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Abstract— This paper presents an Adaptive Nonlinear Model
Predictive Controller for longitudinal motion of automated
vehicles which incorporates advance information on future
speed demand values, as well as on road grade changes. It
is used in combination with a state and parameter estimator
to adapt to a changing vehicle mass. This allows improved
speed tracking capability for horizontal driving and steep hill
climbing. Performance is explored through simulation of a
driving scenario in a parking garage and shows encouraging
improvements in quality of control. It could be shown that even
though the controller is optimized for tracking performance,
average fuel consumption can be reduced.

I. INTRODUCTION

In order to achieve precise trajectory following, automated
vehicles and cruise controllers need to be able to react to
changes in speed demand in presence of disturbances, as
for example changing road grade. This task is done by a
longitudinal controller, which transforms a motion request
from a trajectory planning layer into engine torque and brake
demand values. Contrary to manual operation, where future
driver inputs can only be unreliably predicted, desired speed
profiles of automated vehicles are available with a certain
look ahead into the future. Additionally, one can assume that
future road grade information can be extracted from detailed
environment maps. Incorporating this information into the
controller can not only increase the overall performance but,
as will be shown later, there are scenarios where state-of-
the-art controllers might fail completely. One such scenario
is driving onto a steep ramp at slow speed, as it occurs in
multi-storey car parks. Here, a sudden change in road grade
requires a rapid increase in engine torque to maintain the
vehicle at its current speed. Unfortunately, engines have only
limited capability to respond to a rapid increase in torque
demand. Anticipated driving, which an experienced human
driver can perform, should be incorporated into future control
systems, helping to overcome these limitations.

Model Predictive Control (MPC) is a control scheme
that allows incorporating advance information on desired
states and disturbances, whilst considering state and input
constraints. It uses a model of the plant dynamics to predict
future responses to system inputs over a certain time horizon.
By solving an Optimal Control Problem (OCP), minimizing
a cost function whilst considering given constraints, optimal
input trajectories are calculated. In each time step, the first
value the resulting optimal input trajectory is applied, and a
new solution to the OCP is found, given the actual system
state and new reference values for system output trajectories.

Providing a solution to the OCP at each time step is a
computationally expensive task, which makes it challenging
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to achieve small sample times needed for fast and accurate
control. Another limiting factor is the type of hardware avail-
able in today’s automobiles, where costs are an important
driver. Recent developments on automotive architectures ([3],
[8], [20]) demonstrate a trend towards a centralized and more
powerful computing environment within the automotive do-
main, making a practical implementation of such algorithms
feasible.

Motivated by this development, this paper describes the
implementation of an Adaptive Nonlinear Model Predictive
Controller (NMPC) for longitudinal control of automated
vehicles, which makes use of future road grade and speed
information and is able to adapt to a changing vehicle mass.
This highly improves tracking performance of the controller
in presence of the mentioned disturbances compared to state-
of-the-art solutions.

Further information about the motivation for this work
and an overview of the system architecture together with
a detailed description of the state and parameter estimator
used later in this paper has been previously published by the
authors in [4] and the interested reader is referred hereto.

The paper is organized as follows: We first give an
overview over related work in Section II, explain the NMPC
problem formulation in Section III, before presenting sim-
ulation results in Section IV. Section V finally gives a
conclusion and outlook on future enhancements.

II. RELATED WORK

The task of longitudinal vehicle control needs to be solved
for both automated vehicles as well as for cruise control
in Advanced Driver Assistance Systems (ADAS). [4] gives
a summary of recent developments on longitudinal control
strategies of automated vehicles described in [1], [2], [9],
[21], [26] and shows that they commonly lack a control layer
capable of actively dealing with future road grade changes.

Recent solutions proposed for the cruise control problem
(see for example [6], [7], [11], [13], [15], [16], [18], [22],
[23]) can be commonly seen as solutions to a special use case
for the motion planning layer (see Figure 1) which calculates
speed trajectories. All these solutions either only mention to
rely on a lower level controller capable of tracking speed
trajectories accurately enough, or state to use a Proportional -
Integral (PI) type of controller, mostly with an inverse vehicle
model to calculate a feed-forward term.

More in detail, [16] presents a solution to generate optimal
fuel saving trajectories using future road and traffic infor-
mation, but states to utilize a PI controller structure with a
nonlinear feed-forward term in the longitudinal control layer.
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Fig. 1. Proposed controller structure for longitudinal vehicle control.

[7] proposes an approach combining a motion planning and
longitudinal control layer in a hybrid MPC, which is able
to solve the Adaptive Cruise Controller problem. It is based
on a nonlinear vehicle equation in which air and friction
resistance is considered, but no road grade or vehicle mass
variation is taken into account. Since it is designed for the
sole task of following a leading vehicle on a highway, this
architecture cannot be used for automated driving in all
possible scenarios. [11] applies Explicit MPC techniques to
design a predictive cruise controller for a Hybrid Electric
Vehicle. For the longitudinal control layer, the application
of a PID controller is also stated. [15] proposes a two
layer approach and uses a simple PID controller to calculate
throttle and brake input signals in the lower layer, which
cannot anticipate future information. [23] uses the hybrid
fuzzy PID controller from [24] in the longitudinal control
layer, which does not incorporate road grade information
at all and by nature is not capable to perform anticipated
control.

Various solutions exist treating with the problem of vehicle
speed tracking control. With the introduction of torque based
Engine Management Systems (EMS) in the last decade,
approaches like [10], have become obsolete. There, highly
nonlinear empirical models, which approximate the vehicle
response to changes in accelerator pedal value, have to be
calibrated in time-consuming vehicle tests. In modern EMS,
the engine characteristic is already incorporated in a torque
model which offers a torque demand interface. This torque
model is calibrated during the engine calibration process
using a huge amount of measurement data collected on an
engine test bed, and therefore provides a very high accuracy.

Fuzzy logic type solutions [5], [24] or gain scheduling
approaches [19], [23] do not require a detailed model but
suffer from a very high tuning effort. [12] designed a time-
varying parameter adaptive vehicle speed controller without
the need to rely on an accurate vehicle model; nevertheless,

it is very sensitive to correct tuning of adaptation gains to
avoid oscillations. Changes in road grade are only treated as
a disturbance.

[25] suggests a two layer approach where the upper layer
is defined as a linear MPC problem which creates a demand
acceleration for the lower level, and nonlinearities of the
vehicle model are incorporated in a lower level feed-forward
control. Aerodynamic drag, rolling resistance and road grade
influences are neglected and treated as a disturbance.

[14], [17] propose specialized solutions using nonlinear
model predictive control for speed tracking and include
strategies to control engine parameters like variable valve lift,
and hence, are only applicable to vehicles with combustion
engines with such parameters. We clearly do not consider
engine parameters in our approach and suggest leaving
this task to the EMS, which results in a more modular
architecture.

To summarize, to the best of the authors’ knowledge, none
of the existing solutions incorporate advance knowledge of
both vehicle speed and road grade information into the longi-
tudinal controller (also called low level controller or actuator
controller in many publications) and consider constraints at
the same time. This combination is regarded as the main
contribution of this paper. In contrary to gain scheduling and
fuzzy solutions, the proposed approach aims to avoid high
tuning effort, whilst improving tracking performance.

III. NONLINEAR MODEL PREDICTIVE CONTROLLER
A. Problem formulation

Before stating the problem formulation we introduce the
nonlinear longitudinal vehicle model as a combination of
vehicle dynamics and powertrain equations.

Applying Newtons equilibrium of forces, including forces
from a time invariant road grade influence, aerodynamic
forces and rolling resistance, vehicle speed dynamics yields,
with the notation described in Table I, to:

— Tlpwt RMe - Mb'r‘ -

Teff
mg (sing + Cpp cos ) — Cuero v? (1)

(m+Ires) a

A detailed derivation of this equation is not presented here
but can be found in [4]. Reordering and discretizing (1) with
a sampling time 7' yields with £ € N to the function g:

Mw,k

(m + ILres) Teff @

ap = g(Mw,kv Vi, Pk m) =
1
m—+ I?'es

with My, 1, = Npwt B Me ; — My, 1, and for the vehicle
speed v the function f can be written:

(mg (sin g + Cppr cOs i) — C’aemv,%>

Vg1 = f(vg, ag, k)=
=Tayp + v =T g(My, vk, Pk, m) +vr  (3)

Additionally, for a more realistic behavior, we consider first
order dynamics to represent the delay of the torque response
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My, 1, to a torque demand Mge,,. This is modeled with the
time constant 7 in a function h as:

1
Mw,k = h(Mdem,k) - —— (Mdem,k_Mw,kfl)"'_Mw,kfl

=
T +1

“)

To take into account the difference between a more direct

response of brake torque demand as well as engine torque

reduction compared to engine torque build up, a different
time constant 7 is derived as follows:

Te, if (Mdem > Mw,kfl);
and (Mw,k—l > Mdrug)a (5)
Tpr, Otherwise.

with Mg,.q4 being the (constant) maximum negative drag
torque the engine can produce.

The full state equation f resolves with the input uy =
Mdem,k to

vk1 = Tg(h(ur), v, r, M) + vk (6)

Remark 1: We highlight that in (III-A) the vehicle mass
m is assumed constant during the whole prediction horizon,
but changes in vehicle mass are considered by feeding the
equation with the current estimate m from the state and
parameter observer from Section III-B.

We assume that at each time instant k a desired speed
value vges,r; 1S provided over a finite advance knowledge
horizon of N, steps. The objective is to find a control
sequence {uglk € N}, with N, = {0,...,N,}, which
is variable over a control horizon of N, steps for all k €
{0,...,N.} with N, < N, and remains constant for all
k€ {N.+1,...,N,}, minimizing a performance index J

TABLE I
VEHICLE EQUATION SYMBOLS AND PARAMETER

Symbol H Description H [Unit] ‘

\ Vehicle speed [m/s]
M.y, Wheel torque [Nm]

Mgem Wheel torque demand [Nm]

M, Engine net torque [Nm]
My, Brake torque [Nm]

© Road grade [deg]

T Time constant of torque response [s]

m Vehicle mass 2000 [kg]
Ires Mass resulting from powertrain inertia 50 [kg]
Npwt Powertrain efficiency 0.89 [-]

R Powertrain ratio 8.446 [-]
Teff Effective wheel radius 0.3 [m]

Mgrag Maximum negative engine drag torque -20 [Nm]

g Gravitational constant 9.81 [N]
Chrr Rolling resistance coefficient 0.015 [-]
Caero Aerodynamic drag coefficient 0.4262 [kg/m]

over a prediction horizon of N, steps, with N, N., N, € N:

NP
J(V7 Vdes) 11) = Z q (vk - Udes,k’)2
k=0
No.—1
+ Z (rup +s(up —ups1)?) (D
k=0

with vges k= Vges,N, V(k > N,) and tunable parameters ¢
to penalize deviations from the desired speed trajectory, r
and s to penalize values and changes between subsequent
values in the input sequence u, respectively.

Now at each time step we have to solve the OCP defined
as follows:

minimize J(V,Ves, 1) (8a)
subject to 41 = (v, uk, k) Vk € N, (8b)
v = o, (8c)
Mw,min § Uk S Mw,max»Vk € Np (8d)

with the estimated speed vy from the state observer in III-
B, and the wheel torque limits My min = Mpwt & Marag —
Myr max and My, max = Mpwt 8 Me max. To calculate the
control inputs, at each time step the first element Mye,, of
the optimal input sequence u is split into demand values for
brake and engine as follows:

M J _ (1/(npwt R)) Mdema (Mdem > Mdrag)
' Mdrag7 (Mdem S Mdrag)
9)
0, (Mdem > Mdrag)
npth Mdm,g — Mgem, (Mdem < Mdrag)
(10)

Mbr,dem =

B. State observer

Because the speed signal measurement is noisy and the
true value of the vehicle mass is not accessible, the com-
bined state and parameter observer presented in [4] is used.
This state observer is based on an Extended Kalman Filter
and combines noisy measurements of vehicle speed and
acceleration with the engine torque estimation calculated in
the EMS and provides filtered estimations of vehicle speed
and acceleration. Additionally, it is able to estimate the
unknown vehicle mass. Due to the relation in (1), an accurate
knowledge of the vehicle mass has a big influence on the
correct prediction of vehicle speed as a reaction to engine
and break torque input and improves tracking performance.

IV. PRESENTATION AND DISCUSSION OF RESULTS

To validate the proposed controller, a scenario similar
to one occurring in a parking garage is performed in a
simulation. The vehicle should follow a speed profile (see
Figure 2) starting from 1 m/s with a step to 5 m/s at time
t=5s. Attime t = 10 s, speed is reduced in another step back
to 1 m/s (to drive around a corner). Although step changes in
speed are unreasonable, step response behavior brings useful
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insights to overall controller performance. At t = 15 s, the
vehicle enters a ramp, which results in a step of road grade
from O to 0.15 rad until at t = 20 s, the vehicle leaves the
ramp and continues driving on a horizontal plane. Another
speed step to 5 m/s is carried out at between t = 25 s and
t = 30 s before between t = 40 s and t = 45 s, the vehicle is
on a second ramp, only this time the ramp is steeper with a
gradient of ¢ = 0.35 rad.

A. Simulation details

The simulation was implemented in Matlab and two simu-
lations were carried out for comparison. The first was carried
out using a conventional PI - controller and the second using
the proposed adaptive NMPC controller (Figure 2).

The PI - controller has a nonlinear feed-forward term to
calculate the steady state engine torque demand value and
an anti-windup on the integral part. For simplicity and to
keep tuning effort reasonable, no gain scheduling approach
as proposed in some papers was used. The feed-forward
term is a reverse model of (1), calculating the actual demand
acceleration value by differentiation of the reference speed
signal. The adaptive NMPC controller uses the state and
parameter observer we developed in [4], and the controller
parameters used are shown in Table II.

As a plant model, (1) was used with the parameter values
given in Table I. The simulation was carried out with a
sampling time of 0.01 s for both plant and PI - controller,
whereas the NMPC controller was running at a reduced
sampling time of 0.1 s. On the measurements for vehicle
speed and acceleration, colored noise was added, before
feeding the EKF to calculate filtered estimates of v, and the
vehicle mass adaptation value 7y, of which the latter was
only used for NMPC, since such a feature is not regarded
state of the art.

The OCP was implemented without any performance
optimization using Matlab’s function fmincon with an in-
terior point method. On a Windows Laptop with an Intel(R)
Core(TM)i7-3520M CPU with 2.9GHz and 8GB RAM,
execution time for the NMPC calculations was in average
0.07 s and a maximum value of 0.17 s.

TABLE I
SIMULATION PARAMETERS

Symbol H Description H Value ‘
Np Prediction horizon 15
N Control horizon 15
Ng Advance knowledge horizon 10

Speed deviation weight 3e5
Input weight 0
s Input difference weight 1

Tnmpe Controller sampling time 0.1 [s]
Ts Simulation / PI controller sampling time 0.01 [s]
Te Time constant of engine torque response 0.15 [s]
T Time constant of brake torque response 0.05 [s]
mo Initial vehicle mass estimation 1200 [kg]

B. Result discussion

Comparing the two results, one can observe that the
proposed adaptive NMPC outperforms the PI controller
especially in showing no tendency to over- and undershoots,
as they occur as a reaction to the step response and sudden
change in road grade.

The overshoots with the PI controller are mainly caused
by the need for a relatively high integral part in order to
compensate for steady errors on ramps. A wrong torque
demand calculation due to a wrong vehicle mass estimation
mo in the feed-forward term of the PI controller increases
the need for integral compensation.

Looking at the vehicle speed signal of the PI controller
result in Figure 2 at t = 40 s, when entering the steep ramp,
we can observe a big deviation from the reference speed.
The PI controller cannot recover to the demand value until
leaving the ramp, since engine torque is saturated by the
engines’ torque limit. This effect is well known to motorists
driving an unknown car with a weaker engine they are used
to, as it might happen when driving out of a garage with a
rental car. The only way to avoid switching back gears to
recover (which would increase fuel consumption) or stalling
the engine if already in first gear, is to perform anticipated
driving: accelerating shortly before entering the ramp to
compensate for a delayed engine torque build up.

This is exactly the behavior of the NMPC. Looking at the
resulting speed for the NMPC controller, we can see that at
the reference speed steps and the road grade changes, the
vehicle starts to accelerate (or decelerate) in an anticipated
fashion before the step happens. Slightly before entering the
ramps, the vehicle has built up enough speed reserve to
overcome the impact on vehicle acceleration and stays on the
reference value, even at the second steeper ramp, where the
PI controller fails completely because of the engine torque
being saturated by the torque limitation.

Another result (Table III) was obtained by comparing the
average of engine torque values. Engine torque is correlated
to fuel consumption of the vehicle, and hence gives an
indication on fuel savings. This means that even though
no estimation of fuel consumption was included in the
cost function, and the controller was optimized for precise
trajectory following, a reduction in fuel consumption of
about 3% could be achieved. By setting the input weight
r, which was kept zero during this simulation and penalizes
torque demand, the controller could easily be tuned to further
reduce fuel consumption, but, only at the expense of tracking
performance. Additionally, the improvement in RMSE of
speed deviation shows a reduction from 0.681 to 0.622.

TABLE III
RESULTS: AVERAGE ENGINE TORQUE AS AN INDICATION OF FUEL
CONSUMPTION AND ROOT MEAN SQUARE ERROR (RMSE)

Controller | Average engine torque | relative | RMSE
PI 56.15 100% 0.681
NMPC 54.67 97.4% 0.622
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Fig. 2. Simulation results comparing conventional feed-forward PI controller and adaptive NMPC controller.

V. CONCLUSION AND OUTLOOK

An Adaptive Nonlinear Model Predictive Controller was
presented for the task of longitudinal speed tracking control
of an automated vehicle. The controller structure allows
incorporating advance knowledge of the desired speed profile
as well as road grade information, which is treated as external
disturbance in other publications. Simulation results showed
that this improves tracking results not only during regular
driving, but also when entering steep ramps, as it occurs
for example in parking garages. Using an Extended Kalman
Filter to estimate the unknown vehicle mass, which has a
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big impact on forces acting on the vehicle on ramps and
during acceleration, makes the approach robust to changes
in the number of passengers or vehicle load. The resulting
controller is easy to tune and designed to be integrated into
an architecture for both fully automated vehicles as well as
for ADAS systems. It could be shown, that even though the
controller was tuned for optimal tracking performance, fuel
consumption can be reduced.

Some aspects are planned to be examined in future: For
the practical implementation on real time hardware, the
computational time needed for solving the OCP needs to be
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reduced compared to the current non-optimized implemen-
tation in Matlab, for example by using a fast solver in the
programming language C. Also, investigations on controller
stability and robustness are planned. A validation of the
concept in a more realistic car simulation tool will be done
before vehicle tests should be carried out.

[1]

[2]

[3]

[4]

[5]

[6]

[8]

[9]

[10]

(11]

REFERENCES

M. Aeberhard, S. Rauch, M. Bahram, G. Tanzmeister, J. Thomas,
Y. Pilat, W. Huber, and N. Kaempchen, “Experience, Results and
Lessons Learned After Over 2 Years of Automated Driving on
Germany’ s Highways,” IEEE Intelligent Transportation Systems Mag-
azine, 2015.

J. Bohren, T. Foote, J. Keller, A. Kushleyev, D. Lee, A. Stewart,
P. Vernaza, J. Derenick, J. Spletzer, and B. Satterfield, “Little Ben:
The Ben Franklin Racing Team’s entry in the 2007 DARPA Urban
Challenge,” in Springer Tracts in Advanced Robotics, 2009.

M. Buechel, J. Frtunikj, K. Becker, S. Sommer, C. Buckl, M. Arm-
bruster, C. Klein, A. Marek, A. Zirkler, and A. Knoll, “An Auto-
mated Electric Vehicle Prototype Showing New Trends in Automotive
Architectures,” in IEEE 18th International Conference on Intelligent
Transportation Systems (ITSC), Las Palmas, Gran Canaria, Spain,
2015.

M. Buechel and A. Knoll, “A Parameter Estimator for a Model Based
Adaptive Control Scheme for Longitudinal Control of Automated
Vehicles,” in 9th IFAC Symposium on Intelligent Autonomous Vehicles
(IAV 2016), Leipzig, 2016.

F. Cabello, A. Acuiia, P. Vallejos, M. E. Orchard, and J. R. del Solar,
“Design and Validation of a Fuzzy Longitudinal Controller Based on
a Vehicle Dynamic Simulator,” in 9th IEEE International Conference
on Control and Automation (ICCA), Santiago de Chile, 2011.

H.-H. Chiang, “Longitudinal and Lateral Control Design for Vehicle
Automated Driving,” Ph.D. dissertation, Department of Electrical and
Control Engineering National Chiao Tung University, 2008.

D. Corona, M. Lazar, B. De Schutter, and M. Heemels, “A Hybrid
MPC Approach to the Design of a Smart Adaptive Cruise Controller,”
Proceedings of the IEEE International Conference on Control Appli-
cations, pp. 231-236, 2006.

M. Di Natale and A. L. Sangiovanni-Vincentelli, “Moving from
Federated to Integrated Architectures in Automotive: The Role of
Standards, Methods and Tools,” Proceedings of the IEEE, vol. 98,
no. 4, pp. 603-620, 2010.

A. Geiger, M. Lauer, F. Moosmann, B. Ranft, H. Rapp, C. Stiller, and
J. Ziegler, “Team AnnieWAY’s Entry to the 2011 Grand Cooperative
Driving Challenge,” IEEE Transactions on Intelligent Transportation
Systems, no. September, pp. 1008-1017, 2012.

K. J. Hunt, T. a. Johansen, J. Kalkkuhl, H. Fritz, and T. Gottsche,
“Speed Control Design for an Experimental Vehicle Using a General-
ized Gain Scheduling Approach,” Control, vol. 8, no. 3, pp. 381-395,
2000.

T. V. Keulen, G. Naus, and B. D. Jager, “Predictive Cruise Control in
Hybrid Electric Vehicles,” World Electric vehicle Journal, vol. 3, pp.
494-504, 2009.

108

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

H. Kim, D. Kim, I. Shu, and K. Yi, “Time-Varying Parameter Adaptive
Vehicle Speed Control,” IEEE Transactions on Vehicular Technology,
vol. 65, no. 2, pp. 581-588, 2016.

S. E. Li, Z. Jia, K. Li, and B. Cheng, “Fast Online Computation of
a Model Predictive Controller and Its Application to Fuel Economy
Oriented Adaptive Cruise Control,” IEEE Transactions on Intelligent
Transportation Systems, vol. 16, no. 3, pp. 1199-1209, 2015.

A. Murayama and M. Yamakita, “Speed Control of Vehicles with
Variable Valve Lift Engine by Nonlinear MPC,” in ICROS-SICE
International Joint Conference, vol. 1, 2009, pp. 4128-4133.

W. Qiu, Q. U. Ting, Y. U. Shuyou, G. U. O. Hongyan, and C. Hong,
“Autonomous Vehicle Longitudinal Following Control Based On
Model Predictive Control,” in Proceedings of the 34th Chinese Control
Conference, Hangzhou, 2015, pp. 8126-8131.

T. Radke, “Energieoptimale Liangsfiihrung von Kraftfahrzeugen durch
Einsatz vorausschauender Fahrstrategien,” Ph.D. dissertation, Karl-

sruher Institut fiir Technologie (KIT), 2013.
Y. Sakai, M. Kanai, and M. Yamakita, “Torque Demand Control by

Nonlinear MPC for Speed Control of Vehicles with Variable Valve Lift
Engine,” in IEEE International Conference on Control Applications
Part of 2010 IEEE Multi-Conference on Systems and Control, 2010,
pp. 494-499.

R. Schmied, H. Waschl, R. Quirynen, and M. Diehl, “Nonlinear MPC
for Emission Efficient Cooperative Adaptive Cruise Control,” IFAC-
PapersOnLine, vol. 48, no. 2014, pp. 160-165, 2015.

P. Shakouri, A. Ordys, D. S. Laila, and M. Askari, “Adaptive Cruise
Control System: Comparing Gain-scheduling PI and LQ Controllers,”
in 18th IFAC World Congress, vol. 18, no. PART 1, Milano, 2011, pp.
12964-12969.

H. Stahle, L. Mercep, A. Knoll, and G. Spiegelberg, “Towards the
Deployment of a Centralized ICT Architecture in the Automotive
Domain,” Proceedings - 2013 2nd Mediterranean Conference on
Embedded Computing, MECO 2013, pp. 66—69, 2013.

C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. N. Clark,
J. Dolan, D. Duggins, T. Galatali, C. Geyer, and Others, “Autonomous
Driving in Urban Environments: Boss and the Urban Challenge,”
Journal of Field Robotics, vol. 25, no. 8, pp. 425-466, 2008.

X. Z. Wang and Junmin, “A Parallel Hybrid Electric Vehicle Energy
Management Strategy Using Stochastic Model Predictive Control
With Road Grade Preview,” IEEE Transactions on Control Systems
Technology, 2015.

D. Zhao, Z. Hu, Z. Xia, C. Alippi, Y. Zhu, and D. Wang, “Full-range
Adaptive Cruise Control Based on Supervised Adaptive Dynamic
Programming,” Neurocomputing, vol. 125, no. 2014, pp. 57-67, 2014.
X. Zhongpu and Z. Dongbin, “Hybrid feedback control of vehicle
longitudinal acceleration,” Chinese Control Conference (CCC), pp.
7292-7297, 2012.

M. Zhu, H. Chen, and G. Xiong, “A Model Predictive Speed Tracking
Control Approach for Autonomous Ground Vehicles,” Mechanical
Systems and Signal Processing, pp. 1-15, 2016.

J. Ziegler, T. Dang, U. Franke, H. Lategahn, P. Bender, M. Schreiber,
T. Strauss, N. Appenrodt, C. G. Keller, E. Kaus, C. Stiller, and R. G.
Herrtwich, “Making Bertha Drive An Autonomous Journey on a
Historic Route,” Intelligent Transportation Systems Magazine, IEEE,
vol. 11, no. 4, pp. 1-10, 2013.

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on August 01,2022 at 18:46:36 UTC from IEEE Xplore. Restrictions apply.



