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Abstract
Similar to their counterparts in nature, the flexi-
ble bodies of snake-like robots enhance their move-
ment capability and adaptability in diverse envi-
ronments. However, this flexibility corresponds
to a complex control task involving highly redun-
dant degrees of freedom, where traditional model-
based methods usually fail to propel the robots
energy-efficiently. In this work, we present a novel
approach for designing an energy-efficient slither-
ing gait for a snake-like robot using a model-free
reinforcement learning (RL) algorithm. Specifi-
cally, we present an RL-based controller for gen-
erating locomotion gaits at a wide range of ve-
locities, which is trained using the proximal pol-
icy optimization (PPO) algorithm. Meanwhile,
a traditional parameterized gait controller is pre-
sented and the parameter sets are optimized us-
ing the grid search and Bayesian optimization
algorithms for the purposes of reasonable com-
parisons. Based on the analysis of the sim-
ulation results, we demonstrate that this RL-
based controller exhibits very natural and adap-
tive movements, which are also substantially more
energy-efficient than the gaits generated by the
parameterized controller. Videos are shown at
https://videoviewsite.wixsite.com/rlsnake.

1 Introduction
Snake-like robots, as a class of hyper-redundant mechanisms,
carry the potential of being one kind of promising mobile
robotic applications that are capable of traveling and perform-
ing tasks in diverse environments, such as disaster rescue, un-
derwater exploration, and industrial inspection [Liljebäck et
al., 2012]. Since snake-like robots can only carry limited en-
ergy resources for field operations, it is important to develop
energy-efficient gaits to reduce the impact of the power con-
strains. On one hand, optimizing the power consumption can
prolong the service time of a robot and maximize its locomo-
tion performance at the same time. On the other hand, a suf-
ficient energy system may in return allow us to design a more
lightweight robot or add other functional components [Tesch
et al., 2009]. However, it is challenging to design energy-
efficient gaits for snake-like robots on the basis of their redun-
dant degrees of freedom (DOF) and the complex interactions
with the environment [Tucker, 1975].

Since the first snake-like robot was built in 1972, re-
searchers have been working constantly on designing more
advanced snake-like robots [Liljebäck et al., 2012] and so-
phisticated gaits for robots with different types of mechan-
ical configurations or terrains. Meanwhile, slithering gait
has been considered as the most promising gait for snake-
like robots to perform autonomous locomotion tasks, which
imitates the serpentine locomotion of real snakes [Hu et al.,
2009]. Hirose first used the serpenoid curve to control a
snake-like robot, which was an effective approach by imitat-
ing the real snake movement [Hirose, 1993]. Ma proposed
another model serpentine curve to describe the locomotion of
snakes by modeling their muscle characteristics and achieved
a higher locomotive efficiency than the serpenoid curve by
running simulations [Ma, 1999]. On the basis of these snake-
like movement curves, the gait equation, as a robust and ef-
fective method, works as an abstract expression of gaits of a
snake-like robot by describing joint angles as parameterized
sinusoidal functions [Tesch et al., 2009]. It allows for the
emergence of complex behaviors from low-dimensional rep-
resentations with only few key parameters, greatly expand-
ing their maneuverability and simplifying user control. With
this method, researchers developed several biological gaits
for snake-like robots to move in the indoor and outdoor envi-
ronment [Melo and Paez, 2014].

However, optimizing these parameterized gaits for the pur-
pose of energy saving is difficult and limited, since they are
confined to those abstracted gait parameters and only few
studies have been reported.

Crespi et al. adopted a heuristic optimization algorithm
to rapidly adjust the travel speed of the robot [Crespi and
Ijspeert, 2008]. Tesch et al. used the Bayesian optimiza-
tion approach to regulate those open-loop gait parameters for
snake robots, which made the robot move faster and stur-
dier [Tesch et al., 2011]. Gong et al. proposed a shape basis
optimization algorithm to simplify the gait design parame-
ter space and came up with a novel gait in granular materi-
als [Gong et al., 2016]. Even so, all these works still focus
on optimizing the gait on the basis of the parameterized gait
generation system, and have very limited effect on further im-
proving gait efficiency.

This gait optimization task, however, corresponds to a
complex control problem due to two primary reasons [Lil-
jebäck et al., 2012]. The extrinsic challenge comes from the
complex dynamic interaction between the ground and the re-
dundant mechanism with many degrees of freedom. There-
fore, it is extremely important to model precisely and rapidly.
The intrinsic challenge is how to synchronize and coordinate
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all the body joints to exhibit a proper motion pattern inte-
grally, which is expected to be both robust and efficient.

As an emerging technology, reinforcement learning (RL)
reveals the nature of the learning process of locomotion in an-
imals that can offer a model-free learning to master new skills
or adapt to diverse environments. On this basis, this work of-
fers a novel alternative to design the slithering gait of a snake-
like robot based on reinforcement learning technology. Our
main contributions are summarized as follows. First, we de-
fine the energy-efficiency metrics and introduce the parame-
terized slithering gait design method as the baseline, which
is optimized by using a grid search method and the Bayesian
optimization method in terms of energy efficiency. Second,
we propose a gait controller using the state-of-the-art RL al-
gorithm PPO in simulation. The learned gait exhibits surpris-
ing similarity to the natural movement of real snakes. Third,
the results demonstrate that the learned gait successfully out-
performs the parametrized slithering gait in terms of energy
efficiency at a range of velocities.

2 Related Work
Unlike other land animals, snakes achieve diverse locomo-
tion gaits by twisting their bodies on various terrain and
exhibit undulatory locomotion. To imitate similar efficient
movement, most snake-like robots are controlled by the
kinematics-based method, which can be regarded as a process
to simplify parametric representations of the snake-like tra-
jectories [Hirose, 1993; Ma, 1999; Tesch et al., 2009]. How-
ever, this method limits gait efficiency by only manually tun-
ing those parameters, even without considering that it is time-
consuming and inefficient.

Although there are few studies on optimizing the gaits for
snake-like robots, studies on optimizing the locomotion gaits
of other kinds of robots have been reported for the purpose of
energy saving. Initially, researchers adapted techniques for
multidimensional function optimization tasks to design effi-
cient gaits, such as evolutionary algorithms [Chernova and
Veloso, 2004] or policy gradient search algorithms [Kim and
Uther, 2003; Kohl and Stone, 2004]. However, these algo-
rithms are usually plagued by local optima, which makes the
process slow, inefficient, and manually intensive. Afterwards,
gait optimization methods based on prior knowledges are fur-
ther investigated. Lizotte et al. first optimized the speed
and smoothness of the gait with Gaussian process regression
on a quadruped robot[Lizotte et al., 2007]. Calandra et al.
used Bayesian optimization approach to regulate those open-
loop gait parameters for bipedal robots, which made the robot
move faster and robuster [Calandra et al., 2014]. Even though
these optimized gaits outperform the hand-coded gaits, they
are still very inefficient forms of locomotion compared with
the natural movement achieved by animals.

As an intelligent trial-and-error learning method, RL
brings new solutions for free gait generation tasks without
knowing precise models or prior knowledge. Initially, RL
was not widely used in the domain of robotics often presented
with high-dimensional, continuous states and actions [Kober
et al., 2013]. However, with more and more advanced RL al-
gorithms coming out, many robotic implementations are able
to handle complicated tasks, such as gait generations [Peng et
al., 2017], dexterous manipulation [Rajeswaran et al., 2017],
and autonomous driving [Long et al., 2018]. In [Cully et al.,
2015], two prototype experiments are shown in which RL can
help robots recover from damage and adapt quickly like ani-
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Figure 1: The top view and side view of the first two modules of the
snake-like model (in centimetre).

mals do. A hexapod robot learns to walk fast and straight with
broken or missing legs. And a robotic arm learns to reach its
previous position goal with one or more stuck joints. Af-
terwards, RL technologies are increasingly used in free gait
generation tasks. Schulman et al. [Schulman et al., 2017] im-
plemented their PPO algorithm on a collection of benchmark
robotic locomotion tasks from 2D swimmer to 3D humanoid
robot. Except for simply using RL-based methods to gener-
ate gaits for robots, they have been used to learning energy-
efficient gaits. Kormushev et al. [Kormushev et al., 2018]
used RL to optimize the vertical center-of-mass trajectory and
the walking pattern of a bipedal robot to exploit the passive
compliance for the purpose of energy efficient walking. Yu et
al. [Yu et al., 2018] proposed an RL-based approach for cre-
ating low-energy and speed-appropriate locomotion gaits for
four types of walking, including biped walking, quadruped
galloping, hexapod walking, and humanoid running.

In this paper, we focus on using RL to learn slithering gaits
for a snake-like robot with redundant degrees of freedom,
so that the learned gaits can outperform those parameterized
gaits in terms of energy efficiency.

3 Models and Metric Definition
In this section, we first introduce the snake-like robot model
used for exploring different gaits. Then, we present our en-
ergy efficiency metric for comparing different gaits based on
our robot model.

3.1 Snake-like Robot Model

We model and simulate our snake-like robot in Mu-
JoCo [Todorov et al., 2012], which is a physics engine of-
fering fast and accurate robot simulation environment. The
snake-like robot model used in this study is inspired by the
ACM snake-like robot [Hirose, 1993], which uses eight joints
and nine identical modules. The first module is used as the
head module and equipped with a vision sensor for perform-
ing other tasks. Figure 1 shows the technical drawings of the
first two modules of the snake-like robot model. The model
acts in a dynamic environment, therefore its weight, friction
on the ground, and actuator power are critical to enable avail-
ability. A uniform density of 600 kg/m3 is set for all compo-
nents of the model. This density is selected based on the robot
developed by Dowling [Dowling, 1996], which has about the
same value including all mechanical and electrical compo-
nents.



Actuated Joints
The snake-like robot adopts actuated joints to bend its body
to slither forward. All the joints are modeled as a servo mo-
tor and rotate along the perpendicular direction to the ground
in a range of [−90◦, 90◦]. The force is limited to a range of
[−20, 20] in Newton, which is adequate to propel the mod-
ules at a reasonable speed and strength. The maximum actua-
tor torque can be calculated by multiplying the actuator force
with the gear length of 0.175 m, which is the half length of a
module.

It is worth mentioning that a configuration with torque mo-
tor is also tested and works as well as the servo motors. For
comparison purposes, the servo motor type is chosen because
the gait equation controller also depends on this input type,
which will be further explained in Section 4.

Passive Damping Wheels
Each robot module is equipped with two passive wheels,
which are used to imitate the anisotropic friction property
of the snake skin. Like the movement of real snakes, those
passive wheels enable a minimum friction in the direction of
rotation and a high friction in the lateral direction. To enable
the torque energy costs at all the joints, a constant damping
property is added at each wheel joint. This constantly decel-
erates the rotation of the wheels, which imitates a low friction
in forward direction. Otherwise, the robot will just form it-
self in a straight line and roll forward to gain distance while
avoiding joint torque energy costs.

3.2 Energy Efficiency Metric
Mobile robots have to conserve their battery power so they
can operate for long periods of time. Our goal is to design
gaits that are capable to move in an energetic and economical
manner and are still versatile to move at a range of veloci-
ties [Dowling, 1997].

Power Profiles
The power profile is one set of the average power for each
module of the robot during a test run, which offers detailed
information to help improve the gait generations. For exam-
ple, we can observe that which modules consume more power
and therefore are more likely to heat up fast or broken.

For a snake-like robot with N joints, the averaged power
P̄j for the jth actuator is the averaged absolute value of the
product of the torque τj and its angular velocity φ̇j during a
run with k steps. Thus, our first metric can be expressed as

P̄j =
1

k

k∑
1

∣∣∣τj φ̇j∣∣∣ ,∀j ∈ [1, N ]. (1)

Power Efficiency
Based on the power consumption of each module of the robot,
the total power consumption P of allN actuators at each time
step is calculated by

P =

N∑
j=1

∣∣∣τj φ̇j∣∣∣ , (2)

where the torque τj is the product of its applied force fj and
its gear constant parameter hj (the length of the actuator).
The model uses actuators with a limited force of fmax as
maximum force in both directions. With this property, the

normalized power consumption P̂ is calculated as

P̂ =
1

N

N∑
j=1

∣∣∣fjhj φ̇j∣∣∣
fmaxhj φ̇max

. (3)

This normalized power consumption P̂ will be further used
for reward definition.

With the variables of energy consumption P and the veloc-
ity v, several efficiency metrics can be calculated. A usual
way is to calculate the Cost of Transport (COT), which is the
power P or energy E divided by the mass m, the gravity g
and the distance d or velocity v:

COT =
E

mgd
=

P

mgv
(4)

This unit-less measure is also able to compare the effi-
ciency between different mobile systems. Since the same
robot model and the same environmental properties are com-
pared, those constants only scale the results and would not
provide any additional insight for the comparison. Thus, the
second metrics is to calculate the Averaged Power per Veloc-
ity (APPV) as

APPV =
P

v
(5)

Similar power efficiency metrics can be found in [Tesch et al.,
2009] and [Saito et al., 2002].

4 Baseline Examples
This section provides two baseline examples, where the pa-
rameterized gait equation controller is presented to generate
the slithering gait for our snake-like robot. By searching a
grid of gait parameters with fixed intervals, we try to find out
the best energy-efficiency gaits at different velocities that can
be acquired by this controller. Then we use the Bayesian opti-
mization algorithm to explore better parameter combinations
in the range of searching grid, since the searching grid is rel-
atively sparse.

4.1 Gait Equation Controller
The gait equation method represents a kinematic locomotion
controller that uses a mathematical equation to describe its
gait. In this work, an undulation gait equation extended from
[Tesch et al., 2009] is used for the purpose of comparison.

Params. Descriptions Values

ω
Temporal
frequency

0.25, 0.5, 0.75, 1.0,
1.25, 1.5, 1.75, 2.0,
2.25, 2.5, 2.75, 3.0

y Linear reduction 0.1, 0.2, 0.3, 0.4
x Linear reduction (1− y)

A
Amplitude (in
degrees)

40, 50, 60, 70, 80, 90,
100, 110, , 120, 130,
140, 150, 160, 170, 180

λ
Spatial frequency
(in degrees)

40, 50, 60, 70, 80, 90,
100, 110, 120

Table 1: The gait parameters used for the grid search algorithm.



The gait equation controller is modeled as

φ(n, t) = (
n

N
x+ y)×A× sin(ωt+ λn) . (6)

φ(n, t) presents the joint angle value at time t, where n is the
joint index and N is the joint amount. λ and ω are the spatial
and temporal frequency of the movement, respectively. The
spatial frequency represents the cycle numbers of the wave
and the temporal frequency represents the traveling speed of
the wave. A is the serpentine amplitude and x and y are the
constants for shaping the body curve.

To ensure a fair comparison, we use the grid search method
to generate a variety of gaits and find out those parameter
combinations with the best power efficiency at different ve-
locities. The grid search method generates a Cartesian prod-
uct from the parameters in Table 1, resulting in 6480 param-
eter sets. Then, each motion parameter set gets tested by
running 1000 steps in the simulation environment. For each
run, the first 200 time steps are ignored and the remaining
800 time steps are evaluated for collecting experiment data.
This is done because it has been observed that the snake robot
needs about 200 time steps to accelerate and then moves at a
steady speed.

4.2 Bayesian Optimization Method
Since the searching grid is relative sparse, we further use the
Bayesian optimization algorithm to search for better parame-
ters that may be located in those grid intervals. This strategy
has been used for optimizing snake-like robot gait parameters
in [Tesch et al., 2011] and other kinds of robots [Lizotte et al.,
2007; Calandra et al., 2014].

The purpose of this method is to find a group of optimized
parameters in (6) to achieve minimum power consumption at
different velocities. The boundaries of these parameters are
set as same as the value boundaries in Table 1. According to
the gait equation controller, the maximum speed of the robot
is mainly bounded by its temporal frequency ω. Therefore,
we perform the optimization process twelve times when ω is
uniformly sampled from [0, 3.0] at a step size of 0.25, which
results in 12 trials. For each search, the exploration and ex-
ploitation samples are set as 10 and 100 for avoiding the local
minimum.

4.3 Baseline Performance
The power consumption and the corresponding velocity re-
sults from the grid search algorithm and the Bayesian opti-
mization algorithm are shown in Figure 2 as a point cloud
of parameter sets using blue dot and orange diamond mark-
ers, respectively. The lowest points at different velocities
in the point cloud have the highest efficiency. As we can
see, the power requirement grows linearly with the increas-
ing velocity. Most results from the Bayesian optimization
controller (orange diamond marker) almost match the best-
energy-efficiency points from the grid search method, which
proves the applicability of the algorithm. And some points
even exhibit better efficiency especially when the desired ve-
locity is higher, which shows the capabilities of the Bayesian
optimization algorithm for choosing better parameters for gait
generation tasks. However, there are two outliers with low ef-
ficiency, which may be caused by falling into local minimum
values during the optimization process.

In short, we demonstrate that the Bayesian optimization
algorithm is a quick and effective method to find a proper pa-
rameter set for achieving desired velocity, especially when
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Figure 2: Baseline examples. This scatter plot shows the results
from the grid search algorithm (blue point) and the Bayesian opti-
mization algorithm (orange diamond), respectively. The coordinate
of each data point represents the mean velocity and its corresponding
power consumption.

most of the parameter sets in the searching space are dis-
tributed in the low velocity area (0 m/s ∼ 0.1 m/s).

5 Proposed RL-Based Controller
We begin this section by introducing the key ingredients of
our reinforcement learning-based controller. Then the RL
network architecture and the training configuration are intro-
duced as well.

5.1 Reinforcement Learning Setup
Below we describe the details of the observation space, the
action space, and the reward function.

Observation Space
The RL agent receives the environmental information via the
observation space at each step. A proper choice of the ob-
servation space parameters is critical in RL, since the agent
needs the right set of information to learn the causality of the
given rewards based on its actions.

The observation space oti is given in Table 2. The joint po-
sition φj and its angular joint velocity φ̇j are required to learn
the locomotion and represent the proprioceptive awareness of
the robot. The head link velocity v1 helps to sense its global
velocity, which offers better movement awareness. In order
to learn a power efficient gait, the sense of energy consump-
tion is necessary. Therefore, the actuator torque of each joint
τj is provided and can be interpreted in combination with φ̇j
to determine the total power usage. The specified target ve-
locity vt is passed to the environment and can be dynamically
changed. This is required to control the velocity of the robot.
In summary, an overall 26-DOF observation space is used in
this work.

Symbols Descriptions
φ1−8 Relative joint angular positions

φ̇1−8 Relative joint angular velocity
v1 Absolute head module velocity
τ1−8 Actuator torque output
vt Specified target velocity

Table 2: The observation space ot
i of the PPO controller.



Figure 3: The montages of the snake-like robot model performing two learned gaits at different speeds. The frames are sorted in two rows
from left to right and are recorded at intervals of 150 ms (the duration for 3 time steps). The first row is captured at a velocity of 0.05 m/s
and appears to be more similar to the concertina gait. The second row is captured at a velocity of 0.25m/s and resembles the slithering gait.

Action Space
The action space ati of the environment has 8-DOF with fi-
nite continuous values in the range of [−1.5, 1.5], which lin-
early translates to a corresponding joint angle φ in range of
[−90◦, 90◦]. Each action represents eight actuator angle posi-
tions of the servo motors. A uniform setup with servo motors
is chosen so the environment between the two controllers can
be compared. There has been no significant difference no-
ticed between a servo and a torque setup.

Reward Function
The objective of this experiment is to learn a power efficient
locomotion for a variety of specified velocities. Therefore,
the energy consumption and the difference between the actual
model velocity and the target velocity are the main criterias to
find a successful behavior. The challenge is to combine and
weigh the variables into one numerical reward for each time
step. Therefore, we first split the power efficiency and veloc-
ity criteria into two normalized reward function components.

First, a normalized reward is defined to maintain the spec-
ified velocities. The objective is to reach and maintain the
target velocity vt by comparing it with the head velocity v1.
The following function represents the velocity reward:

rv = (1− |vt − v1|
a1

)
1
a2 (7)

The parameter a1 = 0.2 influences the spread of the reward
curve, by defining the x-axis intersections with x = vt ± a1.
a2 = 0.2 affects the changes of the curves gradient. If |vt −
v1| = 0.0, the velocity reward rv has to be the maximum
value 1.0.

Second, the normalized value of the total power usage P̂ in
(3) is used to determine the power efficiency reward compo-
nent rP , which is represented by

rP = rmax|1− P̂ |b1
−2

. (8)

Here, rmax controls the maximum reward value and b1 = 0.6
is the slope of the curve. The power efficiency is influenced
by the desired target velocity. Therefore, the normalized
value rmax represents this influence by limiting the maximum
value of rP .

Last, the rewards from the velocity rv and the power effi-
ciency rP are combined to form the overall reward r:

r = (1− |vt − v|
a1

)
1
a2 |1− P̂ |b1

−2

(9)

This equation replaces the rmax in (8) with rv . With that,
the maximal power efficiency depends on the absolute value
of the difference between the desired velocity and the robot
velocity.

5.2 Network Architecture
Given the input (observation oti) and the output (action ati),
we now elaborate the policy network mapping oti to ati. We
design a fully connected 2-hidden-layer neural network as a
non-linear function approximator to the policy πθ. The input
layer has the same dimension as the action space oti. Both
hidden layers have 200 ReLU units and the final layer outputs
the joint position commands for the robot. In order to train the
network, the PPO algorithm adapted from [Schulman et al.,
2017] is used for training it.

5.3 Training Configuration
To enable the learning of different velocities, the parameter
vt is changed by iterating over 0.05, 0.1, 0.15, 0.20, and 0.25
for each episode while training. Meanwhile, to simplify the
beginning of the learning process the first 100 episodes are
trained with a fixed target velocity of 0.1 m/s.

We train our policy network on a computer with an i7-7700
CPU and a Nvidia GTX 1080 GPU. Based on the learning
curve a total of 3 million time steps (about 1400 updates) are
used for training. With the environment settings of 50ms per
time step, the training takes about 42 hours in total simulation
time and 2 hours in wall clock time for the policy to converge
to achieve a robust performance.

6 Results and Comparisons
In this section, we first describe the performance of the gaits
generated by the RL controller. Then, we compare our gaits
to the scripted slithering gaits in terms of energy efficiency.

6.1 Results
In this study, 45 target velocities in the range of [0.025, 0.25]
with a step interval of 0.005 are used for the evaluation of
performance. Simulation results demonstrate that the PPO
controller has succeeded in learning a gait from scratch with-
out knowing any prior locomotion skills. Two exemplary gait
patterns are shown in Figure 3. Surprisingly, we find that the
PPO controller can adapt its gait pattern according to its de-
sired speed like a real snake. The montages in the first row
present a concertina-like gait at a low speed of 0.05 m/s and
the second row resembles a slithering-like gait at a higher
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Figure 4: This scatter plot directly shows the energy consumption
results of the controllers at a range of velocities. The blue point,
orange diamond, and the red point stand for the data from the gait
equation controller, Bayesian optimization controller, and the PPO
controller, respectively.

speed of 0.25 m/s. In nature, snakes usually take the con-
certina locomotion at a low speed and switch to the slithering
locomotion at a fast speed. In the second row, we also ob-
serve that the snake-like robot executes waves from the head
to tail through a movement pattern of lateral undulation. This
learned undulation wave is even smoother than the parameter-
ized serpentine curve and drives the robot to move with better
power efficiency.

The power consumption results of the learned gait are
marked with red points in Figure 4. The data depicts a linear
relationship between the travel velocity and the power con-
sumption, which is in line with the physical law Power =
Force × Speed. There is only one point with higher power
consumption when the velocity is around 0.02 m/s. Impor-
tantly, this also reveals the adaptability of the learning ap-
proach for generating gaits in a range of velocities. It can
also be observed that the mean velocities do not exactly align
with the specified interval of 0.005, especially at higher target
velocities. The reason for this is the difficulty to achieve the
exact ratio between holding the right velocity and performing
the corresponding power-efficient locomotion.

6.2 Comparison
We first have a look at the energy metric based the averaged
power per velocity. After putting the power efficiency data of
the gait equation controller (See Figure 2) and the PPO con-
troller together, we can clearly conclude that the PPO con-
troller has a much better power efficiency at a range of veloc-
ities (See Figure 4). As the velocity grows, the advantage of
the PPO controller for saving energy is even more obvious.
Taking the velocity of 0.15m/s as an example, the PPO con-
troller can save 35% ∼ 65% energy consumption depending
on the parameter sets chosen by the gait equation controller.

We then discuss the power profile for each module of the
robot. The power profiles of the slithering gait at the veloc-
ity of 0.25 m/s generated from the parameterized equation
controller and the PPO controller are shown in Figure 5. It
should noted that we only present the results of the parame-
terized equation controller with the best energy efficiency at
this speed. For the parameterized equation controller, the first
joint consumes the most power since it rapidly adjust its head
to aim at the front direction. Other module joints use similar
power around 5mW to 5.7mW . For the PPO controller, the
head joint still expends more energy than the average power
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Figure 5: The power profile bar of the slithering gait at the velocity
of 0.25m/s for the equation controller and the PPO controller.

consumption. Besides, the joints close to the body center con-
sume more power than the far-ends of the body. This is be-
cause the body trunk modules exert more strength to twist its
body to generate the locomotion, which shows that the PPO
controller generates more natural slithering gait compared to
the parameterized slithering gait.

These superiorities can be elaborated from two aspects. On
one hand, the traditional gait equation controller is based on
the kinematics and describes the gait movement with no in-
fluence of physical forces such as friction or damping. Mean-
while, it only extracts several critical parameters to represent
the gait, which is in fact a highly dimensional interaction with
the environment. Although this parameterized description
simplifies the control task, it inevitably brings difficulties for
designing more sophisticated gaits despite of using optimiza-
tion technologies, especially when the parameter space will
grow exponentially with the increasing joint numbers. On the
other hand, the RL method shows its effectiveness in the abil-
ity for solving this kind of complex control problem, since it
is trained directly in the dynamic environment. It is able to
generate an undulation gait that not only imitates real snakes,
since natural evolution is not a perfect process but a com-
promise result. Therefore, it can explore its limitations and
keep improving its behavior under its hardware constraints.
This is a remarkable achievement because the algorithm has
to handle a high degree of freedom without prior information
about the environment or any locomotion behavior. In short,
the PPO controller is able to overall outperform the equation
controller in terms of power efficiency at a range of velocities.

7 Conclusion

Designing power-efficient gaits for snake-like robots remains
a challenging task, since they come with redundant degrees
of freedom and have complicated interactions with the en-
vironment. In this paper, we present a novel gait design
method based on reinforcement learning. The learned gait
has shown to have much better energy efficiencies at differ-
ent travel velocities compared to the current kinematic-based
method even after choosing those parameters using the grid
search or Bayesian optimization algorithm. Our work con-
tributes and serves as an exploration for designing sophisti-
cated moving patterns for snake-like robots. Our future work
will aim at designing gaits based on reinforcement learning
for those kinds of snake-like robots without passive wheels.
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