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ARTICLE INFO ABSTRACT

Magnetic resonance imaging (MRI) scans play a pivotal role in the evaluation of patients presenting with a
clinically isolated syndrome (CIS), as these may depict brain lesions suggestive of an inflammatory cause. We
hypothesized that it is possible to predict the conversion from CIS to multiple sclerosis (MS) based on the
baseline MRI scan by studying image features of these lesions.

We analyzed 84 patients diagnosed with CIS from a prospective observational single center cohort. The
patients were followed up for at least three years. Conversion to MS was defined according to the 2010
McDonald criteria. Brain lesions were segmented based on 3D FLAIR and 3D T1 images. We generated brain
lesion masks by a computer assisted manual segmentation. We also generated a set of automated segmentations
using the Lesion Segmentation Toolbox for SPM to assess the influence of different segmentation methods. Shape
and brightness features were automatically calculated from the segmented masks and used as input data to train
an oblique random forest classifier. Prediction accuracies of the resulting model were validated through a three-
fold cross-validation.

Conversion from CIS to MS occurred in 66 of 84 patients (79%). The conversion or non-conversion was
predicted correctly in 71 patients based on shape features derived from the computer assisted manual seg-
mentation masks (84.5% accuracy). This predictor was more accurate than predicting conversion using dis-
semination in space at baseline according to the 2010 McDonald criteria (75% accuracy). While shape features
strongly contributed to the accuracy of the predictor, including intensity features did not further improve per-
formance.

As patients who convert to definite MS benefit from early treatment, an early classification model is highly
desirable. Our study shows that shape parameters of lesions can contribute to predicting the future course of CIS
patients more accurately.
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1. Introduction

A clinically isolated syndrome (CIS) is defined as a single episode of
neurological symptoms suggestive of an inflammatory demyelinating
disease of the central nervous system. It is the initial presentation of
multiple sclerosis (MS) for many patients (Miller et al., 2012). Magnetic
resonance imaging (MRI) plays a key role in the evaluation of patients
with CIS. It may depict brain lesions which potentially substantiate the
suspicion of a chronic inflammatory disease. In fact, according to the

McDonald criteria 2010 (Polman et al., 2011), dissemination in space
and dissemination in time can be proven by MR findings. Together with
the onset of clinical symptoms, this can be used to diagnose MS. Pre-
vious studies have confirmed that patients presenting with CIS and
abnormal MRI findings in baseline scans have higher risk for conversion
to MS (Zhang and Hou, 2013) and this risk is associated with the
number of lesions (Fisniku et al., 2008; Tintoré et al., 2006).
However, not all patients with CIS develop multiple sclerosis: 20%
of CIS patients do not convert after twenty years even with abnormal
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findings in baseline MR images (Fisniku et al., 2008). Three years after
the first clinical onset, according to earlier studies 31-44% of the CIS
patients experience new attacks which define clinically definite MS
(CDMS) (Liu et al., 2011; Miller et al., 2012; Rocca et al., 2008; Tintoré
et al., 2000). Note, that it is possible that patients are diagnosed with
MS according to the 2010 McDonald criteria but not with CDMS as
defined above. This is the case, when a follow up MRI scan of a CIS
patient shows new lesions such that the criteria of dissemination in
space are fulfilled but the patient has not experienced a second clinical
attack in the meantime. This is referred to as “radiologically definite
MS”. For radiologically definite MS, reported conversion rates are
higher than those for CDMS (Chard et al., 2011; Gaetani et al., 2017).

By identifying reliable parameters which predict conversion, pa-
tients with a CIS who profit from an early treatment could be selected
more reliably. For example, treatment with B-interferon and glatiramer
acetate was shown to delay conversion to MS (Comi et al., 2009; Comi
et al., 2001; Jacobs et al., 2000).

MRI scans generate a large amount of data. Only a small part of it is
used in clinical routine because the images are only studied visually. In
the past few years, strategies to analyze large collections of data have
emerged, as well as algorithms for solving classification and prediction
tasks. Machine learning has become a promising way to process medical
images. In the field of neurology and neuroradiology, such techniques
have been applied to various classification tasks, such as assessing
epilepsy (Song et al., 2012), pre-symptomatic Huntington's disease
(Kloppel et al., 2009), gliomas WHO Grade II and III (Eichinger et al.,
2017) and Alzheimer's disease (Escudero et al., 2013; Kloppel et al.,
2008). Machine learning has also been used in MS to distinguish MS
patients from healthy controls (Yoo et al.,, 2018), different disease
courses in MS patients (Ion-Margineanu et al., 2017; Zhao et al., 2017)
and also to predict conversion in CIS patients. The latter was addressed
by (Wottschel et al., 2015), who included clinical and basic lesion
features, and by (Kitzler et al., 2018), who analyzed lesion myelination.

In this study, we investigated how a machine learning tool can help
to identify CIS patients who convert to MS. To this end, we focussed on
lesion features in baseline MRI, in particular such features that describe
shape and brightness, and assessed the performance of machine
learning classifiers based on these features.

2. Methods
2.1. Subjects

This study includes 84 patients who initially presented with CIS, i.e.
showed symptoms suggestive of an inflammatory central nervous dis-
ease without fulfilling the 2010 McDonald criteria for MS. All patients
were part of a single center prospective observational cohort, which
was approved by the local institutional review board, and written in-
formed consent was obtained. All patients received a baseline MRI scan
during primary clinical work-up. These baseline scans were acquired
between 2009 and 2013. Patients were followed up regularly for a
period of at least three years. An MRI scan after three years as well as
clinical evaluation was used to determine whether conversion into MS
had occurred. MS was defined according to the 2010 McDonald criteria.
In particular, besides demonstrating dissemination in time by a clinical
relapse, the occurrence of new MRI lesions sufficed to prove dis-
semination in time as well.

2.2. MRI acquisition and processing

All MR images were acquired using a 3 Tesla MR scanner (Achieva,
Philips Healthcare, Best, the Netherlands). All MR scans contained a 3D
Fluid attenuated inversion recovery (FLAIR) sequence and a 3D T1
sequence, which were used for this study. The imaging parameters were
as follows:

FLAIR: Acquired voxel size, 1.03 X 1.03 X 1.5mm?; acquisition
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matrix, 224 X 154; field of view, 230; TR, 10000 ms; TE, 140 ms; TSE
factor, 20; number of slices, 96; acquisition time, 5 min; plane, axial.

T1: Acquired voxel size, 1 x1 x1 mm>; acquisition matrix,
240 x 240; field of view, 240; TR, 9ms; TE, 4 ms; number of slices,
170; acquisition time, 6 min; plane, sagittal.

Based on the FLAIR and T1 weighted images, two sets of lesion
segmentation masks were generated. One set was acquired by computer
assisted manual segmentation using BrainSeg3D (Lesjak et al., 2018).
For this, a neuroradiologist (PE, 6 years of experience) identified and
marked lesions on axial reformations of the FLAIR images. The precise
borders of these lesions within one slice were then delineated by the
segmentation tool, leaving the option to manually readjust the seg-
mentation. This segmentation set was used as the main tool during
further analysis. A second set of lesions masks was obtained with the
Lesion Segmentation Tool (LST) (Schmidt et al., 2012), version 2.0.1,
which was designed for the Statistical Parametric Mapping package for
MATLAB (SPM 12, Wellcome Trust Centre for Neuroimaging; MATLAB
and Statistics Toolbox Release 2016b, The MathWorks, Inc., Natick,
Massachusetts, United States). This provided a fully automated seg-
mentation set, using LST's lesion probability algorithm (initial threshold
0.3). The second set of segmentations was acquired to assess the de-
pendence of our classifier on the chosen segmentation method.

2.3. Classification analysis

For each lesion individually, the single lesion volume, intensity
features (skewness, kurtosis and entropy of intensity histograms) and
shape features (surface area, sphericity, surface-volume-ratio (SVR))
were calculated automatically. Moreover the total number of lesions
and the total lesion volume were noted. The lesion surface area (A) was
approximated through a marching cubes algorithm implemented in
SciKit-Image. From the surface area and volume (V; given as n s voxel
volume, with n being the number of voxels in the lesion), sphericity was
calculated as Y3672

The random forest algorithm, which is described below, requires a
feature vector of the same length for each patient. We therefore could
not include the single lesion parameters as described above because
patients differed in lesion numbers. To achieve a uniform parameter set
in each patient, we generated descriptive statistics for volume, intensity
and shape features. Since merely averaging over all lesions in a patient
would neglect information on lesion heterogeneity, we included the
minimum, maximum, mean and standard deviation of each feature with
respect to all lesions in this patient. In addition, we included the total
lesion volume, calculated as the sum of the single lesion volumes, and
lesion count as further elements of the vector.

Random forest algorithms are an ensemble learning strategy based
on generating a forest, i.e. a collection of many uncorrelated decision
trees (Breiman, 2001). Generating uncorrelated trees is achieved by
repeatedly and randomly drawing samples and features with replace-
ment. As opposed to the traditional threshold-based random forest,
which uses univariate models at each node, an oblique random forest
explicitly learns the optimal split between two groups using linear
multivariate models. This approach has been shown to further improve
robustness and accuracy (Menze et al., 2011), especially in the case of
correlated features. To predict conversion into MS, we generated three
oblique classification random forest models using the “obliqueRF”
package in R 3.4 (The R Foundation for Statistical Computing, Vienna,
Austria): (i) A model based on intensity features, (ii) a model based on
shape features and (iii) a final model including both intensity and shape
features. Lesion count and lesion volume were included as features in
each of these models. The hyperparameters “mtry” (number of vari-
ables tested in each node; tested with 3, sqrt(number of variables) and 7
variables) and “ntree” (number of trees generated, tested with 100, 200
and 300 tress) were optimized on the out-of-bag error, i.e. by testing on
the samples which were not randomly drawn for this tree during forest
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generation. The coefficients of the split were found in a L2 constraint
least squares regression, tested for various regularization coefficients.

2.4. Data and statistical analysis

Model performance was validated by three-fold cross-validation.
For that, the study collective was randomly divided in three subsets.
One of these subsets was not used during the training process so that the
algorithm was adjusted to only two thirds of the whole study cohort.
The remaining third was then used as validation set on which the al-
gorithm was tested. This was done three times, so that every subset
functioned as validation set once and every subject was within the
validation set once. Only cross-validated performance measures are
reported. Using a bootstrapping approach (with 100 iterations), we
calculated feature importance scores to identify the features most im-
portant for classification from the oblique random forest. Feature im-
portance counts how often a variable was deemed relevant when
chosen for a split at a node. This is achieved by a logistic regression
model which is employed at the nodes. The importance value is in-
creased by 1 if a variable leads to a logistic regression model with
p < 0.05 at a node, and decreased by 1 otherwise.

Besides the described random forest models, another predictive
model was also obtained based on the criteria for dissemination in
space according to the 2010 McDonald criteria, analogously to (Filippi
et al., 2018). For this model, only the criteria of dissemination in space
have to be assessed. If they are fulfilled at baseline, then the prediction
is set to “conversion”. This model was included as a benchmark for the
computer based models described above.

Statistical analysis was performed using MATLAB 2016b (MATLAB
and Statistics Toolbox Release 2016b, The MathWorks, Inc., Natick,
Massachusetts, United States). Demographic data of non-converters and
converters were compared using a Pearson's chi-square test (gender)
and a two tailored t-test (age). EDSS values at baseline and after 3 years
were compared between the groups by a Mann-Whitney U test. For each
group, the EDSS baseline value and the EDSS value after 3 years were
compared by a Wilcoxon signed rank-sum test. The results from the
different prediction approaches as defined above were expressed as
confusion matrices and the following statistical measures were derived:
accuracy, sensitivity, specificity, positive and negative predictive value.
Moreover, we also calculated the balanced accuracy (Brodersen et al.,
2010) together with the posterior probability interval for a = 0.05
using the MATLAB tools provided by Brodersen et al. and the diagnostic
odds ratio (Glas et al., 2003). Confidence intervals were calculated for
accuracy, sensitivity and specificity as Clopper-Pearson confidence in-
tervals. Those for positive and negative predictive values were calcu-
lated as standard logit confidence intervals (Mercaldo et al., 2007). The
confidence interval for the diagnostic odds ratio was calculated ac-
cording to (Glas et al., 2003). The random forest classifier was com-
pared with the classifier based on the 2010 McDonald criteria by using
McNemar's test.

3. Results
3.1. Subjects

Our cohort included 58 female and 26 male patients. None of the 84
patients were excluded in the subsequent analyses. During the three
years of follow up, 66 patients converted to MS (79%) while 18 patients
did not. From the 66 patients who converted to MS, 33 had a second
clinical attack defining CDMS and in 33 patients, conversion was de-
tected based on radiological criteria. The relevant patient character-
istics are summarized in Table 1. The two groups of converters and non-
converters were not significantly different in terms of gender, age, EDSS
at baseline or after 3 years follow-up. Within the groups, neither con-
verters nor non-converters showed a significant change in EDSS during
the observation period (p = 0.87 and p = 0.29, respectively; Wilcoxon

NeuroImage: Clinical 21 (2019) 101593

Table 1
Patient characteristics.
Non converter  Converter
Gender 7 men 18 men Pearson Chi Square,
11 women 47 women p=0,411
Age Mean = 44,44 Mean = 41,89  2-tailed t-Test,
STD = 11,21 STD = 8808 p = 0,308
EDSS at baseline Median = 1 Median = 1 Mann-Whitney U
test,
Range 0-2.5 Range 0-6 p=.56
EDSS after 3 years Median = 0 Median = 1 Mann-Whitney U
test,
Range 0-2.5 Range 0-6.5 p=.08
Mean lesion volume Mean = 71 Mean = 135 Mann-Whitney U

(mm®) test,
Range 22-314  Range 22-671 p =.0013

signed rank-sum test). One patient received Interferon Beta, one re-
ceived steroids and one received plasmapheresis prior to the baseline
MRI scan. Apart from those three patients, the remaining 81 patients
did not receive any therapy prior to their baseline scan.

3.2. Classification results using brightness and shape features

To assess prediction accuracies of the random forest models and
compare them to those achieved by the classifier based on the 2010
McDonald criteria, we calculated the confusion matrix for each pre-
dictive model. Table 2 shows those confusion matrices.

Table 3 shows statistical measures derived from the confusion ma-
trices. We also included balanced accuracy (Brodersen et al., 2010) and
the diagnostic odds ratio (Glas et al., 2003), which are designed for
unbalanced cohorts, such as the one in this study with a conversion rate
of 79%. The shape-based random forest classifier (with 300 tress and 3
variables tested at each split) achieved the highest accuracy. Particu-
larly balanced accuracy and diagnostic odds ratio are markedly higher
than for prediction according to the McDonald criteria 2010. Further
comparing the classifier based on shape features with prediction of
conversion according to the McDonald criteria 2010 by McNemar's test
also showed a significantly higher predictive accuracy of the random
forest classifier (p = 0.03).

A second model based on shape features, but using lesion masks
from the automated segmentation with LST, performed similar to the

Table 2

Confusion matrices for different predictive models assessed in this study: (a)
2010 McDonald criteria (dissemination in space (DIS) yes/no); (b) intensity
based random forest classifier using computer assisted manual segmentations;
(c) shape based random forest classifier using computer assisted manual seg-
mentations; (d) shape based random forest classifier using automated seg-
mentations from LST.

a) McDonald 2010 (DIS) Non-conversion Conversion
Predicted non-conversion 4 4
Predicted conversion 14 62

b) Intensity-based model Non-conversion Conversion
Predicted non-conversion 11 25
Predicted conversion 7 41

c) Shape-based model Non-conversion Conversion
Predicted non-conversion 9 4
Predicted conversion 9 62

d) Shape-based model (LST) Non-conversion Conversion
Predicted non-conversion 6 3
Predicted conversion 12 63
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Table 3
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Statistical measures derived from the confusion matrices in Table 2. Intervals are 95%-confidence intervals, except for balanced accuracy, where the posterior
probability interval for the level 0.05 is given (as defined in (Brodersen et al., 2010)). PPV, positive predictive value; NPV, negative predictive value; DOR, diagnostic

odds ratio.
Mc Donald 2010 (DIS) Intensity-based model Shape-based model Shape-based model (LST)
Accuracy 0.79 (0.68-0.87) 0.62 (0.51-0.72) 0.85 (0.75-0.91) 0.82 (0.72-0.90)
Sensitivity 0.94 (0.85-0.98) 0.62 (0.49-0.74) 0.94 (0.85-0.98) 0.95 (0.87-0.99)
Specificity 0.22 (0.06-0.48) 0.61 (0.36-0.83) 0.50 (0.26-0.74) 0.33 (0.13-0.59)
PPV 0.81 (0.77-0.85) 0.85 (0.76-0.92) 0.87 (0.81-0.91) 0.84 (0.79-0.87)
NPV 0.50 (0.22-0.78) 0.31 (0.21-0.42) 0.69 (0.44-0.87) 0.67 (0.36-0.88)
Balanced Accuracy 0.58 (0.50-0.70) 0.62 (0.49-0.72) 0.72 (0.60-0.82) 0.64 (0.54-0.76)
DOR 4.43 (0.99-19.89) 2.58 (0.88-7.51) 15.50 (3.93-60.98) 10.50 (2.30-47.87)

one using the computer-assisted manual segmentations.

To compare computer assisted manual and fully automated seg-
mentations, we assessed the correlation between the three most im-
portant features, and found a high correlation for “mean volume”
(Pearson's r = 0.79, p < 0.0001), “minimum sphericity” (Pearson's
r=0.42, p < 0.0001) and “minimum SVR” (Pearson's r = 0.88,
p < 0.0001).

3.3. The three most relevant shape features

To explore the relative influence of shape features on the prediction
of conversion, we calculated importance scores using a bootstrapping
approach (Fig. la). While all features input into the classifier will
contribute to the final prediction, we identified three features that had
the highest importance for the final vote: Mean lesion volume (Fig. 1b),
minimum sphericity (Fig. 1c¢) and minimum surface-volume-ratio
(Fig. 1d). As expected, minimum sphericity and minimum surface-vo-
lume-ratio had a significant positive correlation (Spearman's
rho = 0.53, p < 0.001).

Looking into the distribution of these features, the classifier found
that lesions in converters were on average larger and appeared less
round (as expressed by a smaller minimum sphericity) compared to
lesions in non-converters. Interestingly, lesion count was not found to
be of high importance. Fig. 2 shows illustrative examples of a converter
and a non-converter, which demonstrate the differences in lesion ap-
pearance.

4. Discussion

In this study, we developed a random forest classifier based on le-
sion features in the baseline MRI to differentiate patients converting
from CIS to MS from those who do not. While shape features demon-
strated a high discriminative potential, intensity features did not con-
tribute to improving this classifier. We demonstrated that both com-
puter assisted manual and fully automatic segmentations yield shape
features that can be used to construct an accurate classifier. This could
point towards the use of shape features as more generalizable features.
Moreover, this finding can help to transfer our technique to larger co-
horts, for which manual segmentation becomes less feasible due to the
time required to generate the lesion masks.

The resulting classifier was more accurate than predicting conver-
sion using the dissemination in space criteria from the 2010 McDonald
criteria. In particular, this holds true for measures designed for un-
balanced cohorts like balanced accuracy and diagnostic odds ratio. The
random forest classifier resulted in a sensitivity of 94% and specificity
of 50% as opposed to 94% and only 22%, respectively for the 2010
McDonald criteria. The results for the 2010 McDonald criteria closely
match a recent study which assessed the performance of MRI criteria to
predict conversion in a large cohort (Filippi et al., 2018) but did not
employ machine learning techniques.

In our study, we determined MS according to the 2010 McDonald
criteria, which also include radiological criteria to establish

dissemination in space and time. This differs from other studies where
only conversion to CDMS, i.e. the occurrence of a second clinical attack,
is considered. Hence, the reported conversion rate of 79% in our cohort
is noticeably higher than in previous studies. Note, that the rate of
CDMS in our cohort is 39% which is comparable to other studies like
those mentioned in the introduction. Also, other studies that assessed
conversion into radiologically definite MS (which is equivalent to our
approach) demonstrated conversion rates comparable to those found in
this study (Chard et al., 2011; Gaetani et al., 2017).

Comparing our approach to other studies with a similar aim, we
focussed mainly on imaging features that describe lesion properties. In
an earlier study (Wottschel et al., 2015), basic clinical features were
combined with features of lesion localization to predict conversion.
Opposed to our study, only basic intensity features (average lesion PD-
and T2-intensities) have been employed. Other studies used advanced
MR techniques, such as measuring myelin water fraction in white
matter (Kitzler et al., 2018) or MR spectroscopy (lon-Margineanu et al.,
2017). While these methods can provide new insight into how MS pa-
tients can be assessed with MR imaging, they are not commonly used. In
comparison, our study only relies on FLAIR and T1-weighted images
which are considered to be part of a standard imaging protocol in MS
(Traboulsee et al., 2016).

Further assessing the relative contribution of each feature, we found
that mean lesion volume, minimum sphericity and minimum SVR were
most important for the performance of our classifier: Lesions found in
patients converting to MS are on average bigger and less spherical. We
hypothesize that this difference in size and shape reflects the different
origin of lesions in converters: Inflammation in MS is considered to
most commonly occur along veins (Tallantyre et al., 2008; Tan et al.,
2000). The presence of a central vein within a lesion can be used to
differentiate MS from other causes of white matter hyperintensities
(Cortese et al., 2018; Maggi et al., 2018). This might favour the de-
velopment of more elongated, less spherical inflammatory lesions in MS
converters. The typical “Dawson finger configuration” of MS lesions
seen in sagittal images in fact reflects this and is an example of how
neurologists and neuroradiologists use shape information to classify
lesions. On the other hand, the lesions found in patients who do not
convert to MS may be caused by a different pathomechanism and
therefore differ in shape from the inflammatory lesions found in pa-
tients converting to MS.

Intensity features have long been used in image analysis. However,
analysis of MR intensities is impeded by several obstacles, including
bias-field inhomogeneities and variations in scanner equipment and
sequences. Moreover, intensity values may change over time especially
early after lesion formation when the acute inflammation wears off.
Such features therefore tend to be poorly generalizable beyond the data
set based for which they were designed. Shape features, on the other
hand, are to some extent invariant against the input data. In comparison
to brightness features, they do not rely on absolute intensity values and
are robust against bias field distortions. Therefore, these features are
more comparable across different scanners. Within our cohort, we
found no meaningful contribution of intensity features to prediction
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Fig. 1. Shape features most relevant for predicting conversion. (a) Bootstrapped importance plot, where each dot represents a feature (i.e. min, max, mean and std. of
the respective measure, for volume also total lesion volume). The higher a feature, the more important it is for prediction. (b-d) Boxplot diagrams of the three most
important features, which scored importance scores > 1: mean volume (b), minimum sphericity (¢) and minimum surface-volume-ratio (d), separated by converters

(turquoise) and non-converters (red).

accuracy. In fact, a model solely based on intensity features performed
worse than both the shape-based and McDonald-based model.

Our study has several limitations: Shape features contributed most
to our model. However, the minimum diameter of a lesion that can be
depicted is determined by the voxel size of the scan. Therefore, shape
features of small lesions can be influenced by the spatial resolution of a
scan. Given a minimum size threshold for a lesion of 3 mm as proposed
in the MAGNIMS- and McDonald-Criteria (Filippi et al., 2016; Polman
et al., 2011), 3D sequences with high spatial resolution (like those used
in this study) are not very prone to these effects. However, extracting
reliable features for small lesions may become impossible when 2D
images are used, which impedes the possibility of transferring our ap-
proach to 2D images.

Complex machine learning algorithms are prone to overfitting and

unvalidated accuracies will be biased. Given the size of our cohort, we
chose a three-fold cross-validation to validate all predictions made by
our classifiers. While k-fold cross-validation has been shown to give
more realistic estimates of prediction accuracy than leave-one-out-
cross-validation, an independent validation in a previously unseen co-
hort of patients would be preferable.

We selected the features which were used to develop the classifier.
How other image features like texture features or more advanced, deep-
learned features could contribute to prediction accuracy is therefore
unclear. However, the size of our dataset precludes extensive testing of
large feature vectors. We therefore limited our analysis to pre-defined
features mentioned above.

In general, we limited on a narrow spectrum of features to specifi-
cally assess the contribution of lesion characteristics to classification
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performance. How other clinical and paraclinical parameters like age,
gender, baseline EDSS (these were already covered in (Wottschel et al.,
2015)), intrathecal synthesis of oligoclonal bands (Tintoré et al., 2008)
or inflammatory cerebrospinal fluid (Ruet et al., 2014) can be used to
further improve prediction accuracy remains to be investigated in fu-
ture studies. Moreover, the disease course in MS patients is highly in-
dividual. Therefore, rather than only predicting conversion in CIS pa-
tients, it appears an promising goal to predict different disease courses
and identify those patients who are likely to profit most from early
treatment, taking into account different patterns of disease activity in
MS patients.

5. Conclusion

Lesion shape parameters can be used to differentiate between CIS
converters and non-converters on a three year time scale. Our study is
an example of how computational methods allow using imaging data
beyond human visual analysis. In future studies, exploring the addition
of other data sources, especially clinical and paraclinical features, and
heading for a more differentiated prediction of the expected clinical
disease course seem promising tasks.
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Fig. 2. Illustrative example images with overlaid le-
sion masks of a patient who converted to MS (upper
row) and another patient who did not convert (lower
row). These examples very prominently represent the
lesion features with the best discriminative potential.
Note the larger, less round lesions in the upper row
example. The numerical values for the converter (top
row) were: mean volume, 101 mm?; mean sphericity,
0.78; mean SVR, 1.64; the non-converter (bottom
row) showed the following values: mean volume,
33.8mm?; mean sphericity, 0.927; mean SVR, 2.1.
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