TUT

DEPARTMENT OF INFORMATICS

TECHNICAL UNIVERSITY OF MUNICH

Bachelor’s Thesis in Informatics: Games Engineering

Embedded SGDE image classification on
mobile devices

Subhan-Jamal Sohail

0

DEPARTMENT OF INFORMATICS

TECHNICAL UNIVERSITY OF MUNICH

Bachelor’s Thesis in Informatics: Games Engineering

Embedded SGDE image classification on
mobile devices

Einbettung der SGDE Bild-Klassifikation
auf mobilen Geriten

Author: Subhan-Jamal Sohail
Supervisor: Prof. Dr. rer. nat. habil. Hans-Joachim Bungartz
Advisor: Kilian Rohner, M.Sc.

Submission Date: 22.03.2019

0

I confirm that this bachelor’s thesis in informatics: games engineering is my own work
and I have documented all sources and material used.

Munich, 22.03.2019 Subhan-Jamal Sohail

Abstract

This thesis describes the integration of the geometry aware sparse grids into the
datamining pipeline of the SG++ framework. The datamining pipeline is used to
make SG++ easier available and fasten the process of using the framework. Geometry
aware sparse grids have a great use in image classification and therefore this thesis is
additionally about creating a mobile application that classifies hand drawn numbers
using this kind of sparse grids. For this to be done the trained data had to be exported
from SG++ and then imported again into the application. Also the evaluation method
for sparse grids was implemented into the application. This new evaluation method is
then validated by comparing it to the evaluation method of SG++. The outcome of the
validation resulted in a high deviation for random datasets and very low deviation for
relevant datasets. The high deviation for random datasets can be neglected, since it has
no use case in the user application. Finally the application was tested for numbers 0, 2
and 6 with various relevant datasets to calculate the accuracy of the implementation.
The tests have shown that by following certain rules while drawing the numbers into
the application an average accuracy of 90% could be observed.

1ii

Zusammenfassung

Diese Arbeit befasst sich mit der Integration der geometrisch bewussten Diinngitter in
die Datmining Pipeline der SG++ Toolbox. Die Datamining Pipeline hat den Nutzen
die Verwendung der SG++ Toolbox zugdnglicher und schneller zu gestalten.
Geometrisch bewusste Diinngitter haben einen grofsen Nutzen in der Klassifizierung
von Bildern, deswegen befasst sich diese Arbeit auch mit der Entwicklung einer
mobilen Anwendung, die handschriftlich gezeichnete Nummern klassifiziert unter
Verwendung eines solchen Diinngitters. Um das zu erreichen miissen die trainierten
Daten aus SG++ exportiert und wieder in die Anwendung importiert werden. Zudem
musste die Auswertungsfunktion der Diinngitter in die Anwendung implementiert
werden. Diese neue Auswertungsfunktion wird dann validiert, indem sie mit der
Auswertungsfunktion von SG++ verglichen wird. Das Resultat dieser Validierung
ergab eine sehr hohe Abweichung fiir zufillige Datensidtze und eine sehr geringe
Abweichung fiir relevante Datensitze. Die hohe Abweichung fiir zuféllige Datensadtze
kann jedoch vernachlédssigt werden, da diese keinen Anwendungsfall in der
Benutzeranwendung finden. Schliefslich wurde die Anwendung an verschiedenen
relevanten Datensitzen fiir die Nummern 0, 2 und 6 getestet, um die Genauigkeit der
Implementation zu berechnen. In den Tests konnte eine durchschnittliche Genauigkeit
von 90% beobeachtet werden, unter Einhaltung bestimmter Regeln wéahrend dem
Zeichnen der Nummern in die Anwendung.

v

Contents

1

2

Introduction

Theory

21 SparseGrids L
211 Full Grid Interpolation
212 Sparse Grid Interpolation
2.1.3 Sparse Grid Density Estimation

2.2 Geometry Aware Sparse Grids L.
221 Interactions
222 Stencil

Implementation

3.1 SG++: General Sparse Grid Toolbox

3.2 Datamining Pipeline

3.3 Geometry Aware Sparse Grids Integration into Datamining Pipeline . .

34 Learningthedata,
341 MNISTdataset
342 Training
343 Exporting

35 Appdevelopment L o
351 DataStructure. o
352 Client.
353 Server

Evaluation

4.1 Validation of Sparse Grid Implementation
411 Randomdataset. L.
412 Tabletdataset
413 Outcome

42 Accuracy of sparse grid implementation.
421 Testing process
422 MNISTdatasets
423 Handdrawndatasets L.

Jury

L 0O I+ DNDNMDN

11
11
12

13
13
13
14
14
15
16
20

Contents

424 0Outcome
5 Conclusion
6 Future Work
List of Figures
List of Tables

Bibliography

38

39

41

43

44

Vi

1 Introduction

The toolbox SG++ was developed by Dirk Pfliiger at the chair of Scientific Computing
in 2010 [Pf110] at the Technical University of Munich. This toolbox implements many
methods to perform calculation on adaptive sparse grids. The use and the presentation
of the toolbox seems rather counter intuitive to outstanding people. To close this gap
and develop an easy use case of sparse grids, a mobile application that classifies images
using sparse grids was developed during this thesis.

To create such an image classification application we have to adjust the grid that we
use. Sparse grids overcome the difficulty of the curse of dimensionality by intelligently
leaving out gridpoints and thus reducing the amount of gridpoints significantly. Despite
this reduction, the amount of gridpoints in a sparse grid for images is still too high to
calculate upon.

Therefore the approach of geometry aware sparse grid is introduced [Wael7]. With
this approach the amount of gridpoints for an image can be reduced to a reasonable
amount by just taking gridpoints into the grid space that full fill some specific geometric
relation.

The use of the toolbox was also simplified through a datamining pipeline that creates
and evaluates adaptive sparse grids just by setting parameters in a configuration file.
In 2018 Fuchsgruber extended the pipeline to support sparse grid density estimation-
based classification [Fuc18]. Up to this date however this classification did not support
geometry aware sparse grids, therefore they have been implemented in the span this
thesis.

In the following the theory knowledge required is discussed in detail in Chapter 2,
followed by the implementation and the decisions that had to be made in Chapter 3.
This implementation is then evaluated in Chapter 4. Finally we draw a conclusion and
define future work to improve the implementation.

2 Theory

This chapter will give a brief introduction to sparse grids and the density estimation
classification method used in this thesis. Also geometry aware sparse grids are
discussed in this chapter that are used for image classification in the mobile
application.

2.1 Sparse Grids

This chapter will be an introduction to sparse grids by deriving them from full grids and
extending them to the d-dimensional case through hierarchical basis functions. Also
the density estimation classifcation method, which will be used in the implementation,
is discussed here.

2.1.1 Full Grid Interpolation

To explain the full grid interpolation of a function f, we consider the function f : 3 — R.
We want to evaluate f on arbitrary points, therefore (2 is restricted to a sub volume of
RY. In the following we will also define the function domain Q as the d-dimensional
unit-hypercube, Q) == [0, 1]%.

Now to build the interpolant u from our function f, we have to discretize () through a
regular grid. This regular grid is constructed by 2" — 1 equidistant grid points x; with
a mesh width of h,, := 27", with n being the discretization level. The function f is then
evaluated and interpolated on these grid points.

Specifically u(X) is then obtained by defining basis functions ¢;(X) and then combining
them as weighted sum on each grid point, resulting in the following equation

f(X) =~ u(x) = Zociqoi(a_c'). (2.1)

This type of interpolation is illustrated in Figure 2.1 for a one-dimensional case, also a
comparison to a linear interpolation can be seen.

The choice of the basis function can be crucial for the runtime of computing the
interpolation. Therefore suitable basis function are hierarchical constructed basis
functions as stated in [Pf110].

2 Theory

One dimensional hierarchical basis function To obtain such a function, we can start
off with the one-dimensional standard hat function.

¢(x) = max(1 — |x],0) (2.2)

From the standard function, we can then derive one-dimensional hat basis functions by
translation and dilatation [Pf110].

pri(x) = p(2'x — i) (2.3)

The basis functions in (2.3) are now dependent on a level / and an index 7,0 < i < 2.
Each of these functions have local support and are centered at a grid point x;; = 27
on which our function f is interpolated on.

[={iecN:1<i<2' —1,iodd} (2.4)

By defining a hierarchical index set in (2.9) and taking the span of every basis function
¢1,;, we can obtain the set of hierarchical subspaces W;.

W := span{¢;;(x) :i € I;} (2.5)

The space of piecewise linear functions on a full grid V, can then be defined by taking
the sum of all hierarchical subspaces W; for a specific level I [Pfl10].

Vi =@PW, (2.6)

I<n

As mentioned in formula (2.1) the interpolated function u(X) € V, can now be
calculated by taking our translated and dilated hierarchical basis functions from (2.3)
and combining them as weighted sum on each gridpoint.

u(x) =Y apiei(x) (2.7)

lgn,iell
From one-dimension to d-dimensions The transition into higher dimension can be

done by defining the basis functions through the tensor product approach and using
multi-indices for i and [that represent level and index of a dimension [P£110].

d
or(%) = [T ori (%)) (2.8)
=1

2 Theory

From this point on the interpolant is calculated analogously to the previous calculation
of the one-dimensional case. We just replace the index i and level I with the multi-
indices i and /.

L={ieN:1<i<2 —1,iodd}, (2.9)
is our new hierarchical index set to define the set of hierarchical subspaces WT'
W := span{¢;+(¥) : ich} (2.10)

Again by taking the sum of all hierarchical subspaces W;, we get the space of piecewise
d-linear functions V,, [Pfl10].

V., =Ppw; (2.11)

I<n

As previously the interpolant u(X) € V, is the sum of all weighted basis functions on
every gridpoint.

|l‘0°§1’l,l'EIT

This type of full grid consists of (2" — 1) gridpoints and as Equation (2.12) shows
that for the interpolation of the function f, we have to perform an evaluation on every
gridpoint. This leads to an asymptotic behavior of O(2"") and thus encountering the
curse of dimensionality [Pf110]. An example for the subspaces is illustrated in Figure 2.2.

2.1.2 Sparse Grid Interpolation

To bypass the curse of dimensionality that we get from the full grid interpolation in
Section 2.1.1 the amount of subspaces W; has to be reduced. Thus subspaces that only
pay a small contribution to the overall solution are left out.

vii= @ w (2.13)
1|, <n+d—1

Applying this sparse grid space V,Sl) to the interpolant u(X) we get
M(f) = Z (XT;QDT’?(J_C’) (2.14)
[, <n+d—1iel;

With this the number of gridpoints is reduced significantly, while the asymptotic error
only gets slightly worse [Pfl10]. In Figure 2.3 an example sparse grid of the level n = 3
can be seen.

2 Theory

. u(x)=Lop x)

hy T2

Figure 2.1: Linear interpolation (left) and linear combination from basis hat functions
(right). Image from [Pfl10]

Boundary Treatment As for now the basis function were 0 on the border of the grid.
To avoid losing information on the boundary the modified linear basis functions are
introduced in 2.15 [PfI10].

) fl=1Ai=1
ol i ST
2-2.x 1fx€[0/21—1]} ifl>1/ni=1
o1i(x) == gz 1 feflsee 1o (2.15)
X i ifx 21/ ifl>1/i=2'-1
0 else
ol ol _ i) else.

2 Theory

L
A
(e
S

Figure 2.2: Subspaces W; for |7| < 3. Image from [Pf110]

2 Theory

=1 ' o 19199
| .
. .- " 00
1.=2 | 4
™% sessssse
. s -
| L]
—
i e | A1)
o S— Va
=3 |

Figure 2.3: Subspaces W; of a sparse grid with level 1=3 (left) and overlapping all
subspaces W; results in the sparse grid space V?)(l) (right). Image from [Pf]10]

2.1.3 Sparse Grid Density Estimation

The classification method used in this thesis is the sparse grid based density estimation.
We can define the density estimation as following [Peh13].

(R+AC)& =b (2.16)

With R;; = (®;, ®;)1» representing the underlying sparse grid as L-2 inner product
and C;; = (A®;, A®;)1» being the regularization matrix with A as the regularization
factor. The notation for the surpluses @ is the same as previously. Finally the vector
bi =% Zj]\il ®;(xj) represents the training dataset.

This approach is used since it does not depend on the size of the training dataset,
instead it depends on the amount of gripoints N. This is due to R and C being of the
size N x N and the vector b being of the size N [Peh13].

This system of equations can now be solved to calculate the unknown weights & of
every basis function in a sparse grid, given a sparse grid and a training dataset.

2 Theory

2.2 Geometry Aware Sparse Grids

This is a variant of a sparse grids that chooses gridpoints upon a different property.
Usual sparse would leave out those gridpoints that do not contribute a lot to the overall
solution, however geometry aware sparse grids only take in gridpoints that have a
geometric relation. For specific cases this approach can lead to a significant reduction
in gridpoints.

For example considering image classification, in which we can represent an image as a
grid. Every pixel in that image represents a separate dimension and the function value
of that pixel defines its exact position in a grid.

By looking at the amount of gridpoints of a regular sparse grid for a 8x8x3 image,
we can see in Table 2.1 that the growth just after level 2 is already way to high to
compute. However now by computing the amount of gridpoints with the geometry
aware approach, we can consider a geometric relation in an image by looking at
neighbouring pixels. In this case by just looking at the geometric relation of two
dimension we get a significant reduction of gridpoints, as we can see in Table 2.1.

Regular SG vs GASG
Level 2 Level 3 Level 4

GASG with DN stencil 385 3009 11969
regular SG 385 74497 9659649

Table 2.1: Comparison in gridsize for a 8x8x3 image. Table data taken from [Wael7]

2.2.1 Interactions

The so called choice of gridpoints upon a geometric relation can also be called
interaction. So to apply this approach to a grid, we will define our geometry aware
sparse grid space V7 to only take in subspaces W; that model an interaction T [Wael7].

vi= pH w (2.17)
WeVAZ(T)

The function Z(I) here, is a function that returns the modeled interactions.

2.2.2 Stencil

The stencil is the property on which interactions get modeled.
For the example of image classification there are various stencils, including the direct

2 Theory

neighbour DN or the diagonals DNDIAG stencil. The impact on the gridsize of these
stencils compared to a sparse regular grid in plotted in Figure 2.5. In this figure we can
clearly see that the reduction of gridpoints is significant [Wael7].

For this thesis however the only important stencil is the direct neighbour stencil on a
single color image. In Figure 2.4 the calculation of the interactions for such a stencil is
illustrated.

1 P 2 = 3 2 4 —» 5 P~ 6
v v v v v v
7 > - > > -

v v v v v v
v v v v v v
v v v v v v

Figure 2.4: Direct neighbour stencil for a 6x5 image. An arrow represents a modeled
interaction and the numbers represent the dimension of a pixel.

2 Theory

-

1[}1:. — —

eridpoints
 —
<
[

1[}_1— | | | | L
1 2 3 4 5

orid level

—e—regular sparse grid
—a— direct neighbor
—5— diagonals

Figure 2.5: Amount of gridpoints for a 32x32 RGB image with different stencils
compared to a regular SG. Graph from [Wael7]

10

3 Implementation

The implementation part of this thesis is mainly about a framework called SG++. It is a
sparse grid implementation, in which a developer can make use of that library.
However, recently a data mining pipeline was added to make it also usable by non-
developers. Up to this date the pipeline does not support geometry aware sparse grids,
thus it is implemented in the span of this thesis.

SG++ also does not have many use cases to present the framework to people that are
not familiar with it. Therefore a mobile application performing image classification
using geometry aware sparse grids was developed.

3.1 SG++: General Sparse Grid Toolbox

SG++ is an open source numerical library for spatially adaptive sparse grids. It is
written in C++ and was created by Dirk Pfltiger throughout his dissertation in 2010. It
is still being developed at the Chair of Scientific Computing at the Technical University
of Munich.

One of the many features I will be working with is the datamining pipeline of the
framework. The purpose of this pipeline is to make the use of the toolbox more user
friendly. It uses a configuration file, which in our case is a JSON-file that stores the data
that is supposed to be evaluated.

In this thesis the integration of the geometry aware sparse grids into the pipeline has
been done. Now the user can choose the resolution of the image he wants to classify
and specify the stencil in the configuration file.

11

3 Implementation

3.2 Datamining Pipeline

The datamining pipeline in SG++ has the goal to make the toolbox easier to use. By
using the pipeline for classification the only relevant components of the toolbox for the
user is the ClassificationMinerFromConfig class [Fucl8]. The classification process can
then be initiated by passing the configuration file as a command line argument to the
execution of the ClassificationMinerFromConfig file.

The pipeline currently consists of four different components. However only the
following two are relevant in this thesis

DataSource This module handles the data samples, that are used to train a model.

Fitter This module is the core of the pipeline as it implements various datamining
methods.

3.3 Geometry Aware Sparse Grids Integration into
Datamining Pipeline

For the datamining pipeline to support geometry aware sparse grids, a grid has to be
created based on a specific stencil and the resolution of the image. With this stencil
interactions get created and these interactions then get passed on to the grid creation.
This created grid only contains gridpoints according to the interactions that have been
passed on. The resulting grid is then used for training in the next steps of the pipeline.
Since the pipeline receives data through a configuration file, a geometryConfig has been
added to the configuration file under the Fitter module with the parameters for the
stencil and the resolution.

This new information for the geometry aware sparse grids is then processed in
ModelFittingDensityEstimationOnOff by passing the parsed information in the
geometryConfig onto the grid creation.

The grid creation used to be in the ModelFittingBase class, however for a better
overview the grid creation is exported to the GridFactory class. GridFactory is now
solely responsible for the grid creation in the pipeline.

Now it needs to be differentiated between creating a normal sparse grid and a
geometry aware sparse grid. This is done by checking, if values in the configuration
tile for the geometryConfig have been passed on.

Now when it comes to creating the grid in the GridFactory class, a geometry aware

12

3 Implementation

sparse grid is then created upon the stencil that has been chosen and the resulting
interactions that get generated.

By this the geometry aware sparse grids have been integrated into the datamining
pipeline.

3.4 Learning the data

The image classificator that has to be developed is supposed to classify hand drawn
numbers. Therefore we need a large dataset containing hand drawn numbers to then
train this data in the SG++ framework and finally export the trained data to evaluate it
later on in the mobile application.

3.4.1 MNIST dataset

The dataset we chose for training our model is the MNIST dataset. This dataset is
an accumulation of 60000 handwritten digitized numbers ranging from 0 to 9. Those
images have a resolution of 28x28 pixels. As illustrated in Figure 3.1 the numbers have
a white background and are written with a black color. The color white in the dataset
has a value of zero and the color black has a value of one. It is also important to note
that the pixel values of numbers almost always are values between black and white.
This will be important later on for the mobile application [LCB].

2

Figure 3.1: Sample image of the number two from the MNIST dataset

3.4.2 Training

The training was simple, because the functionality for the grid creation and density
estimation is already implemented in the datamining pipeline. In Section 3.3 the
geometry aware sparse grid support was implemented as well. The density estimation
for the data is then done by using the ClassificationMinerFromConfigFile in the
sgpp/datadriven/examplesPipeline and adding the created geometryAwareSparseGrid.json
configuration file as a command line argument to it.

The geometryAwareSparseGrid.json contains two specific values for geometry aware
sparse grids:

13

3 Implementation

e On the one hand a resolution parameter, which in this case has to be 28x28
matching the provided dataset in Section 3.4.1.

e And on the other hand a stencil parameter, which we chose to be the
DirectNeighbour stencil.

3.4.3 Exporting

The data is simply exported by storing labels, instances, grids and surpluses of each
model into text files. This process was split up by having one text file for all labels, one
text file for all instances and ten text files for each grid and surpluses of a model.

The data can be accessed through the ModelFittingClassification class, because it stores
all the references of the current models. Additionally it stores the labels and instances
of the current models. So by extending the ModelFittingClassification class by a
storeClassificator() method, we can already save labels and instances into text files.

A model is created in ModelFittingBaseSingleGrid and contains the created grid and
calculated surpluses of a Classificator. Therefore ModelFittingBaseSingleGrid has to be
extended by a storeFitter() method that converts and returns the grid and surpluses
together as strings.

Now by calling storeFitter() for every model in storeClassificator() we also receive the
grids and surpluses.

With this we have all data needed to classify new unseen data and can move on to
develop our mobile application and implement an evaluation method based on the
exported data we have.

3.5 App development

One goal of this thesis was to develop a mobile application that demonstrates image
classification through geometry aware sparse grids. This was supposed to be working
on a standalone tablet, however executing the calculations solely on the tablet was not
teasible and I developed a workaround for this, which includes a server.

To start off with the development the exported data has to be imported into the server
and structured so it can be easily accessed for the evaluation.

Then for the Server-Client Communication that is illustrated in Figure 3.2 a frontend
application, which will be called Client further on and a backend application, which
will be called Server further on has to be developed.

HUAWEI Mediapad M5 will be the Client throughout this thesis. It is a tablet with an
Android operating system with a resolution of 2560x1600 pixels. The information of

14

3 Implementation

the resolution will be of big importance, as we will see during the developing process
of the application.

Prediction

Tablet Rrrrrir o}

SR ———

Figure 3.2: Simplified Server-Client communication. The procedure of the prediction is
to draw a number onto the touchscreen of the tablet and press on predict.
Then a message is sent to the server, which then evaluates the number and
returns back a prediction of the number. The prediction is then displayed
on the tablet.

3.5.1 Data Structure

As we know already we exported text files containing the necessary information. To
perform an evaluation on this data, we need to create a data structure in Java. As seen
in Figure 3.3, we split the data into three classes.

Classificator An instance of the classificator class represents a trained model, in our
image classification of handwritten numbers each of those instances represent a
number ranging from 0 to 9.

Grid The grid class stores two lists. The first list surpluses are the exported weights of
the density functions stored as Double.

The second list gridPoints is a double list. Whereas the size of this list represents the
amount of grid points, which in our example are 10753 points for each model. The list

15

3 Implementation

inside gridPoints represents the position of each grid point of that specific grid, which
in our example is a position in 784 dimensions.

GridPoint The GridPoint class stores the level and index of a specific grid point inside
a grid.

Classificator
+ grid: Grid
+ gridType: String

+ instances: int
+ label: int getter() and setter()
A

Grid
+ surpluses: List<Double>
+ gridPoints: List<List<GridPoint>>

getter() and setter()

GridPoint

+ level: int
+ index: int

getter() and setter()

Figure 3.3: Data Structure in Java of the exported state

3.5.2 Client

The client, as illustrated in Figure 3.2, is a tablet with an Android operating system.
Therefore the application for the image classification was developed in Android
Studios. The layout is written in XML and Java classes handle the functionality of those
XML-objects that are displayed. In Figure 3.8 we can see a screenshot of the
application. In the following I will briefly discuss every feature of the client and
explain some decisions that had to be made [Goo].

Color of drawing and background As already explained in Section 3.4.1 the numbers
of the dataset are drawn with a black color on a white background and to match the
dataset we will also have black draw color and white background.

Drawing Window The goal was to have a drawing space inside the app, that creates
an image with the same resolution as the training data set. The required resolution is

16

3 Implementation

an image of 28x28 pixels, however the resolution of the HUAWEI Mediapad M5 tablet
is 1600x2500 pixels. First off all, to avoid bending or stretching of the image, we will
create a canvas that has the same width and height. Now we have to bring the image
that is drawn into the same size as the training dataset of 28x28 pixels. There are
several approaches to achieve the expected outcome.

e One Solution could be to consecutively bundle 4 pixels until we reach the ends of
the tablet. This iteration would end after two steps making a final resolution of
448x448 pixels. Then one would just have to add every 16th pixel into a list and
return it

¢ Another solution could be to make use of the most space. By defining the drawing
space to 1600x1600 pixels and downscale the image afterwards to the required
28x28 pixels and returning this image

The downsides of the first solution are obvious, since the drawing space would be
relatively small compared to the actual size of the tablet. 448x448 pixels is the biggest
resolution that can be achieved by this approach, due to to next being 1792x1792 pixels.
The tablet however only has a width of 1600 pixels. Also every pixel in the returned
list would be either black or white, this does not match the training data set. The
smartest way to attain the best prediction results would be to have an input that also
matches the training data. The data contains various values ranging from black to
white, therefore this approach is not a good fit.

The second solution seems more promising than the first one. First off we have the
biggest possible square drawing window with 1600x1600 pixels, this makes the user
experience way better. Additionally by downscaling the image with the integrated
function of Android Studio Bitmap.createScaledBitmap() we get interpolated values of
the drawn pixels. That means the image we want to predict matches the training
dataset even more, because it mostly consists of interpolated values between 0 and 1.

PREDICT Button The button itself is self explaining. After drawing an image into the
Drawing Window, the user can press the PREDICT Button to have his drawing
evaluated.

CLEAR Button If this button is pressed the entire Drawing Window will be cleared of
any current drawing. This is done by calling the method clearBitmap() onto the drawing
canvas. Additionally, if a PREDICTION is currently displayed it will be made invisible.

SETTINGS Button This button redirects to another activity, in which settings can be
adjusted. There are two settings that can be adjusted currently

17

3 Implementation

e Since the application only supports local routing up until now. The IPv4 adress
has to be adjusted, if the server is connected to another local network. Therefore
the user can change the IPv4 adress easily in the SETTINGS activity.

e For developers datasets can be created with the STORE and SAVE functions. To
recognize them later a filename can be set for the current dataset

Display Prediction After having pressed on the button PREDICT, a message is
displayed in the center top of the screen. This message lasts there until the CLEAR
button is pressed.

STORE Button This button is a button for developers, thus it is not shown in the
screenshot. This button triggers the method store() in the MainActivity. By pressing it a
String is appended with the current bitmap that is displayed.

SAVE Button This button is a button for developers, thus it is not shown in the
screenshot. This button triggers the method save() in the MainActivity. By pressing this
button every image that was stored by pressing STORE is saved in a file in the
INTERNAL STORAGE of the device and can then be used as dataset for further
evaluation.

Unused space By having a square Drawing Window, one third of the screen is left
unused. Therefore to make the user interface more appealing an explanation of the
classification method is given. Also the currently supported numbers that can be
predicted are displayed. Lastly the TUM logo is added to top off the appearance of the
interface.

This was a small explanation of every feature of the user interface. Now I want to
move on and explain two of the most important functions of the client.

getPoint() This method is essentially the formatting of the number that is being drawn
into the desired state that we talked about earlier. To format the data we basically have
to do three things:

e Scale down the original image of the tablet into to required resolution of 28x28
pixels. This is done consecutively by using the Bitmap.createSclaedBitmap() method
of the Android Studio library. With this we basically scale the image step by step
to get interpolated values. These values match better with the training data. If the
downscale would have been done in one step, almost every value would either be
black or white. This different downscaling approaches can be seen in Figure 3.4.

18

3 Implementation

Also comparing Figure 3.6 and Figure 3.5, it can be clearly seen that Figure 3.6
matches the MNIST dataset more.

e Arrange the pixel values accordingly to the MNIST dataset. This is also done to
match the dataset, because the training dataset is iterated over row wise and not
column wise like a usual list would be.

e Normalize the values to match the training data, due to color values in Android
Studio differing from the color values of the MNIST dataset.

Figure 3.4: Original image(left), one time down scale(center) and consecutive down
scale(right)

Figure 3.5: Sample from MNIST Dataset(left) and sample of a one time downscale(right)

19

3 Implementation

Figure 3.6: Sample from MNIST Dataset(left) and sample of a consecutive
downscale(right)

predict() This method is the onClick() method of the PREDICT button. The procedure
of this method is illustrated in Figure 3.7.

—_

. The getPoint() method is called to format the data into the desired state.

2. The data is then formatted to a JSON-object.

3. Either previous IPv4 address is used or updated address from SETTINGS is used.
4. Send HTTP POST Request to http://Host:Port/predict.

5. Wait specific time for response.

6. If response is received the prediction is displayed, otherwise error message can
be seen from console.

3.5.3 Server

The servers responsibility is to standby until a message is received, which contains the
data of the number that was drawn on the tablet. Then to evaluate this message,
classify the number and lastly return a message of the predicted number in form of a
JSON-object.

The server is setup on a Spring Boot framework and written in Java. Therefore it can be
run on any machine that supports a version of Java 1.8 or higher. Preferably a more
powerful machine, since reading the trained data and creating objects according to our
predefined data structure in Section 3.5.1 requires a lot of RAM and some computation
time depending on the processor used.

Spring Boot Spring Boot is an extension to the Spring framework. It allows us to easily

20

3 Implementation

‘Tablet

—L Predict onClick()

Display prediction

Figure 3.7: Sequence Diagram of Server-Client Communication

b

< _________________

:Server

predict()
Send Http POST Request

Return predicted value

< __________________________

evaluate()

21

3 Implementation

30t =, 4 100% = 18:25

SETTINGS

P

This is an image classificator using sparse grids.
Draw either 0, 2 or 6 to have them predicted!

Info: Make use of the entire drawing space and do
not tilt your drawing for good results.

Figure 3.8: Screenshot of the SGDE App, taken from the HUAWEI Mediapad M5

22

3 Implementation

setup a server, without having to make further configurations. By creating a Spring
Boot project with a REST API, a server is hosted on http://localhost:8080. Localhost is the
IPv4 address of the machine the server is running on, we can configure our tablet to
send a message to this address under SETTINGS [Sof].

Handle HTTP POST Request As already mentioned earlier we use a HTTP POST
Request in the Client to have the number predicted. On the server side POST allows us
to receive some type of data as JSON-object, do something with the data and finally
return some type of data as JSON-object. In our context we receive the image as
JSON-object, convert the data of the image, perform an evaluation and finally return
the label of the predicted number. The POST request can be made through
http://localhost:8080/predict.

Data Structure We construct our data structure for the Classificators according to
Figure 3.3.

Beans This project was supposed to be solely run on the tablet. However converting
the exported data from Section 3.4.1 into our preferred data structure from Section
3.5.1 has a high computational effort, due to this data structure creating many objects.
Therefore the application on the tablet would either load for a long time every time it
is opened or it could also simply run out of memory. Therefore a workaround had to
be developed to have a good user experience.

This problem is solved by using the Bean concept of the Spring framework. It allows us
to convert the data into the data structure at the start up of the server. That means we
use the computational power of the server instead of the tablet to fasten the process of
parsing. Due to the server running in the background, the user can open, close and run
the application without delay.

In this example we define ten Beans representing each Classificator and parse it to the
desired data structure in ClassificatorFactory. Now we can have access to this data at
run time.

With this brief overview of the server we can go over to the actual implementation of
the evaluation() method.

evalClassificator() is the first part of the implementation for the evaluation() method
and can be seen in Algorithm 1.

As explained previously in the Beans and HTTP POST Request sections, we start off by
having all Classificators loaded and are already in a state to handle an incoming POST
Request. If that POST Request is valid evalClassificator() is called with the set of

23

3 Implementation

Classificators C and the point P. P is a set of pixels that represent the image. Also in this
context the validation of the POST Request is done by verifying the size of P being 784
pixels.

Moving on to the algorithm, first the total amount of instances the data was trained
with is calculated. This value might or might not be used, depending if prior is set or
not. Then for every Classificator the density values are calculated. This is done by
calling the evalSparseGrid() method illustrated in Algorithm 2.

After the classDensity calculation, the algorithm checks for the prior value. If it is set a
relative density is calculated, if it isn’t then the classDensity values are unchanged. The
effect of prior can be seen in Table 4.3 and Table 4.9.

Finally the label of the largest classDensity value of all densities is returned.

evalSparseGrid() is called in evalClassificator(). It is invoked with a point and a specific
Classificator that the point should be evaluated on. This method returns the actual
density value.

Since the Classificator already provides every necessary information that we need to
evaluate the point, the algorithm just extracts and initializes every information needed.
Additionally to that, a sum variable is initialized, which will be our return value in the
end. A grid of a Classificator contains grid points. Each grid point has positional
information in form of a level and index, in every dimension.

Now the algorithm just iterates over every grid point and for each position in every
dimension the point in located in, ¢; ;(P[dimension]) is calculated.

¢1;(P[dimension]) is in this case the modified linear basis function evaluated on the
image.

@1 i(P[dimension]) is then multiplied for each iteration.

After this is done for one point the sum variable is updated by adding the weighted
basis function to it.

Finally the sum variable is returned, which is our required classDensity.

24

3 Implementation

Algorithm 1: evalClassificator()

© ®© N S U kR W N =

P e
W N = O

Data: set of classificators C, point to be evaluated P, prior
Result: label of predicted value
sumlInstances < 0;
for each classificator c € C do
sumInstances += c.getInstances();
end
for each classificator c € C do
classDensity < evalSpraseGrid(c, P);
if prior then
relativeAmount < 72%;“?;;?;::; s() ;
classDensity < classDensity x relativeAmount;
end
classDensityList.add(classDensity, c.getLabel());

end
return maxClassDensity(classDensityList).getLabel()

25

3 Implementation

Algorithm 2: evalSparseGrid()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

Data: classificator ¢, point to be evaluated P
Result: classDensity
sum < 0 ;
product < 0 ;
currentlteration < 0;
dimension D < c.getDimensions();
grid = c.getGrid();
surpluses S = grid.getSurpluses();
gridPoints GP = grid.getGridPoints();
for each gridpoint gp € GP do
for each dimension do
if dimension == 0 then
| product < ¢, ;(P[dimension]);
else
‘ product < product x ¢; ;(P[dimension]);
end
end
sum += product x S[currentlteration];
currentlteration++;

end
return sum;

26

4 Evaluation

In this chapter our sparse grid implementation will be validated by comparing the
outcome with the SG++ sparse grid implementation on different datasets. Also the
accuracy of our sparse grid implementation will be examined on different datasets.

4.1 Validation of Sparse Grid Implementation

First of we want to validate our sparse grid evaluation implementation that has been
done in Section 3.5.3. We can do this by computing the relative error of the evaluation
function of our implementation and comparing it to the evaluation function of the
SG++ framework. This is done on a density function that was computed in SG++ from
the MNIST dataset for the number 2.

Let x be our expected value and xy be our measured value. Then we get the absolute

error by calculating the difference Ax and taking the absolute value of it. Then by
dividing the absolute error by the absolute expected value we get the relative error dx.

ox

:‘Ax|:‘x0_’“):"“’—1‘ 4.1)
|x| x x
Now we can convert the relative error into a percentage error pe(xo, x).
X0
pe(xop, x) =)? - 1‘ % 100% (4.2)

To get a more accurate percentage error, we can calculate it for many values and then
take the mean of it. Let listOne be of size N containing all measured values and listTwo
also be of size N containing all expected values. Then we get the mean percentage error
mpe(listOne, list Two) with

Y0 pe(listOne.get(n), listTwo.get(n))

mpe(listOne, listTwo) = N (4.3)

Applying (4.3) to our case we view the evaluation() from the framework as expected
value and the evaluation() from the server as measured value. In the following the mean
percentage error is calculated on two different datasets.

27

4 Evaluation

4.1.1 Random dataset

The first dataset we want to validate our sparse grid implementation on is a
randomized dataset. For this a dataset with 1000 points was created. Each datapoint
has a list of the size 784, which represents a 28x28 pixel image. The values inside an
image are calculated by the randomize function of python
random.uni form(lowerBound, upperBound). For our case we need a lowerBound = 0
and an upperBound = 1. Samples of this data set can be seen in Figure 4.1.

Calculating the mean percentage error is done by evaluating both datasets on the
density estimation for the number two. We get

mpe(evaluationServer(randomDataset), evaluationSG + + (randomDataset))
= 313.19460522364295% ~ 313% (4.4)

As we can see the mean percentage error of this dataset is very high with approximately
313%, this might mean that the algorithm is not correctly implemented.

Figure 4.1: Examples of randomized dataset

28

4 Evaluation

Density values

Point SG++ Server

1 -161.27 -157.94
2 128.69 255.09
3 111.24 81.04
4 268.05 452.29
5 41.76 78.56
6 -111.23 -297.62
7 -16.34 -49.09
8 -326.19 -384.61
9 316.23 337.64

10 141.27 159.13

Table 4.1: Some sample density values from the evaluation of the random dataset on
the Classificator 2 in the server and in SG++

4.1.2 Tablet dataset

The next dataset is generated through the tablets user interface. Since the data is
evaluated onto the density estimation of the class label two, it makes sense to also draw
the number two and create a dataset of it. The images drawn are already in the right
format. Examples of this dataset can be seen in Figure 4.2

So by just exporting them and evaluating this dataset onto both evaluation() functions
we get a mean percentage error of

mpe(evaluationServer(tabletDataset), evaluationSG + + (tabletDataset))
= 0.7542007256638145% ~ 0.75% (4.5)

This value is very very small compared to (4.4). The measured values of this dataset
barely differ from the expected values.

29

4 Evaluation

Figure 4.2: Examples of tablet dataset

Density values

Point SG++ Server
1 25717.54 26008.06
2 24826.65 24953.14
3 23539.39 23649.79
4 24847.33 24996.17
5 23095.78 23289.79
6 23633.21 23819.00
7 25665.37 25853.70
8 22972.48 23194.50

Table 4.2: Some sample density values from the evaluation of the tablet dataset on the
Classificator 2 in the server and in SG++

4.1.3 Outcome

By looking at the values of (4.5) and (4.4) and the context of the use we can answer this
question.

The mean percentage error in (4.4) makes it very clear that there is something not
perfect in our sparse grid implementation. Meaning that either exporting the learned
state has flaws and/or the evaluation function in the server is calculated wrong.
However the mean percentage error in (4.5) proves the opposite. If actual valuable
images are provided the sparse grid implementation on the server has a very low
relative error. This means that the evaluation function has to be correct, but exporting
the state was not done perfectly and a rounding error is made somewhere.

The only values that might cause this rounding error have to be the surpluses that are

30

4 Evaluation

exported in Section 3.4.3. Since every other value that is exported is of the type Integer
or String.

Also the other thing we can observe are the actual values of the densities that can be
seen in Table 4.1 and Table 4.2. The random dataset densities are usually around the
number 0, whereas the densities for valuable data from the tablet is around 24000. This
pattern for the densities can be observed for every valuable image. A valuable image is
a hand drawn number between 0 and 9. That means that the relative error is also very
little for any other number.

All in all this implementation of the evaluation function of a sparse grid density
estimation that is done here is still valid. The use of this sparse grid implementation is
to predict numbers, so only valuable information counts. In Section 4.1.2 it is proven
that the prediction of valuable pictures have a negligible relative error.

4.2 Accuracy of sparse grid implementation

After validating our sparse grid implementation, we can move on to actually testing
and evaluating the classification result we get from our evaluation function on the
server. We will do this by using different datasets. Including the MNIST test dataset
and datasets created by drawing onto the tablet.

4.2.1 Testing process

Here I want to explain the process and the conditions I tested my sparse grid
implementation on.

Choice of numbers Basically the numbers I will be testing on are 0, 2 and 6. This is
due to dominant number problem. This problem is already known and discussed in
[Wael7]. To give a small explanation, in the trained data there exist some numbers that
are more dominant than other numbers. A dominant number tends to get predicted
more often than others. In [Wael7] it is reasoned by numbers that have the least
variation of pixels result in being more dominant. The pattern of the dominant
numbers according to [Wael7] are as following: 1,9, 7, 4, 6, 8, 3, 5, 2, 0 with 1 being the
most dominant and 0 being the least dominant.

The result of the evaluation of all numbers 0 to 9 from the MNIST test dataset on our
application can be seen in Table 4.9. The results are very poor and support the
dominant numbers problem since 1 is always predicted. 1 being always predicted
matches the pattern from before. This means that it makes no sense evaluating the
application on all numbers 0 to 9 that the data provides. Instead the numbers 0, 2 and
6 are used, since according to [Wael7] 0 and 2 are numbers that have similar standard

31

4 Evaluation

deviation therefore will have good results. The 6 was also added to have more variety
in the predicting process. This makes the application more fun to the user. Also the 6
is a good number to use since it differs a lot from 2 and 0 pixelwise and therefore I am
making the assumption that this will lead to better results.

Automation of process For this a .python file was written that parses the datasets,
sends HTTP POST Requests to our server and then evaluates the result.

4.2.2 MNIST datasets

The first dataset we are testing our sparse grid implementation on is the MNIST Test
Dataset. Since we want to get the accuracy on the actual user application we are only
testing it on 0, 2 and 6. Thus we only get those three datasets out of the test data.

MNIST Test Dataset

Number Number of Images Prior Accuracy

0 980 No 0.7653
0 980 Yes 0.7724
2 1032 No 0.7161
2 1032 Yes 0.9099
6 958 No 0.9937
6 958 Yes 0.9833

Table 4.3: MNIST Test Dataset for numbers 0, 2 and 6 evaluated on our sparse grid
implementation

Prior The dataset was tested with and without setting prior. As a reminder, if prior is
set the amount of instances, that the densities are trained on, have an impact for the
evaluation. In this example we can see the accuracy for 0 increases a bit and the
accuracy for 2 increases a lot, while the accuracy for 6 decreases a little as well. Based
on these results we will have prior set for the user application to get better results.
Since the accuracy for the number 2 increases by 20%, while the accuracies for 0 and 6
are barely affected.

Accuracy The accuracy of these results are very promising. If a 6 is drawn it almost
always gets predicted with a 99% chance, which proves my assumption from earlier
that the number 6 differs a lot from 0 and 2 and thus results in better prediction for the
number 6. With prior being set number 2 has a good result with around 90% accuracy

32

4 Evaluation

and number 0 has an acceptable result with around 77% accuracy.

4.2.3 Handdrawn datasets

The next datasets we are going to be using are datasets created by people drawing onto
the tablet.

User 1 The results of user 1 can be seen in Table 4.4. For numbers 2 and 6 the
accuracy of the prediction is really good, however the accuracy for the number 0 is very
poor. This poor result can be reasoned by the user not taking advantage of the full size
of the drawing space. This can be seen in Figure 4.3. All samples of the number 0 are
quite small and have similarities to the circle that a 6 contains.

User 1

Number Number of Images Prior Accuracy

0 26 Yes 0.2308
2 27 Yes 0.9259
6 30 Yes 0.8

Table 4.4: Dataset of user 1 evaluated for numbers 0, 2 and 6 on our sparse grid
implementation

0 002 2792 6 6 6

Figure 4.3: Samples from user 1

User 2 The results for user 2 can be seen in Table 4.5. Overall the accuracy is very
good. The samples from user 2 in Figure 4.4 make use of the full screen and are not
tilted significantly, this results in a good accuracy.

33

4 Evaluation

User 2

Number Number of Images Prior Accuracy

0 23 Yes 0.8261
2 13 Yes 1.0
6 36 Yes 0.9162

Table 4.5: Dataset of user 2 evaluated for numbers 0, 2 and 6 on our sparse grid
implementation

000222¢6¢ 6

Figure 4.4: Samples from user 2

User 3 The same thing applies here that applied to user 2. The numbers are not tilted
significantly and use the entire screen. This explains the good accuracy in Table 4.6.

User 3

Number Number of Images Prior Accuracy

0 13 Yes 0.8462
2 17 Yes 1.0
6 14 Yes 0.9286

Table 4.6: Dataset of user 3 evaluated for numbers 0, 2 and 6 on our sparse grid
implementation

000222666

Figure 4.5: Samples from user 3

User 4 A very low accuracy can be observed in Table 4.7 for the number 2. Looking
at Figure 4.6 the samples for number 2 are drawn in a tilted way. This makes it hard
to predict the number, since it is not trained that way. However numbers 0 and 6 are
predicted right with a very good accuracy.

34

4 Evaluation

User 4
Number Number of Images Prior Accuracy
0 51 Yes 0.9804
2 20 Yes 0.05
6 20 Yes 1.0

Table 4.7: Dataset of user 4 evaluated for numbers 0, 2 and 6 on our sparse grid
implementation

OO0O0O0O1Z2 2t 6 6 ¢

Figure 4.6: Samples from user 4

User 5 Table 4.8 shows poor results for the numbers 0 and 2. The samples for 0
and 2 in Figure 4.7 have the same properties as the previous numbers that have been
predicted poorly. They are small and tilted. In this case the 6 has a relatively low
accuracy compared to the usual accuracy of the number 6. Here the 6 is also drawn
quite small.

User 5

Number Number of Images Prior Accuracy

0 26 Yes 0.2353
2 27 Yes 0.2778
6 30 Yes 0.7647

Table 4.8: Dataset of user 5 evaluated for numbers 0, 2 and 6 on our sparse grid
implementation

O 00 2% 2 6 ¢ ¢

Figure 4.7: Samples from user 5

35

4 Evaluation

4.2.4 Outcome

Generally the accuracy for both the test dataset from MNIST and user datasets created
on the tablet have promising results.

However for users that tend to draw small, the accuracy decreases a lot. This
phenomena can be seen in the results for users 1, 4 and 5. This could be fixed by
downscaling the drawn image in a different way. For example by extracting the extra
white space, if a user draws a small image.

Also there seems to be a decrease in the accuracy, if the number is drawn in a tilted
way. This can be seen in the results of user 4 and 5.

Concluding for getting the best results for the current implementation it is best to use
the entire screen to draw on and to not tilt the drawing. By following these conditions
an average of 90% accuracy can be guaranteed.

36

4 Evaluation

MNIST Test Dataset

Number Number of Images Prior Accuracy

0 100 No 0.29
0 100 Yes 0.0
1 100 No 1.0
1 100 Yes 1.0
2 100 No 0.03
2 100 Yes 0.0
3 100 No 0.06
3 100 Yes 0.0
4 100 No 0.36
4 100 Yes 0.0
5 100 No 0.02
5 100 Yes 0.0
6 100 No 0.26
6 100 Yes 0.0
7 100 No 0.37
7 100 Yes 0.0
8 100 No 0.01
8 100 Yes 0.0
9 100 No 0.29
9 100 Yes 0.0

Table 4.9: MNIST Test Dataset for all numbers evaluated on our sparse grid
implementation

37

5 Conclusion

Over the span of this thesis geometry aware sparse grids have been integrated into the
datamining pipeline of SG++. This required adding specific geometry aware
parameters to the configuration file that is used to instantiate the pipeline. Those
parameters are then parsed and used during the grid creation.

Additionally a mobile application to demonstrate image classification with geometry
aware sparse grids was developed in this thesis. The application is a hand drawn
number classificator. For this the previously added support for the geometry aware
sparse grid in the pipeline was utilized. The pipeline was used to create the grid and
the density functions. This data then had to be exported and evaluated on a embedded
sparse grid implementation. The embedded implementation was constructed by a
Server-Client application, since the Client alone was not able to handle processing the
data in a reasonable time.

During evaluation a few adjustments had to be made on the application. First off the
embedded sparse grid implementation had a very high deviation for the evaluation
function compared to the SG++ evaluation function. However this high deviation was
only apparent for random datasets and the deviation was very low for so called
valuable datasets. Valuable datasets are basically datasets that represent numbers. Since
numbers are the only data that are evaluated in the actual user application, the
implementation could still be used further on. Secondly there was a high inaccuracy, if
all numbers were taken into account in the classifying process. This was reasoned by
the dominant number problem. To avoid this problem numbers were chosen that have
similar standard deviation and/or numbers that are very different pixelwise.

Overall the first prototype of the application shows promising accuracy for the chosen
numbers. For the large MNIST Test Dataset an average accuracy of 88% for the
prediction of a number can be promised. However for users that tested the application,
various results were observed. Some users even exceeded the MNIST Test Dataset
accuracy, whereas some were far below that accuracy. This was due to some user
having very different handwriting, but mainly was caused by tilting their drawing or
drawing very small numbers into the tablet.

38

6 Future Work

Work that still can be done starting off from this thesis can be partitioned in two
different areas.

First off the datamining pipeline currently only supports the Direct Neighbour Stencil.
The stencils can easily be expanded with all the stencils mentioned in [Wael7].
Including the Diagional Stencil and the Square Stencil. Also refinement for geometry
aware sparse grids in the pipeline has to be added.

In this thesis exporting the trained data from the pipeline was done ad hoc, this
process however can be implemented into the pipeline as extra feature that the user
can select in the configuration file.

The second part is the developed user application. With the current user application
merely just being a first prototype there is lots of room to improve.

As for the frontend the only supported layout is vertically and with a resolution of
2560x1600 pixels. This is due to the image classification requiring specific input data,
therefore for simplicity the layout was designed with the tablet that was provided. This
means as for now the application was not tested on different devices with different
screens and will be most likely displayed incorrectly.

Also a horizontal layout for the current device is not supported and can also be easily
extended.

There are lots of parameters used for the drawing, these parameters can be changed
and can then be examined for the accuracy of the prediction. Different pencil sizes or
different drawing patterns might lead to better results, this can be tested and
documented.

Also in the current implementation the down size of the picture is done by the library
function of Android Studios. Different down sizing methods can be applied and tested
for accuracy as well.

Also the user application can be extended to support different modes of classification.
For example the user could be able to choose the datasets, i.e. different numbers or
shapes, he wants to classify or choosing a mode like SUMMATION, in which the user
can draw two numbers that get summed up.

The application can also be extended to support error handling. For example a blank
drawing will not throw an error in the current application.

For the backend we found out in Section 4.1 that there is a big deviation for random

39

6 Future Work

datasets in the embedded sparse grid implementation compared to the SG++
implementation, this deviation has to be investigated for clarification. However does
not make a big difference for the current application.

Also the backend needs trained data, that is created through the tablet for better
classification results. For now the trained data only consists of data from MNIST. This
can easily be done, since the tablet already supports dataset creation, however it would
be very tedious for one person to create a big enough dataset. Therefore the process of
data creation has to be automated and collected from users of the application.

The current application only works for local networks. Meaning that the server and
client have to be in the same network to communicate. This can be made globally
accessible through the web by creating a server that runs constantly and making the
current localhost IPv4 address accessible from the internet.

To support different datasets the backend has to be extended with different
POSTMapping methods that include different datasets.

40

List of Figures

2.1

2.2
2.3

24

2.5

3.1
3.2

3.3
34

3.5

3.6

3.7
3.8

4.1
4.2
4.3
44
4.5

Linear interpolation (left) and linear combination from basis hat functions
(right). Image from [PfI10] 5
Subspaces W, for [I| < 3. Image from [PI10] 6
Subspaces W; of a sparse grid with level 1=3 (left) and overlapping all

subspaces W; results in the sparse grid space V3(1) (right). Image from

[PEIIO] . . . oo 7
Direct neighbour stencil for a 6x5 image. An arrow represents a modeled
interaction and the numbers represent the dimension of a pixel. 9
Amount of gridpoints for a 32x32 RGB image with different stencils
compared to a regular SG. Graph from [Wael7] 10
Sample image of the number two from the MNIST dataset 13

Simplified Server-Client communication. The procedure of the prediction
is to draw a number onto the touchscreen of the tablet and press on
predict. Then a message is sent to the server, which then evaluates the
number and returns back a prediction of the number. The prediction is

then displayed on the tablet. 15
Data Structure in Java of the exported state 16
Original image(left), one time down scale(center) and consecutive down
scale(right) L 19
Sample from MNIST Dataset(left) and sample of a one time
downscale(right) oo o 19
Sample from MNIST Dataset(left) and sample of a consecutive
downscale(right) L oo 20
Sequence Diagram of Server-Client Communication. 21

Screenshot of the SGDE App, taken from the HUAWEI Mediapad M5 . 22

Examples of randomized dataset 28
Examples of tablet dataset 30
Samples fromuser 1 L 33
Samples fromuser2 L 34
Samples fromuser3 34

41

List of Figures

4.6 Samples from user 4
4.7 Samples from user 5

42

List of Tables

2.1

41

4.2

4.3

44

4.5

4.6

4.7

4.8

4.9

Comparison in gridsize for a 8x8x3 image. Table data taken from [Wael7]

Some sample density values from the evaluation of the random dataset
on the Classificator 2 in the server and in SG++
Some sample density values from the evaluation of the tablet dataset on
the Classificator 2 in the server and in SG++
MNIST Test Dataset for numbers 0, 2 and 6 evaluated on our sparse grid
implementation Lo
Dataset of user 1 evaluated for numbers 0, 2 and 6 on our sparse grid
implementation L L o
Dataset of user 2 evaluated for numbers 0, 2 and 6 on our sparse grid
implementation oo
Dataset of user 3 evaluated for numbers 0, 2 and 6 on our sparse grid
implementation L L L
Dataset of user 4 evaluated for numbers 0, 2 and 6 on our sparse grid
implementation L o oL
Dataset of user 5 evaluated for numbers 0, 2 and 6 on our sparse grid
implementation o Lo L o
MNIST Test Dataset for all numbers evaluated on our sparse grid
implementation L o oL

8

43

Bibliography

[Fuc18]

[Goo]

[LCB]

[Peh13]

[PI10]

[Sof]

[Wael7]

D. Fuchsgruber. “Integration of SGDE-based Classification into the SG++
Datamining Pipeline.” Bachelor Thesis. Technical University of Munich, Aug.
2018.

Google. Android public API documentation. Accessed: 15.12.2018. URL: https:
//developer.android.com/docs.

Y. LeCun, C. Cortes, and C.]. Burges. THE MNIST DATABASE of handwritten
digits. Accessed: 20.01.2019. URL: http://yann.lecun.com/exdb/mnist/.

B. Peherstorfer. “Model Order Reduction of Parametrized Systems with
Sparse Grid Learning Techniques.” Dissertation. Technical University of
Munich, Aug. 2013.

D. Pflueger. “Spatially Adaptive Sparse Grids for High-Dimensional
Problems.” Dissertation. Technical University of Munich, Feb. 2010.

P. Software. Spring Boot. Accessed: 10.02.2019. URL: https://spring.io/
projects/spring-boot#overview.

T. Waegemans. “Image Classification with Geometrically Aware Sparse
Grids.” Bachelor Thesis. Technical University of Munich, Oct. 2017.

44

https://developer.android.com/docs
https://developer.android.com/docs
http://yann.lecun.com/exdb/mnist/
https://spring.io/projects/spring-boot#overview
https://spring.io/projects/spring-boot#overview

	Contents
	Introduction
	Theory
	Sparse Grids
	Full Grid Interpolation
	Sparse Grid Interpolation
	Sparse Grid Density Estimation

	Geometry Aware Sparse Grids
	Interactions
	Stencil

	Implementation
	SG++: General Sparse Grid Toolbox
	Datamining Pipeline
	Geometry Aware Sparse Grids Integration into Datamining Pipeline
	Learning the data
	MNIST dataset
	Training
	Exporting

	App development
	Data Structure
	Client
	Server

	Evaluation
	Validation of Sparse Grid Implementation
	Random dataset
	Tablet dataset
	Outcome

	Accuracy of sparse grid implementation
	Testing process
	MNIST datasets
	Handdrawn datasets
	Outcome

	Conclusion
	Future Work
	List of Figures
	List of Tables
	Bibliography

