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Abstract

Hydrological models are prone to uncertainty due to their complexity. The water
balance model LARSIM provides a high degree of control through configuration pa-
rameters, which have to be calibrated for each application. The uncertainty originating
from parameter calibration was evaluated. A prototype was developed to facilitate the
propagation of uncertainty through the LARSIM model by using stochastic colloca-
tion with pseudo-spectral approach. The snow module parameters were exemplarily
used for uncertainty propagation. The output of interest was evaluated using global
sensitivity analysis and statistical measurements to determine the impact of uncertain
parameters on the simulated runoff. Uncertainty of snow module parameters could
not be proven definitively, but the large deviation of simulated and measured runoff
indicate uncertainty in the model.
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1 Introduction

The prediction and simulation of water runoff in an area is used to provide information
about upcoming flood events or low water. This information is forwarded to the
appropriate agencies to aid in decision making in critical situations (1). The water
balance model LARSIM is used for flood forecasting and the continuous simulation of
water runoff in the hydrological cycle, mainly in southern Germany.
The model is very complex and simulates runoff on the basis of meteorological and
geological input data and calibrated model parameters. The parameters are calibrated
by adjusting them so that the simulated runoff approximates the measured data. Cali-
bration is a very demanding process and it is assumed that the parameters bear some
uncertainty.
LARSIM consists of several modules, each controlling one of the water storages. The
snow module controls the storage of water in the snow cover and has a high impact on
water runoff especially during spring due to snowmelt. It is assumed that parametric
uncertainty is easier to detect when choosing a timeframe with extreme weather condi-
tions. Heavy snowfall followed by mild temperatures, which was the case in March and
April 2013, can drastically increase runoff by snowmelt and could cause flood events
(2).
The focus of this work is to develop a prototype for the quantification of parametric
uncertainty in LARSIM. The prototype should handle input processing including the
adjustment of LARSIM configuration data according to the selected timeframe and
uncertain variables. Stochastic collocation with pseudo-spectral approach is used for
uncertainty propagation. The simulation output should then be processed and statisti-
cally relevant measurements be generated for evaluation.
The uncertainty within the snow module will be examined by propagating the four un-
certain snow parameters through LARSIM. The resulting output will be examined with
global sensitivity analysis to identify impactful parameters and statistical evaluation in
an attempt to quantify the uncertainty within the module.
An overview of the functionality of LARSIM is provided in chapter 2. Uncertainty
quantification and the method used is detailed in chapter 3, followed by a discussion
of uncertainty within LARSIM in chapter 4. The developed prototype is presented in
chapter 5 and the results of different simulations are discussed in chapter 6.
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2 The water balance simulator LARSIM

2.1 The Water balance model in LARSIM

Water balance models are widely used to evaluate critical situations in water manage-
ment, calculate effects of climate changes and plan land usage. Different hydrological
models for runoff prediction are commonly used. Conventional precipitation-runoff-
models are mainly used to predict certain aspects of the hydrological cycle, based on
events (e.g. floods). Water balance models however are able to predict and simulate
important hydrometeorologic data and hydrologic conditions continuously over a long
period of time (3), (4).

The water balance model LARSIM, an acronym for Large Area Runoff Simulation
Model, is utilized for the continuous quantification of local and temporal distribution
of water in major components of the water balance like precipitation, snow storage,
water storage in the catchment and runoff (3). LARSIM is based on the river basin
model FGMOD which was designed to be used for the simulation of single flood or
low-flood events. A simulation of continuous runoff however was not intended (5).
Singh, 2012, classifies LARSIM as a deterministic, conceptional, distributed model in
the mesoscale, which allows its application in catchment sizes ranging from 1km2 to
100km2. It can use either real catchment areas or rasterization (6).
The bavarian area Regen, which is object of this work, uses rasterization with high
resolution subareas of 1 km2 in size.

LARSIM can be used in two different computational configurations: operational mode
and simulation mode. Since it was based on FGMOD, it retained its capability for event-
based forecasting and can be used in operational mode for flood forecasting which
used to be based on precipitation data alone. LARSIM is being used by enviromental
authorities in operational mode, mainly for weather forecast and flood prediction, in
German speaking areas like Bavaria, Baden-Wuertthemberg and parts of Austria and
Switzerland (7). In simulation mode for continuous water balance modeling, LARSIM
uses a .WHM file which contains the initial state of water storages for the two days
prior to simulation start.
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2 The water balance simulator LARSIM

It then simulates water runoff based on initial state and measured meteorological data
for 63 hours for calibration. After that, it simulates runoff based on provided weather
forecast for the remaining time period (8). Simulation mode is used in this thesis to
simulate continuous water balance and predict runoff over a two month time period.

The model relies on detailed geological data of the area about the different catchments,
for example their linkage through channels and land usage. The impact of geological
data on the model output prediction has already been analyzed (9). This data set
remains unaltered in this work.
LARSIM requires the following meteorological time series input for the regarded area
to function as a water balance model (4):

• Precipitation

• Air temperature

• Relative air humidity or dew point temperature

• Wind speed

• Sunshine duration or global radiation

• Air pressure

These time series are being corrected and adjusted to their respective subareas, which
the LARSIM development community details in their official documentation (7). Calcu-
lations are based on equidistant time intervals with different variations available. A
one-hour interval is suggested for continuous simulation (7), which was used in this
work.

Given the correct input data for the region in question, LARSIM is able to simulate the
following hydrological processes, among others (10):

• Interception

• Snow accumulation, compaction and melt

• Infiltration, soil water balance, runoff development and percolation

• Evapotranspiration

• Flood-routing in channels and retention in lakes

Figure 2.1 provides an overview of the connection of different hydrological processes
within LARSIM. A detailed explanation of all processes can be found in the official
documentation (7).
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2 The water balance simulator LARSIM

Figure 2.1: Overview of hydrological processes in LARSIM, modified from (11)
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2 The water balance simulator LARSIM

Snow processes, interception, evapotranspiration and soil water storage are simulated
in subareas seperately for each land use category in so-called Grouped Response Units
(GRUs). The total runoff of the subarea is the sum of the GRUs runoffs which will be
routed to the catchment storage. Released water from the storage is called subarea
runoff, which is forwarded to lakes and rivers.

Snow Storage The snow storage is an important part of the LARSIM model because
it influences runoff proportions based on the season of the year. It describes the
accumulation process of snow and the water flow of snowmelt, being either absorbed
by the soil storage or evaporating.

Interception storage Leaves and other parts of vegetation store precipitation up to a
certain maximum value. If the storage is full, any more precipitation is passed directly
to the ground. Possible evaporation clears out the interception storage.

Soil Storage Soil storage is the center of every hydrological model, and it is highly
dependent on the land attributes the model is used on. The module acts as a distributor.
Water input (precipitation, snowmelt) either evapotranspirates or is channeled into
various runoff processes which are stored in their respective catchment storages: surface
runoff, interflow and groundwater runoff.
The regular 3-component-model combines surface and fast sub-surface runoff as direct
runoff, which makes it difficult to accurately describe flood events. Therefore an
extended soil water model with four runoff components is used for this work. The
extended model uses an additional compartment which splits direct runoff into fast
and slow direct runoff (4).

2.2 Functionality of the snow module in LARSIM

The snow module has a large impact on runoff, especially in spring (4). Heavy
precipitation in winter and early spring followed by mild temperatures might lead to
flood events (2). These extreme conditions with high variance in data could lead to an
easier observation of uncertainty in the model output. It is hypothesized that there is a
correlation between uncertainty that arises during the model calibration process and
an uncertain runoff prediction in the model output. The snow module is a convenient
model to investigate this correlation as a starting point due to its comparatively low
complexity.
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2 The water balance simulator LARSIM

2.2.1 Snow accumulation

Precipitation is formed at high altitudes and can fall as either rain or snow, depending
on the temperature at altitude. Since temperature cannot be measured at these altitudes
properly, predictions have to be made based on measurable temperature on ground
level. The model assumes precipitation either as snow or rain based on a set threshold
temperature at 2m above ground within the area (4).

precipitation =

{
snow, if TL ≤ TGrenz

rain, if TL > TGrenz
(2.1)

TL [◦C] measured air temperature 2m above ground
TGrenz [◦C] threshold temperature, below which precipitation occurs as snow

TGrenz is calibrated for each gauge station individually and varies depending on the
area, ranging from -3◦C to 2◦C. LARSIM also supports a threshold interval around
TGrenz to mitigate the abrupt change between snow and rain. The parameter TSpann

implements an interval [TGrenz − 1
2 TSpann, TGrenz +

1
2 TSpann], in which a mixture of snow

and rain will be linearly interpolated (7).

2.2.2 Energy balance and snowmelt

The temperature of the snow cover is a significant factor in calculating potential
snowmelt. It depends on several external factors which can be taken into account
during a simulation run.

The energy balance of snow can be simulated in LARSIM by using three different
methods, developed by Dr. Knauf: the simplified method, the extended method and the
complete energy balance calculation (12). The simplified version only uses precipitation,
air temperature and wind speed to calculate the potential snowmelt. The extended
version also uses latent heat and shortwave radiation balance for energy balance
calculations. These approaches have been enhanced to calculate the complete energy
balance Wtot by taking latent heat and both short- and longwave radiation balance into
account (13). Deciding which method to choose is largely based on available data and
computational power. For this thesis the complete energy balance will be calculated
based on meteorological data provided by the Landesamt für Umwelt to ensure the
most precise results.

6



2 The water balance simulator LARSIM

The total energy balance Wtot of snow can be calculated with (14):

Wtot = WG + Wnied + Wsense + WRNS + Wlatent + WRNL

−−−−−−−−−−−−−−−−−−−→
Knau f simpli f ied

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Knau f extended

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Complete energy balance

with
WG [W/m2] Ground heat flux
Wnied [W/m2] Heat flux through precipitation
Wsense [W/m2] Flux of sensible heat
WRNS [W/m2] shortwave radiation balance
Wlatent [W/m2] Flux of latent heat
WRNL [W/m2] longwave radiation balance

Figure 2.2: Influences of heat sources on snow cover, modified from (14)

The different energy sources all influence the snow cover and its energy balance, as
illustrated in figure 2.2. All formulas used in the calculation can be found in the
documentation (7), but are not discussed in this work.

The cold content of snow is the required energy to heat snow to a melting temperature
of 0 ◦C. A change in the cold content depends on the energy balance of snow in
each timestep. Surplus energy that’s available after heating the snow to 0 ◦C is used
to calculate the melting rate (7). Increased water content causes a subsidence of
snow and a delayed submission of stored water, which can be calculated using the
snow-compaction-model by Bertle (15). Liquid water, either through snowmelt or
precipitation, is stored within the snow cover until a predetermined threshold is met.
Excess water is released as runoff into the soil storage (3).
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3 Theoretical Background

3.1 Uncertainty Quantification

3.1.1 Uncertainty and Uncertainty Quantification in a model

Uncertainty is an inherent part of the real world. As models based on real world events,
like weather prediction, become more sophisticated and computational power increases,
the main focus is to make model predictions as accurate as possible. Uncertainties can
be classified into two categories: aleatoric and epistemic (16).

Aleatoic uncertainty is uncertainty that cannot be reduced by providing more data to
the system in question. It is an inherent variability within the system, e.g. a die throw.
Epistemic uncertainty stems from a lack of knowledge provided in creating or oper-
ating a model. This type of uncertainty can be reduced by adding appropriate data.
Approximations and simplifications have to be made when designing a mathematical
model based on real-life situations to reduce the computational power required for
a simulation run. These model discrepancies can cause structural uncertainty in the
system. Input variables for these models, like in LARSIM, are numerous and often
assumptions and approximations based on past research and provided data, without
being able to reflect the reality exactly (16). This parameter uncertainty will be examined
for the snow module in this thesis, assuming that the model itself is structurally sound.

Uncertainty quantification (UQ) helps to predict the output of a model when subjected
to uncertain inputs. The Committee on Mathematical Foundations of Verification,
Validation, and Uncertainty Quantification defined Uncertainty Quantification as "the
process of quantifying uncertainties associated with model calculations of true, physical quanti-
ties of interest, with the goals of accounting for all sources of uncertainty and quantifying the
contributions of specific sources to the overall uncertainty" (17).

8



3 Theoretical Background

Figure 3.1: Forward and Inverse Uncertainty Quantification, (18)

There are two types of uncertainty quantification: forward and inverse UQ simulations,
illustrated in figure 3.1 (18).

Inverse uncertainty quantification estimates the differences between experiments and
the underlying mathematical model and predicts the input uncertainty. It is also used
to correct model parameters iteratively based on the model output.

Forward uncertainty quantification however quantifies the uncertainty of the output
by propagating uncertainty in the input through the model, and this approach will be
used in this thesis. Iaccarino et al.,2006, described the three phases in forward propa-
gation: data assimilation, uncertainty propagation and certification. Data assimilation
consists of determining the uncertain input variables and defining them with a specific
probability distribution function (PDF) (19).

These inputs are being propagated through the model to obtain the PDFs of the output
of interest (OoI). The number of simulation runs required for sufficiently accurate OoIs
is highly dependent on the uncertainty quantification method chosen. The certification
step contains collecting the output of each propagation, analyzing statistical values like
mean and standard deviation and measuring the impact of the propagated uncertainty
on the output of interest (19).

Stochastic collocation with pseudo-spectral approach is a non-intrusive, computationally
inexpensive method for few random variables (20). It fits the requirements for this
work and will be detailed in the following.
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3 Theoretical Background

3.1.2 Stochastic Collocation with pseudo-spectral approach

Several approaches for propagating uncertainty have emerged in the last 20 years (21).
The classic Monte Carlo sampling approach, while easy to implement, needs a large
number of simulation executions for accurate results. The slow convergence rate of 1√

N
for N samples makes it computationally ineffective for large-scale models and a high
dimension of random variables (22). Wiener et. al., 1938, first proposed using Hermite
Polynomial and homogenous chaos for integration theory with respect to the Brownian
Motion (23). Hermite polynomials are used for gaussian probability approximations,
but are not suitable for other probability distributions. Based on Wiener’s approach,
generalized polynomial chaos (gPC) expansion has been developed in 2002 to study
processes which involved random variables with different probability distributions. It
uses the full range of the Askey scheme of orthogonal polynomials in respect with their
corresponding probability distributions to achieve up to exponentially fast convergence
rates (24).

Stochastic processes are expressed as orthogonal polynomials of the input random
variable. A stochastic process Z(t, x, ζ), depending on vector ζ containing random
variables, time t and state vector x, can be represented as an infinite expansion:

Z(t, x, ζ) =
∞

∑
k=0

uk(t, x)Φk(ζ) (3.1)

with uk(t, x) as the coefficients and Φk the orthogonal polynomial base for the corre-
sponding random variable in ζx. The base selection is optimally chosen according
to table 3.1 because the orthogonal polynomials’ weight functions correspond to the
probability density functions of the respective distributions (21).

Random Variables ζ Wiener-Askey chaos Φ(ζ) Support

Continuous

Gaussian Hermite-chaos (−∞, ∞)

gamma Laguerre-chaos [0, ∞]

beta Jacobi-chaos [a, b]
uniform Legendre-chaos [a, b]

Discrete

Poisson Charlier-chaos {0, 1, 2, ...}
binomial Krawtchouk-chaos {0, 1, 2, ..., N}
negative binomial Meixner-chaos {0, 1, 2, ...}
hypergeometric Hahn-chaos {0, 1, 2, ..., N}

Table 3.1: Optimal polynomial choices based on random distribution (24)

10



3 Theoretical Background

An infinite expansion, while accurate, is not typically used in practice due to compu-
tational limitations. Dealing with a finite set of p random variables with maximum
polynomial order n allows truncation of the above formula to K terms in order to
approximate the result (24):

Z(t, x, ζ) ≈
K

∑
k=0

ûk(t, x)Φk(ζ)) (3.2)

with K + 1 = (n+p)!
n!p

ûk(t, x) deterministic coefficients (spatio-temporal component)

ζ, vector containing the random variables

Φk(ζ) orthogonal polynomials for the random component

Smith et al. ,2014, stated that stochastic collocation can be used to specify uk(t, x) (25).
The generalized polynomial chaos expansion, used in combination with stochastic
collocation, reduces computational requirements while retaining accuracy and conver-
gence rate of gPC (26). Stochastic collocation uses a set of nodes and weights based
on polynomial interpolations and evaluates the model on these nodes. For a set of n
random variables, evaluated in model Z with model function f (t, x, pj) on a given set of
collocation points Q, the deterministic coefficients uk(x, t) in 3.1 can be approximated
with

ûk(t, x) =
1
γk

Q

∑
j=1

f (t, x, pj)Φk(pj)αj (3.3)

γk = E[Φ2
j ] are the normalization constants of the polynomial basis and are used to

normalize the orthogonal polynomials (27).

{pj, αj}Q
j=1 are a set of nodes and weights. pj = (pj

1, ..., pj
n) and αj denote the j-th node

and its associated weights. Nodes and weights have to be chosen so that the integration
rule approximates the real gPC expansion well enough for sufficiently smooth functions
f (p) and a sufficiently large number of collocation points. The nodal set has to be
chosen such that the integration rule is accurate and computationally efficient (28).

The node-weight set {pj, αj}Q
j=1 is generated in the data assimilation phase based on

the integration rule applied. Uncertainty is propagated by evaluating the model U(pj)

and the orthogonal basis Φk(pj). During the certification phase, the output of interest
can be analyzed (28).

11



3 Theoretical Background

According to Xiu et al., 2010, the coefficients uk of the polynomial expansion can be
used to derive the mean µun and the variance σ2 of the QoI with

µun ≈
1

γ0

Q

∑
j=1

f (pj)Φ0(pj)αj = û0(t, x) (3.4)

and

σ2 ≈
K

∑
i=1

(
Q

∑
j=1

ûi(pj)Φi(pj)αj)2 ≈
K

∑
i=1

û2
i (x, t) (3.5)

with Q being the number of collocation points and K the order of the polynomial chaos
expansion (27).
The so-called Curse of Dimensionality dictates how many uncertain variables can be prop-
agated with reasonable computational expense. Global sensitivity analysis is performed
to identify impactful uncertain variables and potentially reduce the dimensionality by
lowering the number of uncertain variables (16).

3.2 Global Sensitivity Analysis

While Uncertainty Quantification focuses on quantifying the uncertainty in model
output, sensitivity analysis studies how uncertainty in model input can be apportioned
to the different uncertain input variables (29). The uncertain parameters are propagated
through the model as detailed in chapter 3.1.2. Sensitivity analysis on the model
output can determine the influence level of parameters on the model uncertainty. The
used uncertainty quantification method, stochastic collocation with pseudo-spectral
approach, provides a fast and efficient calculation of the output of interest’s variance
(3.5). This is the reason a variance-based sensitivity analysis was chosen for this work.

Saltelli et al., 1996, describes possible use cases of variance-based sensitivity analysis.
Factor Prioritization identifies factors that contribute the most to the total output variance.
This ties into another use, the Factor Fixing. It identifies factors that, across their range
of variability, have no significant contribution to the output variance. These factors can
be fixed at any given value of their variance range, reducing the number of uncertain
factors in return (30). Different global sensitivity indices, also called Sobol’ indices, can
be calculated: first-order, higher-order and total sensitivity index (29).

12



3 Theoretical Background

The first-order index describes the main effect contribution of each input factor com-
pared to the ouput covariance.

Let V( fi(Xi) = V[E(Y|Xi)] be the variance of factor Xi and V(Y) the unconditional
model variance. Then the first-order sensitivity index Si is:

Si =
V[E(Y|Xi)

V(Y)]
(3.6)

Higher-order sensitivity indices represent the interaction effects between two or more
factors. It helps in detecting model behaviour when subjected to particular input
combinations. It is calculated by measuring the joint effect of factors and subtracting
the first-order effects of each individual factor.

Vij = V( fij(Xi, Xj)) = V(E(Y|Xi, Xj))−V(E(Y|Xi))−V(E(Y|Xj)) (3.7)

It describes the second-order effect Vij for the factors Xi, Xj. This formula can be easily
expanded to include more factors (29).

The total sensitivity index STi accounts for the total contribution of a factor Xi on the
output variance: the first-order effect and its interaction effects with all other factors
(30).

STi =
EX∼i(VarXi(Y|X∼i))

Var(Y)
= 1− VarX∼i(EXi(Y|X∼i))

Var(Y)
(3.8)

First-order and total sensitivity indices are calculated in this work to identify the impact
of uncertain random variables. In accordance to Sobol’ these variables are fixed at a
certain value within the variance interval and will not be further used as uncertain
input, thus reducing the dimensionality of the simulation (31).

13



4 Uncertainty Quantification in LARSIM

4.1 Sources of uncertainty in LARSIM

Uncertainty is always prevalent in complex models, such as the water balance model
LARSIM. High quality input data and coherent spatial models are very important
for reliable output data. The model uses numerous input data to simulate the water
balance. Figure 4.1 provides an overview of the different input and output files of
LARSIM. Detailed descriptions are in the LARSIM Online-Help (32).

Figure 4.1: Interaction of classes within the prototype

LARSIM requires data about the initial state of its hydrological storages within the
simulated area. These states are based on previous simulation runs and can be stored in
.WHM files. The model uses this data, which usually contains storage data for the two

14



4 Uncertainty Quantification in LARSIM

days prior to the simulation start, as a starting condition. Since this data is generated
based on prior simulation runs, the predicted values could be uncertain (33).

The underlying spatial model is using soil maps to parametrize the observed model
area. These parameters are stored in the tape12 file. A provided soil map is used to
determine the different soil variables in each compartment, which already has a built-in
uncertainty analysis for extreme cases. Mitterer, 2015, analyzed the uncertainty for
variable soil data for LARSIM and suggests that the data used is inaccurate in at least
some cases (9).
Weather forecast is inherently prone to uncertainty due to the high dimensionality of
the climate system. Its output is used for meteorological data input in LARSIM, like
precipitation and temperature, and can cause incertainty within the model. Especially
faulty precipitation data impacts the result to a great extent (34). Finally the physical
parameters used within the model have to be calibrated to reflect the real world
conditions are closely as possible. Calibration is usually performed based on data
of a long period of time (several years) with varying discharge values. The goal is
to calibrate the parameters such that the simulated runoff values approximate the
measured runoff as closely as possible. The calibration guide provides documentation
of LARSIM’s model calibration (33).
The calibration process is laborious and the result is susceptible to uncertainty due to
imperfect input data. This work concentrates on the pre-calibrated parameters for the
snow module and exposes them to uncertainty.

4.2 Calibration Analysis

The pre-calibrated parameters provided by the Landesamt für Umwelt are used as a
basis for uncertainty quantification. Parameters for the snow model, among others,
are stored in the configuration file tape35 for each gauge station in the area Regen.
Two approaches for the modification of the base values have been considered. One
approach is to modify the parameters individually for each gauge station, thus being
able to observe the runoff interaction between compartments with varying values.
However, there are 22 gauge stations within the area. Stochastic collocation with
Q = 10 collocation points for even only one uncertain variable would result in 2210

simulations. This is outside the scope for this work so an alternative has been chosen.
The same uncertainty value generated by stochastic collocation will be added to the pre-
calibrated gauge value in tape35 uniformly instead for each gauge. This static change
allows for observations of a larger number of uncertain parameters in a reasonable
timeframe.
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4 Uncertainty Quantification in LARSIM

4.3 LARSIM configuration setup

The options in the main configuration file tape10 were adjusted to accommodate an
accurate analysis of the snow module. The options selected for the snow model are in
listed in table 4.1.

Model Options in tape10 Description

Snow
module

SCHNEE: KNAUF, 2006 Enhanced Knauf procedure
SCHNEE: OBERFL-TEMP Estimates snow cover temperature
BODENTEMPERATUR Dynamic ground temperature
EINGABE KNAUF-PARAMETER Enables absorption parameter
SCHNEEALBEDO Calculates snow albedo
SCHNEEREGEN Interpolation of snow-rain mixture
MAX. SCHNEE-RET. TAPE35 Enables snow retention parameter
SNOW-COMPACTION 3 Degradation of snow cover

Table 4.1: Excerpt of tape10 configuration options

OPTION: SCHNEE: KNAUF,2006 defines the snow model used and provides the most
precise calculation of the energy balance of snow available in LARSIM. This model also
allows the calculation of an estimate temperature at the snow surface, which can differ
significantly from the mean snow temperature (OPTION: SCHNEE: OBERFL-TEMP).
The ground heat flux is dynamically calculated for the selected model (OPTION: BO-
DENTEMPERATUR). The model parameters for snow melt can be set for each gauge
individually by enabling OPTION: EINGABE KNAUF-PARAMETER. This parame-
ter describes the absorption coefficient of fresh snow in combination with OPTION:
SCHNEEALBEDO. OPTION: MAX. SCHNEE-RET. TAPE35 enables individual water
retention parameters for each gauge. OPTION: SNOW-COMPACTION 3 enables a
modified version of the Bertle-procedure to model the degradation of snow and is re-
quired for individual water retention parameters. A detailed description of all available
options is available at the LARSIM Online-Help (32).

The four main parameters that influence the snow model are Tmit_Sr, Tspann_Sr, SRet
and Abso. As described in section 2.2.1, precipitation can be interpolated as a mixture of
snow and rain within the interval [(Tmit_Sr− 1

2 Tspann_Sr), (Tmit_Sr + 1
2 Tspann_Sr)]

where Tmit_Sr describes the middle of the interval with Tspann_Sr being the range
of the interval. The absorption parameter Abso controls the absorption rate of short
radiation waves by the snow cover. Lastly, the parameter SRet describes the retention
rate (in %) of liquid water in the snow pack (33).
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4 Uncertainty Quantification in LARSIM

The unaltered tape35 file provided calibrated parameter values for Abso and TGr (the
threshold parameter for precipitation falling as rain or snow). These TGr values were
used in this work and used as initial Tmit_Sr values. Values for Tspann_Sr and SRet were
not in tape35 and had to be added manually. The starting values for these parameters,
as outlined in the calibration guide (33), were used for all gauges which is Tspann_Sr =
4 and SRet = 30.

Parameters Uniform distribution [a, b] Value range

Tmit_Sr U (−2, 3) [-3, 2]
Tspann_Sr U (−2, 4) [2, 8]
Abso U (−0.08, 0.1) [0.02, 0.25]
SRet U (−25, 17) [5.0, 47.0]

Table 4.2: Distributions and value ranges for uncertain parameters

The calibration guide (33) provides guidelines for reasonable parameter values by
setting value intervals. Uniform distributions for each parameter are used that span
the full range of the interval. The chosen distributions and the value ranges of each
parameter are displayed in table 4.2 The values present in tape35 for each of the four
parameters (see table 4.2) are subjected to uncertainty by adding the corresponding
nodes generated with stochastic collocation to them. This generates values that are
distributed over the whole range of the provided interval. Extreme values at the interval
ends are also taken into account.

4.4 Prototype Setup for Uncertainty Quantification in LARSIM

Two different types of simulation runs were executed: global sensitivity analysis and
statistical evaluation runs. The goal of the global analysis run was to identify the most
impactful uncertain variables within the snow module. Therefore all four parameters
were subjected to uncertainty and the sensitivity indices were analyzed on the output
of interest. A comparatively low number of collocation points was chosen to reduce
computational effort which stems from the curse of dimensionality.
After identifying the two most impactful parameters, only these uncertain parameters
were propagated through the model for the statistical evaluation. These runs used a
significantly higher number of collocation points to achieve more precise output of
interest for statistical analysis.
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4 Uncertainty Quantification in LARSIM

The parameters used for this work are uniformly distributed around pre-calibrated
values. Stochastic collocation with pseudo-spectral approach was used for all runs.
According to table 3.1, Legendre-Chaos was used as polynomial basis Φ(ζ). Gauss
quadrature is used as an integration rule for node and weight generation, and the order
of the polynomial expansion is set to K = 6.

Figure 4.2: Satellite image of the district Regen (35)

The area Regen was selected as
model area for this work. Re-
gen is a district in the state
Bavaria. Its 950 km2 are fully
covered by the Bavarian For-
est, which is split in two parts
by a rocky landscape made of
quartz, the "Pfahl". The satellite
image 4.2) illustrates the land-
scape. The area is named after
the river Regen which has one
of its headstreams, Schwarzer
Regen, streaming through the
whole area from west to east.
The 14 nature reserves within the
district guarantee wide areas of untouched nature (36, 37). The combination of un-
touched nature and the interconnectivity of runoff through variour streams and rivers
could lead to interesting results, which is why this area was chosen as model area.

Figure 4.3: Temperatures March/April 2013
in Zwiesel (district Regen) (38)

A timeframe with extreme weather
conditions which emphasize the
impact of the snow module on
runoff was selected for the sim-
ulation runs. Spring 2013 was
not a usual spring. Starting out
with summerly temperatures of
up to 18 ◦C at the beginning
of March, cold storm "Xaver"
caused winter-like conditions.
According to the German Meteo-
rological Service (DWD), 2013 is
ranking 6th coldest March since
the beginning of recording 1881.
There was a closed snow cover across most regions of Germany.
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4 Uncertainty Quantification in LARSIM

Figure 4.3 illustrates the temperature differences in the timeframe at the gauge station
Zwiesel in the area Regen. Following this very cold March was a warm April, which
resulted in heavy snowmelt (39, 40). It was assumed that subjecting snow module
parameters to uncertainty could lead to flood events during this time. Therefore, the
timeframe of 1st of March to 31st of April was chosen to examine the behaviour of
LARSIM in these unusual conditions.

The configuration setups for both types of execution are displayed in table 4.3. Global
sensitivity analysis runs were performed to calculate sensitivity indices for each un-
certain parameters to identify their impact on the output of interest (see chapter 6.1).
Statistical Evaluation runs were afterwards performed with only the two most impactful
parameters with the other two parameters at fixed values in an attempt to quantify the
uncertainty (see chapter 6.2).

Execution type Configuration type Setup Values

Sensitivity
Analysis
(used in
6.1)

Uncertain
Parameters

Tmit_Sr U (−2, 3)
Tspann_Sr U (−2, 4)
Abso U (−0.08, 0.1)
SRet U (−25, 17)

Stochastic
Collocation

Polynomial Basis Legendre-Chaos
Integration rule Gauss quadrature
Collocation points Q = 11
PCE order K = 6

Statistical
Evaluation
(used in
6.2)

Uncertain
Parameters

Tmit_Sr U (−2, 3)
SRet U (−25, 17)

Fixed
Parameters

Tspann_Sr 4
Abso tape35 values

Stochastic
Collocation

Polynomial Basis Legendre-Chaos
Integration rule Gauss quadrature
Collocation points Q = 30
PCE order K = 6

Table 4.3: Prototype configuration setup

The operations of generating these values, simulating the runoff with LARSIM and
processing the output is handled by the developed prototype, which will be explained
in the next chapter.
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5 Prototype for Uncertainty Quantification
on LARSIM

5.1 Frameworks

5.1.1 Uncertainty Quantification Execution Framework

The Uncertainty Quantification Execution Framework (UQEF) was developed by Florian
Künzner. The framework was designed to handle the computation of uncertainty
in the variables and the execution of the provided model. It supports uncertainty
quantification by stochastic collocation with pseudospectral approach and classic Monte
Carlo simulation runs. The library chaospy provides functionality for assimilation and
certification of uncertainty quantification, and UQEF was developed to provide the
missing functionality of uncertainty propagation. Three different execution modes are
provided: linear, parallel and execution with the Message Passing Interface (MPI) for
parallel computing.
The design of UQEF allows the user to focus on processing the input and output of
the model itself while the framework manages the correct execution. It has been used
for scientific research in a number of publications, for example in using surrogate
models for uncertainty quantification (41). The Uncertainty Quantification Execution
Framework provides the foundation of this work. An official publication by Künzner
detailing the exact functionality of UQEF is in progress.

5.1.2 Chaospy

Chaospy is an open source library for the modeling of uncertainty using Monte Carlo
and polynomial chaos expansion. It supports quadrature integration and various
polynomial and distribution functions. It also provides statistical analysis tools to
analyze distributions and polynomials. The Gaussian quadrature function of chaospy
is invoked by UQEF to generate nodes and weights for the provided probability
distributions.
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5 Prototype for Uncertainty Quantification on LARSIM

After the results are collected, the polynomials are approximated and statistical values
like mean, standard deviation and the sobol indices are generated by using chaospy
functions. A detailed description of the functionality of chaospy can be found in the
documentation or the publication (42, 43)

5.2 Uncertainty Quantification Prototype

5.2.1 Overview

The prototype was developed in Python Version 3. It was designed to be able to
manipulate model input data without having to alter the source code for every execution.

Figure 5.1: Logical structure of the
simulation prototype

The prototype was logically struc-
tured into three major components:
Preprocessing, LARSIM Execution
and Output processing (figure 5.1).
Preprocessing handles the input data,
adjusts LARSIM configuration files
accordingly and prepares nodes and
weights for stochastic collocation.
LARSIM Execution runs model simu-
lations for each uncertain parameter
combination according to the speci-
fied execution method and collects
the simulation results.
Output processing approximates poly-
nomials for the collected result data
on each timestep based on distribu-
tion, nodes and weights from stochas-
tic collocation, calculates statistical
measurements and plots the final re-
sults.
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5 Prototype for Uncertainty Quantification on LARSIM

Figure 5.2: Interaction of classes within the prototype

Figure 5.2 describes the flow of the prototype and the interaction between the classes
and functions which supplement the main file simulation.py. The most important
functions within the prototype are explained in detail.

5.2.2 Preprocessing

The timeframe of the simulation and the investigated uncertain parameters are defined
in the JSON-file configurations.json. The timeframe object consists of start and end date.
The dates are parsed into a datetime object which is used to manipulate the LARSIM
input data. Tape10 is adjusted to the new timeframe. LARSIM also requires the correct
initial state (.WHM) file and meteorological data (.lila) files in its working directory to
execute the simulation. A full data set of initial states and meteorological data for each
gauge in the area Regen, ranging from 2003 to 2018, was provided by the Landesamt für
Umwelt. These files need to be parsed, selecting only the data within the time interval,
to reduce execution time on LARSIM and disk space required. These generated files
are then moved to the LARSIM working directory.

The uncertain variables consist of a name, a probability distribution ("normal" or
"uniform" distribution is currently supported), attributes defining the distribution and
a value interval (see table 3.1).
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Listing 5.1: Uncertain variable Tmit_Sr

{
"name": " Tmit_Sr",
"distribution": "uniform",
"mean": -1,
"std": 0.5,
"uniform_low": -2,
"uniform_high": 3,
"lower_limit": -3,
"upper_limit": 3

}

These variables are parsed from the configuration file and the distributions are set
based on the defining attributes. Variable names and distributions are saved in an array
of tuples which is forwarded to the UQEF to generate nodes and weights required for
the stochastic collocation method.

Listing 5.2: Variable distribution forwarding

distributions = []
for i in data["Variables"]:

if i["distribution"] == "normal":
distributions.append((i["name"], cp.Normal(i["mean"], i["std"])))

elif i["distribution"] == "uniform":
distributions.append((i["name"], \
cp.Uniform(i["uniform_low"], i["uniform_high"])))

nodeNames = []
for items in distributions:

nodeNames.append(items[0])
simulationNodes = uqef.simulation.Nodes(nodeNames)
for items in distributions:

simulationNodes.setDist(items[0], items[1])

The simulationNodes object is generated by UQEF and contains a multidimensional array
of collocation points that is used during the simulation execution.

Settings concerning the simulation execution and the selection of the uncertainty
quantification method are handled with command-line arguments. These settings are
parsed in the main program and forwarded to the UQEF which executes the simulation
based on these settings. All available argument parameters are listed in table 5.1.
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5 Prototype for Uncertainty Quantification on LARSIM

Options Arguments Description

Uncertainty
Quantification

--uq_method "sc": Stochastic Collocation
"mc": Monte Carlo

--sc_q_order Collocation points in each direction (Q)
--sc_p_order Order of PCE (K) (see 3.3)
--mc_numevaluations Number of Monte Carlo simulations

Execution

default: linear Execution with only one CPU core
--num_cores Defines amount of CPU cores
--parallel Execution with set number of cores
--mpi Execution with MPI
--mpi_method "old/new" MPI methods available in UQEF
--mpi_combined_parallel Enables combined parallel option

General
settings

--or "dir_name" Output directory for Plots/Data
--model "model_name" Defines the analyzed model

Table 5.1: Command-line arguments for the prototype

5.2.3 LARSIM Execution

After the preprocessing, simulations are executed. The number of simulation runs
depends on the number of collocation points and increases exponentially by the
number of uncertain variables. Parallel processing is greatly encouraged to reduce
the processing time, which is why MPI-based and parallel execution was used. Work
orders for the different simulation runs are distributed to threads by the UQEF based
on the execution strategy defined. In this work, the total work load is distributed
dynamically to all available CPU cores. Each core launches an individual instance of
the class LarsimModel where it executes the LARSIM simulations for the assigned tasks
in parallel. After it returns the combined results, a new set of tasks is assigned to the
cores until the total work load is processed.

LARSIM configuration files are stored in the folder WHM Regen within the LARSIM
framework. The LARSIM executable requires to be executed from the current working
directory which contains the necessary simulation configuration files. This behavior
cannot be changed efficiently to account for parallel simulation runs. Each task modifies
tape35 to integrate its simulation parameters. If all cores are using the same working
directory, they would interfere with each other. In order to run multiple simulations in
parallel with differing configuration files, a copy of WHM Regen has to be created for
each task.

24



5 Prototype for Uncertainty Quantification on LARSIM

Since each task only modifies tape35, the other configuration files can be directly copied
to ensure a correct execution. UQEF provides a task counter which was used to
number the copied folders. The uncertainty parameters for each task are added to
the corresponding tape35 values in their respective folders. Working directories are
changed per process within Python, not per thread. Different instances of LARSIM
are run on each thread simulateously, so system calls were used for each execution to
change the working directory to the correct task folder and start the LARSIM executable.
System calls are individual to each thread and do not interfere with parallel LARSIM
executions.

Listing 5.3: Pseudocode for LarsimModel.py functionality

for each task do:
call(["./copy_directory.sh"])
modify_tape35(task_parameter, folder_path)
call(["./execute_LARSIM.sh"])
output of interest = result_parser(folder_path + "/ergebnis.lila")
results.append(output_of_interest)

return results

LARSIM stores simulation results in the file ergebnis.lila. This list-based file contains
the simulation output of three meteorological parameters for each gauge station:
precipitation, measured runoff and simulated runoff. The internal time step for LARSIM
is set to 1-hour intervals, providing output values for every hour of the simulation
timeframe for each parameter.
The result file is parsed and compiled into a dictionary which contains data in the
following layout:

Listing 5.4: Result layout

result = {
station: {

precipitation: [values],
runoff simulation: [values],
measured runoff: [values],
}

}

Each of these task results are collected and appended to an array which contains all
task results. This array is then forwarded to data analysis for further processing.
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5.2.4 Output processing

The collected result array contains dictionaries of all simulation runs. These dictionaries
need to be merged to have an array of all simulation values for each timestep, which is
required to approximate the PCE at every timestep. This is accomplished by iteration
over each dictionary, collecting the individual value at each timestep and storing them
in an array.

Listing 5.5: Merge process of simulation values

collected_result = {}
for identification in rawSamples[0]:

collected_result[identification] = []
for i in range(0, len(rawSamples[0][identification]["runoff simulation"])):

temp = []
for j in range(0, len(rawSamples)):

temp.append(rawSamples[j][identification]["runoff simulation"][i])
collected_result[identification].append(temp)

The simulated runoff parameter is the output of interest while precipitation and
measured runoff are not altered by the uncertain variables. Therefore only the simulated
runoff values have to be approximated to polynomials in each timestep. The prototype
uses a function provided by chaospy to calculate these polynomials based on the value
array and the corresponding set of nodes and weights.
Statistical values are calculated for each timestep based on the given polynomials. First
order and total sensitivity indices are calculated for global sensitivity analysis. Mean,
standard deviation as well as 10th (P10) and 90th percentiles (P90) were calculated for
a detailed plot analysis.

The prototype automatically generates several plots based on the library matplotlib (44)
for analysis: a set of plots for each gauge station, one containing the mean, standard
deviation and P10/P90 of the simulated runoff values plotted against the measured
runoff for the whole time interval. A second set of plots displays the absolute and
relative error of the simulated runoff compared to the measured runoff. The final set
of plots shows both sensitivity indices for sensitivity analysis. It also generates an
overview of mean simulated runoff values of all gauge stations in the area Regen to
quickly identify points of interest.
The plots and the raw data are saved in the corresponding output folder defined in the
input arguments.
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5.3 Execution on High Performance Computing Systems

The simulation runs were executed on the Leibniz-Rechenzentrum linux cluster Cool-
Muc2. The cluster is equipped with 384 28-way Haswell-based CPUs (Intel Xeon
E5-2697 v3) for a total of 10752 cores and 24.5 TB RAM. The solutions for Python
(python/3.5_intel) and MPI (mpi.intel/2017) were provided by Intel. In order to start
an execution run, it has to be submitted to the implemented cluster management and
job scheduling system SLURM (45). The submission is facilitated with a shell script
that specifies the arguments for the cluster and the prototype and generates a batch file
which is then forwarded to SLURM.
The cluster nodes assigned to the simulation job feature 28 CPU cores and 55GB RAM
each. The average runtime of one LARSIM execution was 32 seconds. The total pro-
totype runtime depends greatly on the amount of uncertain variables and collocation
points used. The total runtime for the global sensitivity analysis run (4 uncertain
variables, 11 collocation points) was 59h for the execution of 114 = 14641 LARSIM
simulations and the statistical evaluation. Parallel execution on one node with 20 cores
was used for this run to ensure stability on the cluster. Executions with 2 uncertain
variables and 25 collocation points had a runtime of 5.2h, using 3 nodes on the cluster
for MPI execution.
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6 Analysis of the Output of Interest

6.1 Global Sensitivity Analysis

The output of interest based on the simulation runs detailed in chapter 4.4 was analyzed
for all gauge stations. The gauge station Lohberg (station id: LOHB) is used for
demonstration purposes in the following.

The first aim is to identify the most impactful parameters of the snow module from a
stochastic perspective. Therefore, uncertainty quantification is used in the simulation
run with all four uncertain variables (see table 4.3) to perform global sensitivity
analysis. First order sensitivity and total sensitivity indices were calculated for the
whole timeframe. Figure 6.1 displays the impact of each uncertain parameter on the
total runoff (in 100%) by visualizing the total sensitivity indices.

Figure 6.1: Total sensitivity of uncertain variables in station LOHB

The data indicates that the two most impactful parameters are SRet and Tmit_Sr, while
Tspann_Sr and Abso have little to no impact on the output of interest. An impact shift
of parameters SRet and Tmit_Sr at certain time intervals can be observed. Comparing
the time intervals of the impact shift with the temperatures in figure 4.3 could lead
to the following assumption: A correlation between air temperature and sensitivity
values of both parameters is assumed because Tmit_Sr becomes more impactful when
the temperatures are around or below 0 ◦C. Freezing temperatures could reduce the
impact of the water retention parameter SRet because there is less liquid water in the
snow cover.
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6 Analysis of the Output of Interest

As the temperatures rise consistently above the freezing point, parameter SRet retains
its position as most impactful parameter.
Based on the obtained information from global sensitivity analysis, the statistical
evaluation runs are performed with only the two most impactful uncertain parameters.
This enables the execution of uncertainty quantification with a significantly higher
number of collocation points within reasonable computational expense.

6.2 Statistical Evaluation

6.2.1 Simulation data

The following simulations are performed according to the statistical evaluation execu-
tion type of table 4.3. The output of interest, the water runoff, was statistically analyzed
based on the PCE for each timestep. Mean, standard deviation and the interval (10th
percentile (P10), 90th percentile (P90)) were calculated. Validated runoff measurements
were parsed from the corresponding .lila file. These measurements (measured runoff)
and the runoff values of a simulation run without uncertain parameters (unaltered
runoff) were used as baseline values for comparison. Mean, percentiles and standard
deviation of the simulated runoff as well as measured runoff of the whole timeframe
are displayed in figure 6.2.
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Figure 6.2: Station LOHB: Simulated runoff (mean, percentiles, standard deviation) and
measured runoff
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The data shows very little uncertainty in the first 1100 hours of the simulation with
noticeably increased uncertainty in the last quarter of the simulation. The standard
deviation was greatly increased in the time interval of around April 15th to April 27th

(hours 1150 - 1400) across all stations, which was also reflected in the large interval
of (P10, P90) at the time. This behavior could be caused by the sudden increase and
decline in runoff values at the hour-interval (1150, 1250), where the runoff values for
LOHB increased by up to 271% of the initial runoff. The equally rapid decline after the
peak is likely to have resulted in the displayed uncertainty. The data indicates a similar
behavior at sudden runoff changes across all stations.

The mean values of the simulated run are denoted as simulated runoff from now on.
The comparison between unaltered and simulated runoff in figure 6.3 showed that both
simulations deviate from the measured values for most of the considered timeframe,
but the error is noticeably increased during the last quarter of the timeframe.

Figure 6.3: Station LOHB: Simulated runoff, unaltered runoff
and measured runoff

Taking a closer look at the previously mentioned time interval shows the large value
discrepancy between both simulated runs compared to the measurement (figure 6.4).
Since even the unaltered runoff with pre-calibrated parameters deviates from the
measured runoff, it can be assumed that there is some calibration error which prevents
an accurate forecast of runoff in the investigated timeframe. The extreme weather
conditions in the timeframe are also a likely cause of the poor simulation quality.
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Figure 6.4: Station LOHB: April 15th-27th: Comparison of simulated runoff
and measured runoff

The deviation is further analyzed by calculating the approximation error between the
three data sets: simulated runoff, unaltered runoff and measured runoff. The relative
approximation error ε is calculated according to this formula:

ε =

∣∣∣∣v− vapprox

v

∣∣∣∣ (6.1)

with v: being the measured runoff and vapprox being the predicted runoff values from
LARSIM simulations. The percentage error (100% · ε) is used here as it provides a
clearer display (46).

Figure 6.5: LOHB: Relative error of simulated runoff and unaltered runoff
to measured runoff

Figure 6.5 shows the relative error of simulated and unaltered runoff compared to
measured runoff in the timeframe. The simulated runoff error is generally lower than
the unaltered runoff error throughout the timeframe, especially during the mentioned
time interval. The data shows however that the simulated values do not approximate
the measured values well. In order to compare the error found in station LOHB with
the other stations in the area, average error values for all stations have been calculated.
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The following values have been calculated over the timeframe to evaluate the relative
error: mean, median, minimum and maximum error. The values for station LOHB and
the average values across all stations for simulated runoff and unaltered runoff can be
found in table 6.1.

Station Measurement Simulation Values (in %)

Station
LOHB

Mean error
Simulation 21.35
Unaltered 23.79

Median
error

Simulation 18.49
Unaltered 23.79

Minimum
error

Simulation 0.01
Unaltered 0.01

Maximum
error

Simulation 75.28
Unaltered 116.14

All
Stations

Mean error
Simulation 21.48
Unaltered 22.73

Median
error

Simulation 17.73
Unaltered 18.37

Minimum
error

Simulation 0.03
Unaltered 0.4

Maximum
error

Simulation 282.79
Unaltered 360.34

Table 6.1: Approximation error comparison

The data displayed in table 6.1 indicates that the difference in simulation quality between
simulated and unaltered runoff is minor across all stations. While the maximum error
was noticeably lower on the simulated run, the mean error difference between simulated
and unaltered runoff is insignificant. This indicates that the error could not be reduced
noticeably by subjecting the snow module parameters to uncertainty. The mean error
for both simulated runoff (21.48%) and unaltered runoff (22.73%) itself however is very
high, which hints at a high overall model uncertainty.
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6.2.2 Discussion

The uncertainty of the simulated runoff is best observed during and after sudden
changes in runoff values. The hypothesis was proposed in chapter 2 that there might be
a correlation between parameter uncertainty, originating from calibration, and uncertain
simulation output. The simulation output provides a range of values, and some values
in the (P10, P90) interval are closer to the actual measurements. On this basis, snow
module parameters could probably be improved to increase simulation quality, but
further testing is required for a definitive answer.

Simulated runoff and unaltered runoff showed a noticeable discrepancy from the
measured runoff, especially in the time interval of April 15th to April 27th. The
difference in approximation error between both simulations is negligible across all
stations. While the error could not be considerably reduced by the uncertain parameters
of the snow module, the poor simulation accuracy suggests that there is uncertainty in
the model. It could be the case that the snow module did not have the high impact on
the total runoff as previously expected. The error could then be the result of uncertainty
in other pre-calibrated parameters.

Another reason for the discrepancy could be the timeframe chosen for the simulation
runs. Parameter calibration, as described in chapter 4, is performed on large data sets of
several years. It is assumed that this calibration was not optimized to cover the extreme
weather conditions of the timeframe, which resulted in the large approximation error.

33



7 Conclusion

In this work a prototype was developed for the quantification of uncertainty in the
water balance model LARSIM. The calibrated parameters of LARSIM’s snow module
were subjected to uncertainty by modifying model parameter data in order to produce
uncertain simulation output. The uncertainty was propagated with the prototype by
using stochastic collocation with pseudo-spectral approach. Global sensitivity analysis
on the four snow module parameters indicated that parameters Tmit_Sr and SRet have
the most impact on the uncertain output. Further simulation runs with these two
parameters were executed and statistical values were calculated in an effort to quantify
the parametric uncertainty. While uncertainty in the snow module could not be proven
definitively, the large approximation error displayed in the investigated timeframe
indicates uncertainty in the model.

The prototype should be further optimized to allow for more consistent runs on the
HPC system. The prototype does not currently support large amounts of simulation
runs (>3000) and further development is advised to investigate this issue. The prototype
currently enables the manipulation of configuration parameters in tape35 . Additional
functionality could be added to facilitate the manipulation of the other LARSIM input
files for the uncertainty quantification of other modules. Multiprocessing for the
certification stage should also be integrated to improve the runtime.
In order to further quantify the uncertainty in the model, it is recommended to repeat
the analysis of the output of interest for different timeframes and with different sets of
uncertain parameters. The option discussed in chapter 4.2 to modify parameters for
each station individually should also be pursued to analyze the interaction between
stations.
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