Generating Critical Test Scenarios for Automated Vehicles with
Evolutionary Algorithms

Moritz Klischat and Matthias Althoff

Abstract— Virtual testing of automated vehicles using simula-
tions is essential during their development. When it comes to the
testing of motion planning algorithms, one is mainly interested
in challenging, critical scenarios for which it is hard to find
a feasible solution. However, these situations are rare under
usual traffic conditions, demanding an automatic generation of
critical test scenarios. We present an approach that automat-
ically generates critical scenarios based on a minimization of
the solution space of the vehicle under test. By formulating
a scenario parametrization and automatic determination of
relevant parameter intervals, we are able to optimize the
criticality of complex scenarios. We use evolutionary algorithms
to tackle the resulting highly nonlinear optimization problem.
Compared to our previous approach, we are now able to handle
complex situations, in particular those involving intersections.
Finally, we demonstrate our approach by generating critical
scenarios from initially uncritical scenarios.

I. INTRODUCTION

When automated vehicles are deployed in the real world,
they are subjected to an unforeseeable number of situations.
This requires extensive testing during their development to
ensure safety, especially with regards to motion planning.
To demonstrate that automated vehicles have a better perfor-
mance than humans with a 95% confidence level, they need
to be driven for 440 million km [1]. Because this cannot be
achieved through real-world testing alone, virtual tests are
a common practice, making it possible to test many aspects
faster than in real-time, see e.g., [2]-[4]. Even virtual tests,
however, can be very time-consuming since dangerous or in-
teresting situations are rare events. This motivates automatic
generation of critical test cases for automated vehicles—
in this work, we focus on test cases for motion planning.
These tests cases expose the vehicle under test to short traffic
scenarios for which a feasible motion needs to be found.

A. Related work

One straightforward approach for increasing the efficiency
of virtual testing is the extraction and classification of
relevant scenarios from large databases of recorded traffic
data as demonstrated in, e.g., [5], [6]. In [7], scenarios are
grouped by unsupervised learning to find situations where
small deviations of the environment lead to changes in
behavioral modes, e.g., when the vehicle under test is forced
to take a different path. Despite the fact that collecting data
at this scale is challenging, one is restricted to observed
situations, which are typically not critical most of the time.

All authors are with the Technische Universitit Miinchen, Fakultit fiir In-
formatik, Lehrstuhl fiir Robotik, Kiinstliche Intelligenz und Echtzeitsysteme,
Boltzmannstrafie 3, 85748, Garching, Germany. {mo ritz.klischat,
althoff}@in.tum.de

For generating new scenarios based on existing data, test
cases are created automatically based on observed cause-
effect relations, which are checked subsequently during test
execution in [8]. Combination and mutation of recorded data
is used in [9] to create new test cases. In [10] the authors
propose using learned behavior from recorded or simulated
traffic data to generate traffic scenarios with neural networks,
which are subsequently searched for accidents. However,
an accident does not necessarily imply that a situation is
critical; it might have been easily avoided. In return, a critical
situation might be resolved by a good driver and not be
classified as critical.

Another practice for more systematic testing is to define
scenarios on an abstract level and by deducting test cases
through the variation of parameters, see e.g., [11], [12].
However, without considering the criticality of a scenario,
the number of generated test cases quickly becomes un-
economical. Criticality is explicitly considered in [13]-[15],
where automated vehicles are tested by optimizing scenarios
towards a short Time-To-Collision or using related cost
functions. Similarly, in [16], systems are forced into faulty
behavior with respect to previously-defined specifications. In
[17] and [18], test case generation for automated vehicles
is realized using S-TaLiRo. In [19], an approach using
S-TaLiRo is applied to motion planners based on machine
learning, including simulated camera processing using deep
neural networks.

Our previous work [20] is the first approach that generates
critical scenarios with a small solution space for the vehicle
under test, which we refer to as the ego vehicle from now
on. In that work, the drivable area is used as a measure for
criticality. The drivable area denotes the solution space in
which the ego vehicle can operate safely without colliding.
This measure enables the quantification of criticality in many
more driving situations than the Time-To-Collision. How-
ever, [20] only allows the generation of simple scenarios on
straight, non-intersecting roads and only realized translation
of other traffic participants.

B. Contributions

We present an approach to generate critical scenarios for
testing motion planners in complex traffic situations. Based
on the optimization of the drivable area of the ego vehicle,
our method provides the following improvements compared
to [20]:

1) A new parametrization of scenarios is presented for
realizing more complex and diverse scenarios.

2) By using evolutionary algorithms (EA), we find better
local minima over a larger range of scenarios. This
is especially advantageous compared to the local lin-
earization used in [20] despite the highly nonlinear
optimization problem at hand.

3) To improve the optimization process and to consider
only relevant driving situations, a method to prune the
parameter space of a scenario is presented. As a result,
only parameter regions where traffic participants can
possibly interfere with the ego vehicle are considered.

4) By formulating a repair algorithm based on a linear
program, obtained scenarios do not contain collisions
among other traffic participants.

Our approach considers all feasible trajectories of the ego
vehicle unlike previous approaches that generate scenarios
based on a closed-loop simulation with the motion planner
of the ego vehicle [13]-[15]. Thus, our approach yields test
cases whose criticality is not depending on the performance
of the motion planner. This enables a more objective com-
parison of multiple motion planners and the creation of
a database with generic critical scenarios. Since we only
generate scenarios with a non-empty drivable area, we also
ensure that a collision-free trajectory exists, compared to
approaches that focus on finding accident scenarios.

II. PROBLEM STATEMENT

The subsequent formulation of the underlying optimization
problem is similar to [20], except that we consider collisions
among other traffic participants. For an illustration of the
introduced variables, we refer to Fig. 2a.

A. Traffic Participants

We define the list V of traffic participants V(). In the
remainder of this work, the superscript [](i) refers to the -
th traffic participant. For each traffic participant, we assume a
parametrized trajectory x(i)(t; p) € R™, where the parameter
vector p € P and parameter space P € R'*9 are presented
in detail in Sec. III-A. We introduce the operator occ(z)
returning the occupied space of a vehicle with state =x.
The occupancy set of a traffic participant is denoted by
OW(t,p) = occ(z®(t;p)). To each traffic participant we
assign a lane £(*) € R? of the road network.

B. Motion Planning Problem of the Ego Vehicle

Let us introduce the motion planning problem for the ego
vehicle as follows: By f(x(t), u(t)) we denote the right-hand
side of the state-space model of the ego vehicle so that

w(t) = f(x(t), u(t)),

where © € R" is the state vector and v € R™ is the input
vector. We further require the initial state xg = x(tp), the
initial time %o, and the time horizon ¢;. The possibly time-
varying, allowed space on the road surface is denoted by
Wianes(t) C R2. The occupancy of the ego vehicle has to
lie within the allowed space, while avoiding other traffic
participants V¢ € [to,tr] : occ(z(t)) € Wianes(t)\O(t, p).

We also require constraints g(z(t),u(t),t) < 0, such as
speed limits or other traffic rules [21].

After introducing an input trajectory as u(-) (in contrast
to a value wu(¢) at time ¢) and the cost function of the
obtained solution J(x(t), u(t),ty), we can finally formulate
the motion planning problem as finding

u () = arg;r;in J(x(t), u(t), to)
subject to
#(t) = [f(2(t), u(t)),
g(x(t), u(t),t) <0,

OCC(aﬁ(t)) c Wlanes(t>\o(tvp)a
x(to) = X9 .

(D

Finally, we denote a scenario by the tuple
S(p) = (1‘05 O('vp)a Wlanes('))-

C. Drivable Area

To consider not only the optimal solution of the motion
planning problem, but the space of all solutions, we require
the set of reachable states [22]. In particular, we use a so-
called anticipated reachable set, which excludes states that
will inevitably result in an accident [23] in the time interval
t € [to,ty]. We denote a feasible trajectory as x(t; zo, u(-)),
which meets all constraints in (1). After introducing the set
of input trajectories U/, we define the anticipated reachable
set as

R(t: 70, O(.p) Wisnes()s £1) = {x(t;l’mU(')) Su() € U,

VT € [t07tf] : OCC(X(T; mo,u())) c Wlanes(T)\O(Tvp)}'
By applying the projection operator for projecting to the
position domain in Euclidean space proj(z) : R" — R2,
the drivable area becomes

D(ta Zo, O(ap)v Wlanes(')) =
U proj(z).)

TER(t:20,0(-,p) Wianes ()ts) 7

To quantify the solution space over time, we introduce the
function area(X) : R? — R¥, returning the area of a set.
We write

A(pa t) = area(D(t; Zo, O(vp)a Wlancs(')))
to obtain the area profile of the drivable area over time.

D. Optimization Problem
The goal of this work is to create a scenario S(p) with a
desired area profile A,.s(t) by optimizing

2

argmin(S(p), w(S(p)) = / " (A1) — Aves(1)

p
3)
subject to V,¥i,¥j: OW(t,p) N OY(t,p) = 0.
“4)

(@) (g
85 (tvp)
£@®
Fig. 1: Longitudinal coordinates s¢(ts;p) formulated relative to the inter-
section point 1(::9) of lanes £(*) and £(9),

The constraint in (4) ensures that no traffic participants
collide with each other. We refer to the set of parameters,
for which this constraint holds, as the feasible set. In this
work, we use for A,.s(t) the drivable area computed without
any traffic participants and the scalar v €]0,1[, which
quantifies the reduction of the drivable area: A,.f(t) =
v area(D(t; Zo, P, (2)7 Wlanes(')))-

III. PARAMETRIZATION OF THE OPTIMIZATION PROBLEM

For the trajectories 2(¥)(t;p) of all traffic participants V,
we require a parametrization that can be applied to complex
road networks and enables efficient handling of collision
constraints in (4), yet is lightweight enough for being solved
in reasonable time. To this end, we introduce the curvilinear
coordinate system C, in which a state is defined as x¢ =
[s¢, S¢, S, é,,]T, where £ denotes longitudinal and 7 denotes
lateral coordinates with respect to the center line of a lane
L. The operator proj(z) : R? — R projects the Euclidean

space to the longitudinal position domain. Furthermore, we
use discretized time ¢, = At - k with time steps k¥ € N and
step size At € R*,

A. Parametrization of Traffic Participants

For each vehicle, we assume an initial trajectory to be
given and independent dynamics in lateral and longitudinal
direction. We parametrize the longitudinal position trajectory
as

i i A i i 1 i
s (trip") = Se(tr) + 0+ tipl) + Si2pl) (5)

with the initial longitudinal trajectory 3¢(tx) € R and the
parameter vector

p= [psapvvpa]

for translations p, € R'*¥, initial velocity variations p, €
R1*¥ and acceleration variations Pa € R*¥. The parameter
p is bounded by the multidimensional interval set

P = {[psapvapa] |ps €8,p, €B,p, € A}
with
S = [ps,] : B = [pu,Pu] , A = [pa; Pa] -

By [] we denote the supremum and by [] the infimum of
interval sets.

B. Collision Constraints

In order to solve the collision constraints in (4) efficiently,
we approximate them by a formulation as linear inequality
constraints of the form d(tx,p) < Ar with d(tx,p), Ar €
R?, which represent a convex feasible set. We introduce
the solution candidate p € P, which is repaired using an
Euclidean projection of p onto the convex feasible set. This
projection is trivial and can be solved by a quadratic program
[24]. The repair mechanism is used during optimization as
described in Sec. IV.

The elements of d(ty, p) are obtained by pair-wise formu-
lations of collision constraints between traffic participants.
Due to the scenario parametrization in (5), not all traffic
participants can collide, e.g., if the lanes of two vehicles
never intersect. Therefore, we first identify all pairs of traffic
participants V) V) Vi £ j, which can possibly collide
by checking for intersection of their lanes, £(9) N £,

Constraints are composed of the distances between vehi-
cles along lanes. While obtaining distances between traffic
participants in the same lane is trivial, defining longitudinal
distances of merging or intersecting lanes is not obvious. To
this end, we define the intersection point of lanes of traffic
participants V) and V@) as I(*7) ¢ R? as shown in Fig. 1,
which serves as the origin of the curvilinear coordinate
systems. Longitudinal distances in these coordinate systems
are then classically obtained as |s?)(tk; p) — s?)(tk;)|

Depending on p, two configurations of two traffic partici-
pants are possible: either V() is passing before (case (D) or
behind (case Q) V) In order to preserve the configuration,
which results from the parameter p at hand, we distinguish
the cases by

A9 (1, p) = S%J:)(tk-;p) - SS) (tr;p) for case D .
’ ng)(fk;]?) - ng)(tk;p) for case Q)

Finally, we write the collision constraint for each ¢ as
d(i’j)(tk,p) < (T(i) + 7A(J')>7 (6)

where r is the radius of the circle inscribing the shape of a
traffic participant, including a safety margin.

C. Pruning of the Parameter Space

Solving our optimization problem is complicated since a
traffic participant can only reduce the drivable area D if it
intersects it at some point in time. However, large regions
of possibly occupied positions {O(-,p) | p € P} of traffic
participants might never intersect the drivable area D like
vehicle V(! in Fig. 2a. To quickly converge to solutions
reducing the drivable area, we automatically want to remove
regions from the translational parameter space S which have
no influence on the drivable area, as shown in Fig. 2b for
V) In contrast, there exist parameters within P that can
drastically reduce the drivable area; this typically depends
largely on the traffic participant. Thus, we first identify the
best traffic participants V¥ which have a large influence on

the reduction of the drivable area and separate them from
the worse remaining traffic participants V'V:

y=yBuyW". (7)

From now on, we denote by superscripts 1% and (]
relation to traffic participants of the corresponding sets.

For identifying traffic participants with a large influence
on the drivable area, i.e., the cost function x, we define the
criterion

)\(V(Z)’ﬁ) _ H(S(JJ(), (QA(,PZ), Wlanes('))) ,
- K(S(Zo, O(T,p),wlanes('))
OO (,p) = O(p)\ OV (),

which expresses the ratio of costs for the scenario with
and without the i-th traffic participant for the parameter p.
As shown in Algorithm 1, V? is initially empty and new
members Ve, are selected by

Vonew = arg min)\(V(i),ﬁ) ®)
V() egyw
to obtain the traffic participant with the largest impact on the
cost function.

After adding V, e to VB, we want to identify
the intervals SV = [p,® 5;)] for the remaining
V(@ ¢ YW which contain all parameters that can inter-
sect with D(-, 29, O(-, [”, p"]), Wianes(*)). By computing
DB (-, 20, OB (-, 57), Wianes(+)) considering the occupancies

OB(-,p?) only, we obtain a superset of the drivable area
VpW S PW : D('7x07 O(v [ﬁvaW])a Wlanes('))
QDB(H‘T&OB(';ﬁB)awlanes('))a (9)

where [pP,p"] denotes the combined parameter vector
of 5% and p"'. From now on, the shortened notation
DB(,pP) = DE(-, 20, OB(-,57), Wianes(-)) is used. By
restricting S" to the interval which results in an intersection
with DB (-, 5P), we consequently guarantee that S contains
the desired parameters only. This is formalized as

ps' =min {p{? | OV (-, [p{V, p{?, p]) N DB (-, %) # 0,
vp() € BO, wpld € ADY,

p—s(i) = max {p(i) | O(i)([p()7pv

a]) n DB('?ﬁB) 7é @7
ol € AD),

Since this is a challenging problem, we formulate an over-
approximative representation using an over-approximation of
DB(-,pP) in curvilinear coordinates, thus guaranteeing that
the entire drivable area is considered when computing S"'.
For that purpose, we intersect the drivable area DB (-, p?)
with the corresponding lane £(*) and project it to the lon-
gitudinal position domain to obtain the over-approximative

interval of DB (-, pP) in curvilinear coordinates (see Fig. 2b):

49 (1) = [inf {prgoj (D7 (b 5™) N £) } ,

sup {prgoj (DB(tk,ﬁB) N £(i)> }])

Afterwards, we obtain the bounds of SW>(®) for the time
interval [to,ts] as

V'p(e BW,

O~ min]<d§<i><tk> — selte)

Ds
— trElto,ty

—(tx — to)py — 5 (tx — to)

1 9
5 pa>, (10)

minimizes pg (%)

sz(i) = max

tiE[to,ty]

(dé“(tw = ae(t)

2

maximizes P (4

1
—(tk — to)py — 5tk — t0)217a> (11)

which directly follows from solving (5) for pgi).

IV. OPTIMIZATION ROUTINE

For solving the optimization problem in (3), we utilize
evolutionary algorithms. These algorithms are especially
suited for global optimization problems for which no an-
alytic gradient can be formulated [6], as is the case for
the cost function x(S(p)). One can incorporate any EA
in our approach as shown in Algorithm 1; we exemplarily

1
B 0(1.6.9) 1
Wlanes(') :|
L) VW eV,
1 N
} D(1.6;20,0(, p) Wi ()] | 22" | X J0P(,57), Wianes(1)) Dt = 1.6:20,0(,p), W())
a:lg ego vehicle dél)(tk) // ‘
/ <—|§(2) 1
. . .
\V(z) V@ ey, o — V@
7Y

(a) Initial scenario.

(b) Pruning parameter region S = [ps, Ps]-

(c) Solution of optimization: critical scenario.

Fig. 2: Generating a critical scenario. Depicted are drivable area D and traffic participants V(D att =1.6s.

use differential evolution (DE) [25] and particle swarm
optimization (PSO) [26] and compare them.

During optimization, we perform intermediate tightening
of parameter bounds P according to Sec. III-C. For the
optimization, we define the population () as the set consisting
of all n,, solution candidates p., e € {0,...,n,} for the EA.

Initially, all traffic participants are assigned to V", and
initial bounds are computed according to Sec. III-C. Af-
ter conducting ny iterations with the respective solver, all
solution candidates p. € () which violate the constraints
in (6) are repaired by computing the closest projection
to the feasible set as described in Sec. III-B. Afterwards,
intermediate updating of parameter bounds S is performed
by first selecting the most relevant member Vj, e € yw
with respect to x(S(p)) for adding it to V2. With the updated
sets VB and VW, the parameter bounds S" are tightened in
the subsequent iteration step ! using (10) and (11). Next,
elements of solution candidates p. € (), which violate
Pe € P, are resampled within the newly computed bounds.
This routine is repeated until either all traffic participants
are assigned to V' or the optimization algorithm converged.
For a step-by-step example that illutstrates the iterative
computation of bounds, we refer to Sec. V-A.

Algorithm 1 IterativeBoundingOptimization

Require: scenario S(p), initial solution p, traffic participants
V, number of traffic participants n,, initial bounds P

Ensure: Critical Scenario S

1: VW «~V

VB«

@ < INITPOPULATION

[+ 0

converged < false

while [< n, and —converged do
PW « TIGHTENPARAMETERBOUNDS(VW VB)
> see (10) and (11)

AN G

8: Q, converged < EA(P, Q)

9: (@ + REPAIRINFEASIBLE(Q) > see Sec. III-B
10: p < argmin, o K(S(pe))

11: Vb, new SELECTRELEVANT(VW , VB) > see (8)
12: VB VB UV new

13: YW o VW\Vb,new

14: l+—1+1
15: end while
16: return S(p)

V. RESULTS

The proposed approach is demonstrated by two initial
scenarios from the CommonRoad benchmark collection [27].
We also compare results from the two evolutionary al-
gorithms DE and PSO. Due to the lack of comparable
algorithms, no comparison to existing work is possible. For
the computation of the drivable area, we use the method
presented in [23]. Used parameters are listed in Table I. We
used different settings for the solvers in both scenarios due

to their different complexities. The settings are described in
the respective paragraphs. Computation times were measured
on a machine with an Intel i7-8650U 1.90 GHz processor.

TABLE I: Scenario Parameters

max. acceleration ego vehicle |amaz| 5.0m/s?
time step size At 0.1s

time horizon ¢ ¢ 3.0s

initial velocity variation B [-3,3]ms~!
acceleration variation A4 [-5,5] m/s?

A. Scenario I: Intersection

The first scenario is a hand-crafted, unregulated urban in-
tersection that can be found in the CommonRoad benchmark
collection! under ID DEU_Ffb-1_3_T-1. The ego vehicle has
an initial velocity vg = 7.1ms~! and is surrounded by 3
other vehicles. This results in 9 parameters, for which a
population of 90 individuals is used during the optimization.
We conduct 45 iterations with both solvers, while performing
parameter bounding every n;, = 15 steps. The computation
time for this scenario is 22.09 minutes.

The initial configuration at t = 2.5 s is depicted in Fig. 3a.
The other vehicles almost do not restrict the drivable area D
and thus the situation is uncritical. The final result of the
particle swarm algorithm is shown in Fig. 3. To illustrate the
optimization routine, we show three intermediate solutions
at different iterations of the optimization. In the initial
configuration, the depicted position bound S for all vehicles
are large due to the large drivable area. However, after two
adaptation iterations, the bounds could be decreased due to
the smaller drivable area. After the final iteration &k = 3, the
drivable area has decreased even further.

The optimized scenario shows a vehicle coming from the
left and ignoring the right of way of the ego vehicle while
breaking with @ = —2ms~!. The ego vehicle either needs
to perform an emergency braking maneuver or evade to
the right. Even though another traffic participant would be
blamed for the potential collision in this case, one is still
interested in protecting the passengers of the ego vehicle
through a safe maneuver of the motion planner. When
comparing the convergence of solvers in Fig. 4, DE and PSO
perform almost equally in the beginning; however, after 12
iterations, DE almost does not improve anymore, while the
PSO still improves substantially.

B. Scenario II: Highway scenario

The second scenario is a highway scenario taken from the
NGSIM US 101 dataset?. This scenario can be found in the
CommonRoad benchmark collection under ID USA_US101-
14_1.T-1. The ego vehicle has an initial velocity of
14.85ms~! and is surrounded by similarly paced vehicles
in the initial configuration. In order to simplify the scenario,

lhttps://commonroad.in.tum.de
’http://www.fhwa.dot .gov/publications/research/
operations/07030/

initial position — bounds &
—-15} m D T
0 20 40 60

(a) Initial configuration at ¢ = 2.5s with initial bounds S.

30
15
0
— Dbounds §
_15 L . D i
0 20 40 60

(b) Configuration after iteration step [= 2 at t = 2.5s with
adapted bounds S.

30

15

0
— bounds §
—-15¢ B D .
1) 1
0 20 40 60
(c) Final optimized configuration at ¢ = 2.5s with final
bounds S.

Fig. 3: Scenario I: initial configuration, intermediate result during opti-
mization, and the final configuration at ¢ = 2.5s. Positional bounds S
of respective iteration k are depicted in blue.

costs x(p)

iterations

Fig. 4: Comparison of solver convergence for scenario I.

irrelevant vehicles are removed prior to the optimization. As
a result, 13 vehicles with a total number of 39 parameters
are optimized. This scenario is especially demanding with
respect to collision constraints (4) and the high number of
parameters in total.

All three algorithms are initialized with a population
of 195 individuals and computed for 45 iterations, while
parameter bounds are adapted and the repair algorithm is
applied every 9 iterations. The computation time is 201.7
minutes. In Fig. 5, the resulting convergence of all solvers

costs k(p)

iterations

Fig. 5: Comparison of solver convergence for scenario II.

are compared. It shows that PSO has the highest convergence
rate and yields the best solution. In comparison, DE exhibits
premature convergence. The occasional increase of the cost
function can be attributed to the repair algorithm in line 9
of Algorithm 1.

The result of the PSO algorithm is depicted in Fig. 6.
While in the beginning the ego vehicle has enough space to
maneuver, at ¢ = 2.6 s there is little space left due to a lane-
changing vehicle and several closely navigating vehicles. For
comparison, the initial scenario prior to the optimization,
where the vehicle has considerably more space to maneuver,
is shown. As this scenario also demonstrates, no vehicles
collide, despite the crowded driving situation.

VI. CONCLUSIONS

In this work, we present an optimization-based approach to
generate critical scenarios for complex traffic situations. Un-
like previous works, our approach can handle complex road
layouts and dynamics for a high number of involved traffic
participants. We ensure that all relevant configurations of a
scenario can be reached due to the automatic computation
of relevant parameter intervals and evolutionary algorithms.
We demonstrate that we can generate critical scenarios for
urban scenarios and many involved traffic participants. The
obtained scenarios can be used for testing arbitrary motion
planners.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge financial support by
the Central Innovation Programme of the German Federal
Government under grant ZF4086007BZ8.

REFERENCES

[1] N. Kalra and S. M. Paddock, “How many miles of driving
would it take to demonstrate autonomous vehicle reliability?”
RAND Corporation, Santa Monica, CA, Tech. Rep., 2016. [Online].
Available: http://www.rand.org/pubs/research_reports/RR1478.html

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

initial scenario

t=0.0s

t=14s

0 20

Fig. 6: Scenario II: optimized scenario compared to initial scenario at different times ¢.

40 60

B. Kim, Y. Kashiba, S. Dai, and S. Shiraishi, “Testing autonomous
vehicle software in the virtual prototyping environment,” I[EEE Em-
bedded Systems Letters, vol. 9, no. 1, pp. 5-8, 2017.

M. R. Zofka, S. Klemm, F. Kuhnt, T. Schamm, and J. M. Zollner,
“Testing and validating high level components for automated driving:
Simulation framework for traffic scenarios,” in Proc. of the IEEE
Intelligent Vehicles Symposium, 2016, pp. 144-150.

R. Math, A. Mahr, M. M. Moniri, and C. Miiller, “OpenDS: A new
open-source driving simulator for research,” in Proc. of Automotive
meets Electronics, 2013.

A. Piitz, A. Zlocki, J. Kiifen, J. Bock, and L. Eckstein, ‘“Database
approach for the sign-off process of highly automated vehicles,” in
25th International Technical Conference on the Enhanced Safety of
Vehicles (ESV) National Highway Traffic Safety Administration, 2017.
J. Vesterstrom and R. Thomsen, “A comparative study of differential
evolution, particle swarm optimization, and evolutionary algorithms
on numerical benchmark problems,” in Proc. of the Congress on
Evolutionary Computation, vol. 2, 2004, pp. 1980-1987.

G. E. Mullins, P. G. Stankiewicz, and S. K. Gupta, “Automated gen-
eration of diverse and challenging scenarios for test and evaluation of
autonomous vehicles,” in Proc. of the IEEE International Conference
on Robotics and Automation, 2017, pp. 1443-1450.

C. Wolschke, D. Rombach, P. Liggesmeyer, and T. Kuhn, “Mining
test inputs for autonomous vehicles,” in Proc. of Commercial Vehicle
Technology, 2018, pp. 102-113.

V. De Oliveira Neves, M. E. Delamaro, and P. C. Masiero, “An
environment to support structural testing of autonomous vehicles,” in
European Signal Processing Conference, 2014, pp. 19-24.

I. R. Jenkins, L. O. Gee, A. Knauss, H. Yin, and J. Schroeder,
“Accident scenario generation with recurrent neural networks,” in
Proc. of IEEE Conf. on Intelligent Transportation Systems, 2018, pp.
3340-3345.

F. Schuldt, F. Saust, B. Lichte, M. Maurer, and S. Scholz, “Ef-
fiziente systematische Testgenerierung fiir Fahrerassistenzsysteme in
virtuellen Umgebungen,” in Automatisierungssysteme, Assistenzsys-
teme und eingebettete Systeme fiir Transportmittel, 2013, pp. 114 —
134.

G. Bagschik, T. Menzel, C. Korner, and M. Maurer, “Wissensbasierte
Szenariengenerierung fiir Betriebsszenarien auf deutschen Autobah-
nen,” in Workshop Fahrerassistenzsysteme und automatisiertes Fahren.
Bd, vol. 12, 2018.

F. Haver and B. Holzmiiller, “Szenario-Optimierung fiir die Ab-
sicherung von automatisierten und autonomen Fahrsystemen,” in FKFS
AutoTest Fachkonferenz, 2018.

H. Beglerovic, M. Stolz, and M. Horn, “Testing of autonomous
vehicles using surrogate models and stochastic optimization,” in Proc.

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

optimized scenario

of the IEEE Conf. on Intelligent Transportation Systems, 2018, pp.
1129-1134.

O. Buehler and J. Wegener, “Evolutionary functional testing of an
automated parking system,” in Proc. of the Int. Conf. on Computer,
Communication and Control Technologies, 2003, pp. 26-31.

T. Hempen, S. Biank, W. Huber, and C. Diedrich, “Model based
generation of driving scenarios,” in Lecture Notes of the Institute
for Computer Sciences, Social-Informatics and Telecommunications
Engineering, LNICST, vol. 222, 2018, pp. 153-163.

C. E. Tuncali, T. P. Pavlic, and G. Fainekos, “Utilizing S-TaLiRo as
an automatic test generation framework for autonomous vehicles,”
in Proc. of the IEEE 19th International Conference on Intelligent
Transportation Systems, 2016, pp. 1470-1475.

H. Abbas, M. E. O’Kelly, A. Rodionova, and R. Mangharam, “A
driver’s license test for driverless vehicles,” Mechanical Engineering,
vol. 139, no. 12, pp. 13-16, 2017.

C. E. Tuncali, G. Fainekos, H. Ito, and J. Kapinski, “Simulation-
based adversarial test generation for autonomous vehicles with ma-
chine learning components,” in Proc. of the IEEE Intelligent Vehicles
Symposium, 2018, pp. 1555-1562.

M. Althoff and S. Lutz, “Automatic generation of safety-critical test
scenarios for collision avoidance of road vehicles,” in Proc. of the
IEEE Intelligent Vehicles Symposium, 2018, pp. 1326-1333.

A. Rizaldi and M. Althoff, “Formalising traffic rules for accountability
of autonomous vehicles,” in Proc. of the IEEE International Confer-
ence on Intelligent Transportation Systems, 2015, pp. 1658—1665.

M. Althoff, “Reachability analysis and its application
to the safety assessment of autonomous cars,” Disserta-
tion, Technische Universitdit Miinchen, 2010, http://nbn-

resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20100715-
963752-1-4.

S. Sontges and M. Althoff, “Computing the drivable area of au-
tonomous road vehicles in dynamic road scenes,” IEEE Transactions
on Intelligent Transportation Systems, vol. 19, no. 6, pp. 1855-1866,
2018.

J. Dattorro, Convex optimization & Euclidean distance geometry.
USA: Meboo Publishing, 2011.

R. Storn and K. Price, “Differential evolution — a simple and efficient
heuristic for global optimization over continuous spaces,” Journal of
Global Optimization, vol. 11, no. 4, pp. 341-359, 1997.

R. Eberhart and J. Kennedy, “A new optimizer using particle swarm
theory,” in MHS’95. Proceedings of the Sixth International Symposium
on Micro Machine and Human Science, 1995, pp. 39-43.

M. Althoff, M. Koschi, and S. Manzinger, “CommonRoad: Compos-
able benchmarks for motion planning on roads,” in Proc. of the IEEE
Intelligent Vehicles Symposium, 2017, pp. 719-726.

