
Matthias Kahl

Machine Learning for
Non-Intrusive Load
Monitoring





Fakultät für Informatik

Lehrstuhl für Wirtschaftsinformatik

Machine Learning for Non-Intrusive
Load Monitoring

Matthias Kahl

Vollständiger Abdruck der von der Fakultät für Informatik der Technische Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr. Hans Michael Gerndt

Prüfer der Dissertation:
1. Prof. Dr. Hans-Arno Jacobsen
2. Prof. Dr. Alexander Horsch

Die Dissertation wurde am 03.06.2019 bei der Technische Universität München eingereicht und
durch die Fakultät für Informatik am 10.09.2019 angenommen.





Photo by Matthias Kahl – Bukit Lawang 2014

„Some people talk to animals. Not many listen though.

That’s the problem.”

– Alan Alexander Milne





Abstract

Saving electrical energy is one important way of tackling the anthropogenic climate
change. Non-intrusive load monitoring (NILM) is an information retrieval process for
electrical appliances and their energy consumption without any signi�cant intervention
into the electric circuit. NILM may help reduce energy consumption by providing detailed
consumption reports on the appliance level to consumers. By using new approaches
based on machine and representation learning, we show the possibilities and limitations
of consumption feedback under real-world circumstances.

The energy consumption feedback with NILM follows four processing steps of which
we address the two inner steps in detail: event detection and appliance recognition. We
present an e�cient, machine learning based appliance recognition system, that uses the
best-performing selection from a comprehensive comparison of 36 appliance features. To
extract and evaluate appliance speci�c features, the WHITED dataset with 1259 individual
appliance measurements has been composed. The focus lies on isolated measurements of
the �rst 5 s after the appliance start-up. To provide a suggestion for the most e�ective
usage in households, three smart meter con�guration setups for appliance recognition
are evaluated with multiple datasets. Object of relevance is the database from which the
appliance recognition system learns. Regarding the event detection, the number of falsely
positive detected events from switch-mode power supply (SMPS) equipped appliances
can be reduced with the help of our multivariate event detection and its adaptive training
approach. The detection is based on learning from consumer relevant appliance events
to distinguish them from non-relevant appliance transients. Furthermore, we show that
the appliance recognition can be implemented with modern deep learning approaches,
allowing to relinquish from hand-crafted appliance feature extraction. Depending on
the volume of supervised labeled training data, we can gain the same classi�cation
performances, compared to the classical machine learning approach with hand-crafted
feature extraction.
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Zusammenfassung

Das Sparen elektrischer Energie ist ein wesentlicher Schritt bei der Bekämpfung des
durch den Menschen beein�ussten Klimawandels. Non-intrusive load monitoring (NILM)
ist ein Prozess zur Analyse von elektrischen Verbrauchern und deren individuellem
Energieverbrauch ohne signi�kantem Eingri� in den elektrischen Stromkreis. NILM kann
durch die einfache Installation dazu beitragen, Stromkonsumenten einen detaillierten,
gerätebezogenen Verbrauchsbericht zu liefern, um Ansatzpunkte zum Energiesparen
aufzuzeigen. Wir zeigen unter Verwendung neuer Verfahren, basierend auf Machine und
Representation Learning, was die Möglichkeiten und Grenzen derartiger System in realen
Einsatzszenarien sind.

Verbrauchsanalysen mit NILM folgen typischerweise einer vierstu�gen Bearbeitungskette
von der wir die inneren zwei Stufen, die Einschalt- und Gerätetyperkennung vertieft
bearbeiten. Mit einer umfangreichen Analyse zu 36 Gerätemerkmalen und deren Eignung
für die Unterscheidung von Gerätetypen zeigen wir, wie eine e�ziente Geräteerkennung
mit Hilfe von Machine Learning und einer geeignetem Auswahl an Merkmalen möglich
ist. Um gerätespezi�sche Merkmale von einer Vielzahl an elektrischen Verbrauchern
extrahieren und evaluieren zu können, wurde zu diesem Zweck der WHITED Datensatz
mit 1259 einzelnen Gerätemessungen zusammengestellt. Der Fokus lag dabei auf der
isolierten Messung der ersten 5 s nach dem Einschaltvorgang. Drei verschiedene Kon-
�gurationsszenarien für einen potentiellen Stromzähler mit Geräteerkennung wurden
anhand mehrerer Datensätze überprüft, um eine Empfehlung zum e�ektiven Einsatz
geben zu können. Entscheidend ist dabei der Ursprung der Datenbasis anhand derer die
Geräteklassen erlernt werden. Mit Hilfe unserer multivariaten Einschalterkennung und
insbesondere deren adaptivem Trainingsansatz kann die Anzahl falsch positiv erkann-
ter Einschaltmomente von Geräten mit Schaltnetzteilen signi�kant reduziert werden.
Hierbei werden konsumentenrelevante Einschaltmomente semantisch von anderen Gerä-
teereignissen und -transienten unterschieden und explizit anhand von Beispielen erlernt.
Desweiteren zeigen wir dass es möglich ist, die Geräteerkennung mithilfe moderner
Deep Learning Verfahren zu implementieren und damit auf die manuelle Extraktion von
Gerätemerkmalen verzichten zu können. Abhängig vom Umfang der überwacht erhobe-
nen Menge an Trainingsdaten ist es uns möglich die gleichen Erkennungsleistungen zu
erreichen wie sie mit manueller Merkmalsextraktion im klassischen Machine Learning
möglich ist.

vii





Acknowledgments

This dissertation and necessary work towards it took place at the Department of Infor-
matics of the Technische Universität München under the supervision of Prof. Hans-Arno
Jacobsen.

First, I want to thank Prof. Hans-Arno Jacobsen for accepting me as a doctoral candidate,
his valuable feedback, support and the great freedom I was allowed to live out in all
aspects of the research activity.

I would like to thank Prof. Alexander Horsch for his feedback, interesting talks and
his agreement to be the second examiner of this work. Further, I thank Prof. Dr. Hans
Michael Gerndt for acting as chair of the committee.

A great "Thank you" goes to my colleagues that shared her time with me at the chair.
Without their help, creativity, ideas, time for kicker-playing and motivational discussions
during the years, the thesis would not be possible. Thanks go to Thomas Kriechbaumer
as an always supportive o�cemate, as well as Anwar Ul Haq and Daniel Jorde for sharing
ideas and knowledge as an integral part of our NILM research group. Further, I thank
Elias Stehle, Martin Jergler and Christoph Doblander for their motivational input and
friendship we could develop over the last years.

Besides academia, I want to say thank you to my parents Roswitha and Ekkehart for their
patients, trust in me and their optimism. A special thank goes to my wife for her love,
serenity, patients and for being the captain. I want to thank Dr. Bernd Flügel and Prof.
Martin Golz for implanting the idea of doing a Ph.D. in natural sciences and machine
learning. I also want to thank Linus and Luana for being human enough to be a great
comfort in heavy times.

ix





Contents

Abstract v

Zusammenfassung vii

Acknowledgments ix

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background 9
2.1 NILM Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Appliance Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Machine-, Representation- and Deep Learning . . . . . . . . . . . . . . . 12

3 Related Work 13
3.1 High-Frequency Sampled Appliance Datasets . . . . . . . . . . . . . . . . 13
3.2 Appliance Event Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Discriminative Appliance Features . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Deep Neural Networks and NILM . . . . . . . . . . . . . . . . . . . . . . 21
3.5 Cross-Dataset Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

xi



CONTENTS

4 Worldwide Household and Industry Transient Energy Dataset 25
4.1 Hardware Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.1 Measurement Methodology . . . . . . . . . . . . . . . . . . . . . 26
4.1.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.1 Data Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Appliance Event Detection and Discrimination 33
5.1 Multivariate Event Detection . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.1.1 Adaptive Training . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.1.2 Event Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2.1 Multivariate Event Detection . . . . . . . . . . . . . . . . . . . . 41
5.2.2 Adaptive Training . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2.3 Manual BLOND-50 Event Annotation . . . . . . . . . . . . . . . 43

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.3.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.3.2 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.3.3 Training Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3.4 Classi�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6 Appliance Feature Study 53
6.1 NILM Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.1.1 Established Features . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.1.2 Developed Features . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.2 Experimental Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.3.1 Stand-Alone Feature Ranking . . . . . . . . . . . . . . . . . . . . 67
6.3.2 2-Dimensional Feature Combination . . . . . . . . . . . . . . . . 68
6.3.3 Feature Forward Selection . . . . . . . . . . . . . . . . . . . . . . 71
6.3.4 Individual Appliance Performance . . . . . . . . . . . . . . . . . 72
6.3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7 Deep vs. Machine Learning in NILM 75

xii



CONTENTS

7.1 Appliance Recognition Process . . . . . . . . . . . . . . . . . . . . . . . . 75
7.1.1 Data Preprocessing and Event Detection . . . . . . . . . . . . . . 77
7.1.2 Hand-Crafted Feature Extraction . . . . . . . . . . . . . . . . . . 79
7.1.3 Autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.1.4 Convolutional Neural Network Architecture . . . . . . . . . . . . 79
7.1.5 Convolutional Autoencoder . . . . . . . . . . . . . . . . . . . . . 80
7.1.6 Feature Space Transformation . . . . . . . . . . . . . . . . . . . . 81

7.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.3.1 Classi�cation Models . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.3.2 Appliances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

8 Use Case Study 91
8.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

8.1.1 Cross-Dataset-Validation . . . . . . . . . . . . . . . . . . . . . . . 94
8.1.2 Mixed-Dataset Cross-Validation . . . . . . . . . . . . . . . . . . . 94
8.1.3 Intra-Dataset Cross-Validation . . . . . . . . . . . . . . . . . . . . 95
8.1.4 Feature evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
8.2.1 Cross-Dataset-Validation . . . . . . . . . . . . . . . . . . . . . . . 95
8.2.2 Mixed-Dataset Cross-Validation . . . . . . . . . . . . . . . . . . . 98
8.2.3 Intra-Dataset Cross-Validation . . . . . . . . . . . . . . . . . . . . 99
8.2.4 Feature validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

8.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

9 Conclusions 105

List of Figures 115

List of Tables 119

Bibliography 121

xiii





1

Introduction

Non-intrusive load monitoring (NILM) is a modern technique for observing voltage and
current signals to retrieve detailed energy consumption and appliance state information
of a rather small electric circuit such as a residential home, �oor or small industrial
environment. NILM combines several techniques to gain insights into consumption
amount, consumption pattern and state of appliances [1]. NILM can be used for appliance
start-up identi�cation [2], appliance identi�cation [3], demand response [4], predictive
maintenance [5] and sensor-net simpli�cation [6]. Similar techniques can be applied on
water [7], gas or any other measurements on �owing matter.

One purpose of NILM is to represent an alternative to intrusive load monitoring (ILM).
ILM considers measurement units on each appliance of interest [8], while NILM aims
for one intelligent sensor at the aggregated signal, usually at the electric cabinet, see
Figure 1.0.1 and 1.0.2. The intelligent sensor is equipped with state-of-the-art arti�cial
intelligence to identify appliance states, class and consumption in real or near-real time on
the basis of appliance-speci�c characteristics in the current and voltage signals. NILM can
also be seen as reporting system for automated demand response to support consumers
saving energy without lowering their comfort.

Several small companies provide services based on NILM [9]. Main drawbacks for NILM
systems lie in their imperfect appliance prediction, as well as general privacy concerns.
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1.1 Motivation

Most climate scientists agree about the anthropogenic climate change [10]. The concerns
focus on the global temperature increase in the upcoming decades. The main reason
for the human caused temperature increase can be explained by the release of huge
amounts of CO2 into the atmosphere. Heating and electricity are the sectors with the
largest CO2 emissions [11]. More than 65% of the worldwide electrical energy is produced
by non-carbon-neutral fossil fuels [11] which releases the greenhouse gas CO2 into
the atmosphere. A higher carbon concentration causes temperature increase of the
atmosphere [12] due to the greenhouse e�ect.

Around 27% of the worldwide electrical energy consumption goes to the residential sector
[11]. Unfortunately, residential consumers are usually not aware of their appliance-wise
energy consumption due to a poor consumption report provided within the energy billing
procedure. The meta study of Kelly and Knottenbelt [13] found little evidence that
consumption feedback helps reducing electricity consumption by 0.7-4.5% [13]. Although
there is no clear evidence, but several studies support the statement that disaggregated
consumption feedback leads to a reduction of energy consumption [13]. A perfectly
accurate disaggregation seems to be not necessary, making the NILM approach an even
more convenient option for residential consumers. One reason for the small interest of

2



1. INTRODUCTION

the consumer in consumption feedback is that energy prices are not seen as a signi�cant
cost factor and even an extravagant energy consumption is still a�ordable for most people.
This might change in the future.

1.2 Problem Statement

The NILM process for energy consumption feedback can be divided into four steps (see
Figure 2.1.1). In this work, we target the two inner challenges: event detection and
appliance classi�cation.

Many appliance event detection approaches are based on thresholds and simple rules,
implicating a simple appliance event de�nition. These approaches are usually able
to cover the vast number of appliance events. In the context of energy consumption
feedback, not all appliance events are of interest. Furthermore, switch-mode power
supply (SMPS) driven appliances draw very heterogeneous current signals that show
event-like transients, challenging any event detection algorithm.

Smart meters are usually equipped with a rather small processing unit, limiting the
appliance recognition algorithms to baseline approaches. Building an e�cient appliance
recognition system that is able to perform on such baseline hardware, a well-chosen
selection of appliance features and classi�cation algorithm are necessary. Many features,
with di�erent - usually unknown - discriminative potential for appliance recognition
can be found in the literature from di�erent research �elds. Since appliances have
their individual di�erentiability across their classes, the discriminative potential of each
appliance class is also of high interest.

Appliance recognition is a discipline that still faces a signi�cant error margin. Depending
on the appliances and their usage pattern, the environment and the applied algorithms,
an average classi�cation F-Score between 0.75 and 1.0 is possible with machine learning
approaches [3, 14, 15, 16]. Deep neural networks can be used for representation learning,
an approach for classi�cation that identi�es features from raw data in an automated way,
forming an worthy alternative to hand-crafted, expert-driven feature extraction - the
conventional machine learning paradigm.

3



1.3. APPROACH

The large number of individual appliances of a certain type makes a challenge to build
a uniform appliance model. It is impossible to collect representative measurements of
each appliance model from each manufacturer. Since there is no such large database
of appliance measurements, other strategies need to be followed to identify appliances
successfully. Those strategies may include the integration of the consumer for initial
appliance feedback.

Electrical appliances can be distinguished based on individual characteristics in the
current and voltage signals with general features. The extraction of appliance-speci�c
features may improve the classi�cation performance. To retrieve appliance-speci�c
features, the manual observation of appliance measurements is an elementary step.
Appliances of many types need to be measured consistently with high quality and
redundantly in an isolated environment to enable the extraction of appliance-speci�c
features.

1.3 Approach

Appliance Events play an important role in the NILM process. They de�ne amongst other
things, the relevant time segments where an appliance has a transition from ON to OFF
or vice versa. To properly identify appliance classes, a reasonable event detection and
therefore a distinct event de�nition are necessary. Usually, hard-coded thresholds are
used to de�ne appliance events [17, 18, 19], making them easy to identify with a simple
rule set. In the context of consumption feedback as well as from the consumer perspective,
appliance ON / OFF events that have a causal origin (i.e., from user interaction or physical
appliance state changes) are more relevant than transients that simply satisfy simple
rules or pass thresholds. Therefore, for our event detection, we replace hand-crafted rules
with a supervised, multivariate, binary classi�cation to distinguish between unrelated
event-like transients and actual user relevant appliance events. Our classi�cation system
learns from consumer-labeled appliance events to distinguish between consumer relevant
appliance ON / OFF events and irrelevant event-like transients. A common challenge
of event detection is to reduce the amount of false positives. Our two-step adaptive
learning approach that is based on the boosting algorithm, ensures a relevant selection

4



1. INTRODUCTION

of training samples for the event and non-event class by learning from false positives.
Our experiments show that the algorithm can reduce the number of unrelated event-like
transients (false positives) signi�cantly.

One challenge in power disaggregation lies in �nding an e�cient set of features with
a high discriminative potential on appliances with respect to the environment they are
used in. A smart meter may not be equipped with high-performing processing unit.
Therefore, it is necessary to equip the disaggregation system in a modular fashion with
only the most relevant features. We present a wide set of features and show which
appliance characteristics can be covered with each individual feature. We evaluated
all features and several of their combinations on four common, publicly available high-
frequency sampled energy datasets to get a priori results on isolated and aggregated
household environments. To streamline the appliance recognition process, we composed
an extensive list of 36 di�erent appliance features derived from the current and voltage
measurements of appliance start-up events.

A smart meter setup that includes appliance recognition and power disaggregation
needs a well-chosen classi�cation model con�guration. We see three con�guration
scenarios, a smart meter could be rolled out with: a fully pre-delivery-trained appliance
model with a high generalization potential, an exclusively consumer post-delivery-
trained appliance model with a high specialization on locally existing appliances, and
a mix of both appliance models. We present experimental results that consider four
publicly available high-frequency sampled datasets: BLUED [20], UK-DALE [21], PLAID
[22], and WHITED [23] to obtain reliable results for appliance recognition on high-
frequency sampled measurements. Three experiments, based on these appliance events,
are conducted to benchmark the future in-house smart meter con�gurations. With these
results a suggestion on the smart meter con�guration is given to ensure a high appliance
classi�cation performance.

Representation Learning with deep neural networks de�ne the state of the art in several
disciplines of learning from large datasets. Their main advantage lies in replacing a
hand-crafted feature extraction with learning from raw data. We show how NILM can
bene�t from deep learning. We implemented multiple representation learning approaches
and performed a broad comparison to several prevalent machine learning approaches on

5



1.4. CONTRIBUTION

2 publicly available datasets (UK-DALE [21] and BLOND [24]) for appliance recognition.
The evaluations include an expert-aided, 212-dimensional hand-crafted feature extraction
model, three baseline raw data processing models, four di�erent classi�ers and three deep
neural network architectures with their network parameter con�guration for household
consumption data.

1.4 Contribution

Our contributions mainly divide into two steps of the NILM process: appliance event
detection and appliance classi�cation as well as the dataset WHITED. The following
enumerations sum up the main contributions to these research �elds.

The main contributions of our work regarding appliance event detection are:

i. We propose a supervised event detection that eschews hard-coded event de�nitions
by learning from relevant samples of the consumer perspective. The adaptive training
algorithm reduces false positive events from switched-mode power supply driven
appliances.

ii. We critically discuss the high number of appliance event de�nitions in the literature,
making event detection algorithms hardly comparable.

The main contributions of our work regarding appliance classi�cation are:

i. We perform a comprehensive evaluation of a wide set of electronics-, audio-, general
signal processing- newly developed appliance-speci�c features and multiple com-
binations to their discriminative potential for electrical appliances on four publicly
available datasets.

ii. We perform a comprehensive evaluation of a wide set of existing and newly devel-
oped appliance-speci�c features and multiple combinations to their discriminative
potential for electrical appliances on four publicly available datasets.

6



1. INTRODUCTION

iii. We map three smart meter use cases to three di�erent dataset-cross-evaluation
strategies to gain insights on real-world appliance classi�cation performances and
show the individual performances of appliance features and appliance types in each
use case.

iv. We introduce representation learning approaches for appliance classi�cation in-
cluding suitable parameter settings and show a broad performance comparison
between prevalent machine learning approaches and modern representation learning
approaches.

The main contributions of our work regarding energy consumption datasets are:

i. We propose a novel, high-frequency sampled dataset with focus on household
appliance transients.

ii. We show the dataset integrity with experiments on the discriminative potential of
appliance measurements.

Parts of the content and contributions of this work have been published in:

• M. Kahl, A. U. Haq, T. Kriechbaumer, and H.-A. Jacobsen. “WHITED - A Worldwide
Household and Industry Transient Energy Data Set.” In: 3rd InternationalWorkshop
on Non-Intrusive Load Monitoring. 2016

• M. Kahl, A. U. Haq, T. Kriechbaumer, and H.-A. Jacobsen. “A Comprehensive
Feature Study for Appliance Recognition on High Frequency Energy Data.” In:
Proceedings of the 2017 ACM 8th International Conference on Future Energy Systems
(May 18, 2017). e-Energy ’17. Hong Kong, Hong Kong: ACM, May 18, 2017. isbn:
978-1-4503-5036-5. doi: 10.1145/3077839.3077845

• M. Kahl, T. Kriechbaumer, A. U. Haq, and H.-A. Jacobsen. “Appliance Classi�cation
Across Multiple High Frequency Energy Datasets.” In: 2017 IEEE International
Conference on Smart Grid Communications (SmartGridComm). 2017. doi: 10.
1109/smartgridcomm.2017.8340664

7

https://doi.org/10.1145/3077839.3077845
https://doi.org/10.1109/smartgridcomm.2017.8340664
https://doi.org/10.1109/smartgridcomm.2017.8340664


1.5. ORGANIZATION

• M. Kahl, T. Kriechbaumer, D. Jorde, A. U. Haq, and H.-A. Jacobsen "Appliance Event
Detection - A Multivariate, Supervised Classi�cation Approach" (unpublished,
submitted to ACM e-Energy 2019)

• M. Kahl, D. Jorde, and H.-A. Jacobsen "Representation Learning for Appliance Recog-
nition: A Comparison to Classical Machine Learning" (unpublished, submitted to
Transactions on Smart Grids 2019)

1.5 Organization

The rest of the document is organized as follows. Chapter 2 provides the background to
relevant topics. Chapter 3 gives an overview of related work to the individual research
�elds. In Chapter 4, we introduce the WHITED dataset for appliance-speci�c feature
extraction. Chapter 5 presents the multivariate appliance event detection algorithm. In
Chapter 6, we present a comprehensive feature study for appliance recognition. Chapter
7 presents a comparison between classical machine learning and representation learning
for appliance recognition. In Chapter 8, we evaluate three smart meter con�guration
setups for appliance recognition and �nally conclude in Chapter 9.
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2

Background

In this chapter, we give insights into the NILM process and the most relevant, high-
frequency sampled energy datasets that are used for this work. Furthermore, we describe
the relevant performance metrics and give a short introduction to machine and represen-
tation learning as well as the applied algorithms.

2.1 NILM Process

The event-based NILM process describes the whole retrieval process from unobserved
energy consumption to disaggregated per-appliance statistics. According to K. D. An-
derson, Bergés, Ocneanu, Benitez, and Moura [17], event-based NILM comprises four
elementary steps: (1) Data Acquisition, (2) Event Detection, (3) Appliance Classi�cation
and (4) Energy Disaggregation (see Figure 2.1.1).

Each NILM step is a relevant subject of research with individual approaches and studies [9,
26, 27]. Studies regarded to the �rst mainly focus on hardware setup, sampling frequency,
measurement environment and usually belong to measurement engineering. Studies on
event detection and appliance recognition usually focus on algorithms that belong to
anomaly detection, pattern recognition, and classi�cation. Further integral parts include
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2.2. APPLIANCE DATASETS

the usage of signal processing as well as empirically and heuristically driven feature
extraction. The energy disaggregation step - depending on the output of the previous
steps - summarizes, calculates and orders all retrieved data to generate information for
the consumer.

1. Data Aquisition

2. Event Detection

3. Appliance Classification

4. Energy Disaggregation 60W

40W

Light
Fan

Fridge

75W

Light
Fan

Fridge

Time

Time

Time

Time

Figure 2.1.1: The general NILM process in four steps

2.2 Appliance Datasets

UK-DALE The UK Domestic Appliance-Level Electricity (UK-DALE) dataset consists
of more than four years of energy consumption measurements for a residential building
(house-1) with a high number of appliances of many di�erent types. For our experiments,
we considered measurements from 2013-04-22 to 2015-01-05. The dataset comprises
low-frequency, non-equidistant sampled smart plug measurements (1/6 Hz) for each
observed appliance (per-appliance signals) and high-frequency sampled measurements
(16 kHz) from a custom sound card meter at the electric cabinet (aggregated signal). The
per-appliance measurements allow a coarse determination of appliance events and power
consumption to extract the relevant segments from the aggregated signal.

BLOND The Building-Level O�ce eNvironment Dataset (BLOND) comprises energy
consumption measurements from an o�ce building with a high number of appliances of
only a few di�erent types, mostly SMPS of o�ce appliances. This appliance and appliance
type distribution is the main di�erence to the UK-DALE dataset. The BLOND-50 subset
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comprises 213 days of recording with 50 kHz sampling frequency for the aggregated
signal at the electric cabinet and 90 individually observed sockets for the per-appliance
measurements with 6.4 kHz sampling frequency.

BLUED The Building-Level fUlly-labeled dataset for Electricity Disaggregation (BLUED)
is being introduced by K. Anderson, Ocneanu, Benitez, et al. [20]. The dataset contains
continuous voltage and current measurements of around one week from a single-family
household. The aggregated consumption signal is measured in a high amplitude (16-
bit) and temporal resolution (12 kHz). Signi�cant appliance state transients are labeled
with timestamps and appliance information, to enable event detection research. The
transient event ground truth stems from additional sensings such as light sensors and
visual observation of humans.

PLAID The Plug Load Appliance Identi�cation Dataset (PLAID) provides multiple
appliance models of 11 appliance types. All appliances and events are used in our
experiments (high inner-class diversity with 1074 events of 11 appliance types). PLAID
is considered as a laboratory environment since the measurements are conducted in an
isolated environment with the focus on the appliance events. The appliance events are
fully labeled and sampled at 30 kHz with 16-bit amplitude resolution.

2.3 Performance Metrics

To evaluate the classi�cation performance of multiple classes, three metrics can be stated
as relevant: Precision (PR), Recall (RE) and F-Score. All three metrics can be retrieved
from the classi�cation confusion matrix. The metrics are calculated using the unweighted
macro-average of all per-class results. To evaluate the classi�cation performance for each
class in a multi-class problem, PR, RE and F-Score are implemented using the class-wise
True Positives (TP), False Positives (FP) and False Negatives (FN) as follows:

F-Score = 2 ⋅ PR ⋅ RE
PR + RE PR =

TP
TP + FP RE = TP

TP + FN
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2.4 Machine-, Representation- and Deep Learning

Machine learning is a research �eld and part of the general term arti�cial intelligence to
retrieve knowledge from experience. In practice, machine learning describes a collection
of algorithms that allow forming an internal, generalizable model from observations.
With the transfer of learning, machine learning is a superior alternative to rule-based
systems due to the ability to �nd patterns and principles in data allowing it to predict from
unknown and noisy data. Features with discriminative potential are retrieved from given
observations to learn from data. This process is called feature extraction and is usually
conducted by humans with speci�c domain knowledge. Representation learning is a
further sub�eld of machine learning with the advantage of automated feature extraction
from given observations. In some contexts, a hierarchical decomposition of the entity is
a further strategy to retrieve features from di�erent arbitrary perspectives to the entity.
This hierarchical inspection of represented observations characterizes deep learning,
which is currently state of the art in speech and visual object recognition [28, 29].

Autoencoder (AE) are feedforward nets with a di�erent number of neurons in the inner
coding layer. The goal of an AE is to reach the same output as the input by propagating
the input through the di�erent dimensional coding layer in the middle. In our case, the
AE’s target is to reduce the number of representative neurons in the inner coding layer.
The AE is built of an encoding section in which the input data is reduced and a decoding
section in which the reduced codings are upscaled to reproduce the input. The output of
the encoding section can be seen as a lower dimensional representation of the input [30]
that went through a bottleneck, keeping only the essence of the data.

Convolutional neural networks (CNN) are designed to process signals that follow the
principle of locality. Natural signals can be e�ciently processed by local connections,
shared weights, pooling and the use of multiple layers [28]. CNNs bene�t from the typical
hierarchical composition of natural signals.

Convolutional Autoencoder (CAE) follow the same underlying architecture as a standard
AE. The hidden layers are replaced by convolutional layers, inheriting the advantages of
locality, shared weights and pooling.
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Related Work

We begin with the publicly available high-frequency sampled energy datasets and what
is missing to extract appliance speci�c features. We continue with recent approaches on
appliance event detection and discuss existing discriminative appliance features. The
Chapter ends with the presentation of studies to deep neural network on NILM and
cross-dataset evaluation.

3.1 High-Frequency Sampled Appliance Datasets

Several public datasets covering appliance-level energy consumption already exist. The
purpose of these datasets is to measure demand in private households through a non-
intrusive single point measurement in either low or high frequency. Through constant
observation of household energy demand, these datasets provide comprehensive longtime
measurements to cover user behavior in the corresponding residence. These datasets
are a good source for power disaggregation tasks as they indirectly provide transient
start-up features at an appliance level. Real-world scenario datasets include REDD[31],
UK DALE [21] and BLUED[20] among others.

When looking in more detail at appliance transients, it can be cumbersome to extract
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them from these single measurements. Since the ground truth is mostly based on 1s to 6s
data without explicit voltage or current waveforms, it might be possible that two start-ups
fall in the same time window, thus, violating the assumption of the switch continuity
principle (SCP) [32]. Therefore, it is helpful to take a closer look at transient-focused
datasets such as PLAID [22] and HFED [33]. PLAID examines start-up transients at
30 kHz whereas in HFED short transient spectral traces of up to 5MHz were observed
but require high e�ort in terms of hardware and experimental setup to reproduce.

Table 3.1.1: Comparison of datasets with high-frequency sampled appliance traces

Appliance
Dataset Bit Fs Classes Variety Purpose

REDD [31] 24 15 kHz ∼ 20 10 house demand
BLUED [20] 16 12 kHz ∼ 30 ∼ 1 house demand
UK DALE [21] 20 16 kHz ∼ 40 ∼ 1 − 3 house demand
PLAID [22] 16 30 kHz ∼ 12 ∼ 20 transients
HFED [33] 16 5MHz 15 1 spectral traces
WHITED [23] 16 44 kHz 46 1 − 9 transients
BLOND [24] 16 50/250 kHz 16 1 − 17 o�ce demand
COOLL [34] 16 100 kHz 12 1 − 8 transients
LILACD [35] 16 50 kHz 15 1 industrial transients

Table 3.1.1 gives a comparison between the above mentioned high-frequency sampled
datasets in terms of resolution, purpose, amount of appliance types (classes) and quantity
of appliances for each class (variety). The information about the appliance types and
quantity are inferred from the available data. We believe that a high intra-class variety
leads to a more reliable result in terms of appliance classi�cation.

With WHITED - a Worldwide Household and Industry Transient Energy Dataset - we
want to contribute to existing energy datasets in terms of higher sampling frequency
and higher amount of appliance types and variety. In addition, we provide a region
classi�cation for each measurement to potentially enable the investigation of region
speci�c research questions.
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3.2 Appliance Event Detection
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Figure 3.2.1: The focus here lies on event detection of the general NILM process

Appliance event detection can be seen as the second step in the NILM process, see
Figure 3.2.1. Multi-state and SMPS-driven appliances often show unrelated event-like
transients due to appliance state changes. These transients can be caused, amongst others,
by computers that switch spontaneously from idle to full processor load (see Figure 3.2.2).
Organic-LED-driven monitors have an image dependent energy consumption that can
switch from minimum load to maximum load in between milliseconds just by changing
from black to white in the displaying image. These undesired or unrelated transients
a�ect the appliance classi�cation and power disaggregation performance and make the
event detection a challenging part. Rule-based event detection algorithms would need a
complex rule set that is hardly feasible and sensitive to environment changes or appliance
set changes due to their in�exibility.

Event Detection

NILM is commonly divided into event-based and state-based approaches. Event-based
approaches rely on using detection algorithms in order to �nd electrical events such
as switch-ON or switch-OFF of an individual appliance. State-based methods on the
other hand, take into account every sample of the signal to perform the inference step.
Event-based methods are generally more e�cient in the inference step than state-based
approaches. This e�ciency is caused by pre-processing of the voltage and current signals
with labeling and extracting the regions of interest of the signal after the events have
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Figure 3.2.2: The �rst plot shows an actual OFF, followed by an ON event of a monitor. The second
plot shows sudden laptop transients, that most likely stem from processor load changes. The goal is to
di�erentiate between actual ON / OFF events and transients that are irrelevant to the user.

occurred. [36]. Most of the event-based methods rely on the switch continuity principle
[32], which was initially introduced by Hart in 1992 [1]. It essentially states that there
is only up to one event, i.e., not multiple ones, at a given point in time. Furthermore, it
assumes that events are relatively rare when looking at the overall signal, allowing to
see the event detection as anomaly detection. Sampling data at higher rates increases the
validity of this principle. Employing this principle allows event-detection methods and
other algorithms to treat electric events as being isolated from one another [32].

Three categories of event detection approaches are introduced by K. D. Anderson,
Bergés, Ocneanu, Benitez, and Moura [17]. Expert heuristics describe mostly rule-based
approaches that consider prior knowledge to de�ne sets of parameters and thresholds [1,
37]. Probabilistic models consider statistical metrics, including variance and standard
deviation, to estimate the probability of a change in a time series [38, 39]. Approaches of
the matched-�lter category try to �nd a universal event pattern in the signal by exceeding
a likelihood threshold [40, 41]. The approach of K. D. Anderson, Bergés, Ocneanu, Benitez,
and Moura [17] considers the usage of a modi�ed general likelihood ratio detector to
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compare four di�erent evaluation metrics.

Baets, Ruyssinck, Deschrijver, and Dhaene [18] apply a cepstrum smoothing high-pass
�lter to the signal. This way, only very low frequency and step changes remain in the
signal. The assumption is that in the case of an event, all remaining low frequencies
lie above a certain threshold. The optimal parameter values were empirically evaluated.
Baets, Ruyssinck, Deschrijver, and Dhaene [18] compare the results on the BLUED dataset
with the chi-squared goodness-of-�t (X 2 GOF) approach by Jin, Tebekaemi, Berges, and
Soibelman [42] and could reach comparable results.

Barsim, Streubel, and B. Yang [43] introduced an unsupervised event detection algorithm
which creates the logarithm of the P, Q plane [1] to �nd steady states as clusters, while
transients are represented as single scatters or outliers. The extraction of actual events
was performed in three stages: a coarse search, followed by a �ne search, and a �nal
veri�cation stage. The unsupervised way has the advantage that no learning from existing
ground truth is necessary. The results show a very similar performance compared to
Baets, Ruyssinck, Deschrijver, and Dhaene [18].

Wild, Barsim, and B. Yang [44] introduce a new event de�nition which gives events
a dimension in time, they are not in�nite anymore. This de�nition allows a Fisher
discriminant analysis in combination with some constraints a robust unsupervised
appliance event detection in the spectral domain.

Houidi, Auger, Sethom, et al. [45] investigate three commonly used techniques for the
abrupt event detection that are typically used in other research �elds: the E�ective
Residual algorithm [46], the Cumulative Sum (CUSUM) algorithm [47], and the Bayesian
Information Criterion algorithm [48]. These algorithms are probabilistic event detection
techniques. By comparing the algorithms in a real-world environment, Houidi, Auger,
Sethom, et al. [45] conclude that the CUSUM algorithm outperforms the other two and
achieves good results on their internal dataset.

Azzini, Torquato, and Silva [2] introduce the "window with margin" method. This
threshold-based algorithm uses a sliding window and a subset of the samples within
the window, i.e., samples from the beginning and the end of the window, to calculate
two averages of the active power consumption. Azzini, Torquato, and Silva [2] then use
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heuristically de�ned thresholds to check if the di�erence between the averages exceeds a
certain limit in order to detect events in the signal.

The event detection methods above are developed for residential settings, whereas Leeb
and Kirtley [49] propose a multi-scale transient event detector for industrial settings. To
tolerate overlapping events, the author’s algorithm searches for time patterns of segments
in the signal that exhibit signi�cant variation instead of searching for complete transient
shapes. The algorithm detects such segments by using a change-of-mean detector. The
transient changes in the signal are then detected by using sets of the previously computed
segments as features for particular events and a pattern matching algorithm.

In contrast to the majority of the event detection approaches, R. Cox, Leeb, Shaw, and
Norford [50] do not use current signals and analyze only aggregated voltage measure-
ments. By using a spectral decomposition of the voltage signal to compute the harmonic
voltage distortion, they are able to detect residential appliance events reliably. They
further show that the voltage signal exhibits su�cient information to identify events.

All mentioned approaches have in common that all signi�cant transients are interpreted
as events. Every approach considers another event de�nition making it hard to compare
their results. They do not allow to distinguish between di�erent kinds of events or ignore
undesired events.

Table 3.2.1: Event detection results on BLUED, using di�erent event de�nitions making the results hardly
comparable

Work of. . . F-Score

Baets, Ruyssinck, Deschrijver, and Dhaene [18] 80.04
Jin, Telebakemi, and Berges [39] 81.01
Wild, Barsim, and B. Yang [44] 89.15

Event De�nition

Regarding the event de�nition itself, multiple di�erent interpretations of events can be
found in the literature. Wild, Barsim, and B. Yang [44] present a classical and an extended
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event de�nition. A classical event is a "transient from one steady state to another steady
state which de�nitely di�ers from the previous one" [44], while an extended event
describes a "so-called active section where the signal is somehow deviating from the
previous steady state" [44], which provides a higher resilience against peaks and short
pulses. K. D. Anderson, Bergés, Ocneanu, Benitez, and Moura [17] de�ne an event with a
state change of 30 W for a certain amount of time in a concrete value-based way, while
Jin, Tebekaemi, Berges, and Soibelman [51] see event detection as a way to �nd ON
and OFF transients of appliances. Girmay and Camarda [19] see an event as an active
region from any appliance activation in which the power consumption is "well above"
the background power.

The list of de�nitions above shows that there is no common agreement on what an
appliance event can be. The event detection performance depends strongly on the event
de�nition itself. A simple de�nition that includes a signi�cant change of power for a
certain amount of time, regardless of the cause, can simply be put into a rule-based system
that may allow for a perfect detection performance. From the consumer perspective,
appliance ON / OFF events that have a causal origin (i.e., from user interaction or physical
appliance state changes) are more relevant than transients that simply satisfy the rule
set. In practice, the consumer might be interested in the fridge or washing machine spin
cycles. The temporarily increased energy consumption from a laptop during an irregular
5 minute lasting operating system update or the suddenly content dependent energy
consumption of an organic-LED-driven TV is only of minor interest to the consumer.

Our approach avoids a distinct, hard-coded appliance event de�nition by learning from
individual consumer-con�gured appliance event segments to build a tailored event model.
This way we step back from a distinct event de�nition in favor of a user-de�nable event
model. Since events from di�erent appliances show individual characteristics, a rule-
based approach with thresholds may not be su�cient to �nd ON / OFF switches. Our
system is able to learn from di�erent event features in the time and spectral domain
which are fed as features into a supervised binary classi�cation system. To improve
the classi�cation performance, we introduce an adaptive training technique that learns
from previously wrong detected transients that lie on the border between events and
non-events.
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3.3 Discriminative Appliance Features

Machine learning and pattern recognition is an e�cient and widely used approach for
many NILM research questions, especially for appliance identi�cation. The appliance
identi�cation problem is often tackled with a classi�cation task, using supervised training
on existing, with ground truth-labeled appliance measurements. These types of machine
learning approaches were already used in 1994 by Roos, Lane, Botha, and Hancke [52]
with neural networks and are still commonly used in more recent papers [14, 31, 53, 54].

Since appliances have individual characteristics, electrical power quantities including
Active Power, Reactive Power, and Apparent Power may not be su�cient for all kinds of
appliances. In 1992, NILM pioneer George Hart [1] described further signatures including
harmonics and transient features for di�erent appliance types. Several signal processing
metrics of the temporal and spectral domain have also been applied to NILM over the
years.

Further approaches, like spectral analysis using a wavelet transform, were implemented
in 1995 by Leeb, Shaw, and Kirtley [40] to build a prototype detector that "performs
remarkably well" and was able to identify four appliance types. The V-I Trajectory was
�rst used in 2005 by Ting, Lucente, G. S. Fung, W. Lee, and Hui [55] and in 2007 by Lam,
G. Fung, and W. Lee [56] for appliance classi�cation and taxonomy purposes. Waveform-
based and general signal processing metrics, including Total Harmonic Distortion and
Crest Factor, which "provide a tremendously improved recognition capacity" were used
in 2007 by H.-T. Yang, H.-H. Chang, and C.-L. Lin [57]. In 2011, Y. H. Lin, M. S. Tsai,
and Chen [58] used the Crest Factor feature among others to reach identi�cation rates of
"higher than 93%" for three di�erent appliances. S. Gupta, Reynolds, and Patel [59] used
electromagnetic interferences in the MHz range to identify appliances with an accuracy
of around 94% for 7 to 20 appliances.

The state of the art in NILM comprises numerous approaches, features, experiments and
results. A comparison between these approaches is either di�cult, due to di�erences in
datasets, data acquisition equipment, appliance models and other factors. Armel, A. Gupta,
Shrimali, and Albert [5] review numerous disaggregation algorithms and requirements for
smart meters. Their feature related comparison focuses on di�erent sampling frequencies
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rather than on the individual feature performances.

The main goal of the energy disaggregation framework NILMTK from Batra, Kelly, Parson,
et al. [60] is to allow a consistent comparison of di�erent disaggregation strategies. As of
now, NILMTK unfortunately appears to support only low frequency disaggregation. Due
to this limitation, NILMTK cannot be used to evaluate approaches for high-frequency
sampled energy data.

The work of Froehlich, Larson, S. Gupta, et al. [61] compares some high and low frequency
features for disaggregation based on several criteria including installation, costs, sensing
technology and ease of calibration. The evaluation criteria focus on the usefulness of
the features in terms of environmental situations rather than performance in appliance
recognition.

Gao, Kara, Giri, Berg, et al. [62] evaluate several features for PLAID on 5 classi�ers.
The best results were achieved with a random forests classi�er using the VI image
feature. The authors state that the combination of features improves the classi�cation
performance, which motivates to take a deeper look into feature combinations. Since
the authors compare only the most common features, several strong features such as
Wavelet Analysis are not evaluated.

With the increasing amount of NILM approaches, the necessity for comparability of these
works is also growing. The aim of this paper is to give a wide overview of established
and novel appliance features, including their stand-alone and combined classi�cation
performances for appliance recognition. This work orients on the related work in terms
of identi�cation system architecture, typical appliances from common datasets and a wide
set of established features. Furthermore it provides a contribution to a better comparison
of NILM studies.

3.4 Deep Neural Networks and NILM

Appliance classi�cation can be seen as the second step in the NILM process, see Fig-
ure 3.4.1. The NILM community evaluated several classi�ers in recent years. Hidden
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Figure 3.4.1: The focus of this work is on an appliance classi�cation of the general NILM processing-chain.
The actual appliance switch-on and switch-o� events are retrieved with the help of the provided metadata
and low-frequency measurements of the datasets and therefore considered as known in advance.

Markov Models are used in the work of Kolter and Jaakkola [63] and Zhong, Goddard,
and Sutton [64] for appliance disaggregation, while Kramer, Klingenberg, Sonnenschein,
and Wilken [65] and Du, Y. Yang, He, et al. [66] focus on K-Nearest Neighbor and
Support Vector Machines for appliance recognition. NILM studies either belong to the
low-frequency or high-frequency domain. Approaches that work on measurements
sampled at less than 1 Hz are usually considered low-frequency while measurements
with a sampling frequency more than twice as high as the mains frequency are usually
characterizing the waveform and considered as high-frequency. Studies that evaluate
approaches in the low-frequency domain often aim for solutions of actual energy provider
driven smart meters, since their sampling frequency is usually limited due to privacy
concerns. High-frequency sampled waveform measurements usually aim for in-house
monitoring solutions, driven by the consumer. Armel, A. Gupta, Shrimali, and Albert [5]
shows that an increase in sampling frequency also causes an increase in the number of
appliances that can be distinguished.

Since waveform-based appliance energy consumption shares similarities to audio signals
(signal envelope and appliance events), audio features can be successfully applied for
appliance recognition [25] which motivates further studies on deep neural networks
for appliance recognition. In computer vision, deep CNNs received a lot more attention
due to the paper of Krizhevsky, Sutskever, and G. E. Hinton [67], who reduced the error
rate for visual object recognition by almost half. The publication of G. Hinton, Deng,
Yu, et al. [29] shows the performance improvements of deep neural networks in speech
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recognition from four renowned research groups. CNNs can be successfully applied to
visual and audio related classi�cation problems.

J. Lee, Park, Kim, and Nam [68] propose an approach, based on a deep CNN for music
tagging on sample-level (raw data). The results of the 10+ layer-sized deep neural
networks are comparable to the previous state-of-the-art performances. W. Dai, C. Dai,
Qu, Li, and Das [69] use very deep CNNs (up to 34 layers) to classify environmental
sounds on raw data. The best architecture comprises 18 hidden layers and reaches the
performance of a CNN with the audio spectrogram as input. The complex net architecture
of the two approaches shows the potential for promising results on the one side, and
that working on raw waveform data is challenging on the other side, especially in
�nding the right net architecture. Jorde, Kriechbaumer, and H. Jacobsen [70] propose
the �rst approach on an appliance classi�cation that uses deep neural networks on
raw measurements. To overcome the issue of a small training-set, data augmentation
and a one-against-all classi�er composition were implemented to reach state-of-the-art
classi�cation performances.

Our approach considers the evaluation of three deep learning architectures (AE, CAE,
CNN) in comparison with a comprehensive classical machine learning approach that uses
36 hand-crafted features. The AE and CAE are used for automated feature extraction from
raw data, while the CNN is implemented as an end-to-end classi�cation system to gain the
full potential of deep learning architectures. The goal is to design an appliance recognition
system that keeps the amount of preprocessing and domain-speci�c knowledge for feature
extraction to a minimum, still reaching state-of-the-art classi�cation performances.

3.5 Cross-Dataset Evaluation

Most algorithms in NILM are based on supervised machine learning algorithms to identify
appliances and their consumption. Those approaches were already used by Roos, Lane,
Botha, and Hancke [52] with neural networks and are still being used in recent works [14,
54, 71]. Several studies [43, 62, 72] in NILM retrieve results in an isolated environment
with comparably smaller variances than real-world scenarios.

23



3.5. CROSS-DATASET EVALUATION

When focusing on appliance recognition, the idea behind a cross dataset validation
lies in applying the trained model to a broader set of variances including measurement
equipment, bit resolution and sampling rate of the measurements, and line noise. All
these aspects di�er along the existing datasets and have an in�uence on the resulting
measurements and therefore also on the resulting features.

Jack Kelly wrote about the di�erent formats of energy datasets: "This is an issue because
an important criteria for evaluating any machine learning algorithm is how well it
generalises across multiple datasets." [73]

S. Gupta, Reynolds, and Patel [59] implemented a solution for automatic detection and
classi�cation of electronic appliances, based on their high-frequency electromagnetic
interference signal. One of their evaluations focuses on the stability of signatures across
di�erent homes. The characteristics of electromagnetic interference measurements are
signi�cantly di�erent to high-frequency voltage and current measurements and are
therefore not that easily applicable to a smart meter.

The main motivation for the NILMTK from Batra, Kelly, Parson, et al. [60] is the missing
ability to generalize and compare NILM algorithms across di�erent energy datasets. It
allows for a consistent comparison of di�erent strategies for power disaggregation across
existing energy datasets in the low frequency domain.

The work of [25] consists of a comprehensive feature study that considers the most
relevant features for appliance recognition in the high-frequency domain. This set is the
foundation for the experiments presented in this paper.

To the best of our knowledge, there is no work that explicitly applies a cross-dataset-
validation to retrieve a general appliance classi�cation performance in the high-frequency
domain. Another interesting research question is a comparison of features which are
able to generalize enough to enable a cross-dataset appliance classi�cation. We aim to
answer these two questions with this work.
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Worldwide Household and Industry
Transient Energy Dataset

In this chapter, we introduce a dataset of appliance start-up measurements from several
locations. The appliances were recorded with a low-cost custom sound card meter. The
recording was mainly done in households and small industry settings in di�erent regions
around the world. Thus, it may be possible to extract region-speci�c grid characteristics
from the voltage waveforms in the data. To cover all corresponding transients, we
recorded the �rst 5 seconds of the appliance start-ups for 110 di�erent appliances to date,
amounting to 47 di�erent appliance types. The aim of this dataset is to provide a broad
spectrum of di�erent appliance types in regions around the world.

4.1 Hardware Components

Our measurement equipment is based on a sound card as inexpensive analog to a digital
converter. The idea of a sound card-based measurement system is not new and was
already used in [21] and [74]. Sound cards have a very good price vs. performance ratio
when using them as an analog to digital converter. Our measurement prototype is based
on a modi�ed 3-port extension cord, a current clamp, an AC-AC transformer, a voltage
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divider, and an external USB sound card with a Cmedia CM6206 chipset.

For measuring the current, we use a YHDC current clamp with built-in burden resistor.
This current clamp produces a 1V signal at 30A primary current. For the voltage
measurements, we need to transform the grid voltage from 230V to 11V with the AC-AC
transformer. To have a corresponding voltage signal that lies in the line-in range of the
sound card, we reduce it with a voltage divider to 0.47 V. The voltage divider is located in
the black isolation part that merges the current and voltage signal cables into one cable
that goes into the sound card. See Figure 4.1.1 for the complete con�guration.

Figure 4.1.1: Measurement equipment prototype

4.1.1 Measurement Methodology

The signals were recorded in 44.1 kHz temporal and 16 bit amplitude resolution. To
be able to take multiple measurements in di�erent places, it was necessary to build 3
identical measurement kits. Therefore, we also have to deal with three slightly di�erent
sets of calibration factors. The calibration itself is done with an VOLTCRAFT VC-330
multimeter. Since the multimeter provides current measurements with a current clamp,
it was possible to measure both signals - voltage and current - and de�ne a voltage and
current calibration factor for each measurement kit. Some sample measurements can be
seen in Figure 4.1.2 for 4 di�erent appliances.

To cover the start-up transients of the appliances, it is necessary to determine them on
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Figure 4.1.2: Start-up of four di�erent appliances. The di�erent in-rush current characteristics are clearly
visible.

demand. This is implemented with a Matlab routine that uses the internal DSP package
to monitor the line-in signal of the sound card. The start-up is de�ned based on the
current signal energy crossing a threshold. If the current signal energy leads to a start-up,
the routine starts recording and adds 100ms of the signal beforehand as pre-start-up
window. This window allows di�erence-based algorithms to work e�ectively. That means
that not the absolute power consumption on the start-up but the di�erence between
the power of the pre-start-up window and the start-up power can be observed. This
approach introduces more �exibility for developing algorithms that allow the recognition
of concurrently running appliances with di�erent start-up transients.

We decided to measure 10 start-ups for each appliance. These start-ups were triggered
manually by the user. Appliances that have no switch (e.g., an iron) were just plugged
and unplugged 10 times as it would be the case under real usage. The appliances are
measured for 5 seconds which is the duration of each start-up we recorded.
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Figure 4.1.3: Mixer Figure 4.1.4: Multi-Tool

Figure 4.1.5: Comparison of 2 appliances that use motors with relatively high rotations per minute. The
di�erent spectral characteristics are clearly visible. The multi-tool has stronger uneven harmonics while
the harmonics are more equal in the case of the mixer.

4.1.2 Dataset

To this end, our dataset comprises 1100 di�erent records for 110 di�erent appliances
which can be grouped into 47 di�erent types (classes) in 6 di�erent regions. For most
appliances, we took a photo of its electrical speci�cation label. These images are located
in the sub-folder images and type-labels. Table 4.2.1 gives an overview of the
measured appliances. The signal containing �les are saved as flac �les – a common
lossless audio �le format. The �le names contain meta information and are of following
format:

[Class]_[Name]_[Region]_[#Kit]_[TimeStamp].flac

GuitarAmp_Marshall8240_R3_MK2_20151115133402.flac

The dataset is freely available on the following web page: https://www.i13.in.tum.
de/index.php?id=114. For demand, load and appliance information retrieval, the
most important signal is the current. To give the voltage signal a higher signi�cance, we
decided to measure the voltage in several regions that follow the European grid standards.
To this end, the dataset contains 4 regions in Germany, 1 in Austria, and 2 in Indonesia.
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Since grid characteristics are mainly a�ected by utilities and the consumption character-
istics of the surrounding area, a future research direction is to look for possibilities to
determine the region from the voltage signal. This experiment is a similar classi�cation
task to the appliance recognition we have already implemented.

4.2 Evaluation

To ensure the quality of the dataset, we applied several signal quality checks and
conducted two classi�cation experiments.

4.2.1 Data Quality

Since sound cards do not provide a high level of linearity in frequency response as
compared with professional ADCs, we veri�ed that there is no signi�cant impact on the
measurements taken.

The sound card manufacturer provides some information regarding the line-in linearity.
The strongest damping of around 0.25 dB has its maximum at 3320Hz. The steepest
�ank has a bandwidth of around 3300Hz and lies between 3320Hz and 6622Hz which is
acceptable for most considered purposes.

To obtain an approximation of the noise level during recording, the energy of a 10 second
empty signal is being compared to the energy of a maximum amplitude sine-wave signal.
With this calculation, we estimate an e�ective SNR (signal to noise ratio). We measured
an average noise RMS of 4.8mA where 30A corresponds to the RMS maximum.

SNR = 20 ⋅ log10

RMSmax

RMSnoise

SNR = 20 ⋅ log10

30A

0.0048A

= 75.91 dB
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The e�ective SNR of this measurement system is 75.91 dB. The maximum measurable
peak to peak current Ip−p is 30.0 ARMS ⋅ 2

√

2 = 84.4 A. Therefore, we calculate an e�ective
current resolution with a step size of 13.5mA.

Istep =

Ip−p

ImaxRMS

⋅ I noiseRMS

Istep =

84.4 A

30.0 A

⋅ 0.0048A = 0.0135A

This current step size enables us to calculate the e�ective power step size Pstep corre-
sponding to 230V of grid voltage.

Pstep = 230V ⋅ 0.0135A = 3.1W

The resolution and noise of the sound card allows a voltage step of 0.313 V, a current
step of 0.0135A which results in a measurable power step of around 3.1W based on
230V. To achieve reliable results only appliances with a consumption of at least 20W are
considered in our data set. This covers most household and small industry appliances.

Figure 4.1.3 and 4.1.4 show a spectrogram of a mixer and a multi-tool based on the �rst 5
seconds after the start-up. Both appliances have a fast spinning motor and look similar in
the time domain. However, there are signi�cant di�erences in the spectral domain that
can be transformed into distinguishable features for appliance classi�cation purposes.

4.2.2 Experimental Results

Our appliance recognition experiment is based on a classi�cation task to distinguish
appliances on its characteristics in the current signal. The classi�er has to distinguish
between all 47 appliance types. The classi�cation experiment is implemented in Matlab.
All flac �les are imported and the containing signal is scaled with the corresponding
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Table 4.2.1: Appliance types (classes) that were measured

Type # Type # Type #
AC 1 Air Pump 1 Bench Grinder 1
CFL 2 Charger 7 Co�ee Machine 1
Deep Fryer 1 Desktop PC 1 Desoldering tool 1
Drilling Machine 2 Fan 6 Fan Heater 1
Flat Iron 2 Game Console 4 Guitar Amp 1
Hair Dryer 6 Halogen Fluter 1 Heater 1
HiFi Rack 1 Iron 3 Jigsaw 1
JuiceMaker 1 Kettle 6 Laptop 1
Laserprinter 1 LED Light 9 Light bulb 6
Massage tool 3 Microwave 2 Mixer 4
Monitor 2 Mosquito Repellent 1 Multitool 1
Powersupply 4 Projector 1 Sewing Machine 1
Shoe warmer 2 Shredder 2 Soldering Iron 2
Toaster 4 Treadmill 1 TV 1
Vacuum Cleaner 4 Washing Machine 1 Water Heater 4
Water Pump 1

calibration factors to determine actual values. After this preprocessing step, a region
of interest (ROI) needs to be extracted. Here, we decided to cut the signal right on the
start-up until 500ms after the start-up. These 500ms samples are given to the feature
extraction stage which is an implementation of 13 di�erent characteristics including
harmonics, phase shift and total harmonic distortion (THD).

The best results we achieved for the appliance classi�cation were based on a feature set
that consisted of a period-based power trend with 25 dimensions, the THD and crest
factor of the current spectrum with each 1 dimension in its size. With these three features
in 27 dimensions, we achieve an average classi�cation accuracy across all appliances of
around 95 % with a 10-fold cross-validation and a support vector machine (SVM) classi�er.
This con�rms the observation that power di�erence and harmonics contain su�cient
information to distinguish among basic electrical appliances [75].

For the region classi�cation experiment, we use the same environment but employ the
voltage instead of current for the feature extraction. The labels are not the appliances but
the region where the measurements were taken. We apply the voltage, grid frequency and
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a few spectral- and waveform-based features. We obtain an almost perfect classi�cation
accuracy of 99.13 % with an SVM classi�er. Here, we must consider that the feature
extraction is based on characteristics that vary over time and are not independently
representative for the corresponding region.
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5

Appliance Event Detection and
Discrimination

NILM is a modern and still expanding technique, helping to understand fundamental
energy consumption patterns and appliance characteristics. Appliance event detection is
an elementary step in the NILM pipeline. Unfortunately, several types of appliances (e.g.,
SMPS or multi-state) are known to challenge state-of-the-art event detection systems
due to their noisy consumption pro�les. Classical rule-based event detection system
become infeasible and complex for these appliances. By stepping away from distinct
event de�nitions, we can learn from a consumer-con�gured event model to di�erentiate
between relevant and irrelevant event transients.

We introduce a boosting oriented adaptive training, that uses false positives from the
initial training area to reduce the number of false positives on the test area substantially.
The results show a false positive decrease by more than a factor of eight on a dataset that
has a strong focus on SMPS-driven appliances. To obtain a stable event detection system,
we applied several experiments on di�erent parameters to measure its performance.
These experiments include the evaluation of six event features from the spectral and time
domain, di�erent types of feature space normalization to eliminate undesired feature
weighting, the conventional and adaptive training, and two common classi�ers with its
optimal parameter settings. The evaluations are performed on two publicly available
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energy datasets with high sampling rates: BLUED and BLOND-50.

5.1 Multivariate Event Detection

A reasonable appliance classi�cation and disaggregation performance will be achieved
when the NILM system adapts to the deployed environment. The customization may
include parameter settings of base load, min/max appliance load or max concurrent run-
ning appliances. Besides those parameters, a consumer supervised appliance labeling for
system training purposes, over a certain amount of time (e.g., few days/weeks), will result
in considerably improved classi�cation and disaggregation performance [25].

Since the temporal appliance event positions are implicitly known from the consumer
labeled time range, these event segments can be used to train a supervised event model
for the event classi�cation. The a priori known event segments can be used to identify
signi�cant event characteristics, which are a major advantage compared to hand-crafted
rules. In a supervised classi�cation task, the classi�er needs training samples for each
individual class. Event detection is related to anomaly detection that faces the problem
of not having su�cient training samples for one of the targeting classes. In practice, we
explicitly know from examples how an event looks like, but we don’t explicitly know
how a non-event looks like.

Dataset
Event Ground Truth

Positive Samples

  Event segments

Negative Samples

   Random positioned segments

Explicit known as event

Implicit known as non-event

Time

Time

Figure 5.1.1: The explicitly-known events are retrieved from the event ground truth. Therefore, all other
regions are implicitly-known as non-events.
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5. APPLIANCE EVENT DETECTION AND DISCRIMINATION

To overcome that issue, we make use of the fact, that statistically the majority of the
time, no event occurs in the signals time domain. We cut short, randomly positioned
regions of the temporal signal from the training area, to use them as non-event samples
(see Figure 5.1.1). The probability to hit an event on a randomly selected position in the
training area of the temporal signal is low for common residential and o�ce environments.
Around 1 250 events occur per phase in one week for the residential environment while
it is around 257 for the o�ce environment, based on the utilized datasets BLUED and
BLOND-50. Assuming we are interested in the same number of non-events as it is for
events, the chance to hit an event via random selection lies at 0.83 % for the residential
environment, while it is around 0.17 % for the o�ce environment. To even overcome that
small uncertainty, a minimum temporal distance to explicitly known events of minimal
10 s must be ful�lled. The resulting non-events will be named implicitly-known non-
events throughout this paper. All samples together can be used to train a classi�er with a
training set that consists of explicitly-known events and implicitly-known non-events.

An observed issue with this approach lies in a high number of event false positives. The
randomly selected non-event samples stem mostly from areas of a steady consumption.
Therefore the non-event class is a good homogeneous representation of steady non-event
areas. A more heterogeneous set of non-event training samples with unsteady event-like
transients would be necessary to improve the classi�cation performance of transients
from SMPS-driven appliances in favor to non-events.

5.1.1 Adaptive Training

Extracting even more randomly selected samples would be one infeasible way to get
a higher variance. The extreme form would be to use every extractable time window
in the dataset that is not a ground truth labeled event. Obviously, this would create an
infeasible number of training samples for the non-event class. However, the vast amount
of training samples would be unnecessary anyway due to a very strong similarity.

Our approach is a so called boosting variant that runs the event detection algorithm on
the whole training area to �nd all ground truth labeled events but also a certain amount of
non-labeled transients. These transients are obvious false positives, based on the provided
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  Ground Truth Events
  Found False Positives

Training Area

False Positives

Time

Figure 5.1.2: The event detection runs on the training area and generates false positives that are being
stored for the actual event detection.

ground truth (see Figure 5.1.2). They are marginal, uncertain segments of non-events
that share similarities with events. These similarities cause the misclassi�cation in favor
to the class event. Since these false positives are found inside the training set, we can use
them freely to improve our classi�cation model.

Negative Samples False Positives Positive Samples

Training Set

Figure 5.1.3: The collected false positives from the event detection of the training area form together with
the negative samples the class non-events. The positive examples are the representatives of the event class.

The idea lies in adding these edgy transients to the non-events class of the training set to
improve the border between events and non-events (see Figure 5.1.3). The actual training
set consists now of ground truth labeled event samples, implicitly-known non-event
samples, and false positives that were found in the event classi�cation run on the training
area itself. This way, it is possible to overcome the issue of �nding proper non-event
samples for the event detection algorithm. To even reduce the amount of false positives
further, the adaptive training can be applied multiple times.

5.1.2 Event Features

The event ground truth information for BLUED is based on a power consumption change
of at least 30 W over a time period of minimal 5 s [20]. Based on this de�nition, the
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5. APPLIANCE EVENT DETECTION AND DISCRIMINATION

appliance events can be identi�ed in a moving time window in the continuous electricity
signals. We implemented one spectral and six time domain metrics as appliance event
features for the classi�cation between events and non-events. Our design de�nes that
the actual event transient is being aligned in the middle of the extracted time window
with 5 s of data before and after the actual event transient. The actual temporal position
of the event transient is being extracted from the ground truth information or manual
annotation in the case of BLOND-50.

The BLUED provided ground truth information and BLOND-50 annotations from this
work, comprises the appliance ON and OFF switch events, including circuit number,
temporal position (timestamp) and appliance type. The provided switch-OFF and switch-
ON events of these appliances will always cause signi�cant changes in these consumption-
related metrics:

Current

The current is the �rst intuitive metric that contains consumption changes (see Fig-
ure 5.1.4-1). The RMS current Irms for each period is calculated as follows, with N as the
number of samples per period, calculated as the ratio of the sampling frequency f s and
the mains frequency F0.

Irms(p) =

√

1

N

N

∑

k=1

I
2

k
, N = f s/F0

I⃗rms = [Irms(1), Irms(2), … Irms(nPeriods)]

Δ(Current)

Since multiple appliances can run at the same time, the actual pre-event current can be a
sum of multiple appliances and therefore has a high variance (see Figure 5.1.4). The actual
information of interest is the current step change at the event time (see Figure 5.1.4-2).
This metric can be retrieved by the numerical di�erence of the neighboring elements
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of the current periods I⃗rms . The operation is the derivation equivalent for discrete time
series.

ΔI⃗rms = I⃗rmsk
− I⃗rmsk+1

I⃗rmsk
= [Irms(1), … , Irms(k − 1)]

I⃗rmsk+1
= [Irms(2), … , Irms(k)]

Admittance

The grids voltage can contain high �uctuations (up to 10 %), which in�uences the current
signal as well. The admittance removes the voltage in�uence from the current signal and
is therefore more precise to the appliance consumption itself (see Figure 5.1.4-3). The
admittance ADM, can be calculated by the element wise vector division of the period
wise current I⃗rms and voltage U⃗rms .

Spectral Flatness

Our motivation for the only spectral feature we considered is the assumption that all
appliances have their individual �ngerprints in their harmonic energy distribution. A
suitable spectral one-dimensional metric is the spectral �atness. A �at spectral curve fbins
would cause a value close to one, while a single strong spike would lead to a value close
to zero (see Figure 5.1.4-4). The switch-OFF and switch-ON of an appliance in�uences
the spectral �atness in general way. The spectral �atness SPF(p) for each period is
calculated by the ratio of the geometric and the arithmetic mean of the current signal
energy spectrum [76].

SPF(p) =

N

√

∏
f ∈fbins

xf

1

N
∑

f ∈fbins
xf
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Cumulative Sum

The cumulative sum is a sequence analysis technique that allows to identify small and
continuously slow as well as strong and fast changes in a sequential time series (see
Figure 5.1.4-5). It is therefore a common technique for change and event detection. The
cumulative sum is the sum of the di�erences to the mean of the signal in between a
de�ned time window.

Δ(Cumulative Sum)

The cumulative sum can have extreme gains in their values and therefore causing
undesired weighting of dimensions in the feature space. The derivative of the cumulative
sum is a way to prevent this issue and to keep the values in a lower magnitude. The
resulting signal is visually comparable with the current itself, but with enlarged transients
(see Figure 5.1.4-1 and 5.1.4-6).

ΔI⃗cms = I⃗cmsk
− I⃗cmsk+1

In addition to the mentioned features and training methods, we evaluated the event
detection performance through di�erent methods in the feature space normalization and
classi�cation step. To avoid undesired weighting across the dimensions of the feature
space, a common technique is to apply a feature space normalization. This is often an
essential step, of which we evaluate three types. The classi�cation step is being evaluated
with two di�erent classi�er (KNN and SVM) including their hyper-parameter search.

5.2 Experiments

To compare our event detection performance with state-of-the-art, we applied our algo-
rithm on the BLUED dataset, which is commonly used for event detection evaluation. The
experimental setup is oriented on the setup in the work of Baets, Ruyssinck, Deschrijver,

39



5.2. EXPERIMENTS

Figure 5.1.4: Events (left) and Non-Events (right) with Periods in the X-Axis and amplitude in the Y-Axis
of the 6 event feature metrics: 1. Current, 2. Δ(Current), 3. Admittance, 4. Spectral Flatness, 5. CUSUM and
6. Δ(CUSUM). The color saturation correlates with the average distance to the mean event (red line). The
closer the event lies to the mean-event the higher is the saturation.

40



5. APPLIANCE EVENT DETECTION AND DISCRIMINATION

and Dhaene [18]. While De Baets is using a �xed test area, we are using cross-validation
for our performance evaluation. At least K. D. Anderson, Bergés, Ocneanu, Benitez,
and Moura [17], Barsim, Streubel, and B. Yang [43] and Wild, Barsim, and B. Yang [44]
evaluate their event detection algorithm on the BLUED dataset as well. For BLUED we
use the provided ground truth information which stems from hand-crafted annotations.

Unfortunately, neither BLUED nor BLOND-50 provide versatile event information that
allows a determination between ON / OFF-switching and user-unrelated transients. In our
experiments on BLOND-50, we try to distinguish ON and OFF events from all remaining
state transients - identical to the work of Baets, Ruyssinck, Deschrijver, and Dhaene [18].
The appliance ON and OFF events for the BLOND-50 dataset are being collected by visual
observation of an instructed person with the help of a self-implemented annotation tool.
There are no studies regarding event detection on BOND-50 yet.

Since the benchmark of several parameters using cross-validation takes much computa-
tional time, we use a cluster of 60 virtual machines, based on dual Intel Xeon E5-2630v3
with each four cores and 10 GiB RAM to execute the appliance event detection algorithm
in parallel. The cumulative CPU time for all experiments, preprocessing and testing lies
in a range of 128 000 CPU-core-hours.

5.2.1 Multivariate Event Detection

Instead of monitoring one or few parameters passing thresholds, our multivariate ap-
proach enables supervised learning of multiple event characteristics. The explicitly-
known event, and implicitly-known non-event sections were used to train the classi�er
that decides, based on the given feature vector, between event or non-event.

Architecture for BLUED In addition to the 1 577 events, we extracted 6 428 segments
of implicitly-known non-events (one for each �le) of the same length. The segments are
aligned with the ground truth event timestamp in the center. These segments are fed to
the feature extraction and normalization after that. The normalization parameters (e.g.,
means or standard deviation) are saved to apply the corresponding transformation to the
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Negative Samples Positive Samples

Dataset

Train TrainTest Test

 Training

Train Train

Classical
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Adaptive

 Feature Space Normalization

VarianceMin-MaxNone

 Classification and Parameter Search

C and GammaK=[1 .. 301]

K-NN SVM

Train Train Test Test

Training Set Test Set

 Feature Extraction

ADM SPFCUSUM ΔCUSUM Current ΔCurrent

Figure 5.2.1: The architecture of the experimental setup considers the main step of the common machine
learning pipeline and includes the evaluation of six event features, three types of feature space normalization,
two training approaches and two di�erent classi�ers with its optimal parameters. The whole architecture
is wrapped by a cross-validation and structured to run on a distributed computation system.
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samples of the test area. The following steps include a parameter search for the classi�er
(e.g., C and Gamma for SVM), classi�er training, and classi�cation of the samples of the
test area (see Figure 5.2.1). All experiments are implemented within a strati�ed k-fold
cross-validation to ensure reliable results.

Architecture for BLOND-50 The manually annotated temporal time span comprises
one month of measured data. We extract all manually annotated events and the implicitly-
known non-events in a very similar way as we do for BLUED. This step yields in 3 310
event and 3 264 non-event samples. The events originate from 41 di�erent monitored
appliances in the time range of 2016-11-01 to 2016-11-30.

5.2.2 Adaptive Training

The adaptive training shares the same experimental architecture as the multivariate event
detection, with one additional event detection run on the training area itself and its false
positives included to the training set. This training run �nds events in the training area
that can be divided, considering the ground truth information, into true positives, false
positives, and false negatives. All false positive segments that originate from the training
run are added to the non-event class of the actual training set.

5.2.3 Manual BLOND-50 Event Annotation

Every performance benchmark needs reference information to enable comparisons. For
the event detection evaluation, an event ground truth including the exact temporal
position of an appliance event is necessary. For the BLUED dataset, the appliance
events are provided already, for BLOND-50, the appliance events and the corresponding
measurement system, circuit and socket number need to be acquired.

To label the data with a ground truth, we were using a self-designed annotation tool that
allows a manual annotation in the per-appliance subset of BLOND-50 (see Figure 5.2.2).
The annotating person observes the data of one measurement system instance and all
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Figure 5.2.2: Annotation tool for BLOND-50 event ground truth annotation. The annotating person
speci�es the date and measurement system to view the corresponding consumption of the day for each of
the six sockets. Zooming into the time series plot allows for a precise event annotation.

6 sockets for one day per screen. The two appliance event constraints (power-rise/fall
of 30 W for a minimum time span of 5 s) are communicated to the annotating person to
ensure consistent events. In addition, the annotating person is instructed to consider
only obvious appliance ON and OFF events. Transients that ful�ll event constraints but
are not obvious switch ON and OFF events are ignored.

The event ground truth for BLUED and BLOND-50 originate from visual time series
observation by humans. Therefore the experimental evaluations in this paper are not
performed on the (non-existing) absolute truth but rather subjectively chosen time
series segments of the human observation that always contain an individual degree of
uncertainty. Since neither an event ground truth nor an appliance event de�nition has
been chosen, the goal is to retrieve an appliance event model from user chosen examples
declaratively, a degree of uncertainty from the human observation therefore does not
play any role. The manually annotated events, as well as the corresponding annotation
tool for MATLAB, can be downloaded at the following link.
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5.3 Results

To ensure a consistent evaluation pipeline we decided to use the best parameter or settings
from the previous steps. In practice, the evaluation of the normalization method is done
with the best-performing feature of the feature evaluation. For all experiments, a search
window step-size of 30 periods was used. To the nature of the algorithms, multiple events
occurring in between a 5 s window (SCP violation) may be recognized as one event (see
Figure 5.3.1). That circumstance causes a small number of false positives. The goal of all
experiments is to �nd all ground truth labeled events (true positives) while keeping the
misclassi�cations (false positives) to a minimum.
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Figure 5.3.1: A BLUED scatter plot of chronologically ordered events with their distance to the next event
in the position of the y-axis. The three star-shaped clusters below the 5s horizon are caused by the printer
appliance. The detection rate drops below the 5 s horizon, causing more false negatives, due to the fact
that 2 events in between 5 s are recognized as one event.

Precision, Recall, and F-Score are the most relevant performance metrics for event
detection algorithms. These normed metrics allow a general performance conclusion
considering the number of correctly detected (true positives), incorrectly detected (false
positives) and not detected (false negatives) events. The F-Score is a metric that rises to
1 by an increase of true positives and decrease of false positives. It is combining both
relevant performance metrics (true positives and false positives) and is the preferred
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performance metric in the following evaluations.

5.3.1 Features

For our �rst experiment, we implemented the event detection, using adaptive-training
and 87 nearest neighbors for the K-NN classi�er. These values seemed promising in
pre-executed experiments. The highest performance could be achieved with features
that are based on the CUSUM (see Table 5.3.1). The CUSUM has already been used for
event detection with promising results by Trung, Dekneuvel, Nicolle, et al. [47]. Since the
current and ΔCUSUM segments are similar (see Figure 5.1.4), we expected comparable
results. A closer look at the segments reveals that the mean event step of the ΔCUSUM
segments is broader and more obvious due to the power neutrality of the CUSUM. We
assume that this power neutrality leads to a more distinct event model and an improved
detection performance. The performance on BLOND-50 supports these assumptions with
a similar trend in the results.

Events that have a previous current of near zero are always ON-events, which are
easily detectable in the per-appliance measurements (BLOND-50) but not in the case of
concurrent running appliances of aggregated measurements (BLUED). The features ADM,
SPF, and Current could therefore not be applied to the BLOND-50 dataset due to their
strong dependence on the appliance power in combination with the single appliance
measurements which would in�uence the results in an invalid way.

5.3.2 Normalization

To prevent undesired feature weighting, a feature normalization needs to be applied,
especially in the case of a strong range variance of the feature dimensions. There are
two common ways to normalize the feature space. The �rst is the min-max scaling
that ensures that all dimensions lie in a range of [-1 . . . 1] while the second is called
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Table 5.3.1: Feature Results for BLUED and BLOND-50

BLUED BLOND-50
Feature Prec. Rec. F-Sc. Prec. Rec. F-Sc.
ΔCUSUM 0.81 0.75 0.78 0,22 0,98 0,36
CUSUM 0.80 0.75 0.78 0.23 0.98 0.38
Current 0.88 0.38 0.53 - - -
ADM 0.88 0.38 0.53 - - -
SPF 0.87 0.28 0.43 - - -
ΔCurrent 0.20 0.33 0.25 0.18 0.83 0.29

standardization that ensures that the standard deviation of all dimensions lies at exactly
1.

Table 5.3.2: Normalization Results

BLUED BLOND-50
Norm Prec. Rec. F-Sc. Prec. Rec. F-Sc.
None 0.82 0.74 0.78 0.22 0.98 0.36
MinMax 0.82 0.75 0.78 0.23 0.97 0.37
Variance 0.82 0.72 0.77 0.24 0.96 0.38

The min-max normalization performs best in our experiments on BLUED but also
shows that the normalization itself does not in�uence the performance signi�cantly
(see Table 5.3.2). For BLOND-50, the best result could be achieved with a variance
normalization. However, also here, the performance results remain quite stable. This
means that the di�erent value ranges of the feature space dimensions do not add any
signi�cant weighting. This is most likely caused by a similar order of magnitude in the
value range across the individual feature space dimensions. The fact that the features are
based on time series segments, and therefore share the same value range, a�rms the low
variations in the performance results.
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5.3.3 Training Method

The two previously introduced training methods (classical and adaptive training) are
being evaluated. The best result for the multivariate event detection (without adaptive
training) allows detection of 1 170 out of 1 577 appliance events from BLUED with 490
false positives and a corresponding F-Score of 0.72. This result was obtained with 30
periods of step-size and the K-NN classi�er with K=301.

Table 5.3.3: Adaptive Training Improvement on BLOND-50

K-NN SVM
Training Prec. Rec. F-Sc. Prec. Rec. F-Sc.
classical 0.13 0.99 0.24 0.12 0.99 0.21
adaptive 0.22 0.98 0.36 0.28 0.94 0.43
adaptive 3x 0.45 0.87 0.59 0.55 0.85 0.67
adaptive 5x 0.53 0.85 0.65 0.56 0.77 0.65

All experiments for the adaptive training show a signi�cant, absolute improvement of the
event detection performance of +0.14 in average for the F-Score regarding the BLUED
dataset (see Figure 5.3.3). The individual improvements vary slightly. The primary
performance enhancement of the adaptive training is to reduce the number of false
positives due to improvements in the non-event class. The best result for BLUED was
obtained with 1 175 true positives and an F-Score of 0.78 by using K=137 for the K-NN
classi�er, a min-max normalization, and one adaptive training round. The number of
false positives was reduced to 260. A signi�cant rise of true positives was not expected
and did not occur in most experiments with adaptive training.

The main improvement was observed by applying three rounds of the adaptive training
to the event detection on the BLOND-50 dataset. Since the event detection on this dataset
produces many false positives, due to a high number of SMPS-driven appliances, the
adaptive training reduced the number of false positives from 19 463 to 2 297 which is
an improvement of more than eight times. An expected side e�ect of this enormous
improvement is a considerable, but still low, decrease in true positives and recall (see
Table 5.3.3).
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Figure 5.3.2: The �rst plot shows the non-event class represented only by the implicitly-known non-event
segments. The second plot shows the non-event class including the false positives from the adaptive
training. The increased diversity due to the false positives is clearly visible. The images are retrieved from
non-events of the �rst 2 weeks in 2016-11 of the BLOND-50 dataset without (�rst plot) and with (second
plot) one adaptive training run.
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Figure 5.3.3: The individual performance improvements by using the adaptive training. The bars show
the achieved event detection F-Score for di�erent K of the K-NN classi�er on the BLUED dataset.

Table 5.3.4: Overall best results on BLUED and BLOND-50

Feature Norm Train Class Param F-Sc.

BLUED ΔCUSUM MinMax adap 1x KNN K=137 0.78
BLOND-50 CUSUM Variance adap 3x SVM C/G 128/512 0.67

49



5.3. RESULTS

Using the adaptive training to augment the training set with false positive samples, we
were able to reduce the �nal number of false positives during testing. We conclude that
the classi�er learns the not explicitly de�nable heterogeneous model of a non-event by
adding the false positives of the training run (see Figure 5.3.2).

5.3.4 Classi�cation

K-NN

Since the event detection performance varies unexpectedly strong, depending on the
number of neighbors for the K-NN classi�er, we decided to evaluate the performance of
eight di�erent K for the classi�er. The best general K in our experiments was 301 with
classical training, while it was 137 when applying the adaptive training (see Figure 5.3.3).
For BLOND-50 the best result with K-NN was achieved by using �ve rounds of adaptive
training (see Figure 5.3.4).

SVM

The best result we could achieve by using the SVM classi�er on the BLUED dataset was
with an F-Score of 0.72 considerably lower than with 0.78 for the K-NN classi�er. The
reason is an almost twice the number of false positives - even after adaptive training.
The number of true positives with 1 112 lies only slightly below the best result for K-NN.
For BLOND-50 the best result by using the SVM lies in a range of 0.67 by using three
adaptive training rounds. The optimal SVM hyper-parameter have been retrieved with
a grid search algorithm that is provided in the LIBSVM package of C.-C. Chang and
C.-J. Lin [77] and could be found at C=128 and Gamma=512 for BLUED and C=1 and
Gamma=0.0078 for BLOND-50.
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Figure 5.3.4: The three plots show the most prominent reasons for false positive events in BLOND-50:
a laptop that produces event-like patterns (�rst plot), a faulty monitor that immediately goes OFF after
switching ON (second plot), and a desktop computer that produces event-like patterns due to CPU load
changes. The colored event marker show the false positives that stem from the classical (red) and adaptive
(5x) training method (green).
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6

Appliance Feature Study

In this chapter, we evaluate a broad set of features for electrical appliance recognition,
extracted from high-frequency sampled start-up events. These evaluations were applied
on several existing high-frequency sampled energy datasets. To examine clean signatures,
we ran all experiments on two datasets that are based on isolated appliance events; more
realistic results were retrieved from two real household datasets. Our feature set consists
of 36 signatures from related work including novel approaches, and from other research
�elds. The results of this work include a stand-alone feature ranking, promising feature
combinations for appliance recognition in general and per-appliance performances.

6.1 NILM Features

In this work, we considered features that allow us to distinguish appliances based on their
start-up events. Many of the discussed features are well documented in the literature and
are used frequently by the NILM community. Some features were modi�ed, renamed, or
adapted for NILM purposes. All features were extracted from the region of interest IROI ,
which is 500ms of the start-up current and voltage.

Only appliance steady-state features satisfy the Feature Addition Criterion FAC [57],
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necessary for superimposing concurrently running appliances. In this work, all events
are handled as isolated events, ignoring the chance of concurrently running appliances
in the household datasets which is known as the switch continuity principle [1]. All
features extract information from current and voltage signatures. Voltage-only features
do not contain any relevant contribution to the current features since appliance-related
�uctuations in the voltage signal are dependent on the current.
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Figure 6.1.1: V-I Trajectory with 20 sam-
pling points from a guitar ampli�er.

Figure 6.1.2: V-I Trajectory with 20 sam-
pling points from a water kettle.
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Figure 6.1.3: The spectrum of a motor equipped tool with a strong even odd harmonics imbalance.
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6.1.1 Established Features

Early publications on NILM focused mostly on simple-to-compute features. The most
used features include electrical power quantities like Active Power P , Reactive Power
Q, and Apparent Power |S| [1, 54, 62, 78] which can be considered a standard set for
NILM purposes. The Phase Shift is the phase angle di�erence between voltage and
current in degrees.

P = rms(I ) ⋅ rms(U ) ⋅ cos(�) S = rms(I ) ⋅ rms(U )

Q = rms(I ) ⋅ rms(U ) ⋅ sin(�) cos(�) =

P

S

The mutual locus of the normalized instantaneous voltage and current waveforms is called
V-I Trajectory [26] and is a common feature to visualize signal deformations. Linear
(resistive) loads (boiler, heater, kettle, iron, toaster, stove etc.) draw an almost straight
line from -1 to 1 due to their waveform equality of current and voltage. The resulting
path is sampled by 20 time-equidistant points, creating a vector with 20 coordinates.
The belly formed shape of a guitar ampli�er and the calculated points are shown in
Figure 6.1.1. In contrast, the V-I shape of a linear load, such as that from a kettle can be
seen in Figure 6.1.2.

Many works on NILM focus on signatures based on harmonics [3, 36, 74]. Non-sinusoidal
currents cause harmonic characteristics, which can be retrieved from a Fast Fourier
Transform. Motor equipped appliances such as those depicted in Figure 6.1.3 show
usually strong harmonics compared to resistive appliances that show almost none. The
relative Harmonics Energy Distribution HED can be obtained by taking the amplitude
of the �rst 20 harmonics xf1 …xf20

in a ratio to the mains frequency amplitude xf0 .

HED =

1

xf0

⋅ [xf1
, xf2

, … , xf20]

Wavelet Transformation is a di�erent method for retrieving spectral information.
Wavelets can be helpful in handling the uncertainty principle in signal processing. The
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output is a frequency dependent size of the time window with an – often wanted –
increased time resolution for higher frequency at the expense of a lower frequency
resolution. It therefore results in an increased frequency resolution for lower frequencies
at the expense of a lower time resolution [79]. The purpose of this feature is to get a
non-linear spectral frequency distribution of 50 variable sized frequency bands.

The Spectral Flatness SPF is a measure for the energy distribution in the frequency
spectrum. A theoretical �atness of 1.0 means that all frequencies show the same amplitude,
which is de�ned as white noise. The closer the �atness comes to 0, the stronger are
individual frequencies. Linear loads like a toaster show a relative low spectral �atness,
whereas show appliances equipped with an SMPS a relative high spectral �atness. The
SPF is computed by the ratio of the geometric mean to the arithmetic mean of the energy
spectrum [76].

SPF =

N

√

∏
f ∈fbins

xf

1

N
∑

f ∈fbins
xf

Many appliances such as motors or SMPS-equipped appliances form strong odd and
only modest even harmonics. This imbalance can vary strongly between di�erent
appliance types. This makes the Odd-Even Harmonics Ratio OER [76] feature a useful
characteristic for appliance recognition. Figure 6.1.3 shows the harmonics imbalance of a
motor-equipped massage appliance.

OER =

mean(xf1
, xf3

, … , xf19
)

mean(xf2
, xf4

, … , xf20
)

A 3-dimensional feature calledTristimulus [76] extracts the energy of di�erent harmonic
groups. This feature is an audio timbre equivalent to the color attributes in vision [76]
and gives a 3-dimensional spectral energy distribution metric. It extracts the intensity
for the lower, medium, and higher harmonics, which is di�erent for all appliances.

T1 =

xf1

∑
ℎ
xfℎ

T2 =

xf2
+ xf3

+ xf4

∑
ℎ
xfℎ
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T3 =

xf5
+ xf6

+ ⋯ + xf10

∑
ℎ
xfℎ

0 5 10 15 20 25

Periods

0

0.2

0.4

0.6

0.8

1

A
m

pl
itu

de
 n

or
m

al
iz

ed

Current of Different Appliances

Multitool
Halogen Fluter
Air Conditioner
Kettle

5 10 15 20

Time in ms

-2

-1

0

1

2

A
m

pl
itu

de
 n

or
m

al
iz

ed

Sewing Machine Current Waveform

Sinus
Current
Difference
WFA

Figure 6.1.4: Di�erent current draws over time on
period level. The amplitudes are normalized to 1.

Figure 6.1.5: Current waveform of a motor-
equipped sewing machine that deforms the current.

The following scalar features focus on the waveform of a signal: Form Factor FF [80],
Crest Factor CF [81], and logarithmic Total Harmonic Distortion THD [82]. These
signatures correlate if the waveform is sinusoidal, a compound of strong harmonics or
noise. SMPS-equipped appliances produce strong noise in the current waveform which
results in a high form factor.

FF =

rms(IROI )

mean(|IROI |)

CF =

max(|IROI |)

rms(IROI )

THD = 10 ⋅ log10
(

1

xf 0

⋅

5

∑

n=1

xf n
)

Voltage, and therefore also current, can easily drop by a few percent due to rapid changes
in the power grid outside the observed circuit. The Resistance R is not in�uenced by
voltage �uctuations. Four metrics can be de�ned using the common Root Mean Square
(RMS) and a derived function based on the median (less spike-a�ected computation). The
reciprocal of the resistance is called Admittance Y [1] and can be calculated using the
quadratic mean and quadratic median accordingly.
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Rmean =

√

1

N
⋅ ∑UROI

2

√

1

N
⋅ ∑ IROI

2

Rmedian =

√

median (UROI

2

)

√

median (IROI
2

)

The Moving Pictures Experts Group (MPEG) published many audio description schemes
in the MPEG-7 ISO standard [83]. These descriptors yield to the signal envelope and
harmonic characteristics. Both aspects can also be found in energy data. While the
signal envelope for musical instruments has an attack, decay, sustain and release state, an
electrical appliance has a start-up, decay, steady state and turn o�. Musical instrument
onsets need to be found in the same way as appliance events. Di�erent instruments draw
di�erent harmonic characteristics – similar to electrical appliances. Since high-frequency
sampled energy data has similarities to audio data, a subset of these descriptors can be
adapted for electricity purposes.

The LogAttackTime [76] is an envelope feature describing the logarithmic amount of
milliseconds until a sound such as a musical instrument reaches its maximum intensity.
For NILM purposes the LogAttackTime depicts the time ln(tA) until the current reaches
its maximum tA = max(IROI ). This feature will often result in a low value, although some
appliances, like a power drill, can have an increasing current characteristic due to its
speed control.

The Temporal Centroid Ct describes the temporal balancing point of the current energy
in the region of interest [76]. Appliances with a strong start-up current, such as a vacuum
cleaner have a signi�cantly di�erent centroid due to higher consumption in the beginning
of the event than appliances with a steady current (toaster).

IW(k) = [current sample vector] ; k
tℎperiod

IP(k) = rms(IW(k)) ; k
tℎperiod

Ct =

1

f0

⋅

∑
N

k=1
IP(k) ⋅ k

∑
N

k=1
IP(k)

The Spectral Centroid Cf [76] de�nes the balancing point of the given spectrum. Ap-
pliances forming a non-linear current (e.g. SMPS-equipped appliances) have a signi�cant
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higher spectral balancing point than linear loads due to the presence of high order
frequencies.

Cf =

∑
f ∈fbins

xf ⋅ f

∑
f ∈fbins

xf

The Harmonic Spectral Centroid Cℎ [76] de�nes the balancing point based on the �rst
50 harmonics of the mains frequency. This feature covers similar characteristics as the
spectral centroid but ignores non-harmonic noise.

Cℎ =

∑
50

k=1
xfk

⋅ k

∑
50

k=1
xfk

6.1.2 Developed Features

Since some appliances characteristics of the investigated datasets motivate further
approaches, we developed features to improve the classi�cation of these appliances.
These features are retrieved from individual appliance observations, modi�cations of
known features or ideas from existing literature.
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Figure 6.1.6: Current of a mixer with cut negative
half waves.

Figure 6.1.7: Current of a washing machine with
a strong spike at the start-up.

The feature Signal to Signal Mean Ratio SSMR extracts information from the spectrum
of the current signal and puts the strongest frequency amplitude into a ratio with the
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spectral mean. The SSMR is a variant of the Signal Noise Ratio SNR. Pure resistive
appliances such as heaters, water kettles, and ovens are known to have very weak
harmonics compared to non-pure resistive loads [78]. Strong harmonics would result
in a higher spectral mean. Thus, the SSMR can be seen as a scalar representation of the
dominance of the strongest frequency in the current spectrum:

SSMR =

max(spec)

mean(spec)

where spec is the absolute left-sided frequency spectrum of the whole current sample
IROI .

Appliances that use a SMPS or incandescent light bulbs can have a strong and short
current spike in the �rst period after their start-up (Figure 6.1.7). The amplitude of the
�rst period di�ers in these cases signi�cantly to the periods of the steady state. The
feature Inrush Current Ratio ICR retrieves the RMS of the �rst period IW(1), and the
last period IW(N) of the current region of interest IROI :

ICR =

IP(1)

IP(N )

Some household appliances show di�erent characteristics in the positive and negative half
cycle of their current, which can be seen in the current waveform of a mixer (Figure 6.1.6).
This behavior is usually caused by dimmers or motor speed controllers, which are widely
used to reduce the voltage and therefore also the current. Some of these circuits a�ect
only one half of the current cycle. This can be captured by comparing the RMS of 10
averaged positive and negative current half cycles in the Positive-Negative Half Cycle
Ratio PNR. The mixer in Figure 6.1.6 has an imbalance ratio of around 0.6 while most
other balanced appliance have a ratio close to 1.0

PNR =

⎧
⎪
⎪

⎨
⎪
⎪
⎩

IPpos

IPneg

if IPneg ≥ IPpos
IPneg

IPpos

if IPneg < IPpos
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The Max-Min RatioMAMI is an alternative way to cover one-sided waveform character-
istics. It puts the maximum and absolute minimum peak current in ratio. In comparison to
PNR, this feature focuses on the peak values of each half wave that could cover one-sided
spikes. The mixer of Figure 6.1.6 shows with around 0.3 a signi�cant lower Max-Min
Ratio than a theoretical ideal balanced appliance with a ratio of 1.0.

MAMI =

⎧
⎪
⎪

⎨
⎪
⎪
⎩

|min(IROI )|

|max(IROI )|
if |max(IROI )| ≥ |min(IROI )|

|max(IROI )|

|min(IROI )|
if |max(IROI )| < |min(IROI )|

To determine if an appliance has a pure sine current or spikes from switching-artifacts
like polling, the absolute maximum peak can be put into a ratio with the absolute mean
current to result in a Peak-Mean Ratio PMR. Again, linear loads show equal values
whereas appliances with strong start-up currents, like an incandescent light bulb, are
recognizable with this feature.

PMR =

max(|IROI |)

mean(|IROI |)

Appliances equipped with a SMPS or compact �uorescent lights (CFL) show very short
(sub-period) peaks and spikes, which won’t be covered when focusing only on the power
of the whole period. Therefore the RMS current of this period is put into ratio to the
maximum peak in the �rst period. This yields the Max Inrush Ratio MIR feature, a
normalized indication of the peak steepness. A linear load has a theoretical MIR of
1
√

2
≈ 0.707 while a CFL, for example, can have an MIR of around 0.3 due to its non-

sinusoidal waveform.

MIR =

IP(1)

max(|IW(1)|)

An indicator of the current steadiness can be retrieved by putting the variance and mean
of the absolute current into a ratio. A short and high current spike increases the absolute
variance to a higher degree than the absolute mean. Our experiments show that linear
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loads have a relatively low Mean-Variance RatioMVR and appliances with a short peak
(e.g. light bulb) a relatively high MVR.

MVR =

mean(|IROI |)

var(|IROI |)

The mains voltage follows a relative sinusoidal waveform. Various non-linear appliances
distort the current signal by adding individual non-sinusoidal characteristics. Figure 6.1.5
shows the waveform of a sewing machine compared to a generated sine wave. The
goal of the Waveform Distortion WFD feature is to obtain a distortion metric of the
current waveform compared to a single period of a sine wave with the same energy Ysin.
Therefore, the �rst 10 post-start-up periods are averaged, normalized (with the RMS of
itself), and aligned to the rising zero crossing. The absolute current wave is subtracted
from the equivalent absolute sine wave and the di�erences are summed up. The smaller
the value, the more sinusoidal and similar are the half waves of the current waveform.

IWM = mean(IW(1), … , IW(10))

WFD = sum(|Ysin| − |IWM |)

A higher degree of information can be extracted from the waveform itself (e.g. square,
saw-tooth, single-pulse). By taking the mean of the �rst 10 periods point-by-point and
down-sampling this vector to 20 points as in Figure 6.1.5, we get the multi-dimensional
Waveform ApproximationWFA feature.

WFA = downsample(IWM ,
⌊

length(IWM )

20 ⌋
)

Many appliances, including vacuum cleaners, light bulbs, and motor-based devices, do
not have a steady but rather a decreasing power consumption over the initial start-up
phase. Due to these variations in the period-by-period current, combining the RMS
currents of each period from IROI into a multi-dimensional vector gives us a Current
Over Time COT distribution. The Admittance Over Time AOT is less in�uenced by
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voltage �uctuation and is calculated by dividing current IP(k) and voltage UP(k). Figure 6.1.4
shows the current over time of four appliances; the maximum current is normalized to
1.0.

COT = [IP(1), IP(2), … , IP(25)]

AOT =
[

IP(1)

UP(1)

,

IP(2)

UP(2)

, … ,

IP(25)

UP(25)
]

The inrush current is higher than the steady state current in many appliances. This
inrush current signi�cantly di�ers in time throughout various appliance types. The index
of the �rst period, after the initial current increase levels o�, can be used as the Periods
to Steady State Current PSS feature. The steady state is reached when IP(k) falls below
a pre-calculated limit above the median of COT.

L =

1

8

⋅ (max(COT ) − median(COT )) + median(COT )

PSS = k ; �rst period, where: IP(k) < L

To obtain the advantages of higher sampling frequencies, one can shift the main focus
in the spectrum by applying a high-pass �lter with a pass frequency of 5 kHz resulting
in the following new features: High Frequency Spectral Centroid HFSPC and High
Frequency Spectral Flatness HFSPF.

Using the high-pass-�ltered spectrum one can use the High Frequency Spectral Mean
HFSPM as an indication of the appliance impact on high-frequency regions.

HFSPM = mean(xf for f ≥ 5 kHz, f ∈ fbins)
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6.2 Experimental Methodology

We set up a machine learning test bed, to evaluate the classi�cation performance of the
above de�ned features. We used start-up events of PLAID [22], WHITED [23], UK-DALE
[21], and BLUED [20] to evaluate various features and their combinations with di�erent
classi�ers.

PLAID and WHITED focus on isolated single appliance measurements. From WHITED, a
typical household subset is used (one appliance model per type, low inner-class diversity,
280 events of 27 appliance types). PLAID provides multiple appliance models per type
(e.g. 7 heaters, 33 laptops, etc.). All appliances and events are used in our experiments
(high inner-class diversity with 1074 events of 11 appliance types).

Data Collection

Preprocessing
(Scaling, ROI)

(Read Files)

Feature Extraction
(P, Q, S, THD, ...)

Classification
(TV, PC, Kettle,...)

Cross Validation

Feature Selection
(Forward Selection)

Figure 6.2.1: The simpli�ed steps of our evaluation system based on pattern recognition and cross-
validation.

UK-DALE and BLUED provide real household measurements. Start-up events were
extracted based on timestamps and event labels from the provided low frequency single
appliance measurements. We de�ned an event as a spontaneous, single and signi�cant
rise in the current consumption for a couple of mains periods.

Our machine learning experiments follow a typical pattern recognition approach. Fig-
ure 6.2.1 shows the appliance classi�cation pipeline with supervised learning embedded
in the evaluation system. We de�ne the classi�cation problem as follows: Classify
the appliance type based on a start-up event and represent each appliance type as an
individual class.

For reliable results we used a strati�ed 5-fold cross-validation with four classi�ers:
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6. APPLIANCE FEATURE STUDY

1-Nearest Neighbour (KNN), Binary Decision Tree (BDT), Linear Discriminant Analysis
(LDA), and Support Vector Machines (SVM). All computations are performed with a
combination of Matlab (with LIBSVM [77] and various toolboxes), and Python (with
common scienti�c computing packages). To remove unwanted feature weighting caused
by di�erent ranges of values, we implemented a feature variance normalization, based
on the training data in each cross-validation step. Since F1 Score is the most common
used metric, all features and feature combinations are ranked based on the F1 Score; the
higher the score, the better the classi�cation performance.
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6. APPLIANCE FEATURE STUDY

6.3 Experimental Results

All experiments for isolated measurements were performed on PLAID and the WHITED
subset. The selected appliances can be seen in Table 6.3.6. To cover real-world scenarios,
we applied our experiments on two high-frequency sampled household datasets: BLUED
and UK-DALE. With these datasets we rank all stand-alone features, �nd the best 2-
dimensional feature combination, and compute the best forward-selected combination.
Therefore, we try to �nd the best-performing features for the following questions:

What is the highest achievable classi�cation performance . . .

• . . . for data with a high inner-class diversity? (PLAID)

• . . . for data with a low inner-class diversity? (WHITED)

• . . . for real household measurements? (BLUED, UK-DALE)
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Figure 6.3.1: PLAID in P-Q plane. Figure 6.3.2: PLAID in PS-THD plane.

6.3.1 Stand-Alone Feature Ranking

The goal of this ranking is to compute the individual classi�cation performance of each
feature and rank them in a table. To be able to compare all features against one another,
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6.3. EXPERIMENTAL RESULTS

it is necessary to compute the stand-alone classi�cation performance of each feature by
itself.

The evaluation was performed over all datasets with a 1-Nearest Neighbor classi�er for
comparability, traceability, and reproducibility (Table 6.2.1). It is important to di�erentiate
between one- and multi-dimensional features, since multi-dimensional features have a
signi�cant higher potential in classi�cation performance than scalar features.

For isolated measurements (PLAID and WHITED), the Phase Shift with an average F1
Score of 0.74 has the highest discriminating quality. This means that the most relevant
one dimensional metric to recognize appliances lies in the individual voltage and current
phase di�erence of each appliance. The best multidimensional feature is the Wavelet
Analysis with an average F1 Score of 0.95. This on the other hand, means that, due to
individual nonlinearities inside the appliances, complex spectral characteristics o�er the
highest discriminating quality for isolated events.

For real household measurements (BLUED and UK-DALE), the best scalar feature are the
Admittance and the Resistance with an average F1 Score of 0.30. Note that classi�cation
based on a single scalar feature is di�cult for any classi�er. Since the household data
contains more noise than isolated measurements, the recognition quality is signi�cantly
lower. The best multidimensional feature is Admittance Over Time with an average F1
Score of 0.69. For aggregated measurements, the individual temporal appliance energy
consumption shows the highest robustness against unwanted interferences.

When ranking the features of all datasets and environments, the best scalar feature is
Phase Shift, and the best multi-dimensional feature is Current Over Time.

6.3.2 2-Dimensional Feature Combination

Combining multiple features usually improves the classi�cation performance. However,
each additional feature increases computational complexity. Therefore, this experiment
focuses on evaluating 2-dimensional feature combinations for each dataset and classi�er,
while keeping the complexity to a minimum. One can use a 2-dimensional feature space
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6. APPLIANCE FEATURE STUDY

to visualize and examine the class boarders (Figure 6.3.1). A common visualization is the
P-Q plane [1, 62, 78] where Active Power and Reactive Power form a 2 dimensional scatter
plot.

We evaluated all possible combinations of scalar features, resulting in 406 possible pairs.
The PF-THD plane shows an interesting sample distribution in terms of appliance clusters
(Figure 6.3.2). The advantage of this plane is the high intra-class variance of low-power
appliances, compared to the closely grouped clusters in the P-Q plane (Figure 6.3.1).

Features F1 Pr Re Ac

KNN Phase Shift
Admittance 0.98 0.98 0.98 0.99

LDA Reactive Power
Signal-Signal Mean Ratio 0.92 0.94 0.93 0.99

SVM Total Harmonic Distortion
Harmonic Spectral Centroid 0.98 0.98 0.98 0.99

BDT Spectral Mean (HF)
Temporal Centroid 0.97 0.97 0.97 0.99

Table 6.3.1: The best 2-dimensional feature combination for each classi�er with WHITED: Phase Shift
and Admittance show promising results. Spectral indicators reach similar results.

Features F1 Pr Re Ac

KNN Active Power
Reactive Power 0.89 0.91 0.88 0.99

LDA Phase Shift
Temporal Centroid 0.54 0.55 0.58 0.95

SVM Phase Shift
Total Harmonic Distortion 0.86 0.90 0.84 0.98

BDT Phase Shift
Total Harmonic Distortion 0.82 0.84 0.80 0.98

Table 6.3.2: The best 2-dimensional feature combination for each classi�er with PLAID: Active Power and
Reactive Power

The best 2-dimensional feature combination for each classi�er can be seen in Tables 6.3.1,
6.3.2, 6.3.3, and 6.3.4. For the WHITED subset, the best 2-dimensional feature combination
(using KNN) is Phase Shift and Admittance, compared to Active Power and Reactive
Power on PLAID. For BLUED, the best 2-dimensional feature combination (using KNN)
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6.3. EXPERIMENTAL RESULTS

Features F1 Pr Re Ac

KNN Apparent Power
Phase Shift 0.59 0.60 0.59 0.97

LDA Active Power
Signal-Signal Mean Ratio 0.36 0.36 0.38 0.96

SVM Resistance (med)
Temporal Centroid 0.57 0.67 0.57 0.97

BDT Active Power
Temporal Centroid 0.57 0.59 0.57 0.97

Table 6.3.3: The best 2-dimensional feature combination for each classi�er with BLUED: The performance
metrics show that the Phase Shift performs well, even for noisy household data.

Features F1 Pr Re Ac

KNN Inrush-Steady State Ratio
Admittance 0.59 0.59 0.59 0.99

LDA Reactive Power
Total Harmonic Distortion 0.31 0.32 0.35 0.98

SVM Active Power
Inrush-Steady State Ratio 0.56 0.61 0.56 0.99

BDT Active Power
Inrush-Steady State Ratio 0.60 0.61 0.60 0.99

Table 6.3.4: The best 2-dimensional feature combination for each classi�er with UK-DALE: In this case, the
Binary Decision BDT reaches the highest classi�cation performance with Active Power and Inrush-Steady
State Ratio.
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6. APPLIANCE FEATURE STUDY

is Apparent Power and Phase Shift, compared to Active Power and Inrush-Steady State
Ratio on UK-DALE (using BDT). These results suggest that consistent high classi�cation
performance can be achieved, by including one of the power indicators (Active, Reactive,
Apparent Power, etc.) in the feature combination.

6.3.3 Feature Forward Selection

As shown in Table 6.2.1, many features reach an already high stand-alone F1 Score for
the appliance classi�cation. The combination of several features usually improves the
classi�cation performance up to a limit. Computation time and classi�cation aggravations
anomalies due to large feature spaces like the Hughes phenomenon [84] motivate to
keep the amount of features to a minimum. We chose a forward selection algorithm
(Figure 6.3.3) to �nd the best compromise between classi�cation performance and a
smaller number of features. An evaluation that considers all possible 236 combinations
is not feasible in terms of computational e�ort and resources. The algorithm starts by
selecting the best stand-alone feature, then computes all possible 2-pairs and selects the
best one as starting point for the next iteration. This is repeated until the classi�cation
performance stops improving.

f1

f2

f3

f1+f2

f1+f3

f1+f4
-

f2+f3

f2+f4

f3+f4

f4

f1+f2+f3

f1+f2+f4

f1+f4+f3

f2+f3+f4

f1+f2+f3+f4

Figure 6.3.3: Feature forward selection: In this example, f2 is selected as winner of the �rst iteration, [f2,
f3] in the second, and [f1, f2, f3] as �nal winner, since the combination of all four features does not further
improve the performance.

Table 6.3.5 shows the resulting feature combinations for all datasets computed by the
feature forward selection algorithm. Since we used a randomized strati�ed 5-fold cross
validation, the performance results vary slightly for each run. Strati�ed means in this
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6.3. EXPERIMENTAL RESULTS

context that the amount of training samples are balanced for each class. We achieved an F1
Score of 1.0, due to the intrinsic properties of WHITED (isolated measurements). PLAID
showed comparably high classi�cation performance, however, with a di�erent set of
features. BLUED and UK-DALE scored slightly below 0.80 due to noise and concurrently
running appliances.

Dataset Features F1 Pr Re Ac

WHITED Wavelet Analysis, Spectral Mean (HF), VI-Trajectory,
Current Over Time

1.00 1.00 1.00 1.00

PLAID Wavelet Analysis, VI-Trajectory, Admittance Over
Time, Form Factor, Phase Shift, Log Attack Time,
Current Over Time, Max-Inrush Ratio, Resistance
(med)

0.96 0.97 0.95 0.99

BLUED Admittance Over Time, Resistance (med), Total Har-
monic Distortion, Spectral Mean (HF), Temporal
Centroid, Phase Shift, Admittance, Admittance (med),
Log Attack Time, Spectral Flatness, Sinus Di�erence
Sum, Harmonic Spectral Centroid

0.76 0.78 0.75 0.98

UK-DALE Admittance Over Time, Resistance, Phase Shift, Tem-
poral Centroid, Admittance, Active Power, Even-Odd
Harmonics Ratio, Spectral Flatness

0.79 0.80 0.79 0.99

Table 6.3.5: The results of the forward selection for each dataset. Even with only four features, the optimal
classi�cation performance for WHITED is achievable. The results show that not all features are necessary
to get the optimal classi�cation performance.

6.3.4 Individual Appliance Performance

Table 6.3.6 shows that the classi�cation performance is not identical for each appliance
type. In the case of WHITED, there are no misclassi�cations since the dataset consists
of isolated measurements and only one model per appliance type, which lowers the
inner-class variance and therefore improves the classi�cation performance signi�cantly.

Aside from some outliers, most appliance types show a relatively high classi�cation
performance. The appliance type Lights shows a notably lower classi�cation performance
in both datasets. We believe that the main reason for this result is a too broad de�nition
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6. APPLIANCE FEATURE STUDY

of lights, which may include a mix of di�erent lighting types (e.g. incandescent, LED, and
CFL) and low power lights. A similar problem applies to Desktop PC’s, which are usually
equipped with a SMPS. The total classi�cation fail of the boiler cannot be explained
completely. One reason can be that resistive loads have almost no recognizable current
signatures that can easily cause a misclassi�cation to another resistive load of similar
consumption.

6.3.5 Discussion

What is the best general feature combination for appliance recognition? First of all, there
is no one-size-�ts-all set of features. The individual composition of appliances in the
environment determines the set of features. However, the best feature sets always contain
information about a spectral energy distribution (e.g. Wavelet Analysis, Harmonics, etc.)
and time-related power information (e.g. Current and Admittance Over Time). The results
show that the main information to discriminate between appliances lies in the spectral
distribution and the unsteadiness in the power consumption over time.

A poor result of a feature in Table 6.2.1 does not mean that it is worthless. Some features
are based on characteristics that are formed only by a rare amount of appliances like the
feature PNR. The waveform imbalance covered by this feature was only observed in the
Ideenwelt-mixer of WHITED. The feature may have a poor general discrimination quality
but might contribute in a feature combination to distinguish the mixer from a similar
appliance such as a multitool.

When focusing on the algorithms, the 1-nearest neighbor classi�er leads in performance
quality. It seems to be the optimal classi�er for this task due to its simplicity and
computation performance for small to medium feature spaces. Since the SVM classi�er
has a strong need for an intense parameter-search, a rough parameter search was used
for the 2-dimensional feature combination due to computing time.
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Appliance WHITED PLAID BLUED UK-DALE Ø
KNN KNN SVM SVM

Air Conditioner 1.00 0.93 0.97
Air Compressor 1.00 1.00
Boiler 0.00 0.00
Breadmaker 0.97 0.97
Charger 1.00 1.00
Co�ee Machine 1.00 0.88 0.94
CFL 1.00 1.00 1.00
Desktop PC 1.00 10.63 0.82
Dishwasher 0.94 0.94
Drilling Machine 1.00 1.00
Fan 1.00 0.97 0.98
Fridge 1.00 0.75 0.95 0.99 0.92
Game Console 1.00 1.00
Garage Door 0.82 0.82
Hair Dryer 1.00 0.98 0.83 0.94
Heater 0.97 0.97
HiFi 1.00 0.86 0.93
Inc. Light Bulb 1.00 0.97 0.99
Iron 1.00 1.00 0.96 0.99
Juice Maker 1.00 1.00
Kettle 1.00 0.97 0.98
Kitchen Hood 1.00 1.00
Laptop 1.00 0.99 1.00
Lights 20.60 0.04 0.32
Microwave 1.00 0.99 0.95 0.98
Mixer 1.00 1.00
Monitor 0.74 0.74
Printer 1.00 1.00 1.00
Rice Cooker 1.00 1.00
Sandwich Maker 1.00 1.00
Straighteners 1.00 0.86 0.93
Toaster 1.00 0.92 0.96
TV 1.00 0.85 0.83 0.90
Vacuum Cleaner 1.00 1.00 0.97 0.99
Washing Machine 1.00 0.94 0.93 0.96

1 Mean of HTPC and O�ce PC 2 Mean of all eight lights

Table 6.3.6: F1 Score of each individual appliance in its corresponding dataset. The values are based on
forward selected feature combinations and the best-performing classi�er.
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Deep vs. Machine Learning in NILM

Deep neural networks de�ne the state-of-the-art in several disciplines of learning from
large datasets. In this paper, we show how non-intrusive appliance load monitoring
(NIALM) can bene�t from deep learning. On the basis of an event-based appliance
recognition approach, we evaluate seven di�erent classi�cation models: a pattern-
recognition approach that is based on a comprehensive hand-crafted feature extraction,
three di�erent deep neural network architectures for automated feature extraction on raw
waveform data, as well as three simple baseline approaches. The two large-scale, high-
frequency sampled energy consumption datasets UK-DALE and BLOND-50 allow us to
evaluate the algorithms on more than 50.000 events of 44 appliances. Our study concludes
that we are able to reach and surpass performances of state-of-the-art approaches for
appliance recognition with an F-Score of 0.75 for UK-DALE and 0.86 for BLOND-50.

7.1 Appliance Recognition Process

We implemented two di�erent appliance recognition systems, a classical machine learning,
and a representation learning approach. The typical architectures of these learning
systems can be seen in Figure 7.1.1 and 7.1.2. We chose two publicly available energy
consumption datasets of a residential and o�ce environment. The datasets are the most
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suitable selection of the publicly available datasets for our experiments on the selected
deep learning algorithms due to their considerably di�erent set of appliances and usage
patterns. Since we use existing datasets, data acquisition does not play any role in this
work. Further acquisition details regarding the datasets can be found in the work of Kelly
and Knottenbelt [21] (UK-DALE) and Kriechbaumer and H.-A. Jacobsen [24] (BLOND-50).

UK-DALE

The UK Domestic Appliance-Level Electricity (UK-DALE) dataset consists of more than 4
years of energy consumption measurements for a residential building (house-1) with a
high number of appliances of many di�erent types. For our experiments, we considered
measurements from 2013-04-22 to 2015-01-05. The dataset comprises low-frequency,
non-equidistant sampled smart plug measurements (ø 1/6 Hz) for each observed appliance
(per-appliance signals) and high-frequency sampled measurements (16 kHz) from a
custom sound card meter at the electric cabinet (aggregated signal). The per-appliance
measurements allow a coarse determination of appliance events and power consumption
to extract the relevant segments from the aggregated signal.

BLOND-50

The Building-Level O�ce eNvironment Dataset (BLOND) comprises energy consumption
measurements from an o�ce building with a high number of appliances of only a few
di�erent types. This appliance and appliance type distribution is the main di�erence
between the datasets, covering a wide spectrum of real environments. The BLOND-50
subset comprises 213 days of recording with 50 kHz sampling frequency for the aggregated
signal at the electric cabinet and 90 individually observed sockets for the per-appliance
measurements with 6.4 kHz sampling frequency.

Our appliance recognition process uses only the �rst 500 ms of the appliance startup
current and voltage as the baseline for the hand-crafted and automated feature extraction
of the considered algorithms, categorizing it as a so-called event-based approach.
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Data 
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Figure 7.1.1: The architecture of a classical machine learning approach always requires domain speci�c
expert knowledge for �nding types of features with class-discriminative potential in the hand-crafted
feature extraction process step three.
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Figure 7.1.2: The architecture of a representation learning approach tries to replace the hand-crafted
feature extraction with automated, hierarchical feature extraction without the need of domain speci�c
expert knowledge.

7.1.1 Data Preprocessing and Event Detection

The appliance event time-stamps can be approximated with the help of the additional
per-appliance measurements, which are provided in both datasets (1/6 Hz for UK-DALE,
6.4 kHz for BLOND-50). A simple threshold-based event detection algorithm with appli-
ance individual thresholds is used to detect events in these per-appliance measurements
(see Table 7.1.1). The resulting appliance event time-stamps are used to extract segments
from the high frequency aggregated signal. The power-related switch-on threshold Δ

↑
in

Watts de�nes the power state at which an appliance is considered switched on - similarly
for the switch-o� threshold Δ

↓
.

The UK-DALE dataset comprises 52 appliances of several types. For this work, we use a
subset of 23 appliances by selecting only one appliance per appliance type and ignoring
low-power devices such as ADSL Router, Ipad Charger and Baby Monitor that are poten-
tially undetectable in a noisier aggregated signal, due to their low power consumption.
The sample numbers of the remaining appliance classes are very heterogeneous and
vary between 38 for the co�ee machine and 15,766 for the fridge, due to their natural
consumer pattern (see Figure 7.1.1).

For the BLOND-50 dataset, a general power threshold of 25 W de�nes a switch-on and
switch-o� event. All 21 occurring appliances of the chosen time span are included in the
remaining appliance types: Laptop (13), Monitor (5), PC (2) and Printer (1), amounting to
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Table 7.1.1: UK-DALE Appliance Event Thresholds and Quantity

Appliance Δ
↑
Δ
↓

# Events Appliance Δ
↑
Δ
↓

# Events
Boiler 70 20 1,701 LCD O�ce 30 4 1,337
Solar Thermal Pump 40 20 5,221 Breadmaker 400 20 649
Laptop 20 2 498 Amp Livingroom 18 10 945
Washing Machine 1,500 1 506 Hoover 400 10 392
Dishwasher 100 20 885 Co�ee Machine 1,000 10 38
TV 70 10 907 Hair Dryer 100 20 713
Kitchen Lights 70 20 4,765 Straightener 300 5 264
HTPC 70 20 1,169 Iron 1,000 10 147
Kettle 2,000 10 2,674 Gas Oven 35 10 492
Toaster 1,000 10 1,495 O�ce Fan 20 2 78
Fridge 70 10 15,766 LED Printer 800 3 159
Microwave 500 10 3,363

9,321 appliance samples.

Regarding UK-DALE, with the known appliance event time-stamp from the per-appliance
measurements, the high-frequency aggregated measurements are observed in a 20 s
time-window for the exact event position. For each appliance event that is found in the
per-appliance measurements, a segment of the �rst 500 ms is extracted from the high-
frequency aggregated measurements at the corresponding time-stamp. These 500 ms
long calibrated startup-transients are the baselines for all following considerations.

It is important to keep in mind that there are two sources of event inaccuracies in
this step for UK-DALE. The �rst lies in the event detection on the low-frequency per-
appliance measurements. With 1/6 Hz, the sampling rate is too low to detect short-term
consumption patterns. The second lies in �nding the exact event position in the 20s
time-window in case of multiple occurring events in that time window. The probability to
extract the correct appliance segments equals the reciprocal of the number of individual
appliance events in the 20s time-window. Reliable error estimation is unfortunately not
possible. Since the per-appliance measurements are sampled with 6.4 kHz, the event
time-stamps are accurate enough to not cause these issues for BLOND-50.
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7.1.2 Hand-Crafted Feature Extraction

For this work, we extracted 36 features that are introduced and explained in our previous
work [25]. These features comprise traditional electricity metrics such as active &
reactive power, admittance, crest factor and phase shift, audio processing features such
as harmonics, wavelet analysis and total harmonic distortion, a selection of MPEG7 audio
descriptors1 and novel metrics such as max-inrush-ratio and inrush-current-ratio. The
chosen features are one- and multidimensional with a total number of 212 dimensions.
With these features, we reach very high appliance classi�cation performances (F-Score
between 0.76 and 1.0) across household-focused subsets of the four publicly available
datasets WHITED [23], PLAID [22], UK-DALE [21] and BLUED [20] with the standard
classi�er (KNN, SVM, LDA, BDT).

7.1.3 Autoencoder

We implemented three di�erent AE architectures that are designed to reduce the raw
waveform data to a 212-dimensional feature space. The set comprises a one, two and
three-layered encoding and decoding architecture with di�erent dimensionality. The
AEs have a mirror-like design, which means that the decoding layers are identical to the
encoding layers, but in reverse order.

7.1.4 Convolutional Neural Network Architecture

To ensure an automated hierarchical feature extraction with the 1-dimensional CNN, we
applied a sampling and mains frequency (fs , f0) dependent layer architecture. The goal is
to reduce the layer inputs with max-pooling layers in a way that the output dimension of
the last convolutional layer is identical to the number of mains cycles (np = 25 for 50 Hz
mains frequency) of the 500 ms segments. The number of convolutional layers (nl) and
its kernel sizes (k) are calculated as follows:

1Since high frequency sampled energy consumption shares similarities to audio and music data, the
MPEG7 audio descriptors contain features with signi�cant discriminative potential for electrical appliance
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⃗
k = sortdesc(prime_f actorization(

fs

f0

)), nl = #k

Therefore, the pool-sizes of the max-pooling layers for the UK-DALE dataset are [5, 2, 2, 2,
2, 2, 2] (see Figure 7.1.3) while they are [5, 5, 5, 2, 2, 2] for the BLOND-50 dataset.

Input 32, 5, 5 64, 2, 2 256, 2, 2 256, 2, 2 512, 2, 2 512, 2, 2 512 #classes128, 2, 2 softmax

Input Convolutional Layer Dense Layer softmax

  Batch 
  Normalization

  Leaky ReLu

  alpha=0.1

  Max-Pooling

  pool-size=5

  Convolutional 
  Layer

  filter=32, kernel=5

......

Dense Layer

units=512

Hierarchical Feature Extraction Classification

[32,5,5]

Filter

Kernelsize

Poolsize

Figure 7.1.3: The architecture of the end-to-end implementation of the CNN for the UK-DALE dataset.

7.1.5 Convolutional Autoencoder

The advantage of CAEs lies in the use of convolutional layers inside an AE network.
They bene�t from a better locality of natural signals while general AEs handle each input
dimension as global. In other words, the order of the input dimensions does not matter
for a general, fully connected AE as opposed to using convolutional layers. To keep the
model trainable, we implemented three encoding, one coding, and three decoding layers.
To ensure comparability with the hand-crafted features extraction approach, we reduced
the feature dimensions to 200. This is the closest we could reduce 8,000 and 25,000 to
the 212 dimensions of the hand-crafted features approach, using only integer divisors.
Therefore, the encoder and decoder pool-sizes (divisors) of the max-pooling layers are
[5, 4, 2] and [2, 4, 5] for UK-DALE (see Figure 7.1.4), while they are [5, 5, 5] and [5, 5, 5] for
BLOND-50. The number of �lter and the kernel sizes of each layer are identical for both
datasets, see Figure 7.1.4.
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Figure 7.1.4: The architecture of the CAE network for the UK-DALE dataset.

7.1.6 Feature Space Transformation

We implemented two di�erent ways of feature space transformation to avoid undesired
feature weighting, caused by di�erent value ranges across the dimensions: the variance-
normalization x ′

var
and max-normalization x ′

max
, calculated from x as unprocessed feature

vector:

x
′

var
=

x − mean(x)

var(x)

, x
′

max
=

x

abs(x)

For the variance normalization, mean(x) and var(x) are calculated from the training-set
and test-set independently.

7.2 Experiments

As a preparation step, all samples of both datasets are shu�ed and strati�ed split into
80 % training samples and 20 % test samples to ensure the same class sample number
heterogeneity in training and test-set. To better assess the results of the machine and
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representation learning approaches, we additionally implemented 3 classi�cation models
as baseline-reference models. In total, 7 di�erent models are evaluated. The classi�cation
is implemented with four common classi�ers: K-Nearest Neighbor (KNN [85]), Linear
Discriminant Analysis (LDA [85]), Support Vector Machines (SVM [77]), and Binary
Decision Trees (BDT [85]). The coding layer output of the AE and CAE are interpreted
as a dimensionally reduced feature space and fed to the classi�ers. Only the CNN is
implemented as an end-to-end model and therefore already gives a classi�cation as
output.

The 36 implemented multidimensional hand-crafted features comprise 212 dimensions
that are extracted from the raw waveform data to form the feature space. All 212
dimensions are considered in creating the feature space for this model.

The AE and CAE model are used as a general automated way to reduce the dimensions
of the high dimensional raw waveform data. Since a linear AE usually reaches the same
performance as a principal component analysis (PCA) [86], it is interesting to see whether
the implemented multiple non-linear layers of the AE and CAE would result in any
performance improvements compared to the PCA.

The CNN model is fed with the raw waveform data to learn from di�erent receptive
�eld sizes. The training-set is again split into 80 % training samples and 20 % validation
samples. This validation-set allows for a training performance monitoring after each
training-epoch and is used to properly evaluate the current classi�cation performance
mid-training and enables training strategies such as early stopping and saving the best
model.

For the random sub-sampling model, we extracted a random selected subset (without
repetition) of the 500 ms raw data samples (see Figure 7.2.1). To facilitate comparability to
the hand-crafted feature set, the subset consists of 212 dimensions as well. This approach
is equivalent to a non-equidistant sub-sampling and can be regarded as a very simple kind
of feature extraction without any expert knowledge or comprehensive model architecture
design.

Another model considers the root means square (RMS) energy of each mains cycle. The
resulting 25 element long vector RMS-25 shows the actual absolute current over the
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500 ms (see Figure 7.2.2). Since every appliance draws a di�erent consumption during
switch-on - the RMS of the 25 mains cycles is simple to calculate, but it is a powerful
discriminative model in terms of appliance recognition [25].

The principal component analysis is a common method for reducing feature space dimen-
sions. The PCA reduces a high dimensional data space into a lower one by descending
ordered variances. These variances form a new cartesian coordinate system. To keep the
comparability, the 212 highest variances are considered in this model. Assuming that
both sets share the same distribution, the variances are calculated on the training-set and
the resulting covariance matrix is used to transform the unseen test-set.
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Figure 7.2.1: Random sub-sampling: The red
circles show the randomly selected measurement
points from the raw waveform current of a dish-
washer event.

Figure 7.2.2: RMS-25: The blue stepped line
shows the current for each mains cycle in the
measured 500 ms segment of a dishwasher event.

7.3 Results

The classi�cation performance for all seven experiments is calculated using the predicted
output of the corresponding model and its classi�er. The results show a rather heteroge-
neous distribution of performance. The overall best performance including both datasets
could be achieved with the CNN model. Regarding the stand-alone classi�er, SVM and
KNN reach the highest classi�cation performance on average, with a mean F-Score over
all six models with 0.60 for KNN on UK-DALE and 0.75 for SVM on BLOND-50 (see
Table 7.3.1). The overall best classi�cation performance could be achieved with 0.75 with
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Table 7.3.1: Average classi�er F-Score

KNN LDA SVM BDT
UK-DALE 0.60 0.37 0.60 0.53
BLOND-50 0.69 0.54 0.75 0.61

the end-to-end CNN on UK-DALE and 0.87 with the hand-crafted features using the LDA
classi�er, closely followed by the CNN (see Figure 7.3.1 and 7.3.2).
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Figure 7.3.1: Appliance classi�cation performance using the seven introduced classi�cation models and
�ve classi�ers on the UK-DALE dataset.

Our interpretation of the results substantiates the observation: to replace the expert-
driven hand-crafted feature extraction with a representation learning system, a large
number of samples is necessary. Prevalent experiments on a lower number of appliance
events led to much lower classi�cation performance for the representation learning
approaches. Humans are able to identify complex patterns and di�erences given only
a few samples. The process of putting these patterns into metrics and numbers forms
very powerful features, which is the main advantage of the expert-driven hand-crafted
feature extraction.

7.3.1 Classi�cation Models

Each classi�cation model has been evaluated and performs di�erently for obvious and
non-obvious reasons.
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Figure 7.3.2: Appliance classi�cation performance using the seven introduced classi�cation models and
�ve classi�ers on the BLOND-50 dataset.

Table 7.3.2: Neural network parameter of the best-performing architectures

Architecture AE CAE CNN

Dataset UK-DALE BLOND-50 UK-DALE BLOND-50 UK-DALE BLOND-50

Dim-Scale / Layer [2,4,5 - 5,4,2] [10,5,2.5 - 2.5,5,10] [5,4,2 - 2,4,5] [5,5,5 - 5,5,5] [5,2,2,2,2,2,2] [5,5,5,2,2,2,2]
Batch-Norm yes yes yes yes yes yes
Activation leaky relu leaky relu leaky relu leaky relu leaky relu leaky relu
L2 Regul. 0,00001 0,00001 - - - -
Normalization variance variance variance variance variance variance
Learning Rate 0,0001 0,0001 0,001 0,001 0,001 0,001
Batch Size 30 45 45 45 30 30
Noise 0,005 0,005 - - - -
Optimizer ADAM [87] ADAM [87] ADAM [87] SGD SGD SGD
Loss Function MSE MSE MSE MSE cat. cross-entr. cat. cross-entr.

Hand-Crafted Features

The best results with an F-Score of 0.69 could be achieved by using the max-normalization
and the binary decision tree classi�er. Figure 7.3.1 and 7.3.2 show a very homogeneous
performance across the four classi�ers, making the hand-crafted feature extraction a
stable and the second best model in this benchmark.
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Figure 7.3.3: The �gure shows the dependencies of the sample count and appliance power to the actual
recognition performance of the individual appliances from UK-DALE. The appliance-marker size correlates
with the number of samples true to scale, showing the huge di�erences in the the frequency with which
appliance events occur.

89

10

1

0

17

78

5

0

0

9

91

0

14

5

0

81

La
pt

op
M

on
ito

r
PC

Prin
te

r

Target Class

Laptop

Monitor

PC

PrinterO
ut

pu
t C

la
ss

Figure 7.3.4: The confusion matrix of the best performing CNN model (F-Score 0.86) of BLOND-50,
normalized to 100.

Autoencoder

The AE architecture with the best performance for UK-DALE comprises three encoding
and decoding layers. The three fully connected encoding layers reduce the input by the
factors 2, 4 and 5, similarly for the decoding layers. Since the performance with 0.69 for the
best classi�er is signi�cantly higher compared to the PCA (0.59), some additional patterns
in the feature space could be found by the non-linear layers. The best performance for
BLOND-50 could be achieved with a three-layered architecture, with di�erent reducing
factors of 10, 5 and 2.5, similarly for the decoding layers and a batch size of 45 (see
Table 7.3.2 for further details).
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Figure 7.3.5: The confusion matrix of the best performing CNN model (F-Score 0.75) shows the
misclassi�cation of each considered class of the UK-DALE dataset normalized to 100. Note that the
values are rounded to integers
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Convolutional Autoencoder

The expected performance improvement of the CAE due to its convolutional layers could
not be reached in our experiments. We assume that the chosen parameter space was
too far from the actual optimum. However, the best performing architecture and its
parameters for the CAE in these experiments can be seen in Figure 7.1.4 and Table 7.3.2.

Convolutional Neural Network

The best performing end-to-end CNN architecture comprises the architecture of Fig-
ure 7.1.3 and the parameter settings of Table 7.3.2. The end-to-end implementation entails
that the last layer of the neural network gives a classi�cation as output. The fact that the
parameter search gave the identical optimal parameter set for both datasets underlines a
good generalization capability of the model.

Random Selected Raw Dimensions

As expected and as the results show, this simple model of dimensional reduction does not
allow a reliable and stable classi�cation. With a mean F-Score of 0.39 for UK-DALE and
0.53 for BLOND-50, this model shows the worst performance in both cases. However, a
pure random classi�cation for the UK-DALE dataset would result in an F-Score of around
0.04, which is far below the performance of this model.

RMS-25

The energy of the mains cycles forms a powerful feature that allows a very high clas-
si�cation performance in combination with a spectral metric [25]. Surprisingly, the
KNN classi�er using the mains cycles forms the second best model for the UK-DALE
dataset. The appliances of the UK-DALE dataset can be well distinguished, based on
their individual startup energy consumption pattern only. Unfortunately, in the case of
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the BLOND-50 dataset, the performance is only mid-range due to the di�erent startup
pattern of the individual appliances inside one appliance class.

PCA selected Dimensions

PCA is one of the most applied methods for reducing the feature space [30]. Therefore, the
performance here is of interest. Since PCA is a linear transformation, not all information
can be projected onto the lower feature space. Therefore, PCA usually performs worse
than any well con�gured and trained neural network. Considering the simplicity of the
algorithm and the absence of any expert knowledge, this still leaves PCA as an option.

7.3.2 Appliances

Regarding the best representation learning model (CNN) for UK-DALE, the average
classi�cation performance (F-Score) across all appliances lies at 0.75 (mean) and 0.86
(median). The four best recognized appliances are the kettle (0.97), fridge (0.97), microwave
(0.96) and breadmaker (0.95). All of these appliances have in common that they are either
represented by a huge number of samples or have a large power consumption.

The four worst recognized appliances are the gas-oven (0.42), laptop (0.41), amp-livingroom
(0.39) and o�ce-fan (0.0). Further analysis on these appliance events reveals that the
amp-livingroom shows one very short, small and heterogeneous peak transient while the
gas-oven, laptop and o�ce-fan show a very low or even non-visible step in the power
consumption. These observations and the fact that these four particular appliances have
the lowest energy consumptions (see Figure 7.3.3) of the whole appliance set, leads us to
the assumption that their consumption is simply too low to distinguish properly from the
background noise of the aggregated signal. The recognition of laptops in BLOND-50 is
signi�cantly better, supporting the statement that the issue is regarded to these particular
appliances. All the remaining appliances in UK-DALE were recognized correctly in most
cases. Regarding BLOND-50, CNN could generalize very well over the multiple appliance
models inside each class. The remaining misclassi�cation of monitor and laptop are due
to their similar power consumption.
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8

Use Case Study

NILM provides several techniques for demand information retrieval to support consumers
saving energy usage. Research in NILM often focuses on closed environments, such as
single datasets or single households. Disaggregation results are typically not suitable
to represent the classi�cation performance under real circumstances due to its data
homogeneity of a single dataset. We apply a classi�cation system across four commonly
available high-frequency sampled energy datasets. The experiments include classi�cation
tasks with four di�erent classi�ers on 36 spectral and temporal features to perform
a cross-, mixed-, and intra-dataset validation. The outcome of this work is a reliable
benchmark for appliance recognition in the high-frequency domain and its e�ciency in
smart meters for di�erent use cases and appliance features.

8.1 Approach

For our experiments, we chose four publicly available high-frequency sampled datasets
that provide a fully labeled appliance ground truth and share a considerable set of
appliances. PLAID provides a public library of high-resolution appliance measurements
in an isolated environment. The appliance events are fully labeled and sampled at 30 kHz
with 16-bit resolution. WHITED provides multiple measurements of typical domestic
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appliance events across di�erent regions of the world. The recording hardware is based
on a custom sound card meter that sampled fully labeled isolated events at 44.1 kHz and
16-bit resolution. BLUED is a fully-labeled energy dataset of a single-family residence
with a 60 Hz mains frequency in the USA. The measurements were sampled with an
NI USB-9215A at 12 kHz and 16-bit resolution. The appliance event ground truths are
provided as labeled time stamps. UK-DALE consists of measurements from multiple
domestic houses in the UK that were recorded with a custom sound card meter. The
aggregated high-frequency signals are sampled at 16 kHz and 20-bit resolution. The
low frequency appliance level measurements serve also as a fully-labeled ground truth.
The appliance events occur within a time window of around 15 seconds around the low
frequency event time stamp and might be aligned to another event that occurs in the
same time window. Only three appliances of the COOLL dataset [34] match with the
other datasets appliances which is too low to consider that dataset in this work.

The di�erences between these datasets can be interpreted as variances of sampling
frequency and resolution, line noise, environment (isolated vs. real household), mains
frequency, location (di�erent voltage characteristics) and set of appliances. Those
variances can be termed as dataset-bias, a common term in image datasets [88], where
this issue is already discussed. Since di�erent datasets have their own characteristics,
the above mentioned variances can make them distinguishable - which should not be
the case! The dataset-bias leads to the problem that the classi�er sometimes learns the
dataset characteristics instead of the class characteristics. The goal in the following
feature evaluation is to identify appliance signatures that generalize best over all datasets
and are least in�uenced by the dataset-bias.

For our experiments, we considered only appliances that occur in at least 3 datasets and
have more than 5 start-up events. Therefore it was necessary to leave some appliances
out. We de�ne an appliance start-up event as a spontaneous, signi�cant rise in the current
consumption that lasts for a couple of mains periods. The rise threshold varies through
the datasets and depends on the appliance with the lowest consumption. The individual
appliance textual labels given by the authors were consistently renamed and tagged with
a textual label of the dataset they belong to (Table 8.1.1). With this dataset label, we are
able to divide the appliances in training set and test set for the cross-dataset-validation
(Fig. 8.1.1).

92



8. USE CASE STUDY

Table 8.1.1: Extracted appliance events for each dataset

Appliance UK-DALE BLUED PLAID WHITED
Fan 78 - 108 60
Fridge 15572 294 34 10
Hair Dryer 324 - 153 60
Iron 114 17 - 30
Laptop 490 - 165 20
Microwave 1295 - 139 30
Monitor 1373 27 - 20
Printer 151 75 - 10
TV 590 27 - 20
Vacuum Cleaner 289 - 38 40
Washing Machine 329 - 25 10

The feature extraction was applied on a 500 ms region of interest from a total of 22017
appliance events, resulting in a 22017x212 sized feature space matrix. Our feature set
consists of 36 features with multiple dimensions from related research �elds such as music
information retrieval, speech recognition and general signal processing. The features
are designed to be sampling rate independent. The characteristics of audio and speech
signals show similarities to energy data which motivates the usage of features for audio
and speech processing. While the signal envelope for musical instruments is build of
attack, decay, sustain and release states, electrical appliances always have a start-up,
decay, steady state, and turn o�. The considered features are introduced and discussed in
the work of [25].

With the use of these feature spaces, we applied three classi�cation experiments to
evaluate the particular recognition performance and discuss the individual feature ranking
for each of the three experiments. The considered classi�ers include the k-nearest
neighbor (KNN [85]), the linear discriminant analysis (LDA [85]), the support vector
machines (SVM [85]), and the binary decision tree (BDT [85]). Initial evaluation of the
data suggests that the best results for this setup can be achieved with K = 4 for KNN
with city block distance metric. For the SVM classi�cation, the external LIBSVM library
[77] is used and allows a fast multi-class classi�cation. Due to performance reasons, no
c and gamma parameter selection was considered.
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8.1.1 Cross-Dataset-Validation

We applied a leave-one-dataset-out setup to compare the classi�cation performance for
each dataset (Fig. 8.1.1). The appliances of the considered datasets are classi�ed. The
classi�cation is based on a model trained from all samples of the remaining datasets. In
this case, it is ensured that each appliance is trained from a minimum of two di�erent
appliances from two di�erent datasets. This experiment represents the use case of a
smart meter that is equipped with a factory pre-trained appliance model to recognize
appliances in an unknown environment.

BLUED

PLAID

WHITED

UK-DALE

TRAIN

TRAIN

TRAIN

TEST TRAIN

TRAIN

TRAIN

TEST

TRAIN

TRAIN

TRAIN

TEST

TRAIN

TRAIN

TRAIN

TEST

Result
UK-DALE

Result
BLUED

Result
PLAID

Result
WHITED

Figure 8.1.1: Schematic overview of the cross-dataset validation experiment

8.1.2 Mixed-Dataset Cross-Validation

In this experiment, the samples of all datasets are mixed together and are only distinguish-
able by their labels. We applied a randomized strati�ed 5-fold cross-validation across all
samples, ignoring their dataset origin. The classi�er trains samples from all datasets and
classi�es unknown samples of these datasets. The results are expected to be signi�cantly
better because the model already knows the environmental aspects of the dataset and the
special appliance itself. This experiment represents the use-case of a smart meter that is
equipped with a factory pre-trained appliance model including user trained samples.
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8.1.3 Intra-Dataset Cross-Validation

In this experiment the datasets are independently classi�ed. This means that all samples
of one dataset were given to a randomized strati�ed 5-fold cross validation to retrieve
the classi�cation performance based on samples only for this dataset. Since the samples
in one class are very homogeneous, the classi�er usually shows promising results.
This experiment represents the use case of a smart meter without any factory pre-
trained appliance model and is exclusively user trained on measurements in the current
environment.

8.1.4 Feature evaluation

One important outcome of this work is a suggestion of features that are able to generalize
through all the dataset biased variances. The work�ow of this experiment consists of
a single classi�cation performance for each individual feature with the K-NN classi�er.
The result is a 36 dimensional feature ranking for the cross- mixed-, and intra-dataset
validation.

8.2 Results

Our experiments show that it is a di�cult challenge to recognize appliances that have
not been seen during training of the classi�cation system. The results show that the
dataset-bias has a big impact on the classi�cation performance.

8.2.1 Cross-Dataset-Validation

This experiment is divided into four steps, corresponding to each dataset that its samples
are being classi�ed with a model that is trained from the remaining datasets.
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Figure 8.2.1: Confusion matrices of the cross-dataset validation experiments. The gray-tone intensity
correlates to the percentage appliance distribution. The optimal classi�cation would show a black main
diagonal.
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Table 8.2.1: Cross-dataset classi�cation results

Dataset Metric KNN LDA SVM BDT
F-Score: 0.25 0.22 0.22 0.18

BLUED Precision: 0.38 0.42 0.37 0.23
Recall: 0.36 0.37 0.34 0.22
Accuracy: 0.80 0.72 0.79 0.77
F-Score: 0.56 0.16 0.23 0.19

PLAID Precision: 0.66 0.34 0.42 0.40
Recall: 0.58 0.23 0.25 0.26
Accuracy: 0.91 0.76 0.81 0.80
F-Score: 0.13 0.08 0.15 0.07

UK-DALE Precision: 0.13 0.10 0.14 0.10
Recall: 0.17 0.12 0.16 0.10
Accuracy: 0.93 0.83 0.95 0.85
F-Score: 0.38 0.15 0.28 0.28

WHITED Precision: 0.36 0.15 0.24 0.28
Recall: 0.46 0.25 0.40 0.35
Accuracy: 0.93 0.87 0.90 0.90

The BLUED confusion matrix (Fig. 8.2.1d) shows that the Iron was recognized as a Fridge
for almost all of its events. Those consistent misclassi�cations can be observed several
times in all four confusion plots. We believe that those misclassi�cations are caused by
the sum of all variances in the dataset-bias which leads to shifted class centers in the
feature space. Since the bias for each dataset is not a priori known, the WHITED Iron
will consistently be misclassi�ed as Hairdryer.

We also observe that the isolated samples of WHITED, which have a low inner-class
variance, lead to more consistent misclassi�cations than the UK-DALE dataset. This
behavior seems plausible since high, overlapping class variances lead to a broader set of
misclassi�cation.

Another observation is the high amount of misclassi�cation in favor of the Fridge without
any obvious cause. A test run with using only 10 % of UK-DALE’s Fridge events does not
change this observation signi�cantly.
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A reliable classi�cation is not possible with this setup. Either a much bigger amount of
training samples is necessary or the unknown components of the dataset-bias need to be
removed. This setup would not allow a su�cient classi�cation performance for a smart
meter use case, see Table 8.2.1.

8.2.2 Mixed-Dataset Cross-Validation

Results in this experiment are remarkably better in comparison to the previous experiment.
Since the classi�er knows samples and appliances of each dataset, the dataset-bias is not
playing a role anymore.

Table 8.2.2: Mixed-Dataset Classi�cation Results

Metric KNN LDA SVM BDT
F-Score: 0.87 0.80 0.88 0.85
Precision: 0.88 0.81 0.92 0.85
Recall: 0.86 0.80 0.86 0.85
Accuracy: 0.99 0.99 0.99 0.99
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Figure 8.2.2: Confusion matrix - mixed-dataset cross-validation
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Only the classes Laptop and Fan are often misclassi�ed as Monitor (Fig. 8.2.2). Laptops
and Monitors usually share a similar power consumption and are equipped with a SMPS
that draws very unique characteristics. These characteristics help to recognize an SMPS,
but makes it harder to recognize the actual appliance behind it. Therefore, Laptops are
often recognized as Monitors and some Monitors are recognized as Laptops. Beside some
minor misclassi�cation, the recognition performance is on a relative high level and allows
a su�cient appliance recognition for a smart meter use case, see Table 8.2.2.

8.2.3 Intra-Dataset Cross-Validation

If the classi�er’s task is to recognize appliances inside a homogeneous environment
such as a single dataset, the results are signi�cantly better than in any of the previous
experiments. The classi�er usually knows the individual characteristics of the distinct
appliances from training samples.

The Fan and Laptop of UK-DALE are mostly misclassi�ed as Monitor due to yet unknown
circumstances. This experiment shows that an appliance recognition system is able to
distinguish between a limited amount of appliances, even for a real environment that
includes challenges like noise and concurrently running appliances, see Table 8.2.3.
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Figure 8.2.3: Confusion matrices of the cross-dataset validation
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Table 8.2.3: Intra-Dataset Classi�cation Results

Dataset Metric KNN LDA SVM BDT
F-Score: 0.91 0.96 0.93 0.93

BLUED Precision: 0.93 0.95 0.94 0.93
Recall: 0.91 0.97 0.93 0.93
Accuracy: 0.99 0.99 0.99 0.99
F-Score: 0.97 0.93 0.94 0.92

PLAID Precision: 0.99 0.94 0.97 0.92
Recall: 0.96 0.93 0.92 0.91
Accuracy: 1.00 0.99 0.99 0.99
F-Score: 0.81 0.81 0.83 0.80

UK-DALE Precision: 0.82 0.80 0.90 0.80
Recall: 0.80 0.84 0.80 0.80
Accuracy: 0.99 0.99 0.99 0.99
F-Score: 0.99 0.96 0.94 0.99

WHITED Precision: 0.99 0.96 0.96 0.98
Recall: 0.99 0.97 0.94 0.99
Accuracy: 1.00 0.99 0.99 1.00
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8.2.4 Feature validation

For each of the previous three experiments, we applied a small feature study. The F-Score
of each experiments K-NN classi�cation task was retrieved for every individual feature.
In the Section 8.2.1 and 8.2.3, we also get a result for each feature and each dataset. In
this case, we calculated the mean performances over the four dataset results. Fig. 8.2.4
shows the individual results for each experiment in another color, while the features are
descending sorted, based on their over-all-experiments performance.

The amplitude of the �rst 20 harmonics in ratio to its mains frequency shows the best
overall results. The result is plausible since every appliance has its unique harmonics
energy distribution footprint and the harmonics ratio is less in�uenced by any of the
dataset-related variances. Generally we observe that spectral and waveform based features
perform better in the cross-dataset-validation, while power- and temporal-based metrics
perform also very well for intra-dataset cross-validation. It is fair to say that spectral- and
waveform-based features are less in�uenced by dataset-related variances (dataset-bias)
and should therefore be considered for such use cases.

8.3 Discussion

To retrieve a measurable value for the dataset-bias, the set of appliances must be absolutely
identical in all datasets, so that the only di�erence in the measurements is the dataset-bias.
The e�ect of the dataset-bias would have been zero if the results of the cross-dataset-
validation lies in the same range as the results for the intra-dataset cross-validation, which
is not the case in our experiments. Since each dataset has a di�erent set of appliances
and two datasets have multiple appliances for each appliance type (PLAID, WHITED), a
measurable in�uence of the dataset-bias could not be achieved.

103





9

Conclusions

The potential in reducing residential energy consumption can be considered high, since it
depends highly on human behavior and established understanding of comfort. According
to Kuckartz, Rädiker, and Rheingans-Heintze [89], around 96% of German citizens agree
that the consumer plays a crucial role in saving energy. Supporting consumers with
consumption feedback is one of the main use cases of NILM. Targeting the main drawbacks
of current NILM systems is the purpose of this work.

We introduced a new dataset of a broad range of household and small industry appliance
start-up transients that helps to extract and to evaluate appliance-speci�c features. We
could show that even low-budget hardware allows one to retrieve appliance features with
high discriminative potential.

To �nd appliance start-ups, we proposed a multivariate event detection that learns from
a consumer formed event model. The event model stems from event and non-event
segments of the training set and allows a user relevant event detection. The challenge
to distinguish between relevant and irrelevant events is tackled by multiple runs of the
introduced adaptive training process that allows a reduction of false positives by up to
factor of eight. The multivariate event detection in combination with the introduced way
of adaptive training is an appropriate step towards event detection for the increasing
number of SMPS-driven appliances in residential and o�ce environments.
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To provide an e�cient solution for smart meters that are usually equipped with a limited
processing unit, we performed an appliance recognition and feature evaluation. The
evaluation comprises four di�erent high-frequency datasets to identify the best appliance
features and feature combinations out of 36 implemented signatures from di�erent
research areas. We showed that the phase angle di�erence between voltage and current
has the highest scalar performance across all datasets, while the multi-dimensional
feature Current Over Time shows the most promising results in general. According to
our �ndings, the Wavelet Analysis discriminates best for isolated environments while the
Current Over Time scores best for aggregated environments. Unfortunately, there is no
one-size-�ts-all combination of features. The composition of appliances, their usage, and
the environment determines the combination of features. However, the �ndings show
that the best feature sets always contain information about a spectral energy distribution
(e.g., Wavelet Analysis, Harmonics) and time-related power information (e.g., Current and
Admittance Over Time). Furthermore, the results of the classi�cation performance for
each appliance type shows that almost all appliances are recognized in most cases with
the introduced combination of features.

To gain insights into the performance of modern representation learning approaches
on appliance classi�cation, we conducted an evaluation of several appliance classi-
�cation models for two publicly available real-world energy consumption datasets.
The classi�cation models include conventional domain expert supported hand-crafted
feature extraction, baseline-reference models and promising deep neural network models.
The results of our experiments show comparable performances of classical machine
learning and representation learning with a slight winning margin for the end-to-end
implementation of the convolutional neural network (CNN). Our performance results
support the statement that the representation learning approach is a worthy alternative
to the classical machine learning processing-chain for appliance recognition systems
in NILM. The e�ort for gaining expert-based features on the one side, neural network
architecture and parameter search e�ort on the other side, as well as training data volume,
are most likely the main decision criteria if the recognition system shall be based on a
classical machine learning or representation learning framework.

Appliance recognition is a requirement for power disaggregation and a challenging task
for advanced smart meters. The recognition performance is signi�cantly in�uenced by
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the type of the trained appliance model. We evaluated a cross-dataset, mixed-dataset,
and intra-dataset recognition that represent three possible use cases of a recognition
system in a smart meter. While the classi�cation performance - probably due to dataset-
bias - is quite weak for the �rst case, the mixed and intra-dataset recognition provides
high performance for almost all appliances in laboratory-like and real environments.
The observations additionally show that waveform and spectral features allow the best
results for cross-dataset validation while power and temporal changes lead for intra- and
mixed-dataset validation. The results allow a recommendation of the mixed or internally
trained recognition system for a smart meter that implements a power disaggregation
algorithm.

Future work may target the following aspects, which we see as promising:

More appliance Measurements Crowd sourced measurements with comparable mea-
surement equipment, in more regions, as well as more appliances and types, are necessary
to increase the general appliance models. The recognition of geographical regions based
on characteristics in the voltage signal may be possible, but requires more measurements
in more regions than is currently provided in WHITED.

Wide agreement of event de�nition A systematic evaluation of appliance event
detection demands for a uniform understanding of appliance events and their breakdown
into an event taxonomy. A broadly accepted event taxonomy might be necessary to
distinguish between appliance event types.

Evaluation of NILM process Since most studies focus on speci�c aspects of the NILM
process, it seems worthwhile to evaluate the components that performs best in an end-to-
end implementation. Strategies which perform well independently might perform worse
in the aggregate context of the process.

Think outside the box It is known that the techniques used in NILM can be applied for
other �owing matters including water, gas, and oil. NILM can be used for other research
questions beside energy consumption feedback such as building automation, patient care,
demand response, and predictive maintenance. Techniques from similar research �elds
may contribute to NILM. We see chances of interdisciplinary exchange in these aspects
for future studies.
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Target for Consumer interest The current state of NILM in commercial products can
be seen as unsuccessful or niche products. Many people are concerned about the potential
of smart meters to reduce energy consumption. The main reasons are privacy, a lack
of personal advantage, as well as plain disinterest amongst consumers. Keeping NILM
alive as a technique for energy consumption feedback would need to arouse interest in
reducing energy consumption with novel strategies such as gami�cation.

IoT vs. NILM Internet of things is being discussed as an attractive ILM alternative to
NILM. We believe that combined solutions may provide higher usefulness than strictly
following one paradigm.
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Glossary

AC Alternating Current

ADC Analog Digital Converter

AE Autoencoder

BDT Binary Decision Tree

BLOND Building-Level O�ce eNvironment Dataset

BLUED Building-Level fUlly-labeled dataset for Electricity Disaggregation

CAE Conventional Autoencoder

CFL Compact Fluorescent Light

CLEAR Circuit-Level Energy Appliance Radar

CNN Conventional Neural Network

COOLL Controlled ON / OFF Loads Library

CUSUM Cumulative Sum

DSP Digital Signal Processing

FN False Negatives

FP False Positives

GOF Goodnes Of Fit
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Glossary

HF High Frequency

HFED High Frequency EMI Data Set

ILM Intrusive Load Monitoring

KNN K-Nearest Neighbour

LDA Linear Discriminant Analysis

LILACD Laboratory-measured Industrial Load of Appliance Characteristics

MEDAL Mobile Energy Data Acquisition Laboratory

NILM Non-Intrusive Load Monitoring

NILMTK NILM Tool Kit

PCA Principal Component Analysis

PLAID Plug Load Appliance Identi�cation Dataset

PR Precision

RE Recall

REDD Reference Energy Disaggregation Data Set

RMS Root Means Square

ROI Region Of Interest

SCP Switch Continuity Principal

SMPS Switchin-Mode Power Supply

SNR Signal Noise Ratio

SVM Support Vector Machines

THD Total Harmonic Distortion

TN True Negatives
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Glossary

TP True Positives

UK-DALE UK Domestic Appliance-Level Electricity dataset

WHITED Worldwide Household and Industry Transient Energy Dataset
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