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ABSTRACT
Connected vehicles are becoming commonplace. A constant connec-
tion between vehicles and a central server enables new features and
services. This added connectivity raises the likelihood of exposure
to attackers and risks unauthorized access.

A possible countermeasure to this issue are intrusion detection
systems (IDS), which aim at detecting these intrusions during or
after their occurrence. The problem with IDS is the large variety of
possible approaches with no sensible option for comparing them.

Our contribution to this problem comprises the conceptualiza-
tion and implementation of a testbed for an automotive real-world
scenario. That amounts to a server-side IDS detecting intrusions
into vehicles remotely. To verify the validity of our approach, we
evaluate the testbed frommultiple perspectives, including its fitness
for purpose and the quality of the data it generates.

Our evaluation shows that the testbed makes the effective assess-
ment of various IDS possible. It solves multiple problems of existing
approaches, including class imbalance. Additionally, it enables re-
producibility and generating data of varying detection difficulties.
This allows for comprehensive evaluation of real-time, remote IDS.
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1 INTRODUCTION
In 2015, 35 % of new cars sold were already connected to the Inter-
net [1]. Accenture estimates that by 2020 that number will rise to
98 %, reaching 100 % in 2025 [1]. Manufacturers push for higher
connectivity, as it offers advantages such as the ability to provide
automated software updates which do not require customers to
visit a repair shop for software updates [4]. Additionally, new fea-
tures enabled by Internet connections are used as selling points.
For example, vehicles may be monitored and controlled with a
smartphone [4]. Finally, vehicle-to-vehicle communication allows
for advanced autonomous features such as cooperative collision
warnings [31]. However, this connectivity also raises the likelihood
of exposing vulnerabilities, which increases the risk of attacks [23].
Checkoway et al. argue that the vehicle remote telematic systems
providing a constant connection over cellular networks are one of
the most important parts of the wireless attack surface [8].

For passenger cars, traditional defense measures may not always
be feasible. The vehicles are expected to subsist for long periods
of time, with the average age of cars in the United States rising
from 10.6 years in 2010 to 11.6 years in 2016 [17]. It is reasonable to
expect that it will rise even further in the future. Zhang et al. argue
that this long lifespan makes it hard for manufacturers to predict
the necessary hardware for on-board protection [32]. Because of
strict limits in production budgets, manufacturers are likely to
minimize the cost for each vehicle and only include the minimum
required security hardware. Therefore, off-board protection seems
promising to provide sufficient security over the whole lifespan
of the vehicle [16]. An important challenge with this approach is
balancing on-board processing load and the communication of the
vehicle to the manufacturer server [32]. Ideally, the existing vehicle
communication is utilized for this purpose, as it would neither
require additional processing nor communication.

1.1 Definition
We define intrusions as deviations from the expected behavior of a
system without the manufacturer’s knowledge. On the one hand,
this comprises malware, unauthorized access and anomalies, in-
cluding software bugs, that mostly occur without the user’s knowl-
edge. On the other hand, our definition encompasses misuse and
fraud that can take place with or without the user’s knowledge.
An example of intentional fraud by users are off-limits modifica-
tions intended to activate features that would otherwise be paid
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upgrades. Different types of intrusions are often difficult or impos-
sible to differentiate from each other and do not always correspond
to illegitimate actions. Our definition follows the NIST [28].

1.2 Motivation and Requirements
To defend against intrusions, one can employ intrusion detection
systems (IDSs). They can be used as a second line of defense af-
ter preventive protection mechanisms such as software integrity
verification [22]. IDSs are built to detect intrusions that have al-
ready taken place, aiming to mitigate their consequences. For this
purpose, they monitor events for possible violations of some de-
fined policy or expected behavior [28]. A considerable advantage
of IDSs in the scenario of connected vehicles is that they can be
employed non-invasively. That means that a complete off-board
protection mechanism can be implemented with their help, solving
the problems that we discussed before. Additionally, IDSs may be
combined with a manual review of potential intrusions. The system
can preselect probable threats and bring them to the attention of
security personnel, so that they can defend customers’ vehicles
more effectively against threats.

We want to be able to evaluate real-time, remote IDSs for our
scenario. This requires a testing environment that supports this
real-time detection and emulates our remote scenario. It should
simulate a complex system with interacting units that influence
each other. Within clients, multiple components and sensors inter-
act and depend on each other for their computations. Additionally,
the clients’ communication with the server can, to a certain extent,
be unpredictable in content and sequence. It depends on implemen-
tation, connection speed, server priority and system performance.
Accordingly, we require an artificial testing environment, a so-
called testbed, that is based on sophisticated real-time simulations
of clients from our use case. This is necessary in order to sufficiently
emulate the real-world use case. Finally, we require test scenarios
that subject IDSs to various detection difficulty levels.

The testbed we envision can also be used to generate historical
data for off-line detection. Additionally, naïve data generation can
be emulated by simplifying the components and simulations. Ac-
cordingly, a complete testbed can be built to fulfill our requirements
while also enabling simpler scenarios.

2 RELATEDWORK
There exist a multitude of testbeds for IDSs in various environments.
Most of these focus on different environments and use cases. An
important research focus lies in testbeds for network IDSs, or NIDSs.
These systems detect intrusions on different layers of Internet traffic,
often focusing on the application layer. A well known example
of this is LARIAT [27], which is based on the DARPA intrusion
detection evaluations. It creates live traffic for protocols such as
FTP and SSH and employs the NIDS as a separate node in the
network that can intercept all traffic [27]. Shiravi et al. describe a
more static approach, generating up-to-date datasets for multiple
application protocols, including HTTP and SSH [29]. These datasets
can then be used for off-line detection. Contrary to our focus, these
systems aim for intrusion detection in Internet traffic. The general-
purpose solutions these authors describe are too unspecific for our
use case, requiring heavy adjustments or complete reworks to fit

to that scenario. Our focus lies in a more specialized solution that
better covers the specifics of our case.

Similarly, simulators such as ns-3 [14] are focused on discrete-
event networks. They can be utilized when designing network
protocols and interactions. This aspect can be interesting in the
long run, but it does not solve the necessity of simulating the actual
system behavior.

In the automotive environment, there is very limited research
available. Daily et al. discuss a testbed for heavy vehicle electronic
controls [9]. Their solution is focused on simulating sensor inputs,
creating traffic for the in-vehicle network specific to commercial
vehicles. Huang et al. describe a tool that generates attack traffic
for the CAN bus inside vehicles without making use of simulated
hardware [15]. Finally, the HCRL car-hacking dataset for intrusion
detection [13] consists of real-world CAN traces that have been
injected with attack traffic by the authors. These approaches are dis-
tinct from our scenario, as we are focused on server-side detection
of intrusions into passenger vehicles.

To the best of our knowledge, there exists no work on the topic
of real-time remote intrusion detection for connected vehicles.

3 THE TESTBED
Our objective is to enable the comparison of various types of IDSs
for the connected vehicle use case provided by our industry partner.
To allow for flexible use and adaptation for different contexts, we
require an artificial testing environment that fits this use case.

3.1 Use case
Our use case is based on a client-server architecture as used by
our industry partner in the automotive industry. Multiple vehicles
communicate with a central, manufacturer-controlled server, con-
sisting of functional components and a logging component. Vehicle
requests are handled and then forwarded to the logging component
that stores information about the request in a log store (see Fig-
ure 1). This data is used by the IDS. In the figure, arrows represent
communication and components are dashed.

Figure 1: A model of our use case.

The server is our frame of reference, and we abstract the vehicles
from an outside perspective as data providers that send requests
to the server. Following similar designs by [11, 26, 32], we assume
that normal and compromised vehicles can be differentiated based
on their communication with the server. Much like the vehicles,
we view the server functionality as a black box. It receives request
data, processes it and sends data based on those requests to the
logging component.
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This component records the data that is available for intrusion
detection. In our industry partner’s implementation, it is server-
and implementation-centric. Hence, the information stored consists
of details only known to the server and its specific implementation.

3.2 Concept
For comprehensive evaluation of IDSs for the real-world use case
described above, we design a testbed. It is aimed at modeling that
use case as closely as possible. Hence, it is simulating a client-server
architecture with individual clients, corresponding to the vehicles,
made up of a unique layout of different components. Each client
makes use of inter-component communication and sends requests
to the server. The server stub consists of a simulated logging compo-
nent that generates the log data used for intrusion detection based
on incoming requests from the clients. Additionally, an IDS can be
added to the server for live detection. As we focus on intrusions in
clients, the server functionality is omitted from our testbed.

3.2.1 Clients. As described before, each client consists of multiple
components. These produce and consume data and are linked to a
central communication unit that sends requests to the server. There
are two types of components we can derive from real-world clients.
Simple components generate various types of data periodically, i. e.
temperature sensors. This data is then used as a basis for requests
to the server. In our model, we represent each such component with
a random number generator based on a probability distribution,
such as the normal distribution. Periodically, it generates new data
and sends that to the central communication unit. We refer to this
component type as “Data generator”. More complex components
in our scenario use information about the state of the client, like
its position, sensor data or information about its surroundings, to
allow the central communication unit to make more sophisticated
requests to the server. One such example may be a request about
the nearest point of interest (POI) based on the current position.
Our solution to modeling such a component is what we refer to
as “2D simulator”. It consists of a simulated two-dimensional en-
vironment in which an independent unit representing the client
can move around. This environment can have any defined size and
different background colors. The colors represent the interpretation
of certain positions by the unit moving around in the environment.
A movement generator creates random movement commands for
the unit. Periodically, the unit publishes information about its en-
vironment and position. This data is used both by the movement
generator to adapt its movement commands to the environment
as well as by the central communication unit to send requests to
the server. Finally, a central communication unit is responsible for
collecting all generated data. It does only basic data transformations
and then sends the result as a request to the server.

3.2.2 Intrusions. We define intrusions as deviations from the ex-
pected behavior of a system without the manufacturer’s knowledge.
That includes unauthorized access or fraud, but also software bugs
(see Section 1.1). In our testbed, we conceptualize intrusions as
modifications to individual components that lead to differences
in their communication. That can mean erroneous values being
generated by data generator components, or intentional bugs in

the color readings of the 2D simulator. These intrusions can be
combined in various ways to form intrusion scenarios.

3.2.3 Server. The server we model consists of functional compo-
nents and is being called by clients. Each of the requests is stored in
a log for later inspection. As the server functionality is not part of
our work, it is omitted. That means the testbed server consists only
of the logging component. It adds some information such as the
current time and an identifier to the request data, transforms it to
fit our expected format and stores the result in a log. The server can
run in store mode, meaning it stores all data that has been processed
by the logging component on disk. Additionally or exclusively, it
can run in detection mode, feeding an IDS every incoming request
directly, after it has been processed, for real-time detection.

3.3 Implementation
To allow for the dynamic set-up of various combinations and config-
urations of clients, we use the “Robot Operating System” (ROS) [25].
This makes defining a new set-up easy and allows for switching
configurations at will. Furthermore, while ROS is already used as
a basis for automated driving functionality (e. g., [2]). Each client
should have an individual identifier, behavior and layout, which
refers to the components it contains (see Section 3.2.1). We use a
special XML file, a so-called ROS launch file, to define the layout of
our clients. Each of its components is an individual Python program.
This means we can define different layouts of components, their
behavior can be individually chosen through arguments, and the
clients get a unique identifier.

3.3.1 Clients. The clients consist of multiple components, imple-
mented as separate programs.

The data generators representing simple components are based
on NumPy [18] random number generators. We use ten generators
based on continuous probability distributions from that library.

The 2D simulator representing complex components is based on
the ROS turtlesim [12]. We reimplemented it without a graphical
user interface. Random movement commands are sent to the simu-
lated unit. That moves according to the commands and publishes its
position, speed and the current color reading. The colors represent
the interpretation of certain positions by the unit moving around
in the environment. Additionally, requests are regularly sent based
on the position of the unit. They are inspired by the real-world use
case of our industry partner and resemble some of the requests that
clients in their scenario make. There are three request types cur-
rently implemented. A “Country code” request is a simple inquiry
for the associated country code for the current position of the unit:
(x,y). Similarly, a “Point of interest” (POI) request is an inquiry for
a specific POI type at the current position and also contains the re-
quested POI type: (x,y, t). Finally, a “Route” request is an inquiry for
routing to a specified target position: (x,y, xt ,yt ) : xt , x ∧yt , y
with (xt ,yt ) being the target position. Finally, the unit has basic
movement intelligence. Certain zones can be marked as “illegal”
and the unit will try to avoid those.

3.3.2 Intrusions. The reason why we simulate this environment
is that we intend to evaluate a real-time remote IDS. We try to
model intrusions for this purpose. Intrusions into components can
have varying difficulty levels. The rationale for these is that we
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aim for increasing the identifiability and with it the information
entropy of the generated data compared to the expected data for
easier detection difficulty levels. With this, we aim for adjusting
the difficulty of detecting a compromised client.

For data generators, we currently model two types of intrusions
in our system. The first is the off-value generation. Given the distri-
bution interval R := [rmin, rmax ] containing 99.8 % of samples of
the underlying distribution function, the meanm of the distribution,
and its spans slef t :=m − rmin, sr iдht := rmax −m. Further given
a factor f that we define. Instead of the normal valuev ∈ R, a value
vc is broadcast: vc ∈ {m − slef t · f ,m + sr iдht · f } Depending
on the detection difficulty level, the factor f differs. For level easy,
medium, and hard, it is 5, 1.5, and 1.001, respectively. The smaller
this factor, the higher the probability that the value could have been
generated by the distribution function.

The second intrusion type, the significant error generation, is
based on a generated value from the underlying number generator.
Given m, slef t , sr iдht ,v, f (see above), an erroneous value ve is
broadcast. For v ≥ m, ve = m + sr iдht · f + v

2, otherwise ve =
m − (slef t · f +v

2).
The 2D simulator allows for multiple types of intrusions. Firstly,

the environment background has different colors. This can be
changed to represent erroneous readings. An area of the simu-
lated environment is selected and colored in a different color. The
unit can pass over this area just as it normally would. In both situa-
tions the unit sends information about its position and the color
it detects. Because the environment is modified, the color it reads
differs, representing an intrusion. Depending on the detection dif-
ficulty level, this area can be increased in size and its color can
be modified (see Table 1). For different difficulty levels, we aim
for varying the detectability of the erroneous color compared to
the legal colors. Hence, we need a similarity measure to derive a
similarity relationship between different colors

We define our colors in code as RGB (red, green, blue) with
r ,д,b ∈ [0, 255]. The background has four different legal color
options. We chose purple (150, 140, 200), yellow (170, 250, 140),
green (120, 180, 130) and blue (120, 180, 200). We can imagine the
colors as points in a three-dimensional space and calculate the
distance between two points p and q using the Euclidean distance:
d(p,q) =

√
(pr − qr )2 + (pд − qд)2 + (pb − qb )

2

For our following calculations, we scale the values of the color di-
mensions down to rs ,дs ,bs ∈ [0, 1]. With the distance formula, we
can derive theminimum andmaximum distance of two points in our
space: d ∈ [0,

√
3]. The goal when choosing our legal colors was to

have moderately similar colors that can still be differentiated from
each other. We define that as having a distance of d ∈ [0.15, 0.5].
This holds true for our four legal colors. Their distances all lie be-
tween dmin ≈ 0.196 and dmax ≈ 0.498. We also calculate their
average distance and arrive at davд ≈ 0.256. We aim for increasing
the distance of the erroneous color to all legal colors for easier
detection difficulty levels compared to the average distance davд .
Simultaneously, it should never fall below the maximum distance
dmax to ensure that the values are anomalous. With this require-
ment, we have defined a color for each difficulty level (see Table 1).

Secondly, the unit employs basic movement intelligence. It reacts
to its surroundings and can alter its movement based on it. Certain

Table 1: Erroneous color and its average distance to all legal
colors, as well as size of erroneous area, per level.

Difficulty level Easy Medium Hard

Err. color (RGB) 255, 0, 0 200, 50, 50 170, 80, 80
Color distance 1.103 0.774 0.590

Area size 40 % 20 % 5 %

zones can be marked as “illegal” and the unit will try to avoid those.
This reaction can be modified: Then, the unit stays in the illegal
and continuously sends its color. The detection difficulty levels for
the simulated environment apply here as well. The erroneous color
marks the illegal zone, and, depending on the difficulty level, its
color is closer to or further from the legal colors.

Lastly, we have defined possible intrusions for the three types of
requests that are sent based on the position of the unit (see Table 2).

Table 2: Intrusions for positional requests.

Request Request sent (Normal, Compromised)

C. code N: x,y : current position
C: xc ,yc : nx ,ny ≥ 10∧xc = x±nx ∧yc = y±ny

POI N: t ∈ T : One of the legal types in T
C: tc < T

Route N: xt ,yt : xt , x∧yt , y∧x,y : current position
C: xtc ,ytc : xtc = x ∧ ytc = y

These types of intrusions may be detectable with domain know-
ledge-based rules. Because of their nature, we have implemented
a different type of detection difficulty levels for these requests.
Depending on the level, a compromised unit sends one of these
compromised requests with varying probability. For levels easy,
medium, and hard this probability is 40 %, 20 %, and 5 %, respectively,
making such a unit easier or harder to detect.

4 EVALUATION
We intend to assess different aspects of our testbed to show that it
fulfills its purpose, formulated as research questions (RQ).

4.1 RQ 1: Do we solve the problems of existing
datasets?

In our research of IDSs, we identified three problems in the datasets
used for evaluation.

Too few entries. Many IDS techniques require a significant amount
of data for sufficient evaluation which can be difficult to obtain [5,
20]. Our testbed can arbitrarily generate new entries, meaning the
appropriate number of entries can be generated as needed.

Class imbalance. Training data showing class imbalance is an
important problem if it is used for machine learning systems, as it
leads to worse classifier performance [7]. We can tune the testbed,
but we cannot precisely predict the resulting class imbalance in the
data, so we have to evaluate it in the following.

Redundancy. Data redundancy leads to a bias in machine-learn-
ing systems [21, 30]. Mitigating this by deleting the redundant
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Table 3: Average precision and recall of a OneClassSVM classifier on three different datasets of the respective data categories.

Level Measure Laplace Wald Color POI Route Country Code

Easy Precision (%) 92.29 95.1 45.4 72.80 74.42 59.25
Recall (%) 100.0 100.0 8.26 100.0 100.0 14.18

Hard Precision (%) 91.98 87.93 1.99 74.0 73.66 73.64
Recall (%) 100.0 44.69 0.19 100.0 100.0 30.12

Difference Precision (pt .) −0.31 −7.17 −43.41 +1.2 −0.76 +14.39
Recall (pt .) ±0 −55.31 −8.07 ±0 ±0 +15.94

records leads to fewer entries in the dataset, an issue in itself. The
redundancy in our generated data can also not be predicted for
every scenario, so we evaluate it in the following.

From these problems, we can derive quality metrics. As we con-
sider the problem of too few entries solved with the testbed, we
evaluate the class imbalance and redundancy of the generated data.

As a quality measure for the class balance of a dataset we use
the dispersion index, defined as variance

mean . This measure is 0 for an
exactly balanced dataset. To measure redundancy, we count the
duplicates in our datasets as follows: Consider a log line li in line i
of a log file. We define this log line as a duplicate if the following
holds: i > 1∧∃ li−1 where the unit’s identifier, its position, the data
sent and the label in li and li−1 are identical, then li is a duplicate.

Experimental set-up. We generated a dataset containing 10 mil-
lion data points and analyzed it. The dataset contains data points
for 14 data categories with approximately 715,000 data points each.
We consider each kind of data generated by a component of the
testbed as a separate data category, allowing for more precise evalu-
ation. That means we calculate the measures for each data category
separately. For a more detailed explanation of these categories, see
Section 3.3. Regarding the aspect of class imbalance, we consider
two classes, the normal and the intrusion class. For each data cate-
gory, we calculate the relative class imbalance. We consider relative
deviations of less than 1 % (7,150 data points) as ideal, and of less
than 5 % (35,750 data points) as good. That corresponds to a disper-
sion index of 18 or less for ideal, and of 450 or less for good results.
Regarding duplicates in the data, we consider 0 % to be ideal and
anything less than 1 % to be good.

Results. We split up the results based on the underlying compo-
nent. All data generators behave identically regarding intrusions,
so their results are grouped as Generators. The same is true for posi-
tional requests, grouped as Positional. The results for color requests
are listed separately (see Table 4). All data categories succeed in
meeting our strict duplicate targets. The class balance is not perfect,
but for color requests we observe good and for positional requests
ideal results. The Generators show an acceptable dispersion index
below our threshold of 450.

Table 4: The results for different categories of data, grouped.

Measure Generators Positional Color

Number of elements 7,021,192 2,160,908 817,900
Class dispersion index 250.8 7.8 32.1
Duplicates 0 % 0.016 % 0.009 %

4.2 RQ 2: Can we show the effect of varying
detection difficulty levels?

We implemented detection difficulty levels aiming at subjecting
IDSs to different difficulty levels. Data generatedwith difficulty level
hard is supposed to lead to reduced detection accuracy compared
to easy, as the intruded samples for hard lie much closer to the
normal data. To evaluate this, we created an IDS prototype based on
machine learning. For this research question, we need to introduce
some additional prerequisites.

Handling heterogeneous data. As we have described before, the
generated data varies between different routines in the logging
component. Each of these routines represents some server func-
tionality, and in our real-world use case these require or produce
different data. We want to use the variability in the data generated
by the testbed to show distinct effects. Hence, we score systems
individually for each type of data in our experiments.

Libraries used. We make use of Python and machine learning,
with our library of choice being scikit-learn [24]. Apart from classi-
fication, we utilize included pre-processing and metrics modules.
From this library, we employ the OneClassSVM classifier, which is
based on the libsvm [6] library for computations.

Definition of positives. We regard those data points as positives
that are intrusions. This interpretation is common in intrusion
detection research (see e.g. [19]).

As our IDS prototype does not consider client-specific profiles,
we do not expect the detection difficulty levels for categorical data
in the form of positional requests to lead to any differences. Con-
trary to that, difficulty levels implemented for the data generators
and color values focus more on anomaly-based detection. They
are expected to have an effect on the outlier detection algorithm
that we apply here. If we find the difference of precision or recall
between the difficulty levels to be over a certain threshold, we as-
sume changing the level leads to significant differences in detection
accuracy. Our threshold for this is 5 percentage points.

Experimental set-up. We generated 1 million data points for de-
tection difficulty levels easy and hard respectively, and sampled
three sets of 100,000 data points for both levels. OneClassSVM clas-
sifiers with default parameters were trained for each level, data
category and sample in a total of 84 rounds.

Results. After three iterations with three different datasets, we
arrived at an average precision and recall percentage of the classi-
fiers for each data category and both difficulty levels (see Table 3).
As expected, precision and recall do not change significantly for
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the positional requests POI and Route. We cannot explain the differ-
ence observed for Country code data. For the data generators Pareto,
Rayleigh, Uniform, Wald, and Weibull we find a successful increase
in difficulty, shown exemplary in theWald column in Table 3. For
Gaussian, Gumbel, Laplace, Logistic and von Mises data, we find
no significant difference in precision and recall between detection
difficulty levels. These results are shown exemplarily in the Laplace
column of Table 3. The other data generator categories are omitted
from the table for brevity. Finally, Color data shows a visible effect
of increasing the difficulty level.

In conclusion, additional and more specific experiments are nec-
essary to judge the quality of individual difficulty levels for different
data categories. The currently implemented broad intrusions seem
to have different effects for different data categories, showing the
intended effect for most, but not all types of requests.

4.3 RQ 3: Can we reproduce data of similar
distribution?

Data generated by a testbed is often not considered static but needs
to be reproduced multiple times. For comparable behavior over
multiple runs of the same set-up, it is essential that the generated
data is similarly distributed.

For our data generators, we consider this to be the case. The
underlying number generators produce data based on a statistical
distribution, resulting in equally distributed data over multiple
runs. Exemplary, we show this for our normal distribution-based
generator. The more complex component is the 2D simulator. For
each of the request types, we want to assess if the distribution of
their possible forms stays similar over multiple runs.

For evaluation, we generate three datasets. To minimize the
influence of sampling errors on the result, each set is generated
with 250,000 data points. We consider the first set the baseline,
and the following sets are compared to it. We give the coefficient
of determination R2 for both sets compared to the baseline. If the
baseline distribution is perfectly reproduced by the following set,
this measure is 1. We use the R2 as it is commonly used to show
how well data points correspond to a given baseline.

Data generators. First, we want to show the relative distribution
of data generated by a normal distribution generator, exemplary for
our data generators. We split the data up in bins of size 0.1. Then,
we calculated the relative frequency of data points in each bin and
compared the sets. For data points of the normal class, the R2 value
of Set 2 compared to the baseline set is approximately 0.9995, for Set
3 it is approximately 0.9996. For the intrusion class, the R2 value of
Set 2 compared to the baseline set is approximately 0.9998, for Set 3
it is approximately 0.9997. As expected, this component generates
sufficiently reproducible data with almost ideal R2 values.

2D simulator positions. Next, we evaluate the relative frequency
of the simulated unit being located at various positions of the sim-
ulation. This is tricky to visualize, as we have a significant number
of points to compare. We approach this problem with heat maps.
For easier visualization, we divide the coordinate space into bins of
20× 20 pixels in size. The relative frequency of each bin is signified
by the shade of the cell that represents it (see Figure 2). For higher
frequencies, the box shifts to a darker shade. The highest frequency
is visualized in black. The heat maps all show a similar pattern.

Most noticeable is the dark cell in the top left corner. The simulated
unit seems to disproportionally often remain in that area. Along the
edges and around the center we see more areas of higher relative
frequency, all of which are mirrored in the other sets. This intuition
is confirmed when calculating the R2 value. For Set 2 compared to
the baseline set it is approximately 0.9965, for Set 3 it is 0.9962.

Baseline set Set 2 Set 3

Figure 2: Relative freq. of a coordinate bin in the simulation.

2D simulator requests. Finally, we consider the requests made by
the 2D simulator component, which consist of categorical data. We
will discuss our evaluation in detail for point of interest (POI) pairs
and list only the results for the remaining data categories.

POI pairs consist of a POI type and a POI result. Clients request
a POI of a specific type for their location. The server retrieves the
POI result and stores the requested type and the result as a log
entry. There are two legal POI types with three possible results
each, and two illegal types that both map to the same result, namely
“Invalid”. Each allowed combination of a POI type and result is one
possible form of a POI request. In Figure 3 we compare the relative
frequency of possible forms of POI pairs in the three sets. We see
almost identical distributions for different sets. This is confirmed
by the R2 value. Comparing Set 2 to the baseline set the R2 is
approximately 0.9995, for Set 3 it is approximately 0.9998.
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Figure 3: Relative frequency of POI pairs.

We find similar results for the other request types. For “Color”
requests, the R2 value of Set 2 compared to the baseline set is
approximately 0.9999, for Set 3 it is approximately 0.9997. The
categories “Country code” and “Route” have an almost ideal R2
value of approximately 0.9999 for both Set 2 and Set 3 compared to
the baseline set.

Conclusion. When generating data multiple times, the resulting
distributions of values are ideally the same or very similar. This
objective is fulfilled for all testbed components, including the more
complex movement patterns of the 2D simulator.
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4.4 RQ 4: Can we evaluate various types of IDS?
There are various, heterogeneous IDS approaches. Existing eval-
uation options are often limited to specific types of systems. For
example, authors utilizing anomaly-based detection can use general-
purpose datasets such as the Iris flower set [10] for evaluation. For
signature-based systems, such datasets offer no sensible evaluation
option as they are missing intrusions that could be detected. We
want to show that our testbed theoretically allows the evaluation
of various types of IDSs.

Anomaly-based detection. IDSs utilizing anomaly-based detec-
tion require data with some form of anomalous behavior that they
can detect. This use case is covered by our data generators. They
are based on probability distributions, which allow us to define
normal behavior as that which is most likely to happen based on
the underlying distribution. Accordingly, we introduced intrusions
that aim at being discernible from normal data (see Section 3.3.2).

Signature-based detection. To evaluate signature-based detection
systems, our data requires well-defined signatures that can be coded
into these systems. Our 2D simulator component aims at providing
these. The data it generates is used to create requests aimed at emu-
lating domain knowledge-based patterns. Similarly, we introduced
intrusions that are based on breaking some defined rule. Currently,
they are built to also be detectable by anomaly-based systems.

Advanced detection systems. Advanced systems such as Artificial
Neural Networks (ANN) or model-based reasoning approaches are
currently impossible to evaluate with our testbed. We have not
defined long-term behavioral patterns or specific user profiles that
would allow for that. These systems may best be evaluated with
real-world data.

Conclusion. We consider the testbed to be sufficient for evalu-
ating anomaly-based as well as signature-based systems on a the-
oretical basis. Due to the automatic labeling of testbed data, the
detection accuracy can be measured effectively. For more advanced
detection systems, our testbed does not offer adequate options for
evaluation.

4.5 RQ 5: How well does the testbed scale?
We are interested in the scalability of our testbed regarding the
system load when increasing the number of simulated components.
Ideally, it scales almost linearly, as this allows running arbitrarily
complex simulations if necessary. We regard the metrics Start-up
time, CPU load, and Main memory usage. We perform a regression
analysis to approximate the time complexity based on our measure-
ments. For each analysis, we give the mean squared error MSE and
coefficient of determination R2 to assess the quality of the estimation
compared to the measurements. For better estimations, the MSE
lowers towards 0 and the R2 increases towards 1.

For our experiments, we used a machine with a 12-core 2.5 GHz
QEMU [3] virtual CPU and 32 GB of main memory. Because we
could only measure reliably for component counts of up to 500,
we do not generalize further. For component counts larger than
500, we would need more measurements to be able to sufficiently
predict the limiting behavior.

The measurements are split up in cycles and rounds. Each cycle
is identified by the number of components that are started. Each
round represents one measurement. We measured repeatedly and

took the average for our results. For the start-up time, the maximum
standard deviation of all measurements was 0.26 seconds, or 1.3 %,
with an average value of 0.07 seconds. For the CPU load measure-
ments, we calculated a maximum standard deviation of 0.18 points,
or 1.2 %, with an average value of 0.4 points. The maximum for
the main memory measurements was 0.59 percentage points, or
1.58 %, with an average value of 0.08 points. Hence, we consider
the measurements to be sufficiently reproducible.

Results. Themeasurements for start-up time, CPU load, as well as
main memory usage grow linearly, so we estimate them with linear
regression. We will describe our approach in detail for the main
memory usage, and only list the results for the othermeasures. After
multiple iterations with subsets of our measurements, we obtain for
themainmemory usage :дm (n) ≈ 0.1491n+0.447withMSE < 1.262
and R2 > 0.997 for the complete set of measurements (see Figure 4).
In the figure, the dots are the mean, with the bars above and below
indicating the maximum and minimum measurement.
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Figure 4: Main memory usage and approximation дm (n).

From our approximation, we can derive the limiting behavior:
fm (n) = O(0.1491n + 0.447) = O(n),n → 500. Accordingly for
the start-up time, we obtain: дs (n) ≈ 0.0476n + 1.141 with MSE <
0.143 and R2 > 0.998. We conclude: fs (n) = O(0.0476n + 1.141) =
O(n),n → 500. We assume that the constant 1.141 represents the
cold-start time. For the CPU load, we obtain: дc (n) ≈ 0.0127n +
9.756 with MSE < 0.031 and R2 > 0.988. We conclude: fc (n) =
O(0.0127n + 9.756) = O(n),n → 500.

Conclusion. We can show for all our measures that a linear ap-
proximation can sufficiently explain our measurements. We derive a
limiting behavior of O(n) for component counts of up to 500, mean-
ing our testbed scales linearly. For a valid estimation for higher n,
we would need additional measurements.

5 LIMITATIONS
Our testbed concept and implementation were created from the
ground up. To be able to simulate our use case, we had to simplify
it and create exemplary implementations based on a more basic
concept of the use case. This abstraction means that the system by
itself is not representative for the real world. To reduce this risk, we
closely modeled the scenario after the real-world use case, with the
testbed generating data that resembles the actual data found in the
system employed today. Using synthetic data is delicate and not the
perfect solution. It is a necessary compromise though, as real-world
data cannot be accessed in relevant quantities. Other authors have
made this compromise for the same reason [15]. When using data
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from the testbed it is important to keep those risks in mind. Finally,
the IDS we used for evaluation is only a simplified machine learning
based implementation. This does not pose a threat to the validity of
our results, as we only measured differences in detection difficulty,
not absolute ease of detection.

6 CONCLUSION AND FUTUREWORK
More and more vehicles are connected, exposing them to the risk
of attacks. IDSs can be employed as a countermeasure. To be able
to evaluate different IDSs, we conceptualized and implemented a
testbed. It enables the comparison of various IDSs in a real-world
scenario. The testbed is adapted to our automotive use case but can
be quickly adjusted to numerous other scenarios.

In the evaluation, we find that the testbed fulfills its objectives.
Its architecture and modularity allow for various configurations
and the evaluation of real-time, remote IDSs. To assess the fitness
for purpose of the testbed, we evaluate multiple quality metrics
derived from related works. We find that limitations of existing
datasets used in research are solved by our implementation. When
generating data repeatedly, the testbed exhibits high performance
and reliable behavior. This allows the reproduction of equally dis-
tributed data, which is beneficial for repeated evaluation and cross-
validation. Additionally, we find that the testbed can be used to
evaluate the various types of IDSs we have identified in literature.
We also assess the quality of the data generated by the testbed. The
detection difficulty levels we have introduced lead to measurable
differences in detection accuracy, allowing for varied evaluation of
IDSs. This confirms that IDSs are challenged when trying to detect
intrusions in the data generated by our testbed. To conclude our
evaluation, we evaluate the performance of the testbed. We find
that with additional components the testbed scales linearly. This
allows for complex simulations to be carried out. We have discussed
some limitations to our solution above. This mainly regards the
number of different components and the generated data.

Our testbed is a first step towards a comprehensive solution for
comparing IDSs. More advanced behavior patterns can be imple-
mented, including multiple units interacting in the 2D simulator
component within a shared environment. Additionally, more subtle
intrusions may be implemented based on domain knowledge. Still,
the current state of the testbed is sufficient to evaluate most types
of IDSs employed today while offering multiple improvements over
existing solutions.

In conclusion, our testbed allows the flexible and reliable evalua-
tion of IDSs of various types and in multiple scenarios. Common
problems of existing evaluation approaches are solved, which al-
lows a more up-to-date and effective comparison of different IDSs.
Because of the reproducibility of the generated data, the same IDS
can be tested multiple times to ensure consistent performance. Ad-
ditionally, the generation of arbitrary amounts of new test data
allows for effective cross-validation. Finally, other researchers can
create custom evaluation scenarios with the testbed, without hav-
ing to rely on outdated or fixed datasets. The source code of our
testbed is available for inspection, modification and use1.

1https://github.com/tum-i22/rritbed
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