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Abstract: Building footprint information is vital for 3D building modeling. Traditionally, in remote
sensing, building footprints are extracted and delineated from aerial imagery and/or LiDAR point cloud.
Taking a different approach, this paper is dedicated to the optimization of OpenStreetMap (OSM) building
footprints exploiting the contour information, which is derived from deep learning-based semantic
segmentation of oblique images acquired by the Unmanned Aerial Vehicle (UAV). First, a simplified 3D
building model of Level of Detail 1 (LoD 1) is initialized using the footprint information from OSM and the
elevation information from Digital Surface Model (DSM). In parallel, a deep neural network for pixel-wise
semantic image segmentation is trained in order to extract the building boundaries as contour evidence.
Subsequently, an optimization integrating the contour evidence from multi-view images as a constraint
results in a refined 3D building model with optimized footprints and height. Our method is leveraged
to optimize OSM building footprints for four datasets with different building types, demonstrating
robust performance for both individual buildings and multiple buildings regardless of image resolution.
Finally, we compare our result with reference data from German Authority Topographic-Cartographic
Information System (ATKIS). Quantitative and qualitative evaluations reveal that the original OSM
building footprints have large offset, but can be significantly improved from meter level to decimeter
level after optimization.

Keywords: building footprint; oblique UAV images; semantic segmentation; deep neural network

1. Introduction

OpenStreetMap (OSM) is a collaborative project for creating a free editable map of the world based
on volunteered geographic information. It is able to provide free and updated geographic information
despite restrictions on usage or availability of georeferenced data across most of the world. In recent
years, OSM has widely expanded its coverage and gained increasing popularity in many applications.
One example is the generation of 3D building models from OSM building footprints [1]. Therefore,
the quality of building reconstruction and modeling strongly relies on the quality of building footprints.
A detailed analysis for OSM building footprints [2] assessed a high completeness accuracy and a position
accuracy of about 4 m on average for these data. Therefore, OSM building footprints can be safely
regarded as a rough approximation of the real scene.

Though numerous approaches for building footprint generation have been developed, most of
them exploit information from airborne imagery [3] or point cloud data [4], where the building
footprints are represented by roofs and therefore usually mixed with overhangs. In contrast,
building façades naturally contain critical information about footprints. In this sense, data that presents
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façade information, such as oblique airborne imagery and terrestrial point clouds, can facilitate accurate
building footprints’ generation. Among different data sources, oblique UAV imagery stands out as it
bridges the gap between aerial and terrestrial mapping, thus enabling data acquisition of both building
roofs and façades simultaneously.

Given an initial hypothesis of the building boundary, the refinement with well-designed constraints
plays a vital role in improving the accuracy of building footprints. The constraints usually come from the
3D features embedded in DSMs or point clouds as well as from the 2D features in images. For the case
of oblique UAV images, 3D features such as lines [5] and planes usually have low geometric accuracy
due to the change of the viewing directions in oblique images [6]. Apart from that, image features can
also be employed as effective constraints. Traditional methods employed color features [7] in early stages,
which are vulnerable to shadows and illumination. Some methods extracted building boundaries by
detecting 2D lines [8] or corners [9]. However, the detected edges or corners have uncertain semantic
meanings and therefore can only be used as weak evidence. In contrast, pixel-wise semantic image
segmentation provides an effective solution to this problem. Various handcrafted features have been
proposed in traditional machine learning based classification tasks. For instance, 2D image features,
2.5D topographic features and 3D geometric features are integrated in [10] for supervised classification
using an SVM classifier. With the rapid development of deep neural networks, deep-learning based
segmentation methods have demonstrated their conspicuous advantages in yielding reliable and robust
semantic segmentation compared to traditional machine-learning segmentation methods. Deconvolution
networks are firstly applied in [11] for building extraction from remote sensing images and demonstrate
promising segmentation accuracy.

In this paper, we aim to refine the building footprint in OSM by deploying textural features
from multi-view images as constraints. Based on the above discussion on previous research, we are
motivated to use oblique UAV images as data sources for footprint generation. Constraints for solving
the optimization problem are defined by building boundaries, i.e., the projection of the 3D building
model on images, are expected to lie on the boundary between building façades and the ground.
The contour evidence is extracted from pixel-wise semantic segmentation via deep convolution neural
networks. The proposed method is composed of these steps: first, we geo-register the UAV images by
matching them with high-accuracy aerial images; meanwhile, we perform semantic segmentation of
UAV images using a Fully Convolutional Network (FCN) and extract the boundaries between building
façades, roof and ground as contour evidence; then, we initialize a 3D building model of LoD 1 from
the OSM footprints, followed by an optimization that integrates the contour evidence of multi-view
images as a constraint. In the end, not only the footprints, but also the building heights get optimized.
The proposed method is tested on different datasets. The accuracy of the optimized OSM footprints is
evaluated by comparison with the ATKIS data, whose position accuracy is around 0.5 m [12].

The main innovations of this paper lie in the following aspects:

• The footprints addressed in previous research are the roof areas with overhangs. In contrast,
our method is able to detect the real building footprints excluding roof overhangs, i.e., the edges
where the building façades meet the ground.

• Instead of directly detecting buildings in 3D space, we introduce an optimization scheme using
the image evidence from pixel-wise segmentation as a constraint, i.e., the image projection of
the building model is encouraged to be identical to the building areas detected via pixel-wise
image segmentation.

• Our method is able to refine simultaneously the building footprint and its height.

The paper is organized as follows: Section 2 gives a brief literature review on building footprint
generation and points out the drawbacks of state-of-the-art methods regarding this topic. Section 3
describes our approach for OSM footprint optimization in detail. In Section 4, experiments on various
datasets are carried out to validate the feasibility and robustness of the proposed method. Furthermore,
the accuracy of the optimized building footprints is evaluated both qualitatively and quantitatively by
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comparing with the ATKIS data. Finally, Section 5 discusses potentials and limitations of the proposed
method and describes further applications.

2. Related Work

Obtaining accurate building footprints is of paramount importance in many applications such as
urban planning or the real estate industry. Many attempts have been made to automatic ally extract
building footprints in the last few decades. Traditionally, satellite imagery, aerial imagery and LiDAR data
are among the most widely used data sources in this context. Some of the studies exploit solely information
from images via pixel-based or object-based segmentation. Various segmentation descriptors [13] have
been developed and other image features such as shadows [14] are also used for this purpose. Nevertheless,
it is usually difficult to extract accurate building outlines from only images due to occlusion, shades and
low illumination. Therefore, some studies explore the geometric features embedded in 3D data, e.g.,
Digital Surface Model (DSM) [15], point cloud reconstructed from images [16] and LiDAR data [17],
or integrate the information from imagery and 3D data together [18,19]. However, these approaches are
also prone to occlusions and have difficulties in detecting precise building boundaries. Moreover, as the
building façades are inherently hardly visible in nadir-view remote sensing data, the aforementioned
approaches actually extract building roofs rather than the real footprint without overhangs.

Considering that building façades convey vital information on building footprints, the data
containing façade information, such as terrestrial data or oblique airborne imagery, can facilitate
building footprint generation. A building detection method based on oblique aerial images is proposed
in [20], while the façade information in terrestrial LiDAR point cloud is exploited [21,22]. As a bridge
between terrestrial and airborne photogrammetry, the UAV stands out for its ability to achieve high
spatial and temporal resolutions compared to traditional remote sensing platforms. Additionally,
it has a great advantage in the application of building footprint generation for its ability in delivering
information on both building roofs and façades. The accuracy of 3D building modeling based on both
nadir and oblique UAV images is studied in [23], demonstrating that the integration of oblique UAV
images can substantially increase the achievable accuracy comparing to traditional modeling using the
terrestrial point cloud.

3. Methodology

In this section, we give a detailed account of the proposed approach for optimization of the OSM
building footprint. The proposed workflow is comprised of the following steps: (1) geo-registration
of oblique-view UAV images; (2) semantic segmentation of UAV images using a Fully Convolutional
Network (FCN); and (3) optimization of the building model initialized from OSM footprints. We also
point out the conditions and restrictions for the proposed method. Figure 1 depicts the workflow
of the proposed approach. The external input data includes the building footprint extracted from
OSM and the DSM reconstructed from aerial images, from which we can initialize a simple building
sketch. In parallel, we create a ground truth dataset of UAV images and fine-tune the FCN-8s model.
The trained network is then applied to segment UAV images. Finally, we optimize the building sketch
by minimizing the chamfer distance between the building outline from projection and the contour
evidence from image segmentation. Details of each step are explained in the following paragraphs.
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Figure 1. Workflow of the proposed method. External input data includes the building footprint
extracted from OSM and DSM reconstructed from aerial images, from which a building sketch is
initialized. Meanwhile, we create a ground truth dataset and fine-tune the FCN-8s model for image
segmentation. We optimize the building sketch by minimizing the chamfer distance between the
building outline from projection and the contour evidence from image segmentation.

3.1. Geo-Registration of UAV Images

The geo-registration of UAV images has already been discussed in numerous research works. One of
the biggest challenges lies in the automated orientation of oblique UAV images. Towards this goal,
various solutions have been proposed. Commercial softwares (e.g., Pix4D, Agisoft) and open source
softwares (e.g., Bundler, PMVS, VisualSFM, MicMac) are widely used for matching and structure from
motion (SFM) of oblique-view UAV images [24,25]. An image pyramid-based stratified matching method
for matching nadir and oblique images from four-combined cameras in the step of structure from motion
is proposed in [26], while an AKAZE interest operator-based matching strategy is presented in [27] for
automatic registration of oblique UAV imagery to oblique aerial imagery.

Another challenge is the accurate geo-registration of UAV image blocks. Although UAV images
are usually coupled with on-board GNSS/INS information, their absolute accuracy, solely 3 to 5 m in
cases without a correction signal, is no higher than the one of OSM building footprints. In contrast,
the accuracy of aerial photogrammetry can achieve a 10−2 m level, which notably exceeds OSM and
is sufficient for our application. We adopt the approach proposed in [28] for co-registration between
low-accuracy UAV images and high-accuracy aerial images. In short, the method assumes that the aerial
images are geo-referenced and have common overlap with UAV images. First, the camera poses of
sequential UAV images are solved via Structure From Motion (SFM), and then the nadir UAV images with
the aerial images are matched using the proposed matching scheme and generate thousands of reliable
image correspondences. Given accurate camera poses of the aerial images, the 3D coordinates of those
common image correspondences can be calculated via image-to-ground projection. These 3D points are
then adopted to estimate the camera poses of the corresponding nadir-view UAV images. In the end,
those UAV images with known camera poses are involved in a global optimization for camera poses of all
UAV images. In this way, all UAV images are co-registered to the aerial images. The absolute accuracy of
the geo-registered UAV images, according to the paper, can be as good as a 10−1 m level.
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The aforementioned approach requires georeferenced aerial images of the surveyed area. In the
absence of such reference images, the UAV images can be geo-registered with manually established
Ground Control Points (GCPs), which may come from RTK GPS surveys or measurements from
geo-spatial products (e.g., Basemap) with higher accuracy. For example, we can create some GCPs
by measuring their planar coordinates (x, y) on an orthophoto and their elevation values z on a DSM.
The GCPs with coordinates (x, y, z) can then be deployed to geo-register the UAV images dataset.

3.2. Semantic Segmentation of UAV Images

Extracting building outlines in images is essentially an issue of object recognition. Meanwhile,
building outlines can also be viewed as class boundaries, which can be obtained from pixel-wise
semantic segmentation. In this sense, the semantic segmentation of UAV images plays a crucial role in
our pipeline as our optimization relies on the building outlines extracted from the segmentation as the
constraint. Considering the fact that deep learning based methods significantly outperform traditional
machine learning methods using handcrafted features, we attempt to train a deep neural network for
the task of semantic segmentation.

Typically, a Convolutional Neural Network (CNN) is composed of an input layer, an output
layer and multiple hidden layers in between. The hidden layers generally include convolutional
layers, pooling layers, fully connected layers and normalization layers. In particular, convolutional
layers apply nonlinear operations on the input with a set of adjustable parameters, which can be
learned during the training process. The results are then passed to the next layer. Pooling layers
take the outputs of neuron blocks of one layer and subsample them into a single neuron. A CNN
may contain several convolutional layers and pooling layers. All the neurons in previous layers are
then connected by a fully connected layer to each individual neuron in another layer. In order to
adapt the classifier for a dense prediction, a solution has to consider these fully connected layers
as convolutions with kernels covering their entire input regions [29]. Compared to the evaluation
of the original classification network on overlapping input patches, the adapted classifier, namely
FCN, is more efficient since computational burdens are shared by overlapping regions of patches.
The network used in this paper is a modification of [29] by changing the number of outputs according
to our demand. In our experiment, there are seven classes in total, i.e., building, roof, ground, road,
vegetation, vehicle and clutter. The architecture of the neural network is depicted in Figure 2.

The aforementioned FCN also has shortcomings. First, its receptive field is as large as 32 pixels,
resulting in segments with non-sharp boundaries and blob-like shapes. However, sharp boundaries
between buildings and surroundings are preferred for us. Second, the prediction of FCN does not
take the smoothness and the consistency of label assignments into consideration. To solve this
problem, we plug in a Conditional Random Field (CRF) represented as Recurrent Neural Network
(CRFasRNN) [30,31] at the end of the FCN, which combines the strengths of both the CNN and CRF
based graphical model in one unified framework. In this model, unary energies are obtained from
the FCN, which predict labels of pixel without considering the smoothness and the consistency of the
label assignments; meanwhile, the pairwise energies provide a data-dependent smoothing term that
encourages semantic label coherence for pixels with similar properties. Such combination enhances the
consistency of the changes in labeling and in image intensity, resulting in sharp boundaries between
adjacent segments.

For the compensation of limited training data, we implement data augmentation by cropping,
rotating and scaling. Instead of training the network from scratch, we initialize the network with
pre-trained weights from the FCN-8s model and then fine-tune it with our own ground-truth data.
Details of implementation and parameter settings are described in Section 4.

In the end, we deploy the trained network to generate pixel-wise semantic segmentations of the
images. Since the building footprint is defined as the boundary of a building where it meets the ground,
the edge model of building footprints, denoted by L0, can be therefore extracted as the boundary
between the class “building” and the class “ground” from the semantically labeled images. It needs to
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be pointed out that semantic segmentation itself does not have a concept of an object; however, we are
interested in class boundaries, which can be seen as objects that should be detected.

Figure 2. Architecture of the FCN network used in this paper.

3.3. Optimization of Building Footprints

We consider the building model as a polyhedron in 3D space featured by the building footprint P
and height H. In particular, P is comprised of a set of vertices {P1, . . . , Pn | Pi ⊂ R3}, where Pi denotes

the 3D coordinates
(

Xi
Yi
Zi

)
of each corner of the building footprint, which can be directly extracted from

OSM. For the cases without OSM height information, we can obtain the elevation of the ground at
the foot of the building as well as the elevation of the roof, denoted by Zground and Zroo f , respectively,
in a DSM from aerial imagery using a Top-Hat transform algorithm [32,33]. Then, the elevation Zground
is assigned to Zi and the difference Zroo f − Zground is assigned to the building height H. At this point,
a simple building model formulated by footprint and a uniform height has been established.

With geo-registered UAV images, the corresponding image point projection of P can be simply
computed by means of ground-to-image projection, resulting in a 2D polygon denoted by S ⊂ R2.
Theoretically, if P is absolutely accurate, its projection S should be exactly identical with the building
area in the UAV image. Under the assumption that the image segmentation result is reliable, the edge
model of the polygon S, denoted by L1, should be close to the edge model L0 extracted from the
segmented image. Hereby, we adopt the Chamfer Distance [34] as a measurement for the difference
between L0 and L1. We first cut off the area of L0 from the image with a buffer zone of 100 pixels as the
region of interest (ROI), and then generate the distance image of L0. Afterwards, we superimpose L1

on the distance image and the Chamfer Distance between L0 and L1 is defined as:

D(L0, L1) =

√
1
N ∑

l∈L1

d2
I(l), (1)

where dI(l) stands for the distance values where the edge model L1 hits the distance image of L0,
while N is the number of points in L1.

One building may be present in multiple images from different viewing directions, and these
images may have different segmentation accuracy in building areas. Despite the high interior accuracy
of the images’ block, the image derived building contours in different images have a certain degree
of variance, resulting in different Chamfer Distance. Therefore, it makes sense to take all cases into
consideration. The adjustment of OSM footprints can be formulated as an energy minimization
problem whose energy term is defined as Equation (2). In particular, I denotes the set of images that
show the building, vector Pi denotes each vertex in the OSM footprint to be optimized, while H stands
for the height of the building:
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minimize
x

E = ∑
i∈I

D(L(x,i)
0 , D(L(x,i)

1 ),

x = {{P1, . . . , Pn, H | Pi ⊂ R3, H ∈ R}}.
(2)

We solve the minimization problem using a modification of Powell’s method [35,36], which performs
sequential one-dimensional minimizations along each vector of the directions set. After optimization,
the accuracy of the building footprint and height improves.

3.4. Application Conditions

It should be pointed out that building footprints can only be partially optimized in the presence of
occlusions. Figure 3a shows the projection of an original OSM footprint in an aerial image, while Figure 3b
highlights the edges that can be optimized with the proposed method. Figure 3c is an aerial image of
the surveyed area with a slightly oblique view. Given that no additional images are available, only the
visible building borders (marked with red lines) can be optimized. Towards the goal to achieve a complete
optimization of the building footprints, it is thereby advised to acquire UAV images of the buildings of
interest from different viewing directions so that all the façades are visible in the images.

(a) (b)

(c)

Figure 3. Overview of optimizable building vertices in the presence of occlusions. Red lines are the projection
of original OSM building footprints before optimization, highlighting the building edges that can be optimized.

4. Experiments

In order to validate the generalization ability of the proposed method, we test the methodology
on four datasets with different building types. Furthermore, we compare the optimization results with
the reference data. Qualitative and quantitative analyses are carried out to verify the accuracy of the
optimized building footprint and height.
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4.1. Data Description

4.1.1. Image Data

We collect images from four scenarios containing different types of buildings. The main
characteristics of the datasets are listed in Table 1. In particular, Scenario A is targeted at optimization
of footprints of individual buildings. To this end, 375 oblique images of an isolated cabin were captured
by a UAV flight. The survey site lies on a bare agricultural land in Finning, Germany. Here, the building
of interest is free from occlusions. The images were acquired by a Canon EOS-1DX camera mounted
on a rotary wing platform at altitudes ranging from 20 m to 50 m above ground and with pitch angle
of 40∼50◦. The average ground sampling distance is 0.96 cm.

Scenario B presents a small kindergarten surrounded by trees and bushes in Oberpfaffenhofen,
Germany. The dataset also serves for optimization of a footprint of an individual building, yet the
scene is more complex with the presence of occlusions and shades. 142 images were acquired by
a Canon EOS-1DX camera, including 32 nadir-view images and 110 oblique-view images with a pitch
angle of about 45◦. The flight height ranges from 20 m to 45 m above ground, resulting in an average
Ground Sampling Distance (GSD) of 1.09 cm.

In addition, we also exploit the possibility to optimize footprints of multiple buildings. With the
increasing popularity of UAVs, more and more people are able to take photos or videos using their own
drones and spontaneously share the data on the Internet with free access. In this context, Scenario C
was established by extracting a series of frames from a YouTube video captured by a drone. The survey
site is located in an urban residential area in Munich, Germany, containing many modern buildings,
and most of them are partially occluded. The flight height is estimated to 40 m above ground with
pitch angle around 40◦. In total, 169 images with a GSD at image centers of 14.33 cm were extracted
for the experiment. Each building can be visible or partly visible in 24–86 images, depending on
its location in the survey area. It has to be noted that the low image resolution and the presence of
occlusions cause difficulties for the subsequent optimization step.

Scenario D is an open dataset provided by the company senseFly [37]. The 37 oblique images
were collected in a small village in Switzerland, featuring many traditional-style buildings surrounded
or occluded by vegetation. Each building can be visible or partly visible in 31–37 images. The images
were taken by a Canon PowerShot camera from about 100 m above the ground with a pitch angle of
−50◦, and the average image GSD is 5.46 cm.

4.1.2. OSM Data

The OSM data used in experiments have been downloaded on 21 January 2018. The footprints
contain only the planar coordinates of building footprints but no height information. According to the
detailed quality assessment for OSM building footprints data [2], the OSM footprints in our survey
area (Munich) have a high completeness accuracy and a position accuracy of about 4 m in average.
Therefore, they can be safely adopted to initialize a building model.

4.1.3. Reference Data

For evaluation of the experimental results, we take the German ATKIS (Amtliches
Topographisch-Kartographisches Informationssystem) data as reference. ATKIS has been developed
as a common project of the Working Committees of the Survey Administrations of the States of the
Federal Republic of Germany (AdV), containing information of objects of the ‘Real World’ like roads,
rivers or woodland [38]. The position accuracy of building footprint in ATKIS is ±0.5 m [12]. It needs
to be pointed out that ATKIS data is not available to the public in Germany, therefore we can only
request the ATKIS footprint data for small areas as ground truth. Specifically, the ATKIS data used
in the experiments were published on 27 January 2016 and the building data is formatted as LoD1
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CityGML model, i.e., the value of building height describes the difference in meters between the
highest point of the roof and the ground.

Table 1. Characteristics of the datasets used in the experiment. AA: automatically co-registered to
aerial data; MA: manually co-registered to aerial data; -: pre-georeferenced.

Dataset
UAV Image

Date Resolution (pix) Height (m) Pitch Angle GSD (cm) Number of Images per Building Registration

A 10/2016 5184× 3456 20–50 40–50◦ 0.96 375 MA
B 10/2016 5184× 3456 20–45 45◦, 90◦ 1.09 142 AA
C 01/2016 1296× 728 40 50◦ 14.33 24–86 MA
D 06/2014 4000× 3000 100 50◦ 5.46 31–37 MA

4.2. Geo-Registration of UAV Images

Due to payload limitations, UAVs are usually equipped with low-quality GNSS/IMUs and can
therefore achieve a direct geo-referencing accuracy of merely 3–5 m. To improve the position accuracy
of OSM building footprints, however, UAV images are expected to have higher accuracy than OSM.
To this end, we made various attempts at improving the geo-registration accuracy of UAV images.
In particular, Scenarios A, C and D are manually geo-registered using measurements from geo-spatial
products that have higher accuracy than the OSM data, whereas Scenario B is geo-registered to aerial
images in a fully automated way.

For Scenario A, we manually established some GCPs, whose planar coordinates (x, y) were measured
on Bavaria DOP80 (digital orthophoto of 80 cm resolution, provided by Bavarian State Office for Survey and
Geoinformation in Germany) and the elevation values z were extracted from DTK25 (Digital Topographic
Model [DTM] of 25 cm resolution, provided by Bavarian State Office for Survey and Geoinformation
in Germany). These GCPs were then used to geo-register the UAV images dataset. Similarly, Scenario
B was geo-registered using the GCPs measured from the orthophoto and DTM [39] reconstructed from
the aerial images acquired by the DLR 3K camera system with cm-level accuracy [40]. In Scenario D,
GCPs were measured on SWISSIMAGE 25 (digital orthophoto of 25 cm resolution) and swissNAMES3D
(Topographical Landscape Model [TLM] of 0.2∼1.5 m accuracy).

Scenario B contains both nadir-view and oblique-view UAV images. Here, the corresponding
nadir-view aerial images with cm-level global accuracy are also available, thus we co-registered
the low-accuracy UAV images to the high-accuracy aerial images following the approach proposed
in [28]. More specifically, we first solve the camera poses of the UAV images via Structure From
Motion (SFM), and then match the nadir UAV images with nadir aerial images using the proposed
matching scheme, resulting in thousands of reliable image correspondences. Since the aerial images
are pre-georeferenced, 3D coordinates of those common image correspondences can be derived via
image-to-ground projection of the aerial images, and these 3D points are then adopted to estimate
the camera poses of the corresponding nadir-view UAV images. In the end, those UAV images with
known camera poses are involved in a global optimization for camera poses of all UAV images. In this
way, all UAV images get geo-registered.

We used the software Pix4Dmapper Pro (version 4.0.25) for the process and orientation of the UAV
data. The mean reprojection errors of the four datasets are in the range of 0.15–0.2 pixels.

4.3. Semantic Image Segmentation Using CRFasRNN

For a robust and generalized training of the neural network, we collect training images evenly
distributed from the four datasets, to ensure that different types of buildings are all included in the
training dataset. The training images were manually labeled with seven categories: building, roof,
ground, road, vegetation, vehicle and clutter. Among them, categories like building, roof and ground
are of most interest for our application. In order to compensate for the shortage of training data,
we implemented data augmentation by cropping, rotating and scaling the training data. Around
10,000 annotated images with a size of 300 × 300 pixels were generated for training.
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The deep learning procedure was implemented under the framework Caffe [41]. Instead of
training the network from scratch, we fine-tuned the FCN-8s PASCAL model from the Berkeley Vision
and Learning Center (BVLC) on our own dataset. As the boundary between different classes is of
interest for our application, we plugged in the CRF-RNN layer in order to achieve sharp edges at class
borders. The training process started to converge at iteration 6000 and was stopped at iteration 74,000
before over-fitting. Figure 4 depicts the segmentation results of the trained network on the test data.
Figure 4a,b are test images from Scenario A, while Figure 4e,f are the segmentation results. It can be
seen that the roofs, façades, building and the surrounding clutter are basically correctly segmented;
Figure 4c,d,g,h are respectively the original and segmented images from Scenario D, the segmentation
in building areas is noisy due to shading and poor illumination. Figure 4i–p in the last two rows
display segmentation results from Scenarios C and D with multiple buildings.

To conclude, despite a few incorrect segmentations in areas with complex textures or structures,
the overall segmentation achieved a remarkable performance and yielded reliable image labels.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 4. Segmentation results of four scenarios. (a,b) are test images of Scenario A while (e,f) are
corresponding segmentation results; (c,d) are test images of Scenario B while (g,h) are corresponding
segmentation results; (i,j) are test images of Scenario C while (m,n) are corresponding segmentation
results; (k,l) are test images of Scenario D while (o,p) are corresponding segmentation results.
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4.4. OSM Building Footprint Optimization

As we regard the building boundaries extracted from the segmented images as a constraint for
optimization, it is crucial that the image segmentation, at least for the building and its surroundings,
should yield accurate and reliable results. In practice, however, there are inevitably some poorly
segmented images in a dataset, thus we need to select those images that satisfy those requirements:

1. The segmented building areas have accurate boundaries;
2. Buildings are not occluded by vegetation or obstacles;
3. The selected images are expected to be taken from different viewpoints so that all vertices of the

building footprint can be optimized.

Figure 5 demonstrates the results of footprint optimization process. Figure 5a–c are projections of
original OSM footprints with the height extracted from DSM, while Figure 5d–f are projections of the
optimized building sketch of Scenario A. Figure 5g,h are projections of original OSM footprints with
the height extracted from DSM, while Figure 5j,k are projections of the optimized building sketch of
Scenario B. Figure 5i,l illustrate a combined footprint of two adjacent buildings with different heights
before and after optimization, therefore only the footprint get optimized. The original projections
of the footprints extracted from OSM with the height from DSM are highlighted by the red lines,
which have large position shift with respect to the building. The projections of the footprints after
optimization using the proposed method are marked by blue lines, which fit precisely the building
borders. It is evident that the image projection accuracy of the optimized footprints have improved
conspicuously compared to the original OSM footprints.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5. Cont.
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(j) (k) (l)

Figure 5. Image projections of building sketch before and after optimization. Red lines are projections
of original OSM footprints with height measured from DSM, blue lines show projections of optimized
building footprints and heights, and the green line shows a combined footprint for two buildings with
different height.

For the visualization of the absolute position accuracy of the optimized footprints, we overlap the
footprints before and after optimization together with ATKIS data. As shown in Figure 6, the gray areas are
reference footprints from ATKIS data, red lines indicate original footprints extracted from OSM, and blue
lines show the footprints after optimization using the proposed method. All footprints are overlapped
together in the same coordinate reference system. To be specific, Figure 6a shows the footprints of the two
cabins from Scenario A. All corners of the larger building on the right get optimized with a significant
improvement in position accuracy. It should be pointed out that the smaller building on the left is not our
main target and therefore only appears in a few images, still all its three visible corners got optimized
with satisfying accuracy. Figure 6b shows the footprints of a house from Scenario B, which is composed of
two small adjacent houses. The building footprint in OSM, however, is simplified to a rectangular shape
with a large position shift. As a correct hypothesis of the building shape is the prerequisite for reasonable
optimization, we extracted eight corners of the roof based on the corresponding orthophoto and DSM.
The new building footprint, colored in green in Figure 6b, was used as the initial value for optimization.
The optimized footprint, highlighted in blue, matches the reference data well. The experimental results
demonstrate that, given the correct hypothesis of the building shape, our method is able to efficiently
optimize the footprint of individual buildings even if the initial values are far from accurate.

(a) (b)

Figure 6. Optimization for multiple buildings. (a,b) show the result of Scenario A Scenario B
respectively; gray areas represent the reference footprints from ATKIS data, red lines indicate original
footprints extracted from OSM, blue lines show the footprints after optimization using the proposed
method, and green represents the initial lines for optimization.

In contrast, Scenario C and Scenario D feature multiple buildings that are partly occluded.
As a consequence, only the visible building corners may get optimized. In addition, the performance
of optimization is also affected by the quality of image segmentation.

Figure 7a,b illustrate the optimization results of Scenario C. Blue lines indicate an overall projection
of all optimized buildings, while the optimization for the rest of the buildings failed as a result of
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severe occlusions or poor segmentation. It can be seen that more than half of the visible building
corners were successfully optimized despite the low image resolution, and the estimated building
height aligns well with the border between the roof and the building.

Within Scenario D, most buildings are surrounded by thick vegetation, and we extract only the
boundary between the ground and the building. For that reason, there are few effective contours
available for optimization. Figures 7c–f show some of the optimized building footprints, where the red
lines correspond to the original OSM building footprints and blue lines refer to the optimized building
footprints. It should be noted that the OSM footprints data for rural areas exhibit much larger errors
than in the urban area. Nevertheless, our method still achieves accurate optimization results for visible
building edges.

(a) (b)

(c) (d) (e) (f)

Figure 7. Optimization for multiple buildings. Red lines are the projections of the original OSM
building footprints while blue lines correspond to the optimized building footprints; (a,b) give an
overall view of all the optimized buildings in Scenario C; (c–f) enumerate some of the optimized
buildings of Scenario D.

4.5. Accuracy Evaluation of Building Position and Height

Apart from the visual comparison of the results, we performed a quantitative analysis of the
results. Following the evaluation approach in [2], we investigate the position accuracy of building
footprints by calculating the average distance between the corresponding vertices pair from the
optimized footprints and the reference data. In this sense, only the vertices appearing in both datasets
can be compared.

In order to evaluate the optimization accuracy quantitatively, we compare the footprints before
and after optimization with reference to ATKIS data. The results of Scenario A, B, and C are listed
in Table 2. The second column lists the optimized buildings in each scenario, and for each building
footprint, we manually measure the coordinates of each vertex and calculate the distance to the
corresponding vertex in ATKIS data. The column Initial lists the errors in the x- and y-directions
as well as the Euclidean distance of each vertex from the original footprint, whereas the column
Optimized reports the errors of the optimized building footprint. Scenario C contains a number of
optimizable buildings, from which six buildings with their optimized vertices are randomly selected as
representatives. The value average shows the average distance of all building vertices of each Scenario.
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Given that the building footprints in ATKIS have an average accuracy of ±0.5 m, we can draw the
conclusion that the accuracy of the building footprints has substantially increased after optimization
using our method.

Table 2. Position errors of building footprints before and after optimization. The column Initial lists
the errors in the x- and y-directions as well as the Euclidean distance of each vertex of the original
footprints; the column Optimized reports the errors of the optimized building footprints.

Scenario Building Initial Optimized

∆X (m) ∆Y (m) Distance (m) ∆X (m) ∆Y (m) Distance (m)

A

1

0.207 −1.213 1.230 0.623 −0.328 0.704
−0.374 0.942 1.014 0.145 0.427 0.451
1.601 1.545 2.225 0.020 0.137 0.139
2.247 −0.521 2.307 0.276 0.165 0.322

2
1.733 1.157 2.084 0.233 0.657 0.697
2.114 −0.511 2.175 −0.164 −0.097 0.190
0.080 −0.899 0.902 0.655 −0.481 0.813

average 1.705 0.474

B
1

0.275 0.043 0.278 0.395 −0.037 0.397
0.758 1.337 1.537 0.118 −0.383 0.401
2.635 0.436 2.671 0.345 −0.074 0.353
2.756 −0.400 2.785 0.326 −0.100 0.341
2.848 −1.306 3.133 0.233 −0.008 0.233
−2.807 0.522 2.856 0.142 −0.102 0.175
−2.632 1.763 3.168 0.218 −0.227 0.314
0.342 0.461 0.574 0.192 −0.209 0.284

average 2.125 0.312

C

1
0.039 −2.073 2.073 −0.029 −0.682 0.683
−0.078 −1.927 1.928 −0.174 −0.540 0.567
0.695 −1.509 1.661 0.027 0.201 0.203

2 −0.303 0.271 0.406 −0.252 −0.250 0.355
0.397 0.406 0.568 0.155 0.116 0.194

3 0.492 −1.415 1.498 −0.144 0.748 0.761
−0.053 −1.412 1.413 0.530 0.437 0.687

4 0.708 −1.944 2.069 0.471 −0.451 0.651
0.303 −1.917 1.941 −0.387 −0.668 0.772

5 0.543 −1.638 1.726 0.365 −0.417 0.554
0.150 −1.368 1.376 0.239 −0.382 0.451

6 0.144 0.579 0.596 0.105 0.320 0.337
0.423 0.501 0.656 0.282 0.360 0.457

average 1.378 0.513

Additionally, during the optimization of the planar coordinates of building footprints, our method
is also able to estimate the height of the wall, i.e., the height from the top of the building façade
to the ground, which cannot be directly measured from LiDAR data or DSM from aerial imagery.
As aforementioned, the height value in ATKIS data describes the distance from the top of the roof to
the ground, hence it only makes sense to evaluate buildings with flat roofs. Applied to our dataset,
there remain only five optimized buildings with flat roofs. Table 3 compares the height values of these
optimized buildings with the height measurements from ATKIS data. It can be demonstrated that the
building heights are accurately estimated with an absolute error ≤ 10%.
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Table 3. Accuracy evaluation of optimized building height.

Building Optimized H (m) ATKIS H (m) Error H (m)

1 3.20 3.5 −0.30
2 10.96 11.53 −0.57
3 17.5 17.83 −0.33
4 19.7 21.00 −1.30
5 5.24 5.79 −0.55

5. Discussion

In this paper, we present a novel framework for optimizing OSM building footprints based on
the contour information derived from deep learning-based semantic segmentation of UAV images.
Through our methodology, the position accuracy of optimized building footprints has been improved
from meter-level to decimeter-level, which is comparable with the accuracy of ATKIS data.

The applicability of the proposed method depends on the following prerequisites:

• Towards the goal of improving the absolute position accuracy of OSM building footprints, the UAV
images are supposed to be accurately geo-referenced. However, it is also practical to simply align
the OSM building footprint data to the users’ local reference system.

• Targeted at optimization of the complete building footprint, it is advised to design the UAV
flight path to surround the buildings of interest; otherwise, only the visible building edges can
be optimized.

• Since we use UAVs to acquire image data, our approach is suitable for regional improvement for
buildings of interest. In most large-scale applications such as navigation, web-based visualization
and city planning, the accuracy of OSM footprints is already sufficient. Accurate footprints
(with sub-meter level accuracy) are usually needed for specific buildings of interest, and our
approach can play its role in such cases.

The merits of the proposed method mainly lie in four aspects:

• In many other regions of the world, there is no such high-quality footprint data like ATKIS;
even in Germany, the ATKIS data is not freely accessible to the public. Our approach opens up
the possibility to generate high-accuracy building footprints from OSM with comparable accuracy
as ATKIS data.

• The realistic building footprints excluding roof overhangs can be detected, i.e., the edges where
the building façades meet the ground, whereas the footprints addressed in previous research are
essentially the building roof including overhangs.

• The height information of buildings can be simultaneously refined with the building footprints.
• The proposed method has good generalization ability, as it can optimize not only a single building,

but also multiple buildings with high tolerance for the spatial resolution of images.

Based on the optimized building footprint and building height, we can establish a building sketch
of LoD 1, which can be further applied in building information modeling (BIM).

6. Conclusions

In summary, we exploit the façades’ information in oblique UAV images to optimize OSM building
footprints. The framework consists of three main aspects: first, a simplified 3D building model of
Level of Detail 1 (LoD 1) is initialized using the footprint information from OSM and the elevation
information from the Digital Surface Model (DSM). Subsequently, a deep neural network is trained
for pixel-wise semantic image segmentation and the building boundaries are extracted as contour
evidence. Finally, the initial building model is optimized by integrating the contour evidence from
multi-view images as a constraint, resulting in a refined 3D building model with optimized footprints
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and height. The result reveals the great potential of oblique UAV images in building reconstruction
and modeling.
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