΨS )T ·

∂ f S ,i n t

∂ X Γ

�

(4.36)

wherein the following equivalent form of Eq. 4.35b is used to group the
terms that contribute to the variation of the structural displacements:

d x Γ
d X Γ

=
d u S

Γ

d X Γ
+ [1]mΓ×mΓ

=
d u S

Γ

d u S
·

d u S

d X Γ
+ I mΓ×mΓ

,

d u S
Γ

d u S
=
h

d u S
Γ

d u S
Ω

d u S
Γ

d u S
Γ

i

=
�

[0]mΓ×mS
Ω

I mΓ×mΓ

�

(4.37)

Comparing Eq. 4.36 with Eq. 4.16, there is no update in the coupled
adjoint fluid problem, whereas the coupled adjoint structure problem is
modified as follows:

�

∂ f S ,i n t

∂ u S

�T

·ΨS =

�

∂ J

∂ u S
+ (ΨS )T ·

∂ f S ,e x t

∂ x Γ
·

d u S
Γ

d u S
+

�

∂ J

∂ x Γ
+ (Ψ F )T ·

∂ r F

∂ x Γ

�

·
d u S

Γ

d u S

�T

= f S ,a

(4.38)

As before, the right-hand side of the adjoint structure problem is named
the structural adjoint force and is represented by f S ,a . Note that, although
the second term on the right-hand side of Eq. 4.38 is a function of the
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adjoint displacement vectorΨS , it is intentionally assigned to the structural
adjoint force in order not to modify or in order to reuse the tangent stiffness
matrix of the structure. If we reconsider our force-based functional which
is defined as the weighted sum of the nodal aerodynamic forces (weights:
force projection vector field d ), then the structural adjont force vector has
non-zero values only on the fluid–structure interface Γ i.e.,

f S ,a
Ω = 0

f S ,a
Γ =

�

�

f S ,e x t
Γ

�T ·
∂ d

∂ u S
Γ

+ (ΨS
Γ +d )T ·

∂ f S ,e x t
Γ

∂ x Γ
+ (Ψ F )T ·

∂ r F

∂ x Γ

�T (4.39)

The boundary adjoint force f S ,a
Γ can be further simplified by introducing

the modified force-based objective function J ∗ as

f S ,a
Γ =

�

�

f S ,e x t
Γ

�T ·
∂ d

∂ u S
Γ

+
�

f F,a
Γ

�T

�T

f F,a
Γ =

�

∂ J ∗

∂ x Γ
+ (Ψ F )T ·

∂ r F

∂ x Γ

�T
(4.40)

and f F,a
Γ is termed the boundary-based fluid adjoint force. Knowing that

the adjoint-based sensitivity of a general and uncoupled fluid problem
w.r.t to the interface boundary reads:

g F
Γ =

∂ J

∂ x Γ
+ (Ψ F )T ·

∂ r F

∂ x Γ
, (4.41)

we can easily verify that the boundary-based fluid adjoint force f F,a
Γ is

basically the adjoint-based and boundary-based sensitivity of the coupled
force-based functional J ∗, i.e.

g ∗FΓ = f F,a
Γ =

∂ J ∗

∂ x Γ
+ (Ψ F )T ·

∂ r F

∂ x Γ
. (4.42)

After having derived the adjoint fluid and structure problems, the coupled
sensitivity equation based on two-field formulation can be calculated from
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the remaining terms in Eq. 4.36:

d L

d X Γ
=
∂ J ∗

∂ x Γ
+ (Ψ F )T ·

∂ r F

∂ x Γ
︸ ︷︷ ︸

g ∗FΓ

−(ΨS )T ·
∂ f S ,i n t

∂ X Γ
︸ ︷︷ ︸

g S
Γ

(4.43)

Algorithm 4 Work flow of a block Gauss-Seidel coupling algorithm for the
adjoint FSI problem summarized in Table 4.3

//initialize the mapping matrix between X F
Γ and X S

Γ
1: H F S

2: n = 1
//initialize interface adjoint structure displacements

3: n Ψ̂
S

Γ = 0
//adjoint FSI strong coupling loop

4: while





n r Γ







2
> ε do

//map consistently interface adjoin structure displacements and mod-
ify force projection vector field

5: n d ∗ = d +H F S · n Ψ̂
S

Γ
// solve adjoint fluid problem

6: n g F
Γ =AF (n d ∗)

//map conservatively boundary-based adjoint fluid forces/sensitivi-
ties and calculate interface structural adjoint forces

7: n f S ,a
Γ =

∂ d
∂ u S

Γ
· f S ,e x t

Γ + (H F S )T · n g F
Γ

// solve adjoint structure problem
8: nΨS

Γ =AS(n f S ,a )
// compute adjoint structure displacement residuals on the interface

9: nδ =n ΨS
Γ −

n Ψ̂
S

Γ

10: compute n+1Ψ̂
S

Γ based on {1δ,2δ, · · ·,n δ} and {1ΨS
Γ ,2ΨS

Γ , · · ·,n ΨS
Γ }

(relaxation, etc.)
11: n = n +1
12: end while

The careful reader have identified that the adjoint-based and boundary-
based sensitivities of the coupled force-based functional contribute to
both the structural adjoint force and the coupled sensitivity equation. The
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Figure 4.2: Schematic representation of FSI shape sensitivity analysis using
black box adjoint solvers and the two-field formulation.

results of the above sensitivity analysis are provided in Table 4.3. Further-
more, Figure 4.2 shows a schematic representation of the work flow of the
two-field-based adjoint shape sensitivity analysis. Lastly, Algorithm 4 spec-
ifies the steps and required computations with the consistent-conservative
treatment of non-matching grids at the interface.
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4.4 Continuous Adjoint-based Sensitivity Analysis for
Fluids Coupled with Structures

In this section, for the sake of completeness and generality, adjoint-based
shape sensitivity analysis is performed continuously for the fluid in an Eu-
lerian reference frame, whether it is fixed or moving (e.g. rotating reference
frame). Furthermore, in order to ensure that the above derivations for the
coupled adjoint fluid problem is independent of the adjoint approach, the
force-based objective functional in Section 4.2 is augmented not only with
the flow state equations/residuals through the Lagrange multipliers, but
also with an extra force-based functional coming from the structure. The
Lagrangian function corresponding to the fluid problem of interest reads

L ∗(w , x Γ ) = J (x Γ , w ) +

∫

ΩF
x

(Ψ F )T ·R F (x , w ) dΩ+

∫

Γx

ΨS ·
�

p I −µF τ
�

·n F dΓ

= J ∗(x Γ , w ) +

∫

ΩF
x

(Ψ F )T ·R F (x , w ) dΩ

(4.44)

Herein ΩF
x is the fluid domain in the deformed configuration x ; R F is

the governing continuum equations of the fluid; J ∗ is the total interface
force in the direction of d ∗. Note that the classical continuous Lagrangian
function for fluids can be recovered by simply setting ΨS

Γ = 0. The total
variation of L ∗ with respect to the deformed shape x hence reads:

δL ∗ =δw L ∗+δx Γ L ∗ (4.45)

While δx Γ L ∗ is the shape sensitivity that is being sought, setting δw L ∗

to zero yields a set of fluid adjoint PDEs and boundary conditions. It should
be intuitively clear that δw L ∗ = 0 is the continuous adjoint formulation to
eliminate the variation of the fluid state d w

d X Γ
in Eqs. 4.16 and 4.36, i.e.

δw

 

J ∗(x , w ) +

∫

ΩF
x

(Ψ F )T ·R F dΩ

!

= 0

≈
∂ J ∗

∂w
+ (Ψ F )T ·

∂ r F

∂w
= 0

(4.46)
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The approximation in the above equation becomes an equality in the
continuous limit of infinitesimally fine mesh resolution. On the other hand
δx Γ L ∗ provides a closed form expression which is a continuous form of the
adjoint-based and boundary-based sensitivity of the coupled force-based
functional J ∗ in Eq. 4.42, i.e.

δx Γ

 

J ∗(x , w ) +

∫

ΩF
x

(Ψ F )T ·R F dΩ

!

≈ g ∗FΓ = f F,a
Γ =

∂ J ∗

∂ x Γ
+(Ψ F )T ·

∂ r F

∂ x Γ

(4.47)

An important observation is that not only are the objective function and
the fluid governing equations a function of the deformed configuration x
but the volume integral also is a function of the deformed configuration x .
By the applying the Leibnitz rule, the above equation reads

δx Γ J ∗+

∫

ΩF
x

(Ψ F )T ·
∂ R F

∂ x Γ
dΩ+

∫

Γx

(Ψ F )T ·R F ·n F dΓ

︸ ︷︷ ︸

LBterm

(4.48)

The boundary integral in the above equation is called LBterm [45]. Note
that in the literature, it has been usually assumed that the flow equations
are satisfied along the boundary. As a result, LBterm has been ignored,
which is true for fine grids. Apart from this assumption, it is difficult to
compute the residuals of the Navier–Stokes equations for a viscous fluid
along the boundary, especially the second-order spatial derivatives of ve-
locity must be computed along Γx , which is not straightforward to be com-
puted accurately. A full discussion on the effect the LBterm on the gradient
accuracy of can be found in [45].

4.4.1 Total Variation of Force-based Functional

Following the chain rule theorem, the total variation of the continuous J ∗

with respect to a shape perturbation at Γx is

δ J ∗ =δx Γ J ∗+δw J ∗ = δx Γ

∫

Γx

d ∗ ·
�

I p −µF τ(v )
�

·n F dΓ +

∫

Γx

d ∗ ·
�

I δp −µF τ(δv )
�

·n F dΓ

(4.49)
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Note that the first boundary integral is exactly equivalent to the first term
in Eq. 4.48. Here the variation of the effective viscosity has been neglected.
This is known as the frozen viscosity assumption, which is commonly
followed with the continuous adjoint approach.

Basically three approaches have been proposed in the literature on the
calculation of δx Γ J ∗, namely: finite difference, analytic differentiation and
differential geometry which is followed here. Following the derivation by T.
Economon [22], the total variation of the functional can be simplified to

δ J ∗ =

∫

Γx

�

d ∗ ·q +∇d ∗ : (I p −µF τ)− (I p −µF τ) ·n F · (n F ·∇x )d ∗
�

n F dΓ

+

∫

Γx

d ∗ ·
�

I δp −µF τ(δv )
�

·n F dΓ

(4.50)

One should note that in the absence of the source term (i.e. q = 0) and
the spatially constant direction vector, the first boundary integral in Eq.
4.50 vanishes.

4.4.2 Viscous Incompressible Adjoint Flow

This section derives the adjoint fluid system continuously for the viscous
incompressible flow (i.e., the Mach number M below 0.3) on the basis of
Eq. 4.46, as follows:

δv J ∗+δp J ∗+

∫

ΩF
x

[ψp ,ψv ]T ·δp R F dΩ +

∫

ΩF
x

[ψp ,ψv ]T ·δv R F dΩ = 0

(4.51)

whereψp andψv are the fluid Lagrange multipliers associated with the
fluid pressure and velocity respectively. Here, variations with respect to
the fluid density and the total energy are neglected respectively under the
incompressibility and the low Mach number flow conditions. This equation
is the basis for the derivation of the continuous adjoint Navier-Stokes
equations. Following the derivation of Othmer [62], the frozen turbulence
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assumption is introduced and then an integration by parts of all integrals
over the fluid domain is performed as

δv J ∗+δp J ∗+

∫

∂ ΩF
x

�

ψv ·n F
�

δp dΓ +

∫

ΩF
x

�

−∇x ·ψv
�

δp dΩ

+

∫

∂ ΩF
x

�

ρF n F (ψv ·v ) +ρFψv
�

�

v −vΩ
�

·n F
�
�

·δv dΓ

+

∫

∂ ΩF
x

�

µF n F ·τ(ψv )−ψp n F
�

·δv dΓ

−
∫

∂ ΩF
x

µF n F ·τ(δv ) ·ψv dΓ

+

∫

ΩF
x

�

−ρF∇xψ
v ·v −ρF

�

�

v −vΩ
�

·∇x

�

ψv −∇x · (µF τ(ψv ))

+ ∇xψ
p +q a

�

·δv dΩ

(4.52)

Herein ∂ ΩF
x represents the complete boundary of the deformed fluid

domain including the coupling interface Γ , q a =−ω×ψv is the adjoint
source term. Note that the fluid problem and it’s adjoint are formulated
in the deformed configuration x ; therefore spatial gradients ∇ and the
normal vector n F are calculated in the deformed configuration. Equation
4.52 has to be fulfilled for any δv and δp that satisfy the primal Navier-
Stokes equations which generally can only be accomplished if the terms
vanish individually. For the integrals over the fluid domain this requirement
gives rise to the adjoint Navier-Stokes equations:

−ρF∇xψ
v ·v −ρF

�

�

v −vΩ
�

·∇x

�

ψv −∇x · (µF τ(ψv )) +∇xψ
p +q a = 0

(4.53a)

∇·ψv = 0 (4.53b)

The boundary terms in Eq. 4.52 together with the terms related to a vari-
ation of the objective function define the adjoint boundary conditions for
the fluid. Table 4.4 lists the adjoint boundary conditions for the force-based
objective functional introduced in Section 4.2. For the sake of complete-
ness, here we drive the adjoint boundary conditions on the interface for
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the force-based functional. Following the findings in Eqs. 4.50 and 4.52,
the remaining boundary terms read on the interface as:

∫

Γx

d ∗ ·
�

I δp −µF τ(δv )
�

·n F dΓ +

∫

Γx

�

ψv ·n F
�

δp dΓ

+

∫

Γx

�

ρF n F (ψv ·v ) +ρFψv
�

�

v −vΩ
�

·n F
�
�

·δv dΓ

+

∫

Γx

�

µF n F ·τ(ψv )−ψp n F
�

·δv dΓ

−
∫

Γx

µF n F ·τ(δv ) ·ψv dΓ = 0

(4.54)

Table 4.4: Common adjoint boundary conditions for the adjoint incom-
pressible Navier–Stokes equations

boundary type ψv ψp

interface −d ∗ n F
x ·∇xψ

p = 0

wall 0 n F
x ·∇xψ

p = 0

inflow 0 n F
x ·∇xψ

p = 0

slip n F
x ·ψ

v = (n F
x .∇x )(ψ

v −n F
x ·ψ

v ) = 0 n F
x ·∇xψ

p = 0

outflow −ρFψp n F
x +ρ

F
�

n F
x ·
�

v −vΩ
�

�

ψv +µF (n F
x ·∇x )ψ

v = 0

Note that the velocity at the interface is fixed to zero. Therefore δv = 0
on Γx and the terms in the second and the third lines of Eq. 4.54 vanish.
From the remaining terms we obtain a boundary condition for the adjoint
fluid velocity on the coupling interface

ψv =−d ∗ on Γx (4.55)

Note that these derivations do not impose a condition for the adjoint
pressure ψp on the coupling interface. As Othmer suggests in a single-
disciplinary context [62] one can use a zero gradient boundary condition
forψp , see table 4.4.
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Having computed adjoint variables, one can compute the variation of
the fluid residuals with respect to a variation in the interface shape (the
volume integral in Eq. 4.48 ), i.e.:

∫

ΩF
x

(Ψ F )T ·
∂ R F

∂ x Γ
dΩ =

∫

ΩF
x

(Ψ F )T ·δx Γ R F dΩ (4.56)

The above volume term can be recasted into a pure boundary integral
formulation which may be computed with simple vector operations. The
idea and derivation in the following closely follows the approach of Othmer
[62]which is based on the work of Soto and Löhner [83]. Starting point for
the derivation is the total variation of the fluid governing equations:

δR F =δx Γ R F +δv R F +δp R F = 0 (4.57)

It can be rewritten as

δx Γ R F =−δv R F −δp R F (4.58)

Introducing this reformulation in Eq. 4.56 yields

∫

ΩF
x

(Ψ F )T ·δx Γ R F dΩ =−
∫

ΩF
x

(Ψ F )T ·δv R F dΩ−
∫

ΩF
x

(Ψ F )T ·δp R F dΩ

(4.59)

By performing integration by parts, as done in Eq. 4.52, all volume terms
cancel out due to the satisfied adjoint fluid equations. By that we obtain

∫

ΩF
x

(Ψ F )T ·δx Γ R F dΩ =−
∫

Γx

�

ψv ·n F
�

δp dΓ

−
∫

Γx

�

ρF n F (ψv ·v ) +ρFψv
�

�

v −vΩ
�

·n F
�
�

·δv dΓ

−
∫

Γx

�

µF n F ·τ(ψv )−ψp n F
�

·δv dΓ

+

∫

Γx

µF n F ·τ(δv ) ·ψv dΓ

(4.60)
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In this form δv and δp are unknown, which means we have to find
an approximation. By knowing that only changes of the shape in surface
normal direction affect the fluid residual, a Taylor series expansion to
approximate δv and δp can be used as follows:

δv =β (n F
x ·∇x )v +O(β 2) (4.61)

and

δp =β (n F
x ·∇x )p +O(β 2) (4.62)

where 0<β << 1 is a real constant. Then the last integral expression in
Eq. 4.60 can be neglected since it contains second order derivative informa-
tion which can lead to implementation issues. Following all the preceding
comments and consequently applying no-slip conditions for the velocity
and zero-gradient conditions for the pressure, i.e. v = 0 and (n F

x ·∇x )p = 0
on Γx , the volume integral in Eq. 4.56 reduces to the following boundary
integral:

∫

ΩF
x

(Ψ F )T ·δx Γ R F dΩ =

∫

Γx

n F
�

�

ψp n F −µF n F ·τ(ψv )
�

· (n F ·∇)v
�

dΓ

(4.63)

Eventually, δx Γ L ∗ can be computed by combining Eq. 4.63 and the
remaining boundary terms from Eq. 4.50 as

δx Γ L ∗ =
∫

Γx

�

d ∗ ·q +∇d ∗ : (I p −µF τ)− (I p −µF τ) ·n F · (n F ·∇x )d ∗
�

n F dΓ+

∫

Γx

n F
�

�

ψp n F −µF n F ·τ(ψv )
�

· (n F ·∇)v
�

dΓ

(4.64)

Note that, in the case of zero source terms and a constant force projec-
tion vector, the first integral vanishes.
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Chapter 5

FSI Shape Sensitivity Analysis
using Open-source Software
Packages

The applicability of the derived partitioned algorithms 3 and 4 for adjoint-
based shape sensitivity analysis of FSI problems is realized using a fully
open-source framework. The framework is composed of state of the art
multi-disciplinary solvers, namely KRATOS as structural solver and SU2 as
fluid solver, which are tightly coupled at the FSI interface by means of the
open-source software and general co-simulation environment EMPIRE.

• KRATOS [18, 52]: It is a framework for developing multi-disciplinary
finite-element-based solvers. Besides a wide range of applicability,
it offers a Python-based environment for coupling with third party
libraries. Here, KRATOS serves the following tasks:

(i) direct/primal structural analysis for given external forces acting
on the interface.

(ii) direct/primal pseudo structural analysis for given displacement
field on the interface.
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(iii) adjoint structural analysis for given external adjoint forces act-
ing on the interface.

(iv) adjoint pseudo structural analysis for given domain-based ad-
joint forces acting on the fluid domain.

(v) adjoint-based shape sensitivity analysis.

• SU2 [23, 85]: It is a finite-volume-based framework which has been
developed mainly for fluid problems and it has primal and adjoint
capabilities for applications ranging from incompressible to super-
sonic flows, for both steady-state and transient problems. Recent
enhancements to SU2 offer high-level Python scripts which provide
a wide range of functionalities, namely,

(i) access to the nodal fluid forces across any boundary of interest.

(ii) apply displacement field at the boundary nodes and move
the internal nodes accordingly using the default mesh motion
solver of SU2.

(iii) access to the adjoint-based sensitivities for the surface and
volume nodes of the fluid mesh.

In addition to the mentioned capabilities, a functionality is intro-
duced at the Python level to allow to set or modify an arbitrary force
projection vector field across any boundary of interest for adjoint
CFD analysis. This is needed in order to add the adjoint structure
displacement field at the interface to the default force projection
vector field (see Tables 4.3 and 4.2).

• EMPIRE (Enhanced Multi Physics Interface Research Engine)
[24, 90]: It is an open-source coupling environment which allows co-
simulation with several simulation codes. It also offers field mapping
technologies [90] which allow the user to communicate between
distinct surface discritizations existing on solvers of different physics.
The core of the framework is implemented in C++ and offers APIs to
different programing languages including Python.

In this work, owing to ease of manipulation, understanding and avail-
ability of Python API from SU2 and KRATOS, the Python API of EMPIRE is
extensively used.
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Figure 5.1: Data flow and control statements in CS, SU2 and KRATOS (KR)

EMPIRE employs a hybrid approach that makes it possible to use both
client-server and peer-to-peer approaches to do the communication be-
tween the clients. This means that any of the clients can act as a server
and coordinate the communication and data flow between the clients or
the clients can do a peer-to-peer communication when required. This ap-
proach combined with the variable based communication makes EMPIRE
a versatile framework to perform co-simulation. Here in the case of FSI de-
scribed before, a Python control script (CS), which is also a client, is created
to coordinate the data flow between the client solvers SU2 and KRATOS.
The Python scripts used for running the CFD simulation with SU2 and
CSD simulation with KRATOS are augmented to include the function calls
from EMPIRE framework to do the communication with the control script.
Though the same can be achieved by configuring either SU2 or KRATOS
to coordinate the data flow, authors chose to create the control script to
modularize different aspects of the co-simulation.
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Figure 5.1 shows the outline of a simple control flow of the three clients
involved in the FSI simulation: the control script (CS) which is the server
here, the SU2 for CFD and the KRATOS for CSD. The variable based commu-
nication methodology of EMPIRE is evident here as it shows the commu-
nication API of EMPIRE framework is independent of the type of the data
structure which is being transferred between the clients. Here a MPI based
communication is chosen as both the clients SU2 and KRATOS make use
of MPI for parallel execution of their respective solutions. The framework
also allows users to define custom communication methods specific for
the clients. The Python interface of EMPIRE allows direct access of the data
structure which is stored in C++, thus facilitating modification of the data
stored (data field and mesh information) without excessive overhead. This
feature is used to transfer the data on the FSI interface, force field f F

Γ from
SU2 and displacement field u S

Γ from KRATOS to EMPIRE. Finally, after
transferring this data to server, it (data field and mesh information) is used
to map data fields between different discretizations of fluid and structural
interfaces and to communicate the appropriate data fields to the clients.
The server which is the control script also employs an Aitken relaxation
on the interface displacements u s

Γ to accelerate the convergence of the
fixed-point iterations between fluid and structure. Since the control script
has access to all the data fields at Python level, it is to be noted that im-
plementing, extending and experimenting relaxation schemes is relatively
easy and not time consuming. This also facilitates usage of other tools at
python level (for example scipy, numpy) together with EMPIRE framework.

The Listing 5.1 shows the illustrative parts of the control script (CS)
employing a Gauss-Seidel communication strategy used for FSI simulation.
Here the simplicity and readability of the definition of algorithm used are
to be noted. The ease of modification of the algorithm by the users allows
them to experiment with different possibilities.

1 from EMPIRE import ∗
2 import numpy as np
3 # Usage of independent modules together with EMPIRE
4 from quasi_newton_methods import a i tken
5
6 initEMPIRE ( ’CS ’ , ’ s e r v e r ’ )
7
8 KR_cl ient . recvMesh ( ’MshKR ’ , ’ KR_cl ient ’ )
9 SU2_client . recvMesh ( ’MshSU2 ’ , ’ SU2_client ’ )

10
11 # F i e l d needed f o r mapper d e f i n i t i o n
12 SU2_client . recvDataField ( ’FD ’ , ’ SU2_client ’ )
13 SU2_client . recvDataField ( ’ FP ’ , ’ SU2_client ’ )
14
15 KR_cl ient . recvDataField ( ’SD ’ , ’ KR_cl ient ’ )
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16 KR_cl ient . recvDataField ( ’ SP ’ , ’ KR_cl ient ’ )
17
18 ## Set up mappers
19 mapperSF = FEMapper . FEMapper ( ’ mapper1 ’ , ’ Mortar ’ , KR_client , ’MshKR ’ , SU2_client , ’MshSU2 ’ )
20
21 # S e t t i n g s f o r FSI f i x e d point i t e r a t i o n s
22 converged = 0
23 t o l e r a n c e = 1E−6
24 i t e r a t i o n = 1
25 maxIter = 50
26 # A c c e l e r a t i o n scheme
27 a l g = aitk en . Aitken ( i n i t _ a l p h a = 0 . 5 , init_alpha_max = 0 . 7 )
28
29 # Dir ec t access of the C++ data from python
30 # S e t t i n g SD to zero
31 f o r i in range ( len ( KR_cl ient . d a t a F i e l d ( ’SD ’ ) . array ) ) :
32 KR_cl ient . d a t a F i e l d ( ’SD ’ ) . array [ i ] = 0 . 0
33
34 while ( not converged ) :
35 # FSI Loop
36 p r i n t ( ’ | | | FSI I t e r a t i o n : : ’ , i t e r a t i o n , ’ | | | ’ )
37
38 # Mapping displacments from KR to SU2
39 mapperSF . doConsistentMapping ( KR_client , KR_cl ient . d a t a F i e l d ( ’SD ’ ) , SU2_client , SU2_client

. d a t a F i e l d ( ’FD ’ ) )
40
41 # Sending mapped displacements to SU2
42 SU2_client . sendDataField ( ’FD ’ , ’ SU2_client ’ )
43
44 # Receiving pressure f o r c e s from SU2
45 SU2_client . recvDataField ( ’ FP ’ , ’ SU2_client ’ )
46
47 # Mapping pressure f o r c e s from SU2 to KR
48 mapperSF . doConservativeMapping ( SU2_client , SU2_client . d a t a F i e l d ( ’ FP ’ ) , KR_client ,

KR_cl ient . d a t a F i e l d ( ’ SP ’ ) )
49
50 SDold = np . copy ( KR_cl ient . d a t a F i e l d ( ’SD ’ ) . array )
51 # Receiving new displacements from KR
52 KR_cl ient . recvDataField ( ’SD ’ , ’ KR_cl ient ’ )
53
54 # Checking f o r convergence
55 d i f f = KR_cl ient . d a t a F i e l d ( ’SD ’ ) − SDold
56 # Saving the old d i f f e r e n c e
57 i f ( i t e r a t i o n <= 1) :
58 d i f f _ o l d = d i f f
59
60 diffNorm = np . l i n a l g . norm( d i f f )
61 p r i n t ( ’ \tNorm of the residue i s : : ’ , diffNorm )
62 i f ( diffNorm < t o l e r a n c e or i t e r a t i o n>=maxIter ) :
63 converged = true ;
64
65 #−−− r e l a x a t i o n −−−
66 KR_cl ient . d a t a F i e l d ( ’SD ’ ) = SDold + a l g . ComputeUpdate ( d i f f , SDold )
67
68 # Sending the convergence s i g n a l
69 SU2_client . sendConvergenceSignal ( converged ) ;
70 KR_cl ient . sendConvergenceSignal ( converged ) ;
71 i t e r a t i o n = i t e r a t i o n + 1
72 d i f f _ o l d = d i f f
73 #−−− END of FSI Loop

Listing 5.1: Code snippet of control script (CS) for FSI simulation
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Chapter 6

Numerical Studies

This chapter demonstrates that the derivations for coupled adjoint FSI
analysis in Chapter 4 are general and independent of the discretization
method, the mathematical modelling of the flow, and last but not least,
the adjoint approach. For this purpose, three adjoint FSI frameworks are
considered:

• Fully FEM-based using discrete adjoints

• Hybrid FEM-FVM-based using discrete-continuous hybrid adjoints

• Hybrid FEM-FVM-based using discrete adjoints

The first one is used for partitioned and monolithic analyses of FSI
problems dealing with incompressible viscous fluids, while the third is
employed to investigate the partitioned solution methods for primal and
adjoint analyses of a flexible ONERA M6 wing immersed in a compressible
inviscid flow. Here, FEM-based analyses, including primal and adjoint-
based shape sensitivity analyses for fluids and structures, are performed
using KRATOS. Whereas, SU2 and OpenFOAM are used for discrete and
continuous based adjoint analyses, respectively. The primal and adjoint
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(a) Case 1: Flexible beam in a channel.
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(b) Case 2: Channel flow with a flexible wall section.

Figure 6.1: Test cases and their steady-state FSI solutions.

couplings between solvers are realized by EMPIRE as explained in the
previous chapter.

6.1 FEM-based shape sensitivity analysis for FSI

As pointed out in the introduction, this work provides comprehensive dis-
cussions on the theoretical and crucial aspects of shape sensitivity analysis
for FSI problems. For this purpose, two case studies in which an incom-
pressible flow interacts with a highly flexible beam are considered. The
computational model geometry, the flow boundary conditions, and the
material and structural properties are clearly detailed for each case in Fig-
ure 6.1. The cases are computed in 2D, and consist of a cantilever beam
immersed in a low-Reynolds number flow (R ec a s e 1 ≈ 570, R ec a s e 2 ≈ 1200).
In both cases, the fluid is modelled by the incompressible Navier-Stokes
equations and the beam is modelled by a hyperelastic continuum under
plain-strain conditions.

A stabilized finite element method based on SUPG/PSPG [87] stabiliza-
tion with first order triangular elements is used for the spatial discretization
of the fluid, while the structure domain is discretized with standard quadri-
lateral elements. For the sake of error reduction, the fluid and structure
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Figure 6.2: Comparison of the FSI shape sensitivities computed using
partitioned and monolithic strategies against finite differences at the front
region of the interface in case 1.

domains are discretized with a conforming interface mesh. KRATOS fi-
nite element framework is used to perform all numerical experiments and
verifications in this section.

The steady-state FSI solutions of both cases are depicted in Figure 6.1.
As can be seen, both structures undergo large displacements due to laminar
flow fields. For instance, in the test case 1, the horizontal displacement at
the tip of the beam is about 50% of the cantilever length. It is also observed
that the drag force on the structure drops by 38% through the transition
from the undeformed state to the equilibrium state. Also, the strain energy
of the structure varies from practically 0N.m in the undeformed state to
1.1 Nm in the equilibrium state.

6.1.1 Numerical verification

Verification of the adjoint-based shape sensitivity analyses in Chapter 4 is
numerically performed against the central difference method. Consider
the test case 1, and the shape design variables are chosen to be the X coor-
dinate of the grid points on the front region of the undeformed interface.
As the target function for the shape sensitivity analysis, the total drag force
acting on the cantilever beam is measured in the equilibrium steady state.
Furthermore, in order to examine the impact of the flow regime on the
quality of the shape sensitivities, the flow and material properties in case 1
are modified such that the same structural displacement field is achieved
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for a very low Reynolds flow (R e ≈ 5). Figure 6.2 shows the comparisons
between the adjoint-based shape sensitivities and the central difference
approximation to shape gradients. A very close agreement between differ-
ent approaches to shape sensitivity analysis confirms the validity of the
derivation of both the partitioned and the monolithic adjoint FSI problems
in the previous section. From these results it is clear that the quality of the
derived shape gradients is not affected by the flow regime.

6.1.2 Comparison of alternative approaches in shape
sensitivity analysis

This section collects and compares scenarios that are commonly found in
the literature for the shape sensitivity analysis of aeroelastic problems. For
example, a pragmatic approach to performing a shape sensitivity analysis
of an FSI problem is simply to use the adjoint-based shape sensitivities of
the fluid problem in the equilibrium state between the interacting domains
[11]. This means that the adjoint fluid problem is solved on the deformed
fluid domain without coupling to the adjoint structure and then the shape
sensitivities of the fluid are used for gradient-based shape optimization.
Although this approach has been successful in the sense of the objective
improvement, one has to compare the fully coupled sensitivities to the
uncoupled ones because differences in shape sensitivity cause differences
in optimal shapes. In the following, it is explored whether coupled adjoint-
based shape sensitivities are necessary in both test cases. For this purpose,
the strain energy of the structure as well as the relevant components of
the total force exerted on the wet interface are considered for the coming
comparisons. Remember that the fluid and structure meshes have match-
ing interfaces and the interface nodes are chosen as design variables for
the shape sensitivity analysis i.e.

X F
Γ = X S

Γ = X Γ (6.1)

We consider the following four scenarios for comparison purposes:

• Scenario 1: The structure is assumed to be rigid. This results in zero
adjoint fluid and structure displacement fields (i.e. ΨS = ΨM = 0).
Meaning, only the fluid shape sensitivities, computed in the unde-
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formed configuration, are taken into account, i.e.

d L

d X Γ
=
∂ J (w , X Γ )
∂ X Γ

+ (Ψ F )T ·
∂ r F (w , X Γ )
∂ X Γ

(6.2)

This scenario is considered in order to investigate the impact of the
structural elasticity on the shape sensitivities.

• Scenario 2: The structure is flexible and it undergoes large deforma-
tions. The coupling is only performed for the primal FSI problem
and the adjoint problems are computed separately without interface
coupling. The corresponding shape sensitivity equation reads

d L

d X Γ
'
∂ J

∂ x Γ
+ (eΨ

F
)T ·
∂ r F

∂ x Γ
− (eΨS

)T ·
∂ f S ,i n t

∂ X Γ
(6.3)

where eΨ
F

and eΨ
S

are uncoupled adjoint variables associated with the
fluid and the structure, respectively. Note that if a pure aerodynamic
force like drag force is chosen as the objective, the term multiplying
by the adjoint structure displacement vanishes from the sensitivity
equation. The reason is that there is no source term from the objec-
tive function ( ∂ J

∂ u S = 0) or from the adjoint fluid variables. The reader
may want to consult Tables 4.2-4.3.

• Scenario 3: The structure is highly flexible like in scenario 2 and the
coupling is not only performed for the primal FSI problem but also
for the adjoint FSI problem. For this scenario, the complete formula-
tion of the adjoint FSI problem is used, including the mesh motion
problem (see Table 4.2). The fully coupled adjoint-based sensitivities
read

d L

d X Γ
=
∂ J ∗

∂ x Γ
+ (Ψ F )T ·

∂ r F

∂ x Γ
− (ΨS )T ·

∂ f S ,i n t

∂ X Γ
− (ΨM )T ·

∂ f M ,i n t

∂ X Γ

(6.4)

Remember that this equation is the final form of the sensitivity equa-
tion and it is independent of the coupling strategy (i.e. partitioned
or monolithic) used to compute the coupled adjoint variables.
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Figure 6.3: Gradient comparison study of scenarios for case 1.

• Scenario 4: The FSI problem is the same as that of scenarios 3 and 2 but
shape sensitivites are calculated using the two-field formulation as
the following (see Table 4.3):

d L

d X Γ
=
∂ J ∗

∂ x Γ
+ (Ψ F )T ·

∂ r F

∂ x Γ
− (ΨS )T ·

∂ f S ,i n t

∂ X Γ
(6.5)

The strain energy of the structure as well as the relevant components of
the total force exerted on the wet interface are considered for the coming
comparisons. Figure 6.3 contains all the scenarios for the shape sensitiv-
ity analysis along the front boundary of the wet interface in case 1. It is
worth noting that the plotted sensitivities are gradients with respect to
the X component of the interface nodal coordinates at the undeformed
configuration.

Furthermore, since the structure is assumed to be rigid in scenario 1,
the shape gradients of strain energy are not plotted. By visual inspection
of the drag sensitivities it is seen that scenarios 1 and 2 provide gradient
directions which are pointing to irrelevant directions compared to scenario
3 (the reference), especially close to the tip of the beam. On the other hand,
scenario 4 which excludes the mesh motion problem from the adjoint
sensitivity analysis provides a very close but not totally accurate search
direction. From a practical point of view, however, scenario 4 is accurate
enough for the gradient-based shape optimization. In the case of the strain
energy objective function, it is observed that scenarios 2 and 4 behave
similarly and close to the reference, and scenario 2 performs better than
scenario 4 close to the tip of the beam.
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Figure 6.4: Gradient comparison study of scenarios for case 2.

The results of test case 2 are reported in Figure 6.4. It is noted that
pure CFD shape gradients of lift over the rigid interface (scenario 1) not
only have a different magnitude but the sign is also different from the
reference. By comparing the results of the lift objective with those of the
strain energy, a definite and general observation about scenario 2 cannot
be made. However, there is an excellent agreement between the shape
sensitivities of scenario 4 and the reference (scenario 3) for both objective
functions.

6.1.3 Three-field-based vs. two-field-based shape sensitivity
analyses

As previously mentioned, the fluid mesh motion problem is only an auxil-
iary mean to maintain good mesh quality in the fluid mesh deformation
step. In fact, the discrete solution must be completely independent of the
mesh and the mesh motion of choice. Therefore, for a mesh-independent
discrete solution of an FSI system, the shape gradients computed with
both formulations should be identical. In order to illustrate the influence
of mesh resolution on the inconsistencies between the shape gradients of
the two-field formulation and those of the three-field formulation, mesh
convergence study is performed for the test case 2. The relative L2-error
of shape sensitivities between two-field formulation and three-field for-
mulation (reference) as well as the convergence histories of the objective
functions are depicted in Fig. 6.5. As expected, the objective functions
converge to constant values and the relative errors at convergence are less
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Figure 6.5: Mesh convergence studies for test case 2.

than 1%, as the mesh is refined. Therefore, provided that the FSI solution
is mesh-independent, the mesh motion problem can be safely neglected
in the coupled-adjoint shape sensitivity analysis.

6.1.4 Conclusions

The following summarizes the conclusions from the above studies:

• The flexibility of the wet interface has a significant impact not only on
the objective value but also on the objective shape gradients (in the
sense of pattern, sign, and magnitude).

• It was observed that pure adjoint CFD sensitivities may have a different
magnitude and in some cases opposite sign than the sensitivities
obtained with a fully-coupled adjoint analysis. Hence, it becomes
necessary to perform a coupled sensitivity analysis.

• It was observed that discrepancies between shape gradients computed
with three-field and two-field formulations are associated with mesh
resolution. In fact, the derivatives obtained through both formula-
tions should match in the continuous limit of infinitesimally fine
mesh resolution. Altogether, the two-field formulation of the adjoint
FSI appears to be a valid trade off between the desired level of accu-
racy, and the availability of the domain-based adjoint sensitivities of
the fluid.
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Figure 6.6: Cylinder shell in laminar fluid flow - test case for continu-
ous–discrete adjoint hybrid shape sensitivity analysis.
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Figure 6.7: A direct comparison of the shape gradients over the cylinder for
combined lift and drag objective. Interface primal and adjoint residuals
were converged 10 orders of magnitude. Perturbations and sensitivities
are projected onto X-component. The finite difference step was e −5.

6.2 A continuous–discrete adjoint hybrid shape
sensitivity analysis of a flexible body in a laminar flow

In this section, the two-field-based adjoint shape sensitivity analysis (sec-
tion 4.3.3) is performed using the continuous adjoint formulation for fluid
(section 4.4) and the discrete adjoint formulation for the structure. The
intention is to ensure that the derived adjoint coupling conditions and
the total sensitivity equation ( Table 4.3) are independent of the adjoint
formulation for the fluid. To this end, a model in which a non-linear cylin-
der shell is immersed in a laminar incompressible fluid flow (R e = 10) is
used. Figure 6.6 specifies the model and presents the resulting pressure
field after fluid-structure interaction analysis. Turbulence is intentionally
excluded due to the included frozen turbulence assumption, which is to be
investigated in follow-up research. To amplify the observed effects, shape
sensitivity analysis is performed for a straightforward multi-objective opti-
mization which combines lift maximization with drag minimization in a
common objective using an equal weighting for both, i.e. d i = (−1, 1, 0).

Considering matching interface meshes, Figure 6.7 compares two-field-
based adjoint shape sensitivities against the reference for a number of
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body in a laminar flow

(a) Shape sensitivity vectors computed by uncoupled adjoint FSI
analysis.

(b) Shape sensitivity vectors computed by fully coupled adjoint
FSI analysis.

Figure 6.8: Comparison of uncoupled and coupled shape sensitivities.

points on the wet interface. Although discrepancies in magnitude is ob-
served, the derivatives obtained with the two-field approach follow a very
similar pattern. Importantly, Figure 6.8 illustrates the necessity of the cou-
pled adjoint FSI analysis.
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Figure 6.9: Description and surface discretization of ONERA M6 for FSI.
Left: structural model, right: fluid model

6.3 Hybrid FEM-FVM-based shape sensitivity analysis of
flexible ONERA M6

Using the framework of EMPIRE-KRATOS-SU2, Algorithms 3 and 4 are
applied for the adjoint-based shape sensitivity analysis of the ONERA M6
wing immersed in a compressible inviscid fluid flow. In contrast to the
usual analyses in the literature, we do not consider the wing to be rigid,
but model it as a flexible solid structure clamped at the wing root, Figure
6.9. Doing so, an artificial fluid-structure interaction is introduced in the
model so that the corresponding shape sensitivity analysis became an
aeroelastic problem. The rather simple wing structure is chosen since the
focus here is on the performance of the approaches derived in Chapter
4 for the shape sensitivity analysis of large scale FSI problems. For both
the fluid analysis (CFD) and the structural analysis (CSD), steady cruise
conditions are assumed. The details of the fluid and structural models are
provided in the following paragraphs.

6.3.1 Fluid model

The steady-state transonic flow over the ONERA M6 wing at Mach 0.8395
and angle of attack of 3.06 degrees is computed using non-linear Euler
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equations. A tetrahedral grid composed of 582,752 total elements and
108,396 nodes is used for the inviscid simulation. Figure 6.9 demonstrates
a close-up view of the unstructured CFD surface mesh of the wing. The
boundary conditions for the computational domain are the following:
Euler slip condition on the wing surface, a symmetry plane to reflect the
flow about the wing root to mimic the effect of the full wing planform, and
a characteristic-based condition at a cubical far-field boundary. A second-
order JST scheme is used to calculate the convective flux for the mean flow
equations. Implicit, local time-stepping is used to converge the problem
to the steady-state solution, and the linear system is solved using a flexible
variant of GMRES (FGMRES).

6.3.2 CFD validation studies

Although SU2 is comprehensively verified and validated in [66], for the sake
of completeness, direct and adjoint Euler solvers from SU2 are verified
and validated against the experimental data and the central difference
approximation, respectively. Assuming a rigid wing structure, Figure 6.10
shows surface pressure coefficient distributions at two different span-wise
stations of the wing. Overall, the computed results are in good agreement
with the experimental data from [81], particularly along the lower surface
and leading edge. In the next step, comparison is done for the shape gradi-
ents of the wing drag with respect to a set of the grid points lying at the wing
span station Y/b = 0.65 given by the continuous adjoint, the AD-based
discrete adjoint, and the central differencing. The gradient verification ap-
pears in Figure 6.11. This comparison is of great importance with respect
to the validation of the above derived procedures for a partitioned adjoint
FSI analysis. Based on Tables 4.3 and 4.2 which summarize coupling condi-
tions for adjoints, boundary and domain-based adjoint sensitivities of the
fluid for a force-based objective function form not only an important part
of the structural adjoint force but also a part of the final sensitivity equation.
Thus, any inaccuracy in the CFD gradient field intensifies errors in the FSI
gradient field. As seen in the figure and as expected, the AD-based discrete
adjoint and finite differencing gradients exhibit excellent agreement, while
the continuous adjoint is in relatively close agreement with the reference.
The reader is reffred to [2, 22, 23, 65] for details about the derivation and
implementation of the adjoint solvers in SU2.
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Figure 6.10: Comparison of Cp profiles from the experimental results of
Schmitt and Carpin (blue circles) against SU2 computational results at
different sections along the span of the wing, b.

(a) Discrete adjoint-based sur-
face sensitivity contour for a
drag objective function (upper
surface).
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(b) Comparison of the gradients at the section at
0.65 of the span.

Figure 6.11: Surface sensitivity and validation studies for a rigid ONERA M6
wing (upper surface). Perturbations and sensitivities are projected onto
the surface normal.
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6.3.3 Structural model

The wing structure is modelled as a solid using 4-node tetrahedral non-
linear solid elements which allow the wing to undergo large deformations.
For the purposes of the following studies, two finite-element meshes of
the wing are used: First, an unstructured grid which consists of 16,446
nodes and 64,246 elements with a nonmatching interface discretization,
Figure 6.9. Second, an unstructured grid which has a matching interface
with the fluid mesh and it consists of 30,569 nodes and 123,245 elements.
The later mesh serves as the validation of the coupled aero-structural
sensitivities since it removes the mapping error at the interface, while the
former is used for the assessment of the mapping algorithms and criteria
for non-matching meshes in the FSI and adjoint FSI. It is assumed that the
wing undergoes large deformations and it is made of hyperelastic material
characterized by a Young’s modulus E= 6MPa and Poisson ratio νS = 0.3.

From the point view of the solution strategy, the Newton-Raphson
iterative solver from KRATOS is used for the non-linear analysis (direct
problem) and the linear static solver with a pseudo load vector (structural
adjoint force f S ,a ) is used for the adjoint problem. Note that the structural
equations are self-adjoint, since the nonlinear system tangent stiffness
matrix (linearized about the system solution) is symmetric.

6.3.4 Steady-state aeroelastic analysis

Having set up the fluid and structural models in the baseline configura-
tion, the steady-state aeroelastic solution was achieved by applying the
primal/direct coupling conditions to the individual domains as boundary
conditions, the so-called Dirichlet-Neumann partitioning (Algorithm 2).

In the following, investigation is carried out for the difference in accu-
racy between the mapping approaches, in particular consistent-conservative
and consistent-consistent, as defined in Section 3.4.1. This is done for the
nearest element interpolation and an enhanced version of the standard
mortar method which have, among other things, similar formulation and
popularity in practice. The standard mortar method [13] is based on mini-
mizing the L2 norm of the deviation between two fields using the Galerkin
method. The enhanced mortar method [91] solves the inconsistency prob-
lem of mortar methods at the curved edges of fluid-structure interfaces.
In the nearest element interpolation, mapping is performed by projection
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onto the nearest element and interpolation within it. For details, includ-
ing derivation and critical comparison of several methods, the reader is
referred to [16, 90].

First, the static aeroelastic analysis is performed with the matching
discrete interfaces and its solution is taken as reference for the upcom-
ing numerical comparisons. An important observation was that the drag
and lift coefficients varied from 0.011739 and 0.286269 to 0.00502 and
0.1813, respectively, through the transition from the undeformed state
to the equilibrium state. This highlights the importance of including the
aero-elasticity and subsequent aeroelastic coupling for wing design and
optimization.

In the case of non-matching meshes (see Fig. 6.9), consistent mapping
of displacement is carried out with both algorithms. The tractions/forces
are mapped both consistently and conservatively using the nearest el-
ement interpolation but they are only mapped conservatively with the
enhanced mortar methods. A literature review of the studies by various au-
thors shows that the mortar methods are used in a consistent-conservative
way. Furthermore, it has been reported that the conservative mapping
of forces with the nearest element interpolation gives highly oscillatory
results.

Figures 6.12 shows the interface traction field on the structure mesh
and the interface displacement field on the fluid mesh for the conforming
and non-conforming interfaces. Note that the plotted fields are evaluated
at the static aero-elastic equilibrium of the wing. With nearest element
interpolation, the consistent traction mapping gives reasonable results
while the conservative traction mapping leads to unphysical oscillations
in the pressure received by the structure. But force and energy are only
approximately conserved in the former case. In comparison to the con-
forming meshes case, a satisfactory traction field on the structure mesh
is obtained from the conservative mapping with the enhanced mortar
method. As can be seen from a comparison of plots in Fig.6.12, both map-
ping algorithms in the static aeroelastic analysis give rise to almost the
same displacement field on the fluid mesh, independent of the criterion
used for the mapping of tractions. It is also observed a maximum deviation
of 6% from the reference.

The obtained aeroelastic analysis results for the cases presented in Fig-
ure 6.12 are detailed in Table 6.1. From this table, it is clearly observed that
the consistent-consistent mapping approach resulted in difference in the
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(b) consistent-consistent mapping with nearest element interpolation.
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(c) consistent-conservative mapping with nearest element interpolation.
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(d) consistent-conservative mapping with enhanced mortar method.

Figure 6.12: Converged steady-state traction and displacement fields on
the conforming and non-conforming interfaces. Left: interface traction
field on the structure mesh, Right: interface Z displacement field on the
fluid mesh.
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Table 6.1: Static aero-elastic analysis of flexible ONERA M6

Case Drag coefficient Lift coefficient
Tip deflec-
tion, m

Interface en-
ergy on X F

Γ ,
N.m

Interface en-
ergy on X S

Γ ,
N.m

Number
of Gauss-
Seidel
iterations,
n

(a) Conforming interface 5.052e −3 0.1813 0.1688 0.2880 0.2880 24

(b) consistent-consistent map-
ping with nearest element in-
terpolation

5.342e −3 0.1884 0.1593 0.2651 0.2251 18

(c) consistent-conservative
mapping with nearest ele-
ment interpolation

5.355e −3 0.1887 0.1592 0.2886 0.2886 21

(d) consistent-
conservative mapping
with enhanced mortar
method

5.351e −3 0.1886 0.1592 0.2885 0.2885 22

interface energy. Nevertheless, it can be observed that all three approaches
have the same aerodynamic and aeroelastic behaviors, like aerodynamic
force coefficients.

6.3.5 Shape sensitivity analysis

In the following paragraphs, attention is paid to different aspects of the
derived partitioned strategies in Sections 4.3.2 and 4.3.3 for solving the
adjoint problem of the flexible ONERA M6 wing in the framework from
EMPIRE alongside KRATOS and SU2. As a first step, evaluation is done
in terms of the accuracy of three-field and two field-formulations for the
adjoint-based shape sensitivity analysis against finite difference shape
gradient. Considering matching interface meshes, Figures 6.13 and 6.14,
respectively, display the strain energy and drag sensitivity maps using three-
field formulation for the adjoint FSI. They also compare both formulations
against the reference for cross-section Y/b = 0.65. Although a discrepancy
in magnitude is observed between the two formulations, the derivatives
obtained with the two-field approach follow a very similar pattern.

Apart from the accuracy issue, the convergence behavior of the coupled
adjoint analysis needs to be investigated and compared to the coupled
primal/direct analysis. Figure 6.15 presents in a semi-logarithmic diagram
the convergence histories of the interface displacement and the interface
adjoint displacements for both formulations. As could be expected, the
three-field-based adjoint FSI problem has faster and smoother conver-
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Figure 6.13: Coupled shape sensitivity analysis for the interface strain en-
ergy. Left: three-field-based surface sensitivity contours. Right: comparison
of the gradients at the section at Y/b=0.65.
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Figure 6.14: Coupled shape sensitivity analysis for the drag objective. Left:
three-field-based surface sensitivity contours. Right: comparison of the
gradients at the section at Y/b=0.65.
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Figure 6.15: Interface residuals for the direct and adjoint FSI problems. β
is the L2-norm of the interface residual vector δ at the first iteration.

gence properties than the FSI and two-field-based adjoint FSI problems.
This is due to the facts that FSI is a nonlinear problem whereas adjoint
FSI is a linear problem, and also that, unlike the two-field formulation, the
three-field formulation consistently derives the adjoint of FSI problem (i.e.
without any assumption).

Last but not least, comparison is made between conservative and con-
sistent approaches for the adjoint coupling of non-matching interface
meshes for the two mapping techniques used in the primal analysis. For
this purpose, studies are done for the same cases as the ones mentioned
in Section 6.3.4. For each of these cases, the surface sensitivity map of the
strain energy objective is provided in Figure 6.16. Conforming interface
results and consistent-conservative results for both mapping techniques
are in good agreement and a similar pattern can be observed visually. For
the sake of clarity, Figure 6.17 also displays the surface sensitivity profiles
along Y/b=0.65 for each case. We observe that the consistent-conservative
mapping is the only choice for the accurate coupling of adjoint variables
across non-matching fluid and structure interfaces. However, this was not
the case for the coupling of primal variables. Furthermore, it is reasonable
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Figure 6.16: Strain energy sensitivity contours on the fluid mesh at the up-
per surface of the flexible ONERA M6 for conforming and non-conforming
meshes.

to explain the discrepancies between the shape sensitivities of the con-
forming interface case and those of the consistent-conservative case by
mapping errors introduced in both direct and adjoint problems. Recall that
we observed a 6% deviation of the tip displacement in cases (c),(d). Based
on the foregoing discussion, we conclude that the conservative mapping
for the interface force and its adjoint along with consistent mapping for
the interface structural displacement and its adjoint lead to a sufficiently
accurate shape sensitivity.
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Figure 6.17: Profiles of strain energy shape sensitivity in Fig. 6.16 at
Y/b=0.65.
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Chapter 7

Optimal Shape Design
Applications

This chapter presents a variety of applications of Vertex Morphing tech-
nique to single-/multi-disciplinary shape optimization problems, ranging
from internal and external incompressible flow applications to a transonic
wing. The optimization approach used here is illustrated in Algorithm 1,
which is based on an iterative application of a steepest descent algorithm
with a constant step size. Apart from the state equations which are treated
as equality constraints and satisfied by adjoint problem, geometric con-
straints like packaging and frozen/fixed points are applied using gradient
projection technique as detailed in Chapter 2.

7.1 CFD Shape Optimization

7.1.1 Unconstrained: Sandia CX-100 Blade

To demonstrate the applicability and reliability of the non-inertial viscous
adjoint system derived in 4.4.2, we make use of the Sandia CX-100 blade
[93]. The details of the blade geometry definition can be found in [50]. The
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Figure 7.1: Rotationally-periodic computational model and mesh.

setup of the computational model and the problem mesh including a cross-
sectional grid and a close up view near the hub are represented in Figure
7.1. For computational efficiency, only one-third of the rotor is modeled.
The mesh generated by Pointwise has a resolved boundary layer with avg. Y
plus 55 and consists of 7.5 million cells. The blade rotates about the y-axis
with a constant rotating speed of 55 rpm and we assume the free stream
wind flows normal to the rotation plane of the blade with a velocity of 10
m/s. The Spalart-Allmaras turbulence model is used for the steady-state
RANS primal problem, while the turbulent viscosity is assumed frozen
(frozen turbulence assumption) for the adjoint problem. Furthermore, the
blade is assumed rigid, therefore there is no need for coupling physics
and adjoints. The computed aerodynamic power of a single blade is 12.3
kW which compares well with the average value obtained from on-land
experimental tests in [93].
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7.1 CFD Shape Optimization

(a) Primal/state velocity. (b) Adjoint velocity.

Figure 7.2: Q-criterion isosurfaces for Q=5.

(a) Surface sensitivity contours of aerodynamic power.

(b) Cross-sections of the optimized blade.

Figure 7.3: Shape sensitivity analysis and optimization of CX-100 blade.
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To improve the aerodynamic efficiency of the rotor, we have chosen
the maximum power production of the Sandia CX-100 blade as objective
function. The vortices in the flow and adjoint flow fields are visualized in
Figure 7.2 by the iso-surfaces of the Q-criterion. As expected, primal and
adjoint flows rotate and are convected in opposite directions. The whole
blade surface was subject to optimization and after 20 iterations, around
4% improvement was achieved. Figure 7.3 displays the surface sensitivity
field and certain cross-sections of the optimized blade.

Expectedly, it is observe that the most obvious shape variations happen
around the trailing edge while it remains sharp. This is due to the facts
that sharp edges have a large impact on the aerodynamic characteristics
of the blade, and also that, Vertex Morphing parametrization technique
preserves feature lines like sharp edges for a proper choice of filter radii.

Optimization Patches

Outlets (to cabin)

Inlet

Air Conditioning Unit

Inlet

Outlets (to cabin)

Air Conditioning Unit

Optimization Patches

Figure 7.4: HVAC model.

7.1.2 Geometrically Constrained: BMW Air Ducts

By applying the presented framework to heating, ventilating, and air con-
ditioning (HVAC) air ducts, three performance measures improved sig-
nificantly in the presence of bounding surfaces. Fig. 7.4 represents the
computational model including essential flow boundary conditions and
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7.1 CFD Shape Optimization

design surfaces. Fig. 7.5 provides the discretization of the design surfaces
and the given bounding surface.

Section 1

Figure 7.5: Geometry, discretization and selected cross section of the air
ducts (top) and the geometry of the bounding surface (bottom).

The three objective functions of interest are air pressure loss, equal
mass flow rate in the two ducts and flow uniformity in the outlets. As
a common practice, the objectives are combined linearly into a single
objective function using fixed weights wi :

J =

∫

Πi ,o 1,o 2

(w1 pt +w2ρ
F (v . n F )) dΠ +

∫

Πo 1,o 2

w3 ‖v −v d ‖2 dΠ (7.1)

109



7 Optimal Shape Design Applications

Figure 7.6: Constrained shape optimization of HVAC air ducts with a small
filter radius (r).

Herein,Πi andΠo 1,o 2 are the inlet boundary of the HVAC and the outlet
boundaries of the two ducts, respectively, pt is the total fluid pressure, ρ
is the fluid density, v is the fluid velocity, and v d is the desired velocity in
the outlet plane.

Table 7.1: Summary of the multi-objective optimization of the BMW air
ducts

Small filter radius (r) Medium filter radius (r)

Cost function Unconstrained Constrained Unconstrained Constrained

Total power loss 32 % 17.5 % 28 % 10%

Mass flow rate 56.5% 97% 56.5% 88%

Flow uniformity 43.5 % 32% 33.5% 25%

The outcome of the described optimization problem is summarized
in Table 7.1, and the optimal design is shown in Fig. 7.6. Here, a relatively
small filter radius is chosen to explore smaller features and high curvatures.
In contrast to the pressure loss and the mass flow rate, the flow uniformity
can be visualized by means of velocity vector and velocity contour at the
outlets (see Fig. 7.4 for the definition of the outlets). Fig. 7.7 compares
the velocity distribution at the outlets between the initial design and the
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7.1 CFD Shape Optimization

Figure 7.7: Velocity contours and vectors (colored by the magnitude of
velocity) at the outlets. Initial distribution (top) and optimal distribution
(bottom).

optimal design. It is observed that the very low velocity region (blue region)
is minimized, specially at the left outlet.

Apart from the high-quality shape in terms of surface smoothness and
manufacturability, Fig. 7.8 verifies the feasibility of the new design at a
cross section of the right air duct (see Fig. 7.5). As marked in the figure,
three regions can be identified for a critical and comparative assessment.
Region 1: where the initial shape is overlapping with the bounding surface
and stays feasible throughout the optimization. Region 2: where the initial
shape is inside the feasible domain and then finally overlaps with the
bounding surface. Region 3: where a very smooth transition occurs at the
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Region 1

Region 2

Region 3

Figure 7.8: Comparison of geometrically constrained and unconstrained
optimizations at Section 1.

border of the region overlapping with the bounding surface and the region
which is free to move.

7.1.3 Geometrically Constrained: BMW Defroster

This section presents a successful application of the developed framework
to the nozzle of a BMW defroster. The nozzle is responsible for clearing
condensation and thawing frost from the windshield by blowing high ve-
locity hot air. The main performance requirement for a defroster is fast
and uniform defrosting from the bottom of the windshield to its top. Based
on experimental investigations and physical interpretation of the above-
mentioned requirements, wall shear stress over the windshield is chosen
as the optimality criteria for indicating the efficiency of the defroster. In
a similar study, Germanou et al. [31] performed an unconstrained CAD-
based shape optimization of a passenger car defroster nozzle. In their study,
the performance of a defroster nozzle is translated into the integral of the
difference between the air velocity and the target (desirable) velocity over
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Objective Patch

Optimization Patch
Inlet

Outlet

Objective Patch

Optimization Patch
Inlet

Figure 7.9: Half-model of car cabin.

a thin control volume appropriately defined close to the windshield and
inside the car cabin.

Fig. 7.9 specifies the model including essential flow boundary condi-
tions, the design surface, and the objective surface. No-slip conditions are
set for the non-specified patches in the figure. Additionally, Fig. 7.10 shows
a close-up view of the nozzle and the specified bounding surface.

Apart from the geometrical constraint, this example is a particularly
challenging problem in the sense that the objective function has to reflect
special requirements. Following the adjoint approach for shape sensitivity
analysis, the following scalar-valued objective function is developed to
condense the point-wise (face-wise in a finite volume discretization) shear
stress maximization problem into a single objective function that has to
be minimized:

J =

∫

Π

1

‖(τw +α)t‖
dΠ (7.2)

whereΠ is the objective patch (see Fig. 7.9); τw andα are the wall shear
stress magnitude and the regularization term respectively; t is the surface
unit tangent vector. α is introduced to avoid numerical problems resulting
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Figure 7.10: Geometry and discretization of the defroster nozzle (top) and
bounding surface (bottom).

from a very small magnitude of the wall shear stress in the denominator
of the objective function. It is also notable that by using finite volume dis-
cretization, the face with less wall shear stress gets more attention from the
optimizer. Note that the shape gradients of the developed objective func-
tion are calculated using the continuous adjoint solver of Helyx® solvers
and we skip the derivation of adjoint equations and boundary conditions.
The reader interested in sensitivity analysis is referred to [43, 44, 62, 64].

Figs. 7.11 and 7.12 represent the change in the design surface and the
objective surface, respectively. It is observed that major changes in the
shape have resulted in significant improvements in both the pattern and
the mean value of the wall shear stress over the windshield. To demon-
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Figure 7.11: Different views of the nozzle. Initial shape (top) and the optimal
shape (bottom).

(a) Initial distribution. (b) Optimal distribution.

Figure 7.12: Distribution of wall shear stress for constrained optimization.

strate the feasibility of the optimal design, two cross sections shown in Fig.
7.13 are selected for comparison purposes. As seen in Fig. 7.14, unlike the
unconstrained optimized curve, which highly penetrates the bounding
surface, the constrained one is point-wise feasible. Although the bounding
surface has regions of high curvature, the adaptive approach introduced
for the active constraint detection in Section 2.1 introduces point-wise
feasible design throughout the optimization.
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Section 1

Section 2

Figure 7.13: Selected cross sections of the defroster nozzle.

(a) Section 1. (b) Section 2.

Figure 7.14: Comparison of geometrically constrained and unconstrained
optimization.
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(a) BMW M8 GTE. (b) Wheel.

Figure 7.15

7.2 Multi-Disciplinary Shape Optimization: BMW Wheel

Having used Vertex Morphing technique to a variety of mono-physics
shape optimization problems, as the next step we applied this technique
to a multi-physics problem from BMW Motorsport: aerodynamic and
structural shape design of the BMW M8 GTE wheel (Fig. 7.15).

The problem under consideration is a constrained multi-objective
shape optimization of the wheel which is characterized by aerodynamic
and structural analyses. As can be seen in Figure 7.16(a), the spinning
structure for which the aerodynamic performance has to be evaluated is
put in a virtual wind tunnel, which has slip walls at the top and sides as well
as wind input and output. The fluid is modeled with the incompressible
Navier-Stokes equations discretized using finite volumes method. The
numerical wind tunnel is composed of about 8 million cells.

The structural model of the wheel, including loading and support con-
ditions, is shown in Figure 7.16(b). The model consists of about 1 million
tetrahedral finite elements filling the entire inner volume of the wheel. Also
rigid body elements are used to transfer/distribute the road load to the
corresponding nodes on the rim (outer edge of a wheel, holding the tire).

The fluid and structural models, respectively, are built in OpenFOAM
and Altair OptiStruct. It should be mentioned that no coupling (interaction)
is considered between the models. However, the outer surface of the spokes,
which is an interface between the fluid and the structure models, is chosen
as the design surface. This means that the geometry of spokes is driven
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Velocity Magnitude (m/s)

(a) Fluid model.

(b) Structural model.

Figure 7.16: Computational models of the rim.
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7.2 Multi-Disciplinary Shape Optimization: BMW Wheel

by both fluid and structural shape gradients. Figure 7.17 shows the CFD
and CSD surface meshes on a spoke of the wheel. Obviously, the meshes
do not match due to the different mesh requirements for the flow and
structure. The structure interface mesh consists of 28000 nodes, while
the fluid interface mesh consists of 145000 nodes. To deal with the non-
matching meshes at the fluid-structure interface, we take full advantage of
the important property of the Vertex Morphing technique of being able to
discretize the geometry and control spaces with different mesh resolutions.
For this purpose, the interface mesh with less resolution, here the structure
mesh, is chosen as the control mesh and then the objective functions’
gradients with w.r.t. the design variables (∇s J F ,∇s J S ) and the geometries’
updates (∆X F

Γ ,∆X S
Γ ), are calculated respectively as

d J F

d s S
Γ

=
d J F

d X F
Γ

·
d X F

Γ

d s S
Γ

=
d J F

d X F
Γ

.
�

AF S
�

3m F
Γ ×3mS

Γ
(7.3a)

d J S

d s S
Γ

=
d J S

d X S
Γ

·
d X S

Γ

d s S
Γ

=
d J S

d X S
Γ

.
�

ASS
�

3mS
Γ×3mS

Γ
(7.3b)

and

∆X F
Γ = AF S .∆s S

Γ (7.4a)

∆X S
Γ = ASS .∆s S

Γ (7.4b)

where J F and J S represent objective functions whose spatial gradients
are computed/available on the fluid surface mesh and the structure surface
mesh, respectively. The matrices AF S and ASS are the operators which
define the association between the not-matching interface meshes and
the discretized design space. Based on the derivation of Vertex Morphing
in Section 2.2, the entry in row i and column j of AF S is computed as

AF S
i j =

d X F
Γ ,i

d s S
Γ , j

=

∫

ΣS

F (X , X F
Γ ,i )dΣ (7.5)

where ΣS is the portion of Γ S which lies within a sphere of radius r and
center X F

Γ ,i .
The performance of the described multiphysics problem is quantified

by a multi-objective target function. Minimization is performed for an
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(a) CFD surface mesh. (b) CSD surface mesh.

Figure 7.17: Surface discretizations of a spoke of the wheel.

equally weighted sum of the total drag force (J F ) acting on the wheel and
the total strain energy (J S ) of the wheel for each load cases. Figure 7.18
plots the contours of the surface shape sensitivities. On the other hand,
the design has to meet the following geometric constraints: (a) an equality
constraint on the inner volume of the wheel and (b) a rotational symmetry
condition on the design surface. While the former is a single scalar-valued
constraint, the later results in numerous point-wise geometric constraints
that can be handled in different ways. One has to notice that although the
wheel geometry has the rotational symmetry property, the loads and the
boundary conditions are not rotationally symmetric with respect to the
rotation axis (Y-axis). Therefore it is not valid to model and analyze only
one-fifth of the design surface (i.e., one spoke).

The rotational symmetry property of the wheel is explicitly focused in
Figure 7.19. As can be seen, the wheel surface Γ is divided into five identical
surfaces Γi , i = 1, ..., 5, each of which can be generated by rotating Γ1 by θi =
(i−1)π

5 around the Y-axis. In general there are two main ways of enforcing
the rotational symmetry constraint to the shape optimization problem,
the choice depending largely upon the definition of shape design variables.
The first is to choose one fifth of the wheel, e.g. Γ1, as the design surface
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(a) Total strain energy sensitivity for six load cases on Γ S .

(b) Total drag sensitivity on Γ F .

Figure 7.18: Shape sensitivity contours of the objectives on the spokes of
the wheel.
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Figure 7.19: Partitioning of the rotationally symmetric wheel into 5 parts.
The green part may serve as the design surface from which the whole wheel
geometry can be generated.

and then control the wheel geometry during the shape optimization, and
the second is to take the full wheel surface as the design space and then
make the shape gradients rotationally symmetric. The former approach
additionally requires enforcement of C 0 and C 1 continuity conditions
along the boundary Ψ, while the latter could be computationally more
demanding. Following the first approach and Vertex Morphing technique,
the geometry at node j of the optimization surface Γi can be generated,
using:

X Γi , j = T i ·
∫

Σ1

F (X , P X Γi , j ) s Γ1
dΣ, T i =







cosθi 0 −sinθi

0 1 0

sinθi 0 cosθi







(7.6a)
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P X Γi , j =







cosθi 0 sinθi

0 1 0

−sinθi 0 cosθi






·X Γi , j (7.6b)

where P X Γi , j is the projection of X Γi , j on the control surface Γ1,Σ1 is the
portion of Γ1 which lies within a sphere of radius r and center P X Γi , j .
In case of non-matching interface meshes, the geometry at node j of the
optimization surfaces Γ S

i and Γ F
i can be generated, respectively, as follows:

X S
Γi , j = T i ·

∫

ΣS
1

F (X , P X S
Γi , j ) s

S
Γ1

dΣ (7.7a)

X F
Γi , j = T i ·

∫

ΣS
1

F (X , P X F
Γi , j ) s

S
Γ1

dΣ (7.7b)

As mentioned before, another alternative to keep and enforce the rota-
tional symmetry feature of the wheel is to symmetrize the shape gradients
rotationally. This can be done by considering the following linear transfor-
mation:

X Γ =

















X Γ1

X Γ2

X Γ3

X Γ4

X Γ5

















=

















[AP 1,1]
[AP 2,1]
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[AP 4,1]
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












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·X Γ1
, AP i ,1 =















T i 0 . . . 0

0 T i . . . 0
...

...
...

...

0 0
... T i















3mΓi
×3mΓ1

(7.8)

where AP i ,1, i = 1, ..., 5 is the transformation matrix from surface Γi to Γ1.
Then the shape variations in the surface Γ are associated to the shape
variations of the surface Γ1 as follows:

d X Γ

d X Γ1

= AP (7.9)
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Finally, the rotationally symmetric form of objectives’ gradients in Eq. 7.3
can be achieved by using the following equations:

d J F

d s S
Γ

�

�

�

�

rs

=
d J F

d X F
Γ

. AP F . (AP F )T . AF S , AP F =
d X F

Γ

d X F
Γ1

(7.10a)

d J S

d s S
Γ

�

�

�

�

rs

=
d J S

d X S
Γ

. AP S . (AP S )T . ASS , AP S =
d X S

Γ

d X S
Γ1

(7.10b)

(a) Initial design.

(b) Optimized design.

Figure 7.20: Shape optimization of the wheel’s spokes.
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(a) Selected planes.

(b) Cross section 3.

(c) Cross section 2.

(d) Cross section 1.

Figure 7.21: Comparison of the cross section profiles at radially spaced
planes. The red dotted and green solid lines, respectively, correspond to the
optimized CFD and CSD surface meshes, while the black lines represent
the initial cross sections. 125
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The outcome of the described optimization problem with a medium-
size filter radius is summarized in Table 7.2, and the optimal design is
shown in Figure 7.20. Furthermore, more detailed comparison between
the initial and optimized geometries is given in Figure 7.21. The cross
section profiles of the fluid mesh (red dotted lines) is overlaid on those of
the structure mesh (green solid lines) for the sake of illustrating a very good
conformity of optimal fluid and structure meshes at the interface Γ . This
observation confirms the applicability of Vertex Morphing technique to
multi-physics shape optimization problems involving complex interface
geometries with non-matching meshes.

Table 7.2: Summary of the multi-objective optimization of the BMW M8
GTE wheel.

Function change %

Total drag -35

Compliance 1 -17.76

Compliance 2 -16.38

Compliance 3 -9.54

Compliance 4 -19.47

Compliance 5 -19.47

Compliance 6 -19.40

Mass +8.20
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7.3 FSI Shape Optimization: Flexible ONERA M6 Wing

In this section, a multi-objective and multi-disciplinary shape optimiza-
tion of the flexible ONERA M6 wing from section 6.3 is presented. The
computational models and the setup of the coupled problem are the same
as the ones introduced before. Being concerned with both the aerody-
namic and structural performances of the wing, the shape is optimized
for an equally weighted sum of the lift-to-drag ratio and the structural
strain energy under equality constraint on the inner volume of the wing.
Note that since both the objectives are force-based objective functional
(see section 4.2), the equally weighted, linear combination of the objective
functions can be effectively done by modifying the nodal force projection
vector as follows:

d i =
1

2

�

−
d E

‖d E ‖
+

u S
Γ ,i

‖u S
Γ ,i ‖

�

(7.11)

where d E is a direction vector which maximizes the aerodynamic efficiency
(lift-to-drag ratio) and may be defined as

d E =
d L

D
−

L

D 2
d D (7.12)

where d L , L are respectively the direction vector and the value of the lift
force, while d D , D are the same terms of the drag force. Figure 7.23 il-
lustrates the sensitivity contribution of each discipline to the coupled
adjoint-based shape sensitivities of the intended target function. Although
it is observed that the mesh motion problem constitutes a very minor con-
tribution to the overall coupled sensitivities, the role of the mesh motion
problem should not be disregarded in the coupled adjoint analysis (see
section 6.3).

As in the previous application, the fluid and structural domains are
spatially discretized to different levels of refinement and the coarser wing
surface mesh (structure surface mesh) is used to parametrized the sur-
face using Vertex Morphing technique. Therefore, the filtering operations
presented in Eqs. 7.3 and 7.4 are used in the optimization process.

The optimization has been run for several steps and it has resulted in
a 32.4% increase in the lift-to-drag ratio and a 52% decrease in the total
structural strain energy. The history of the optimization is presented in
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Figure 7.22: Optimization history for flexible ONERA M6 wing.

Figure 7.22. Furthermore, figures 7.24 compare the undeformed optimized
wing sections with the baseline sections at 4 different spanwise stations.
As seen in Figure 7.25, the strong shock wave that existed along the span
has been reduced significantly, and the structure is stiffer, especially in the
sense of the wing vertical Z-displacement.
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(a) Normal shape gradients computed by the adjoint fluid solver.

(b) Normal shape gradients computed by the adjoint mesh mo-
tion solver.

(c) Normal shape gradients computed by the adjoint structure
solver.

Figure 7.23: Outcome of the fully coupled adjoint-based shape sensitiv-
ity analysis of the equally weighted sum of aerodynamic efficiency and
structural strain energy using three-field-based partitioning. The shares of
adjoint solvers in the final shape sensitivity are separately plotted.
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(a) Left: baseline design, Right: final design scaled by 100 for better visualization.

(b) Y/b=0.25.

(c) Y/b=0.5.

(d) Y/b=0.9.

(e) Y/b=1.

Figure 7.24: Original vs. Optimized ONERA M6. The initial and optimized
airfoils are indicated by black and green lines, respectively.
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(a) Surface traction field (kPa) of the upper surface.

(b) Surface traction field (kPa) of the lower surface.

(c) Z-displacement (m).

Figure 7.25: Traction and displacement contours on the flexible ONERA
M6 wing. Left: final design, Right: baseline design.
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Chapter 8

Conclusions

The idea of Vertex Morphing was generalized to include packaging con-
straints into shape optimization using Rosen’s gradient projection method.
Numerical properties of the mapping matrix of Vertex Morphing was stud-
ied in detail and recommendations for the gradient projection step were
provided. It was observed that the presented shape parametrization tech-
nique makes it possible to generate high quality shapes in terms of surface
smoothness and manufacturability. In addition, the gradient projection
technique, in combination with adaptive detection of active and point-wise
constraints, fulfills the feasibility of the shape throughout the design evolu-
tion. This is considered to be a great advantage for large-scale constrained
optimization problems in which convergence is a challenge.

Adjoint-based shape sensitivity analysis for FSI problems was revisited
from the mathematical and the numerical points of view, with a special
emphasis on a partitioned solution of direct and adjoint FSI problems.
Similar to the FSI problem, the adjoint FSI problem was partitioned using
unique sets of Dirichlet and Neumann-type coupling conditions in such a
way that it can be implemented using black-box adjoint solvers with mini-
mal information about the source code. The structure domain becomes
the Neumann partition, it takes the fluid force and the fluid adjoint force
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along the interface as the Neumann boundary condition for the direct and
adjoint structural problems, respectively. The fluid domain becomes the
Dirichlet partition and it takes structural displacement and its adjoint as
the Dirichlet boundary condition for the direct and adjoint fluid problems,
respectively.

The impact of the adjoint of mesh motion problem, which is only a non-
physical problem and does not exist in the continuum description of the
FSI problem, on the quality of shape sensitivities was investigated in detail.
Through numerical experiments, it turned out that excluding the mesh
motion problem in the shape sensitivity analysis results in modifications
of the sensitivity map in terms of values rather than the pattern. Thus, it
will most probably not be critical for coupled optimization processes.

This thesis also investigated data mapping between non-matching
meshes in direct and adjoint FSI problems. Tests with a representative
aeroelastic wing showed that consistent mapping of adjoint structural
displacements in combination with conservative mapping of adjoint forces
yield sufficiently accurate coupled adjoint-based sensitivities.

Finally, promising results were achieved by applying the presented
framework to industrial cases.
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