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2. Prof. Dr.-Ing. Steffen Paul

Die Dissertation wurde am 28.05.2019 bei der Technischen Universität München
eingereicht und durch die Fakultät für Elektrotechnik und Informationstechnik am
23.09.2019 angenommen.





Abstract

Decrease in technology nodes has resulted in increased process and environmental
variations (PVT) of semiconductor devices. These increased PVT variations in turn
have a higher impact on digital circuit timing. To avoid timing errors in worst case
scenarios, substantial guardbands are added to the operating frequency and supply volt-
age of circuits. These guardbands make sure that the required timing performance is
met, however, this results in increased power consumption, area, cost and design time.
Additionally, verifying if the timing criteria are met after manufacturing of chips is of
utmost importance. For this reason, multiple test-structure circuits are required to be
implemented on different parts of a chip such that the timing behavior of these test-
structures are highly correlated to the behavior of a chip. The measurement data from
these monitors should be able to predict the timing of the complete chip with high
accuracy.

This thesis presents synthesis of design-dependent ring oscillators which aim to track
the delays of setup-time critical paths of a chip. In the design-dependent ring oscillator
(DDRO) approach, at first a set of setup-time critical paths are identified and grouped
based on their similarities of timing behavior across PVT space. Subsequently, a DDRO
is constructed for each group of critical paths. Frequency measurements from DDROs
then directly represent the timing of their respective critical path groups.

In this work, in addition to the state-of-the-art method various DDRO synthesis for-
mulations are developed and their accuracy to track critical path timing is evaluated.
Moreover, the computational complexity of DDRO synthesis method is significantly re-
duced by using static timing analysis (STA) instead of analog simulation to characterize
delays. Additionally, usage of developed heuristic optimization algorithms instead of
direct solvers further reduces the computational complexity to synthesize DDROs. Fur-
thermore, suitable clustering algorithms are selected such that a single DDRO can be
constructed for a group of critical paths. The DDRO synthesis and clustering meth-
ods are evaluated on a sub-40nm technology. Based on the evaluation of DDROs, the
synthesis methods proposed in this thesis tracks the timing of a digital design much
better than other state-of-the-art timing monitors. Amongst the monitors investigated,
DDROs are found to be the best suited timing monitors for large-scale industrial designs,
in particular due to their reduced synthesis complexity.
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1 Introduction

1.1 Motivation

Electronic systems are used extensively in safety critical applications involving public
health, property and environment. Hence it is essential to ensure the correct working
and reliability of the electronic systems in use. Some examples of these safety critical
systems could be anti-lock braking systems in automobiles, motor and gear controllers,
airbag controllers, fly-by-wire aircraft, shut-down systems at nuclear power plants [1],
and electronics in the field of medicine and recreation. Due to the nature of these
applications, safety critical electronic systems are required to operate across a wide
range of environmental conditions and workload. Therefore, to ensure safe operation,
reliability and robustness of safety critical systems are of prime importance.

Compared to former larger technology nodes, the performance of electronic circuits
such as timing are further influenced by variations in manufacturing, environment and
aging [2] [3] [4] [5] [6]. Variations in timing of digital circuits due to manufacturing
and environmental variations might lead to timing errors which in turn could lead to
failure of electronic systems. To prevent such failures, analysis and implementation of
a chip is performed with worst case scenarios. Thus, additional design guardbands are
added based on worst case timing analysis and is verified by a sign-off method. This
pessimistic approach ensures the requested circuit performance which is the operating
frequency, but at the cost of larger area, higher power consumption and increased design
time.

Furthermore, manufactured chips could be subjected to more variations with deteri-
orated timing attributes due to process or aging which are not modeled accurately and
resulting in mismatches between hardware and the model. Thus, the timing of certain
chips might not meet the required timing criteria. Therefore, speed binning [7] [8] of all
the produced chips is performed where, as the name suggests, the chips are categorized
based on their frequency. Additionally, post-silicon chip validation [9] [10] is done to
verify if the required timing criteria are met. Thus, based on these steps, the yield of
manufactured chips, i.e. the percentage of chips amongst the complete set which meet
the required timing criteria, is obtained.

During the post-silicon chip validation, additional guardbands known as test guard-
bands are added to check if chips meet the timing criteria due to test inaccuracies and
because the chips could be subjected to additional variations and aging. Moreover, after
manufacturing, no two chips are identical and also, multiple tests on the same chip show
different results. An example of addition of test guardbands is done by overcompensat-
ing the frequency of the given chip. This means that if a chip is set to work at frequency
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1 Introduction

fC Hz, then the chip is verified for fC +∆fC Hz. The added guardband ∆fC depends on
the accuracy of timing prediction of the entire chip during post-silicon chip validation.

For accurate prediction of chip timing, performing an exhaustive test, i.e. to test each
path of a design to ensure zero defects is not feasible either with scan test methods [11]
or with functional test patterns [12]. Moreover, increase in test time results in increased
test costs and thus the test time should be minimized. Therefore, this thesis proposes
to use timing monitors as test structures that can be placed on multiple parts of a chip
and are used to evaluate the delay of a chip at the given fabrication condition and at
different voltage and temperature conditions. Formerly, generic ring oscillator which are
single cell type test structures were used to evaluate the chip timing behavior. However,
these monitors are not adequate since they are not design-specific and therefore do not
reflect the timing behavior of a chip.

Figures 1.1 and 1.2 show examples of timing monitors which have poor and good
correlation to the manufactured chips, respectively. Figures show fTM , the minimum
frequency of the timing monitor which corresponds to the chip frequency fC , that meets
the required timing criteria. Since the measurement frequency of timing monitors cannot
have 100% correlation with the chip frequency, classifying only chips below fTM could
result in chips which are classified as a good chip but might not meet the required timing
criteria.

Therefore, a certain test guardband by overcompensating frequency ∆f is added which
is based on the quality of timing monitors. The timing monitor in Figure 1.1 does
not accurately reflect the timing behavior of the chip and therefore, has larger test
guardband. On the other hand, the timing monitor in Figure 1.2 is highly correlated
to the chip frequency and thus has reduced test guardband. Therefore, the yield of the
produced chips could be higher by using a good timing monitor which has a sharper
screening in comparison to a poorly correlated timing monitor.

Thus, a set of timing monitors is required to be designed and implemented which
can precisely represent the timing behavior of chip design across process, temperature
and voltage conditions. Furthermore, it should be ensured that these timing monitors
collectively represent the timing behavior of all the blocks on the chip such that they can
fully reflect the timing behavior of the chip. Additionally, correlating timing monitors
whose timing behavior represent the timing behavior of an industrial design could also
aid in the improvement of timing models. Thus, the design of design-dependent timing
monitors are also considered as an integral part towards the improvement of timing
models.

In summary, design-dependent timing monitors which reflect the delay behavior of
a digital design help in the substantial reduction of test guardbands and increase the
yield of produced chips. This thesis dives into this design specific approach and endeav-
ors to provide different design methods for the design-dependent timing monitors which
are highly correlated to a given digital design. Moreover, different methods are dis-
cussed which can reduce the required number of timing monitors making them feasible
to evaluate of timing of large scale industrial designs.
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Figure 1.1: Example of a timing monitor with poor correlation to manufactured chips thus
resulting in increased test guardbands and resulting in low chip manufacturing
yield
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Figure 1.2: Example of a timing monitor with good correlation to manufactured chips thus
resulting in reduced test guardbands and resulting in high chip manufacturing yield

3



1 Introduction

1.2 State of the Art

The state-of-the-art performance monitors can be broadly classified into two categories,
namely, generic monitors and design-dependent monitors. The aim of this thesis is to
build monitors which can mimic the delay behavior of a given design. Therefore, the
existing state-of-the-art monitors are analyzed with respect to the quality of representing
the timing behavior of a given digital design.

Traditional timing monitors are generic ring oscillator (GRO) monitors and process-
specific ring oscillators (PSROs) [13] [14] [3] [15]. These monitors are constructed with
a single cell type. A ring oscillator is built by connecting the output of a chain of in-
verting CMOS standard cells or circuit blocks to its input, in form of a closed loop. The
frequency of oscillation of a ring oscillator is measured to obtain the signal propaga-
tion delay through the chain of inverting CMOS circuit which are built to analyze the
technology node at an early stage.

GROs are simple structures with low design and area cost. PSROs are also made of
single cell type ROs, but are built in order to extract the sensitivity of delay of circuits
w.r.t. specific process parameters. This means, not only frequency but current and
voltage drop of these test structures are measured. However, both GROs and PSROs
are neither based on the analysis of all standard cell types nor on the timing behavior
of critical paths. This makes correlating the design-specific and path-specific behavior
to these ring oscillators very complex [9] [16] [17] and thus PSROs and GROs are not
suitable candidates to represent the timing of a chip design.

To represent the delay behavior of a chip, design-dependent monitors were developed.
One of the design-dependent monitors is the in-situ approach. The concept of in-situ
monitors is to evaluate the timing of a chip by monitoring its setup-time critical paths.
Hence, an additional flip-flop, so called shadow flip-flop, with a delayed clock is placed
alongside the capture flip-flop of a critical path [18] [18] [19]. Due to the addition of
shadow flip-flops in critical paths of the design, in-situ monitors are intrusive to the
design. Moreover, the additional flip-flops added to thousands of critical paths result in
a tremendous increase in area and power overhead.

The drawbacks of GROs and in-situ monitors are overcome by representative critical
path (RCP) [20] monitors. Hence, a single monitor is used to represent all the setup
critical paths in a design. Although RCPs are design-specific, having only one monitor
to represent all the critical paths makes the RCP inaccurate. The drawback of RCPs is
overcome by tunable replica circuits (TRCs) [21], which are built adjacent to the critical
paths and tuned to track their delays. However, TRCs are intrusive and highly complex
to design.

The drawbacks of the mentioned approaches are overcome by employing design de-
pendent ring oscillator (DDRO) monitors [22] [23] [24]. In the DDRO approach, setup
critical paths are grouped based on their similarities w.r.t. delay sensitivities to PVT.
For each path group, a DDRO consisting of a chain of tiles is constructed, where a tile
is a chain of standard cells of equal type. The objective of the DDRO is to match the
timing behavior of the target critical path group. The state-of-the-art DDROs however,
do not consider the impact of input transition time and output load of a tile during the
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DDRO synthesis. Moreover, due to the concept of sensitivity matching, these DDROs
are forced to use SPICE-based delay characterization which makes them unsuitable for
large-scale industrial designs. Additionally, process parameters affecting delay sensitiv-
ities differ for each technology node. Thus, majorly contributing process parameters
impacting the delay sensitivities have to be evaluated for every technology node. Fur-
thermore, given that it is highly challenging to compute delay sensitivities with high
accuracy, sensitivity-based DDROs might result in tracking delay with poor quality to
their respective critical paths.

In summary, there is a lack of highly accurate monitoring systems whose timing be-
havior match the timing behavior of a chip across various conditions of PVT. Thereby,
evaluating the timing of a chip such that the voltage and timing overestimation of a chip
can be reduced effectively by the reduction of guardbands.

1.3 Contributions of this Work

This thesis focuses on the methods to synthesize DDROs to represent the timing of crit-
ical paths in a digital design. Thereby, a new method of DDRO synthesis is proposed
which uses delay-tracking for construction of DDROs in contrast to the sensitivity-
tracking used in the existing state-of-the-art method [22]. Furthermore, high accuracy
settings for the characterization of building blocks of DDROs are proposed which in-
volves delay characterization with realistic environment. Moreover, quadratic program-
ming with higher accuracy for the DDRO synthesis is proposed instead of the linear
programming used in the existing state-of-the-art method [22]. With the high accuracy
settings for delay characterization and DDRO objective, direct solvers for the DDRO
synthesis result in infeasible CPU run-times. Therefore, three new heuristic algorithms
are developed which have reduced and feasible CPU run-times.

To further reduce the computational complexity, delay characterization for DDRO syn-
thesis is obtained by static timing analysis (STA) instead of SPICE simulation, which is
used in the state-of-the-art method. Also, to facilitate DDRO synthesis for large scale
industrial designs, critical paths are identified by STA and three different clustering
methods for the grouping of critical paths are investigated; namely, KMeans++, Hi-
erarchical clustering and model based clustering. For each group of critical paths one
DDRO is synthesized. Additionally, using STA makes it feasible to obtain the delays of
thousands of critical paths on a chip and thus makes the DDRO synthesis feasible for
large scale designs. DDROs are synthesized for groups of critical paths and evaluated
for their timing tracking ability of their respective group. To assess the quality of the
developed DDRO synthesis method, DDROs are built and evaluated for an industrial
technology below 40nm. The proposed DDRO synthesis methods are evaluated by com-
puting the delay tracking error with respect to the given target critical path. Parts of
this work have been published in [25] and submitted to TCAS-1 journal to be published
in January 2020 [26].
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1 Introduction

1.4 Structure of this Dissertation

The remainder of this dissertation is structured as follows. In Chapter 2, the literature
on the causes of process, voltage and temperature variations, along with their impact
on the timing of digital circuits is reviewed. Furthermore, the existing state-of-the-art
timing monitors used for evaluating the timing of technology nodes and chip design are
explained. In Chapter 3, the design goal of DDROs to evaluate timing of critical paths
on a chip is explained. Moreover, mathematical formulations of the sensitivity-based
DDROs are introduced. Additionally, enhanced methods of characterizing the delay of
building blocks of DDROs are presented. Furthermore, the concept and formulation of
delay-tracking-based DDRO synthesis is presented. This Chapter also describes three
new heuristic methods developed to solve the DDRO optimization problem. Chapter 4
presents results of DDRO synthesis for various scenarios: (1) various DDRO formulations
and synthesis methods, (2) various accuracies of delay characterization, (3) synthesis of
DDROs using direct solver versus heuristic method, (5) synthesis of DDROs using ex-
tracted data from STA, (6) synthesis of DDROs with different parameter settings of the
solver and (7) quality of delay matching of DDROs versus generic ring oscillators (GROs).
Chapter 5 explains the three different clustering methods investigated to group critical
paths namely Hierarchical, KMeans++ and Expectation-Maximization algorithms. Fur-
thermore, in order to evaluate the best suited method to cluster critical paths for DDRO
synthesis, the results of the three algorithms are compared. In Chapter 6 DDROs are
synthesized for each critical path cluster and are evaluated w.r.t their respective cluster.
Chapter 7 summarizes the various DDRO synthesis results and concludes on the DDRO
matching quality.
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2 Background

The scaling of technology nodes has resulted in scaling of the process, temperature and
voltage (PVT) variations. This scaling of PVT variations has a significant impact on the
timing of digital circuits. This impact on timing performance in worst case can result in
failure of manufactured chips. In order to establish error free timing performance of a
chip, the different sources and impact of PVT variations have to be analyzed and mod-
eled [27] [28]. This Chapter explains the different sources of manufacturing variations
along with their classification. Furthermore, the cause and impact of environmental
variations on timing of digital circuits are explained. Moreover, to verify the timing of
a digital design, methods used to analyze the timing for digital circuits are explained.
Additionally, the existing state-of-the-art timing monitors to evaluate the timing of a
chip post-silicon are explained.

2.1 Process Variations

Process variations are the unintentional physical variations observed in the transistor
parameters of devices and interconnects from intended theoretical design values [29].
These variations are observed in the form of deflected device characteristics from its
actual intended behavior [30].

The procedure to manufacture integrated circuit is done on a silicon wafer along with
several chemical and mechanical processes. At first, a desired material is deposited on
a wafer, after which photo-lithography is performed to transfer the required pattern
on to the wafer using light. Finally, etching is done to remove the unwanted material
from the wafer. These processes are repeated several times to manufacture a complete
chip. However, these chemical and mechanical steps are subjected to process variations
which impacts the performance of manufactured devices within die as well as between
die-to-die, wafer-to-wafer, and lot-to-lot [31].

The uniformity of the fabricated transistor is highly dependent on the precision and
control of the lithography process. The wavelength of light used in the lithography
process is λ = 193 nanometers and has remained the same since the 130nm technology
node [32]. Due to this, there is an increased amount of diffraction occurring during the
lithography process which results in critical dimensions (CD) and the device structure
gets increasingly blurred [33]. Advanced process methods are developed which are used
to reduce the blurring effect of the fabricated transistors. However, it is still highly
challenging to reduce the absolute deviation of the physical parameters of the transistors.

The physical parameters of transistors which result in performance variation of these
devices is given as follows: The critical dimensions (CD) of a MOSFET transistor are de-
termined by the channel length (L) and width (W). Therefore, varying these parameters
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2 Background

from their nominal values result in significant variation from the expected performance
of MOSFETs. Moreover, dielectric layer which isolates the gate electrode from the sub-
strate has a specific thickness (Tox) and is critical to the device behavior. Additionally,
threshold voltage (Vth) which is the minimum voltage required to switch on a transis-
tor is another important parameter which defines MOSFET’s performance. The drive
current of the transistor is directly proportional to W/L. Therefore, fluctuations of the
transistors width (W) and length (L) directly influence its drive current. Additionally,
channel length variation also alters the transistor threshold voltage (Vth) which directly
influences the drive current and thereby the switching time of transistors. The follow-
ing Subsections explain the variations of transistor parameters due to different process
variations.

2.1.1 Line Edge Roughness

Line edge roughness (LER) is the result of random variations at the edges of gate pattern
resulting in roughness of the printed gate pattern edge. Photo-resists are light sensitive
materials used to create required geometric patterns of transistors along with light insen-
sitive material known as photo-masks. Light sources of specific wavelengths are used for
the removal of photo-resists during the transistor manufacturing. LER is caused by sta-
tistical variations of the photon count or imperfections occurring during the removal of
photo-resist and therefore, is a source of intrinsic parameter fluctuations in MOSFETs.
Moreover, with decreasing technology nodes, the wavelength of the light source used in
photo-lithography is larger than the critical dimensions of transistors which results in
larger transistor gate variations. Thus, LER is an major source of variation of channel
length [34] [35].

2.1.2 Random Dopant Fluctuation

The channel region of a transistor is doped with atoms of a material different from the
substrate. This determines and controls the transistor threshold voltage (Vth). These
doped atoms are known as impurity atoms or dopants. Addition of dopants is performed
using ion implantation where the dopant atoms are randomly placed into the transistor
channel. However, the process of ion implantation leads to statistical variations in the
actual number of implanted dopants. The change in number of dopants in the channel
regions affects the carrier potential energy which in turn affects the threshold voltage
and current. Thereby impacting the drive strength of a transistor. In older technology
nodes, thousands of dopant atoms were implanted in the channel region. Therefore, a
deviation of few atoms had negligible impact on the transistor behavior. However, with
the shrinking technology nodes, only tens of dopant atoms are used which results in
larger mismatch of transistor behavior [36] [37].

2.1.3 Optical Proxity Effect

Optical proximity effect (OPE) is the variation in the size and shape of a transistor
feature due to the proximity of other neighboring devices. OPE occurs at the step of
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2.2 Classification of Process Variations

photo-lithography due to the diffraction of light with the neighboring structures. Poly-
silicon material is used as the gate contact and is effected due to OPE. Thus, OPE
results in variations of the effective transistor length as a function of local layout. This
results in process induced systematic intra-die variations [4].

2.1.4 Gate Oxide Thickness Variations

The gate oxide can be grown by using oxygen and nitrogen with an absolute accuracy of
12 inter atomic layers. Incorrect gas flow during the oxide growth can result in gate oxide
thickness variations. Non-uniform or ultra-thin gate oxide thickness causes variations in
threshold voltage across the wafer and can also cause gate leakage current. Moreover,
former technologies had gate oxide thickness (TOX) of tens of inter atomic layers and
had larger gates which resulted in negligible impact of TOX variations. However, in
technologies below 30 nm with oxide thicknesses between 13 nm (approx. 515 inter
atomic spacings), TOX variations can result in substantial uncertainty in threshold
voltage [38].

2.2 Classification of Process Variations

Timing of a digital design is an important performance parameter that varies due to
process variations. Therefore, the classification and effect of different sources of process
variations have to be taken into consideration while modeling the switching time of a
transistor or a digital logic gate. The sources of different process variation are classified
as follows [29]:

2.2.1 Systematic Variations

Systematic or deterministic variations are produced due to the steps involved in the
manufacturing flow. In the manufacturing steps, optical proximity effects caused during
lithography process is one of the main root causes for the process variation. Optical
proximity effects (OPE) mainly result in variation in layout design and fall into the
category of systematic variation. Thus, the amount of variation introduced across dies
and wafers is approximately the same and this can be corrected using techniques such
as optical proximity correction (OPC) methods.

2.2.2 Non Systematic Variations

Non systematic variations are random variations which are generated from various pro-
cess steps in the manufacturing flow. Due to the randomness of these variations, they
are statistically modeled and are further classified based on their behavior into inter-die
(global variation) and intra-die (local variation).
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2.2.2.1 Inter-die Variation

Inter-die variations result in process variations which affect the performance parameters
between two manufactured dies. In this case, the parameters within one die is assumed
to be affected in the same way and result in a uniform value within the die. Figure 2.1
shows different types of inter-die variation.

Lot to lot variation

Wafer to wafer variationDie to die variation

Fab to fab variation

Figure 2.1: Different types of inter-die variation [29]

Die to die variations can occur due to the mis-alignment of masks exposed one after
another in the lithography process. Wafer to wafer variations can occur due to inexact
placement of the wafers in the equipment when processing different wafers. Lot to
lot variations can occur due to different parameter settings during the working of the
wafer equipment. Fab to fab variation can occur due to a specific condition set for the
manufacturing of each of fab. An example of the impact of inter-die variations on chip
frequency is shown in Figure 2.2. From Figure 2.2, it can be seen that the speed of
the manufactured dies decreases with increase in distance from the center of the wafer.
Thus, the dies lying in the inner concentric regions on the wafer on an average have
higher speed than the outer concentric regions.

2.2.2.2 Intra-die Variation

Intra-die variations are classified as local variation and affect different parts of the same
chip differently. Due to process variations, different devices on the same chip have dif-
ferent physical dimensions and result in difference in performance within the chip. With
the decrease in technology node, the effect of inter-die variations have been increasing
and contribute to a major part of the total process variation. Intra-die variations can
be further classified as follows:

1. Random Variations: As the name suggests, these variations are random and not
correlated to the variations in other parts of the chip. Two main causes of these
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Increasing 

frequency 

of chips 

across dies 

in a wafer 

Figure 2.2: Variations across dies in a wafer [29]

variations are random dopant fluctuation (RDF) and line edge roughness (LER),
as described in Subsections 2.1.2 and 2.1.1, respectively.

2. Spatially Correlated Variations: These include the process variations within
the die where different parts of the die could have process variations correlated
to each other due to the effect of certain proximity. Basic manufacturing effects
such as etching and photo-lithography are the main causes for these variations.
The physical dimensions of a transistor such as channel length (L), width (W) and
oxide thickness is generally affected by spatially correlated variations.

2.3 Voltage Variations

With the decrease in technology nodes, environmental variations such as voltage and
temperature also have larger impact on the performance of semiconductor devices. More-
over, for some power efficient designs, electronic circuits are operated in sub-threshold
voltage regions. Small variations of voltage in sub-threshold regions can lead to erro-
neous performance of circuits. Voltage fluctuations in semiconductor devices are mainly
caused due to the following reasons:

2.3.1 IR Drop

IR drop is also known as voltage drop, occurs due to the flow of current through the
parasitic resistance of the power supply grid. The voltage fluctuation is given by Ohm’s
law

∆VIRdrop = Rgrid · i(t) (2.1)

where ∆VIRdrop is the voltage fluctuation, Rgrid is the parasitic capacitance of the
power grid, i is the current which is dependent on time t.
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2.3.2 Current Derivative Noise

Current derivative noise occurs due to parasitic inductance. Packaging of semiconductors
does not scale as fast as scaling of the CMOS technology node which introduces larger
parasitic inductance. This results in larger current noise with the decrease in technology
node. Voltage variation due to current derivative noise is given by:

∆V di
dt

= Lparasitic
di

dt
(2.2)

where ∆V di
dt

is the voltage variation due to current derivative noise and Lparasitic is

the parasitic inductance. Furthermore, the combination of voltage droop and current
derivative noise could either lead to voltage drops or to voltage overshoots [2] [39]. The
following section describes the impact of voltage variation on timing of digital circuits.

2.3.3 Impact of Voltage on Timing of Digital Circuits

The impact of voltage variation on circuit timing for a specific temperature is shown in
Figure 2.3. It can be seen that the delay of circuit increases with decrease in voltage.
The relationship between CMOS logic gate propagation delay and supply voltage can
be written as [2]:

tgate ∝
VDD

(VDD − VTH)θ
(2.3)

where tgate is the delay of a CMOS logic gate, VDD is the supply voltage, VTH is the
threshold voltage and θ is the technology dependent parameter. It can be seen that
small changes in VDD close to the value of VTH result in larger changes in gate delay
tgate. In order to evaluate the voltage changes on the semiconductor device and account
for the timing variation, on chip test structures or sensors are required to monitor the
voltage variations.
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Figure 2.3: Frequency of a ring oscillator with increasing voltage at a constant temperature

2.4 Temperature Variations

Temperature variation is yet another major factor for performance variation on semi-
conductor devices. The main causes for the changes in temperature on device are (1)
changes in the ambient temperature and (2) local temperature variations due to power
dissipation in transistors at the region of high activity, also known as hot spots [2] [39].
Temperature variations also have time constants which can vary between milliseconds
to seconds.

Figure 2.4 shows the impact of circuit delay with varying device temperature at differ-
ent voltages. Due to the decrease in carrier mobility in the semiconductor and increase
in parasitic resistance of the interconnect, an increase in the temperature increases the
delay of a circuit. However, in smaller technology nodes a new effect namely the inverted
temperature effect (ITE) has become prevalent where at lower voltages, the delay of a
circuit decreases with increase in temperature.

In summary, it can be seen that the delay of a circuit is highly impacted by process,
temperature and voltage variations. Therefore, digital circuits have to be extensively
analyzed for their timing behavior. To ensure proper functioning of circuits, timing
analysis should ensure that all timing constraints are met across all possible different
conditions of PVT. The next section explains about the methods that are used for the
analysis of circuit timing.
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Figure 2.4: Frequency of a ring oscillator with increasing temperature at different voltages

2.5 Timing of Digital Circuits

Digital circuits consists of a combination of logical and synchronous elements. Moreover,
these circuits can be classified into data path and clock path. Data paths are the ones
where the data signal transmits through the circuit. Clock paths are the ones where the
clock signal flows to different sequential cells. The logic portion of the digital data path
consists purely of CMOS gates without memory and are built using NMOS and PMOS
transistors. Edge-triggered flip-flops are used as sequential cells in synchronous digital
circuits [40]. The clock path mainly connecting the flip-flops used in the synchronous
circuits also consists of certain logic gates. In very large scale industrial (VLSI) designs,
basic logic gates and flip flops are the building blocks of larger digital circuits and they
are pre-designed in the form of standard cells. A collection of standard cells for a certain
technology node compose a standard cell library.

In order to evaluate the performance of digital circuits, transistors which are the
smallest building blocks of these digital circuits are modeled for each technology node
using transistor parameters based on a standard known as BSIM parameters [41]. These
transistor models are then used to pre-characterize the functionality and performance of
the standard cells in terms of timing, power, etc.

Figure 2.5 shows the propagation delay or timing of an inverter cell. The time taken
between the output transition (Z) reaching 50% of its final value and input transition
(A) reaching 50% of its final value is termed as propagation delay of a cell. Based on
the timing analysis of standard cells, the propagation delay of a logic gate depends on
(1) process parameters (P), (2) voltage (V), (3) temperature (T), (4) input transition
time or slope of input signal, (5) output RC load, (6) timing arc, and (7) rising or falling
transition at the input pin as shown in Figure 2.5.
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Figure 2.5: Propagation delay of a standard cell

Figure 2.6 illustrates an example of a digital circuit where a logical path is sandwiched
between a launch and a capture flip-flop. The time taken between the clocking of data at
the launch flip flop at Q1 in Figure 2.6 and the arrival of the data at the capture flip-flop
D2 is known as the timing of data path in a combinatorial digital path. The clocking
of data at the launch flip-flop also considers the time taken for the data to propagate
between CLK1 to Q1. Thus, the clock-to-Q-delay of the launch flip-flop is also added
to compute the propagation delay of the data path.

Additionally, there also exist clock paths which are timing paths that are completely
traversed by clock signals. Generally only buffers and inverters gates are used in the
clock paths. However, gated clock paths are sometimes used for power saving where a
gated clock path could have other logic gates such as AND, NAND gates. Thus, there
exists two different kinds of clock paths:

1. Launch path: This is the timing path of the clock signal between the clock source
and the launch flip-flop.

2. Capture path: This is the timing path of the clock signal between the clock
source and the capture flip-flop

Simple edge triggered flip-flops used for synchronous circuits have typically two inputs
and one output pin. The input pins are the clock and data signal input pins. A clock
signal with a specific time period is given into the clock pin. The data signal pin receives
its input either from an input port or another logic circuit. The output pin of a flip-flop
is the data which is captured by the edge of the clock input. The amount of time taken
for the clock to propagate the data signal is known as clock-to-Q-delay of the flip-flop.
Moreover, for the data to be clocked in correctly and maintain signal integrity, flip-flops
define two inherent features which are explained as follows [42]:

1. Setup time: In an ideal flip-flop, the data signal (D) can arrive at the time when
the clock edge is triggered. However, in practical scenarios for the clock edge to
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Figure 2.6: Example of a combinatorial digital path

capture the data signal correctly, the data signal must arrive earlier than the clock
edge and remain stable at the time of arrival of the clock edge. The amount of
time the data must arrive before the clock edge for the clock to safely capture the
data signal is known as the setup time of the flip-flop. TS in Figure 2.7 shows the
setup time for a flip-flop.

2. Hold time: In order to ensure data signal integrity, the data signal (D) should
remain stable for a certain amount of time after the transition of the active edge
of the clock. This time is known as the hold time of the flip-flop. TH in Figure 2.7
shows the hold time for a flip-flop.

TS THClk 

D2

Figure 2.7: Example of timing checks at a capture flip-flop for a combinatorial digital path

An industrial design of digital circuits could consist of millions of digital paths con-
sisting of synchronous and logic circuits. In order to ensure correct working of all these
paths, the timing constraints such as setup and hold times explained earlier should be
met, i.e. for setup time, the data signal (D) should arrive before the setup time of the
flip-flop, and for hold time, the data signal should remain stable for a certain time. The
set of digital paths in synchronous logic circuits which have the largest and smallest
propagation delays are known as critical paths of a digital design. These critical paths
tend to violate the setup and hold timing constraints. Critical paths whose data signal
(D) comes after the required setup time TS of a flip-flop result in a setup time violation.
Critical paths whose data signal (D) changes before the required hold time TH of a
flip-flop results in a hold-time violation.

In order to check the timing violations of a digital design, extensive timing analysis
of circuits are to be performed and all the timing conditions of a design should be met.
Moreover, as explained earlier these paths also undergo timing variations due to PVT
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variations. Thus, the timing analysis performed should also consider these variations to
ensure correctness of timing. The following Subsections explain two different methods
for analyzing timing of digital circuits.

2.6 Timing Analysis of Digital Circuits

2.6.1 SPICE

SPICE is a software which can simulate the different electrical performances of an elec-
tronic circuit. SPICE uses mathematical models of transistors and other common circuit
components such as resistors, capacitors, etc. to simulate the given digital circuits. The
input parameters for timing analysis using SPICE simulation are:

1. SPICE netlist of the given set of digital synchronous circuit.

2. Netlist of the standard cells used in the digital circuits.

3. SPICE models for different electrical devices for different conditions which includes
the models for global and local variations.

4. SPICE deck which contains the description of the timing analysis to be performed.

SPICE based timing analysis is more accurate than other methods due to extensive
characterization of each standard cell and parasitic RC and specific conditions of input
parameters. However, due to this extensive analysis, the SPICE based timing analysis
for thousands of paths is computationally very complex and results in non-feasible CPU
run-times [43].

2.6.2 Static Timing Analysis

Static timing analysis (STA) is an exhaustive method to analyze and verify timing
of digital circuits. The main motivation of using STA instead of SPICE is due to the
reduced CPU run-times through which tens of thousands of critical paths of a design can
be analyzed and timing verified in a feasible run-time. Moreover, with SPICE it would
be extremely complex to create the environment for timing analysis and perform an
exhaustive timing analysis on the entire digital design. Furthermore, it is also impossible
to check local variations of all the critical paths with SPICE based simulations, thus
proving that STA is a better tool to evaluate timing of a chip.

First, delays of the standard cells are pre-characterized using SPICE simulation for var-
ious PVT conditions, input transition times and output loads. These pre-characterized
delays are stored and used for STA. To run STA, a digital design along with the clock
definitions and specification regarding the external environment such as input-output
ports and delay constraints are given. STA then validates whether the given digital
design functions without any timing violations at given clock frequencies and supply
voltage conditions by performing setup and hold timing checks. Moreover, with STA
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the entire digital design with all the timing checks for all possible digital paths and
design scenarios can be analyzed in one run [44] [45]. However, the worst case delay at
each standard cell is assumed during STA which results in pessimistic timing analysis.
This in turn influences the performance of circuits and also results in increased area,
power dissipation and cost.

Therefore, to reduce the pessimism in guardbands, the timing of each chip should be
evaluated accurately. Timing monitors are used to evaluate the timing of a design or a
technology node after manufacturing on different chips and different parts of the chip.
Based on the measured timing from these timing monitors across various conditions of
PVT, the guardbands can be reduced by decreasing the operating supply voltage and/or
increasing the speed of the chip.

2.7 Timing Monitors: Related Work

Timing monitors are test structures which are placed on a chip. These test structures
are used to evaluate the influence of PVT variations on the timing of digital circuits.
The state-of-the-art test structures are designed either to monitor the timing of a specific
technology node or to monitor the timing of a specific chip design. The different state-
of-the-art timing monitoring methods are described in the below Subsections.

2.7.1 Path Delay Tests

With the decrease in technology nodes, there is an increase in the mismatch between the
results of timing analysis using timing models and silicon. This may have an impact on
the circuit performance and correct functioning of the digital system. Therefore, there
is a need to validate the timing on silicon. One of the methods of validating timing on
silicon is by measuring the path delays on the chip [11]. Path delay tests aims to analyze
the overall delay of path or the sum of the delays of each element on the path [46]. Scan
chain testing is used as a method to analyze and detect timing errors on silicon.

D

SI

ScnEN

Flip flop

Q

CLK

Figure 2.8: Scan flip-flop

The structure of a scan flip-flop is shown in Figure 2.8. The scan flip-flop uses a 2 input
multiplexer where one input is the data input (D) for functional mode of the circuit.
The second input is the scan input signal (SI). The enable signal (ScnEN ) controls if
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the circuit works in scan mode or functional mode. The output signal (Q) gives the
captured data at the flip-flop. The flip-flop is also clocked by a clock signal (CLK). The
scan flip-flop is the building block of a scan chain. The scan chain also requires input and
output ports which are used to read-in and read-out the data through the scan chain.
The first and the last flip-flops of the scan chain are connected to the scan in port and
scan out port, respectively. Figure 2.9 illustrates a scan chain with input clock (CLK),
scan input, scan enable signal and scan output. Delay path testing with scan chain is
performed to detect variations in timing observed in the combinatorial logic block. The
output of the scan chain is verified for correctness based on the input of the scan chain.
This helps in understanding how much slower or faster the delay path is, in comparison
to the prediction using timing models. Additionally, scan chains are used mainly for
fault testing of functional circuits.
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Figure 2.9: Scan chain

However, path delay tests have several disadvantages. By measuring only the path
delays it would be difficult to extract the variations in PVT parameters and the model
parameters. Furthermore, addition of a scan MUX, input and output scan ports are
required for each scan chain. This results in higher area and power consumption. More-
over, a digital design consists of tens of thousands of paths and it would not be feasible
to perform path delay testing on the entire design to verify timing.

2.7.2 Generic Ring Oscillators

Ring oscillators are standalone test structures which could be designed either based on
a product or a technology node. These ring oscillators could be operated at frequency
conditions similar to a product application. Additionally, the measurements from ring
oscillators (ROs) are fundamentally closer to the behavior of a technology node where
the random process variations are canceled due to averaging over the length of the ROs.
ROs are used together with frequency divider circuits to enable ease of measurement of
the frequency of ROs. Furthermore, ROs also aid in the analysis of power performance
for a specific technology node. Ring oscillator test structures are also testable early in
the development process of technology and characterization.
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ROs can be designed to represent PVT variations such that the timing of a chip can
be diagnosed during post silicon validation testing. The method proposed in [47] is to
synthesize single cell type ring oscillators. Multiple ROs are generated from different cell
types which show different effects of process variations. Since, these ring oscillators are
not synthesized based on a digital design they are also known as generic ring oscillators
(GROs). Also, the silicon measurement data from these ring oscillators are analyzed
and either the different process parameters are modeled or the existing models of PVT
variations are verified.

Figure 2.10 shows an example of a single-cell type ring oscillator. A single cell type is
connected in chain with a feedback loop to oscillate. In order to oscillate, the connected
cell types should be inverting. Moreover, an enable signal is used for enabling the
oscillation. As seen in Figure 2.10, ROs are standalone structures and therefore complex
methods of delay paths selection and activation need not be performed.

EN Output

Timing Monitor

Figure 2.10: Example of a single-cell type ring oscillator

However, since GROs are not design specific they cannot predict the timing of a
design. In order to predict the timing of a specific design, new methods of developing
design-dependent timing monitor are explained in the next two sections.

2.7.3 Critical Path Replica Circuits

Critical path replica circuits are used to evaluate the timing a chip across PVT variations.
The main advantage of the replica circuits is that they are designed to evaluate the timing
behavior of a specific digital design. In [48] [49] [50], critical paths from a design are
selected and replicated in the form of standalone test structures. The measurement
results from these test structures directly correlate the timing behavior of the selected
critical paths. However, a digital design could have thousands of critical paths and it is
not feasible to generate a replica path for each critical path on a design.

In order to identify a feasible number of critical paths to generate replica circuits as
given in [51], critical paths which have similar timing behavior are identified. After this,
a set of minimum number of critical paths are sub-selected for which replica circuits are
synthesized. In [52] and [53], the selection of critical paths are further improved by the
usage of linear algebra and machine learning to dynamically select a set of critical paths
monitors which can predict the timing behavior of a chip across PVT conditions.

Yet another method is proposed in [20] to synthesize test structures which replicate
critical paths. An automated synthesis algorithm is used to build on-chip test structures
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that can replicates the various effects of parameters variations of all the critical paths
on a chip. The synthesis method identifies the worst case delay of all the critical paths
due to intra-die and inter-die variations on a chip and synthesizes a test structure to
represent the worst case delay. The measurement on this replica circuit could be used
to predict the worst case circuit delay of the entire chip. However, this test structure
cannot evaluate random intra-die variations. Moreover, critical paths on a chip have
very different timing behavior across different PVT conditions. Therefore, a single test
structure will not be able to accurately represent the timing behavior of all the critical
paths on a chip.

In order to overcome the disadvantage of critical path replica test structures, tunable
replica circuits (TRC) are introduced in [21]. TRCs are built with different logic gate
stages such as NAND and NOR stages. These logic stages are placed next to each
pipeline stage of the functional circuit and are tuned to track the critical path delays at
the respective pipeline stages. The number of TRCs required are much lesser than replica
circuits in [48] [49] [50]. Moreover, unlike the replica circuits and generic ring oscillator
test structures they can also detect local variations. However, TRCs are intrusive and
are extremely complex to tune to replicate the timing behavior of critical paths.
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Figure 2.11: Clustering of similar behaving critical paths and DDRO synthesis for a cluster of
critical paths

2.7.4 DDROs

Design-dependent ring oscillators (DDROs) are standalone ring oscillator test structures
which are designed to track the timing behavior of critical paths of a digital design. The
DDROs are synthesized to match the delay sensitivities of critical paths. A set of critical
paths for a digital design are identified and grouped together based on the similarity in
their delay sensitivity behavior across PVT conditions. As shown in Figure 2.11, a
DDRO is then synthesized per group of critical paths [22].
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Figure 2.12 shows a method used in [22] to synthesize DDROs. At first, critical paths
delay sensitivities are obtained of critical paths and similar behaving critical paths are
grouped together. The next step is to synthesize one DDRO per critical path group such
that the delay sensitivities of a DDRO match the delay sensitivities of the critical path
group. In the DDRO synthesis, tiles are the building blocks of DDROs where tiles are
made of chains of standard cells. Figure 2.13 shows an inverter tile example where a
tile is made of 5 standard cells [22]. A DDRO is then synthesized using integer linear
programming for a target critical path group. The integer linear programmer builds a
DDRO by concatenation of tiles by matching the delay sensitivities of target critical
path group by the summation of linear sensitivities of the selected tiles. The frequencies
of DDROs on the chip are measured on silicon and assessed by which the timing of the
target critical path group is evaluated.

 Critical paths delay 

sensitivities

Synthesize one DDRO per critical path cluster

Measurement of on-chip DDRO delays 

Chip delay estimation 

Cluster critical paths
DDRO 

Synthesis

At 

manufacturing 

or runtime of a 

chip

Characterize tiles delay 

sensitivities

Figure 2.12: State-of-the-art DDRO synthesis method

Inverter tile

Figure 2.13: Example of a tile in a DDRO

There are several advantages of using DDROs in comparison to other timing monitors.
DDROs are more accurate in comparison to having a single critical path monitor because
multiple DDROs are synthesized for representing critical paths. Moreover, DDROs are
non-intrusive test structures. The required number of DDROs to be placed on a chip is
greatly reduced due to the synthesis of one DDRO per group of critical paths. Therefore,
only few DDROs are required to accurately estimate the timing of all the critical paths
on a chip. Furthermore, DDROs can be used in the early manufacturing stage for process
tuning, guard-band reduction and also in the later stage for real-time timing prediction.
The change of the monitor’s purpose is done by redefining the target sources of variation.
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However, these DDROs do not consider the impact of input transition time and output
load during the synthesis. Moreover, due to the concept of sensitivity matching, these
DDROs are forced to use SPICE-based delay characterization which makes it not feasible
for large-scale industrial designs. Additionally, the majorly contributing process param-
eters impacting the delay sensitivities have to be evaluated for every technology node
since the process parameters affecting the delay sensitivities differ for each technology
node. Furthermore, computation of delay sensitivities with high accuracy is extremely
challenging for the DDRO synthesis. Additionally, the state-of-art DDROs rely on the
concept that matching delay sensitivities will create DDROs which can track the de-
lays of critical path groups. Thus, given that the sensitivity based DDROs have several
disadvantages, they might result in tracking delay with poor quality to their respective
critical paths. Thus, in this work, further investigations are performed on the synthesis
of DDROs to improve the quality of DDROs which enables them to accurately track the
delays of critical paths on a chip across various conditions of PVT.

23





3 Design-Dependent Timing Monitors

The concept of the state-of-the-art design-dependent ring oscillators (DDROs) as an
on chip timing monitor in [22] is introduced in Sec. 2.7 to improve performance of
digital CMOS circuits and design closer to the edge. DDROs, as the name suggests are
design specific monitors and are designed to represent critical paths on a chip design. In
this chapter, in order to further improve the timing evaluation capabilities of DDROs
and provide a more robust design, the following novel methods of DDRO synthesis are
proposed: (1) in addition to the linear programming in the state-of-the-art DDROs
in [22], quadratic objective is proposed in the DDRO formulation for matching delay
sensitivities, (2) to improve DDROs matching quality, more accurate methods of 2-tile
and 3-tile delay characterizations of building blocks of DDROs are described in addition
to the state-of-the-art 1-tile delay characterization, (3) the implementation of DDRO
synthesis formulation is explained for quadratic programming using a direct solver, (4)
a new concept for the synthesis of DDROs is presented by tracking the delay of critical
paths which can use STA data, thus, enabling their application in large scale industrial
design, and (5) three new heuristic methods are developed as an alternative to direct
solvers to solve the delay-tracking-based DDRO synthesis problem.

3.1 Design Goal of a DDRO

The fundamental goal of a DDRO as shown in Figure 3.1 is to mimic the delay behavior of
a critical path or a group of critical paths across PVT conditions. The delay of a critical
path varies non-linearly across PVT conditions and the aim of DDROs is to track the
delay variations of the critical paths across the different PVT conditions. Frequency
measurements of these DDROs on silicon represent the timing of critical paths and
thereby monitors the timing of a chip. The main goal of this work is to further increase
the DDRO delay tracking accuracy and to facilitate the DDRO synthesis for large-scale
designs.

A DDRO is constructed by concatenating tiles of different types. The different tile
types are combined in a specific manner to represent the timing behavior of the target
critical path group. In this thesis, the DDROs are constructed by tiles which are chains
of standard cells of equal type. Figure 3.2 gives an example of DDRO constructed from
tile concatenations. The aim of using tiles instead of individual standard cells is to reduce
the dependency of delay variations with respect to the output load and input slew. The
timing of individual standard cells in a standard cell library are highly influenced by
input conditions such as input slope and output load. In order to reduce this influence
of input conditions, tiles are used in the synthesis of DDROs. A tile’s inner most cells
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Figure 3.1: Goal of delay-tracking DDRO: The behavior of the DDRO mimics the behavior of
the critical path over the PVT parameters

are shielded from the impact of input slew and output load by the first and last few cells
respectively.

Tile 1: Inverter tile

Tile 2: Buffer tile

Tile 3

Tile nt

Enable

DDRO 

Output

Figure 3.2: Structure of a DDRO: Concatenation of tiles

Figure 3.3 shows the structural outline of synthesis and evaluation of DDROs. A
collection of types of standard cells are chosen and tiles are constructed for a selected
tile length. The delay attributes of the constructed tiles are characterized across various
PVT conditions. Furthermore, a set of critical paths on a design are identified and their
timing attributes are characterized at various PVT conditions. In order to synthesize
DDROs for a large scale industrial chip design, the number of synthesized DDROs should
be limited to a feasible number. For this reason, critical paths are grouped based on their
similarity in timing behavior and one DDRO is synthesized for each of the critical path
groups using optimization methods. Synthesized DDROs are evaluated by comparing
their delay-tracking behavior to their given respective critical path group.
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Timing analysis of critical 

paths

Synthesize one DDRO per critical path cluster

Timing analysis of synthesized  DDROs

Evaluate the delay behaviour of DDROs vs. their 

respective critical path cluster. 

Cluster critical paths
DDRO 

synthesis

DDRO 

quality 

evaluation

Timing analysis of tiles

Figure 3.3: Flow diagram for DDRO synthesis and evaluation

In this section, the concept of synthesizing DDROs is explained in detail. Sec. 3.2
presents the concept and formulation of the existing state-of-the-art sensitivity based
DDROs. In addition to integer linear programming used previously in [22], a new for-
mulation is described to improve DDRO delay matching in Sec. 3.2. In order to further
reduce the impact of input slew and load in tiles, new methods of characterizing tile
delays are explained in Sec. 3.3. Sec. 3.4 presents the implementation method of DDRO
algorithms using traditional optimization solvers. In order to overcome the drawbacks
of sensitivity based DDROs, Sec. 3.5 proposes a novel idea for the synthesis of DDROs
by matching delays instead of delay sensitivities to critical paths. In Sec. 3.6, the draw-
backs of using traditional solvers for DDRO synthesis are presented. Moreover, new
Heuristic algorithms to optimize the DDRO objectives are explained, which overcome
the drawbacks of traditional solvers.

3.2 Formulation of Sensitivity-Based DDRO Design

This section first explains the formulation of state-of-the-art sensitivity-based DDROs.
Later, a new optimization method is proposed to improve the DDRO’s matching quality.
Figure 3.4 illustrates a DDRO path comprising of nt tiles where di is the delay of a
tile at position i. In the DDRO synthesis, a specific tile type is selected for each tile
position. ϕ(i) refers to the cell type used in the construction of tile at position i.
The set of selected types of tiles in the tile library are built from standard cells such
as AND,OR,NAND, etc. of various drive strengths and from different standard cell
libraries. The number of cell types in the tile library is denoted as nϕ.

In order to match the delay sensitivities of DDROs to critical paths [22], delay sen-
sitivities of tiles and critical paths are characterized, by the central difference method.
Delay sensitivities by central difference method are calculated by varying each of the
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PVT parameters p from the nominal value p0 by a small variation +∆p above the
nominal value and −∆p below the nominal value [54] [25]:

∇dY (p0) ≈
dY (p0 + ∆p)− dY (p0 −∆p)

2 ·∆p
(3.1)

In Equation (3.1), the total number of parameters considered for the sensitivity analysis
is nP and dY (p0) is the delay of a circuit such as the propagation delay of a critical path
dCP (p0) or a tile delay di(p0). SPICE simulation is used to perform the delay sensitivity
analysis [55].

Tile 1

Tile type ɔ(1)

Delay d1

Index 1

Delay di-1

Index i-1

Delay di

Index i

Delay di+1

Index i+1

Delay dn 

Index nt

Tile i-1

Tile type ɔ(i-1)

Tile i

Tile type ɔ(i)

Tile i+1

Tile type ɔ(i+1)

Tile nt

Tile type ɔ(nt)

t

Figure 3.4: DDRO path structure

For the DDRO synthesis, the considered PVT parameters p are globally varying and
statistically independent. From Figure 3.4, the DDRO path is constructed by concate-
nating nt tiles. Therefore, the delay of a DDRO path is the summation of delays of nt
tiles.

d
(X)
DDRO =

nt∑
i=1

d
(X)
i (p) (3.2)

The superscript (X) denotes the method of characterizing the tile delay sensitivities and

is explained in Sec. 3.3. A linear model of tile delay d
(X)
i (p) is assumed around p0 by a

variation in the PVT parameters of ∆p using the sensitivity from Equation (3.1):

d
(X)
i (p0 + ∆p) =d

(X)
i (p0)+

∇d(X)
i (p0)

T ·∆p
(3.3)

Inserting Equation (3.3) into (3.2) leads to a linear model of the DDRO path delay

d
(X)
DDRO around p0 by varying the parameters by ∆p

d
(X)
DDRO(p0 + ∆p) =

nt∑
i=1

d
(X)
i (p0)+

nt∑
i=1

∇d(X)
i (p0)

T ·∆p

(3.4)
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According to Equation (3.4), the DDRO delay sensitivity is the sum of all its tile delay
sensitivities. The DDRO optimization goal is then devised to select the number of tiles
nt as well as the type ϕ(i) of each tile position {i = 1, . . . , nt}, such that the critical
path sensitivity matches the DDRO sensitivity:

min
nt,ϕ(i),i={1,...,nt}

∥∥∥∥∥∇d′
CP (p0) · nt −

nt∑
i=1

∇d
′(X)
i (p0)

∥∥∥∥∥
pn

(3.5)

pn specifies the type of vector norm. When pn = 1, l1 norm or linear (L) optimization is
used similar to the state-of-the-art DDROs [22] and when pn = 2, l2 norm or quadratic
(Q) optimization is used. The characterized delay sensitivities are normalized for tiles
and critical paths to remove the physical units of different PVT parameters and to
improve the problem condition of the objective by equalizing the value ranges among
the different PVT parameters:

∇d
′(X)
i (p0) =

∇d(X)
i (p0)

T ·∆p

d
(X)
i (p0)

∇d′
CP (p0) =

∇dCP (p0)
T ·∆p

dCP (p0)

(3.6)

For the synthesis of DDROs, delays are analyzed at various PVT corners to evaluate
the worst case timing of digital circuits. Digital circuits mostly include process corners
namely nominal (NOM), fast (FAST) and slow (SLOW). The synthesized DDROs should
consider the sensitivities of the target critical paths at all the timing corners. Sec. 3.2.1
describes the method that is used to include multiple PVT corners.

3.2.1 Delay Sensitivity Matching at Multiple PVT Corners

The synthesized DDROs by the method of delay-sensitivity matching are to be tracked
across various conditions of PVT. Therefore, the delay sensitivities of tiles and critical
paths across PVT conditions are collected together in a vector for the delay-sensitivity
matching:

∇dCP (pPV T ) =


∇dCP (pPV T1)
∇dCP (pPV T2)

· · ·
∇dCP (pPV TnPV T

)

 (3.7)
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∇d(X)
i (pPV T ) =


∇d(X)

i (pPV T1)

∇d(X)
i (pPV T1)
· · ·

∇d(X)
i (pPV TnPV T

)

 (3.8)

where {PV T1, PV T2, . . . , PV TnPV T } are the various PVT conditions and nPV T is
the number of PVT corners. The conventional method to characterize delay sensitivi-
ties using analog SPICE simulation has high computational complexity because it uses
transistor models. As mentioned in Sec. 3.2, for sensitivity-based DDRO synthesis,
the delay-sensitivities w.r.t. PVT parameters are characterized using central difference
method [55]. Thereby, the number of simulations for each timing arch is 3 · np · nPV T ,
where np is the number of PVT parameters. Thus, delay sensitivity characterization
using SPICE based timing analysis for thousands of critical paths is not feasible. In ad-
dition, the transistor parameters which vary globally and are statistically independent
and should be identified for each of the standard cell libraries for every new technology
node. Moreover, the major contributing parameters which have high influence on de-
lay are unique for each standard cell library. These parameters have to be ascertained
through extensive data analysis of delay sensitivities of tiles or standard cells. In order
to avoid extensive data analysis of delay sensitivities and the transistor parameters, a
new method to synthesize DDROs is explained in Sec. 3.5 which uses delays instead
of delay sensitivities, thus eliminating the computational effort to compute the delay
sensitivities.

3.3 Characterization of Tile Delay Sensitivities

As mentioned before, tiles are used in the synthesis of DDROs where tiles are con-
catenated set of standard cells. The state-of-the-art method in [22] uses 1-tile delay
characterization as explained in 3.3.1. In order to be able to linearly concatenate tile
delays, the characterized tile delays need to be highly accurate. Moreover, tile delays
and tile delay sensitivities using 1-tile delay characterization are affected by their input
slope and output load conditions. Therefore, 1-tile delay characterization does not yield
accurate values of delays. Thus, to increase the accuracies of tile delays, three additional
methods of characterizing tiles are proposed in Sec. 3.3.2, and Sec. 3.3.3.

3.3.1 1-Tile Delay Characterization (T1)

A single combination of input transition time and output load values is used for the 1-tile

delay characterization. The delay of the tile d
(X)
i is dependent on PVT parameters p

and the tile type ϕ(i). Moreover, for nϕ different tile types, each of the nϕ tile types
makes nT = nϕ possible tile delays and tile delay sensitivities for a certain tile position i.
Thus, the number of tile delay characterizations increases linearly, O(N). In Figure 3.5,
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Environment

Figure 3.5: Tile delay characterization methods

X = T1 represents 1-tile delay characterization with constant values of input transition
and output load.

d
(T1)
i (p) = d

(T1)
i (ϕ(i),p) (3.9)

The combination of input transition time and output load are chosen based on analysis
of tile delay behavior. Moreover, the base tiles selected for the synthesis of DDROs
could have different drive strength and therefore different input pin capacitances. This
could lead to unequal input transition and output load seen by various tiles in a DDRO.
Additionally, using ideal constant input transition time and output load is not realistic.
This implies that, the characterized tile delays will not reflect the real delays when con-
catenated to form DDROs. Therefore, more accurate methods of tile characterizations
are necessary in order to have a better match of timing behavior of DDROs to their
respective target critical paths.

3.3.2 2-Tile Delay Characterization (T2)

In a 2-tile characterization, either the influence of the input transition on the tile is
considered by adding a preceding tile in the characterization (TP2), or the influence of
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the output load on the the tile delay is considered by adding a succeeding tile to the
characterization (TS2). In Figure 3.5, X = TP2 represents the 2-tile delay characteriza-
tion with preceding tile and constant value of output load. The delay of the tile dTP2

i is
dependent on PVT parameters p, preceding tile type ϕ(i− 1), and on the tile type ϕ(i)
in the DDRO path. In Figure 3.5, X = TS2 represents the 2-tile delay characterization
with constant value of input transition time and a succeeding tile as output load. The
delay of the tile dTS2i is dependent on PVT parameters p, tile type ϕ(i), and on the
succeeding tile type ϕ(i + 1) in the DDRO path. Moreover, for nϕ different tile types,
each of the nϕ tile types have nϕ successor types which makes nT = n2ϕ possible tile
delays. Thus, the order of growth of tile delay characterizations increases quadratically,
O(N2).

d
(TP2)
i (p) = d

(TP2)
i (ϕ(i− 1), ϕ(i),p)

d
(TS2)
i (p) = d

(TS2)
i (ϕ(i), ϕ(i+ 1),p)

(3.10)

In the cases where tile types seleced in the tile library have different drive strengths,
the tiles in a DDRO would experience different output loads. This also leads to different
input transition times at the beginning of each tile. Therefore, although the accuracy
of 2-tile delay characterization is more than 1-tile delay characterization, 2-tile delay
characterization has limitations due to idealistic output loads or input transition times.

3.3.3 3-Tile Delay Characterization (T3)

The 3-tile characterization considers the influence of both the input transition and the
output load on the tile delay. In Figure 3.5, (X = T3) represents the 3-tile delay char-
acterization with preceding and succeeding tiles. The delay of the tile dT3i is dependent
on PVT parameters p, on the tile type ϕ(i − 1) that precedes the tile i in the DDRO
path, tile type ϕ(i), and on the tile type ϕ(i + 1) that succeeds tile i in the DDRO
path. Therefore, for nϕ different tile types, the number of tile delay characterizations is
nT = n3ϕ.

d
(T3)
i (p) = d

(T3)
i (ϕ(i− 1), ϕ(i), ϕ(i+ 1),p) (3.11)

Due to formulation of more realistic input slopes and output loads from 1-tile to 3-
tile delay characterization, there is an increase in accuracy of tile characterization and
corresponding increase in the order of complexity. The order of complexity of tile charac-
terization is linear, quadratic and cubic for 1-tile, 2-tile and 3-tile delay characterization
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respectively. This results in not only massive increase in characterization time with 3-
tile delay characterization, but also an increase in the size of optimization problem to
synthesize DDROs. That is, the problem increases from linear to cubic from 1-tile to
3-tile delay characterizations. Therefore, Sec. 3.6 explains an iterative approach to solve
large sized optimization problems.

3.4 Synthesis Using Optimization Solvers

The DDRO synthesis formulation explained in Sec. 3.2 is a combinatorial minimization
problem with discrete variables. The traditional way to solve discrete variable prob-
lems is by integer programming [56]. In this thesis, the proposed methods to solve the
objective of DDRO synthesis are by linear and by quadratic integer programming prob-
lems [56]. The traditional method is to use direct integer solvers such as (1) public
domain solver GNU-LP [57] and (b) commercial solver CPLEX [58]. CPLEX can solve
both quadratic and linear objective problems whereas GNU-LP can only solve linear
objective problems. This section explains the matrix formulations to convert the DDRO
objective in Equation (3.5) into matrix and vectors which can be fed into the quadratic
and linear programming solvers. Sec. 3.4.1 demonstrates the matrix formulations for the
objective of DDRO formulation. Sec. 3.4.2 formulates the DDRO objective into linear
programming. Sec. 3.4.3 formulates the DDRO objective into quadratic programming.

3.4.1 Matrix Formulations for the Objective of Sensitivity-Based DDRO

In this section, the DDRO objective from Equation (3.5) is formulated into vector and
matrix for critical path delay sensitivities and tile delay sensitivities, respectively. More-
over, the constraints used for the DDRO length, and the tile-tile relationship for 2-tile
and 3-tile delay characterizations are also explained. The right hand side of Equation
(3.5) consists of the delay sensitivities of critical paths which are written as a vector of
delay sensitivities across PVT parameters multiplied by a factor of DDRO length nt:

b = ∇d′
CP (pPV T ) · nt (3.12)

b is a column vector with dimensions R(np·nPV T )×1 where nPV T is the number of PVT
parameters for all corners and np is the number of PVT parameters considered for delay
sensitivity matching at a certain corner. Tile delay sensitivities which are combined to
match the sensitivities of the given critical path target are enumerated as a matrix for
all positions of tile i and for all available tile types ϕ(i) across nPV T parameters.

The delay sensitivities of tile types ϕ(i) can be computed either by 1-tile, 2-tile or 3-tile
delay characterization. Thus, the enumeration of tile types for a certain position i can

be defined as
{
ϕ
(X)
1 (i), ϕ

(X)
2 (i), . . . , ϕ

(X)
nT (i)

}
. Thereby, matrix TM

(X)
i is constructed to

enumerate all tile types for a certain tile position i.
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TM
(X)
i =

[
∇d

′(X)

ϕ
(X)
1 (i)

(pPV T ) ∇d
′(X)

ϕ
(X)
2 (i)

(pPV T ) . . . ∇d
′(X)
ϕ
n
(X)
T

(i)(pPV T )

]
(3.13)

Thus, TM
(X)
i gives the tile matrix for a single tile position i for all nT possible

tile delays, tile delay sensitivities and nPV T parameters. The sensitivity-based DDRO

synthesis consists of nt tile positions. The matrix TM
(X)
i is further enumerated for all

tile positions i ∈ {1 · · ·nt}:

Z =
[
TM

(X)
1 TM

(X)
2 . . . TM

(X)
i . . . TM(X)

nt

]
(3.14)

Z formulates the right hand side of the Equation (3.5) for the synthesis of sensitivity-
based DDRO. The DDRO optimization with nt tiles requires the consideration of the
transition between subsequent tiles and depends on the four different methods of tile
delay characterization. Figure 3.6 illustrates the dependency between two adjacent tiles
i − 1, i and i + 1, for 2-tile and 3-tile delay characterization. In case of 2-tile delay
characterization, the delay of tile i depends either on succeeding tile i+ 1 or preceding
tile i − 1. In case of a 3-tile delay characterization, the delay of tile i depends on the
preceding tile i− 1 and succeeding tile i+ 1.

Index i

Tile i

 2-tile delay characterization

3-tile delay characterization

Index i+1

Tile i+1

Delay di

Index i

Tile i

Delay di+1

Index i+1

Tile i+1

Delay di-1

Index i -1

Tile  i -1

Delay di Delay di+1

Figure 3.6: Dependency between adjacent tiles i− 1, i and i+ 1 on delay characterization

In order to satisfy restriction based on tile-delay characterization methods, constraints
are established which describe the relationship between two adjacent tiles for the cases
of 2-tile and 3-tile delay characterizations.
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C(i− 1, i) = {(ϕk, ϕl) |ϕk ∈ TMi−1, ϕl ∈ TMi} ,
|C(i− 1, i)| = nϕ

(3.15)

3.4.2 Matrix Formulations for Linear Objective

The state-of-the-art method of the DDRO formulation from Equation (3.5) is pn = 1.
This can be written in the form of integer linear optimization which is transformed
to integer quadratic programming. In integer linear programming, the objective and
the constraints are linear. Linear programming is computationally less intensive than
quadratic programming [59]. Based on Equation (3.12) for the critical path delay sen-
sitivities and Equation (3.14) for tile delay sensitivities across PVT parameters, the
equations for linear programming can be formulated by the following derivation:

min
x
‖b− Zx‖1︸ ︷︷ ︸

f(x)=s

s.t.

nT∑
i=1

xi = nt, xi ∈ {0, 1} (3.16)

The above minimization equation has a objective value vector s such as in [60]. Here,
x is the unknown column vector and describes the tile type and position of each tile. For
every tile position i, there are nT possible choices of characterized tile delay sensitivities
as shown in Equations (3.13) and (3.14) for sensitivity-based DDROs.

‖s‖1 =

nT∑
i=1

|si| (3.17)

Therefore, the objective function can be reformulated as:

min

nT∑
i=1

si︸ ︷︷ ︸
1T ·s

s.t. −si ≤ fi(x) ≤ si︸ ︷︷ ︸
b−Zx≤s
b−Zx≥s

,

nT∑
i=1

xi = nt, xi ∈ {0, 1}
(3.18)

3.4.3 Matrix Formulations for Quadratic Objective

The DDRO formulation from Equation (3.5) when pn = 2 can be written as integer
least squares optimization, which is transformed to integer quadratic programming. In
integer quadratic programming, the objective is quadratic and the constraints are linear.
Based on Equation (3.12) for the critical path delay sensitivities and Equation (3.14)
for tile delay sensitivities across PVT parameters, the quadratic optimization can be
formulated as follows:
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min
x

1

2
‖b− Zx‖22

min

(
1

2
(b− Zx)T (b− Zx)

)
min

(
1

2
xTZTZx− ZTbx +

1

2
bTb

)
min

(
1

2
xTZTZx− ZTbx

)
s.t.

nt∑
i=1

xi = nt

(3.19)

Here, x is the unknown column vector and describes the tile type and position of the
tile. In this thesis, DDROs are synthesized using both linear and quadratic programming.
The synthesized DDROs are evaluated for the representation of the timing attributes of
the target critical paths.

3.5 Delay-Tracking-Based DDRO

The state-of-the-art DDRO [22] explained in Sec. 3.2 is designed to match its delay
sensitivities to a given target critical path according to Equation (3.5). In this thesis,
a new synthesis method is proposed where the objective function matches the delays
across PVT conditions, instead of delay sensitivities. This synthesis method is termed
delay-tracking based DDRO. The measured frequency of the synthesized DDRO is then
directly correlated to the delay of critical path. In this method, the delays of digital
circuits can be simulated either by using SPICE [55] or by static timing analysis (STA)
[61]. However, it would not be feasible to perform SPICE simulation for a complete
design. Simulation of circuit delays with STA is computationally much less intensive
than SPICE. Therefore, millions of critical paths on a design can only be characterized
using STA at various PVT conditions in a feasible time. Furthermore, STA can also
include effects of local variations without much increase in run-time for each cell type
and therefore can easily incorporate worst case scenarios in contrast to SPICE simulation.
To summarize, the goal of the delay-tracking based DDROs is to incorporate STA delays
for tiles and critical paths such that DDRO synthesis is feasible for a large chip design.

The delays of tiles and critical paths are characterized at the nPV T different PVT
conditions pPV Tj where j = {1, . . . , nPV T }.

pPV T =


pPV T1
pPV T2
. . .

pPV TnPV T

 (3.20)
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The resulting delays are collected in their respective vectors:

dCP (pPV T ) =


dCP (pPV T1)
dCP (pPV T2)

. . .
dCP (pPV TnPV T

)



d
(X)
i (pPV T ) =


d
(X)
i (pPV T1)

d
(X)
i (pPV T2)

. . .

d
(X)
i (pPV TnPV T

)


(3.21)

From Equation (3.2), the DDRO delay d
(X)
DDRO(pPV T ) is obtained by summing up

the delays of all its tiles. In analogy to Equation (3.5), the optimization goal of DDRO
synthesis is to match the DDRO’s delay behavior to critical path delay behavior across
all nPV T different PVT conditions, by selecting the number of tiles nt and the tile types
ϕ(i), i = {1, . . . , nt} for each tile position:

min
nt,ϕ(i),i={1,...,nt}

∥∥∥d′
CP (pPV T )− d

′(X)
DDRO(pPV T )

∥∥∥
pn

(3.22)

The superscript (X) stands for the method of characterizing the tile delays in a DDRO
path explained in Sec. (3.3) and pn is the type of vector norm. Additionally, the length
of the DDRO is decided by the number of the tiles selected for the DDRO path. The
selected number of tiles is a variable in a user-defined range nt ∈ {ntmin , . . . , ntmax}.
Moreover, to equalize the delay values in the objective function the DDRO and critical
path delays are normalized as:

d
′(X)
DDRO(pPV T ) =

d
(X)
DDRO(pPV T )∥∥∥d(X)
DDRO(pPV T )

∥∥∥
2

d
′
CP (pPV T ) =

dCP (pPV T )

‖dCP (pPV T )‖2

(3.23)

3.6 DDRO synthesis using Heuristic Methods

The DDRO optimization problem is solved by choosing from a discrete set of tile types.
Therefore, it can be formulated as a combinatorial integer programming problem [62].
The simplest method to solve this DDRO synthesis problem would be by enumerating
all possible combinations of nϕ tile types for the length of the DDRO consisting of nt
tiles. Therefore, the number of possible combinations of nϕ tile types for nt tiles is nnt

ϕ .
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As an example consider nt = 15 as the length of a DDRO and nϕ = 6. Here, the number
of possible combinations is ≈ 51014, which cannot be enumerated.

The state-of-the-art method solves the DDRO synthesis problem by using direct
solvers such as GNU-LP [22] or CPLEX [58]. Table 3.1 shows the average CPU run-
time in seconds for DDRO synthesis using different DDRO synthesis methods with direct
solvers. For the CPU run-time analysis, 96 DDROs are synthesized for different DDRO
synthesis methods with (1) four different methods of tile characterizations, (2) quadratic
integer programming, (3) varied number of tile types between 3 and 6, (4) two differ-
ent optimization solvers namely GNU-LP and CPLEX optimization solvers, and (5)
sensitivity-based DDROs are synthesized.

3.6.1 CPLEX Optimizer

For this analysis, DDRO synthesis using CPLEX is performed using a CPU with 24
parallel threads. The run-times may be affected based on the availability of actual CPU
cores during the DDRO synthesis. Therefore, from Table 3.1 it is observed that for linear
programming with 3 tile types, the CPU run-time using CPLEX increases from 1-tile
(T1) to 2-tile delay (TP2, TS2) characterization for sensitivity based DDROs. However,
from 2-tile delay (TP2, TS2) characterization to 3-tile delay (T3) characterization the
CPU run-times almost remain constant. The CPU run-time for DDRO optimization
with quadratic programming using 3 tile types increases exponentially from 1-tile to 3-tile
delay characterization. The CPU run-time increases drastically from linear to quadratic
programming for higher accuracy tile characterization methods using sensitivity based
DDROs. In the case of 3-tile delay characterization, the average CPU run-time per
DDRO increases from less than 1s to 1512s. For the synthesis of DDROs with 6 tile
types, the CPU run-time for DDRO optimization is extremely large and not feasible
for linear and quadratic programming for higher accuracy tile-delay characterization
methods.

3.6.2 GNU-LP Optimizer

The GNU-LP optimizer used for DDRO synthesis is executed without parallel threads
for linear programming. As GNU-LP solver is an integer programming solver, the run-
times for quadratic programming using GNU-LP are not available. From Table 3.1
it can be seen that for sensitivity-based DDROs with 3 tile types in the tile library,
the CPU run-time is feasible. The run-time using CPLEX increases from 1-tile (T1)
delay to 3-tile (T3) delay characterization from 0.1s to 0.938s, respectively. Moreover,
without using parallel threads, the run-time with GNU-LP is less than CPLEX for
sensitivity based DDRO synthesis, 3 tile types for 1-tile (T1) and 2-tile (TP2, TS2)
delay characterizations. Similar to CPLEX, for the synthesis of DDROs with 6 tile
types, the CPU run-time for DDRO optimization is extremely large and not feasible
for linear and quadratic programming with higher accuracy tile-delay characterization
methods.
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In summary, when there are 6 tiles chosen for the synthesis of DDROs, the CPU run-
time for DDRO optimization using CPLEX and GNU-LP solvers are extremely large
and not feasible for both linear and quadratic programming with accurate methods of
2-tile (TP2, TS2) or 3-tile (T3) delay characterizations.

Moreover, industrial standard cell libraries consist of hundreds of standard cells and
using only 3 tile types would not be sufficient to represent the timing attributes of all the
standard cells and thus the critical paths of a digital design. Therefore, it is necessary to
increase the feasibility of the DDRO synthesis such that larger DDRO objective problems
can be solved and the number of tile types selected for DDRO synthesis can be increased.

Table 3.1: DDRO synthesis with traditional solvers

Solver Tile delay analysis No. of Tiles CPU time (s)

GNU-LP T1 3 < 1s

GNU-LP TP2 3 < 1s

GNU-LP TS2 3 < 1s

GNU-LP T3 3 < 1s

CPLEX T1 3 < 1s

CPLEX TP2 3 17

CPLEX TS2 3 43

CPLEX T3 3 1512

GNU-LP T1 6 < 1s

GNU-LP TP2 6 > 2 weeks

GNU-LP TS2 6 > 2 weeks

GNU-LP T3 6 > 2 weeks

CPLEX T1 6 > 2 weeks

CPLEX TP2 6 > 2 weeks

CPLEX TS2 6 > 2 weeks

CPLEX T3 6 > 2 weeks

3.6.3 DDRO Partitioning and Enumeration Sets

In order to provide DDRO synthesis for larger sets of tile types and larger DDRO length,
three new heuristic methods to synthesize DDROs are proposed in this thesis. The basic
principle of heuristic methods is the enumeration of tile type combinations. To provide
a feasible enumeration based synthesis of DDROs, a small number of ns < nt tiles are
enumerated. The hierarchical structure of a DDRO path is a concatenation of ntb tile
blocks, where a tile block is constructed from ns tiles as shown in Figure 3.7. To generate
a DDRO, a concept of successive optimization is used which enumerates ns tiles at a
time. After having decided the first block of ns tiles in the first iteration, the second
iteration decides the second block of ns tiles, and so on till the last block it = ntb of ns
tiles is decided in the DDRO path.
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Tile block 1 Tile block 2 Tile block ntb

Figure 3.7: DDRO path structure with ntb tile blocks (TBs), each tile block with ns tiles

Successive optimization of selections of ns tiles in each step requires individual consid-
eration of the transition between subsequent tile blocks, depending on the four different
methods of tile delay characterization. Figure 3.8 illustrates the dependency between
two adjacent tile blocks at iterations it and it + 1 for 2-tile and 3-tile delay characteri-
zations. In case of a 2-tile delay characterization with succeeding tile, or, respectively,
preceding tile, the delay of the last tile it · ns of tile blocks it depends on the first tile
it · ns + 1 of the succeeding tile block it + 1, or, respectively, vice versa. In case of a
3-tile delay characterization, the delays of the last two tiles it · ns − 1 and it · ns of tile
block it depend on the delay of the first tile it ·ns + 1 of the succeeding tile block it+ 1.

Tile 
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Index (it-1)·ns+1 Index it·  ns

Tile it·  ns

 2-tile delay characterization

ns tiles

3-tile delay characterization

Index it·ns+1
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Index it·  ns -1

Tile  it·  ns -1

Delay d(it-1)·ns +1 Delay dit·ns Delay dit·ns +1 Delay d(it+1)·ns

Figure 3.8: Dependency between adjacent tile blocks it and it+ 1 on delay characterization

The enumeration of combinations and the number of combinations of a tile block are
different for the first tile block, it = 1, the last tile block, it = ntb, and the tile blocks
in between, it = {2, . . . , ntb}. The first tile block it = 1 includes the first tile of the
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second tile block in its consideration. This multiplies the number of combinations by
the number of tile types nϕ. The subsequent tile blocks it = {2, . . . , ntb − 1}, have their
first tile type already determined by the preceding tile block, while including the first
tile of the succeeding tile block it + 1 in their consideration. Additionally, the last tile
block it = ntb has its first tile already decided. The resulting combinations of tile types
in the tile blocks are collected in respective enumeration sets S(X)(it). The cardinality
of S(X)(it) is given by:

∣∣∣S(X)(it)
∣∣∣ = n(X)

c (it) (3.24)

Therefore, the number of possible tile combinations n
(X)
c (it) for each of the cases is

as follows:

n(X=1)
c = nns

ϕ it = {1, . . . , ntb − 1}

n(X=2,3)
c =


nns+1
ϕ , it = 1

nns
ϕ , it = {2, . . . , ntb − 1}
nns−1
ϕ , it = ntb

(3.25)

The respective tile type enumeration sets are overlapping to a large extent and can
be determined and stored efficiently by sharing. Figure (3.9) illustrates the overlapping.
For each tile block element of the enumeration set S(X)(it), the corresponding tile block

Tile 1 Tile 2 Tile ns Tile ns+1

X=1, it={1,…,ntb}

Combine all nĳ  tile types over all tile 

positions ns +1

S(X=1)

X={2,3}, it=1S(X={2,3})

X={2,3}, it={2,…,ntb-1}S(X={2,3})

ĳ((it-1)·  ns  +1)

X={2,3}, it=ntbS(X={2,3})

ĳ((it-1)·  ns  +1)

Figure 3.9: Illustration of enumeration sets S(X)(it) for different tile delay characterizations
X and different iterations it in the successive enumeration process of heuristic
algorithms

delay is computed by summing the tile delays of the respective tile block according to
their tile type and delay characterization. This is done for all PVT conditions:
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d
(X)
TB (S(X)(it),pPV T ) =

ns∑
i=1

d
(X)
i (S(X)(it),pPV T )) (3.26)

3.6.4 Iterative Computation of the DDRO Objective Function

At each iteration it, the DDRO path delay d
(X)
DDRO(it,pPV T ) is the sum of the delays of

the already selected tile blocks until the previous iteration it − 1 and the delay of tile
block to be determined in iteration it:

d
(X)
DDRO(it,pPV T ) =

it∑
j=1

d
(X)
TB (S(X)(j),pPV T ) (3.27)

In this method, the objective in Equation (3.22) considers a partial DDRO length

ns · it. Thus, the d
(X)
DDRO in objective function from Equation (3.22) is substituted

by d
(X)
DDRO(it,pPV T ) and then the objective function is solved. Moreover, the objective

at each iteration is computed until a given minimum length of DDRO ntmin is reached,
after which in the next iteration, addition of more tile types is performed as long as the
objective value reduces in comparison to the previous iteration. The DDRO synthesis
process is continued until the maximum length of the DDRO ntmax is reached or at the
point where the objective value no longer decreases compared to the previous iteration.
The DDRO synthesis process is completed with the resulting number ntb of tile blocks.

3.6.5 Multimodal-Successive Optimization

In the Multimodal-Successive Optimization approach, several solutions of tile block types
are selected in each iteration. That is, a set of β ∈ Z+ solutions with best objective
values according to Equations (3.22) and (3.27) is selected. β is a user defined number.
This approach enables to browse a larger enumeration space than the approach described
before, while keeping the CPU run-time reasonable [63].

In iteration it = 1, the subset A(1) of β tile block types from the n
(X)
c (1) available

alternatives of tile block types is S(X)(1,pPV T ) with the best objective value according
to Equations (3.22) and (3.27) is determined:

A(1) ⊆ S(X)(1,pPV T ), |A(1)| = β (3.28)

In each subsequent iteration it, a corresponding next subset A(it) is computed from

the n
(X)
c (it) available alternatives of tile block types S(X)(it,pPV T ):

A(it) ⊆ S(X)(it,pPV T ), |A(it)| = β, it = {2, . . . , ntb} (3.29)
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Additionally, a relation T (it, it + 1) is established during the Multimodal-Successive
process that describes which tile block types follow each other in the respective DDRO
variant:

T (it, it+ 1) = {(k, l) |k ∈ A(it), l ∈ A(it+ 1)} ,
|T (it, it+ 1)| = β

(3.30)

The mapping T is a unique function, which results in over all β different DDROs
at the end of the optimization process. These DDROs represent the β best DDROs
to track the delay behavior of a critical path over all PVT conditions. Figure 3.10
illustrates an example of DDRO synthesis using Multimodal-Successive optimization
method. The larger the chosen value of β, the larger is the solution space and the
higher is the probability of finding the global minimum. However, the computational
complexity increases with increasing β. The Multimodal-Successive Heuristic method is
illustrated in Algorithm 1.
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{1,2}

ȕ  

1

2

DDRO (as a sequence of tile types)
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Figure 3.10: Example: Result of Multimodal-Successive optimization for DDRO with 6 tiles in
ntb = 3 tile blocks with 2 tiles each. There are nϕ = 2 tile types in the tile library.
The numbering of β = 2 DDROs corresponds to the ordering of tracking ability

3.6.6 Single-Mode-Successive Optimization

The Single-Mode-Successive Optimization approach is also a Heuristic algorithm whose
method and steps to synthesize DDROs is similar to that of the Multimodal-Successive
optimization explained in Sec. 3.6.5 [63]. At first, all possible tile blocks of certain
selected tile type and ns tile length combination are enumerated which results in the
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Algorithm 1 Multimodal-Successive Heuristic Optimization method

Require: ϕ(i),d
(X)
i (pPV T ), i = {1, . . . , nϕ},

d
′
CP (pPV T ), ntmin , ntmax , ns, β

Iteration: it← 1
while it <= ntmax/ns do

compute S(X)(it,pPV T ) from Figure 3.9

compute ∆d
(X)
DDRO(it,pPV T ) = min

l∈
{
1···n(X)

c (it)
}∆d

(X)
DDROl

(it,pPV T )

with
∥∥∥∆d

′
CP (pPV T )− d

′(X)
DDROl

(it,pPV T )
∥∥∥
pn

from Equations (3.22) and (3.27)
compute A(it) from Equations (3.28), (3.29)

compute T (it, it+ 1) from Equation (3.30)
if ntmin < it · ns then

if ∆d
(X)
DDRO(it,pPV T ) >= ∆d

(X)
DDRO(it− 1,pPV T ) then

compute ntb ← it
break

end if
end if
compute ntb ← it
compute it← it+ 1

end while

Return A(it), T (it+ 1, it), it ∈ {1, . . . , ntb}

set of enumerated tile blocks at each iteration as given in Figure 3.9. The objective of
the DDRO synthesis for the Single-Mode-Successive optimization is solved according to
Equation 3.22. The set of available tile blocks for each iteration depends on the tile
block selected at previous iteration and is given by the relation T (it, it+ 1) as given in
Equation 3.30. The main difference between Single-Mode-Successive and Multimodal-
Successive optimization is that the number of solutions selected at each iteration β is
set to one, i.e. only one tile block is selected out of all the enumeration sets at each
iteration it. The tile block selected at each iteration is the one which resulted in least
objective value ∆d

(X)
DDRO(it,pPV T ) among all the tile blocks in the available enumeration

set S(X)(it,pPV T ). Therefore, at the end of ntb iterations, there is only one DDRO
solution obtained which is the final DDRO solution.

In this method, the CPU run-time to run the DDRO synthesis and memory consump-
tion for the storage of all the solutions and generation of available enumeration sets of
tile blocks S(X)(it,pPV T ) is much less than Multimodal-Successive optimization. There-
fore, this method can handle larger DDRO synthesis problems with more tile types in
the tile library set in comparison to the Multimodal-Successive optimization. However,
due to local optimization with lower search range of DDRO solutions, the accuracies of
DDRO delay-tracking ability maybe affected in comparison to Multimodal-Successive
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3.6 DDRO synthesis using Heuristic Methods

optimization. Figure 3.11 shows an example of DDRO synthesis by Single-Mode Succes-
sive Optimization method. There are 2 tile types selected in the tile library set nϕ = 2
and the length of tile block ns = 2. Therefore, there are 8, 4 and 2 possible combination
of tile blocks at iterations it = 1, it = 2 and it = 3, respectively when number of tile
blocks ntb = 3 is selected for DDRO synthesis. As explained earlier for single-mode-
successive optimization β = 1, therefore, the tile block resulting in the least objective
value is selected at each iteration. Thus, a single set of tiles for a single DDRO is selected
at the end of the DDRO synthesis.
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Figure 3.11: Exemplary result of Single-Mode Successive Optimization for DDRO with 6 tiles
in ntb = 3 tile blocks with 2 tiles each. There are nϕ = 2 tile types in the tile
library

3.6.7 Single-Mode Back-Tracking Optimization

The third Heuristic method introduced in this thesis is the method of Single-Mode Back-
Tracking Optimization [63]. Figure 3.12 shows the concept of the Single-Mode Back-
Tracking Optimization method. In this method, the assumption is that the objective
value of the DDRO synthesis starts with a larger value in the first iteration and gradually
reduces at each iteration. Moreover, if the selected tile block does not result in a desired
reduction of the objective value, the method eliminates the selected tile block to choose
another tile block and back-tracks to the previous iterations until the objective value
decreases as defined by the user. This approach uses less CPU memory in comparison
to Multimodal-Successive Optimization explained in Sec. 3.6.5 due to the storage of
only one tile block per iteration while keeping a broader search space in comparison
to Single-mode-Successive Optimization explained in Sec. 3.6.6. However, due to the
back-tracking the CPU run-time to synthesize the DDROs is considerably larger than
both Multimodal-Successive Optimization and Singlemode-Successive Optimization.
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Figure 3.12: Concept of Single-Mode Back-Tracking Optimization Method

In the Single-Mode Back-Tracking Optimization method, only one solution is selected
in each iteration. The tile block which results in the best objective according to Equa-
tions (3.22) and (3.27) is selected at each iteration. At iteration it = 1, the best objective
value is chosen according to Equations (3.22) and (3.27) and is determined from the avail-
able S(X)(1,pPV T ) tile block type alternatives. This chosen tile block type is placed in
a subset matrix A(1) as per Equation 3.28.

Furthermore, the objective value ∆d
(X)
DDRO(it,pPV T ) calculated from Equation (3.27)

for the selected tile block at iteration is stored. Additionally, all the tile block types
selected in the subsequent iterations are also stored as per Equation 3.29.

The tile block types which follow each other in a DDRO variant is given by a relation
T (it + 1, it) from Equation 3.30. Furthermore, the objective value for iteration it is
compared with the objective value of iteration it− 1:

α(it) =
∆d

(X)
DDRO(it,pPV T )

∆d
(X)
DDRO(it− 1,pPV T )

(3.31)

where ∆d
(X)
DDRO(it,pPV T ) and ∆d

(X)
DDRO(it−1,pPV T ) are the objective values obtained

with the selected tile block types at iteration it and it− 1, respectively.
If the value of α > αmax where αmax is a user-defined maximum value of α, then the

tile block types selected at iteration it and it−1 are deselected and the iterated number
is moved back to it − 1. In this step, the previously selected tile block is eliminated
from the choice of set of enumerated tile blocks and the tile block with the next best
objective value is selected at iteration it− 1. Moreover, for the newly selected tile block

after the back tracking A(it-1), results in a new objective value ∆d
(X)
DDRO(it− 1,pPV T ).

This objective value is then compared with the objective value of the previous iteration

∆d
(X)
DDRO(it−2,pPV T ). Thus, the process of back tracking goes on until either α(it) <=

alphamax at each iteration or when the back tracking reaches the first iteration it = 1.
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If α < αmax, the tile blocks are not eliminated and the DDRO synthesis process is
continued to the next iterations.

Figure 3.13 shows an example of DDRO synthesis by Single-Mode Back-Tracking
Optimization method. In this example, the number of tile blocks is fixed at ntb = 3,
the length of tile block ns = 2 and number of tile types nϕ = 2. The user defined value
for back-tracking αmax = 1.2, where α(it) is calculated at each iteration according to
Equation 3.31. In the first iteration, the tile block {2, 2} results is the least objective

value ∆d
(X)
DDRO(1,pPV T ) = 0.5 which is selected. Based on the tile block selected at the

first iteration {2, 2}, the next tile block {1, 2} is selected with the least objective value

∆d
(X)
DDRO(2,pPV T ) = 0.7. After which, the α(1) = 1.4 is calculated which results in

α(1) > αmax. Thus, first and second tile blocks selected are discarded from the result
and also from the choice of tile block enumeration combinations. The iteration count is
set to it = 1 and the tile block selection is restarted.

After the back-tracking to iteration it = 1 once again, the tile block {2, 1} with the

least objective value ∆d
(X)
DDRO(1,pPV T ) = 0.6 is selected at the iteration it = 1. Based

on the tile block selected in the first iteration {2, 1}, the next tile block {1, 1} is selected

with the least objective value ∆d
(X)
DDRO(2,pPV T ) = 0.5. After which, the α(1) = 0.833

is calculated which satisfies the condition α(1) < αmax. Therefore, the iteration count is
proceeded to it = 3. At it = 3, based on the selection of the second tile block {1, 1}, the

third tile block {2, 1} is selected with the least objective value ∆d
(X)
DDRO(3,pPV T ) = 0.4.

After which, the α(2) = 0.8 is calculated which satisfies the condition α(2) < αmax.
Thus, the DDRO is formed with the selection of tile blocks based on single-mode-back-
track optimization.
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Figure 3.13: Exemplary result of Single-Mode Back-Tracking Optimization for DDRO with 6
tiles in ntb = 3 tile blocks with 2 tiles each. There are nϕ = 2 tile types in the tile
library. The user defined value α = 1.2 is used to backtrack the DDRO synthesis
to the previous iteration
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Algorithm 2 Single-Mode Back-Tracking Heuristic Optimization method

Require: ϕ(i),d
(X)
i (pPV T ), i = {1, . . . , nϕ},

d
′
CP (pPV T ), ntmin , ntmax , ns, α

Iteration: it← 1
while it <= ntmax/ns do

compute S(X)(it,pPV T ) from Figure 3.9

compute ∆d
(X)
DDRO(it,pPV T ) = min

l∈
{
1···n(X)

c (it)
}∆d

(X)
DDROl

(it,pPV T )

with
∥∥∥∆d

′
CP (pPV T )− d

′(X)
DDROl

(it,pPV T )
∥∥∥
pn

from Equations (3.22) and (3.27)
compute A(it) from Equation (3.29)

compute T (it, it+ 1) from Equation (3.30)
compute α from Equation (3.31)
if ntmin < it · ns then

if ∆d
(X)
DDRO(it,pPV T ) >= ∆d

(X)
DDRO(it− 1,pPV T ) then

compute ntb ← it
break

end if
else if α > αmax then

set S(X)(it− 1,pPV T )← S(X)(it− 1,pPV T )−A(it− 1)
set A(it), A(it− 1) = 0
compute it← it− 1

end if
compute ntb ← it
compute it← it+ 1

end while

Return A(it), T (it+ 1, it), it ∈ {1, . . . , ntb}
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3.7 Evaluation of DDROs

In order to qualify the synthesized DDROs and compare different DDRO synthesis meth-
ods, evaluation of synthesized DDROs is necessary. Figure 3.14 shows the methods to
evaluate synthesized DDROs. At first DDROs are synthesized and the netlist for the
synthesized DDROs are generated. Afterwards, the synthesized DDROs are character-
ized for their timing attributes across given PVT conditions. Here, two different methods
are used to evaluate the synthesized DDROs and are explained as follows:

Delay characterization

Assessment 1:  l2 norm 

between delay of each DDRO and its 

target critical path across PVT 

conditions

Assessment 2: Correlating 

delay of DDROs with target critical 

paths across PVT conditions

 DDRO synthesis

 PVT 

conditions

 Delays of 

target 

critical 

paths

Netlist of 

DDROs

DDRO delay at 

different PVT 

conditions

Figure 3.14: Method to evaluate the quality of synthesized DDROs

3.7.1 Assessment Method 1

In Equation (3.23), d
′
CP (pPV T ) is the normalized delay of critical paths across PVT

parameters and d
′(X)
i (pPV T ) is the normalized delay of tiles. The normalized delay of

DDRO from Equation (3.2) is given as:

d
′(X)
DDRO(pPV T ) =

nt∑
i=1

d
′(X)
i (pPV T ) (3.32)
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The quality of DDROs is evaluated by calculating the l2 norm between the synthesized
DDROs and their respective critical paths across PVT conditions as shown in Equation
(3.33).

der
′

=
∥∥∥d′

CP (pPV T )− d′
DDRO(pPV T )

∥∥∥
2

(3.33)

3.7.2 Assessment Method 2

To analyze if the synthesized DDROs can track the delays of critical paths across PVT
conditions, both DDROs and critical paths are normalized by dividing their delays at
all PVT conditions by the delay at a user-defined PVT corner:

dY (pPV Tus) ∈ dY (pPV Ti), i ∈ {1, . . . , nPV T } (3.34)

where dY represents the delay of the DDRO or the critical path. The delay values of
DDROs and critical paths are normalized as follows:

d
′
Y (pPV T ) =

dY (pPV T )

dY (pPV Tus)
(3.35)

The delay error in percentage ∆dPE(pPV T ) is calculated for normalized delays from
Equations (3.34) and (3.35) between critical path and the respective DDRO using (3.36)

∆dPE(pPV T ) =



1− d
′
CP (pPV T1

)

d
′(X)
DDRO(pPV T1

)

1− d
′
CP (pPV T2

)

d
′(X)
DDRO(pPV T2

)

· · ·

1−
d
′
CP (pPV TnPV T

)

d
′(X)
DDRO(pPV TnPV T

)


(3.36)

3.8 Summary

This Chapter introduces the theory and formulations of the various DDRO synthesis
methods developed in this thesis. At first, the fundamental goal of a DDRO to mimic
the delay behavior of a group of critical paths is explained. Moreover, the structure of a
DDRO constructed by concatenating tiles and the methodology for the DDRO synthe-
sis is explained. Furthermore, the formulations of the existing state-of-the-art method
of synthesizing DDROs by matching the delay sensitivities w.r.t. PVT parameters to
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that of the target critical path group is explained. In addition to linear programming
introduced in the state-of-the-art method [22], quadratic programming is proposed in
this thesis in order to further increase the accuracies of DDROs.

Tiles are built by concatenating standard cells of equal type and are used to reduce
the impact of input slope and output load on the timing attributes of a characterized
tile such that the timing attributes can be linearly concatenated to construct a DDRO.
However, the influence of input slope and output load is not fully eliminated by using
a tile characterized by the state-of-the-art method. Therefore, three new methods of
tile delay characterizations are proposed out of which 3-tile delay characterization has
additional tiles as an input slope tile and output load to the tile to be characterized.
This results in the most accurate but complex method of tile delay characterization.

Additionally, in order to eliminate the inconsistencies of delay sensitivity computation
and to enable the usage of STA data for DDRO synthesis, a new DDRO formulation is
proposed and formulated by means of delay-tracking of target critical paths across PVT
conditions.

Furthermore, to enable larger DDRO synthesis problems to be solved in feasible CPU
run-time and memory usage, three new Heuristic iterative algorithms are proposed
namely Single-Mode Successive Optimization, Multimodal-Successive Optimization and
Single-Mode Back-Tracking Optimization. Among these algorithms Single-Mode Suc-
cessive Optimization is the simplest algorithm which selects one solution per iteration
and requires least computational effort. However, this method does not span a wide
area to search for the optimum DDRO solutions and therefore may not yield in the best
matching DDROs. The Multimodal-Successive Optimization selects multiple solutions
in each iteration and therefore spans a wider space than Single-Mode Successive Opti-
mization and result in better matching DDROs. However, this method requires high
CPU memory to store the multiple selected solutions in each iteration and the data
following these solutions. The Single-Mode Back-Tracking Optimization method works
on the concept of eliminating a selected solution at an iteration and back-tracking to
the previous iteration if the objective value in the current iteration does not reduce by
a user-defined value compared to the previous iteration. Thus, this method requires less
memory compared to Multimodal-Successive Optimization but due to the back-tracking
consumes large CPU-runtimes.

Finally, in order to evaluate the synthesized DDROs, DDRO assessment methods are
proposed in this thesis, which compare the delays of the synthesized DDRO to the critical
path delays.
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The goal of design representative timing monitors as explained in Chapter 3 is to mimic
the timing behavior of critical paths of a digital design across PVT conditions. In this
thesis, different concepts and formulations to achieve the goal of developing more accu-
rate design representative timing monitors have been analyzed. With that, sensitivity-
based and delay-tracking-based DDRO synthesis methods illustrated in Sec. 3.2 and
Sec. 3.5, respectively are investigated. Furthermore, Sec. 3.4 demonstrates the im-
plementation method to synthesize DDROs using direct solvers such as LP solve and
CPLEX. In this work, new heuristic methods are described in Sec. 3.6 which are able
to handle larger DDRO synthesis problems in comparison to using direct solvers. This
Chapter demonstrates various experimental results to analyze and evaluate the follow-
ing: (1) sensitivity-based DDRO synthesis, (2) synthesis of DDROs using three different
methods of tile characterization, (3) synthesis of DDROs using direct solver (CPLEX),
(4) synthesis of DDROs using extracted data from STA, (5) synthesis of DDROs with
different lengths of tile blocks, (6) synthesis of DDROs with different lengths of tiles, (7)
synthesis of DDROs using three different heuristic methods, (8) quality of delay match-
ing of DDROs versus Generic ring oscillators (GROs), and (9) the impact of selected
tile types to synthesize DDROs by synthesizing DDROs for 5 different tile library sets

4.1 Experimental Setup for DDRO Synthesis

This section explains the experimental setup used to synthesize DDROs. Moreover, this
section explains the different types of critical paths used to evaluate the delay-tracking
quality of synthesized DDROs. Additionally, the different combinations of DDRO syn-
thesis formulations based on tile-delay characterization and integer programming meth-
ods are explained.

In this work, the heuristic methods explained in Sec. 3.6 for DDRO synthesis are
implemented in R. Here, DDROs are synthesized using an Intel Xeon9 processor with 1
thread which has a 64bit Linux architecture and 250GB memory. On the other hand,
the DDROs synthesized using direct solver CPLEX use 24 threads. Moreover, it should
be noted that, the CPU run-time for DDRO synthesis is dependent on the availability
of actual CPU cores.

For the analysis of different DDRO synthesis methods, the experiment utilizes 96
critical paths of an industrial technology below 40nm. The DDRO synthesis methods
are evaluated for a given set of critical paths. Therefore, 96 DDROs are constructed using
SPICE based data for each of the DDRO synthesis methods. Additionally, to evaluate
different DDRO formulations methods, the following critical path types are used: (a)
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critical paths having homogenous and heterogeneous mixture of cells of various cell types,
(b) critical paths having cell combinations of different drive strengths, (c) critical paths
of different lengths of cells, (d) critical paths with various fan-outs and (e) critical paths
with combinations of weak and strong cell drive strengths.

The following DDRO synthesis algorithms are assessed in Subsections 4.2 and 4.3 to
evaluate different tile delay characterization methods and DDRO formulations: LT1,
LTP2, LTS2, LT3 with linear objective, QT1, QTP2, QTS2, QT3 with quadratic objec-
tive and the 4 respective tile delay characterizations.

The parameters for the DDRO synthesis in each experiment is given in a table un-
der each section of this Chapter. The experimental parameters table typically consists
of: (1) DDRO objective(s) used which is either linear or quadratic optimization, (2)
the method(s) of tile delay characterization, (3) tile types selected, (4) number of drive
strengths of tile types used for DDRO synthesis, (5) length of a tile, i.e. the number of
standard cells concatenated to construct a tile, (6) length of a tile block if heuristic opti-
mization is used, (7) solver used, (8) number of PVT parameters considered for DDRO
synthesis, and (9) method by which delay data is obtained i.e. SPICE or STA. Addi-
tionally, in this work for Multimodal-Successive optimization, the number of solutions
selected is set to β = 20.

4.2 Sensitivity-Based DDRO

Sensitivity-based DDRO synthesis aims to track the timing attributes of target critical
paths by matching delay sensitivities of the synthesized DDROs to the given critical
paths. In this section, the synthesized sensitivity-based DDROs are evaluated with re-
spect to their ability to mimic timing attributes of critical paths. Here, the critical paths
are characterized for delay sensitivities w.r.t. globally varying statistically independent
process parameters and voltage. Delay sensitivity w.r.t. temperature is not considered
due to its low impact, but is included in the method. In this approach, sensitivity is
computed by varying the process parameters by ±0.1σ and the voltage by ±2%. The
process is considered in the nominal case and voltage and temperature are varied across
nominal, slow, fast and inverted temperature effect (ITE) corners.

4.2.1 DDRO Synthesis using Direct Solver

Results of DDRO synthesis using the state-of-the-art method of synthesizing DDROs
[22] that uses direct solvers such as CPLEX is explained.

The parameters used for the sensitivity-based DDROs using CPLEX is given in Table
4.1. Table 4.2 gives the statistical results of the l2 norm error of DDRO defined by
Equation (3.33) for 96 different critical paths. In this experiment, it can be observed that
the quadratic and linear optimization have similar results with respect to the statistical
quantities. Secondly, it can be seen that in the current technology node and with 3
tile types in the tile library, addition of load tile in the 2-tile delay characterization
yields a mean error of around 13 for both quadratic and linear optimization (LTS2,
QTS2), respectively. Moreover, the l2 norm error does not show any improvement as
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Table 4.1: Experimental parameters for the sensitivity-based DDRO using CPLEX

Parameter Value(s)

DDRO objectives Linear and Quadratic

Tile delay characterization T1, TP2, TS2, T3

Tile types INV, NAND2, NOR2

Number of drive strengths of tile types 1

Number of tile types nϕ 3

Tile length 3

Tile block length ns Not-applicable since the CPLEX
does not need the generation of
enumerated set of tile blocks

Solver CPLEX

Number of PVT corners 4

Delay data SPICE simulation

compared to 1-tile delay characterization (QT1, LT1) which results in a mean error
of around 13 and 12.7, respectively. LT1 is the DDRO synthesis method used in [22].
However, the addition of slope tile (LTP2, QTP2) results in significant improvement
of DDRO sensitivity matching which results in a mean error of around 6. The 3-tile
delay characterizations (LT3, QT3) yield the best matching DDROs for their respective
critical paths with a mean error of around 4.

Table 4.2: Statistical evaluation of normalized error of delays for sensitivity based DDROs using
direct solver CPLEX

Method Mean Min Max Standard
[arb. unit] [arb. unit] [arb. unit] deviation [arb. unit]

LT1 13.03 0.64 26.90 6.10

LTP2 9.53 1.34 18.40 4.20

LTS2 12.86 1.01 28.09 6.09

LT3 8.19 0.97 17.13 4.29

QT1 12.67 1.01 27.04 5.94

QTP2 9.62 1.34 18.40 4.14

QTS2 12.79 1.01 28.13 6.04

QT3 8.02 0.97 15.82 4.01

Figure 4.1 shows the correlation between the delay of synthesized DDRO versus the
delay of critical path at 4 different PVT conditions. The delays are normalized as given
in Equation (3.35) since the DDROs are designed to track the delay behavior of critical
path and not the absolute value of delay. Additionally, the maximum and mean error
of delay in % is calculated according to Equation (3.36). The different colors in Figure
4.1 indicate different PVT points at which the delays are characterized. A 45 deg solid
line represents the ideal regression line plotted as a reference to observe the tracking of
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delay for different DDRO synthesis methods. The dotted line gives the actual regression
line of each DDRO synthesis methods.

From Figure 4.1, it can be observed that for both linear and quadratic optimization,
the dotted line deviates from the solid line for 1-tile (LT1, QT1) and 2-tile delay char-
acterizations with succeeding tile (LTS2, QTS2) whereas the solid line and dotted line
overlay each other for 2-tile delay characterizations with preceding tile (LTP2, QTP2)
and 3-tile delay characterization (LT3, QT3). The mean error reduces from around 1.5
to 0.65 from 1-tile to 3-tile delay characterization for both linear and quadratic program-
ming, respectively. Similarly, the maximum error reduces from around 6.7 to around 4.3
from 1-tile to 3-tile delay characterization, respectively. The maximum and mean error
of delay is smallest with the QT3 method.
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Figure 4.1: Correlation between synthesized DDROs delays and critical path delays across PVT
corners for DDROs synthesized using direct solver CPLEX

Table 4.3 gives the average CPLEX CPU run-time in seconds for 24 threads to optimize
96 different DDROs for different DDRO synthesis methods. It can be observed that
linear optimization requires lower run-time than quadratic optimization. Additionally,
the CPU run-time for linear optimization increases linearly from 0.22 seconds for 1-tile
to 0.53 seconds for 2-tile delay characterization and remains almost constant from 2-tile
to 3-tile delay characterization. The CPU run-time for DDRO synthesis with quadratic
optimization increases exponentially from 0.1 seconds to 1513 seconds for 1-tile to 3-tile
delay characterization, respectively.
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Table 4.3: Average CPU run-time for DDRO synthesis for sensitivity-based DDRO using direct
solver CPLEX

Method CPU run-time [s]

LT1 0.22

LTP2 0.57

LTS2 0.53

LT3 0.56

QT1 0.10

QTP2 17.63

QTS2 43.82

QT3 1512.78

4.2.2 DDRO Synthesis using Multimodal-Successive Optimization Method

In this section, DDROs are synthesized using a Heuristic method instead of using direct
solver. The heuristic method used is the Multimodal-Successive optimization method as
explained in Sec. 3.6.5.

Table 4.4: Experimental parameters for the sensitivity-based DDRO using heuristic method

Parameter Value(s)

DDRO objectives Linear and Quadratic

Tile delay characterization T1, TP2, TS2, T3

Tile types INV, NAND2, NOR2

Number of drive strengths of tile types 2

Number of tile types nϕ 6

Tile length 3

Tile block length ns 5

Solver Multimodal-Successive Optimiza-
tion Method

Number of PVT corners 4

Delay data SPICE simulation

The parameters used for the sensitivity-based DDROs using Multimodal-Successive
optimization method is given in Table 4.4. Table 4.5 shows the overall l2 norm error
between DDROs and their respective critical path delays. It can be observed that for
linear optimization from 1-tile (T1) to 3-tile (T3) delay characterization, the mean error
reduces from 10% to 8.7%. For 2-tile (TP2, TS2) and 3-tile (T3) delay characterization
the quadratic optimization has better results than linear optimization. The reason is,
higher accuracies of tile delay characterizations, such as 2-tile and 3-tile delay character-
ization, yield better results than 1-tile delay characterization. However, it is important
to note that there are inaccuracies observed in the results of sensitivity-based DDRO
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where the 1-tile delay characterization results in lower mean and maximum error in
comparison to 2-tile delay characterization (LTP2) with linear optimization.

Table 4.5: Statistical evaluation of normalized error of delays for sensitivity based DDROs using
heuristic solver with Multimodal-Successive optimization methods

Method Mean Min Max Standard
[arb. unit] [arb. unit] [arb. unit] deviation [arb. unit]

LT1 9.57 0.61 20.02 4.28

LTP2 10.77 0.46 24.65 5.85

LTS2 9.13 0.54 24.00 5.61

LT3 8.70 0.62 19.99 4.69

QT1 15.18 0.68 32.20 7.40

QTP2 6.44 1.04 13.35 3.42

QTS2 8.80 0.54 24.01 5.80

QT3 5.07 0.39 12.30 2.95

Figure 4.2 shows the correlation of normalized DDRO delay versus critical path delay
across PVT corners for sensitivity-based DDRO synthesis. Figure 4.2 is similar to Figure
4.1 and the description of the figure is given in Sec. 4.2.1. From Figure 4.2 it can be
observed that for both linear and quadratic optimization the dotted line deviates from
the solid line for 1-tile (LT1, QT1) whereas the solid line and dotted line more or less
coincide for all the other cases. Additionally, the maximum and mean error of delay in %
is calculated according to Equation (3.36) where the maximum and mean error of delay
is smallest with the QT3 method. The higher accuracy of tile delay characterization
together with quadratic programming (QT3) reduces the maximum error by around
50% compared to the DDRO synthesis method in [22]. To summarize, based on the
analysis of sensitivity-based DDROs, quadratic optimization (Q) is a better choice in
comparison to linear optimization (L).

Table 4.6 gives the average CPU run-time to synthesize DDROs using the Multimodal-
Successive optimization method. The first column describes the different DDRO syn-
thesis methods. The second column describes the CPU run-time to generate the enu-
meration sets S(X)(it). Run-times to generate the enumeration sets is nearly the same
for both linear and quadratic optimization. The third column gives the CPU run-time
to execute the heuristic synthesis. It can be observed that on an average, the quadratic
optimization takes less CPU run-time than the linear optimization. Moreover, the CPU
run-time increases with an increase in the tile delay characterization accuracy for the
generation of enumeration sets as well as for executing the heuristic synthesis.

4.2.3 Comparison of Sensitivity-based DDROs between Direct Solver
(CPLEX) and Multimodal-Successive Optimization Method

Due to the CPU run-time constraints in the usage of CPLEX solver for the DDRO
synthesis, only 3 tile types are used in contrast to the DDRO synthesis using Multimodal-
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Figure 4.2: Correlation between synthesized DDROs delays and critical path delays across PVT
corners for DDRO synthesized using heuristic solver with Multimodal-Successive
optimization methods

Table 4.6: Average CPU run-time for DDRO synthesis for sensitivity-based DDRO using heuris-
tic solver Multimodal-Successive optimization methods

Method Generation of Heuristic

S(X)(it) [s] Synthesis [s]

LT1 1.56 64.05

LTP2 2.31 58.18

LTS2 5.8 32.25

LT3 6.4 78.81

QT1 1.6 38.26

QTP2 2.38 20.76

QTS2 2.64 22.23

QT3 6.82 40.24

Successive optimization which uses 6 tile types in the tile library set. All the other
parameters w.r.t. critical paths and PVT conditions are the same for both solvers used
to synthesize DDROs. From Tables 4.2 and 4.2, it can be seen that for the state-of-the-
art DDRO synthesis method in [22] (LT1) using Multimodal-Successive method results
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in the error reduction of around 25% in comparison to direct solver CPLEX. For the
most accurate method of DDRO synthesis, which is the quadratic optimization with
3-tile delay characterization, there is a reduction in error of around 38% from the usage
of CPLEX to Multimodal-Successive method.

Similarly, from Figures 4.1 and 4.2 it can be seen that, the linear optimization with 1-
tile delay characterization results in a lower mean and lower max error with Multimodal-
Successive optimization in comparison to CPLEX. However, 1-tile delay characterization
with quadratic programming (QT1), 2-tile delay characterization with preceding tile and
3-tile delay characterization with linear programming (LTP2, LT3) result in higher mean
and max error with Multimodal-Successive optimization in comparison to CPLEX. The
best matching DDROs are from quadratic optimization with 3-tile delay characterization
using the Multimodal-Successive optimization method, resulting in around, 12% decrease
in maximum error in comparison to CPLEX solver.

As mentioned earlier, Tables 4.3 and 4.5 gives the CPU run-time for the CPLEX
and Multimodal-Successive optimization method, respectively. Although for linear pro-
gramming (LT1) the CPU run-time with CPLEX is much lower than Multimodal-
Successive optimization, the CPU run-time for the quadratic optimization and 3-tile
delay characterization (QT3) with Multimodal-Successive optimization is much lower.
Thus, Multimodal-Successive optimization can handle much larger DDRO synthesis
problems in a feasible run-time time which also results in much better matching DDROs
in comparison to direct solvers such as CPLEX.

In order to synthesize DDROs based on delay-sensitivity matching, delay sensitivity
characterization of tiles has to be performed for every technology node and for each
standard cell library. Additionally, the PVT parameters contributing majorly to the
delay sensitivity needs to be analyzed for every technology node. Moreover, it is not
feasible to compute delay sensitivities for thousands of critical paths on a design. This
makes the delay sensitivity calculation computationally intensive. Additionally, as seen
in this section, the DDRO synthesis with delay sensitivity matching leads to inconsistent
results. These drawbacks are overcome by the usage of delay-tracking-based DDROs.

4.3 Delay-Tracking-Based DDRO

The concept of delay-tracking-based DDROs as explained in Sec. 3.5 is to match the
normalized delay of critical paths directly to that of the DDRO path instead of the delay
sensitivities. This avoids the need to perform computational intensive sensitivity analysis
on tiles and critical paths. Moreover, delay of a critical path or tile may be computed
using static timing analysis (STA). The computationally intensity of STA is substantially
less than SPICE. Thus, usage of STA enables the delay characterization of thousands
of critical paths on an industrial chip. In this section, delay-tracking-based DDROs
are evaluated using (1) SPICE characterized data and compared to sensitivity-tracking-
based DDROs (2) SPICE based DDRO synthesis for larger range of PVT conditions (3)
delay simulation by STA and STA based DDRO synthesis.
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As explained in Sec. 4.2.3, Multimodal-Successive optimization method results in
much better DDROs and can handle larger DDRO synthesis problems in comparison to
direct solvers such as CPELX. Therefore, in this section delay-tracking-based DDROs
are synthesized using the heuristic method with Multimodal-Successive optimization.

4.3.1 SPICE Data-Based DDRO Synthesis

In this section, results of delay-tracking-based DDROs synthesis are presented. In order
to compare the delay-tracking-based DDRO synthesis to sensitivity-based DDRO syn-
thesis, critical paths and tile delays are characterized using SPICE simulation with all
the conditions with respect to tile types and critical paths being identical to sensitivity-
based DDRO synthesis explained in Sec. 4.2.2. Table 4.7 shows the l2 norm between
DDRO delays and its respective critical path delays for all PVT corners. It can be
observed that for 1-tile (T1) and 2-tile succeeding (TS2) characterization the linear op-
timization yields better results than the quadratic optimization. However, the quadratic
optimization for TP2 and T3 tile characterization results in nearly 50% decrease in the
maximum error compared to the linear optimization. Moreover, quadratic programming
shows a significant improvement from 1-tile (T1) to 3-tile (T3) delay characterization.
Thus, 3-tile delay characterization with the quadratic optimization (QT3) yields in an
average error of 1.52 which is over 6 times less than the linear optimization with 1-tile
delay characterization (LT1).

Table 4.7: Statistical evaluation of normalized error of delays for delay-tracking based DDROs
using Multimodal-Successive Optimization

Method Mean Min Max Standard
[arb. unit] [arb. unit] [arb. unit] deviation [arb. unit]

LT1 9.59 0.97 24.09 5.48

LTP2 9.26 0.79 23.56 5.63

LTS2 10.14 1.15 25.71 5.62

LT3 8.50 0.55 22.33 4.58

QT1 15.26 0.76 32.05 7.41

QTP2 5.97 1.89 12.89 2.30

QTS2 15.02 0.56 28.86 7.24

QT3 1.52 0.06 12.41 1.87

Figure 4.3 shows the correlation of normalized DDRO delay versus normalized critical
path delay across PVT corners for delay-tracking-based synthesis. The Figure 4.3 is
similar to the Figure 4.1 and the description is given in Sec. 4.2.1. From Figure 4.3 it
can be observed that the different corners do not lie on the solid line for all the linear
optimization methods (LT1, LTS2, LTP2, LT3). Therefore, linear optimization for delay-
tracking-based DDROs is not a suitable method to synthesize DDROs. Moreover, it is
seen that for quadratic optimization the dotted line deviates from the solid line for 1-
tile and 2-tile with succeeding tile (QT1, QTS2) whereas the solid line and dotted line
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overlay for 2-tile delay with preceding tile and 3-tile delay characterization (QTP2, QT3).
Furthermore, the average and maximum error are significantly lower with a reduction
of maximum error from 2.65% to 1.98% and mean error from 0.57% to 0.17% for QTP2
to QT3 method of synthesize DDROs. Thus, quadratic optimization with 3-tile delay
characterization results in the best method to synthesize delay-tracking-based DDROs.
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Figure 4.3: Correlation between synthesized DDROs delays and critical path delays across PVT
corners for delay-tracking-based DDROs synthesized using heuristic solver with
Multimodal-Successive optimization methods

From Figures 4.2 and 4.3, the quadratic optimization with 3-tile delay characterization
(QT3) results in reduction of mean error from 0.64% to 0.17% and reduction of max-
imum error from 3.75% to 1.98% for sensitivity-based to delay-tracking-based DDRO,
respectively. Therefore, delay-tracking-based DDROs synthesized using quadratic opti-
mization with 3-tile delay characterization (QT3) result in best matching DDROs and
emerges as the best method for DDRO synthesis.

4.3.2 SPICE-Based DDRO Synthesis for Larger-Range of PVT conditions

It was established in the previous sections that the delay sensitivity characterization
for tiles and critical paths consumes extremely large CPU run-times and would not be
feasible for larger number of PVT corners. Thus, this experiment is aimed to evaluate
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the ability of delay-tracking-based DDROs to track critical path delays for larger number
of PVT conditions.

Table 4.8: Experimental parameters for the SPICE-based DDRO synthesis for larger-range of
PVT conditions using Multimodal-Successive optimization method

Parameter Value(s)

DDRO objectives Quadratic

Tile delay characterization T3

Tile types INV, NAND2, NOR2

Number of drive strengths of tile types 2

Number of tile types nϕ 6

Tile length 3

Tile block length ns 5

Solver Multimodal-Successive Optimiza-
tion Method

Number of PVT corners 9

Delay data SPICE simulation

The parameters used in this experiment is given in Table 4.8. Also, this experiment
used 9 instead of 4 PVT corners for the DDRO synthesis. As explained in the previous
section the quadratic optimization with 3-tile delay characterization (QT3) results in
the best DDROs. Therefore, in this section DDROs are synthesized only with the QT3
method.

Figure 4.4 shows the correlation of normalized DDRO delay versus normalized critical
path delay across PVT corners for the delay-tracking-based DDRO synthesis. It can be
seen from Figure 4.4 that, the correlation points between the 96 different DDROs and
their respective critical paths lie on the 45 degree line for all the 9 different corners of
PVT. Additionally, the maximum and mean error of delay in % is calculated according
to Equation (3.36). The maximum error for 9 different PVT corners is 1.74% and the
mean error is 0.25%. These values are comparable to the DDRO synthesis with 4 corners
shown in Figure 4.3 which results in a maximum and mean error of 1.98% and 0.17%,
respectively with the quadratic optimization and 3-tile delay characterization (QT3).
Thus, the delay-tracking-based DDRO synthesis is feasible for a wide range of corners
and results in a good match to critical paths.
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Figure 4.4: Correlation between synthesized DDROs delays and critical path delays across 9
PVT corners for delay-tracking-based DDRO synthesized using heuristic solver with
Multimodal-Successive optimization methods

4.4 STA-Based DDRO Synthesis

In this section the delay-tracking-based DDROs are synthesized using delays for tiles and
critical paths obtained from static timing analysis (STA) [61]. STA provides a simple
and faster method to analyze timing of digital circuits in comparison to SPICE. The
CPU run-time to obtain delay values of 30 tile types for 3-tile delay characterization
takes more than 1 week with SPICE simulation whereas with STA, the tile delays are
obtained within a few seconds. Moreover, timing analysis of thousands of critical paths
is only feasible with the usage of STA and not with SPICE.

The parameters used for the experiment of STA-based DDRO synthesis for larger-
range of PVT conditions using Multimodal-Successive optimization method is given in
Table 4.9. The selected critical paths used in this section are extracted from a physical
design placed and routed by commercial tools which also includes parasitic RC elements.

Figure 4.5 shows the correlation of normalized DDRO delay versus normalized critical
path delay across PVT corners for STA-based delay-tracking-based DDRO synthesis.
In Figure 4.5, a 45 degree solid line represents the ideal regression line plotted as a
reference. The dotted line gives the actual regression line of each DDRO synthesis
methods. The different colors represent the different PVT conditions. Moreover, ±5%
regression lines are also plotted. It can be observed that all the correlation points across
all PVT conditions lie within ±5% error lines. Additionally, the maximum and mean
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4.4 STA-Based DDRO Synthesis

Table 4.9: Experimental parameters for the STA-based DDRO synthesis for larger-range of
PVT conditions using Multimodal-Successive optimization method

Parameter Value(s)

DDRO objectives Quadratic

Tile delay characterization T3

Tile types INV, NAND2, NOR2

Number of drive strengths of tile types 2

Number of tile types nϕ 6

Tile length 3

Tile block length ns 5

Solver Multimodal-Successive Optimiza-
tion Method

Number of PVT corners 9

Delay data RC extracted STA

Error[%]

Max= 4.31 
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Figure 4.5: Correlation between synthesized DDROs delays and critical path delays across 9
PVT corners for delay-tracking-based DDROs synthesized using STA data

error of delay in % is calculated according to Equation (3.36). In Figure 4.5, it can be
observed the maximum error is 4.3% and mean error is 0.6%. Thus, DDROs synthesized
with STA data result in a good compromise between simulation time and delay-tracking
ability to synthesize DDROs for large scale industrial design by obtaining delay values
with STA for thousands of critical paths on a chip.
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DDROs are synthesized in the next sections, namely Sec. 4.5, Sec. 4.6, Sec. 4.7, Sec.
4.8 and Sec. 4.9 using delay obtained from STA data and these DDROs are evaluated
for variations in the experimental parameters of the DDRO synthesis algorithms such
as (2) heuristic algorithm, (2) tile block length, (3) tile length, and (4) selection of tile
types.

4.5 Comparison of Heuristic Methods

In this thesis, three different Heuristic methods are developed for the synthesis of
DDROs. These methods are explained in Sec. 3.6. DDRO synthesis could not be ex-
ecuted in feasible time for larger DDRO synthesis problems using direct solvers such
as CPLEX and LP solve. Therefore, the Heuristic methods were developed. Un-
til this section, DDROs are synthesized with the Multimodal-Successive optimization
method. In this section, the synthesized DDROs are evaluated for two other methods
(1) Single-Mode-Successive optimization explained in Sec. 3.6.6 and (2) Single-Mode
Back-Tracking optimization explained in Sec. 3.6.7. The parameters used for the exper-
iment of comparing different Heuristic methods are given in Table 4.10.
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Figure 4.6: Correlation between synthesized DDROs delays and critical path delays across
9 PVT corners for delay-tracking-based DDROs synthesized using STA data for
Single-Mode-Successive optimization method

Figures 4.6 and 4.7 shows the correlation of the normalized delays across 9 different
PVT corners between 96 different critical paths and synthesized DDROs based on Single-
Mode-Successive and Single-Mode Back-Tracking optimization, respectively. Figures 4.6

66



4.5 Comparison of Heuristic Methods

Table 4.10: Experimental parameters for the STA-based DDRO synthesis using different
Heuristic optimization methods

Parameter Value(s)

DDRO objectives Quadratic

Tile delay characterization T3

Tile types INV, NAND2, NOR2

Number of drive strengths of tile types 2

Number of tile types nϕ 6

Tile length 3

Tile block length ns 5

Solver Multimodal-Successive optimiza-
tion, Single-Mode Successive
optimization, Single-Mode Back-
Tracking optimization

Number of PVT corners 9

Delay data RC extracted STA

Error[%]

Max= 4.6 

Mean= 0.61
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Figure 4.7: Correlation between synthesized DDROs delays and critical path delays across
9 PVT corners for delay-tracking-based DDROs synthesized using STA data for
Single-Mode Back-Tracking optimization

and 4.7 are similar to Figure 4.5 and the description of the Figures is explained in Sec.
4.4. From Figures 4.5, 4.6, 4.7 it can be seen that for all the three different methods of
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4 Experimental Results of DDROs

heuristic optimization, the mean error is the same and is around 0.6%. However, there
are differences in maximum error among the three methods. The maximum error is
lowest for the Multimodal-Successive optimization with an error of around 4.3% and, for
Single-Mode Back-Tracking optimization is around 4.6%. Among the three algorithms,
the maximum error is the largest for the most simple heuristic method developed which
is the Single-Mode-Successive optimization with an error of around 5.3%.

Table 4.11: CPU run-time for the three different Heuristic algorithms

Heuristic Generation of Heuristic

method S(X)(it) [s] Synthesis [s]

Single-Mode Successive 7.25 6.51

Multimodal Successive 6.10 29.07

Single-Mode Back-Tracking 8.21 8.92

Table 4.11 shows the CPU run-time for the three different heuristic algorithms (Single-
Mode-Successive, Multimodal-Successive and Single-Mode Back-Tracking). The second
column presents the CPU run-time to generate the Enumeration sets S(X)(it). The
third column shows the average run-time of the Heuristic synthesis. It can be seen
that the run-time to generate the enumeration sets S(X)(it) is nearly the same for all
the methods and takes around 7 seconds to generate the complete enumeration sets of
tile blocks for 6 tile types in the tile library. Additionally, the run-time to perform
the Heuristic synthesis is nearly equal for both Single-Mode-Successive and Single-Mode
Back-Tracking algorithms with an average run-time of around 7 seconds. However, the
Multimodal-Successive takes more CPU run-time with an average of round 29 seconds.
Moreover, Multimodal-Successive optimization as explained in Sec. 3.6.5 selects more
than one solution in each iteration and therefore has a wider search space which may
lead to be a more global in comparison to the other two methods. This was also observed
in this experiment where maximum error is 4.3%.

Thus to summarize, in this thesis three new Heuristic algorithms were developed in
contrast to the direct solvers to solve larger DDRO synthesis problems. Among the
three methods, although CPU run-time is the highest with the Multimodal-Successive
optimization, this method resulted in the best delay-tracking DDROs.

4.6 Impact of Tile-Block Length

For the three different Heuristic methods, the basic concept as explained in Sec. 3.6.3
is to generate enumeration sets of all possible tile blocks of certain tile block length ns
for all given tile types in the tile library set. In this section, the synthesized DDROs
are evaluated for different lengths of tile blocks ns = {3, 5, 7}. The larger the tile block
length, the larger is the number of possible combinations of tile blocks at each iteration

n
(X)
c (it). Thus, increase in tile block length should increases the CPU run-time for the

DDRO synthesis. The parameters used for the experimental to analyze the impact of
different tile block lengths in the DDRO synthesis is given in Table 4.12.
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Figure 4.8: Synthesized DDRO delays vs. critical path delays across 9 PVT corners for delay-
tracking-based DDROs synthesized using STA data for ns = 3

Table 4.12: Experimental parameters for the STA-based DDRO synthesis for different tile block
lengths

Parameter Value(s)

DDRO objectives Quadratic

Tile delay characterization T3

Tile types INV, NAND2, NOR2

Number of drive strengths of tile types 2

Number of tile types nϕ 6

Tile length 3

Tile block length ns 3, 5, 7

Solver Multimodal-Successive optimiza-
tion

Number of PVT corners 9

Delay data RC extracted STA

From Figures 4.8, 4.5 and 4.9 where ns = {3, 5, 7}, it can be seen that the mean error
is around 0.6% for all the tile block lengths. However, the maximum error is the least
for ns = 3 with 4.2% error and is the highest for ns = 7 with 4.7% error. The maximum
error for ns = 5 is around 4.3%.
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Figure 4.9: Synthesized DDRO delays vs. critical path delays across 9 PVT corners for delay-
tracking-based DDROs synthesized using STA data for ns = 7

Table 4.13: CPU run-time for three different tile block lengths ns

Tile block Generation of Heuristic

length S(X)(it) [s] Synthesis [s]

ns = 3 1.17 9.47

ns = 5 6.10 29.07

ns = 7 151.59 1087.14

Table 4.13 shows the CPU run-time for the three different tile block lengths ns =
{3, 5, 7}. It can be seen that the average run-time to generate the enumeration sets
S(X)(it) and the heuristic synthesis execution increases exponentially from 1.17 to 151.79
and from 9.47 to 1087.14 seconds from ns = 3 to ns = 7, respectively. Moreover, as
explained earlier, increasing the tile block length ns does not result in better DDROs.
Thus, tile block lengths ns = {3, 5} are identified as good candidates for tile block length
to synthesize DDROs using STA data for the given set of critical paths.

4.7 Impact of Tile Length

DDROs are built by concatenating a set of tiles where tiles are concatenation of standard
cells of equal type. The concept of using tiles instead of individual standard cells is to
reduce the impact of input slew and output load on the inner cells of the tile such that the
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4.7 Impact of Tile Length

delays of tiles can be linearly added up to form the DDRO’s delay across PVT variations.
Thus, the tile length or the number of standard cells concatenated to construct a tile
is user-defined. In this section, the synthesized DDROs are evaluated based on the tile
length. The different tile lengths chosen for the experiment are {3, 5, 7}. The parameters
used for the experiment to analyze the impact of tile length in the DDRO synthesis is
given Table 4.14.
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Figure 4.10: Correlation between synthesized DDRO delays and critical path delays across 9
PVT corners for delay-tracking-based DDROs synthesized using STA data for 5
standard cells in a tile

From Figures 4.5, 4.10 and 4.11, it can be seen that tile length 3 has the least mean
and maximum error of around 0.6% and 4.3%, respectively. As the length of a tile is
increased from 3 to 5 cells, the mean and maximum error increase to around 1% and
7.3%, respectively. With the tile length set to 7 cells, the mean error reduces slightly as
compared to tile length 5 to around 0.9% and maximum error further increases to 7.4%.
Moreover, as the length of a tile is increased, the number of tiles selected to synthesize
a DDRO of a specific length reduces. Thus, smaller the tile length the more freedom
there is to choose more tiles types that match the delay behavior of critical paths.

Table 4.15 shows the CPU run-times for the three different tile lengths {3, 5, 7}. The
second column presents the CPU run-time to generate the Enumeration sets S(X)(it).
The third column shows the average run-time of the Heuristic synthesis. It can be seen
that the average run-time is nearly equal for all the three different tile lengths with an
average of 6 and 30 seconds for generation of the enumeration sets S(X)(it) and run
the Heuristic synthesis, respectively. Thus, to summarize it was seen that tile length 3
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4 Experimental Results of DDROs

Table 4.14: Experimental parameters for the STA-based DDRO synthesis for different tile
lengths

Parameter Value(s)

DDRO objectives Quadratic

Tile delay characterization T3

Tile types INV, NAND2, NOR2

Number of drive strengths of tile types 2

Number of tile types nϕ 6

Tile length 3, 5, 7

Tile block length ns 3

Solver Multimodal-Successive optimiza-
tion

Number of PVT corners 9

Delay data RC extracted STA
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Figure 4.11: Correlation between synthesized DDRO delays and critical path delays across 9
PVT corners for delay-tracking-based DDROs synthesized using STA data for 7
standard cells in a tile

resulted in the best matching DDROs with acceptable CPU run-times. Therefore, in
this technology node and for the critical paths considered in this thesis, tile length of 3
is the best choice to synthesize DDROs.
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Table 4.15: CPU run-time for the three different tile lengths 3, 5, 7

Tile Generation of Heuristic

length S(X)(it) [s] Synthesis [s]

3 6.18 30.97

5 6.10 29.07

7 6.83 31.63

4.8 Impact of Tile Selection

In this section, the results of the delay-tracking-based DDRO synthesis are discussed with
respect to selection of different tile libraries and the parameters used for the experiment
is given Table 4.14. The tile library consists of NAND2,NOR2,INV in {1, 2, 3, 4} drive
strengths which leads to libraries with {3, 6, 8, 9, 12, 15} elements for the synthesis. For
the DDRO synthesis with 8 tile types, there are two additional tile types in addition to
NAND2, NOR2, INV for the DDRO synthesis.

Table 4.16: Experimental parameters for the STA-based DDRO synthesis for different tile li-
brary sets

Parameter Value(s)

DDRO objectives Quadratic

Tile delay characterization T3

Tile types INV, NAND2, NOR2, 2 additional
tile types

Number of drive strengths of tile types 1, 2, 3, 4

Number of tile types nϕ 3, 6, 8, 9, 12

Tile length 3

Tile block length ns 3

Solver Multimodal-Successive optimiza-
tion

Number of PVT corners 9

Delay data RC extracted STA

Table 4.17: The error of tracking delays of critical paths using DDROs (QT3) for different tile
library sets

RO Type Mean error [%] Max error [%]

QT3 nϕ = 3 1.02 7.27

QT3 nϕ = 6 0.55 4.31

QT3 nϕ = 8 0.44 4.31

QT3 nϕ = 9 0.52 4.26

QT3 nϕ = 12 0.52 4.26
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Figure 4.12 shows the correlation between normalized delays of DDROs and critical
paths for the different tile library sets. Comparing the results of different tile library
sets in Figure 4.12 and Table 4.17, it can be seen that with an increase in number of tiles
in the tile library from 3 to 6 tile types, there is a significant decrease in the mean error
and around 3% percent decrease in the maximum error. With increase in number of tile
types from 6 to 12, there is a slight decrease in the maximum error to around 4.26% along
with a slight increase in the mean error to 0.52% . Although local optimization using
Multimodal-Successive method results in slightly reduced performance of the synthesized
DDROs, this reduction is negligible in comparison to the benefits of having reduced
computational complexity.

Table 4.18: CPU run-time for different tile library sets

Tile Generation of Heuristic

length S(X)(it) [s] Synthesis [s]

3 2.37 7.8

6 6.823 28.06

8 24.15 125.068

9 52.48 276.94

12 408.166 2091.24

Table 4.18 shows the CPU run-times for five different tile library sets. It can be
seen that on an average less CPU run-time is required to generate the enumeration sets
S(X)(it) in comparison to the heuristic synthesis. Moreover, the CPU run time increases
exponentially with increase in number of tile types in the tile library sets. Furthermore,
it was already presented in this section that the maximum and the mean errors do not
reduce significantly with an increase in tile sets beyond 6 tile types. Therefore, using 6
different tile types of NAND2, NOR2, INV is a good compromise between the DDRO
matching quality and short CPU run-times.
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Figure 4.12: Correlation between synthesized DDROs delays and critical path delays across 9
PVT corners for delay-tracking-based DDROs synthesized using STA data con-
structed using different tile library sets (03T, 06T, 08T, 09T, 12T)
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4.9 Comparison of GROs versus DDROs

Generic-ring oscillator monitors (GROs) are traditionally used timing monitors. GROs
are made of single cell type ring oscillators and are not constructed based on a specific
design. In this section, the design representativeness of GROs is analyzed and is com-
pared with DDROs. The GROs used in this experiment are inverter (INV), NAND2
and NOR2 ring oscillators.
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Figure 4.13: Correlation between INV, NAND2 and NOR2 GRO delay and critical path delays
across 9 PVT corners

Figure 4.13 shows the correlation between normalized delays of GROs (INV, NAND2
and NOR2) and critical paths. The different colors in Figure 4.13 indicate different
PVTs. A 45 degree solid line represents the ideal regression line plotted as a reference.
The dotted line gives the actual regression line of each DDRO synthesis methods. From
Figures 4.13 and 4.12 it can be seen that, all GROs have a mean error of > 1.75% which
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is around 4 times larger than the mean value of DDRO with 8 tile types in Figure 4.12.
From Figure 4.13, the maximum error is the lowest for IVX-GRO with 12.49% error
and the highest for NOR2-GRO with 19.63% error. On the other hand, the maximum
error for 8 tile type case in Figure 4.12 is 4.31% which is around 3 times less than
the IVX-GRO. Thus, DDROs can represent the design much better than the existing
state-of-the-art GROs.

4.10 Summary

This Chapter illustrates the experimental results of various DDRO synthesis methods
explained in Chapter 3. The synthesized DDRO delays are characterized at various
PVT conditions. Additionally, the ability of DDROs to track the delay of target critical
paths are evaluated. Table 4.19 summarizes some of the important results of the DDRO
synthesis shown in this Chapter. The first column of Table 4.19 RO type indicates the
type of RO that is compared with the timing behavior of target critical paths. The
second column Synthesis method indicates if the DDROs are synthesized by sensitivity-
based or delay-tracking-based DDROs. The third column Simulation method indicates
the method of tile-delay characterization. The state-of-the-art method uses 1-tile delay
characterization. The 3-tile delay characterization method has a preceding and succeed-
ing tile to the tile to be characterized. The fourth column Objective indicates if the
DDROs are synthesized using linear or quadratic objective. The fifth column Data used
shows if the delays for the DDRO synthesis are obtained using STA or SPICE. The
sixth column Number of tiles types simply show the number of tiles types used for the
DDRO synthesis. The last column mean error in [%] indicates the mean value of the
delay tracking error for all the DDROs synthesized for a specific input configuration
calculated based on the Equation 3.36.

Table 4.19: Summary of experimental results of the DDROs

RO
type

Synthesis
method

Simulation
method

Objective Data used Number
of tiles
types

Mean
error
[%]

DDRO Sens-based 1-tile delay Linear SPICE 6 1.25

DDRO Sens-based 3-tile delay Quadratic SPICE 6 0.64

DDRO Delay-based 3-tile delay Quadratic SPICE 6 0.17

DDRO Delay-based 3-tile delay Quadratic STA 6 0.55

DRO Delay-based 3-tile delay Quadratic STA 12 0.52

IVX-
GRO

- - - STA - 1.75

The first row in Table 4.19 shows the DDRO synthesis using the state-of-the-art
method. Additionally, the delays are obtained for all the sensitivity-based DDRO syn-
thesis methods using SPICE. The second row shows the DDRO synthesis using quadratic
objective and 3-tile delays for sensitivity-based DDROs. It can be seen that the mean
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4 Experimental Results of DDROs

delay tracking error reduces from 1.25% to 0.64% in the state-of-the-art method to
quadratic objective with 3-tile delay characterization by sensitivity-based DDROs, re-
spectively. The third row of Table 4.19 shows the results of the DDRO using the delay-
tracking-based DDRO synthesis. In order to compare the sensitivity-based DDROs to
delay-tracking-based DDROs the delays are obtained using SPICE simulation and all the
other parameters are kept constant for the DDRO synthesis. It can be seen that the delay
drastically reduces from 0.64% to 0.17% from the sensitivity-based to delay-tracking-
based DDROs using 3-tile delay characterization, respectively. Thus delay-tracking-
based DDRO synthesis method is better suited to synthesize DDROs that mimic the
delay behavior of given critical paths.

The fourth row in Table 4.19 shows the delay-tracking results for DDROs synthesized
using STA data. STA aids in the reduction of CPU run-times for delay computation
in comparison to SPICE. It can be seen that the mean delay-tracking error with STA
data is 0.55% for 6 tile types. Furthermore, the impact of tile type selection for the
DDRO synthesis is investigated. It can be seen that the mean error reduces to 0.52%
by using 12 tile types. The difference in the tile type selection between 12 and 6 lies in
the usage of different drive-strengths. Thus, addition of drive strengths of the same tile
types in the tile library did not have a high impact of the DDRO results. Finally, the
DDROs are compared with the generic ring oscillators (GRO). The result of IVX-GRO
is show in the last row of Table 4.19. As can be seen from Table 4.19, the mean error
increases from 0.52% to 1.75% from using DDROs to GROs, respectively. To conclude,
this Chapter has shown that DDROs are can accurately track the delays of critical paths
across various PVT conditions. Moreover, the newly proposed DDRO synthesis methods
of this work have much better delay-tracking ability in comparison to the state-of-art
method DDRO synthesis method as well as GROs.
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5 Methods to Group Critical Paths

An industrial digital design consists of thousands of critical paths. The goal of a design
dependent ring oscillator (DDROs) as explained in Sec. 3.1 is constructed to mimic the
delay of critical paths in a design across various PVT conditions. However, constructing
DDROs for each of these critical paths would be impractical due to the large area
overhead and power consumption. Thus the aim is to build fewer DDROs such that
each DDRO represents the timing of a group of critical paths. Thus, critical paths on
a design are grouped based on their similarity in behavior w.r.t. PVT and one DDROs
is built for each of the target critical path group. In this Chapter, an overview on the
concept of clustering algorithms and different clustering methods used to group critical
paths based on similarity in delay behavior is explained.

Clustering is a method of unsupervised learning algorithm where these algorithms
typically have an optimality criterion which is solved by heuristic methods or by using
mathematical models [64]. Sec. 5.1, Sec. 5.2 and Sec. 5.3 explains the grouping of
critical paths using Hierarchical, KMeans++ and Expectation-Maximization clustering
algorithms, respectively. Furthermore, in order to evaluate the best suitable method
to cluster critical paths for DDRO synthesis, the results of the three algorithms are
compared in Sec. 5.4.

5.1 Hierarchical Clustering

In this section, the delays of critical paths across PVT conditions are grouped using Hi-
erarchical clustering algorithm. The concept of Hierarchical clustering is to successively
partition the critical paths where all the critical paths are at first, placed in its individual
cluster and combined in each step until all the critical paths are placed in one cluster.
Thus, the given set of critical paths are clustered in a successive manner. Additionally,
in Hierarchical clustering, once two or more critical paths are placed within one group,
these critical paths cannot be grouped into different clusters in subsequent iterations

In this thesis, Hierarchical clustering is performed using hlcust function in R [65].
Figure 5.1 shows the working principle of hierarchical clustering. Critical path delays
d

′
CP (pPV T ) are characterized at various corners of PVT. After which, critical path

delays are normalized according to Equation (3.23) in order to cluster based on the
timing behavior across PVT conditions and not on the absolute value of delay. The
normalized critical path delays are fed as input to the Hierarchical clustering algorithm.
Hierarchical clustering algorithm first generates a series of partitions of critical paths
such that each critical path is partitioned into its individual cluster. Thus, the initial
number of clusters is equal to the number of critical paths nCP to be clustered:
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K(st = 1) = nCP (5.1)

The general equation for cluster sets during each successive step is written as:

SCPj (st), j ∈ {1, . . . ,K(st)}

d
′
CPkj

(st,pPV T ) ∈ SCPj (st)
(5.2)

where d
′
CPkj

(st,pPV T ) is the critical path of index k is the index of critical path which
belong to cluster j at step st. SCPj (st) is the group of critical paths at step st. At each
step st, the l2 norm distance between all critical paths which do not belong to the same
cluster is computed and two critical paths groups resulting in closest critical paths with
least distance is found:

min︸︷︷︸
k1∈{1...nCP }
k2∈{1...nCP }

∥∥∥d′
CPk1j1

(st,pPV T )− d
′
CPk2j2

(st,pPV T )
∥∥∥
2

s.t.

j1 ∈ {1, . . . ,K(st)}
j2 ∈ {1, . . . ,K(st)}
j1 6= j2

(5.3)

The two critical paths groups found to have the least distance are placed into one
single cluster. Thus, a certain group of critical paths SCPj(st) at step st is a union of
the critical path group SCPj1(st− 1) and the critical path group SCPj2(st− 1) found to
have least distance in step st and the number of cluster sets is reduced by one:

SCPj (st) =
{
SCPj1(st− 1) ∪ SCPj2(st− 1)

}
K(st+ 1) = K(st)− 1

(5.4)

This process goes on successively until all the critical paths are grouped into a single
cluster. Figure 5.2 shows a simple example of the Hierarchical clustering method to
cluster nCP = 4 critical path delays across 2 PVT corners.

Once all the steps are completed and all the critical paths are placed into one single
cluster, the initialized number of clusters given as an user-input is used to extract the
required critical path cluster information [66] [67].

The results of Hierarchical clustering can be visualized by a Dendogram plot. Figure
5.3 shows a Dendogram plotted for critical paths clustered using Hierarchical clustering.
Here, 256 critical paths are used for clustering which consists of cells made from two
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Figure 5.1: Flow of clustering critical paths using Hierarchical clustering

1
2

3 4

P
V

T
 c

o
rn

e
r 

1

PVT corner 2

Step=1

1
2

3

P
V

T
 c

o
rn

e
r 

1

PVT corner 2

Step=2

1
2

P
V

T
 c

o
rn

e
r 

1

PVT corner 2

Step=3

1

P
V

T
 c

o
rn

e
r 

1

PVT corner 2

Step=4

Figure 5.2: Example of Hierarchical clustering method to cluster nCP = 4 critical path delays
across 2 PVT corners

different standard cell libraries and the given set of critical paths are clustered until
grouped into 13 different clusters. The structure of a Dendogram plot is similar to
that of an evolutionary tree. This plot starts with one cluster and the tree evolves into
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Figure 5.3: Dendogram of hierarchical clustered critical paths

multiple branches based on the size of the cluster. In this work, the maximum l2 norm
distance between two critical paths within a cluster is used as a measure to find the size
of a cluster.

From Figure 5.3, it can be observed that for 13 clusters, the maximum l2 norm distance
between two critical paths within a cluster is less than 0.001. The rectangular boxes
with various colors at the bottom of the Dendogram plot represents the different clusters.
The number of critical paths in cluster can be observed from the Dendogram plot. It
can be observed that certain clusters have many more cluster behavior where as certain
critical paths contains only a couple of critical paths. The cases where only a couple of
critical paths are placed in a cluster might be due to outlier timing behavior of those in
comparison to other critical paths considered across all PVT conditions.
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5.2 KMeans++ Clustering

KMeans++ clustering is classified into the group of unsupervised statistical learning
algorithms which works by the method of iterative descent. This clustering algorithm
partitions a given set of multivariate data into mutually exclusive clusters such that
resulting clusters contain data points which are similar [66], [68] and [69].

In this thesis, a modified KMeans algorithm known as Kmeans++ algorithm is used
where at first the data, in this case, the critical path data is fed into the algorithm.
After which, the initial centroids are chosen at the first iteration. Finally, the objective
in Equation (5.2) which is the within group sum of squares (WGSS) between clusters in
minimized.

WGSS =min
SCPj

K∑
j=1

∑
j∈k

∥∥∥d′
CPkj

(pPV T )− µj(pPV T )
∥∥∥2 (5.5)

SCPj is the set of critical paths in the j cluster index and µj(pPV T ) is the cluster center
for cluster index j. Figure 5.4 shows the pictorial representation of WGSS. After the
objective of WGSS is minimized, the data points across clusters are reassigned and the
centroid values are recalculated. This step of minimizing the WGSS is continued until
the maximum number of iterations is reached. Finally, the results of clustered data is
returned as output.

max

min

0

Figure 5.4: Pictorial Demonstration of WGSS [66]

In addition to the WGSS, the between sum of squares BetweenSS and total sum of
squares TotalSS are also computed by which the variance explained by the clusters is
computed:
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TotalSS =

K∑
j=1

gj∑
k=1

∥∥∥d′
CPkj

(pPV T )− µj(pPV T )
∥∥∥2

BetweenSS =
K∑
j=1

‖µT (pPV T )− µj(pPV T )‖2

V arK =
BetweenSS
TotalSS

(5.6)

where gj is the total number of critical paths in each cluster j, µT (pPV T ) is the total
mean of all the critical paths across PVT conditions.

Figure 5.5 gives the method to cluster critical paths using Kmeans++ clustering. At
first, critical paths are identified in a design and characterized for various PVT condi-
tions. The critical path delays are then normalized so that critical paths are clustered
based on the similarity in their behavior across PVT conditions. An initial value of
number of clusters is initialized by the user. After which, Kmeans++ algorithm is run
and set of clusters of critical path data is obtained.

In order to determine the minimum number of clusters for the given set of data, an
elbow plot is used as shown in Figure 5.6 which gives the variance of clustering V arK for
a range of clusters. Moreover, the distance of each critical path delay from its respective
cluster center is calculated as:

εkj(pPV T ) =


εkj(pPV T1)
εkj(pPV T2)

. . .
εkj(pPV TnPV T

)

 =



1−
d
′
CPkj

(pPV T1
)

µj(pPV T1
)

1−
d
′
CPkj

(pPV T2
)

µj(pPV T2
)

. . .

1−
d
′
CPkj

(pPV TnPV T
)

µj(pPV TnPV T
)


(5.7)

The maximum distance of critical path from its respective cluster is limited by a user
defined coefficient εmax, which should hold for all the clusters and across all PVT condi-
tions. If necessary the number of clusters K is increased and the clustering algorithms
along with the distance computations are re-run until the above condition is satisfied.

Figure 5.6 gives the elbow plot for variance of clustering V arK for a range of clusters.
Here, 256 critical paths are used as cluster data which consist of cells made from two
different standard cell libraries. The critical paths are characterized at 9 different PVT
corners using STA. In Figure 5.6, the point of elbow of the plot represents the minimum
number of clusters to be selected and it is observed that the minimum number of clusters
required is around 8.
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5.3 Model-Based Clustering

Hierarchical and KMeans++ clustering algorithms explained earlier in Sec. 5.1 and Sec.
5.2, respectively are heuristic algorithms. Expectation maximization (EM) clustering
is a model based clustering method which assumes a statistical model for the given
set of critical paths delays. This model assumes that critical paths contain statistical
data and can be modeled into further sub-models with various multivariate probability
density functions. These multivariate probability density functions result in a finite
mixture density for the whole set of critical paths [66] [70]. Unlike Hierarchical and
KMeans++ algorithm, EM clustering is performed only once. Moreover, EM clustering
is a method of soft clustering where each data point or critical path is not fully sorted into
a certain cluster but the algorithm defines the probability of a certain critical path point
fitting into a certain model and cluster. However, EM algorithm is only advantageous
if the critical path data can be well fit into statistical models. As critical path data is
not computed by statistical evaluation, EM clustering may not be the best method of
clustering of the target critical paths in comparison to the simpler Heuristic methods
such as Hierarchical and KMeans++ clustering.

Run Clustering 

algorithms

Calculate distances of 

critical paths from their 

respective cluster center

Critical path delays at 

different PVT corners

Normalization of critical 

path delays at PVT corners

Initialize maximum 

number of clusters (K)

STOP

EM clustering

Figure 5.7: Flow of Expectation-Maximization (EM) clustering algorithm

Figure 5.7 shows the flow diagram of EM clustering algorithm. The critical path delays
are characterized at various conditions of PVT and the normalized critical path data is
fed as input into the EM clustering method. Additionally, a maximum value of clusters
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Kmax is fed as input into the EM algorithm. The first stage of the EM algorithm
involves the computation of the Bayesian Inversion Criterion (BIC) values where the
BIC function tries to fit the critical path delay data into a range of cluster numbers.
The BIC function, for a range of clusters {1, 2, . . . ,Kmax} generates the finite mixture
models and their probability values. Moreover, for the range of cluster sets with different
cluster numbers, several types of mixture models are generated. The mixture models
considered are Gaussian distribution functions. Finally, the actual cluster number K and
finite mixture model type is set based on the results of a probability function resulting
in the highest BIC value for the given set of critical path delay data. The sections below
give more details on the Expectation-Maximization algorithm.

5.3.1 Finite Mixture Densities

As explained earlier, based on the highest BIC value, the finite mixture model type and
number of clusters K is set in the EM algorithm. Equation 5.8 represents the finite
mixture model which are a family of probability density functions:

f
(
d

′
CPk

(pPV T ),pb,θ
)

=

K∑
j=1

pbj · gj
(
d

′
CPk

(pPV T );θj

)
k ∈ {1, . . . , nCP }

(5.8)

d
′
CPk

(pPV T ) is the normalized delay of a critical path k across PVT condition, pb is
the vector of the mixing proportions of each critical path into various clusters j. gj is
the density function with parameters θj for each cluster j. The mixing probabilities are

non-negative and
∑K

j=1 pbj = 1. From the estimation of the parameters of the assumed
finite mixture model and density functions, the critical path delays can be associated
with specific clusters based on the maximum value of estimated posterior probability
[66] [70]:

P
(
j|d′

CPk
(pPV T )

)
=

pb · gj
(
d

′
CPk

(pPV T );θj

)
f
(
d

′
CPk

(pPV T ),pb,θ
)

j ∈ 1, . . . ,K

k ∈ 1, . . . , nCP

(5.9)

5.3.2 Maximum Likelihood Estimation of Finite Mixture Models of Critical
Paths Delays

The finite mixture density of nCP critical paths is given in Equation 5.8. The log-
likelihood function l of the critical path delays is given as:
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l (pb,θ) =

nCP∑
k=1

ln f
(
d

′
CPk

(pPV T ),pb,θ
)

k ∈ 1, . . . , nCP

(5.10)

In the case of finite mixture densities, the maximum likelihood function is solved using
iterative methods. For a finite mixture model of Gaussian distributions, the properties
of mean µj and covariance matrix of Σj of each cluster j is computed iteratively as
shown below [66]:

pj =
1

nCP

nCP∑
k=1

P
(
j|d′

CPk
(pPV T )

)
(5.11)

µj(pPV T ) =
1

nCP · pj

nCP∑
i=1

d
′
CPk

(pPV T ) ·P
(
j|d′

CPk
(pPV T )

)
(5.12)

Σj =
1

nCP

nCP∑
i=1

(
d

′
CPk

(pPV T )− µj

)(
d

′
CPk

(pPV T )− µj

)T
·P
(
j|d′

CPk
(pPV T )

)
(5.13)

In this work, EM algorithm from Mclust function in R [71] is used to cluster the
critical path data. Bayesian approach is used by calculating BIC function and the result
of the BIC is fed into the EM algorithm, where the EM clustering algorithm generates
the results of posterior probabilities of the selected finite mixture models along with the
mean and covariance matrix in an iterative manner. Here, 256 critical paths are used for
clustering where the delays of critical paths are characterized at 9 different conditions
of PVT using STA. Figure 5.8 shows the results of BIC of critical path delay data.
The different finite mixture models available in the Mclust function of R are given in
Table 5.1. It can be seen that the BIC values increase initially with increase in number
of clusters and reach a maximum point after which they remain nearly the same or
decrease in value. In Figure 5.8, 22 clusters with model V EV results in the highest BIC
value. Model V EV from [71] consists of ellipsoidal distributions of clusters with variable
volume and equal shape among the clusters.
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Table 5.1: Finite mixture models in Mclust in R

Abbreviation Gaussian distribution Model

EII Spherical, equal volume

VII Spherical, unequal volume

EEI Diagonal, equal volume and shape

VEI Diagonal, varying volume, equal shape

EVI Diagonal, equal volume, varying shape

VVI Diagonal, varying volume and shape

EEE Ellipsoidal, equal volume, shape, and orientation

EEV Ellipsoidal, equal volume and equal shape

VEV Ellipsoidal, equal shape

VVV Ellipsoidal, varying volume, shape, and orientation
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Figure 5.8: Results of BIC for critical path data

5.4 Analysis of Clustered Critical Paths

The clustered critical path data is analyzed using distances of critical path delays from
their cluster centers using Equation (5.7) . The maximum distance εmax of a critical path
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Figure 5.9: Maximum distance of critical paths from hierarchical cluster center

from it’s cluster is computed amongst all clusters for each PVT condition. Figures 5.9,
5.10 and 5.11 show the maximum absolute distance of critical paths from their cluster
centers for a range of cluster numbers using Hierarchical, KMeans++ and EM clustering,
respectively. The red line in the Figures indicate 2% distance and blue line indicates 1%
distance. It can be seen that in Figure 5.11 with EM clustering, for clusters between 2
to 23, the maximum distance of critical paths from cluster center is always greater than
2%. Additionally, in Figure 5.10 with KMeans++ clustering, the maximum distance
from cluster center is below 2% for 12 clusters and the maximum distance is greater
than 1% until 25 clusters. Furthermore, in Figure 5.9 with hierarchical clustering, the
maximum distance from cluster center is below 2% for 11 clusters and the maximum
distance is lesser than 1% at 24 clusters. Therefore, Hierarchical clustering results in the
least maximum distance between critical paths and cluster centers and requires fewer
number of clusters. This means that with Hierarchical clustering, the number of DDROs
to synthesize for a given set of critical paths is lesser in number compared to KMeans++
and EM clustering. Moreover, Hierarchical clustering also results in compact clusters
which means that distance between cluster center and critical paths is the lesser than
EM and KMeans++ clustering. In summary, although Hierarchical clustering is the
simplest algorithm amongst the three different algorithms analyzed, it results in the
most compact clusters with minimum cluster sizes and maximum distance between two
clusters. Thus, Hierarchical clustering is considered as the best choice of algorithm to
cluster critical paths for DDRO synthesis.
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Figure 5.10: Maximum distance of critical paths from KMeans++ cluster center
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Figure 5.11: Maximum distance of critical paths from EM cluster center

5.5 Summary

In this Chapter, in order to synthesize DDROs for a large number of critical paths of a
real design, grouping of critical path delays across PVT conditions is explained so that
one DDRO can be synthesized per critical path group. In this work, three different un-
supervised clustering algorithms are investigated for the critical path clustering namely
Hierarchical, KMeans++ and Expectation-Maximization (EM) clustering. Hierarchical
and KMeans++ are heuristic algorithms where the number of clusters and the size of a
cluster is user-defined. However, EM clustering is a model-based clustering which tries
to fit the critical paths into different Gaussian distribution functions in a finite mixture
model. Each Gaussian distribution is then assumed to be one cluster. Moreover, the
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number of clusters and mixture model is also selected by the EM algorithm. Further-
more, in order to compare the different methods of clustering performed on a given set
of critical path data, an assessment method is proposed where the distance of each of
the critical paths is computed from its cluster center for each PVT condition and for all
the three different clustering methods. Evaluating the size of a cluster based on max-
imum distance of a critical path from its cluster center, Hierarchical clustering results
in the most compact clusters. Although Hierarchical and KMeans++ are simple heuris-
tic algorithms, they emerge as good candidates to cluster critical paths to synthesize
DDROs. Therefore, in the next Chapter 6, the DDROs are synthesized for critical path
data clustered by Hierarchical and KMeans++ algorithms.
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6 DDRO Synthesis for Large-Scale Digital
Design

As explained earlier, an industrial chip design typically consists of tens of thousands of
critical paths thus, making it infeasible to generate DDROs for each of these critical
paths. To generate DDROs which can match the timing behavior of all critical paths,
the identified critical paths are grouped based on their similarities of timing behavior
and a single DDRO is synthesized for one critical path group. Thus, the number of
DDROs required for a chip is the number of groups of critical paths. In this Chapter,
DDROs are synthesized for clustered critical paths where the critical paths are clustered
using algorithms explained in Chapter 5.

In this Chapter, tile delays and critical path delays are characterized using static
timing analysis (STA). STA is substantially less computationally intensive than SPICE
simulation. Therefore, using STA makes it feasible to characterize delays of thousands
of critical paths and tiles. The number of critical paths used for clustering is increased
from 96 to 256 to be more representative of an industrial design. Moreover, the selected
critical paths are extracted from a physical design placed and routed by commercial
tools including parasitic RC elements. Additionally, it was found that, Kmeans++ and
Hierarchical clustering are better suited to synthesize DDROs in Chapter 5. Therefore,
critical path delays have been grouped using KMeans++ and Hierarchical Clustering
algorithm into 13 distinct clusters. The centroid value of a cluster is considered as
the target to synthesize a corresponding DDRO. The parameters used for the DDRO
synthesis for large-scale digital design is given in Table 6.1.

Delay-tracking-based DDROs are synthesized using two different tile library sets. The
first tile library set consists of 6 tile types and the second tile library contains two
additional tile types. These two additional tile types in the second tile library are
identified based on the evaluation of the timing behavior of chosen critical paths. The
tile delays and critical path delays are characterized at 9 different PVT corners which
include the process slow, nominal and fast corners. The DDROs are synthesized using
quadratic 3-tile delay characterization (QT3) and Multimodal-Successive optimization
method. The length of a tile is set to 3. A tile block length of ns = 5 is used for the
DDRO synthesis. The number of selected solutions in each iteration of the Multimodal-
Successive optimization β = 20.

95



6 DDRO Synthesis for Large-Scale Digital Design

Table 6.1: Experimental parameters the DDRO synthesis for large-scale digital design

Parameter Value(s)

DDRO objectives Quadratic

Tile delay characterization T3

Tile types INV, NAND2, NOR2, 2 additional
tile types

Number of drive strengths of tile types 2

Number of tile types nϕ 6, 8

Tile length 3

Tile block length ns 5

Solver Multimodal-Successive optimiza-
tion

Number of PVT corners 9

Delay data STA

Target Clustered critical paths

Number of clusters 13

Clustering algorithms Hierarchical, KMeans++

6.1 DDRO Delays versus Critical Path Cluster Centers
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Figure 6.1: Delay-based DDRO synthesis using STA data with KMeans++ clustering

Figures 6.1 and 6.2 show the correlation between the normalized delay of DDROs and
their respective critical paths clusters using KMeans++ and Hierarchical clustering,
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Figure 6.2: Delay-based DDRO synthesis using STA data with Hierarchical clustering

respectively. The delays are normalized as per Equation (3.35). The different colors in
Figures 6.1 and 6.2 indicate the PVT corners. A 45 degree solid line represents the ideal
regression line plotted as a reference.

It can be seen that the mean error in percentage across all PVT corners with KMeans++
clustered data is 0.28% and the maximum error is 1.77% and does not show any improve-
ment with the selection of 6 or 8 tile types in the tile library. The DDRO synthesis with
Hierarchical clustered data results in a slightly larger mean than KMeans++. The mean
error reduces from 0.43% to 0.32% and the maximum error reduces from 3.21% to 1.77%
for 6 to 8 tile types for Hierarchical clustered data. Thus, showing an improvement with
the selection of 8 tile types in comparison to 6 tile types in the tile library. Additionally,
maximum and mean error between DDRO and critical paths is lower for clustered data
in comparison to non-clustered data in Figure 4.5 having a mean and maximum error of
4.31% and 0.64%, respectively. This proves that the DDRO synthesis flow is suitable for
the clustered STA based data that includes critical paths with parasitic RC elements.

In order to evaluate the distribution of delay errors, Figures 6.3 and 6.4 show the dis-
tribution of DDRO mismatch with respect to the reference critical paths cluster centers,
with 8 tile types per standard cell library for KMeans++ and Hierarchical clustering,
respectively. The different bars in the figures represent bins for different delay mismatch
values. The height gives the number of DDROs in the respective bin, the colors distin-
guish between the different critical paths. It is observed that the distribution is skewed
with error points tending towards the origin. Furthermore, with both the clustering
methods and for each PVT corner, 90% of DDROs have less than 1% error.
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Figure 6.3: Distribution of delay-tracking errors of DDROs per corner with KMeans++ clus-
tering
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Figure 6.4: Distribution of delay-tracking errors of DDROs per corner with Hierarchical clus-
tering
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Figure 6.5: Scatter plot of DDROs synthesized for clustered critical paths with KMeans++
clustering
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Figure 6.6: Scatter plot of DDROs synthesized for clustered critical paths with Hierarchical
clustering
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6.2 DDRO Delays versus Critical Path Delays

The earlier analysis looked into the mean and maximum error of DDROs with respect
to the cluster center of the clustered critical paths. In order to evaluate if the DDROs
are located close to the center of their respective critical path cluster, Figures 6.5 and
6.6 shows the scatter plots of the normalized delays for each DDRO and critical path for
two PVT corners (corner 1 and corner 2) for DDROs synthesized using KMeans++ and
Hierarchical clustering, respectively. Each color variant is a specific cluster. The smaller
dots represent the critical paths for each cluster. The squares represent the DDROs for
the respective cluster. It can be observed that the DDROs are well centered within their
respective cluster and therefore are reliable representatives of their clusters.
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Figure 6.7: Delay tracking of synthesized DDROs for cluster-3 of critical paths

Furthermore, Figures 6.7 and 6.8 shows the delay tracking of syntheized DDROs for
two clusters of critical paths. The DDROs are synthesized for KMeans++ clustered
data. These plots show the ability of a DDRO to track the critical path delays across all
9 PVT corners. It can be seen from Figures 6.7 and 6.8 that, both critical path clusters
differ in their timing behavior across PVT corners and the synthesized DDROs are able
to track their respective clusters.
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6.3 Summary
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Figure 6.8: Delay tracking of synthesized DDROs for cluster-7 of critical paths

6.3 Summary

In this Chapter, DDROs are synthesized for clustered critical paths to demonstrate the
DDRO synthesis for large scale digital design. Thereby, 256 critical paths are identified
and grouped using KMeans++ and Hierarchical clustering into 13 different clusters. The
DDROs are synthesized using the best optimization method as observed in Chapter 4
which is the delay-tracking-based DDRO synthesis using quadratic objective and 3-tile
delay characterization (QT3).

It is found that KMeans++ and Hierarchical clustering result in a maximum error
of 1.77% using 8 tile types in the tile library. Moreover, DDROs are plotted amongst
the critical paths in a scatter plot between two PVT corners. It was found that the
DDROs are well within their respective target critical path group. Furthermore, the
DDROs delay-tracking capability across various PVT conditions is analyzed where, it is
observed that the DDROs are able to track the delays of their respective clusters across
all the PVT conditions.

Thus, the delay-tracking-based DDRO synthesis is a systematic and accurate method
to monitor the critical path timing of digital circuits. Furthermore, due to grouping of
critical paths and synthesizing one DDRO per group of critical paths, it is feasible to
construct DDROs for a complete digital design in large scale industrial chips.
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The advancement of technology nodes has resulted in increased variations of digital cir-
cuit timing. Timing variations in worst-possible conditions could lead to errors and
breakdown of electronic systems. Therefore, addition of guardbands during the chip
design is a solution to avoid failure. These guardbands ensure that the required perfor-
mance is met. However, result in elevated area, power, cost and design time. In order
to verify if timing criteria are met by manufactured chips, post-silicon chip validation is
performed. During this, additional test guardbands are added which is calculated based
on the accuracy of chip timing prediction. To reduce test guardbands and increase man-
ufacturing yield, frequency is evaluated by on-chip test structures where their timing
behavior is highly correlated to the behavior of the chip under given fabricated condi-
tions, and across various voltage and temperature conditions.

Design-dependent timing monitors introduced in [22] [23] [24] are used to evaluate the
timing of specific chip design. In this thesis, design dependent ring oscillators (DDROs)
are the proposed timing monitors. In the DDRO approach critical paths are clustered
based on their similarities in timing behavior across PVT conditions. For each path
group, a DDRO consisting of a chain of tiles is constructed, where a tile is a chain of
standard cells of equal type. The goal of the DDRO synthesis is to match the timing
behavior of the target critical path group.

This thesis focuses on improving the quality of design-dependent ring oscillators
(DDROs) by using delay-tracking for construction of DDROs in contrast to the sensi-
tivity tracking as explained in Chapter 3. In addition to the linear objective introduced
in the state-of-the-art method, quadratic objective is proposed in this thesis to further
increase the accuracies of DDROs. This thesis also proposes tile delay characterization
with realistic environment considering the impact of input slope and output load on tile
delay. Thereby, three new methods of tile delay characterizations are investigated out of
which the 3-tile delay characterization results in the most accurate but complex method
of tile delay characterization. Furthermore, to solve larger DDRO synthesis optimiza-
tion problems, 3 new Heuristic iterative algorithms are proposed, namely, Single-Mode
Successive, Multimodal-Successive and Single-Mode Back-Tracking optimization. Addi-
tionally, DDRO assessment methods are developed to evaluate the quality of synthesized
DDROs.

Chapter 4 demonstrates the experimental results of the synthesized DDROs. Delay-
tracking-based and sensitivity based DDROs are constructed for an industrial library
below 40nm and their quality as well as run-time behavior is evaluated. Delay-tracking-
based DDROs are compared to the existing state-of-the-art sensitivity-based DDROs
where the maximum error reduces approximately from 4% to 2% for sensitivity-based to
delay-tracking-based DDROs, respectively based on SPICE evaluation. Additionally, the
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7 Summary and Outlook

quadratic objective for delay-tracking-based DDROs are evaluated for different tile delay
characterization methods where the maximum error reduces from 8.39% to 1.98% from
the state-of-the-art method of 1-tile delay to 3-tile delay characterization, respectively.
Therefore, among many different DDRO synthesis methods investigated, delay-tracking-
based DDROs with quadratic objective and 3-tile delay characterization emerges as the
most preferred DDRO synthesis method.

Furthermore, a tile library consisting of various tile types is selected for DDRO syn-
thesis. Studies show that DDRO synthesis using direct solvers using 6 tile types in the
tile library, quadratic objective and 3-tile delay characterization have infeasible CPU
run-times. On the other hand, DDRO synthesis using the developed heuristic method
of Multimodal-Successive optimization requires merely 30 seconds which makes it fea-
sible for larger DDRO optimization problems. Thus, the developed heuristic synthesis
methods are computationally much less intensive than traditionally used direct solvers.

In this thesis, three different unsupervised clustering algorithms are investigated for
the critical path clustering namely Hierarchical, KMeans++ and Expectation Maximiza-
tion (EM) clustering so that a single DDRO can be synthesized for a cluster of critical
paths. To compare different clustering methods, an assessment method is proposed
for measuring the cluster size. The distance of each of the critical paths is computed
from its cluster center for each PVT condition. Assuming the size of a cluster as the
maximum distance of critical paths from its cluster center, the clustering algorithms
were compared for the smallest cluster size. The Hierarchical clustering results in the
most compact clusters, followed by KMeans++ clustering. Although Hierarchical and
KMeans++ are Heuristic clustering algorithms with low computational complexity, they
emerge as good candidates in comparison to EM clustering to group critical paths.

The experimental results for the DDRO synthesis targeting clustered critical paths
where clustering is performed using KMeans++ and Hierarchical clustering, are ex-
plained in Chapter 6. The DDRO synthesis method resulting in the most accurate
DDROs in Chapter 4 is used, where the delays are computed using STA. Evaluation of
these DDROs results in the maximum error between target cluster centers and DDROs
of 1.77% for both KMeans++ and Hierarchical clustering. Furthermore, the DDROs
delay-tracking capability across various PVT conditions is analyzed and the DDROs
can accurately track the delays of their respective clusters across all given PVT condi-
tions.

Thus, this thesis proposes new mathematical formulations to synthesize design de-
pendent ring oscillators (DDROs) which increases the accuracy of existing DDROs.
Moreover, Heuristic algorithms developed result in reduced computational complexity
to synthesize DDROs. STA characterized delays for DDRO synthesis is used which fur-
ther reduces the computational complexity of delay computation. Additionally, different
clustering algorithms are investigated to group critical paths such that one DDRO is syn-
thesized for one critical path group to synthesize DDROs for large scale digital designs.

The outlook of this thesis is manifold. At first, the DDROs have to be developed
with more advanced optimization algorithms, which can include more tile types in the
tile library. Moreover, the DDRO synthesis method should be further reformulated to
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include RC extraction such that the DDROs can track not only the delay across PVT
but also the extraction (X) parameters. The frequency measured from the DDROs shall
indicate the timing of the design critical paths, which enables the tuning of the chip’s
parameters such as voltage and frequency to increase the efficiency of the chip.
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A List of Symbols

A(it) The subset of tile blocks selected at each iteration from the
enumerated set of tile blocks S(X)(it)

α(it) Ratio of DDRO objective values of two adjacent iterations
used in the Single-Mode Back-Tracking optimization

αmax User-defined maximum allowed ratio of the DDRO objective
between two different iterations in the Single-Mode Back-
Tracking optimization

β User defined number of solutions selected at each iteration it
in the Multimodal-Successive optimization

b Vector notation for the critical path delay sensitivities used in
the direct solver

C(i− 1, i) Constraint describing the relationship between two adjacent
tile positions for 2-tile and 3-tile delay characterizations

δp Vector of PVT parameter variations

∇dCP (p0) Delay sensitivities of critical path at nominal PVT values

∇d′
CP (p0) Normalized delay sensitivities of critical path at nominal PVT

conditions

∇dCP (pPV T ) Delay sensitivities of critical path across PVT conditions

∇d′
CP (pPV T ) Normalized delay sensitivities of critical path across PVT con-

ditions

dCP (pPV T ) Delay vector of critical path across PVT conditions

d
′
CP (pPV T ) Normalized delay of critical path across PVT conditions

di
dt

Current derivative in digital circuit
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A List of Symbols

∇d(X)
i (p0) Delay sensitivities of tiles at nominal PVT values

∇d(X)
i (pPV T ) Delay sensitivities of tiles across PVT conditions

d
(X)
i (pPV T ) Delay vector of tiles across PVT conditions

∇d
′(X)
i (p0) Normalized delay sensitivities of tiles at nominal PVT values

d
′(X)
i (pPV T ) Normalized delay vector of tiles across PVT conditions

∇dY (p0) Delay sensitivities of a circuit at nominal PVT conditions

∇d
′(X)

ϕ
(X)
1 (i)

(pPV T ) Delay sensitivities of a tile type ϕ1(i) at position i across PVT
conditions

der l2 norm error between critical path and DDRO delay across
PVT conditions

pPV T Vector of PVT parameters

p0 Nominal vector value of PVT parameters

ϕ(i) Type of tile at position i

K Number of clusters of critical paths

K(st) Number of clusters of critical paths at step st

∆dPE(pPV T ) Delay error in percentage calculated between normalized de-
lays of critical path and DDRO across PVT conditions

∆dDDRO Minimum objective value at iteration it by the Multimodal-
Successive optimization

d
(X)
TB Tile block delay of a tile block from enumeration set S(X)(it)

across PVT conditions

d
(X)
TB (S(X),pPV T ) Delay of tile block where the tile block is enumerated at iter-

ation it

d
(X)
DDRO DDRO delay across PVT conditions
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dY (p0) Propagation delay of a circuit at nominal PVT values

d
(T )
i (p) Delay of a tile with 1-tile delay characterization at a PVT

corner

d
(TP2)
i (p) Delay of a tile with 2-tile delay characterization with preceding

tile at a PVT corner

d
(TS2)
i (p) Delay of a tile with 1-tile delay characterization with suceeding

tile at a PVT corner

d
(T3)
i (p) Delay of a tile with 1-tile delay characterization at a PVT

corner

d
′
CPkj

(st,pPV T ) Normalized critical path delay of index k in cluster j at step
st

εkj(pPV T ) Distance of each critical path from its respective cluster center

εmax User defined maximum permissible distance of critical paths
from their respective cluster center per PVT corner

gj Density function with parameters θj for cluster j

i(t) Current flow through the parasitic capacitance of the power
grid and is dependent on the time t

i Index of the tile position

it Iteration index in the DDRO synthesis using Heuristic itera-
tion method

µj(pPV T ) Critical path cluster center j, where critical paths are charac-
terized across PVT corners

Lparasitic Parasitic inductance of digital circuit

lpb,θ Log likelihood function of critical paths based on mixing pro-
portions and density functions

n
(X)
c (it) The number of possible tile combinations of iteration it

109



A List of Symbols

ns Length of a tile block

nϕ Number of tiles types for the DDRO synthesis

ncp The total number of target critical paths

nT Number of characterized delay sensitivities of 1-tile/2-tile/3-
tile delay

nit Number of iterations for the heuristic algorithm

nt Number of tiles in DDRO

ntmax , ntmin User defined maximum and minimum permissible length of
DDRO (number of tiles)

ntb Number of tile blocks in the DDRO synthesis

nPV T Number of PVT conditions used for the DDRO synthesis

pn = 1, 2 Dimension of norm (using l1 or l2 norm) to find the mini-
mum of the objective function for sensitivity-based and delay-
tracking-based DDROs

∆p Small variations of PVT parameters p

p Vector of PVT parameters

pb Vector of mixing proportions of each critical path into various
clusters

P (j/d
′
CPk

(pPV T ) Posterior probability of certain critical path k belonging to
cluster j

Rgrid Parasitic capacitance of the power grid

S(X)(it) Enumeration set of tile blocks with length ns at iteration it

SCPj (st) Group of critical paths j at step st

tgate Delay of a CMOS logic gate
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T (it− 1, it) Unique mapping function which results in β different DDROs
at the end of DDRO optimization using mulitmodal-successive
optimization

TM
(X)
i Matrix of normalized tile delays of all selected and charac-

terized tiles for a certain tile position i used in the matrix
notation for the direct solver

θ Technology dependent parameter to calculate the delay of
CMOS logic gate

∆VIRdrop Voltage variation induced due to IR drop

∆V di
dt

Voltage variation due to current derivative noise

VDD Supply voltage of digital circuits

VTH Threshold voltage of transistors

X X ∈ {T1, TP2, TS2, T3} method of characterization of tiles

x Unknown column vector which describes the tile type for each
position of the tile used in the DDRO synthesis by direct solver

Z Matrix of all the collected delay sensitivities of tile types for
all tile positions actoss PVT conditions to be fed to the direct
solver for the DDRO synthesis
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B List of Abbreviations

BIC Bayesian Inversion Criterion.

BOEL Back End of Line.

DDRO Design-Dependent Ring Oscillator.

EM Expectation-Maximization.

GRO Generic Ring Oscillator.

ITE Inverted Temperature Effect.

L Linear Optimization.

LER Line Edge Roughness.

NOM Nominal.

O(N) Order of N.

OPC Optical Proximity Correction.

OPE Optical Proximity Effect.

PSRO Process Specifc Ring Oscillator.

PVT Process Voltage Temperature.

Q Quadratic Optimization.

RC Resistance-Capacitance.

RDF Random Dopant Fluctuation.

RO Ring Oscillator.
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B List of Abbreviations

SL Input-slew and Output-load.

STA Static Timing Analysis.

T1 1-Tile Delay Characterization.

T3 3-Tile Delay Characterization.

TP2 Preceding 2-Tile Delay Characterization.

TRC Tunable Replica Circuits.
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