
Continuous Software Engineering of Innovative
Automotive Functions: An Industrial Perspective

Philipp Obergfell∗, Stefan Kugele†, Christoph Segler∗, Alois Knoll†, and Eric Sax‡
∗BMW Group Research, New Technologies, Innovations, Garching bei München, Germany

†Technical University of Munich, Department of Informatics, Garching bei München, Germany
‡Karlsruhe Institute of Technology, Department of Electrical Engineering and Information Technologies, Karlsruhe, Germany

Email: {philipp.obergfell, christoph.segler}@bmwgroup.com, stefan.kugele@tum.de, knoll@in.tum.de, eric.sax@kit.edu

Abstract—One major challenge in the automotive industry is to
deliver innovative functions more frequently. Hence, the standard
development process with a fixed release plan is likely to be
turned into a more continuous procedure. From a methodological
perspective, this change includes applying well-established agile
development techniques. In contrast to pure software-related
domains, the successful implementation of software-based func-
tions in embedded systems highly depends on non-functional
requirements, and therefore we see the need for extending the
pure code-centric notion of agility. In order to do so, we reflect on
architectural drivers that are beneficial for the transformation of
OEMs into software companies. Finally, we present our perspec-
tive on future automotive software engineering by illustrating how
continuous integration is applied by a software engineer not only
on the level of source code, but also on the system architecture
level and the respective role.

Index Terms—automotive, agile, process, continuous integra-
tion, continuous delivery

I. INTRODUCTION

During the last decades, thousands of mostly software-

controlled functions were included in modern cars, which are

executed on a large number of electronic control units (ECU).

Their particular characteristics reach from non-safety-critical to

safety-critical and real-time-critical functions. Driving forces

for this development are: (i) safety requirements, (ii) customer

demands for more comfort and the newest infotainment systems,

and (iii) advanced driver assistance systems allowing to reach

higher levels of driving automation.
Current E/E Architectures: The resulting vehicle elec-

tric/electronic (E/E) architectures are best characterised as

historically grown, mostly federated, partly integrated architec-

tures with often pragmatic, cost-efficient, and ad-hoc solutions.

A lot of research effort is currently put in developing all-new

E/E architectures that will be even better equipped for future

trends, innovations, and new technologies [1], [2].
Customer Demands: Machine learning is an emerging

and cross-disciplinary area, which is advancing with great

strides also for in-vehicle functions. Sophisticated smart
capabilities and highly personalised functions are no longer

a future vision but can already be found today. Rooted in the

consumer electronics (CE) industry, customers demand new

levels of personalisation (and individualisation). This extends

the traditional aspects of personalisation for vehicles such as

colour, interior equipment, or options by far. Customers expect

innovations to be delivered instantaneously.

Continuous Updates: Regulatory authorities will by law

require to improve, i. e., (i) fix possible errors and (ii) update

crucial components to the state-of-the-art. Moreover, vehicles

are in use for more than 15 years on average. During that

time-span, information technology improves rapidly: E. g. an

encryption algorithm used for backend communication can

become outdated and not be considered secure anymore and

has to be updated after almost a decade. Hence, possible attack

surfaces need to be mitigated continuously.

Continuous Software Engineering: Customer demands,

innovations, and competitors push OEMs to fast and light-

weight software updates, which has to be enabled by fast-

moving development processes based on the idea of continuous

software engineering [3]. Continuous Integration and Delivery
(CI/CD) help to improve the quality and speed at which

automotive software-based innovations are delivered to the

customers’ vehicles—going along with the DevOps way of

thinking. Such an approach requires the currently mostly

rigorous V-model-based development to turn into a highly

agile process known from modern software development

methodologies. Note that today software delivery after the

start of production is minimal.

Outline: This position paper focusses on the development
processes and methodologies needed to deliver new functional-

ity to customer vehicles quickly. Therefore, we first focus on

the notion of architecture and possible drivers that foster agility.

Second, we outline a process concept for continuous automotive

software engineering from an industrial perspective.

II. ARCHITECTURAL DRIVERS

Besides automotive process models—like the stage-gate ap-

proach, which contradict the idea of incremental and continuous

software engineering—we believe that especially architectural

questions decide whether automotive software development

can speed up. Having this in mind, we provide a set of

architectural key drivers that demand the implementation of

suitable technologies in order to foster fast change.

a) IP-Based E/E Architectures: Current automotive soft-

ware architectures follow mainly the idea of static communi-

cation in line with the AUTOSAR Classic Platform [4]. As

a result, changing the applicative parts of software leads in

most cases to a change in the so-called communication matrix

describing statically bound data channels between hardware

127

2019 IEEE International Conference on Software Architecture Companion (ICSA-C)

978-1-7281-1876-5/19/$31.00 ©2019 IEEE
DOI 10.1109/ICSA-C.2019.00030

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 10:41:23 UTC from IEEE Xplore. Restrictions apply.

senders and receivers. To overcome this, automotive OEMs

are on the way to steadily substitute legacy communication by

including more and more IP-based communication technologies

into their vehicles, which in turn support a better separation

of software and hardware.

b) Extending E/E Architectures: As restricted hardware

resources constrain embedded software development, we pose

the requirement of extendibility (e. g. computing resources) that

needs to be accomplished when targeting continuous software

engineering. • Vehicle-Internal Extendibility: Vehicle-internal

extendibility of computing resources reflects trends in chip

design for embedded systems. Briefly spoken, the concept of

a microcontroller with classic single core CPUs needs to be

substituted at scale by more powerful multi-core architectures.

Moreover, their integration into extendible housings supporting

future after-sales concepts by the OEMs needs to be reached.

• Vehicle-External Extendibility: Vehicle-external extendibility

of computing resources reflects trends in outsourcing software

applications into backend systems or retrieving sensor data from

surrounding vehicles/infrastructure instead of implementing the

corresponding components internally. For this, a provision of

real-time capable and secure interfaces between the vehicle

and its environment need to be integrated.

c) Learning E/E Architectures: With the advance of

machine learning algorithms, function developers are more

and more developing data-driven functionalities, which can

capture hidden knowledge for continuously improving its capa-

bilities (e. g. [5]). The magnitude of built-in sensors holds the

opportunity that required data has already been measured and

could be directly used for data-driven functionalities without

adding any additional hardware. However, this magnitude of

sensors also leads to high complexity in current architectures

and sensors are often hidden for the data scientist and not

being used, even though if necessary. Additionally, due to the

static nature of current architectures and the dynamic nature of

learning systems, these systems cannot be fully integrated into

current architectures. In consequence, the task of transitioning

from static heterogeneous system design to dynamic central

system design is inevitable.

III. PROCESS

Based on posed architectural drivers, we now present our

idea on future automotive software engineering. As a concept,

two conjoined continuous integration pipelines (one for the

architectural integration of new functionality and one for its

realisation in software) are introduced.

a) Continuous Integration: Architecture Level: On the

architectural level, our process depicts system design activities

that are initialised by introducing new functionalities. The

ultimate goal is to identify suitable computing resources within

and outside the vehicle as well as to derive communication

interfaces (network routing) in the case of distributed deploy-

ments. Both steps can be achieved iteratively. This is especially

true when considering the product before its initial release to

the customer. In the opposite case, changing a pre-existing

Functional/Non-
Functional Req.

System (Re-)Design
and Deployment

Deply.

Network Routing

Release

Backlog

Repository

Build Server

Changing
Code Base

Change
Requirements

Staging for CD

CI: Source CodeCI: E/E Architecture

valid

Bugfixes

no Bugfixes

not valid

n
o
t

v
al

id

not valid

n
o
t

v
al

id

valid

Fig. 1. Process

system design is also considerable, but requires additional

after-sales processes that are not depicted here.
b) Continuous Integration: Source Code Level: Based

on architectural change approvals within our first pipeline,

functional requirements are released for implementation. To

do so, the second part of our pipeline includes automotive

tailoring of standard elements for continuous integration (e. g.

build servers and repositories for change requests and source

code). Since the current collaboration model between OEMs

and suppliers is based on written specification documents, we

strongly focus on the inclusion of suppliers and third-party

contributors within the development and test procedures. After

approval, mainly worked out by build and test scripts, staging

and entering the continuous delivery pipeline takes place.

IV. CONCLUSION AND FUTURE WORK

The idea of vehicles as computers on wheels is not new.

However, on the level of design processes, approaches (mainly

known from mechanical engineering) are still dominant and

come true by fixed release plans and long development cycles.

In this paper, we stated our idea on continuous automotive

software engineering, which emphasises that agile software

development is only beneficial when applying its techniques

on the architectural level, too. For future work, we aim to

develop and implement a corresponding pipeline that supports

architects in an agile development environment and helps to

speed up with innovation.

REFERENCES

[1] M. Traub, A. Maier, and K. L. Barbehon, “Future automotive architecture
and the impact of IT trends,” IEEE Software, vol. 34, no. 3, pp. 27–32,
2017.

[2] S. Kugele, V. Cebotari, M. Gleirscher, M. H. Farzaneh, C. Segler,
S. Shafaei, H.-J. Vögel, F. Bauer, A. Knoll, D. Marmsoler, and H.-U.
Michel, “Research Challenges for a Future-Proof E/E Architecture – A
Project Statement,” in 15. Workshop Automotive Softw. Eng. LNI, 2017.

[3] J. Bosch, Ed., Continuous Software Engineering. Springer, 2014.
[4] “AUTOSAR: Automotive Open System Architecture,”

http://www.autosar.org.
[5] P. Obergfell, C. Segler, E. Sax, and A. Knoll, “Synchronization between

Run-Time and Design-Time view of Context-Aware automotive system
architectures,” in 2018 IEEE International Systems Engineering Symposium
(ISSE). Rome, Italy: IEEE, Sep. 2018.

128

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 10:41:23 UTC from IEEE Xplore. Restrictions apply.

