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Abstract

In this thesis, a new credibility assessment framework is developed for
computational wind engineering (CWE) simulations. The framework
is mainly developed for testing code implementation correctness
and estimation of the discretization uncertainty for eddy-resolving,
and unsteady simulations. The framework is composed of two main
milestones.

First, a modular and flexible procedure for code verification is devel-
oped with the ability to test black-box codes. The code verification
procedure focuses on the consistency of the code implementation
and convergence of field variables. The procedure for code verifica-
tion consists of analytical benchmarks, either exact or manufactured,
with increasing complexity to test the implementation of each term
in the Navier-Stokes equation.

Second, the reliability assessment framework has a guideline for the
quantification of discretization error/uncertainty. More precisely,
guidelines are defined for solution verification. The discretization
error/uncertainty estimation is based on the Richardson Extrapo-
lation approach. A solution biased uncertainty estimator is used to
account for using unstructured grids, non-uniform refinement, and
non-asymptotic solutions. The newly developed framework has a
new definition for the measurement of grid size, the manipulation
of simulation data with anomalous behavior, and the safety factor
definition in the uncertainty quantification of the discretization error.
The assessment methodology is suited to both well- and ill-behaved
sequences of simulations.

The performance of the assessment methodology is checked with a
glimpse of validation with experimental data. Finally, it can be con-
cluded that the developed verification methodology is highly quali-
fied to judge the quality of CWE simulations. Moreover, the generality
and modularity of the framework make it applicable to any software
environment regardless of the discretization scheme. Consequently,
the methodology encourages further research on the identification
of the reliability of CWE simulations.
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Zusammenfassung

In dieser Arbeit wird ein neues Rahmenwerk zur Glaubwürdigkeitsbe-
wertung für rechnergestützte Windsimulationen (CWE) entwickelt.
Der Rahmen wird hauptsächlich für die Prüfung der Korrektheit der
Code-Implementierung und die Abschätzung der Diskretisierungs-
unsicherheit für wirbelauflösende und instationäre Simulationen
entwickelt. Das Framework besteht aus zwei Hauptmeilensteinen.

Erstens wird ein modulares und flexibles Verfahren zur Code-
Verifikation entwickelt, das die Möglichkeit bietet, Black-Box-Codes
zu testen. Das Code-Verifikationsverfahren konzentriert sich auf die
Konsistenz der Code-Implementierung und die Konvergenz der Feld-
variablen. Das Verfahren zur Codeverifizierung besteht aus analyti-
schen Benchmarks, entweder exakt oder hergestellt, mit zunehmen-
der Komplexität, um die Implementierung jedes Terms in der Navier-
Stokes-Gleichung zu testen.

Zweitens verfügt das Rahmenwerk zur Glaubwürdigkeitsbewertung
über einen Leitfaden zur Quantifizierung von Diskretisierungs-
fehlern/Unsicherheiten. Genauer gesagt, werden Richtlinien für
die Verifizierung der Lösung definiert. Die Schätzung des Dis-
kretisierungsfehlers/der Unsicherheit basiert auf dem Richardson-
Extrapolationsansatz. Ein lösungsverzerrter Unsicherheitsschätzer
wird verwendet, um die Verwendung unstrukturierter Gitter, ungleich-
mäßiger Verfeinerung und nicht asymptotischer Lösungen zu berück-
sichtigen. Der neu entwickelte Rahmen hat eine neue Definition für
die Messung der Gittergröße, die Behandlung von Simulationsdaten
mit anomalem Verhalten und für die Definition des Sicherheitsfaktors
bei der Unsicherheitsquantifizierung des Diskretisierungsfehlers. Die
Bewertungsmethodik eignet sich sowohl für gut als auch für schlecht
verhaltene Simulationsfolgen.

Die Leistungsfähigkeit der Bewertungsmethodik wird mit einem Blick
auf die Validierung mit experimentellen Daten überprüft. Abschlie-
ßend kann festgestellt werden, dass die entwickelte Verifikationsme-
thodik hoch qualifiziert ist, um die Qualität von CWE-Simulationen
zu beurteilen. Darüber hinaus macht die Allgemeingültigkeit und
Modularität des Rahmens es für jede Softwareumgebung unabhängig
vom Diskretisierungsschema anwendbar. Folglich fördert die Metho-
dik weitere Forschungen zur Identifizierung der Zuverlässigkeit von
CWE-Simulationen.
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We can’t solve problems by
using the same kind of
thinking we used when we
created them.

Albert Einstein
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INTRODUCTION

In today’s world, modern architectural designs and limited spaces led to
a vast spread increase in tall buildings and large-span structures, which
require light-weight materials, as shown in Figure 1.1. Consequently, the
emphasis is added-on safety, human comfort, and serviceability under
wind loading. Load assessment, especially wind load, is very challenging
for structural engineers. Thus, computational wind engineering (CWE)
plays an ever-increasing role in the design, analysis, and optimization of
many civil structures. Therefore, it is imperative to build confidence in the
results of numerical simulation through reliability assessment.

1.1 Motivation

As reported by Blocken [3], Joel H. Ferziger stated that “The frequently
heard argument ‘any solution is better than none’ can be dangerous in
the extreme. The greatest disaster one can encounter in computation is
not instability or lack of convergence but results that are simultaneously
good enough to be believable but bad enough to cause trouble”. Both
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1 Introduction

Figure 1.1: Examples of highrise buildings and membrane large
span structures, which are very sensitive to wind loads ([1] [2])

experimental and numerical solutions have deficiencies. Thus, whether
dealing with experimental or numerical fluid dynamics, the credibility of
the results is still questionable. The shortcomings of existent experimental
techniques motivated the significant advancement of numerical studies in
fluid dynamics. The limitations of the experimental approach are high cost,
scaling issues, limited measurement points. In the context of this thesis,
only the credibility of numerical results is discussed through verification
activities. Figure 1.2 shows the role of verification and validation (V&V) in
establishing reliability in numerical simulations.
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1.1 Motivation

Figure 1.2: The relation between different simulation stages and
required credibility assessment practices (Oberkampf et al. [4])

The accuracy of CFD in simulating steady-state flow problems is well es-
tablished. Several institutions developed guidelines and standards for CFD
simulations, such as the American Institute of Aeronautics and Astronau-
tics (AIAA) and the American Society of Mechanical Engineering (ASME).
These existing standards are not developed for wind engineering flow prob-
lems. Therefore, the reliability of simulating more complex flows are not
well studied. In reality, wind engineering flows have a turbulent nature.
Thus, eddy-resolving simulations (ERS) are extensively used by researchers
to address fundamental questions of turbulence. Turbulence is a complex
multi-scale phenomenon that contains a wide range of spatial and tempo-
ral scales and exhibits highly nonlinear interactions. Most natural flows are
turbulent flows, which are of high interest in the engineering community.
Thus, appropriate mathematical models are developed to simulate and
examine flows of practical interest (Pereira [5]). Unsteady turbulent flow
simulation imposes additional challenges in assessing solution reliability.

This work is mainly focused on the credibility assessment of CWE simu-
lations. CWE is primarily defined as the use of CFD for wind engineering
applications. CWE covers a wide range of simulations, such as simulation
of pedestrian-level wind conditions, natural ventilation of buildings, wind
loads on buildings and bridges, and sports aerodynamics. Moreover, wind
loads estimation using CWE simulations is the main objective of practi-
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1 Introduction

cal structural engineering. Despite the strong potential of eddy-resolving
simulations (ERS) in solving wind engineering flows, the further develop-
ment of CWE in simulating natural wind flows as a research and design
tool is inevitably dependent on the ability to attain reliable computations.
Therefore, different sources of numerical errors and uncertainties should
be adequately addressed and quantified. This process is called verification.
Figure 1.3 1 shows detailed phases for modeling and simulation activities
with the role of V&V, and uncertainty quantification activities to ensure
solution quality.

In Gousseau et al. [7], it is stated that “[...] despite the increasing attention
given to the quantification of error and uncertainty in CFD, the techniques
that have been developed for general fluid engineering problems to as-
sess the quality of CFD simulations are still marginally used in CWE”. The
present work proposes a comprehensive framework for the credibility as-
sessment of CWE simulation. Towards this end, a series of code verification
and solution verification exercises are performed on well-studied repre-
sentative flows with a glimpse of validation against experimental data. The
role of code and solution verification in modeling phases is highlighted
in Figure 1.3. Then, a boundary layer flow around a high-rise building
is simulated, and a simulation credibility framework is applied to build
confidence in the resulting data.

1.2 Verification of Computer Codes

The verification activities are split into code verification and solution veri-
fication, as shown and highlighted in Figure 1.3.

• Code verification is the process of determining that the numerical
algorithms are correctly implemented in the computer code, and of
identifying errors in the software (Oberkampf et al. [8]). The code
verification activity can be performed using the Method of Manufac-
tured Solutions (MMS) or the Method of Exact Solutions (MES) or
combining both approaches (Fisch [9]).

• Solution verification is the process of determining the correctness
of the input data, the numerical accuracy of the solution obtained,

1 Revise appropriate model or experiment in Figure 1.3 implies that either the mathe-
matical model or the physical model must be modified to comply with the reality of interest
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1.2 Verification of Computer Codes

Reality of Interest
(Component, Sub-assembly, Assembly, or System)

Abstraction

Conceptual
Model

Mathematical
Modeling

Physical
Modeling

Mathematical
Model

Physical
Model

Implementation Implementation

Computational
Model

Experiment
Design

Preliminary
Calculations

Calculation Experimentation

Simulation
Results

Experimental
Data

Uncertainty
Quantification

Uncertainty
Quantification

Simulation
Outcomes

Experimental
Outcomes

Validation

Quantitative
Comparison

Code
Verification

Solution
Verification

Acceptable
Agreement?

Next Reality of Interest in the Hierarchy

Revise Appro-
priate Model

or Experiment

Yes

No

Figure 1.3: Verification, validation, and uncertainty
quantification activities required in modeling and simulation

phases (ASME V&V10 Committee [6])
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1 Introduction

and the correctness of the output data for a particular simulation
(Oberkampf et al. [8]). It is mainly concerned with issues related to
discretization errors. There are several techniques in the literature
for solution verification such as: LES index of quality (LES_IQ), grid
convergence index (GCI), safety factor method (SF), least-squares
fitting method (LSR), etc (Oberkampf et al. [8], Phillips et al. [10],
Roache [11], Eça et al. [12], and Celik et al. [13]). Although many
techniques exist in the literature, there is no complete framework
designed for the credibility assessment of CWE simulations, and even
solution verification is still marginally used in CWE (Franke [14]).

1.3 Research Need in CWE Simulations

Murakami [15] has meticulously outlined the main difficulties in CWE: (1)
the high Reynolds numbers in wind engineering applications necessitate
high grid resolutions, especially in near-wall regions, as well as proper wall
functions; (2) the complex nature of the 3-D flow field with impingement,
separation, and vortex shedding; (3) the numerical difficulties associated
with flow at sharp corners, and its consequences on discretization schemes;
and (4) the inflow and outflow boundary conditions which are particularly
challenging for ERS.

These difficulties are directly linked to physical modeling limitations and
computational requirements in the past, but many of those limitations are
still, to some extent, present today (Blocken [3]). Therefore, when think-
ing of the credibility of CWE simulations, the following issues should be
addressed:

1. Unsteady flow: Figure 1.4 shows unsteady flow simulation around a
thin half cylinder shell using an eddy-resolving simulation. The inlet
boundary has a uniform flow velocity.

2. Simulating natural wind conditions, transient inlet: Figure 1.5 shows
a natural wind flow simulation for the same structure in Figure 1.4.
The influence of the fluctuating inlet can be clearly seen in the up-
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1.3 Research Need in CWE Simulations

Figure 1.4: Uniform velocity inlet flow around an open half
cylinder shell structure (Abodonya [16])

stream zone. Besides having a natural logarithmic wind profile, wind
flow characteristics2 around the structure are entirely different.

Figure 1.5: Atmospheric boundary layer inlet flow around an
open half cylinder shell structure (Abodonya [16])

3. High R e : Typically simulations having R e ≥ 105 are performed,

2 It is crucial to note, in Figure 1.5, the transient nature of the approaching flow field
and the large suction area at the windward side of the shell.
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1 Introduction

4. Limited computational power,

5. Using large grid sizes,

6. Discrete solutions are not in the asymptotic range. Numerical so-
lutions should be consistent with being in the asymptotic range of
convergence. In other words, as the grid is refined, the computed
solution will not change significantly, and the asymptotic value (i.e.,
the actual numerical solution) is reached.

7. Measuring integral quantities (i.e., drag, lift, and crosswind forces)
and local quantities (i.e., surface pressure and velocities),

8. Scatter in the results and oscillatory behavior,

9. An observed and formal order of convergence is not equal,

10. Using unstructured grids: Figure 1.6 shows typically used meshing
approach for practical flow simulations. It is not always possible to
construct structured mesh in practical flow simulations.

Figure 1.6: Typical unstructured triangular grids. Left figure
shows general unstructured grid. Right figure shows practical

relevance of non-uniform refinement

11. Using non-uniform refinement: Figure 1.6 right shows mesh around
a circle, where different grid sizes are used in different zones. Refine-
ment is typically applied in zones very close to the structure and
behind the structure.

12. Eddy-resolving simulations.

8



1.3 Research Need in CWE Simulations

Thus, a special treat for all, or some, of the challenges is required. Fur-
thermore, there are different types of error in general CFD simulations, as
shown in Figure 1.7.

Physical phenomenon Mathematical model Numerical solution

Input error

Modelling error Numerical error

Figure 1.7: Types of errors in general CFD Simulation
regenerated from (Pereira et al. [17])

For a better understanding of the error sources in CWE, a detailed error
map is presented in Figure 1.8

1.3.1 Input Error

The input error results from the inconsistencies between the parameters
and conditions of the physical and numerical problems. These discrep-
ancies result from insufficient experimental information (e.g., inlet flow
properties). Moreover, excessive numerical demands (domain dimensions,
boundary conditions, total simulation time, turbulent flow properties, etc.)
lead to limitations.

1.3.2 Modeling Error

For each physical phenomenon, several mathematical models exist. In
wind engineering applications, many modeling options can be used, such
as RANS, URANS, LES, DES, VMS. Each of these modeling approaches has
several turbulence models. Thus, modeling error evaluation requires a
comparison between numerical solutions and experimental/real data.

9



1 Introduction

Real physics - Question to answer

Fundamental error
in the choice of the

relevant physics

Selection of the relevant physics:
physical mechanisms, dimen-

sions, and range of scales

”Idealization”
error due to the

limitation of math-
ematical operators
to describe physics

Translation of the phys-
ical problem into a solv-

able mathematical problem

Translation of the math-
ematical problem into a

solvable numerical problem

Input translating
the conditions at

which the problem
has to be solved:

BC + initial state.

Numerical rep-
resentation of

natural wind flow

Uncertainty in BC,
and initial state

Error in BC model
and implementation

Numerically solve the problem

Solver: algorithm,
numerics, models,...

Numerical accuracy:
schemes, stabilization

Discretization
error: insufficient
grid resolution to

estimate derivatives

Models’ assump-
tion and accuracy

Hardware: computer,
storage, connectors,...

Hardware errors:
information loss, bit
flip, node failure, ...

Analysis of the solution to
answer the physical problem

Error in interpretation

Error in post-
processing

Error in comparison
with experiments:

measured quantities vs
calculated quantities

Figure 1.8: Error map in computational wind engineering (CWE)
(Guilhem Lacaze and Joseph C. Oefelein [18])
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1.3.3 Numerical Error

The numerical error is perhaps the most significant contributor to simula-
tion results (Pereira et al. [17]). The importance of putting more emphasis
on quantifying numerical error is well recognized by many researchers
(Pope [19]and Eca et al. [20]). The numerical error is divided into four contri-
butions: discretization, round-off, iterative, and statistical. The round-off,
iterative, and statistical errors can be controlled to some extent by execut-
ing all computations on double-precision, using strict convergence criteria
for iterative solvers, and using sufficiently large sampling time to achieve
statistical convergence. However, discretization error is usually dominating
the error term. It stems from the discretization of the governing equations,
which is highly dependent on the quality of both spatial and temporal
grid resolution, and discretization scheme (Pereira et al. [17]). In practical
applications, unstructured grids are used, which is required to represent
complex geometries. Unstructured grids limit the convergence order of
discretization schemes, and maintaining high-quality grids is not always
possible. Thus, both spatial and temporal resolutions highly influence the
solution quality, making them the main contributor to numerical errors.

1.4 Research Objectives

In the scope of this work, only verification activities are of interest. Thus
input and modeling errors are not considered. Given that numerical errors
are the most significant contributor to uncertainty in simulation results
while maintaining the same modeling and input parameters for all simula-
tions, this research is dedicated to developing a methodology for verifying
CWE simulations, particularly issues related to numerical errors. The terms
error and uncertainty are frequently repeated throughout this research. In
the AIAA Guide for the Verification and Validation of Computational Fluid
Dynamics Simulations [21], the terms error and uncertainty are defined as:

• Error: ”A recognizable deficiency in any phase or activity of modeling
and simulation that is not due to lack of knowledge.”

• Uncertainty: ”A potential deficiency in any phase or activity of the
modeling process that is due to the lack of knowledge.”

11
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Throughout this thesis, the term uncertainty will refer to the uncertainty
estimator used to account for lack of knowledge in the parameters defining
the error estimator. Theodore Stathopoulos said, ”In spite of some inter-
esting and visually impressive results produced with Computational Wind
Engineering, the numerical wind tunnel is still virtual rather than real. Its
potential however, is extremely high and its progress should be monitored
carefully. Many more parallel studies - numerical and experimental - will
be necessary in order to increase the present level of confidence in the com-
putational results. Practitioners should be warned about the uncertainties
of the numerical wind tunnel results and urged to exercise caution in their
utilization. Finally, more effective efforts should be made in the numer-
ical simulation of fluctuating flow field and the numerical evaluation of
peak values of variables necessary for structural design.” Stathopoulos [22].
This work aims to check the correctness of code implementation and the
quantification of numerical errors resulting from domain discretization.
Therefore, a simulation credibility assessment framework is introduced
in this thesis. The driving force behind this work can be summarized as
following (Eça [23]):

• CFD codes should be checked for coding bugs to ensure consistency
and build reliability

• CFD simulations require the assessment of their numerical uncer-
tainty to establish their credibility,

• Methods for uncertainty estimation based on grid refinement studies
(statistically steady flows) are available in the literature,

• CFD applications are no longer restricted to (statistically) steady
flows,

• In statistically unsteady flows, numerical errors are more compli-
cated to handle. Iterative and discretization errors have more than
one contribution,

• Guidelines should be developed for quality assessment of practical
calculations of unsteady flows, since there is no technical reason to
present numerical simulations of practical calculations without the
indication of numerical uncertainty (Eça et al. [24]).

12
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The following criteria should be satisfied to achieve the objectives of this
work. The assessment framework is to:

1. comprise a series of benchmarks for code verification of eddy-resolving
simulations.

2. be applicable for eddy resolving simulations.

3. be robust. The software user or software developer can use the as-
sessment framework, without any knowledge of the implementation
details. It can be used for black-box testing. Finally, the methodology
should be an a-posteriori-based approach.

4. use statistical tools to identify the quality of the results by checking
the statistical convergence on the measured quantity.

5. develop testing procedures for the estimation of numerical error.
These procedures should include a numerical error estimator, which
can comply with the unsteady nature of the problem, solutions not
in the asymptotic range, using non-uniformly refined unstructured
grids, and non-monotonically converging data either local or integral
quantities.

Finally, the proposed framework is used to assess the simulation quality
for different practical flows such as flow around a circular cylinder at R e =
3.90x 103, flow around a square prism at R e = 3.90x 103, and atmospheric
boundary layer (ABL) flow around a high-rise building at R e ≈ 108 in full
scale.

13
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1.5 Thesis Outline

The following chapters in this dissertation are structured as follows:

• Chapter 2 presents an intensive literature review of the verification
activities needed to evaluate software quality. The review starts with
code verification and different methods to perform code testing. Also,
the limitations and hints for application are introduced. Then, the
literature on solution verification is presented, and different types
of numerical errors are explained. This is followed by a review of
techniques found in the investigated literature for a-posteriori error
estimation is presented. The primary purpose is to indicate the short-
coming of these techniques for CWE, because they are developed
for different applications. The chapter concludes with a summary of
all the solution verification methods presented.

• Chapter 3 presents the newly proposed integrated simulation credi-
bility assessment methodology. The chapter starts by listing all the ex-
pected challenges in building confidence in CWE simulations. Then,
the main building blocks for the methodology are presented in detail
in Section 3.2 and Section 3.3. In Section 3.2, detailed steps to test
the correctness of code implementation through the order of conver-
gence studies are explained. In Section 3.3, elements contributing
to numerical error are introduced. Then, methods to treat/quantify
each error term are presented. The numerical error types are either
avoided or quantified, as explained in that chapter. Afterward, small
examples are presented to clarify the performance of the numerical
error/uncertainty 3 estimation methods.

• Chapter 4 explains the theoretical background of the code that is to
be verified using the methodology presented in Chapter 3. This chap-
ter introduces the numerical technique and mathematical model
used to solve the physical problem. This code is used as a demonstra-
tive example of applying the newly proposed credibility assessment
methodology and its performance.

3 In the context of this work, uncertainty is measured to account for the doubts in error
estimation.

14



1.5 Thesis Outline

• Chapter 5 presents a series of test cases to perform a code verifica-
tion study for the monolithic variational multiscale (VMS) element
implemented in the FEM-based KRATOS Multiphysics software. The
benchmarks are presented in a sequence of increasing complexity.
The first benchmark is widely used in the literature, Taylor-Green
Vortex, with an exact solution for a decaying vortex. Therefore, it
can be used to test any black-box code. If the code does not pass the
tests, access to the code is mandatory to perform the remaining tests,
which help to identify the source of error. Finally, these benchmarks
can be used to verify any other code implementation.

• Chapter 6 shows the application of the solution verification method-
ology to well-studied flows in the literature, such as 3-D flow around
a circular cylinder and 3-D flow around a square prism. Both cases
are simulated at R e = 3.9x 103. The purpose of these cases is to apply
the solution verification method on flows of practical relevance after
applying a successful code verification.

• Chapter 7 presents a real wind simulation, R e ≈ 108, where bound-
ary layer flow around a high-rise building is simulated. Expected
challenges in assessing the quality of ERS in CWE are exercised, and
the performance of the methodology is tested.

• Chapter 8 concludes the dissertation with a discussion on the per-
formance of the proposed methodology, a summary of the main
findings, and a general discussion about ERS’s ability to predict wind
loads with a credibility measure. Finally, suggestions for future de-
velopments are presented.

15





Software never was perfect
and won’t get perfect. But is
that a license to create
garbage? The missing
ingredient is our reluctance
to quantify quality.

Boris Beizer
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2
VERIFICATION: LITERATURE REVIEW

In this chapter, an extensive literature review on the verification activi-
ties is presented. First, code verification techniques are introduced with
emphasis on previous usage, limitations, and advantages of each method.
Second, almost all the methods used for solution verification, in other
words, quality measure, are introduced with special focus on methods
applicable to eddy-resolving simulations. A summary of solution verifi-
cation approaches is presented at the end of the chapter. Before starting
the literature review, it is imperative to note that several standards have
been developed for V&V of modeling and simulation. Table 2.1 presents a
historical overview of previously developed guidelines and standards for
simulation quality assurance. All the proposed approaches in these stan-
dards are presented in this chapter. Moreover, a detailed reading in these
standards can be found in ASME V&V10 Committee [6], AIAA Guide for the
Verification and Validation of Computational Fluid Dynamics Simulations
[21], NASA [25], ASME V&V20 Committee [26], and ANS [27].
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1985 American Nuclear Society

“Guidelines for the Verification and Validation of Scientific and Engineering
Computer Programs for the Nuclear Industry”

1998 American Institute of Aeronautics and Astronautics/Computational Fluid
Dynamics Committee on Standards

“Guide for the Verification and Validation of Computational Fluid Dynamics
Simulations” (AIAA G-077-1998)”

2003 U.S. Department of Defense, DoD Instruction 5000.61, Defense Modeling and
Simulation Office

“DoD Modeling and Simulation (M&S) Verification, Validation, and Accredi-
tation (VV&A)”

2006 American Society of Mechanics Engineers, V&V Standards Committee V&V10

“Guide for Verification and Validation in Computational Solid Mechanics
(ASME V&V-10-2006)”

2008 National Aeronautics and Space Administration

“Standard for Models and Simulations (NASA-STD-7009)”

2009 American Society of Mechanics Engineers V&V Standards Committee V&V-20

“Standard for Verification and Validation in Computational Fluid Dynamics
and Heat Transfer”

Table 2.1: A brief history of previously developed V&V standards

2.1 Code Verification

Numerical methods to solve ordinary differential equations (ODE), differ-
ential equations (DE), and partial differential equations (PDE) are widely
used in the scientific and engineering communities. The increasing com-
plexity of the numerical computer codes is due to the increasing physical
complexity of interest phenomena. Computer codes/software complexity
triggers the need for credibility and confidence. The reliability of computer
code is built through Software Quality Assurance (SQA). The SQA, which is
mostly related to code verification application, is developed for software
testing (Salari et al. [28] and Veluri [29]). Testing approaches are divided
into three categories: static, dynamic, and formal testing. At this stage of
building confidence in the code, the word error means a code bug that
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results in a static or dynamic or formal error. The three types of testing
approaches are:

– Static tests mean tests performed without running the code. The
code is checked for programming language consistency and being
free from compilation errors,

– Dynamic test errors are detected by running the code. The code is
tested for out of bounds array indices, memory leakage, coverage
issues, and any other logical compiler problems (Salari et al. [28] and
Marchand [30]). Dynamic testing is the base of code verification for
testing of engineering software,

– Formal tests are related to identifying unnecessary calculations that
slow down the code performance.

In the context of this work, dynamic tests are considered. Dynamic errors
can influence code efficiency, convergence, and order of convergence such
that (Salari et al. [28]):

1. Errors affecting the order of accuracy are the basis for code verifi-
cation. The order of accuracy mistakes are causing a reduction of
functional order of accuracy to zeroth, or below, and reduction to
a lesser degree. The former error type can be defined as a consis-
tency mistake. Finally, a numerical scheme is named consistent, if
the discretized equations approach the actual governing equations
in the limit as the discretization parameters (∆x ,∆t ) approach zero
(Oberkampf et al. [8] and Fisch [9]).

2. Convergence mistakes are caused mainly by bad input and dynamic
coding mistakes, which lead to solution divergence. A code is called
converging if the exact solution of the discrete equations approach
the exact solution of the governing equations in the limit as the
discretization parameters (∆x ,∆t ) approach zero (Oberkampf et al.
[8] and Fisch [9]).

3. Efficiency errors prevent the code from attaining its theoretical per-
formance.
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Salari et al. [28] and Knupp et al. [31] classified the process of dynamic tests
related to code verification into two phases: test selection and acceptance
criteria. Table 2.2 summarizes the approaches for dynamic testing.

Dynamic Testing Approaches Acceptance Criteria

Trend Expert Judgment

Symmetry Expert Judgment

Comparison Expert Judgment and Percent Error

MES Percent Error, Consistency and Order of Convergence

MMS Percent Error, Consistency and Order of Convergence

Table 2.2: The acceptance criteria for different dynamic code
verification approaches

Further discussion about trend, symmetry, and comparison can be found
in Oberkampf et al. [8], Roache [11], Salari et al. [28], and Veluri [29]. In the
scope of this work, MES and MMS are used as the basis for code verification
based on the order of convergence studies.

2.1.1 The Method of Exact Solutions (MES)

The MES is more strict and objective than both trend and comparison tests.
MES is widely used in the code verification activities following specific
procedures (Salari et al. [28]):

1. Seeking exact solutions for the set of equations solved by the code.
The exact solution is a closed-form mathematical expression that
conforms with material properties, initial conditions, and boundary
conditions, and evaluates the solution at all space and time points.

2. Running the code with corresponding inputs to compute the discrete
solution.

3. Comparing the discrete solution with the exact solution and check
the acceptance criterion. If the code passes the prescribed test suites,
the code is verified and has a small probability of containing coding
mistakes. Otherwise, a bug is suspected.
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With the increasing complexity of computer codes to be verified, the MES
has some limitations:

– Finding exact solutions is very complicated and sometimes impos-
sible for governing equations, involving non-linearity, coupling be-
tween equations, complex boundary conditions, and complex do-
main geometry (Salari et al. [28]).

– Modern computer codes simulate two and three-dimensional do-
mains, which are very complicated for getting an exact solution. Also,
it is impractical, as it is assumed that exact solutions are obtained
for infinite or semi-finite domains that can not be achieved in a
computed simulation.

2.1.2 The Method of Manufactured Solutions (MMS)

Steinberg et al. [32] invented the MMS. The MMS can be seen as a derived
class from the MES. The MMS is very flexible and uses analytical solutions
like the MES. The manufactured solution is neither dependent on the code
being verified nor on the governing equations. Thus, it is completely arbi-
trary (Brglez [33]). The main target for efficiently verifying a code is finding
solutions that would exercise all pieces, subdivisions, and extensions of
the code. The MMS has already been used successfully in fluid dynamics
(Fisch [9], Marchand [30], Roy et al. [34], Eça et al. [35], Luís et al. [36], Éti-
enne et al. [37], Yu et al. [38], Choudhary et al. [39], Roache [40], Choudhary
et al. [41], Veluri et al. [42], Eça et al. [43], Étienne et al. [44], and Eça et al.
[45, 46])

The MMS provides a general procedure for generating an analytical solu-
tion of conservation equations, e.g., PDE. The MMS does not necessarily
yield physical realism. Instead, it is purely a mathematical exercise; the
manufactured solutions do not fulfill the actual PDE. Consequently, an
additional source term is added to the algebraic discretized governing
equations. Thus, code accessibility is required to impose the source/force
terms. The acceptance criterion is the order of convergence, at which the
code is said to be verified if the observed order of convergence matches
the formal order of convergence.
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2.1.2.1 General Procedures of the MMS

The general procedures of the MMS are summarized in Knupp et al. [31]
and are shown in Figure 2.1.

2.1.2.2 Requirements of a Good Manufactured Solution

When designing a manufactured solution to rigorously assess a numerical
code, solving a complex equation, or system of equations, it is necessary
to compare the numerical results with an exact, or at least a more reliable
solution. Thus, it is vital to follow strict guidelines that ensure the test cases’
validity and practicality. According to Fisch [9], Salari et al. [28], and Knupp
et al. [31], the requirements for a good and reliable manufactured solution
are that it should be

– composed of sufficiently smooth and non-trivial functions.

– general to exercise all pieces, subdivisions, and every term in the
governing equations.

– having a sufficient number of non-trivial derivatives. Also, the solu-
tion derivatives should be bounded by a small constant, and not a
strongly varying function of space, time, or both.

– not preventing the code from completing a successful run during
testing.

– preferably composed of simple analytic functions, such as trigono-
metric, exponential, and polynomials.

– free from singularities.

– in a realistic range of the designed application, for example, no neg-
ative density.

– defined on a connected subset of the dimensions in space.

Finally, it is crucial to reiterate that the manufactured solution is not nec-
essarily physically realistic because the code cannot differentiate between
physical and non-physical problems.

22



2.1 Code Verification
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Figure 2.1: Flowchart for the code verification procedures
reproduced from Knupp et al. [31]
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2.1.2.3 Initial and Boundary Conditions

Every PDE solution must have auxiliary conditions. These auxiliary con-
ditions are boundary and initial conditions. Only boundary conditions
are required for space-dependent PDE (steady-state code solution). On the
other hand, both boundary and initial conditions are needed for space-
time dependent PDE (unsteady code solution). In the MMS, the boundary
and initial conditions can be derived from the solution directlyφ(x ,t ) (Fisch
[9], Salari et al. [28], and Knupp et al. [31]). Most of the PDE codes provide
a wide range of boundary conditions to choose from in practical applica-
tions such as Dirichlet, Neumann, mixed, slip, no-slip, periodic,...etc. A
detailed discussion on these different types of boundary conditions can
be found in Oberkampf et al. [8], Salari et al. [28], and Knupp et al. [31].
It is recommended to verify the PDE code for all possible boundary con-
ditions. A sequential suite of test cases is to be designed. The designed
test suite implies testing, first, the interior equation implementation with
Dirichlet boundary condition for all sides of the domain, then, designing
test cases to verify each type of B.C available in the numerical code. The
increasing complexity of the test suites renders a more straightforward
recognition for coding errors. To sum up, the assessment of steady-state
solution requires an initial condition significantly different from the analyt-

ical solution
�

φ̂(x ,t=0)

�

. In other words, the initial field values are set to zero
to approve the code’s ability to solve steady-state problems. In contrast,
the assessment of unsteady solution requires the initial condition to match

the analytical solution
�

φ(x ,t=0) = φ̂(x ,t=0)

�

to avoid any artificial errors. Ac-
cording to Fisch [9], the Dirichlet and Neumann boundary conditions at
the boundary γ, at the boundary position x γ, with the boundary normal
nγ can directly be calculated respectively derived from the manufactured
solution field φ̂(x ,t ). The boundary field of a variableφ is abbreviated by:

φγ =φ(x=x γ,t ) (2.1)

Using the abbreviation in Equation (2.1), the Dirichlet boundary condition
is defined in Equation (2.2)

φγ = φ̂γ = φ̂(x=x γ,t ) (2.2)
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2.1.2.4 Code Verification Assessment for Steady and Unsteady
Simulations

Generally speaking, the discretization error is evaluated by comparing the
variableφ(x ,t ) to the manufactured solution φ̂(x ,t ). A detailed description
of the evaluation of global error and order of convergence will be explained
in Section 3.2.1 and Section 5.3. The testing of steady-state simulations
is relatively simple. The error of the converged solution is evaluated with
grid refinement to compute the observed order of convergence.

The testing of unsteady simulations is challenging because the simulation
code has both spatial and temporal orders of convergence. The unsteady
simulation assessment can be performed on three levels (Fisch [9]):

– Assess the spatial convergence order only: a steady-state solution
can be used, in which the time contribution to the PDE vanishes,

– Assess the temporal convergence order only: the spatial contribu-
tion to the PDE should vanish. Two approaches can achieve the
assessment of temporal convergence order. Firstly, create an arbi-
trary manufactured solution that equally covers all terms of the PDE,
and use a superfine grid for all time refinement steps. This way as-
sures a minimal contribution from the spatial discretization errors
compared to temporal discretization errors. Second, a manufactured
solution is chosen that fulfills the solution requirements only over
time, and guarantees the solution is mesh-independent,

– Assess the space and time order of convergence together: this ap-
proach has the advantage that correlated space-time errors can ad-
ditionally be assessed. Moreover, it requires equal formal order of
convergence in both space and time. Also, the refinement ratios in
space and time must be of the same order. Finally, the manufactured
solution should fulfill the PDE solution requirement in space and
time.

2.1.2.5 Strengths and Limitations of the MMS

The strengths and limitations are summarized in this section, and further
discussion can be found in Oberkampf et al. [8], Roache [11], Salari et al.
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[28], and Knupp et al. [31]. The strengths as mentioned in Marchand [30]
are:

– Most code capabilities can be verified with the MMS procedure. The
use of an arbitrary solution that can be applied to an arbitrary geom-
etry and flexibility in the BCs is the main factor behind this method’s
strength,

– The method allows choosing any geometry of interest because the
solution domain can be selected after the manufactured solution
has been generated,

– A symbolic toolbox can be used to generate source terms,

– Easily evaluable analytic functions are used to construct the manu-
factured solution,

– Code debugging can be achieved by elimination, in case of errors,

– A wide variety of numerical techniques can be verified using the
MMS,

– The MMS is self-correcting. Source terms implementation errors
can be detected by the MMS if existing.

The limitations, as mentioned in Marchand [30], are summarized as:

– The MMS procedure is not simple and needs access to the simula-
tion code if the implementation of the numerical technique lacks
volumetric source terms,

– MMS can not detect all coding mistakes, because not all mistakes
affect accuracy, such as efficiency mistakes. These mistakes, however,
do not prevent the method from showing correctness,

– There is no clear methodology in the verification of mixed-order
methods.

The MMS is the most widely used technique in the literature. Table 2.3
shows the usage of the MMS in the previous years in verifying different
software environments and discretization schemes.
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1985 The MMS was invented by Steinberg and Roache

2004 MMS for Euler/Navier-Stokes codes compressible flow (FVM)

2006 MMS for FSI code verification

MMS verification of turbulence models

2008 MMS for unsteady flow solvers (FDM)

2009 MMS was used as a basis for testing solution verification techniques (FVM)

2012 MMS for FSI codes (FVM)

2013 MMS was applied for Computational Electromagnetic codes (FEM)

2014 MMS was applied for partitioned FSI environment RANS and URANS (FVM)

MMS for URANS unsteady solver with turbulence model (FVM)

2015 MMS for FSI code 2-D and 3-D (RANS and URANS) (FVM)

MMS for BC of compressible and incompressible flows (FVM)

MMS for Multi-phase flows

Table 2.3: Brief chronological development of code verification
using MMS

2.2 Solution Verification

According to Oberkampf et al. [8], verification in general means, "the pro-
cess of assessing software correctness and numerical accuracy of the solu-
tion to a given mathematical model". Verification activity is divided into
code verification and solution verification. The strong need for a solution
verification approach is for two reasons: the first is that the exact solution
is unknown. The second is that the knowledge of the error is as significant
as the solution knowledge. In this section, an extensive literature review
of solution verification approaches is presented with an emphasis on the
applicability of these methods to unsteady turbulent flows.

The primary role of solution or calculation verification is to estimate the
numerical errors resulting from a mathematical model’s discretization.
In solution verification, the solution to the mathematical model is not
known. Thus, the role of solution verification is to estimate the numerical
error, and not simply evaluate the error, as in code verification. Numerical
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errors are calculated with a measure of uncertainty 1. Since the quality of
solutions used to estimate the error is not guaranteed, numerical errors
are defined with uncertainty. Therefore, calculation verification includes
not only methods for error estimation, but also uncertainty quantifica-
tion. There are defined procedures by which numerical estimates can be
converted to numerical uncertainty estimates.

The numerical solutions of continuum models unquestionably lead to
errors in the calculated results. The challenge imposed by using numerical
solutions is error estimation. Sources of numerical errors can be generally
listed as follows:

1. Round-off errors.
Round-off error is an inevitable type of error arising due to the use of
finite arithmetic on computers (Denis et al. [47]). Round-off errors
can be minimized by using more significant digits (DeBonis [48]).

2. Statistical sampling errors.
Statistical sampling errors only appear when dealing with unsteady
simulations for measuring both local and integral system response
quantities (SRQ) such as pressure, drag, lift coefficients, turbulent
kinetic energy...etc.

3. Iterative solver errors.
Iterative error is defined in Oberkampf et al. [8] as the difference
between the current approximate solution to an equation or system
of equations, and the exact solution. It is resulting from solving the
algebraic equation system using iterative methods. The use of a di-
rect solver can abstain iterative errors, but this approach has become
impractical due to efficiency reasons. Consequently, iterative solvers
are the usual approach. This error can be avoided by imposing strict
convergence criteria and a large number of iterations.

4. Discretization errors.
Discretization errors are the result of transforming the continuum
equation into discrete equations in space and time. As described in
Oberkampf et al. [8], discretization errors are formally defined as the

1 This is the reason why numerical error estimation is referred to as numerical uncer-
tainty
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difference between the exact solution to the discrete equations and
the exact solution to the mathematical model:

εh =φh − φ̃ (2.3)

Because discretization error has a locally-generated and a trans-
ported component, it is considered the most challenging type of
numerical error, to be accurately estimated. Also, it represents the
most considerable contribution to the total numerical error.

There are several approaches for calculation verification in the literature,
which will be introduced in Section 2.2.1.

2.2.1 Solution Verification: Available Approaches

A variety of discretization error estimators have been developed where
some have been developed for specific discretization schemes and others
are general (Phillips [49]). Discretization error estimators can be either
recovery or residual-based methods. As described in Phillips [49]:

• Residual-based methods estimate the discretization error using in-
formation about the discretization scheme and the current problem,
including defect correction, error transport equations, and adjoint
methods (Ainsworth et al. [50]). Compared to recovery methods,
residual-based methods are tremendously more code intrusive.

• Recovery methods are based on the post-processing of a solution
to approximate the discretization error. An example of a recovery
method is the grid refinement, which uses refined meshes to estimate
the discretization errors. The quality of such an error estimate is
highly dependent on the solution quality. Solutions should be in
the asymptotic range to conserve error estimation quality, which
is impossible to achieve in practical applications. Therefore, the
error estimation term has been changed to uncertainty estimation
to bound the exact solution to the PDEs with some +/- band around
the numerical solution (Phillips [49] and Phillips et al. [51]).

The methods used for Solution verification can be classified into four main
categories (Gant [52]):
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– Rules of thumb,

– Techniques based on prior RANS results,

– Single-grid estimators,

– Multi-grid estimators

Table 2.4 represents solution verification (i.e discretization error estimate)
development over time. The information in Table 2.4 are mainly extracted
from Oberkampf et al. [8], Roache [11], Eça et al. [12], Phillips [49], Rider et
al. [53], Roache [54], Richardson [55], Roy et al. [56, 57], and Xing [58]. Each
of the methods introduced in Table 2.4 is briefly explained in subsequent
sections.

2.2.1.1 Rules of thumb for plumes

Rules of thumb are some rules developed for appraising appropriate grid
resolution in modeling fire plumes prior to undertaking any LES simula-
tions. The rules are provided in the manual for the Fire Dynamics Simulator
(FDS) (Gant [52] and McGrattan et al. [59]). The advantage of this approach
is having a reference while designing the computational grid. This ap-
proach lacks robustness, where it is highly dependent on the simulated
problem and does not directly account for discretization errors. Further
discussion on these rules can be found in Gant [52] and Smardz [60].

2.2.1.2 Turbulence length scales and cell size

Turbulence is usually defined using two characteristic length scales:

– The Kolmogorov length scale (η)which relates to the smallest dissi-
pative turbulent eddies,

– The integral length scale (L )which relates to the largest eddies

In the premises of this approach, the turbulence length scales are used
in the grid design for eddy-resolving simulations. The estimation of the
turbulence length scales can be achieved by running a steady RANS simu-
lation. The work of Addad et al. [61] and Baggett et al. [62] based the grid
design on this approach. The cell size was two to five times smaller than
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1911 The Richardson Extrapolation was first proposed and applied
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1994 Grid Convergence Index (GCI) introduced

2001 Correction Factor Method (CF) introduced

2002 Global Averaging Method introduced

2003 The Method of Nearby problem introduced

2004 CF method modified

2005 LES Index of Quality introduced (LES_IQ)

Grid and Model Variation (GMV) introduced

2009 The Factor of Safety method (SF) introduced

2010 SF method modified

2011 The Method of Nearby problem improved

2014 The Least-Squares Fits (LSGCI) method introduced

2015 Grid and Model Variation modified

2016 Robust Verification introduced

1997 Turbulence length scales and cell size
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2002 The Rules of thumb method is first used for Fire Dynamics simulations

Sub-grid Activity parameter introduced

2005 Magnitude of sub-grid scale viscosity

Turbulent Kinetic Energy Resolution introduced

2009 Relative Effective Viscosity Index

Table 2.4: Brief chronological development of solution
verification approaches

the turbulence length scale (lm ). The turbulence length scale is calculated
from the RANS model as follows:

lm = c 3/4
µ

k 3/2

ε
(2.4)

where:
cµ = 0.09
k : turbulent kinetic energy
ε : dissipation rate

The usage of the above approaches to assess the LES grid size based on
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prior RANS simulations is also implied in some best practice guidelines,
such as best practice guidelines for the Use of CFD in nuclear reactor safety
(Mahaffy et al. [63]). It notes: “As a general rule of thumb either the code
logic or the user should ensure that four to five mesh cells are available to
span (in each direction) the smallest eddy resolved by the Navier-Stokes
solution.” The main advantage of using this approach is that it is easy and
cheap before running LES simulations. There are several drawbacks in
using this approach:

1. the uncertainty associated with finding the length scales from a RANS
simulation

2. it does not directly account for discretization errors

3. some of the ratios and values used in this approach are user-dependent
and do not have sufficient scientific proof

Further discussion on this approach can be found in Gant [52], Addad et al.
[61], Baggett et al. [62], Gant [64], and Pope [65].

2.2.1.3 Single Grid Estimators

Magnitude of the Subgrid-Scale Viscosity The magnitude of the subgrid
scale viscosity can be expressed as the ratio between the turbulent viscosity
to the molecular viscosity (νt

ν ). Celik et al. [66] suggested that as a rough rule
of thumb the ratio of effective viscosity to the molecular viscosity (νe f f

ν ) is
approximately 20 for good LES and 1.0 for DNS, where (νe f f ) is the sum of
the turbulent, numerical and molecular viscosities (νe f f = νt +νn um +ν).
The numerical viscosity is estimated from the turbulent viscosity and the
relation is dependent on the Reynolds number. Celik et al. [67] suggested
for a high turbulence Reynolds number R et =

k 2

νε a ratio of (νe f f

ν ≈ 20), while
for R et = 300 a ratio of (νe f f

ν ≈ 5). Moreover, Klein [68] and Hadžiabdić et al.
[69] simulated flows at 4000 and 20000 Reynolds number with reasonably
good predictions by keeping (νt

ν ≤ 3) The great advantage of this method is
that it requires only one simulation. Meanwhile, it has several defects, such
as ratios being dependent on Reynolds number, some of the quantities
being estimated not computed, which adds doubts to the credibility of the
method, and not accounting for the numerical dissipation.
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Relative Effective Viscosity Index The Relative Effective Viscosity Index
(L E S − I Qν) is a derived measure from the approach of measuring the
Subgrid-Scale Viscosity. According to Celik et al. [70], the (L E S − I Qν) is
calculated as:

L E S − I Qν =
1

1+αν(
νe f f

ν )n
(2.5)

where the constants αν = 0.05 and n = 0.53 are determined from studying
homogeneous isotropic turbulence. According to Celik et al. [70], having
L E S − I Qν ≥ 0.8 is proposed as a good LES and a value greater than 0.95
as a DNS. There is no actual application of this index in the literature, but
only the theory is presented in Gant [52], Celik et al. [67], and Celik et al.
[70].

Subgrid Activity Parameter In this estimate, the quality of LES is as-
sumed to be firmly defined by the subgrid parameterization and the numer-
ical contamination of the smaller retained flow structures. Consequently,
the subgrid-activity parameter (s ) represents the total simulation error.
The parameter measures the relative turbulent dissipation rate (0≤ s ≤ 1)
and the subgrid resolution (r ) (Geurts et al. [71]). The subgrid-activity
parameter is calculated as following:

s =
εt

εt + εµ
(2.6)

where:
εµ = νSi j

∂Ui
∂ x j
→ the molecular dissipation

εt =−τi j
∂Ui
∂ x j
→ the turbulent dissipation

τi j : sub-grid scale stress

∂Ui
∂ x j

: velocity gradient

Si j : strain rate

ν : kinematic viscosity
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Following Geurts et al. [71] and Brandt [72], the subgrid activity parameter
can be estimated using an equation simplified from Equation (2.6) without
any assumptions:

s =
νt S 2

(ν+νt )S 2
(2.7)

Moreover, Celik et al. [66] proposed a simplified approximation for the
subgrid activity parameter as:

s =
νt

ν+νt
(2.8)

This technique shows the importance of sub-grid scales in the flow and re-
quires one LES. On the other hand, it requires the calculation of additional
time-averaged parameters, is insensitive to grid resolution, and depends
on Reynolds number.

Turbulent Kinetic Energy Resolution The resolution of the turbulent
kinetic energy is one of the decisive elements in judging the quality of
an eddy-resolving simulation. The total turbulent kinetic energy can be
decomposed into three components (Pope [65, 73], Garcia et al. [74], and
Gant [75]):

kt o t = kr e s +ks g s +kn um (2.9)

kr e s is the turbulent kinetic energy from resolved velocity fluctuations and
can be computed as follows:

kr e s =
1

2

�

u2+v2+w2
�

(2.10)

ks g s is the component from the sub-grid scale turbulence model. The
doubts in this approach come from calculating this parameter because
there is no general agreement on how to compute it. Gant [75] examined
three different proposals to compute this quantity:

ks g s =
3

2

�

νt
3
p

V o l

�2

(2.11)
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ks g s = 3.6

�

νt S 2(V o l )
1
3

π

�
2
3

(2.12)

ks g s =
l 2S 2

CE
(2.13)

where:
V o l : cell volume
S : strain invariant
νt : subgrid-scale eddy viscosity
CE : constant stress-energy ratio assumed ≈ 0.3
l : Smagorinsky length scale l =Csδ
Cs Smagorinsky constant

Further discussion and simplification of these three definitions can be
found in Gant [52], Gant [64], Pope [65], and Gant [75]. Two further develop-
ments can be found in the work of Klein [68] and Lilly [76]. All these different
approaches were developed to estimate the fraction of the resolved-to-
modeled turbulent kinetic energy from:

kr e s

kt o t
=

kr e s

kr e s +ks g s
(2.14)

According to Pope [65, 73] and Kempf et al. [77], at least 80% resolution
of the turbulent kinetic energy is required to have an acceptable eddy-
resolving simulation. The main advantage of this approach is the need
for only one simulation. Meanwhile, it depends heavily on the assump-
tions in the calculation of the ks g s , which makes it application-dependent.
Moreover, Gant [52] stated two drawbacks of this approach in assessing
LES quality. Firstly, it is implicitly assumed that as the grid is refined, the
turbulent kinetic energy (TKE) resolved increases, which is not necessarily
true. This assumption is not valid in some cases where the TKE decreases
with refinement; thus, negative values are obtained. This assures that this
approach is not a good indication of mesh resolution. Secondly, numerical
dissipation is ignored.
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2.2.1.4 LES Index of Quality Measure

This method can be a single-grid estimator or a multi-grid estimator, de-
pending on the definition of the total turbulent kinetic energy calculation.
The LES Index of Quality (L E S − I Qk ) is developed based on the resolu-
tion of the turbulent kinetic energy, which is evolved from the single grid
estimator approach explained in Section 2.2.1.3. The previous approach’s
challenge was the computation of the total turbulent kinetic energy, espe-
cially the sub-grid scale component. The (L E S − I Qk ) proposed by Celik
et al. [66] and Celik et al. [67] is calculated from:

L E S − I Qk =
kr e s

kt o t
=

kr e s

kr e s +ak h p
(2.15)

The error term in equation Equation (2.15) is a result of a Richardson ex-
trapolation concept through performing two simulations on two different
grid resolutions. The main purpose of the usage of Richardson extrapo-
lation is the estimation of the total turbulent kinetic energy. Celik et al.
[70] presented a different approach to predict the total turbulent kinetic
energy from DNS or experiments instead of Richardson extrapolation. The
necessary steps in order to calculate the basic (L E S−I Qk ) are summarized
in Gant [52] as follows:

1. Perform LES calculations using two separate grids: coarse and fine.
Hereafter subscript “1” refers to fine mesh results and subscript “2”
to coarse mesh results.

2. Calculate the resolved turbulent kinetic energy with both grids, i.e.
find k r e s

1 and k r e s
2 , from Equation (2.10).

3. Calculate the characteristic grid cell size, h , for both grids. For struc-
tured meshes using:

h = 3
Ç

�

δxδyδz
�

(2.16)

where δx , δy and δz are the cell dimensions, and for unstructured
meshes2:

h = 3
p

(V o l ) (2.17)

2 The cell size measure defined in Equation (2.17) is justifiable for grids with uniform
mesh densities but not for meshes with local refinement.
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where V o l is the cell volume.

4. Calculate the (L E S − I Qk ) on the fine grid from:

L E S − I Q f
k =

1

1+
�

1− k r e s
2

k r e s
1

��

1
(αp−1)

� (2.18)

and on the coarse grid from:

L E S − I Q c
k =

1

1+
�

k r e s
1

k r e s
2
−1

��

αp

(αp−1)

� (2.19)

Reasonably good results were obtained in some flows tested by Gousseau
et al. [7], Celik et al. [66], Celik et al. [67], and Klein [68]. Having (L E S −
I Qk )≥ 80% means a good grid resolution. Some limitations were noticed
by Klein [68] as this approach should not be used for laminar or transitional
flows. Another drawback is having some negative values when having kr e s

larger than the DNS turbulent kinetic energy. Celik et al. [66] proposed a
correction to L E S − I Qk calculation as follows:

L E S − I Qk = 1−
|kt o t −kr e s |

kt o t
(2.20)

The main advantage of this procedure is using Richardson extrapolation,
which takes into account the grid resolution. In contrast, reliability depends
on the grid resolution being within the asymptotic range, which urges the
need for an uncertainty measure.

2.2.1.5 Richardson Extrapolation Based Methods

All the methods presented in this section are multi-grid estimators. The
Richardson extrapolation-based methods are the most widely used in dis-
cretization error estimation. Richardson extrapolation was first introduced
in 1911 by Richardson [55]. The robustness of the method to any scientific
computation with any discretization scheme (e.g., finite volume, finite
difference or finite element) accelerated its success. Because it is an a-
posteriori error estimator, the method is not code invasive and relatively
easy to implement. The basic idea of Richardson extrapolation is know-
ing the formal rate of convergence with mesh refinement and discrete
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solutions on two systematically refined meshes (Richardson [55]). Then,
Richardson extrapolation can be used to estimate the exact solution. In
mathematical notation, havingφ defined as the local or global solution
variable on a mesh spacing h (Oberkampf et al. [4, 8] and Oberkampf et al.
[78]),

εh =φh − φ̃ (2.21)

where:
εh : is error at mesh spacing h
φh : discrete solution
φ̃ : exact solution

The numerical solutionφh can be expanded using a Taylor series expan-
sion about the exact solution,

φh = φ̃+
∂ φ̃

∂ h
h +

∂ 2φ̃

∂ h 2

h 2

2
+
∂ 3φ̃

∂ h 3

h 3

6
+O (h 4), (2.22)

or simply a power series in h,

φh = φ̃+α1h +α2h 2+α3h 3+O (h 4), (2.23)

εh =φh − φ̃ =α1h +α2h 2+α3h 3+O (h 4), (2.24)

Equation (2.24) is called the standard Richardson extrapolation. Richard-
son extrapolation can be generalized to p t h −o r d e r accurate schemes as
following:

εh =φh − φ̃ =αp h p +αp+1h p+1+αp+2h p+2+ ..., (2.25)

Equation (2.25) can be written having computations on different grid levels
with refinement factor r = hc o a r s e

h f i ne
> 1 as

εh =φh − φ̃ =αp h p +αp+1h p+1+o (h p+2) (2.26)

εr h =φr h − φ̃ =αp (r h )p +αp+1(r h )p+1+o (h p+2) (2.27)
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Then the generalized Richardson extrapolation estimate φ (Oberkampf
et al. [8]):

φ =φh +
φh −φr h

r p −1
(2.28)

Finally, the discretization error can be simply estimated as:

εh =φ−φh =
φh −φr h

r p −1
(2.29)

The credibility of this error estimator is restricted by five assumptions
(Oberkampf et al. [8]):

1. Discrete solution in the asymptotic range

2. A uniform spacing of meshes over the domain

3. Systematic mesh refinement

4. Smooth solutions

5. Other sources of numerical errors are minimal

In practical computations, it is not possible to satisfy all the restrictions
imposed using the Richardson extrapolation. There are two components
included in these approaches. The first is the discretization error estima-
tion. The second is the discretization uncertainty estimation. The two
components must be combined to account for the uncertainties originat-
ing from having meshes not in the asymptotic range, and definition of
the (h ) and (p ) parameters. Consequently, the uncertainties associated
with the violation of the Richardson assumptions are to be quantified. A
discretization uncertainty estimator is required to increase the reliability
and integrity of the Richardson extrapolation-based methods. Therefore,
several approaches are introduced in the literature, such as Grid Conver-
gence Index (GCI), Global Averaging Method, Correction Factor Method
(CF), Safety Factor Method (SF), Least-Squares Method (LSR) and Grid
and Model Variation (GMV). Finally, all the methods introduced in the
literature are variants of the GCI.
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The Grid Convergence Index (GCI) In 1994, Roache proposed the grid
convergence index (GCI) as the first error estimator based on Richardson
extrapolation with uncertainty. The GCI can basically be described as the
absolute value of Richardson extrapolation error estimate multiplied by a
safety factor of three (Oberkampf et al. [8], Roache [11], Phillips [49], and
Phillips et al. [51]). The GCI was developed as a means for uniform reporting
of grid convergence studies having solutions in the non-asymptotic range.
The GCI for the fine grid numerical solution is defined as

G C I =
Fs

r p −1

�

�

�

�

φ2−φ1

φ1

�

�

�

�

(2.30)

The GCI is modified as follows in most recent implementations to avoid
problems when the solution values are near zero:

G C I =
Fs

r p −1

�

�φ2−φ1

�

� (2.31)

where:
Fs = 3 factor of safety when having two grids solutions only
r : refinement ratio
p : order of convergence

The order of convergence (p ) in Equation (2.31) is assumed to be equal
to the formal order of convergence (p = pf = 2). Roache proposed some
modifications on the definition of Fs when having solutions on more than
two grids and the observed order of convergence (p̃ ) is near the formal
order of convergence (pf ). The Fs and p in Equation (2.31) are defined
according to Table 2.5.

�

�

�

p̃−pf
pf

�

�

� Fs P

≤ 0.1 1.25 pf

> 0.1 3.0 mi n
�

ma x
�

0.5, p̃
�

, pf

�

Table 2.5: GCI factor of safety values (Oberkampf et al. [8])

The procedure of computing p̃ is based on the Richardson extrapolation.
Let’s assume a p t h −o r d e r accurate scheme with numerical solutions on
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three meshes, fine (h1), medium (h2) and coarse (h3), and a constant grid
refinement ratio (r ),

r =
h2

h1
=

h3

h2
> 1, (2.32)

thus we can write

h1 = h , h2 = r h , h3 = r 2h (2.33)

Using the generalized Richardson discretization error expansion from
Equation (2.26),

φ1 = φ̃+αp h p +αp+1h p+1+o (h p+2), (2.34)

φ2 = φ̃+αp (r h )p +αp+1(r h )p+1+o (h p+2), (2.35)

φ3 = φ̃+αp (r
2h )p +αp+1(r

2h )p+1+o (h p+2), (2.36)

The observed order of convergence (p̃ ) is calculated from Equations 2.34,
2.35, and 2.36 by neglecting high order terms and set p = p̃ . Then, we can
subtractφ2 fromφ3 andφ1 fromφ2. One can write

φ3−φ2 =αp̃ (r
2h )p̃ −αp̃ (r h )p̃ =αp̃ r p̃ h p̃

�

r p̃ −1
�

, (2.37)

φ2−φ1 =αp̃ (r
h )p̃ −αp̃ h p̃ =αp̃ h p̃

�

r p̃ −1
�

, (2.38)

Dividing Equation (2.37) by Equation (2.38) and taking the natural log of
both sides, the observed order of convergence can be defined as

p̃ =
l n

�

φ3−φ2
φ2−φ1

�

l n (r )
(2.39)

Further discussion on this approach can be found in Oberkampf et al. [8],
Roache [11], Phillips [49], and Gant [52].
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Global Averaging Method This method is based on the GCI. Cadafalch et
al. [79] proposed this method.Only a factor of safety Fs = 1.25 is used in the
evaluation of the GCI using Equation (2.31). The method is summarized
in Oberkampf et al. [8] as:

1. Interpolate the solutions from three systematically refined meshes
onto a common post-processing grid with a higher-order interpola-
tion method.

2. Classify the nodes in the common mesh as

Richardson nodes :
�

φ3−φ2

� �

φ2−φ1

�

> 0 (2.40)

Oscillatory nodes :
�

φ3−φ2

� �

φ2−φ1

�

< 0 (2.41)

3. Compute the local observed order of convergence p̃ for all of the
Richardson nodes according to Equation (2.39).

4. Compute a global observed order of accuracy from step 3 as

p̃ =
1

N

N
∑

i=1

mi n
�

ma x
�

0.5, p̃i

�

, pf

�

(2.42)

5. Compute the local GCI values at the Richardson nodes with the
global order of convergence from step 4.

Further discussion can be found in Oberkampf et al. [8], Phillips [49],
Phillips et al. [51], and Cadafalch et al. [79].

Correction Factor Method (CF) and Safety Factor Method (SF) The cor-
rection factor method (CF) and safety factor method (SF) are similar in
that both are functions of the observed order of accuracy (p̃ ). The CF was
initially proposed in Wilson et al. [80]. After the criticism from Roache [54],
the method was modified in Wilson et al. [81] as

εC F =
φ2−φ1

r p̃ −1
(2.43)
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UC F =

(

�

9.6 (1−C F )2+1.1
� �

�ε
�

� if 0.875<C F < 1.125

[2 |1−C F |+1]
�

�ε
�

� if 0<C F ≤ 0.875 and C F ≥ 1.125

(2.44)

where the correction factor is computed as

C F =
r p̃ −1

r pf −1
(2.45)

Moreover, the factor of safety method was proposed in Xing et al. [82].
Later, the method was adapted by Xing Tao [83] to remove the singularity
at twice the formal order of convergence by adding a third coefficient. The
FS method is defined as

εF S =
φ2−φ1

r p −1
(2.46)

UF S =

(

�

F S1p + F S0

�

1−p )]
�

�εF S

�

� if 0< p ≤ 1
�

F S1p + F S2

�

1−p )]
�

�εF S

�

� if p > 1
(2.47)

where: F S0 = 2.45, F S1 = 1.6, F S2 = 14.8 and p = p̃
pf

The Least-Squares Method (LSR1) This approach was developed by Eça
and Hoekstra in 2002 to estimate numerical uncertainties in solutions not
in the asymptotic range. The central concept of this method is filtering
out the noise from the observed order of accuracy calculation using the
least-squares fitting approach over four or more mesh levels (Oberkampf
et al. [8]). The error function is defined based on the series expansion from
the generalized Richardson extrapolation defined in Equation (2.25). The
method had several developments, as shown in the literature (Eça et al.
[46, 84, 85]), but the final version was introduced in Eça et al. [12]. The
procedure is summarized in Figure 2.2.

The method can be divided into two main parts (Eça et al. [12]):
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1. The first part is the error estimation. Power series expansions are
used for error estimation. Power series expansions are defined as a
function of the typical cell size, further are fitted to the simulations
data using least-squares regression analysis. The procedure includes
several formulations, such as weighted and non-weighted fits for
expressions with different exponents in the series’s leading term. Fi-
nally, the selection of the best error estimate is based on the standard
deviation of the fits.

2. The second part is the uncertainty estimation. The error estimation
is multiplied by a safety factor to account for data convergence be-
havior. The safety factor equals 1.25 for monotonic data convergence
and a fit standard deviation smaller than an averaged data range pa-
rameter (reliable error estimation). Otherwise, the safety factor is
three.

Therefore, the method is said to be an error estimation with a measure of
uncertainty. Further discussion on this method and testing can be found
in Pereira et al. [17], Xing et al. [86], Eça et al. [87], Negrato et al. [88], Pereira
et al. [89], Vink et al. [90], and Tolias et al. [91], which showed adequate
performance in predicting numerical discretization uncertainty.

The Grid and Model Variation (GMV) The GMV method was first pro-
posed by Klein [68]. It is based on the Richardson extrapolation. In this
approach, not only are grid effects considered, but the sub-grid scale model
is also varied. The error is defined as

φ∆− φ̃ = cn h n + cm∆
m +o

�

h n+1,∆m+1
s

�

(2.48)

where:
n = 2 order of numerical scheme
m : order of modeling error
h : grid size
∆ : filter width
φ∆ : mean LES solution
cn h n : numerical error
cm∆

m : modeling error
In Klein’s approach, two assumptions are made: high order error terms are
ignored, and second-order accurate schemes are used so that n =m = 2.
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Determine p for space and time discretization from the minimum of

SRE(φ0, α, p) =

√√√√√
ng∑

i=1

(φi − (φ0 + αhpi ))
2

and

SwRE(φ0, α, p) =

√√√√√
ng∑

i=1

wi(φi − (φ0 + αhpi ))
2

pSRE
< 0

or

pSw
RE
< 0

pSRE
> 0

and

pSw
RE
> 0

pSRE
≤ 0

and

pSw
RE
≤ 0

monotonic conver-
gence: Keep the p
with minimum σ

Keep the positive p Anomalous
data behavior

p > 2
0.5 ≤ p ≤ 2

p < 0.5 or impos-
sible to establish

δ1 = αhi

or

δ2 = αh2
i

with smallest σ

δRE = αhpi
δ1 = αhi

or

δ2 = αh2
i

or

δ12 = α1hi + α2h
2
i

with smallest σ

δ1 = φi − φ0 = αhi

or
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Figure 2.2: Flowchart for the solution verification approach for
the numerical uncertainty estimation following Eça et al. [12] 45
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Based on these assumptions, only three simulations are needed to estimate
the numerical discretization error. Further explanation can be found in
Klein [68] and test cases can be found in Gousseau et al. [7] and Brandt [72].
The use of Richardson-based extrapolation in predicting LES quality is
not straightforward and needs further developments. Consequently, more
work had been done in that direction (Xing [58]) and tested in Dutta et al.
[92, 93]. Finally, the drawback of the methods proposed by Xing [58] is the
need for at least five simulations, and it requires some control over the
filter width, which is not always affordable in commercial CFD codes.

2.2.1.6 The Method of Nearby Problems (MNP)

The MNP is developed by Roy et al. [94] to estimate the discretization
error using only one grid. The MNP is a form of defect correction that is
examined to generate exact solutions to partial differential equations and
as a discretization error estimator. The procedures can be summarized as
in Roy et al. [94]:

1. Establish accurate numerical solution

2. Generate analytic curve fit to solution from step 1

3. Generate analytic source terms

4. Numerically solve “nearby” problem

5. Evaluate error estimators

Further explanation and test cases of the MNP can be found in Roy et al.
[56, 57], Roy et al. [94], and Roy et al. [95].

2.2.2 Summary of Solution Verification Methods

In this section, all previously discussed methods are summarized in Ta-
ble 2.6, including the main advantages and restrictions on applying these
methods for eddy-resolved simulations (ERS).
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Description Restrictions on Application to Eddy-
Resolving Simulations

Advantages

Turbulence Length Scales and Cell Size

Design of the grid
based on prior
RANS simulations
to estimate both
Kolmogorov and
integral length scales

• Restriction on the quality of RANS
prediction,

• Does not account for discretization
error,

• Some of the parameters used in
the calculations are expert defined
quantities,

• Can not be used in transitional or
laminar regions.

• Cheap and easy to
compute,

• Grid is generated
before running
ERS.

Magnitude of the Subgrid-Scale Viscosity

It is a single grid es-
timator. It is the ra-
tio between the tur-
bulent to the molec-
ular viscosity

• Reynolds number dependent,
• Does account for effects of numeri-

cal dissipation,
• Does not account for discretization

errors.

• Easy to compute,
• Needs only one

ERS.

Relative Effective Viscosity Index

It is a single grid es-
timator and derived
from the Magnitude
of the Subgrid-Scale
Viscosity

• Few examples of its application in
the literature because of the effective
viscosity definition,

• Assumes effect of numerical dissipa-
tion is the same as modeled dissipa-
tion,

• Does not account for discretization
errors.

• Provides initial es-
timate of quality
based on perform-
ing one ERS.

Subgrid Activity Parameter

It is defined as the
ratio between turbu-
lent to the total dissi-
pation

• Requires calculation of additional
time-averaged parameters,

• Depends on Reynolds number,
• Relatively insensitive to grid resolu-

tion, actually does not account for
discretization error.

• Shows importance
of subgrid-scales
in the flow,

• Requires one ERS.
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Description Restrictions on Application to Eddy-
Resolving Simulations

Advantages

Turbulent Kinetic Energy Resolution

It is the ratio between
the resolved to total
turbulent kinetic en-
ergy

• Requires calculation of additional
time-averaged parameters,

• Assumption having total turbulent
kinetic energy is greater than the re-
solved is not always valid,

• Does not account for discretization
errors.

• Indicates the pro-
portion of the re-
solved turbulent ki-
netic energy,

• Needs only one
ERS.

LES Index of Quality

It is the ratio between
the resolved to total
turbulent kinetic en-
ergy based on multi-
grid simulations and
Richardson extrapo-
lation

• Assumes second order numerical er-
ror,

• Assumption that the total turbulent
kinetic energy is greater than re-
solved is not valid in some cases,

• Reliability depends on grid resolu-
tion being within the asymptotic
range.

• Uses Richardson
extrapolation,

• Reasonably good
accuracy reported
in some flows.

The Grid Convergence Index

Richardson extrapo-
lation based method
which Estimates the
discretization uncer-
tainty with a safety
factor

• Assumes second order of conver-
gence and refinement factor,

• Not handling variations between ob-
served and formal order of conver-
gence,

• Issue of non-monotone conver-
gence.

• Accounts for
the uncertainty
associated with
non-asymptotic
solutions,

• Requires three
grids.

Global Averaging Method

Richardson ex-
trapolation based
which Estimates
the discretization
uncertainty by aver-
aging monotonically
converging nodes

• Requires more computations,
• Is not valid in transitional and turbu-

lent flows,
• Inconsistency in the sense that oscil-

latory and boundary data points are
excluded.

• Accounts for
non-asymptotic
solutions,

• Less conservative
than GCI.
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Description Restrictions on Application to Eddy-
Resolving Simulations

Advantages

Correction Factor and Safety Factor Methods

Depend on Richard-
son Extrapolation
with factors depend-
ing on observed
order of convergence

• Treatment of oscillatory, lower and
upper limits for the convergence or-
der,

• Noisy data in calculating the ob-
served order of convergence.

• Accounts for
non-asymptotic
solutions and
discretization
errors.

The Least-Squares Fitting Method

Using least-squares
fitting approach to fil-
ter out the noise from
the observed order of
convergence

• Treatment of non-monotonically
converging data.

• Accounts for
non-asymptotic
solutions and
discretization
errors.

The Grid and Model Variation

Based on Richardson
extrapolation. Sep-
arate modeling and
discretization errors

• Requires at least five simulations,
• Needs control on the filter width.

• Quantification for
both modeling
and discretization
errors separately.

The Method of Nearby Problems

Estimation of the dis-
cretization error us-
ing one grid

• Very complex in dealing with 3D-
unsteady simulations.

• Requires one simu-
lation.

Table 2.6: Summary for different techniques used in the context
of solution verification to quantify simulation quality
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2.3 Summary

Overall, it can be clearly noted from Table 2.1 that the available standards
are not developed for CWE simulations, but some of the presented methods
can be adapted for CWE. Firstly, the MMS can be used for code verification.
The MMS has shown to be a very efficient approach for detecting imple-
mentation mistakes since it has been applied to many codes, as shown in
Table 2.3. Secondly, the LSR1 is shown to be a very promising numerical
uncertainty estimator for solution verification, see Table 2.6. The LSR1 has
been used for solution verification for several applications in the literature.
The method uses a safety factor to account for uncertainty in the error
estimation. Moreover, the LSR1 can be defined as the least-squares fitting
for power series expansions as a function of the typical cell size.
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The frequently heard
argument ‘any solution is
better than none’ can be
dangerous in the extreme.
The greatest disaster one can
encounter in computation is
not instability or lack of
convergence but results that
are simultaneously good
enough to be believable but
bad enough to cause trouble.

Joel H. Ferziger
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3
PROPOSED SIMULATION CREDIBILITY

ASSESSMENT METHODOLOGY

In this chapter, the newly developed simulation credibility assessment
framework is introduced. As presented in Chapter 2, verification activities
are the basis for SQA. In this work context, verification activities are per-
formed for unsteady turbulent simulations with high R e . Moreover, natural
wind conditions are used, which means turbulent inlet and eddy-resolving
simulations are used. All the above properties describe a Computational
Wind Engineering (CWE) simulation. The challenges imposed in CWE
reliability are summarized as follows

– Unsteady flow,

– Simulating natural wind conditions,

– Transient inlet,

– High R e ,
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– Limited computational power,

– Using large grid sizes,

– Discrete solutions are not in the asymptotic range,

– Measuring integral quantities (i.e drag, lift, and crosswind forces)
and local quantities (i.e surface pressure and velocities at reference
height),

– Scatter in the data and anomalous behavior1,

– Non-matching observed and formal order of convergence,

– Using unstructured grids,

– Using non-uniform refinement,

– Eddy-resolving simulations.

Therefore, a special emphasis is needed for each component of the verifi-
cation procedures. The mainstream of the new credibility methodology
is shown in Figure 3.1. In the subsequent sections, the main blocks are
explained in detail.

The procedure preliminaries are presented in Section 3.1. The two main
blocks (1) and (2) in Figure 3.1 are presented in Section 3.2 and Section 3.3
respectively. The proposed credibility methodology defines a variety of
code verification test cases, some fulfill the governing equations, and some
are for code debugging. Meanwhile, for uncertainty estimation, particular
emphasis is placed on defining an appropriate measure for typical grid size
(h ) for unstructured non-uniform meshes used in practice. Furthermore,
the safety factor (Fs ) is defined based on the uncertainty in the identifi-
cation of (h ). Finally, statistical convergence error is quantified, which is
rarely considered in publications on verification activities.

1 Anomalous data behavior occurs if the observed order of convergence (p̃ ) is less than
or equal to zero.
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Specify the application of interest

Select software func-
tionalities to be used

Verify code for selected functions 1

Simulation
quality is not
guaranteed

Is code
verified?

Design and execution of
numerical simulations

Quantify numerical uncertainty
using solution verification

2

Comparison of numerical solu-
tion and experimental results

Documentation of activities

No

Yes

Figure 3.1: Flowchart for the verification procedures main
building blocks
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3.1 Procedure Preliminaries

Specify the application of interest It is crucial to specify the application
target to identify all the challenges and limitations of the simulation. In
the context of this work, CWE simulations are used for calculating loads
on tall-slender structures (i.e., high-rise buildings).

Select software functionalities to be used CFD application of KRATOS
Multiphysics 2 is used as test code for clarification of the method applica-
bility. The variational multi-scale element is considered using a monolithic
solver. More information about the simulation code will be presented in
Chapter 4.

Verify code for selected functions This part is concerned with examin-
ing the correctness of the code implementation. The required steps are
presented in Section 3.2. The newly developed benchmarks and code veri-
fication procedures are presented in Chapter 5. Once the code is verified
and passed all the designed benchmarks, physical problems can be solved,
and numerical errors can be estimated.

Simulation quality is not guaranteed If, after performing the code veri-
fication procedures, the acceptance criteria are not satisfied, verification
can not be completed because the code has some bugs, and code credibility
can not be established.

Design and execution of numerical simulations After building confi-
dence in the code according to the method explained in Section 3.2, sim-
ulations for real test cases can be started. Then, numerical uncertainties
associated with the simulation can be evaluated according to the proce-
dure explained in Section 3.3.

Quantify numerical uncertainty using solution verification Now, the
numerical uncertainty for the application of interest is to be quantified.

2 http://www.cimne.com/kratos/
https://github.com/KratosMultiphysics
More information can be found in Dadvand [96] and Cotela [97]
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Achieving this target requires a unique treatment of the challenges im-
posed in CWE simulations. Thus, a new framework with new definitions
is introduced in Section 3.3 to quantify numerical uncertainty, especially
uncertainty due to discretization and statistical convergence.

Comparison of numerical solution and experimental results This can
be considered the final step. The discrete solution with the estimated
uncertainty can be compared to experimental results if existing.

3.2 Code Verification Assessment Framework

In this section, block (1) of the verification procedure is presented in Fig-
ure 3.2. It is very similar to the procedure shown in the literature Sec-
tion 2.1.2.1. The main difference is the design of the code verification test
cases. A combination of MES and MMS is used in code verification to
initiate a test case for codes with no access to the equations system. It
is very important to indicate that all the recommendations presented in
Section 2.1.2 must be realized in the design of test cases. Recommenda-
tions presented in Section 2.1.2.3 are followed for the decisions on initial
and boundary conditions. Chapter 5 presents an application of the code
verification procedures, where test cases design is shown, and instructions
on how to perform refinement are presented to verify a simulation code.

3.2.1 Calculation of the Global Error

The numerical solution is composed of the values of the variables depen-
dent on discrete locations obtained from spatial and temporal discretiza-
tion algorithms. The errors in computer simulations are physical modeling
errors, discretization errors, incomplete iterative convergence error (IICE),
programming mistakes, and computer round-off errors (Oberkampf et al.
[8] and Fisch [9]). In this work scope, the discretization error is dominating
since all other errors are kept minimal. Several measures are possible to
compute the discretization error. In the MMS, the exact solution is defined
on the continuum. Thus, the exact solution can be computed at the same
locations in time and space as the numerical solution (Knupp et al. [31]).
Let n be a grid point, φ̂n be the analytical solution,φn be the discrete so-
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Code
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Figure 3.2: Flowchart for the code verification procedures
adapted from Oberkampf et al. [8], Roache [11], and Knupp et al.

[31]
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lution. Both solutions are evaluated at the same point in time and space
�

xn , yn , zn , t
�

. The normalized global error is evaluated on the L2 norm by

EL2
=

√

√

√

√

∑

n

�

φ̂n −φn

�2
αn

∑

n αn
(3.1)

where αn is some local volume measure3. Moreover, if this local measure is
constant, such as in a uniform grid, the normalized global error (sometimes
referred to as the RMS error) reduces to

EL2
=

√

√

√

1

N

∑

n

�

φ̂n −φn

�2
(3.2)

where N is the number of grid points. Another very sensitive norm, that
can be used to obtain the global error, is the infinity norm which is defined
by

Einf =ma x
N
|φ̂n −φn | (3.3)

It is important to include all the grid points especially near boundary
points in calculating the global error using either the RMS or infinity norms
(Knupp et al. [31]).

3.2.2 Order of Convergence

When performing code verification with the order of convergence as the
acceptance criteria, it is crucial to differentiate between formal and ob-
served order of convergence.

3.2.2.1 Formal Order of Convergence

The formal order of convergence is also known as the overall theoretical
order of accuracy of the fundamental discretization scheme used by the
code (Knupp et al. [31]). Sometimes, it is not easy to retrieve this informa-
tion from the code documentation, and even the code developer may not

3 it can be defined as the tributary volume around a node.
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know it. Thus, it is recommended to derive the theoretical order of conver-
gence if it is not available. If the theoretical order of convergence cannot be
obtained, the acceptance criteria must be changed to convergence check
only. The convergence check is not as reliable as the order of convergence
check. Thus, convergence check test power in finding code bugs is not
guaranteed which weakens the code verification process.

3.2.2.2 Observed Order of Convergence

The observed order of convergence is obtained from the discrete solution
on different grid sizes. The discretization error is a function of the grid size
h (Knupp et al. [31]).

E = E (h ) (3.4)

The discretization error is proportional to h p , and p > 0 is the discretization
algorithm theoretical order of convergence. Thus, the discretization error
for a consistent method can be written as in Equation (3.5):

E =αh p +H .O .T (3.5)

where α is a constant and H .O .T are high order terms. The error descrip-
tion in Equation (3.5) is applicable to any consistent discretization method
such as finite element, and finite volume, but a sufficiently smooth solution
is required. Assuming that the discrete solutions on two different grids,
fine mesh h1 and coarse mesh h2, are in the asymptotic range, the first
term in the discretization error dominates the high order terms, and the
discretization error is estimated by Equation (3.6) or Equation (3.7).

E (h2)≈αh p (3.6)

E (h1)≈α
�

h

r

�p

(3.7)

where r is the refinement ratio. By dividing Equation (3.6) by Equation (3.7),
the ratio of the discretization error writes:

E (h2)
E (h1)

= r p (3.8)
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From Equation (3.8), the observed order of convergence p can be estimated
using Equation (3.9).

p =
l o g

�

E (h2)
E (h1)

�

l o g (r )
(3.9)

3.3 Solution Verification Assessment Guidelines

Solution verification for CWE simulations is not a straightforward task. It
requires data measures that can represent mean flow, turbulence-statistics,
and eddy-statistics. Thus, the first crucial step for assessing numerical mod-
els is finding reliable, reproducible reference data that provide detailed
information about important flow parameters, against which the model
performance and uncertainty can be assessed (Hertwig et al. [98, 99]). In
this section, block (2) of the verification procedure in Figure 3.1 is intro-
duced. As concluded from the literature review in Section 2.2, the main
emphasis for solution verification was discretization error/uncertainty
estimators with minimal focus on unsteady CFD and marginal usage in
CWE (Franke [14]). The motivations towards the use of solution verification
in unsteady flows simulations are (Eça [23]):

• CFD simulations require the assessment of their numerical uncer-
tainty to establish their credibility,

• Methods for uncertainty estimation based on grid refinement studies
(statistically steady flows) are available in the literature,

• CFD applications are no longer restricted to (statistically) steady
flows,

• In statistically unsteady flows4, numerical errors are more compli-
cated to handle. Iterative and discretization errors have more than
one contribution,

• Developing guidelines for quality assessment of practical calcula-
tions of unsteady flows, since there is no technical reason to present
numerical simulations of practical calculations without the indica-
tion of numerical uncertainty (Eça et al. [24]).

4 defines flows that do not depend on time as steady flows, whereas unsteady flows
depend on time.

59



3 Proposed Simulation Credibility Assessment Methodology

3.3.1 Properties of the Solution Verification Framework

Dealing with numerical errors for eddy-resolving simulations is not an
easy task. The complexity of the problem leads to misleading results. The
complexity comes from the interaction between numerical and modeling
errors. One more factor which contributes to the complexity of the prob-
lem is the unsteadiness of the flow regime. The unsteadiness of the flow
adds more sources of uncertainty such as statistical sampling error, which
is typically ignored in the literature. Methods for quantification of these
errors are proposed in this research. In CWE simulations, representation of
natural wind flow is an additional complexity added to the solution quan-
tification process. Consequently, the grid design should be good enough
to preserve the turbulent properties of the incoming flow. First of all, let us
clarify the objectives and properties of the newly proposed framework:

• Identify testing procedures for the estimation of the numerical error.
Numerical error and modeling error (sub-grid scale/filter width def-
inition error) cannot be easily separated. Therefore, we combine the
two sources of errors as one term called numerical error, because
both are associated with the grid size. It will not be possible to sep-
arate the numerical and modeling errors, especially when there is
no input parameter to customize the filter width. It should be kept
in mind, that the same order of convergence is preserved for the
Navier-Stokes discretization and the sub-scale equation discretiza-
tion. Moreover, the filter width is correlated to the grid size, so both
error terms can be combined. For both VMS and implicit LES models,
the grid size plays the role of the filter width definition. Thus, both
terms grid size and filter width can be combined.

• It can be safely said that this approach is applicable to eddy-resolving
simulations.

• The framework is to be robust, meaning that the software user can
use it without any knowledge of the implementation details, and it
can be used for black-box testing. Finally, the methodology should
be an a-posteriori-based procedure.

• The use of statistical tools with uncertainty estimates to identify the
quality of the results and compare them between different simula-
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tions. It mainly indicates if the simulations are run for sufficient time
to converge statistics.

• Based on the literature review in Section 2.2, LSR1 is developed to
deal with data, not in the asymptotic range, which is very useful for
practical applications. The LSR1 uncertainty estimation proposed by
Eça et al. [12] is used as the basis for the numerical error/uncertainty
estimation. The newly proposed methodology has an extension to
improve the treatment of the unsteady nature of the problem, the
uncertainty in estimating the cell size (h), and the definition of the
order of convergence (p ) for non-monotonically converging data.

3.3.2 Procedures for Solution Verification Framework

Because of the challenges imposed from the application of interest, a dis-
cretization uncertainty estimate only is not sufficient. Therefore, a measure
of the statistical convergence uncertainty and monitoring of the generated
wind properties from the turbulent inlet to the obstacle are needed. Also,
not only first-order statistics but extreme value analysis is required. For
any quantity of interest, the numerical error/uncertainty estimator shown
in Section 3.3.5 can be applied. The guidelines for solution verification of
CWE simulations are as follows:

1. Determine the characteristics of the application of interest.

2. Design of the computational domain, grid size, simulation time, and
time step size.

3. Selection of refinement strategy. It is highly dependent on the avail-
able computational power and time frame of the simulations. It can
be achieved by one or a combination of the following options:

a) Evaluate spatial discretization error: Perform spatial refinement
with the same time step for all grid levels, and keep the CFL
number below some value ideally one.

b) Evaluate time discretization error: Perform temporal refine-
ment with the finest grid.

c) Evaluate the combined space/time discretization error. If space
and time discretization schemes are of the same formal order,
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then refine in space and time with the same refinement ratio.
In this case, the spatial and temporal discretization errors can
be grouped in one error term.

d) For each grid, run simulations at different time steps. Then,
spatial and temporal discretization errors can be evaluated
separately.

4. Selection of the SRQ: There are different quantities of interest or
measurements at different locations for each application. In CWE,
the following variables are the most important:

– Forces acting on the obstacle (Integral quantity),

– Obstacle surface pressure (Local quantity),

– Velocity at different locations from the inlet to the obstacle at
reference height and the velocity profile (Local quantity).

5. Evaluate statistics for the SRQs: for all variables, compute the first-
order statistics, mainly:

• Mean value,

• Standard deviation,

• Root mean square,

• Extreme value analysis (Minimum, Maximum).

6. Monitoring of the generated wind characteristics from the inlet to
obstacle: compute the turbulent kinetic energy (TKE), turbulent
kinetic energy dissipation rate (TKEDR), and both integral time and
length scales for all the velocity points as follows:

– Compute TKE:
It can be computed for the entire domain or at selected points
at each time step. Having a velocity vector ~U = U +U ′, the
turbulent kinetic energy can be defined as:

T K E =
1

2
U ′2

i (3.10)

– Compute TKEDR:
It can be computed using several techniques, and the simplest
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is the first derivative of the TKE DeBonis [48]. Other techniques
are presented in Wacławczyk et al. [100] for signals with low
sampling frequency or sampling time.

T K E D R =−
d (T K E )

d (t )
(3.11)

The TKEDR is computed in the discrete form using a second-
order accurate central difference scheme.

– Compute integral length and time scales: It can be computed
using autocorrelation function integrated to first zero crossing.
Further readings in this topic can be found in Nicolaides et al.
[101].

Also, power spectral densities for each grid can be compared to
Kaimal spectra at a selected location.

7. Classify and evaluate sources of errors and uncertainties for each
measured quantity, as shown in Section 3.3.5.3. Figure 3.3 shows dif-
ferent error sources and in a CWE simulation. In subsequent sections,
each source is discussed in detail.
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Sources of Numerical Errors in CWE

Mapping from wind genera-
tor to computational domain

Round-off and iterative errors

Statistical convergence error

Discretization error

Figure 3.3: Main sources of numerical error/uncertainty in a
CWE simulation

3.3.3 Round-off and Iterative Errors

The discrete solution of a steady or unsteady flow problem is typically
obtained in an iterative process. Therefore, not only discretization errors
but also iterative and round-off errors are affecting the solution quality. The
solution procedures of unsteady flows are challenging, where spatial and
temporal resolutions have to be carefully chosen. An additional complexity
originates when dealing with turbulent flows (Oberkampf et al. [8], Roache
[11], Knupp et al. [31], and Eca et al. [102]). Time integration is usually
performed with schemes, which require the solution of a non-linear system
of equations at each time step. If convergence criteria are not well-defined
in solving the non-linear equation system, the iterative error propagates
to the next time step (Eca et al. [102]). It is stated by Eca et al. [102] that
"a significant influence of the convergence criteria applied at each time
step on the numerical accuracy of the solution was experienced by all
participants". In the scope of this work, the risk of dealing with round-off
and iterative errors is avoided by using machine precision and imposing
stringent convergence criteria, respectively.
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3.3.4 Statistical Convergence Error

In many industrial applications, the main engineering quantities of inter-
est are time-averaged values and sometimes a fluctuation measure around
the mean. To compute the system response quantities in time-varying CFD
simulations of statistically stationary turbulent flows, a fully developed
flow state should be first achieved (Gant [52]). There are several approaches
to judge whether a flow has reached a fully-developed state. Monitoring
the main system response quantity of interest and plotting its variation
over time is a commonly used approach. An accurate computation can
be the running average of the parameter until it reaches a steady value.
On the other hand, flows are more complex in many industrial applica-
tions. Therefore, there may be subtle long-time-period oscillations that are
difficult to characterize in terms of a single frequency (Gant [52]). There
are some techniques presented in the literature to compute statistics with
confidence (Gant [52], Gant [64], Garcia et al. [74], Haughton et al. [103],
Theunissen et al. [104], Politis et al. [105], and Patton et al. [106]). Measuring
statistics with confidence interval (C I ) is good to account for uncertainty
in the QOI resulting from simulation repetition. Statistical uncertainty
provides practitioners with a rational way of evaluating the statistical er-
ror component’s significance on repeated trials, which can be used for
data validation with experimental or other numerical results (Garcia et al.
[74]). Eventually, bootstrapping is the most widely accepted and robust
approach, which does not require the repetition of simulations. It is used
to compute the statistical uncertainty in the scope of this work.

3.3.4.1 Bootstrapping

Bootstrapping, first introduced in 1979 by Efron, is a re-sampling technique
used to estimate statistics, such as mean and standard deviation, with
uncertainty. It is extensively used in econometrics, while in recent years,
fluid experimentalists have been using bootstrapping to avoid experiment
repetitions to get statistical inference. The method overcomes most of the
deficiencies found in standard techniques. In standard techniques, no
equations are available to compute the standard error of parameters with
more complicated expressions than sample mean and variance, such as
turbulent kinetic energy, time and length scale, and turbulent kinetic energy
dissipation rate. Bootstrapping requires no theoretical calculations and is
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available no matter how complicated the parameter of interest (Efron et al.
[107]). Bootstrapping estimates the non-parametric standard error with a
confidence interval. There are several cases where bootstrap performance
is questionable, such as:

1. Extreme value estimation

2. Too small sample size

3. Long-range dependencies

The bootstrap technique consists of two components: distribution es-
timate (re-sampling) and estimation for a confidence interval. The two
components define the general procedures for bootstrap as (Stephanie
[108]):

1. Re-sample a data set X number of times,

2. Find a summary statistic (called a bootstrap statistic) for each of the
x samples,

3. Estimate the standard error for the bootstrap statistic using the stan-
dard deviation of the estimated bootstrap distribution.

The bootstrap re-sampling technique can be either parametric or non-
parametric. Karlis [109] defines parametric and non-parametric bootstrap
as follows:

• Parametric bootstrap: it is assumed that the data belongs to a para-
metric family of distributions (e.g., exponential distribution, normal
distribution, etc.), and parameters are estimated from the sample.
Then, bootstrap samples are generated from the estimated parame-
ters. Figure 3.4 shows the schematic representation for the paramet-
ric bootstrap where simulated samples are derived from the fitted
distribution.

• Non-parametric bootstrap: it is mainly developed for random data
where the statistical distribution is not known. The bootstrap sam-
ples are generated from the original sample. Figure 3.5 shows the
schematic representation for the non-parametric bootstrap where
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Figure 3.4: Schematic representation for the parametric
bootstrap re-sampling technique (Shalizi [110])

new data is fitted by re-sampling (with replacement) from the origi-
nal data.

Bootstrap confidence interval can be calculated by several techniques,
such as pivotal interval, studentized interval, biased-corrected accelerated
interval (BCA), etc. An extensive review of these methods can be found in
Efron et al. [107], Karlis [109], and Davison et al. [111]. Overall, the BCA is
shown to be the preferred method in literature because it is second-order
accurate and valid for a variety of problems.

Finally, a biased-corrected accelerated moving block non-parametric boot-
strap (BCA-MBB) by Efron et al. [107] is used to quantify statistical con-
vergence uncertainty. The moving block bootstrap (MBB) was developed
to preserve the real correlation in the signal to quantify the statistical un-
certainty in turbulence parameters (Garcia et al. [74]). The approach was
used in the literature to deal with a problem similar to the scope of CWE
applications (Garcia et al. [74] and Theunissen et al. [104]). The MBB tech-
nique can be applied for a signal with N samples. A block size b is to be
defined to generate all the possible contiguous blocks of length (N − b +1)
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Figure 3.5: The non-parametric bootstrap re-sampling
technique (Shalizi [110])

total blocks. One then randomly samples N /b blocks with replacement
from the total number of blocks and processes them.

Figure 3.6: A schematic illustration of the non-parametric MBB
for time signal using a block size equals to three samples. The black

series represents the original time series and the white circles
denote one of the bootstrap realizations using MBB. Numbers

indicate the sample order in the original signal (Garcia et al. [74])
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3.3.4.2 Bootstrapping Short Example

Figure 3.7 shows signals for the drag and cross-wind force coefficients for a
2−D flow around a square. The BCA-MBB technique1 with 1000 samples
for the mean value is applied to the force coefficient time series to estimate
the mean values’ statistical uncertainty (Evans [112]).
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Figure 3.7: Force coefficients signals for 2−D flow around a
square

Table 3.1 summarizes the results of the bootstrap. It can be noticed that
the statistical uncertainty in the mean for CFy

is very high. By looking at
the signals, it can be noticed that the mean is oscillating around zero, and
the variation is very high. Thus, this might require longer simulation time,
a higher number of bootstrap sample size, higher sampling frequency, or a

1 it is implemented in scikits.bootstrap python and Last accessed on January 8, 2019
https://github.com/cgevans/scikits-bootstrap
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different approach. On the other hand, the mean statistical uncertainty
for the quantity of interest CFx

is around 0.7%, which was going to be
neglected if the bootstrap was not performed. Finally, by changing the
sampling interval, the results might improve.

Grid CFx CFy

Mean Uncertainty [%] Mean Uncertainty [%]

h1 2.4877 0.643 0.0427629 78.9

h2 2.62258 0.687 0.0130478 65.8

h3 2.58 0.763 0.06921 55.1

h4 2.6277 0.776 0.02437 65.1

Table 3.1: Results of applying the BCA-MBB to evaluate the
statistical mean uncertainty in time series

70



3.3 Solution Verification Assessment Guidelines

3.3.5 Discretization Error Estimation

The discretization error estimation technique of unsteady turbulent flows
is discussed in this section. At this point, it is very crucial to clarify that
the discretization error estimate has two components: first, the error esti-
mation, and second, the uncertainty quantification. In the literature, this
is referred to as discretization uncertainty estimation because the error
is multiplied by a safety factor to account for solutions not being in the
asymptotic range (Phillips [49]). From Section 2.2, it can be clearly seen that
great emphasis was given to Multi-Grid estimators, because they are more
realistic for practical applications. It can also be noticed that almost all the
approaches for Multi-Grid estimators are based on the Richardson Extrap-
olation. The general form of the Richardson Extrapolation, introduced in
Section 2.2.1.5, can be written as:

εh =φh − φ̃ =α1(h )
ph +α2(∆t )pt (3.12)

The error function (εh ) is dependent on the typical grid size (h ), spatial
order of convergence (ph ) and temporal order of convergence (pt ). To study
the effect of the definition of (h ) and order of convergence (p ) on the quan-
tification of error, let’s reduce Equation (3.12) to Equation (3.13) by assum-
ing both spatial and temporal order of convergence are of the same order,
such that (p = ph = pt ).

εh =α(h )
p (3.13)

Figure 3.8 left shows the typical cell size (h ) on the x-axis and error function
(εh ) on the y-axis. The εh is calculated for different convergence orders
(p = 1,1.5,2). It can be seen that the error is highly affected by value of
h , especially for p > 1.0. Consequently, the typical grid size definition
for unstructured locally refined meshes is of great impact on the error
estimation. having p = 2.0 and locally refined mesh, where h can be any
value between 0.2 m and 0.05 m , for instance, the calculated error varies
from 5 % for h = 0.05 m to 20 % for h = 0.2 m . Therefore, a new definition
for calculating the typical grid size (h ) is mandatory and must be sensitive
to local refinement.

Figure 3.8 right shows the order of convergence (p ) on the x-axis and error
function (εh ) on the y-axis. The εh is calculated for different typical grid
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Figure 3.8: The effect of cell size and convergence order
variation on Richardson Extrapolation error estimation (Assuming

α= 1.0)

sizes (h = 0.05,0.125,0.2)m . It can be seen that for the same h , the error
is highly influenced by the value p where for h = 0.05 m , the εh has a
variation of ≈ 20 %. This effect is highly affecting the error estimation for
anomalous data behavior5. Therefore, a special treatment is crucial for
the definition of p for anomalous data behavior, which is fairly seen in
practical CWE simulations.

In this work, new definitions for typical grid size, treatment of anomalous
data order of convergence, and definition for the uncertainty estimator are
used together with a least-squares fitting approach to estimate discretiza-
tion uncertainty for CWE simulations of practical relevance.

3.3.5.1 Definition of the Typical Grid Size

In practical CWE applications, the cell size (h ) in Equation (3.13) does
not have a unique description. Therefore, further doubts are added to the

5 Anomalous data behavior means data that does not have a positive observed order of
convergence (non-monotonically converging data)
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evaluation of the discretization uncertainty. In this section, a measure for h
is introduced. In the literature, h is described for any mesh type as follows:

h1 =















3
Ç

V o l
#o f c e l l s in 3−D

2
Ç

Ar e a
#o f c e l l s in 2−D
L e ng t h

#o f s e g me n t s in 1−D

(3.14)

Equation (3.14) is strongly valid when all mesh elements have the same
size and then systematically refined. However, these meshes are not valid
in practical applications. In practical CWE simulations, the domain is di-
vided into a number of zones (nz ), and each zone has a different cell size.
Typically, a mesh is refined near the structure. Therefore, a new measure-
ment is proposed for the definition of a typical grid size. In this work, the
weighted average cell size is calculated based on the importance of the
cell’s zone location. This approach assumes that as the computational
domain is locally refined, simulation quality is improving for predicting
SRQ. Moreover, the concept of mesh zones is clarified in Figure 3.9.

z3

z2 z1

z4 → zi

Figure 3.9: The definition of mesh zones concept used to
compute the cell size
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The approach is defined by:

h2 =
nz
∑

i=1

wi hzi
(3.15)

where hzi
is the cell size corresponding to zone zi , nz is the number of

zones and wi is defined as:

wi =
1

hzi
∑nz

i=1
1

hzi

(3.16)

ensuring that

nz
∑

i=1

wi = 1 (3.17)

This calculation will result in smaller grid size than the one computed
from Equation (3.14). Assuming that the actual cell size can be any value
between h1 and h2 with equal probability, the estimation of h can be de-

scribed by a normal distribution with mean
�

µ = h1+h2
2

�

and standard

deviation
�

σ=
�

�

�

h2−h1
2

�

�

�

�

.

3.3.5.2 Cell Size Measure: Short Example

To clarify the concept introduced in Section 3.3.5.1, let’s consider a 1−D
case with length L = 10 and divided into four zones nz = 4 as shown in
Figure 3.10. Normally, fine regions correspond to a significant zone, where
all the SRQs are evaluated.

z1 z2 z3 z4

dx1 =
0.01

dx2 =
0.06

dx3 =
0.2

dx4 =
0.5

0 1 3 6 10

Figure 3.10: 1-D case zones division

By applying the conventional equation, the general cell size using Equa-
tion (3.14) is h1 = 0.06397. On the other hand, applying the weighted ap-
proach using Equation (3.15) results in h2 = 0.03236. The true typical grid
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size can be any value in the interval [h1, h2]with equal probability. There-
fore, the estimated typical grid size can follow a normal distribution with
parameters (µ = 0.048165, σ = 0.015805). In other words, the two esti-
mates have around 35% difference in the mean estimated value in this
case. Thus, the uncertainty from the estimation of h must be transferred
to the discretization uncertainty, as shown in Figure 3.8.

3.3.5.3 Discretization Uncertainty Estimator

The presentation of Eça et al. [24] compared the performance of the most
widely used discretization uncertainty estimators in the literature. It was
concluded that the FS and LSR1 are the most acceptable for practical sim-
ulations. Hereafter, the procedure proposed by Eça et al. [12] is adapted
for the estimation of the numerical uncertainty. The approach is based on
using a least-squares fit for data estimated with power series expansions,
which is a function of the typical grid size. The LSR1 is restructured accord-
ing to the new definition of h (Section 3.3.5.1) and the assumption of p for
anomalous data behavior.

Description of the Discretization Error Richardson extrapolation can
be applied to numerical methods that possess power series expansion for
the discretization error under sufficient conditions (Allen [113]). Discretiza-
tion error εφ can be described as:

εφ 'δR E =φi −φ0 =αh p
i (3.18)

where δR E is the residual,φi is the numerical solution of grid i = 1, 2, ...ng ,
ng is the number of grids,φ0 is the predicted exact solution,α is a constant
value, hi is the typical grid size h of grid i and p is the order of convergence.
Equation (3.18) is also known as the generalized form of the Richardson
extrapolation. Equation (3.18) is solved for εφ , α, p with the least-squares
sense as shown in appendix D. The estimation of εφ is considered reliable
if Equation (3.18) is solved under the following assumptions:

1. At least three grids are needed: This assumption can be violated
when the formal order of convergence is used to evaluate the error;
then, only two grids are sufficient. The assumption of using pf is not
justified in practical calculations.
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2. Guarantee that the leading term of the power series expansion is
sufficient to estimate the error (Eça et al. [12]): This assumption is
valid only if the grids are in the asymptotic range. Asymptotic range
solutions are almost impossible to achieve in practical calculations.

3. Geometrical similarity must be achieved for all grids, because the
density of the grid is represented by one parameter (cell size (h )):
This is very difficult to achieve in practical computations where un-
structured meshes are used. The definition of h for unstructured
grids has been discussed in Section 3.3.5.1.

The assumptions stated above are violated in practical CWE calculations
(Eça et al. [12] and Eca et al. [20]). Therefore, noisy data is produced from
different grids. Equation (3.18) is not sufficient to estimate the error and
more rules are needed as follows:

1. At least four grids are used to have a reasonable error estimate.

2. Assuming the code is theoretically second-order accurate, three error
estimators are defined to formulate the error function as

εφ 'δ1 =φi −φ0 =αhi (3.19)

εφ 'δ2 =φi −φ0 =αh 2
i (3.20)

εφ 'δ12 =φi −φ0 =α1hi +α2h 2
i (3.21)

Least-Squares for Error Estimation Having (ng ≥ 4), least-squares can
be used to minimize the sum of squared deviations of the simulated φi

from the estimates of their true valueφ0, which will treat the scatter in the
data, and provide a reliable error estimate. In general, the estimation ofφ0

is determined from the minimum of the least-squares fitting as (Rawlings
et al. [114]):

SR E

�

φ0,α, p
�

=

√

√

√

ng
∑

i=1

�

φi −
�

φ0+αh p
i

�

�2
, (3.22)
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S1
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Assuming that fine grids are producing more reliable results, it is possible
to use a weighted least-squares by minimizing the following functions:
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where the weights wi are dependent on the cell size:

wi =
1

hi
∑ng

i=1
1

hi

, (3.30)
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ensuring that

ng
∑

i=1

wi = 1 (3.31)

The solution to the least-squares fitting is explained in appendix D. In
this work, eddy-resolving simulations for unsteady flows are considered. It
adds the complication of time discretization schemes. Therefore, spatial
and temporal uncertainties are to be calculated. Three approaches can be
used in this matter:

– First, evaluate the spatial discretization uncertainty at a fine time
step with grid refinement following procedures in Figure 3.11. Then,
evaluate the temporal discretization uncertainty at the finest spatial
grid and apply the same procedures. In this situation at least eight
simulations are required.

– Second, modify the general error function Equation (3.18) used in
the LSR approach to include the temporal discretization error term
as:

δ=φi −φ0 =α1h ps

i +α2(∆t )pt

i , (3.32)

and the minimization function can be written, for example, as:

SR E
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∑
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i

�

�2

(3.33)

where α1 and α2 are constants, ps is the spatial order of convergence,
and pt is the temporal order of convergence. In this situation at least
eight simulations are required with minimum three grids.

– Third, the spatial and time discretization schemes are of the same
theoretical order of convergence. Hence, the error can be evaluated
by a sequential space-time refinement with the same order and the
error function can be written as:

δ=φi −φ0 =αh p
i , (3.34)
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and the minimization function can be written, for example, as:

SR E

�

φ0,α, p
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= 2

√
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√

ng
∑

i=1

�

φi −
�

φ0+αh p
i

�

�2
(3.35)

In this situation at least four simulations are required.

Procedures for Error and Uncertainty Estimator The last point to con-
sider in the solution verification framework is the complete procedure for
the discretization uncertainty estimation. The procedure is summarized
in Figure 3.11. These are the main issues handled by this new approach:

1. Treatment of anomalous data behavior: The key difference here is
assuming that the order of convergence pj can be any value in the
range [0.5, 2]. This range is used to have a fair error estimate instead
of using fixed value such as pj = 1 or pj = 2 which are proposed in
Eça et al. [12]. Then, for each value pj in the range [0.5, 2], the fits Sj

and S w
j are solved. Also, the fits S12 and S w

12 are evaluated. Then, all
the fits are solved forφ0 and fit standard deviationσ is computed.
The error function for the fits with arbitrary convergence order pj is:

δpj
=φi −φ0 =αh

pj

i (3.36)

Then, the function for the fit with the minimum σ is used to com-
pute the error. This improves the error estimate’s ability to deal with
anomalous data behavior, which can be especially experienced in
local quantities. The modification can be seen in Figure 3.11. In
anomalous data behavior, it will be very complicated to get the ob-
served order of convergence using the generalized minimization
problem. Consequently, a predefined order of convergence is used,
which varies from 0.5 to two. The maximum pj value is defined as the
theoretical convergence order while using the minimum accepted
value for the order of convergence. Finally, the fit with the minimum
standard deviation is used to evaluate the discretization error.

2. Computation of the safety factor Fs : The uncertainty is based on an
error estimation multiplied by a safety factor. The additional term Fs h

in the safety factor computation is the propagation of the uncertainty
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of the error function from the input parameter hi (see Section 3.3.5.1)
to the predicted exact solutionφ0. Monte Carlo method is used to
estimate the distribution ofφ0. The steps for the Monte Carlo method
are:

– The limits of the possible inputs are defined as described in
Section 3.3.5.1,

– Use a normal probability distribution to generate random in-
puts,

– Perform the computation ofφ0 using the random input,

– Compute the mean µo u t and standard deviationσo u t for the
output quantityφ0.

The factor Fs h is computed as following:

Fs h =
3σo u t

µo u t
(3.37)

Finally, 3σo u t is used to ensure a 99.9% confidence interval and Fs h

is used to calculate the safety factor as shown in Figure 3.11.

3. A safety factor (Fs ) is defined to estimate uncertainty. For a mono-
tonically converging data set with 0.5≤ p < 2.1, the Fs is set to 1.25,
otherwise Fs is set to 1.25+ Fs h . Then, a data range parameter (∆Φ)
is defined to judge on the quality of the data fit. (∆Φ) is computed as

∆Φ=
(φi )ma x − (φi )mi n

ng −1
(3.38)

The uncertainty for a data pointφi is computed as

Uφ(φi ) = Fsεφ(φi ) +σ+ |φi −φ f i t | i f σ<∆Φ, (3.39)

Uφ(φi ) = Fs
σ

∆φ
(εφ(φi ) +σ+ |φi −φ f i t |) i f σ≥∆Φ. (3.40)
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Figure 3.11: Flowchart for the numerical error/uncertainty
estimator procedure based on the concepts in Eça et al. [12]
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3.3.5.4 Application of the Discretization Uncertainty Estimator

In this section, the data available from the workshop on estimation of
discretization errors based on grid refinement studies1 is used to evaluate
the performance of different discretization uncertainty estimators. The
results for flow over a flat plate is considered using a Spalart-Allmaras
turbulence model on the coarsest wall spacing grid (Set 10). Data for R e =
107 and R e = 109 called CaseIa and CaseIIIa, respectively, are used. The
detailed description for the test case can be found in appendix E. The
following uncertainty estimators are used:

– GCI: is introduced in Standard for Verification and Validation in
Computational Fluid Dynamics and Heat Transfer (ASME V&V20
Committee [26])

– GDU: is introduced in Phillips et al. [10] and Phillips et al. [115]

– LSR1: is introduced in Eça et al. [12]

– LSRCONS: is introduced in Section 3.3.5.3 having a conservative
measure using Fs = 1.25 or Fs = 3.

– LSRMONTE: introduced in Section 3.3.5.3 without any modification
and assuming 20 % variation on the estimate of the typical grid size.

Applying both GCI and GDU requires grid triplets to estimate the fine grid
error. The following grids are used:

– For grid h1, the three grids h1, h2, h4 are used,

– For grid h2, the three grids h2, h4, h8 are used,

– For grid h4, the three grids h4, h5.818, h8 are used.

where h1 refers to the finest grid, and h8 refers to the coarsest grid. Fig-
ure 3.12 shows the quantification of the error using different estimates.
It can be seen that the LSR1 and LRSCONS are providing similar results,
but the LSRCONS is marginally more conservative than LSR1 for the fine

1 Last accessed on July 30, 2018 http://web.tecnico.ulisboa.pt/ist12278/
Discretization/Workshop_discretization_2017.htm
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meshes. The difference between LSR1 and LSRCONS is the definition of
the order of convergence p when having non-monotonically converging
data. Also, it can be noticed that LSRMONTE is less conservative than both
LSR1 and LSRCONS. This comes from the definition of the Fs . Finally, the
GCI and GDU show very close performance. They are highly dependent
on the selection of the grid triplets, thus very sensitive to the refinement
ratio, as shown in the estimation for h4.
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Figure 3.12: Discretization error estimation for the drag friction
coefficient CDf

using five approaches on all different grid levels at

R e = 107
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Figure 3.13 shows the results of the same analysis for simulations at R e =
109. The same observations from Figure 3.12 can be clearly seen in Fig-
ure 3.13.

2 4 6 8
hi/h1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

C D
f *

10
3 

[
]

(a)

CDf

Extrapolated
Finest
LSR1

2 4 6 8
hi/h1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

C D
f *

10
3 

[
]

(b)

LSRCONS

2 4 6 8
hi/h1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

C D
f *

10
3 

[
]

(c)

LSRMONTE

2 4 6 8
hi/h1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

C D
f *

10
3 

[
]

(d)

GDU GCI

Figure 3.13: Discretization error estimation for the drag friction
coefficient CDf

using five approaches on all different grid levels at

R e = 109

In practical applications, running more than seven simulations on different
grids is not always feasible and very expensive. Thus, the analysis was
performed using the recommended number of grids ng = 4. It can be seen
in Figure 3.14 that all the estimators have a good performance, whereas
LSRMONTE is the least conservative but still bounds the DNS solution.
Moreover, GCI and GDU provide highly conservative measures in case of
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inconsistency in the refinement ratio, especially being less than two. From
Figure 3.12, Figure 3.13 and Figure 3.14, it can be clearly seen that the finest
grid solution (DNS solution) is bounded by all the error estimates.
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Figure 3.14: Discretization error estimation for the drag friction
coefficient CDf

using five approaches on four different grid levels

at R e = 109

The next step is to check the performance of the estimators for local quan-
tity. Error is estimated for the friction coefficient C f at ten different lo-
cations from x/l = 0.05 to x/l = 0.5. The results shown are the error
estimated at the finest mesh. The same conclusions drawn above can be
drawn from Figure 3.15 and Figure 3.17. Moreover, the performance of GCI
and GDU can be clearly seen in Figure 3.16. Finally, the performance of
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all the error estimators is exceptional. LSRMONTE has the advantage of
being less conservative, which narrows down the true solution bounding
interval, while still bounding the exact solution in all the cases, compared
to other estimators. LSRMONTE also has the advantage of considering
the uncertainty in the estimation of the grid cell size. This feature is very
critical in cases where geometrical similarity is not satisfied, which is most
probably the situation in practical applications.

In Figure 3.15 and Figure 3.17, it can be observed that at some point where
anomalous data behavior is found, the LSRMONTE is less conservative
than both LSRCONS and LSR1, yet it still bounds the DNS solutions.
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Figure 3.15: Discretization error estimation for the friction
coefficient C f using five approaches on the finest grid level at

R e = 107
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Figure 3.16: Discretization error estimation for the friction
coefficient C f using five approaches on the finest grid level at

R e = 107 using unequally refined meshes for GCI and GDU
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Figure 3.17: Discretization error estimation for the friction
coefficient C f using five approaches on the finest grid level at

R e = 109
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3.4 Summary

The newly proposed methodology reveals the importance of performing
both code and solution verification to build credibility in the simulation
results. Code verification guidelines are introduced, and the applicabil-
ity of these guidelines with benchmarks is introduced in Chapter 5. After
performing code verification, the solution verification procedure is intro-
duced to estimate discretization uncertainty and is called (LSRMONTE).
The LSRMONTE is developed with special emphasis on an appropriate
definition of typical grid size, estimation of the order of convergence for
anomalous data behavior, and quantification of the safety factor for uncer-
tainty estimation. The LSRMONTE showed an outstanding performance
over other methods available in the literature, as shown in Section 3.3.5.4.
The performance of the LSRMONTE is further investigated in Chapter 6
and Chapter 7. The methodology is developed for CWE simulations mainly
but can be possibly applied to general fluid flows. The complete method-
ology is summarized in appendix C.
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Remember that all models
are wrong; the practical
question is how wrong do
they have to be to not be
useful.

George E. P. Box
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4
THE VMS SIMULATION CODE: KRATOS

MULTIPHYSICS

This chapter introduces the theoretical background for the code used to
clarify the usage of the developed methodology outlined in Chapter 3.
KRATOS Multiphysics is a FEM-based code. The code uses a variational
multiscale (VMS) method to design the stabilized finite element formula-
tions. The VMS is based on the decomposition of the solution into resolved
and unresolved parts (Codina et al. [116]). The separation is achieved by
the definition of large and small scale solution spaces. The projection of the
original equations onto the large scale space gives an equivalent problem
that depends on the small scale variables. Meanwhile, algebraic and or-
thogonal models are used to project the original equations onto the small
scale space, which is used to motivate a model for the effect of the small
scale variables. The VMS is equivalent to the LES simulation approach to
a great extent (Codina et al. [117]) because both techniques introduce a
separation between the resolved and unresolved parts of the solution. The
hypothesis of incompressibility is accepted in the Computational Wind
Engineering (CWE) applications range. Thus, this work focuses on the
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4 The VMS Simulation Code: KRATOS Multiphysics

incompressible case of the VMS element using algebraic sub-scales (ASGS)
and orthogonal sub-scales (OSS)1. More information about the VMS for-
mulation can be found in Cotela [97], Codina et al. [116], Codina [118, 119],
Codina [120], Codina et al. [121], and Hanzlicek [122].

4.1 Governing Equations

The notations used in this chapter are adapted from Cotela [97]. The con-
servation equations for linear momentum and mass in a fluid domainΩ is
given by:

ρ∂tu+ρu ·∇u−∇·σ = f in Ω, t ∈ [0, T [ (4.1)

∇·u= 0 in Ω, t ∈ [0, T [ (4.2)

where u is the fluid velocity field, ρ is the density, σ is the Cauchy stress
tensor and f is the external forces acting on the domain. The stress tensor
σ can be related to the fluid velocityu and pressure p with the assumption
of Newtonian fluid. The constitutive relation is described by

σ =−pI +2µ

�

∇su−
1

3
(∇·u)I

�

(4.3)

where I is the second order identity tensor, µ the fluid’s viscosity and∇su
the symmetric gradient of velocity, which is defined as

∇su=
1

2

�

∇u+ (∇u)T
�

(4.4)

The governing Equation (4.1) and Equation (4.2) must be associated with
suitable initial and boundary conditions. The initial and boundary condi-
tions are defined according to the following

Initial conditions u=u0 in Ω, t = 0 (4.5)

1 The code is implemented by Dr. Jordi Cotela (Cotela [97])

92



4.1 Governing Equations

Dirichlet Boundary u=uD in ΓD , t ∈ [0, T [ (4.6)

Neumann Boundary σ ·n= t in ΓN , t = 0 (4.7)

where n is the outer normal vector and t is the imposed traction acting
along the Neumann boundary.

The weak form of the governing equations is required to obtain the finite
element formulation. Equation (4.1) is multiplied by a velocity test function
w and Equation (4.2) is multiplied by a pressure test function q . Then, the
resulting expression is integrated over the domain Ω. The weak form of
the governing equations is given by

∫

Ω

w ·
�

ρ∂tu+ρu ·∇u−∇·σ
�

dΩ =

∫

Ω

w ·fdΩ (4.8)

∫

Ω

q∇·udΩ = 0 (4.9)

Further consideration of the complete equations for the weak form in-
cluding the initial and boundary conditions can be found in Cotela [97].
Equation (4.8) and Equation (4.9) combined with initial conditions and
weak form of the boundary conditions yield the weak form of the problem.
All integrals must remain bounded. Thus, for any two given functions f , g
we want to ensure that

∫

Ω

f g dΩ < inf (4.10)

which are square integrable in Ω. The L 2 norm of a function is defined as

‖ f ‖L 2(Ω) =

�

∫

Ω

f 2dΩ

�
1
2

(4.11)
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The Hilbert space H 1 (Ω) is used to verify the property of square-integrable
functions for any given time instant t . The square-integrable property of a
function along the problem time interval is given asu ∈ L 2

�

0, T , H 1
D (Ω)

�

. It

is enough to enforce the L 2 norm for the pressure p ∈ L 2
�

0, T , L 2 (Ω)
�

.

For the convective term in the momentum equation, a skew-symmetric
form is used as the conservation of kinetic energy is crucial in this im-
plementation. Following the assumption of the non-conservative skew-
symmetric convective term, the Galerkin weak form of the Navier-Stokes
problem is stated as

Find u ∈ L 2
�

0, T , H 1
D (Ω)

�

, p ∈ L 2
�

0, T , L 2 (Ω)
�

such that, ∀w ∈H 1
0 (Ω), ∀q ∈

L 2 (Ω),
∫

Ω

w.

�

ρ∂tu+ρ
1

2
u.∇u

�

dΩ

+

∫

Ω

∇sw : 2µ

�

∇su−
1

3
(∇.u)

�

dΩ−
∫

Ω

∇.wp dΩ

=

∫

Ω

w.fdΩ+

∫

ΓN

w. (t )dΓ

(4.12)

∫

Ω

q∇.udΩ = 0 (4.13)

The spatial discretization of this problem stated in Equation (4.12) and
Equation (4.13) are not straightforward, because the discrete form is nu-
merically unstable. This instability is necessarily true when the flow is
dominated by the convection effects (nonlinear convective term) for high
Reynolds number flows. A second complexity comes from the imposed
compatibility of the velocity and pressure Finite Element discrete spaces
by the i n f −s up or L a d y z he n s k a y a−B a b u s k a−B r e z z i (LBB) con-
dition. These instabilities can be avoided by using a stabilized formulation.
The stabilized formulation has two advantages: first, a modified weak form
not restricted by the LBB condition. Second, equal order interpolations
can be used for velocity and pressure fields. In the scope of this work, the
Variational Multi-scale (VMS) method is used and the concept is intro-
duced in Hughes [123] and Hughes et al. [124]. The basic theory of this
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approach is the decomposition of the problem variables into large scale
(.)h and small scale (sub-scale) (.)s , which corresponds to :

u=uh +us p = ph +ps (4.14)

w =wh +ws q = qh +qs (4.15)

where the scale separation in practice is closely related to the finite ele-
ment mesh size h . Thus, test functions and solutions can be defined on a
restricted, finite-dimensional space of admissible solutions, defined as

uh ∈Wh ⊂W ≡ L 2
�

0, T , H 1
D (Ω)

�

ph ∈Qh ⊂Q ≡ L 2
�

0, T , L 2 (Ω)
�

(4.16)

which allows also a definition of spaces containing small scale part of
the solution ws ∈Ws , qs ∈Qs . Together with the definition of the large
scale spaces, the complete problem space is given as: W =Wh

⊕

Ws ,
Q = Qh

⊕

Qs . The complete derivation for the weak formulation of the
VMS method and small scale equations can be found in Cotela [97]. The
concept was initially introduced in Hughes [123] and further developed by
Codina [118] and Codina [120]. The small scale model can be defined as
Quasi-static or Dynamic small-scale models. The most general formula-
tion can be given by
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Momentum equation
∫

Ω

wh .ρ

�

∂tu+
1

2
a.∇uh

�

dΩ

−
∫

Ω

∇.wh ph dΩ+

∫

Ω

∇swh : 2µ

�

∇suh −
1

3

�

∇.uh

�

I

�

dΩ

+

∫

Ω

wh .ρ∂tus dΩ

−
∫

ΣΩe

ρ
�

a.∇wh

�

τt

�

Rm
�

uh , ph

�

−ξh +
ρ

δt
un

s

�

dΩ

−
∫

Ω

∇.whτp

�

R c
�

uh

�

−δh

�

dΩ

=

∫

Ω

whfdΩ+

∫

ΓN

wh (t)dΓ

(4.17)

Mass conservation equation
∫

Ω

qh∇.uh dΩ =

∫

ΣΩe

∇qhτt

�

Rm
�

uh , ph

�

−ξh +
ρ

δt
un

s

�

dΩ (4.18)

where:

Rm
�

uh , ph

�

and R c
�

uh

�

represent the residual form of the Navier-
Stokes equations applied to large scale variables.

a = uh +us is a generic convection velocity used in nonlinear de-
pendency of velocity.

ξh and δh are chosen to enforce the right hand side of momentum
equation.

τt and τp are the stabilization parameters.

For the Quasi-static algebraic sub-grid scale (ASGS), the parameters ξh

and δh are equal to zero. While for Quasi-static orthogonal sub-grid scale
(OSS), ξh and δh are calculated as following:

ξh =
∏

Vh

�

Rm
�

uh , ph

�

�

(4.19)
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δh =
∏

Qh

�

R c
�

uh

�

�

(4.20)

where
∏

Vh
and

∏

Qh
are the L 2 projection onto the large scale spaces Wh

and Qh respectively. The approximated expression for the residuals are
defined in the form:

ρ∂tus +
1

τu
us ≈Rm

�

uh , ph

�

−ξh
1

τp
ps ≈R c

�

uh

�

−δh (4.21)

Where the velocity second order tensor τu = τuI is taken to be a diag-
onal matrix. The Quasi-static small scale definition for the stabilization
parameters is defined as

τu =

�

c1µ

h 2
+

c2ρ‖a‖
h

�−1

(4.22)

τp =
h 2

c1τu
=µ+ρ

c2‖a‖h
c1

(4.23)

where:

h : is an element characteristic length.

c1 and c2 are constants based on the flow properties and used to be
8 and 2 respectively2).

In Quasi-static small scales, an instability can appear for small time steps
once the problem is discretized in time. The instability can be avoided if
the stabilization parameter satisfies the condition

δt ≥Cτu (4.24)

where δt is the time step and C is a constant. Thus, the stabilization pa-
rameter τu can be replaced by the expression

τt =

�

ρ

δt
+

c1µ

h 2
+

c2ρ‖a‖
h

�−1

(4.25)

2 These constants are set by the code developer (Cotela [97]

97



4 The VMS Simulation Code: KRATOS Multiphysics

Equation (4.25) shows a dependency of the solution on the time step, even
for problems that result in a stationary solution. Moreover, the Dynamic
small-scales, provides solution stability, is out of the scope of this work.

4.2 Discretization

A discrete form of Equation (4.17) and Equation (4.18) is needed to solve
for the velocity and pressure in space and time. Discretization in space is
performed using P1 L a g r a ng e finite elements and W B Z −α (B OSS AK )
is used for the temporal discretization. The theoretical background of the
implementation is adapted from Cotela [97].

4.2.1 Spatial Discretization

Defining a discrete domain Ωh for the problem domain Ω, the standard
finite element interpolation functions are used to define the large scale
interpolation spaces Vh and Qh . Thus, finite element interpolation can be
used to compute the large scale velocity and pressure terms as

uh =
nn
∑

a

Na (x)ua ph =
nn
∑

a

Na (x)pa (4.26)

where:

nn : is the number of nodes in a finite element mesh.

ua and pa are the nodal values for uh and ph respectively.

Na and Na are nodal standard finite element basis function.

Moreover,U , U̇ , andP are vectors of nodal values for velocityuh , acceler-
ation ∂tuh , and pressure ph , respectively. The matrix form of the problem
is produced by introducing the FEM discretization Equation (4.26) into the
governing Equation (4.17) and Equation (4.18). In this implementation,
linear shape functions are used for the finite element discretization. There-
fore, terms with high order derivatives can not be evaluated. Consequently,
some information is lost in computing the viscous stresses which is con-
sidered minimal in turbulent flow problems dominated by convection.
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4.2.1.1 Quasi-static ASGS formulation

The quasi-static algebraic sub-grid scale (QS-ASGS) is considered the clas-
sical form of the Navier-Stokes equations. The terms ξh and δh are equal
to zero, thus neglected in Equation (4.17) and Equation (4.18). Moreover,
terms involving un

s or ∂tus can be ignored when using Equation (4.21) for
describing the small scales. τu is used as the stabilization parameter. The
discrete governing equations based on Equation (4.26) is given by Cotela
[97]

�

M +Sm

�

τu ,a
�

�

U̇ +
�

C (a) +K +Su

�

τu ,a
�

+Hu

�

τp

�

�

U

+
�

G+Sp

�

τu ,a
�

�

P =F +T +S f

�

τu ,a
�

(4.27)

Qm

�

τu

�

U̇ +
�

D+Qu

�

τu ,a
�

�

U +Qp

�

τu

�

P =Q f

�

τu

�

P =Q f

�

τu

�

(4.28)

The discrete version of Equation (4.17) and Equation (4.18) are given by
Equation (4.27) and Equation (4.28). Having a and b as the local node
indices for a N finite element nodes andAe as the elemental matrix forA.
The variational form of the problem elemental matrices are defined as

M e
a b =

∫

Ωe

ρNT
a Nb dΩ (4.29)

C (a)ea b =

∫

Ωe

1

2
ρ
�

NT
a a.∇Nb

�

dΩ+

∫

ΓN

NT
a

1

2
ρ (a.n)Nb dΓ (4.30)

Ke
a b =

∫

Ωe

BT
a CµBb dΩ (4.31)

Ge
a b =−

∫

Ωe

�

∇.Na

�T
Nb dΩ (4.32)
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De
a b =

∫

Ωe

Na∇.Nb dΩ =−
�

Ge
b a

�T
(4.33)

F e
a =

∫

Ωe

NT
a fdΩ (4.34)

T e
a =

∫

ΓN

NT
a tdΓ (4.35)

Where the constitutive matrixCµ in viscous matrix Equation (4.31) is given
by

Cµ =





























4µ/3 −2µ/3 −2µ/3 0 0 0

−2µ/3 4µ/3 −2µ/3 0 0 0

−2µ/3 −2µ/3 4µ/3 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ





























(4.36)

The stabilization terms are defined as

Sm

�

τu ,a
�e

a b
=

∫

Ωe

�

ρa.∇Na

�T
τuNb dΩ (4.37)

Su

�

τu ,a
�e

a b
=

∫

Ωe

�

ρa.∇Na

�T
τuρa.∇Nb dΩ (4.38)

Sp

�

τu ,a
�e

a b
=

∫

Ωe

�

ρa.∇Na

�T
τu∇Nb dΩ (4.39)
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S f

�

τu ,a
�e

a b
=

∫

Ωe

�

ρa.∇Na

�T
τufdΩ (4.40)

Qm

�

τu

�e

a b
=

∫

Ωe

�

∇Na

�T
τuNb dΩ (4.41)

Qu

�

τu ,a
�e

a b
=

∫

Ωe

�

∇Na

�T
τuρa.∇Nb dΩ =

�

Sp

�

τu ,a
�e

b a

�T
(4.42)

Qp

�

τu

�e

a b
=

∫

Ωe

�

∇Na

�T
τu∇Nb dΩ (4.43)

Q f

�

τu

�e

a b
=

∫

Ωe

�

∇Na

�T
τufdΩ (4.44)

Hu

�

τp

�e

a b
=

∫

Ωe

�

∇.Na

�T
τp∇.Nb dΩ (4.45)

4.2.1.2 Quasi-static OSS formulation

The second implementation for the VMS element is the quasi-static or-
thogonal sub-grid scale (QS-OSS). In contrast to the QS-ASGS, the QS-OSS
includes the calculation of the projections ξh andδh which make the small
scale variables orthogonal to the large scale variables. The QS-OSS will
reduce the numerical diffusion introduced in the problem. The matrix
form of the QS-OSS formulation can be expressed as (Cotela [97])

�

M +Sm

�

τu ,a
�

�

U̇ +
�

C (a) +K +Su

�

τu ,a
�

+Hu

�

τp

�

�

U

+
�

G+Sp

�

τu ,a
�

�

P =F +T +S f

�

τu ,a
�

−S∏
�

τu ,a
�

−H∏

�

τu

�

(4.46)
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Qm

�

τu

�

U̇ +
�

D+Qu

�

τu ,a
�

�

U +Qp

�

τu

�

P =Q f

�

τu

�

−Q∏

�

τu

�

(4.47)

where the new terms involving the projections are defined as

S∏
�

τu ,a
�e

a
=

∫

Ωe

�

ρa.∇Na

�T
.τuξh dΩ (4.48)

Q∏

�

τu

�e

a
=

∫

Ωe

�

∇Na

�T
.τuξh dΩ (4.49)

H∏

�

τp

�e

a
=

∫

Ωe

�

∇.Na

�T
τpδh dΩ (4.50)

The computation of the projections involves an additional problem solu-
tion as shown in Equation (4.21) which is defined in the discrete form as

MξΞ =Rξ (4.51)

Mδ∆=Rξ (4.52)

where Ξ and∆ represent the nodal values for ξh and δh , respectively. The
nodal values are given by

M e
ξa b =

∫

Ωe

NT
a Nb dΩ (4.53)

M e
δa b =

∫

Ωe

Na Nb dΩ (4.54)

Re
ξa =

∫

Ωe

NT
a .Rm

�

uh , ph

�

dΩ (4.55)

102



4.2 Discretization

Re
δa b =

∫

Ωe

Na R c
�

uh

�

dΩ (4.56)

Finally, Equation (4.51) and Equation (4.52) are solved together with Equa-
tion (4.46) and Equation (4.47) which doubles the number of nodal un-
knowns in the problem, but a simplified version is used based on Equa-
tion (4.53) and Equation (4.54) by a diagonal mass matrix. This simplifica-
tion is used to approximate the projections instead of solving an additional
system.

4.2.2 Temporal Discretization

The system of equations can be expressed in the form shown in Equa-
tion (4.57), after discretization in space.

M̃





U̇

0



+ C̃





U

P



= F̃ (4.57)

Two temporal discretization schemes are used in this implementation
B D F 2 and W B Z −α (B OSS AK ). In this section the W B Z −α (B OSS AK )
will be introduced, because it is the default scheme used in the simulation
code. The W B Z −α (B OSS AK ) is derived from the g e ne r a l i z e d −α
Newmark group of methods. More information about these methods can
be found in Cotela [97], Wood et al. [125], and Arnold et al. [126]. The basic
expression of the Newmark scheme is written in terms of velocities as the
main problem’s variable as

u̇n+1 =
1

γN∆t

�

u n+1−u n
�

−
�

1

γN
−1

�

u̇ n (4.58)

where γN is a constant parameter. The B OSS AK scheme adds a relaxation
factor on the acceleration of the system as Cotela [97]

�

1−αB

�

M̃





U̇n+1

0



+αBM̃





U̇n

0



+ C̃





Un+1

P n+1



= F̃ (4.59)
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Equation (4.58) is used to discretize Equation (4.59) which yields the fol-
lowing time-discrete problem

�

1−αB

γN∆t
M̃ + C̃

�





Un+1

P n+1



=

F̃ −
1−αB

γN∆t
M̃





Un

0



+ {
�

1−αB

�

�

1

γN
−1

�

+αB }M̃





U̇n

0





(4.60)

The B OSS AK parameter isαB =−0.3 together with γN = 1/2−αB to ensure
a second order convergence and stability of the scheme. Equation (4.60) is
non-linear and the problem residual at time step n +1 after i non-linear
iterations as

R
�

Un+1,i ,P n+1,i
�

= F̃ −
1−αB

γN∆t
M̃





Un

0





+ {
�

1−αB

�

�

1

γN
−1

�

+αB }M̃





U̇n

0



−
�

1−αB

γN∆t
M̃ + C̃

�





Un+1,i

P n+1,i





(4.61)

By using a first order Taylor decomposition to evaluate the zero of Equa-
tion (4.61) havingRn+1,i+1 = 0 and an iteration incrementδU i =Un+1,i+1−
Un+1,i to findUn+1,i+1,P n+1,i+1 as

R
�

Un+1,i+1,P n+1,i+1
�

=

R
�

Un+1,i ,P n+1,i
�

+
∂R

�

Un+1,i+1,P n+1,i+1
�

∂ (δU i ,δP i )





δU i

δP i



= 0
(4.62)

The last known variables are used to evaluate all matrices and vectors.
Thus, the system matrix can be defined as

∂R
�

Un+1,i+1,P n+1,i+1
�

∂ (δU i ,δP i )
|i ≈

1−αB

γN∆t
M̃ + C̃ (4.63)
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Finally, the linear system of Equation (4.64) is solved iteratively until the
residual vectorR

�

Un+1,i ,P n+1,i
�

are smaller than a predefined tolerance.

−
�

1−αB

γN∆t
M̃ + C̃

�





δU i

δP i



=R
�

Un+1,i ,P n+1,i
�

(4.64)

4.2.3 Formal Order of Convergence

The code has a second-order formal convergence rate in space and time,
since a P1 L a g r a ng e finite elements are used in space and W B Z − α
(B OSS AK ) in time. Space and time discretization schemes are of the same
order of convergence and formally second order, as stated in Hanzlicek
[122] and Wood et al. [125], which indicates that the time scheme is of
second-order convergence. Finally, the P1 L a g r a ng e finite element rep-
resents a second-order convergence scheme.
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More than the act of testing,
the act of designing tests is
one of the best bug
preventers known.

Boris Beizer
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5
CODE VERIFICATION: APPLICATION TO

KRATOS MULTIPHYSICS

Code verification is performed based on the guidelines that are introduced
in Section 3.2. In the scope of this work, a series of benchmarks are de-
veloped to verify unsteady, eddy-resolving Navier-Stokes and applied to a
FEM-based CFD application of KRATOS Multiphysics, introduced in Chap-
ter 4. The code verification benchmarks are designed to be applicable to
any arbitrary CFD code solving similar problem. The code verification
activities performed are based on the Taylor-Green Vortex. In the con-
text of this work only 2D Navier-Stokes equations for an incompressible
Newtonian fluid are considered. The testing activities have an increas-
ing complexity starting from an equal contribution of all the terms in the
Navier-Stokes (N-S) equations to a term-dominating solution.
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5.1 KRATOS Multiphysics Tested Functionalities

In the course of this work, KRATOS Multiphysics FEM based solver, initiated
at CIMNE, is to be verified. After analyzing the discrete equations shown in
Chapter 4, the code is claimed to have a second-order convergence in space
and time. The actual order of convergence of the following functionalities
is to be verified:

Finite Element Method

ALE Formulation

Unsteady using WBZ-α (Bossak)

Unsteady using BDF2

Incompressible Fluid

Newtonian fluid

VMS Monolithic Solver

Orthogonal Subscales Stabilization

While verifying this code, four main points are to be addressed:

1. The solution of a convection-dominated flow is always problematic
in FEM-based codes, which imposes some instability in the solution.
Thus, a stabilized form of the weak form is used.

2. The use of linear finite elements leads to limitations in only obtaining
first-order derivatives, and adds some error to the computation of
the viscous stresses.

3. The same space-time formal order of convergence discretization
schemes simplifies the verification of unsteady solutions.

4. The conditions imposed on the stabilization parameters (Chapter 4)
have a dependency on time step size, and also the constants, that
affect the stability of the solution.
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5.2 Code Verification Benchmark Workflow

The following benchmark series is developed based on the Taylor-Green
vortex to test each term in the Navier-Stokes Equations. This is done to
explore which term affects the code order of convergence and needs more
investigation in case of unclear convergence. The approach gives the term
of interest very high weight compared to others in the N-S equations. Thus,
the error generated from this term is the dominating error. The workflow
is described below:

1. Creation of Taylor-Green vortex exact solution using a symbolic math
programming (i.e MUPAD in MATLAB)

2. Application of the source terms (if exist), boundary conditions and
initial conditions to the code

3. Performing the simulations

4. Evaluating the error

5. Repeating with systematic refinement

6. Calculation of the observed order of accuracy

7. The observed order of convergence matches the theoretical order of
convergence in some scenarios

8. Modify the Taylor-Green vortex manufactured solutions to assess
each term in the N-S equations

9. Repeating steps 2 to 6

10. If the observed order of convergence does not match the theoretical
order of convergence

11. Checking whether the test case is correctly implemented

12. If step 11 is correct, finding and correcting the errors in the code.
Then, repeating testing.

13. Documenting results
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5.3 Calculation of the Error and Order of Convergence

The numerical solution consists of values of the dependent variables on
a set of discrete locations. To compute the discretization error, two error
norms are used. Error norms can be used to determine the global error of
a fieldφ in its spatial domain K. An E2 error norm for the variableφ com-
pared to the exact solution φ̂ in the domain K is defined in Equation (5.1)
as

E2 = ||φ− φ̂||2 =

√

√

√
1

K

∫

K

(φ− φ̂)2d K (5.1)

The E2 norm is chosen to have a representative mean field error of the
complete domain (Fisch [9]). Moreover, the infinity (inf) norm returns the
maximum absolute error over the entire domain given by Equation (5.2).
Therefore, it is the most sensitive error measure, and is very proper to detect
local discontinuities or singularities.

Ei =ma x |φn − φ̂n |, n ∈ [1, N ] (5.2)

After error evaluation and simulating over several meshes, the information
is used to estimate the observed order of convergence. The observed order
of convergence is estimated using the following expression:

p =
log

�

E (hc o a r s e )
E (h f i ne )

�

log (r )
(5.3)

5.4 Spatial and Temporal Resolutions

KRATOS Multiphysics uses triangular or quadrilateral elements in which
meshes can be designed in four ways as shown in Figure 5.1:

• Structured Mesh

• Unidirectional Structured Mesh
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• Alternate Diagonal Structured Mesh

• Unstructured Mesh

Figure 5.1: Different mesh types: top-left represents structured
mesh, top-right is unidirectional structured triangular mesh,

bottom-left is alternate diagonal structured mesh, and
bottom-right is unstructured mesh

In the scope of the results presented below, structured and unidirectional
structured meshes are tested. Both Reynolds number and Courant number
are considered while deciding on the spatial and temporal resolution. CFL
number is kept below one for all the simulations. The refinement ratio in
both space and time is two, which complies with the code’s theoretical
order of convergence.
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5.5 Design of Test Cases

5.5.1 Evaluation of Source Terms

The governing equations are the N-S equations introduced in Section 4.1.
The manufactured solutions (ûx , û y , P̂ r ) are used together with governing
equations (Equation (4.1) and Equation (4.2)) to drive the equilibrium
sources ŝ f as

ŝ mo m
f =

∂ û

∂ t
︸︷︷︸

Inertia

+∇ . (û û )
︸ ︷︷ ︸

Convection

−∇ . (2νD̂ )
︸ ︷︷ ︸

Viscous

+ ∇P̂ r
︸︷︷︸

Pressure

(5.4)

ŝ ma s s
f =∇ . û (5.5)

where ŝ mo m
f is the source term for the momentum conservation and ŝ ma s s

f
is the source term for the mass conservation.

5.5.2 Boundary and Initial Conditions

Dirichlet boundary condition is used for both velocity and pressure terms
on all the boundaries because our target is the verification of the interior
equations. Thus any boundary errors must be avoided. More rigorous
testing can be performed for different types of BC and a combination of
BC.

5.5.3 Solution Accuracy

The discretization error should be isolated from the total numerical error.
Therefore, the used software is using a double-precision accuracy to min-
imize the round-off error. The iterative solver convergence criteria in a
non-normalized version of the E2 norm of velocity and pressure fields are
set to 10−10 to keep the incomplete iterative convergence error (IICE) as
small as possible. Otherwise, a direct solver is used for solving the linear
system of equations; thus, the IICE will not exist.
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5.5.4 Simulation Setup

Table 5.1 summarizes the simulation setup parameters.

Table 5.1: Simulation parameters used for code verification

Element: VMS Monolithic Solver

Linear System Solver: Super LU "Direct Solver"

Stabilization: ASGS if not otherwise specified

Domain Size: X1 = x ∈ [0, 2π]

X2 = y ∈ [0, 2π]

t ∈ [0, 10]

5.5.5 Taylor-Green Vortex (TGV)

The Taylor-Green vortex is an exact closed-form solution of the incom-
pressible N-S equations (DeBonis [48], Fauconnier et al. [127], Rees et al.
[128], Brachet et al. [129], Bhatt et al. [130], Fauconnier et al. [131], Mastel-
lone et al. [132], and Bull et al. [133]). It is an unsteady flow of a decaying
vortex. The solution is a periodic array of vortices that repeats itself in
two Cartesian dimensions. The general form of the Taylor-Green Vortex is
defined as follows:

ûx = u0 f (t )sin(k x )cos(k y ) (5.6)

û y =−u0 f (t )cos(k x )sin(k y ) (5.7)

P̂ r =
ρu 2

0

4
f (t )2(cos(2k x ) + sin(2k y )) (5.8)

Where:

f (t ) = e −2νk 2 t ;ν→ kinematic viscosity (5.9)
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k =
2π

L
; L→ Periodic Length;ρ→Density (5.10)

Reynolds number: R e =
Lu0

ν
Courant number: C F L =

u0∆t

∆x
(5.11)

The source terms ŝ mo m
f and ŝ ma s s

f are evaluated using Equation (5.4) and
Equation (5.5), respectively. ŝ mo m

f and ŝ ma s s
f are found to be zero for the

TGV, which defines the uniqueness of this benchmark. Therefore, the TGV
can be used to test any code.

The rationale for choosing a TGV as a first test case for KRATOS Multiphysics
VMS monolithic solver is two-fold. Firstly, the TGV is a well-established ref-
erence in the literature. Secondly, the physics of the flow field and the ease
of BC constitute an excellent benchmark for eddy-resolving implementa-
tions. Three simulations are performed using TGV for different refinement
strategies, as listed in Table 5.2 (TGV1, TGV2, and TGV3).

Table 5.2: Base Benchmark: Taylor Green Vortex

Material: ν= 0.2, ρ = 1.0

Test
Case

Fields Discretization

TGV1 Using the general form of
the Taylor-Green Vortex
with parameters:
k = 1.0
u0 = 1.0

Space (cells/direction):

22
i n c r e me n t 1−−−−−−−−→8

∆t = 0.001

TGV2

Space (cells/direction):
28

∆t = 27
d e c r e me n t 1−−−−−−−−−→1.10−3

TGV3

Space (cells/direction):

22
i n c r e me n t 1−−−−−−−−→8

∆t = 27
d e c r e me n t 1−−−−−−−−−→1.10−3

For TGV1, spatial refinement is performed, having a very fine time step.
The reason is to minimize the temporal discretization error and test the
spatial discretization. For TGV2, temporal refinement is performed, having
a very fine spatial grid to minimize space discretization error and test
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the temporal discretization. Finally, for TGV3, both space and time are
refined simultaneously to check the discretization in space and time. The
third approach, TGV3, is valid because both space and time discretization
have a theoretical second-order convergence. In this case of having equal
orders, convergence studies can be performed for both space and time
simultaneously.

In this benchmark, all the terms in the N-S equations have equal weights.
The TGV, shown in Figure 5.2, constitutes the simplest flow for which a
turbulent energy cascade can be observed numerically. Figure 5.2 shows
the relation between the contribution of each term in Equation (5.4) to
ŝ mo m

f at X2 =π and t = 0.0. The TGV is defined in that way to assure that
the discretization errors produced by the different terms of the governing
equations have the same magnitude and can, therefore, be captured by
order of accuracy test.
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e

Inertia Convection Pressure Viscous

Figure 5.2: Taylor-Green Vortex functions contribution at
X2 = y =π and t = 0.0

The TGV benchmark is performed for two mesh types, unidirectional tri-
angular grid and structured quadrilateral grid. Then results are presented
in Section 5.5.5.1 and Section 5.5.5.2, respectively.

5.5.5.1 Uni-Directional Triangular Grid

Using a unidirectional triangular grid (see Figure 5.1), the results produced
by KRATOS Multiphysics for test cases TGV1, TGV2 and TVG3 are shown
in Figure 5.3, Figure 5.4 and Figure 5.5, respectively. The left part of the
named figures shows the log-log plot of the error norms of the variable
fields over-refinement. The right part shows the observed order of accuracy
(p )with refinement.

115



5 Code Verification: Application to KRATOS Multiphysics

3 4 5 6 7 8 9
# of cells/edge : 2h

10 6

10 4

10 2

100

102

lo
g(

er
ro

r)

UL2

ULi

VL2

VLi

PL2

PLi

4 5 6 7 8 9
# of cells/edge : 2h

0.0

0.5

1.0

1.5

2.0

2.5

3.0

O
bs

er
ve

d
or

de
r

of
co

nv
er

ge
nc

e
(p

)

UL2

ULi

VL2

VLi

PL2

PLi

Figure 5.3: TGV1 benchmark for unidirectional triangular grid
having∆t = 0.001 s and mesh is refined from 22 c e l l s/e d g e to

28 c e l l s/e d g e
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Figure 5.4: TGV2 benchmark for unidirectional triangular grid
having∆x =∆y = 28 c e l l s/e d g e and time step size is refined

from∆t = 27.10−3 s to 21.10−3 s
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Figure 5.5: TGV3 benchmark for unidirectional triangular grid
having mesh refined from 22 c e l l s/e d g e to 28 c e l l s/e d g e and

time step size is refined from∆t = 27.10−3 s to 21.10−3 s ,
simultaneously

The results shown in Figure 5.3 show that for a constant time step size
(∆t = 0.001 s ), the code has a second-order convergence with spatial refine-
ment. In contrast, Figure 5.4 shows code failure in achieving second-order
convergence, having constant mesh size∆x =∆y = 28 c e l l s/e d g e and
temporal refinement. Moreover, Figure 5.5 shows a second-order conver-
gence for space-time refinement, but the first segment of the curve has a
first-order convergence for the pressure in both E2 norm and Ei norm. As
can be seen from the figures, a second-order accuracy is observed, which
complies with the theoretical order of accuracy. Except for the TGV2, shown
in Figure 5.4, the theoretical order of convergence can not be achieved.
Therefore, more testing is required to debug the code using benchmark
cases.

5.5.5.2 Structured Quadrilateral Grid

In this section, code verification activities are used to verify a new imple-
mentation in KRATOS Multiphysics. The VMS monolithic solver has been
improved further to not only deal with triangular and tetrahedral elements
but also quads and hexahedral meshes in FEM environment. Thus, the
new implementation is tested to assure the correctness of the code imple-
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mentation. A demonstrative example of a structured quadrilateral grid is
presented in Figure 5.1.

First, the TGV1 benchmark is performed, and results are shown in Fig-
ure 5.6. It can be observed that the code fails when a space refinement
study is performed, although it was successful for the unidirectional trian-
gular grid. This implies a coding bug in the new implementation.
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Figure 5.6: TGV1 benchmark for structured quadrilateral grid
having∆t = 0.001 s and mesh is refined from 22 cells/edge to 28

cells/edge

The results are communicated with the code developer. A bug is found in
the initialization of the solver. The bug is fixed, and the test is performed
again. After fixing the bug, the code performs as expected, see Figure 5.7,
and the observed order of convergence matches the formal order of con-
vergence. Thus, it can be safely said that the code has a second order of
convergence for the spatial discretization scheme, except for the first three
segments of the L i error norm curve for the pressure.

Since the test case is unsteady, the order of convergence of the time inte-
gration scheme is to be verified. The TGV3 benchmark is used to verify the
coupling of the space and time discretization schemes. Figure 5.8 shows
the test results. The results show a clear second-order convergence for the
time-space discretization coupling, except for the first two segments of
the L i error norm curve for the pressure.
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Figure 5.7: TGV1 benchmark for structured quadrilateral grid
having∆t = 0.001 s and mesh is refined from 22 cells/edge to 28

cells/edge: bug fixed
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Figure 5.8: TGV3 benchmark for structured quadrilateral grid:
mesh refined from 22 cells/edge to 28 cells/edge and time step size

is refined from∆t = 27.10−3 s to 21.10−3 s , simultaneously
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The above tests do not evaluate only the time discretization scheme. Thus,
the TGV2 benchmark is performed to test the effect of time refinement
only. The results are shown in Figure 5.9. The order of convergence plot
shows that the code fails to pass this test, which was also concluded in
Section 5.5.5.1. This failure might happen for two reasons. First, the mesh is
not fine enough in space, making the spatial discretization errors dominate
the solution. Thus, the refinement in time has no effect. Second, a prob-
lem exists in the time discretization scheme used. Finally, Section 5.5.6
presents a more sophisticated benchmark, which is developed to test the
performance of the temporal discretization scheme.
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Figure 5.9: TGV2 benchmark for structured quadrilateral grid:
∆x =∆y = 28 cells/edge and time step size is refined from

∆t = 27.10−3 s to 21.10−3 s
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5.5.6 Inertia Dominated Simulation

From Section 5.5.5, it can be concluded that the code performance is ac-
ceptable, but TGV2 showed a deviation from the expected performance.
For time refinement only, the code performance is expected to have a
second-order convergence, which was not achieved in the TGV2 bench-
mark for both triangular and quadrilateral grids. Consequently, this case
study, shown in Table 5.3, is designed only to test the inertial term in the
N-S equations.

Table 5.3: Benchmark: Inertia dominated flow

Material: ν= 0.1 ρ = 1.0

Test
Case

Fields Discretization

IN1 ûx = sin(t )
û y =−sin(t )
P̂ r = sin(t )

Space (cells/direction):

22
i n c r e me n t 1−−−−−−−−→8

∆t = 0.001

IN2

Space (cells/direction):
28

∆t = 26
d e c r e me n t 1−−−−−−−−−→1.10−3

IN3 ûx = sin(2t )cos(y )
û y =−sin(2t )cos(x )
P̂ r =
sin(2t )(cos(2x )+cos(2y ))

Space (cells/direction):

22
i n c r e me n t 1−−−−−−−−→8

∆t = 0.001

IN4

Space (cells/direction):

22
i n c r e me n t 1−−−−−−−−→7

∆t = 27
d e c r e me n t 2−−−−−−−−−→1.10−3

The benchmark design has two approaches: Firstly, the manufactured solu-
tion fields are only time-dependent functions as in cases IN1 and IN2. Sec-
ondly, the manufactured solution fields have time and space dependency
in cases IN3 and IN4. In both cases, the time derivative term of the unsteady
N-S equations is dominating. The contributions to ŝ mo m

f , of the different
terms of the governing equation, are computed from Equation (5.4). Fig-
ure 5.10 shows the evaluation of the different terms at X1 = X2 = π for
t ∈ [0, 10]. The benchmark satisfies the condition that Contributions from
all terms are ≈ 0, except for the inertia term, as shown in Figure 5.10. Cases
IN1 and IN2 are purely time-dependent, but IN3 and IN4 benchmarks
have a spatial dependency. IN3 and IN4 are specially designed for code
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that might experience instability from having spatial derivatives equal to
zero.
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Figure 5.10: Inertia dominated functions upper figure for In1
and IN2, and lower figure for IN3 and IN4

5.5.6.1 Uni-Directional Triangular Grid

The code’s performance for a time-dependent solution with test cases IN1
to IN4 is examined. Figure 5.11 and Figure 5.12 show that spatial refinement
does not affect solution quality, which confirms the assumption that the
solution is time-dependent.

Consequently, case IN2 is performed, where the simulation is performed
with a time refinement at the finest mesh. Figure 5.13 shows that a second-
order of accuracy is observed for the pressure field. Whereas for the velocity
field, the observed order of accuracy is between 1.5 and 2 for some simula-
tions. Also, the order of convergence for the velocity fields U and V using
L2 and L i error norms decreases for smaller time steps. The performance
of the code is not as expected for a time-only dependent solution. Conse-
quently, IN4 was performed having a space-time refinement. Figure 5.14
shows an oscillating convergence behavior around two for both velocity
and pressure fields. The first segment of Figure 5.14 shows a first-order
convergence for the velocity fields and second order for the pressure fields,
while the last segment of the curve shows a declining convergence order
with refinement.
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Figure 5.11: IN1 benchmark for unidirectional triangular grid
having∆t = 0.001 s and mesh is refined from 22 cells/edge to 28

cells/edge
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Figure 5.12: IN3 benchmark for unidirectional triangular grid
having∆t = 0.001 s and mesh is refined from 22 cells/edge to 28

cells/edge
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Figure 5.13: IN2 benchmark for unidirectional triangular grid
having∆x =∆y = 28 cells/edge and time step size is refined from

∆t = 26.10−3 s to 21.10−3 s
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Figure 5.14: IN4 benchmark for unidirectional triangular grid
having mesh refined from 28 cells/edge to 22 cells/edge and time

step size is refined from∆t = 27.10−3 s to 21.10−3 s ,
simultaneously
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From cases IN1, IN2, IN3, and IN4, it can be concluded that there is some
sort of instability in KRATOS Multiphysics VMS formulation for cases of
only time-dependent solutions or an implementation issue with the tem-
poral discretization scheme. Overall, IN2 benchmark is shown to be the
most critical case to test the performance of the temporal discretization
scheme. The code performance is deeply investigated in Section 5.5.6.2
using the IN2 benchmark.

5.5.6.2 Structured Quadrilateral Grid

The benchmark IN2 is used for the time integration scheme verification.
The IN2 is shown in Table 5.3. At this stage, it is very important to clarify that
the code supports two time integration schemes W B Z −α (B o s s a k ) and
B D F 2. Both schemes are of second-order convergence, but the W B Z −
α (B o s s a k ) is the default scheme. Also, there exist two options for the
stabilization formulation, ASGS (Section 4.2.1.1) and OSS (Section 4.2.1.2).
ASGS is the default scheme. Therefore, the verification study starts with
testing the convergence order for the ASGS with the W B Z −α (B o s s a k )
scheme.

Figure 5.15 shows that there is no clear convergence order in the scheme.
The convergence order for all the fields is decreasing with refinement. This
indicates a problem in the implementation of the Bossak time integration
scheme. To debug the reason for this behavior, a series of test cases with
different parameters is performed. Several reasons are considered for this
problem. The first reason is the definition of the α parameter used in the
W B Z −α (B o s s a k ). Therefore, the α is set to zero to treat the scheme as
a g e ne r a l i z e d −α (Bajer [134]).

The IN2 benchmark is performed using the ASGS stabilization scheme
and the g e ne r a l i z e d − α for time discretization scheme. Figure 5.16
shows that setting α to zero does not improve the order of convergence
of the problem where the pressure field is not affected at all, which is
expected, and the velocity components have a first order of convergence.
Another test is performed with the default values for the parameter α in
the W B Z −α (B o s s a k ) integration scheme, but the OSS approach is used
for the stabilization of the problem.

The IN2 benchmark is performed using the OSS stabilization scheme and
the W B Z −α (B o s s a k ) for time discretization. Figure 5.17 shows that
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Figure 5.15: IN2 benchmark with time refinement using ASGS
and W B Z −α (B o s s a k ) on structured quadrilateral grid
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Figure 5.16: IN2 benchmark with time refinement using
g e ne r a l i z e d −α and ASGS on structured quadrilateral grid
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5.5 Design of Test Cases

the OSS has an improvement over the ASGS stabilization scheme in the
pressure field, where the sudden loss of accuracy at the end does not exist.
Then, from observing the error development in Figure 5.15 and Figure 5.17,
it is evident that the error improves in an almost second-order form for
the first couple of time step sizes till a certain limit, then the convergence
drops to a first-order or lower. This indicates a consistency issue or in-
stability in the solution. The assumption of solution instability is weak
since we measure the error in the L i norm, which has a similar behavior
to the euclidean norm L2. When communicating the results with the code
developer, it was said that the time step size affects the value of the stabi-
lization parameters, also the W B Z −α (B o s s a k ) is linearized for the ease
of application. The effect of the time step size on the performance of the
W B Z −α (B o s s a k ) can be tracked in two ways: (1) using different time
discretization scheme to verify it is a problem of the discretization scheme
and not the stabilization scheme and (2) study the effect of varying the
time step size from very coarse to very fine.
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Figure 5.17: IN2 benchmark with time refinement using OSS
and W B Z −α (B o s s a k ) on structured quadrilateral grid

Therefore, another test case is performed using different time discretization
scheme. The B D F 2 time integration scheme is tested for both ASGS and
OSS formulations. The results are shown in Figure 5.18 and Figure 5.19
for the ASGS and OSS approaches, respectively. It can be clearly seen that
the B D F 2 has a second order of convergence and matches the theoretical
order of convergence. Thus, the B D F 2 time integration scheme is verified.
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Figure 5.18: IN2 benchmark with time refinement using B D F 2
and ASGS on structured quadrilateral grid
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Figure 5.19: IN2 benchmark with time refinement, using B D F 2
and OSS, for a structured quadrilateral grid
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Figure 5.18 and Figure 5.19 verify the implementation of the ASGS and OSS
formulations, while highlight the problem emerging from the linearization
of the W B Z −α (B o s s a k ) scheme. The W B Z −α (B o s s a k ) scheme is
verified using coarser time steps. Figure 5.20 and Figure 5.21 show that the
observed order of convergence matches the theoretical order of conver-
gence, and the code can be said to be verified. Thus, it can be concluded
that the Bossak time integration scheme has a second order of convergence.
Some inconsistencies in the convergence behavior are noticed when a very
fine time step is used, because of the dependency of the stabilization terms
on the time step size. Also, a similar behavior is observed when using dif-
ferent alternatives to the Bossak scheme for ASGS and OSS stabilization.
The g e ne r a l i z e d −α scheme results in Figure 5.22 show a second-order
of convergence for the velocity fields, and a zero convergence for the pres-
sure field, as expected. The same conclusion can be drawn for a different
α− v a l ue , where α=−0.1, as shown in Figure 5.23.

Finally, it can be concluded that the W B Z −α (B o s s a k ) scheme has a
conditional second order convergence with an accuracy limitation, as
can be seen in the error plots in Figure 5.20, Figure 5.21, Figure 5.22 and
Figure 5.23, based on the time step size.
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Figure 5.20: IN2 benchmark with coarse time step refinement
using ASGS and W B Z−α (B o s s a k ) on structured quadrilateral

grid
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Figure 5.21: IN2 benchmark with coarse time step refinement
using OSS and W B Z−α (B o s s a k ) on structured quadrilateral

grid
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Figure 5.22: IN2 benchmark with coarse time step refinement
using ASGS and generalized−α on structured quadrilateral grid
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Figure 5.23: IN2 benchmark with coarse time step refinement
using ASGS and Newmark−α=−0.1 on structured quadrilateral

grid
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5.5.7 Pressure Dominated Simulations

The purpose of this simulation is to numerically check the code’s accuracy
if the pressure term in the N-S equations is dominating the flow. Unidirec-
tional triangular grid and W B Z −α (B o s s a k ) time discretization scheme
are used to perform the benchmark. PRES and PRES1 benchmarks are
defined in Table 5.4. Then, the contribution of the different terms con-
tributing to ŝ mo m

f are computed and presented in Figure 5.24. The highest
contribution to the ŝ mo m

f is resulting from the pressure term as shown in
Figure 5.24. In this study, two simulations are performed, PRES and PRES1.

Table 5.4: Benchmark: Pressure dominated flow

Material: ν= 0.1 ρ = 1.0

Test
Case

Fields Discretization

PRES ûx = e −0.2t sin(x )cos(y )
û y =−e −0.2t cos(x )sin(y )
P̂ r =
e −0.4t (cos(2x ) + cos(2y ))

Space (cells/direction):

22
i n c r e me n t 1−−−−−−−−→8

∆t = 0.001

PRES1

Space (cells/direction):

22
i n c r e me n t 1−−−−−−−−→7

∆t = 27
d e c r e me n t 2−−−−−−−−−→1.10−3
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Figure 5.24: Pressure dominated functions at X2 = y =π and
t = 0.0

PRES simulation is done with spatial refinement. PRES1 is performed with
space-time refinement, as indicated in Table 5.4. It can be concluded that
the observed order of accuracy in both cases is nearly second-order, as
shown in Figure 5.25 and Figure 5.26.

134



5.5 Design of Test Cases

3 4 5 6 7 8 9
# of cells/edge : 2h

10 6

10 4

10 2

100

102

lo
g(

er
ro

r)

UL2

ULi

VL2

VLi

PL2

PLi

4 5 6 7 8 9
# of cells/edge : 2h

0.0

0.5

1.0

1.5

2.0

2.5

3.0

O
bs

er
ve

d
or

de
r

of
co

nv
er

ge
nc

e
(p

)

UL2

ULi

VL2

VLi

PL2

PLi

Figure 5.25: PRES benchmark for unidirectional triangular grid
having∆ t = 0.001 s and mesh is refined from 22 cells/edge to 28
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Figure 5.26: PRES1 benchmark for unidirectional triangular grid
having mesh refined from 22 c e l l s/e d g e to 27 c e l l s/e d g e and

time step size is refined from∆t = 27.10−3 s to 21.10−3 s ,
simultaneously
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5.5.8 Convection Dominated Simulations

The purpose of this simulation is to numerically check the code’s accu-
racy if the convection term in the N-S equations is dominating the flow.
Unidirectional triangular grid and W B Z −α (B o s s a k ) time discretization
scheme are used to perform the benchmark. CON benchmark is defined in
Table 5.5. Figure 5.27 shows the contribution of different terms of the gov-
erning equation to ŝ mo m

f . From the previous cases, it can be concluded that
for the KRATOS Multiphysics code, spatial and temporal discretizations are
correlated in some sense, and solution accuracy is more sensitive to mesh
refinement than time refinement. Consequently, only mesh refinement
simulations are performed for this benchmark.

Table 5.5: Benchmark: Convection dominated flow

Material: ν= 0.05 ρ = 1.5

Test
Case

Fields Discretization

CON
ûx = e −0.1t sin(x )cos(y )

û y =−e −0.1t cos(x )sin(y )
P̂ r = 3

80 e −0.2t (cos(2x ) + cos(2y ))

Space (cells/direction):

22
i n c r e me n t 1−−−−−−−−→8

∆t = 0.001
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Figure 5.27: Convection dominated functions at X2 = y =π and
t = 0.0

Figure 5.28 shows the code performance having a convective flow problem.
It can be concluded that the observed order of accuracy is nearly second-
order, which matches the theoretical order of convergence. Thus, the code
is verified.
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Figure 5.28: Convection dominated flow spatial refinement
unidirectional triangular grid

5.5.9 Viscous Dominated Simulations

The purpose of this simulation is to numerically check the code’s accuracy
if the viscous term in the N-S equations is dominating the flow. Unidirec-
tional triangular grid and W B Z −α (B o s s a k ) time discretization scheme
are used to perform the benchmark. VIS benchmark is defined in Table 5.6.
Figure 5.29 shows the contribution of different terms of the governing
equation to ŝ mo m

f . Only mesh refinement simulation is performed for this
benchmark.

Table 5.6: Benchmark: Viscous dominated flow

Material: ν= 0.5 ρ = 0.3

Test
Case

Fields Discretization

VIS
ûx = e −t sin(x )cos(y )

û y =−e −t cos(x )sin(y )
P̂ r = 3

40 e −2t (cos(2x ) + cos(2y ))

Space (cells/direction):

22
i n c r e me n t 1−−−−−−−−→8

∆t = 0.001

Figure 5.30 shows the performance of the code in dealing with diffusive
problems. It can be concluded that the observed order of accuracy is nearly
second-order, as shown in Figure 5.30. The code is verified, having the
observed order of convergence matching the theoretical order of conver-
gence.
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Figure 5.29: Viscous dominated functions at X2 = y =π and
t = 0.0
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Figure 5.30: Viscous dominated flow spatial refinement
unidirectional triangular grid
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5.6 Summary

5.6 Summary

The presented benchmarks are pure mathematical exercises that do not
evaluate the code performance in simulating the physics. The development
of the benchmarks is code independent, which makes the benchmarks ap-
plicable to other codes. If a code successfully passes the TGV1, TGV2, and
TGV3 benchmark, it is verified, and no further testing is required. Whereas,
verifying the CFD application of KRATOS Multiphysics required more than
the base benchmark. While performing the TGV2 simulation, the code
performance is entirely unexpected. Therefore, more rigorous tests are
required. Four test cases are developed to examine the code performance
under different conditions by numerically exploiting the effect of each of
the four terms in the N-S equations. From the inertia dominated bench-
marks, it can be safely concluded that there is a time-space correlation in
the discretized space. The time-space correlation originates from the cal-
culation of the stabilization parameters in the problem formulation, which
depends on the spatial grid size. In other words, only time-dependent solu-
tions, such as IN1, cannot test the code performance thoroughly. This is not
a disadvantage of the code, but it is part of the formulation used for the VMS
element. All the benchmarks show an observed second-order accuracy.
Therefore, the observed order of accuracy matches the theoretical order
of accuracy. Finally, it can be safely said that the VMS monolithic solver
is verified in the CFD application of the KRATOS Multiphysics for both
ASGS and OSS formulations using either W B Z −α (B o s s a k ) or B D F 2
time discretization scheme and either triangular or quadrilateral grids.
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6
SOLUTION VERIFICATION METHODOLOGY

APPLICATIONS

This chapter investigates the applicability of the solution verification ap-
proach introduced in Section 3.3. The methodology is applied on the 3−D
flow around a circular cylinder at R e = 3.90x 103, and the 3−D flow around
a square prism at R e = 3.90x 103. The monolithic variational multi-scale
model implemented in KRATOS Multiphysics, introduced in Chapter 4, is
used for the numerical simulation of the two flows. Furthermore, no wall
function is used to estimate the boundary layer in the near-wall regions,
but the VMS has some modeling for the sub-scales, as explained in Chap-
ter 4. These two cases enable an extensive assessment of the mathematical
model, flow dynamics, and solution verification methodology. This is a
crucial step in understanding the applicability of the solution verification
methodology to practical CWE applications where both smooth and sharp-
edged bluff bodies are simulated with the existence of some experimental
data for validation. Both test cases have the same computational set up to
exploit the effect of flow characteristics and geometry on the performance
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6 Solution Verification Methodology Applications

of the newly developed solution verification methodology. Also, it proves
that mesh design is not only dependent on R e , but also on the structure’s
geometry. These two cases are computed in order to evaluate the physical
and numerical parameters related to the mathematical model, apply the
solution verification methodology on well-studied test cases to test its
applicability, study important flow features, and examine the performance
of the simulation code with grids, not in the asymptotic range.

6.1 3-D Flow Around a Circular Cylinder

The flow around a circular cylinder has been extensively studied in the liter-
ature both experimentally and numerically (Beaudan et al. [135], Kravchenko
et al. [136], Parnaudeau et al. [137], Franke [138], Ouvrard et al. [139], Wornom
et al. [140], Bruno et al. [141], Lam et al. [142], D’Alessandro et al. [143],
Kawata et al. [144], and Pereira et al. [145]). The selected test case is for
R e = 3900 based on the undisturbed incoming velocity, U∞, and cylin-
der diameter, D . In this order of R e , a transient shear layer flow regime
is expected. Three shear layers characterize this flow regime; a boundary
layer, a free shear layer, and a wake. As stated in Pereira [5], " In this range
of Re, two boundary-layers detach from the cylinder’s surface creating
a recirculation region and two free shear-layers. Kelvin-Helmholtz (KH)
rollers are then generated in these shear-layers ". The flow dynamics are
governed by the flow in the recirculation zone. The frequencies fv s and
fK H represent the instability frequencies called vortex-shedding frequency
and Kelvin-Helmholtz frequency, respectively. These phenomena can be
recognized throughout the spectral analysis of the stream-wise velocity
signal in the free shear layer (Pereira [5]).
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6.1 3-D Flow Around a Circular Cylinder

6.1.1 Computational Domain and Boundary Conditions

Figure 6.1 presents the geometrical dimensions of the computational do-
main and the applied boundary conditions. Figure 6.2 shows a plan view
of the computational domain. The span-wise direction is defined such
as x3/D = 3. The inlet boundary is located 10D upstream of the cylinder
center. The outlet boundary is located 25D downstream of the cylinder
center. The side wall boundaries are 12D away from the cylinder center.
Slip boundary condition is imposed at the side walls (at x2/D =±12). Also,
slip boundary condition is imposed for top and bottom boundaries at
x3/D = 0 and x3/D = 3. No-slip and impermeability boundary conditions
are specified at the cylinder surface. An inlet boundary condition with
fixed velocity is defined at the inlet x1/D =−10. A zero-pressure gradient
is defined at the outlet x1/D = 25.

D

10
D

25
D

12D

12D

3
D

Wall Outlet

Inlet

Top
Bottom

Inlet

Outlet

Wall

Top

Bottom

Prism

constant velocity

imposed pressure

slip condition

slip condition

slip condition

no-slip condition

Figure 6.1: Computational domain and boundary conditions:
flow over a circular cylinder

The grid refinement studies are carried out with four grids having, ap-
proximately, 5.5M , 4.4M , 2.9M and 2M cells named h1, h2, h3 and h4, re-
spectively. The grid’s information is provided in Table 6.1. The domain
is divided into four zones, as shown in Figure 6.2. Zone z0 represents the
cylinder surface and boundary layer. The grid density (typical cell size h) is
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Figure 6.2: Plan view of the computational domain and
measurement lines indicated in red

computed as the average of cell size estimate s1 and cell size estimate s2

(as described in Section 3.3.5.1). s1 and s2 are calculated as following:

s1 =
3
√

√ V o l

#o f c e l l s
s2 =

nz
∑

i=1

wi hi (6.1)

Figure 6.3 and Figure 6.4 show the generated computational grids h2 and
h4, respectively. It is important to note the zonal refinement concept ap-
plication. The dimensionless time step∆ti U∞/D is 0.01 and is increased
with the same value as the spatial discretization refinement ratio changes
based on the mean values of cell size estimates s1 and s2, introduced in
Section 3.3.5.1. Thus, the same refinement ratio is used in space and time.
The calculation is run for 450 dimensionless time units. The influences
of the spatial and temporal resolution, iterative convergence criteria, and
simulation time to statistical convergence on the numerical accuracy of the
predictions, are thoroughly studied in Pereira et al. [145]. The simulations
are run on double precision and stringent iterative convergence criteria
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6.1 3-D Flow Around a Circular Cylinder

Figure 6.3: Computational grid h2 for flow around a circular
cylinder: the mesh is composed of 4.4 . 106 tetrahedral elements

Figure 6.4: Computational grid h4 for flow around a circular
cylinder: the mesh is composed of 2.0 . 106 tetrahedral elements
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Table 6.1: 3-D Cylinder Mesh Data: element size is normalized
by D

Grid # of cells
Zone element size Cell size

s1

Cell size
s2d x1 = d x2 d x3

h1

5,
50

1,
33

1

z0 0.008 0.0909

0.
07

70
86

0.
05

46
16z1 0.04 0.0909

z2 0.095 0.0909

z3 0.6 0.0909

h2

4,
41

8,
86

5

z0 0.009 0.0909

0.
08

29
27

0.
05

92
68z1 0.05 0.0909

z2 0.1 0.0909

z3 0.6 0.0909

h3

2,
91

4,
85

7

z0 0.01 0.0909

0.
09

52
64

0.
06

53
12z1 0.06 0.0909

z2 0.15 0.0909

z3 0.6 0.0909

h4

2,
01

4,
35

3

z0 0.02 0.0909

0.
10

77
51

0.
08

92
33z1 0.07 0.0909

z2 0.2 0.0909

z3 0.6 0.0909

to minimize the round-off and iterative convergence errors. The absolute
and relative tolerance for velocity and pressure fields is set to 10−6 and 10−7,
respectively. Moreover, the tolerance for linear equation system iterative
solver is set to 10−8 and 1000 maximum iterations. The flow is initialized
with the constant free-stream velocity. The monolithic solver using ASGS
and W B Z −α B o s s a k scheme is used for the numerical solution. The
computational grid is designed to keep the y + ≤ 10 for the coarsest mesh
and the Courant number C F L ≤ 1.25. The calculation of the y + and C F L
is shown in appendix B.
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6.1 3-D Flow Around a Circular Cylinder

6.1.2 Numerical Results and Discussion

A solution verification study, applying the guidelines introduced in Sec-
tion 3.3, is presented in this section for the flow around a circular cylinder.
Figure 6.2 shows the computational domain, and the red dotted lines in-
dicate the measurement lines. These measurement lines are located at
the mid-plane of the x3 direction and are used to sample the velocity field.
Both integral and local quantities are verified using the newly developed
solution verification procedure1. First, drag (CD ) and lift (CL ) coefficients
are computed for the cylinder. Second, the cylinder surface pressure coeffi-
cient (Cp ) distribution is calculated along the red-dashed line indicated at
the cylinder top half. Moreover, other flow quantities are measured, such
as the Strouhal number St , the recirculation length L r , and the minimum
time-averaged stream-wise velocity Umi n . Also, the velocity profiles along
the dashed red lines are measured. The velocity fields are measured at
the center-line of the cylinder along the x3 plane. All the flow quantities
are time-averaged. Some of the measured quantities are validated against
experimental data presented in Pereira et al. [17], Parnaudeau et al. [137],
and Norberg [146].

Table 6.2 summarizes the flow quantities for discrete solutions on four
grids

�

hi

�

, the experimental data
�

E x p .
�

, and the predicted exact solution,
(P r e .) computed using the LSRMONTE discretization uncertainty estima-
tor presented in Section 3.3.

As can be seen in Figure 6.5, the time-averaged drag coefficient,
�

CD

�

, is
shown for the four different grid resolutions used. The LSRMONTE dis-
cretization uncertainty approach is used to estimate the numerical error
at each grid. For the finest grid,

�

h1

�

, the CD has an exact error of 3.16 %
compared to the experimental results. Also, it can be clearly seen that the
experimental value is bounded by the discretization uncertainty estimated
limits for each grid. By comparing the predicted exact solution

�

φP e

�

to the
experimental result, a 3.57 % error can be found. These marginal deviations
and inclusion of the experimental values within the uncertainty bounds
reflect an outstanding performance for the simulation code and the dis-
cretization uncertainty estimator (LSRMONTE). Finally, a second-order
convergence is applied to get the best fitting curve to the simulation data to
estimate the discretization uncertainty. A safety factor (SF) of 1.95 is used

1 The verification methodology is summarized in appendix C
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Table 6.2: The numerical solution with the respective
discretization uncertainty estimate at different grid resolutions for
the mean drag coefficient, CD , RMS lift coefficient, C R M S

L , Strouhal

number, St , recirculation length, L r , minimum stream-wise
velocity magnitude, Umi n , and experimental data taken from
Pereira et al. [17], Parnaudeau et al. [137], and Norberg [146]

φ CD C R M S
L St L r Umi n

h1
φh1 0.949 0.046 0.209 1.663 -0.276

UN um ± 0.144 ± 0.460 ± 0.033 ± 0.515 ± 0.253

h2
φh2 0.957 0.037 0.214 1.646 -0.270

UN um ± 0.152 ± 0.370 ± 0.042 ± 0.674 ± 0.184

h3
φh3 0.979 0.034 0.216 1.714 -0.249

UN um ± 0.302 ± 0.340 ± 0.045 ± 0.698 ± 0.339

h4
φh4 0.966 0.039 0.224 1.634 -0.276

UN um ± 0.208 ± 0.390 ± 0.061 ± 0.692 ± 0.242

E x p .
φe 0.980 0.096 0.208 1.510 -0.340

Ue ± 0.01 ± 0.004 ± 0.002 ± 0.02 ± 0.03

P r e . φP e 0.945 0.039 0.195 1.69 -0.265

to estimate the discretization uncertainty, which is completely different
from the SF existing in the literature, as described in Section 3.3.5.3.

In Figure 6.6, the LSRMONTE is applied on the data for the root mean
square (RMS) of the lift force coefficient C R M S

L , St , L r , and Umi n . For the
C R M S

L , it can be observed that the LSRMONTE is extremely conservative,
resulting in unreasonable uncertainty. This behavior can happen when
the data points have no convergence trend or the same discrete solution
for two sequentially refined grids. In other words, the convergence trend
is difficult to capture because of the presence of outliers in the dataset or
no improvement with refinement 2. Thus, it is recommended to ignore
the error bars’ values and use the predicted exact solution or the fine grid
solution values for comparison. The exact error of the fine grid solution
is 15.2% compared to 59.4% for the predicted exact solution against the

2 Further discussion on the performance, limitations, and possible improvement of the
LSRMONTE can be found in Section 8.1.2
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Figure 6.5: Discretization error estimation for the mean drag
coefficient, CD , using LSRMONTE approach for flow over a

circular cylinder at R e = 3900

experimental results. The predicted exact solution is highly influenced
by either the oscillatory data or the existence of an outlier in the four
data points. A second-order convergence is assumed to provide the best
curve fit to the simulation data. Finally, a safety factor of 2.0 is used for the
uncertainty estimate.

Before getting into studying the simulation behavior over a turbulence
quantity, such as St , point (31), located at the turbulence zone with coordi-
nates

�

X1/D = 1.06, X2/D = 1.076, X3/D = 1.5
�

is used for the computation
of the St number using spectral analysis. Then the turbulent flow structure
is studied using an autocorrelation study for the velocity signal, where the
flow integral length scale can be calculated. Figure 6.7 shows the veloc-
ity signals used for the spectral and autocorrelation analysis3. Figure 6.8
shows the autocorrelation functions for the velocity signal at the wake re-
gion behind the cylinder. It can be observed that the flow structure follows
a decaying sinusoidal form. This implies that the flow structure is not ran-
dom, as experienced in boundary layer flows in practical CWE applications.
Furthermore, the integral length scale at the four different grids is different

3 Appendix D and A show how to calculate flow quantities
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Figure 6.6: LSRMONTE Discretization error estimation for the
RMS lift coefficient, C R M S

L , Strouhal number, St , recirculation

length, L r , minimum stream-wise velocity magnitude, Umi n : flow
around a circular cylinder at R e = 3900

and is very close to the cylinder diameter (D ), which shows an adequate
grid resolution.

Figure 6.9 shows the power spectral density analysis for the stream-wise
velocity signal at point 31. It can be seen that the spatial formation of the
Kelvin-Helmholtz rollers is developed. This is shown by the frequency
fK H broadband shown in Figure 6.9. The Kelvin-Helmholtz rollers are
decomposed into high-intensity turbulence, which leads to the formation
of the vortex-shedding. This can be clearly observed by the sharp peak at
frequency fv s . Finally, spectral analysis’s observation of these flow features
proves a reasonable prediction for the flow statistics.
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Figure 6.7: Velocity signal at point 31 for four different grid
resolutions for flow over a circular cylinder at R e = 3900

The Strouhal number St can be computed using the vortex shedding fre-
quency

�

fv s

�

using Equation (6.2):

St =
fv s D

U∞
(6.2)

By studying the St (Figure 6.6), it can be clearly seen that the simulation
behavior and the LSRMONTE performance is outstanding. The St data has
a 1.57 convergence rate for fitting a curve to the simulation data. This con-
vergence rate does not apply by other uncertainty estimator approaches.
Other approaches assume the convergence rate to be first-order, or second-
order, or mixed order, which does not always result in the best curve fitting.
Also, it can be observed that the error bars are not very conservative, with
a safety factor of 1.97, yet still include the experimental values.

Observing the figures for L r and Umi n (Figure 6.6), it can be seen that the
simulation code and the LSRMONTE technique have acceptable perfor-
mance. The error bars in both cases bound the experimental value. One
data point h3 on the Umi n figure has a very conservative error estimate,
which is higher than the coarser mesh results h4. This happens because
the uncertainty estimator includes a parameter that accounts for the stan-
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Figure 6.8: Autocorrelation analysis for the velocity signal at
point 31 for four different grid resolutions for flow over a circular

cylinder at R e = 3900

dard deviation between the simulation data point and the corresponding
fitted data, which leads to higher uncertainty if a higher standard deviation
exists.

Figure 6.10 compares the magnitudes of statistical uncertainty and numer-
ical uncertainty. The statistical uncertainty is mainly computed using the
bootstrapping technique introduced in Section 3.3.4. It is clearly seen that
the statistical error is insignificant compared to the numerical error. This
indicates a sufficient simulation time to converge the statistics in unsteady
flow simulation. On the other hand, the LSRMONTE shows exceptional
performance except at three points, where there is no improvement in the
discrete solution with refinement, which leads to a very conservative un-
certainty estimate. For all the other points, the LSRMONTE performance is
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Figure 6.9: Power spectral density analysis for the velocity signal
at point 31 for four different grid resolutions for flow over a

circular cylinder at R e = 3900

outstanding and provides very reasonable results. By looking at Figure 6.11,
the experimental results are plotted with the discrete solution with error
bars. The fine grid solution h1 and the experimental results are in a very
good agreement with small deviations in some regions, especially the maxi-
mum suction region. Knowing that the assessment of local quantities is not
an easy task; the error bars with the smaller safety factor are still bounding
the experimental results within an acceptable range.

In Figure 6.12, the time-averaged stream-wise velocity component is mea-
sured along line X1/D at the center-line of the cylinder at

�

X2/D = 0
�

and
�

X3/D = 1.5
�

. It can be observed that the numerical uncertainty estimate
is conservative. In this case, the conservativeness happens because strong
flow mixing is experienced in the regions behind the circular cylinder. The
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6 Solution Verification Methodology Applications

Figure 6.10: Left figure shows the time-averaged pressure
coefficient distribution on the cylinder surface, Cp , and statistical
uncertainty. Right figure shows the discretization error estimation

using LSRMONTE approach for flow over a circular cylinder at
R e = 3900 on the finest mesh h1

Figure 6.11: Left figure shows the time-averaged pressure
coefficient distribution on the cylinder surface, Cp . Right figure

shows the discretization error estimation using LSRMONTE
approach for flow over a circular cylinder at R e = 3900 on the

finest mesh h1 and the experimental data taken from Norberg [146]
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6.1 3-D Flow Around a Circular Cylinder

scales of the resolved vortices are different depending on the grid refine-
ment. Thus, at some points, the uncertainty estimate is very conservative.
Another reason for this problem would be the need for a higher refinement
ratio to have a significant variation in the resolved scales.

Figure 6.12: Left figure shows the mean stream-wise velocity
discretization error estimation using LSRMONTE approach for

flow over a circular cylinder at R e = 3900 on the finest mesh h1 at
�

X2/D = 0, X3/D = 1.5
�

. Right figure shows the discrete solution
for the four grids and statistical uncertainty on the finest grid h1

Moreover, Figure 6.13 and Figure 6.14 show the mean stream-wise velocity
and transverse velocity components at X3/D = 1.5 along X2/D at three
different locations on the vortex shading region lines X1/D = 1.06, X1/D =
1.54, and X1/D = 2.02. Very high uncertainties are observed at some points
in the region of high turbulence. Thus, it is recommended to use a higher
refinement ratio between each mesh, or use a higher local refinement for
the region behind the cylinder up to X1/D = 3.
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6 Solution Verification Methodology Applications

Figure 6.13: The mean stream-wise velocity discretization error
estimation using LSRMONTE approach for flow over a circular

cylinder at R e = 3900 on the finest mesh h1 at
�

X3/D = 1.5
�

.

Figure 6.14: The mean transversal velocity discretization error
estimation using LSRMONTE approach for flow over a circular

cylinder at R e = 3900 on the finest mesh h1 at
�

X3/D = 1.5
�

.
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6.1 3-D Flow Around a Circular Cylinder

Finally, it can be safely stated that the numerical code and the LSRMONTE
uncertainty discretization technique have an outstanding performance.
Some of the regions need special treatment, such as local refinement, to
improve the simulation results. The detection of regions that need more
refinement can be identified by computing the discretization uncertainty
using LSRMONTE for local quantities such as velocity. If the LSRMONTE
results are very conservative to the extent of being unrealistic, then re-
finement is required in this area. The regions that need special treatment
can be observed in Figure 6.11, Figure 6.12, and Figure 6.13, where the
discretization uncertainty estimate is too conservative to be realistic4.

4 Further discussion on the performance, limitations, and possible improvement of the
LSRMONTE can be found in Section 8.1.2
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6.2 3-D Flow Around a Square Prism

The flow around a square prism has been extensively studied experimen-
tally and numerically for a long time (Bruno et al. [141], Lam et al. [142],
Bearman et al. [147], Lyn et al. [148], Nanda [149], Saha et al. [150], Khadem-
inezhad et al. [151], Dutta et al. [152], Arslan et al. [153], and Gera et al.
[154]). The flow past a square prism is highly unsteady compared to the
flow around a circular cylinder. The sharp-edges flow separation triggers
the complexity of the simulation. The selected test case is for a Reynolds
number based on the undisturbed incoming velocity, U∞, and side length,
D , equal to 3900. In this range of R e , a transient shear layer flow regime is
expected. This flow regime is characterized by three shear layers; a bound-
ary layer, a free shear layer, and a wake. A more elaborate discussion on
the flow properties can be found in Section 6.1.

6.2.1 Computational Domain and Boundary Conditions

Figure 6.15 presents the geometrical dimensions of the computational
domain and the applied boundary conditions. Figure 6.16 shows a plan
view of the computational domain. The span-wise direction is defined such
as x3/D = 3. The inlet boundary is located 10D upstream of the square
center. The outlet boundary is located 25D downstream of the square
center. The side wall boundaries are 12D away from the square center.
A Slip boundary condition is imposed at the side walls (at x2/D = ±12).
Also, slip boundary condition is imposed for top and bottom boundaries at
x3/D = 0 and x3/D = 3. No-slip and impermeability boundary conditions
are specified at the prism surface. An inlet boundary condition with fixed
velocity is defined at the inlet x1/D = −10. A zero-pressure gradient is
defined at the outlet x1/D = 25.

The grid refinement study is carried out with four grids having approxi-
mately 5.5M , 4.4M , 2.9M , and 2M cells. These grids are named h1, h2, h3

and h4, respectively. Figure 6.3 and Figure 6.4 show the generated com-
putational grids h2 and h4, respectively. It is important to note the zonal
refinement concept application. The grids’ information are provided in
Table 6.3. The domain is divided into four zones, see Figure 6.16. Zone
z0 represents the cylinder surface and boundary layer. The grid density
(typical cell size h) is computed as the average of s1 and s2 (as described in
Section 3.3.5.1).
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Figure 6.15: Computational domain and boundary conditions:
flow over a square prism
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6 Solution Verification Methodology Applications

Figure 6.17: Computational grid h2 for flow around a square
prism: the mesh is composed of 4.4 . 106 tetrahedral elements

Figure 6.18: Computational grid h4 for flow around a square
prism: the mesh is composed of 2.0 . 106 tetrahedral elements
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6.2 3-D Flow Around a Square Prism

Table 6.3: 3-D Square-Prism Mesh Data: element size is
normalized by D

Grid # of cells
Zone element size Cell size

s1

Cell size
s2d x1 = d x2 d x3

h1

5,
51

2,
11

2

z0 0.008 0.0909

0.
07

70
36

0.
05

46
15

7

z1 0.04 0.0909

z2 0.095 0.0909

z3 0.6 0.0909

h2

4,
46

3,
91

0

z0 0.009 0.0909

0.
08

26
47

0.
05

92
68z1 0.05 0.0909

z2 0.1 0.0909

z3 0.6 0.0909

h3

2,
95

6,
43

7

z0 0.01 0.0909

0.
09

48
15

0.
06

53
12z1 0.06 0.0909

z2 0.15 0.0909

z3 0.6 0.0909

h4

2,
03

9,
99

4

z0 0.02 0.0909

0.
10

72
97

0.
08

92
32z1 0.07 0.0909

z2 0.2 0.0909

z3 0.6 0.0909

The dimensionless time step∆ti U∞/D is 0.01 and increased with the same
value as the spatial discretization refinement ratio changes. The spatial
refinement ratio is defined based on the mean value of estimates s1 and s2,
described in Section 3.3.5.1. Thus, the same refinement ratios are used in
space and time. The calculations run for 470 dimensionless time units. The
same computational setup is shown in Section 6.1.1 is used to simulate
the flow around the square prism.
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6.2.2 Numerical Results and Discussion

The measured quantities can be divided into integral and local quantities.
Calculations for the statistical quantities, turbulence quantities and solu-
tion verification methodology are summarized in appendices A, B, and C,
respectively.

6.2.2.1 Integral Quantities

In this section, the code’s ability to calculate integral quantities is assessed
using the newly developed solution verification methodology with un-
certainty discretization estimation, LSRMONTE. The integral quantities
measured in this case are the mean drag coefficient, CD , RMS lift coeffi-
cient, C R M S

L , the Strouhal number, St , and the integral length scale, L (u x ).

Figure 6.19 shows the discretization error estimate of the drag force coeffi-
cient.

h0 h1 h2 h3 h4

Mesh Number

1.5

2.0

2.5

3.0

3.5

C
D

[−
]

Numerical Predicted Exact Exp. Numerical Uncer

Figure 6.19: Discretization error estimation for the mean drag
force coefficient, CD , using LSRMONTE approach for flow over a

square prism at R e = 3900

It is observed that mesh (h3) has the highest uncertainty due to a higher
deviation from the estimated exact value. This behavior is due to having
simulations not in the asymptotic range. Also, it can be seen that the nu-
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6.2 3-D Flow Around a Square Prism

merical error is decreasing with refinement as expected. A 12.5 % exact
error is computed between the numerically predicted exact value and the
experimental value. The error is larger than the one computed for the flow
around the circular cylinder in Section 6.1.2, because of the effect of sharp
edges, which makes the flow more complicated on the sides and leeward
side of the prism. However, the experimental result is bounded by the error
estimate. An oscillatory convergence is noticed between meshes h2, h3,
and h4. On the other hand, monotonic convergence is observed between
meshes h1, h2, and h3. A second-order convergence order is used for the
curve fitting.

In Figure 6.20, the LSRMONTE is applied on the data for the root mean
square (RMS) of the lift force coefficient C R M S

L , St , L r , and Umi n . For the St ,
it can be observed that the LSRMONTE is extremely conservative, which
results in unreasonable uncertainty. This behavior can happen when the
data points have no convergence trend, which requires higher refinement
ratios5. Thus, it is recommended to ignore the values of the error bars
and use the predicted exact solution or the fine grid solution values for
comparison. A more conservative performance can be seen in estimating
the discretization error in Figure 6.20 in assessing the C R M S

L . An oscilla-
tory convergence is observed between all meshes, and a second-order
convergence is used for the curve fitting.

The complexity of the flow is highly reflected in the estimation of the nu-
merical uncertainty, as explained above. Figure 6.21 shows the velocity
signal at X1/D = 1.06, X2/D = 1.282, and X3/D = 1.5. The auto-correlation
is calculated and plotted in Figure 6.22. The integral length scale of the
vortices in the vortex shedding zone is computed from the auto-correlation
function. Furthermore, the auto-correlation plot shows a periodic wave
on the back of the structure. The integral length scale (L (u x )) of the flow
turbulence around a square prism is ≈ 25% higher than that of the flow
around a circular cylinder. Moreover, the Strouhal number (St ) is com-
puted from the spectral analysis shown in Figure 6.23. The numerical
uncertainty for the St is estimated and shown in Figure 6.20. Since there
is no significant improvement in the calculated St with refinement, it can
be seen that the estimated uncertainty is too conservative5. The estimated
uncertainty is unrealistic in this case. Table 6.4 summarizes all the findings

5 Further discussion on the performance, limitations, and possible improvement of
the LSRMONTE can be found in Section 8.1.2
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Figure 6.20: LSRMONTE Discretization error estimation for the
RMS lift coefficient, C R M S

L , Strouhal number, St , recirculation

length, L r , minimum stream-wise velocity magnitude, Umi n : flow
around a square prism at R e = 3900

in the measured quantities with estimated uncertainty for each grid level.
The results are compared to some experimental values available in the
literature (Bearman et al. [147], Lyn et al. [148], Nanda [149], and Saha et al.
[150]). Unfortunately, no uncertainty is available for the experimental data
for a fair comparison with the numerical results.
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Figure 6.21: Velocity signal at point 33 for four different grid
resolutions for flow over a square prism at R e = 3900

Table 6.4: The numerical solution with the respective
discretization uncertainty estimate at different grid resolutions for

the mean drag coefficient, CD , RMS lift coefficient, C R M S
L ,

Strouhal number, St , recirculation length, L r , minimum
stream-wise velocity magnitude, Umi n , and experimental data

taken from Bearman et al. [147], Lyn et al. [148], Nanda [149], and
Saha et al. [150]

φ CD C R M S
L St L r Umi n

h1
φh1 2.434 1.531 0.126 0.613 -0.092

UN um ± 0.496 ± 0.893 ± 1.074 ± 0.89 ± 0.154

h2
φh2 2.430 1.496 0.121 0.668 -0.103

UN um ± 0.516 ± 1.078 ± 1.079 ± 1.157 ± 0.206

h3
φh3 2.551 1.631 0.123 0.538 -0.081

UN um ± 1.112 ± 0.846 ± 1.077 ± 0.937 ± 0.169

h4
φh4 2.472 1.426 0.123 0.770 -0.123

UN um ± 0.649 ± 1.269 ± 1.077 ± 1.399 ± 0.252

E x p . φe 2.140 1.710 0.132 —– —–

P r e . φP e 2.42 1.634 0.123 0.480 -0.067
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Figure 6.22: Auto-correlation analysis for the velocity signal at
point 33 for four different grid resolutions for flow over a square

prism at R e = 3900
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Figure 6.23: Power spectral density analysis for the velocity
signal at point 31 for four different grid resolutions for flow over a

circular cylinder at R e = 3900
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6.2.2.2 Local Quantities

In this section, the code performance and numerical errors are evaluated
for local quantities such as pressure and velocity at selected locations
indicated by the red dashed lines in Figure 6.16. Local quantities are usually
more sensitive to discretization than integral quantities. All the quantities
are measured at the mid-plane in the x3 direction. The following quantities
are measured:

1. The recirculation length L r : It is measured from the back of the struc-
ture. Figure 6.20 shows the error estimation on the four grid levels.
The estimate is too conservative on the coarsest grid with ≈ 80 %
error. Then, the error is decreasing with refinement.

2. Minimum mean stream-wise velocity: It is defined at the center-line
of the x2 direction along the flow direction x1. Figure 6.20 shows the
discretization uncertainty with too conservative estimate6 because
the results are oscillating around zero.

3. Both stream-wise and transverse velocity along X2 on lines X1/D =
1.06, X1/D = 1.54, and X1/D = 2.02: The velocity is measured at
the center-line of the domain at X3/D = 1.5. This region contains
high flow separation and turbulence. The estimated uncertainty
is unrealistic6 at some locations, as shown in Figure 6.24, at lines
X1/D = 1.06 and X1/D = 2.02. For the three reference lines, a real-
istic estimate can be observed in the region bounded by X2/D =
[−0.5,0.5]. Therefore, a higher refinement ratio is required to get
better estimate.

From Figure 6.25, it can be seen that the vertical movement of the
flow vanishes as the flow develops and approaches the recirculation
length. Flow symmetry can be clearly observed. Away from the edges
of the square-prism, eddies are formed at X2/D ≥ 0.5 and X2/D ≤
−0.5.

Finally, a higher refinement ratio is needed to resolve better the flow
on the back of the structure.

6 Further discussion on the performance, limitations and possible improvement of the
LSRMONTE can be found in Section 8.1.2
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6.2 3-D Flow Around a Square Prism

Figure 6.24: The mean stream-wise velocity discretization error
estimation using LSRMONTE approach for flow over a square

prism at R e = 3900 on the finest mesh h1 at
�

X3/D = 1.5
�

.

Figure 6.25: The mean transversal velocity discretization error
estimation using LSRMONTE approach for flow over a square

prism at R e = 3900 on the finest mesh h1 at
�

X3/D = 1.5
�

.
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4. The stream-wise velocity at the back of the structure measured along
the domain center-line: Figure 6.26 shows the mean stream-wise
velocity. It can be seen that the numerical uncertainty is much higher
than the statistical uncertainty. The results analysis indicates the
need for a higher refinement ratio, although the results are in align-
ment with the experimental data. The higher refinement ratio will
result in resolving smaller scales of turbulence.

Figure 6.26: Left figure shows the mean stream-wise velocity
discretization error estimation using LSRMONTE approach for
flow over a square prism at R e = 3900 on the finest mesh h1 at
�

X2/D = 0, X3/D = 1.5
�

. Right figure shows the discrete solution
for the four grids and statistical uncertainty on the finest grid h1

5. The mean pressure coefficient: It is measured at the upper half sur-
face of the structure. Figure 6.27 and Figure 6.28 show the statistical
error, numerical estimated error, and experimental data. Figure 6.27
compares the statistical to numerical uncertainty. The statistical un-
certainty can be neglected (≤ 1 %) because the simulations are run
for sufficient time to converge the statistics.

Figure 6.28 compares the numerical results, including estimated
discretization error, and the experimental data from Nanda [149].
The edge points are the most critical points where the discretization
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Figure 6.27: Left figure shows the time-averaged pressure
coefficient distribution on the square surface, Cp , and statistical

uncertainty. Right figure shows the discretization error estimation
using LSRMONTE approach for flow over a circular cylinder at

R e = 3900 on the finest mesh h1

uncertainty is present. It can be seen that the numerical uncertainty
is reliable and bounds the experimental data. Finally, it can be safely
said that the numerical error estimation must be calculated to indi-
cate simulation codes’ performance. Also, the quality of the compu-
tational domain grid can be assessed through rigorous data sampling
for local quantities and estimation of the associated uncertainties,
which indicate the improvement of the solution with refinement and
can be a guide for building a more reliable simulation.
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Figure 6.28: Left figure shows the time-averaged pressure
coefficient distribution on the cylinder surface, Cp . Right figure

shows the discretization error estimation using LSRMONTE
approach for flow over a circular cylinder at R e = 3900 on the

finest mesh h1 and the experimental data taken from Nanda [149]
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7
ATMOSPHERIC BOUNDARY LAYER FLOW

AROUND A HIGHRISE BUILDING:
SOLUTION VERIFICATION

This chapter presents the required workflow to predict wind loads on struc-
tures and estimate the numerical errors. Moreover, the application of the
newly developed LSRMONTE approach for the estimation of numerical er-
rors for the solution of the atmospheric boundary layer (ABL) flow around
a highrise building at full-scale Reynolds number is presented. This chap-
ter’s main objective is to present how to evaluate wind loads on a tall and
slender structure with confidence using an eddy-resolving simulation tech-
nique. ABL flow turbulence, together with bluff bodies aerodynamics such
as vortex shedding and intermittent reattachment of shear layers, leads
to along-wind and across-wind vibrations (Ricci et al. [155]). Meanwhile,
flow turbulence imposes the main challenge for estimating discretization
uncertainty. Therefore, the selection of the quantities of interest is signifi-
cant in such a computation. Some publications on the simulation of flow

173



7 Atmospheric Boundary Layer Flow Around a Highrise Building: Solution
Verification

around a highrise building can be found in Péntek et al. [156] and Thordal
et al. [157].

7.1 Experimental Setup

This section introduces the experimental setup adopted to simulate a high-
rise building numerically. Experiments were performed at the atmospheric
boundary layer wind tunnel facility of the Tokyo Polytechnic University
(TPU). Pressure data are available and collected in a public database (Tokyo
Polytechnic University Aerodynamic Database [158]). The database is orga-
nized according to building shape, building geometry, and flow character-
istics. The focus of this work is an isolated highrise building with an equal
breadth (B ) to depth (D ) ratio, and breadth to height (H ) ratio, equals to
1 : 5 (Figure 7.1)

xy

z

H

D B

Figure 7.1: Highrise building geometry

The wind tunnel length scale is equal to 1/400, which leads to full scale
building dimensions as D = B = 40m and H = 200m . The wind tunnel has
a 2.2m X 1.8m test section. This lead to a 1.2% blockage ratio. A terrain
category IV with α exponent equals 0.25 is used for the reproduced wind
profile, according to the Architectural Institute of Japan (AIJ) standards
(AIJ [159]). The wind profile is defined as:

U(Z ) =Ur e f

�

Z

Zr e f

�α

(7.1)
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where U(Z ) is the mean wind speed at height Z , Ur e f is the mean wind
speed at reference height Zr e f and the power-law index (α= 0.25). More
discussion on the AIJ recommendations for wind loads on buildings can
be found in AIJ [159] and Tamura et al. [160].

The experimentally produced wind has a mean wind velocity equal to
Ur e f = 11.11 m/s at the building reference height (Zr e f = 160 m ). The
turbulence intensity is IZr e f

= 14 % at the building reference height. The
turbulence intensity (IZ ) at height Z is defined as

IZ =
σuZ

UZ
(7.2)

where σUZ
is the standard deviation of the fluctuating wind velocity uZ .

The building model was equipped with 500 pressure taps that acquired
data at a sampling frequency of 1000H z for 32.8 seconds. A 1.52 ∗108 full-
scale Reynolds number is used in the numerical simulation compared to a
wind tunnel scale R e = 3.8 ∗105 based on building height. Finally, a zero
wind angle is used in the scope of this work. The wind flow is parallel to
the local building x −a x i s .

7.2 Computational Setup

The VMS approach described in Chapter 4 is used for the flow simulation.
Figure 7.2 shows a three-dimensional view of the used computational
domain size. Also, the boundary conditions are indicated in Figure 7.2, and
no wall-function is used in the near-wall region.

The domain size is designed based on recommendations from the literature
(Ricci et al. [155] and Péntek et al. [156]). The most important aspect for the
design of the across-wind section is the blockage ratio. The across-wind
section is 6H wide and 3.6H high. The resulting blockage ratio is 0.93 %,
compared to 1.2 % in the wind tunnel experiment. The building distance
to the inlet boundary is 3.6H . The outlet boundary is positioned at 8H
distance from the back of the structure.

The air properties are kept at normal condition of an assumed air temper-
ature Ta i r = 20◦C , density ρa i r = 1.2 K g /m 3, and a kinematic viscosity
of νa i r = 1.51e −5 m 2/s . The inlet boundary has an imposed turbulent
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Figure 7.2: Computational domain and boundary conditions for
ABL flow simulation around a highrise building. The H is defined

as the building height.

velocity. A numerical wind generator is used to reproduce the ABL flow.
The fluctuating component in the velocity field is generated by a wave
superposition based method (Mann [161]). The wind field can be repre-
sented as a generalized Fourier-Stieltjes integral of its spectral components.
The necessary factorization (i.e., ’square root’) of the spectral tensor can
be accomplished in closed form (Abodonya [16]). Further readings about
the theory and usage of the numerical wind generator can be found in
Abodonya [16], Mann [161], Alsofi [162], and Andre [163].

The fluid domain is divided into zones, as shown in Figure 7.3. Each zone
has a uniform grid size. The grid is refined as it gets closer to the structure.
Grid data is summarized in Table 7.1.

The cell size near the structure is ≈ 3.75e −3 meters on the finest grid (h1).
The grid resolution is defined based on recommendations of Ricci et al.
[155] and Tominaga et al. [164]. The grid size near the structure is designed
to result in a y + ≤ 10 for the fine grid h1 and y + ≤ 20 for the coarse grid h4.
Moreover, the grid is coarsened as proceeding away from the structure as
shown in Table 7.1. The simulation is run for total time Ts i m = 570 S e c . The
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Figure 7.3: Computational grid design: top figure shown a plan
view for half of the symmetric domain, while bottom figure shows

cross section (A-A) indicated in the top figure

Table 7.1: Highrise Building Mesh Data: element size is
normalized by H

Grid # of cells
Zone element size r

d x = d y = d z

h1 6, 622, 084
St r 3.75e −3 z2 0.04

1.00z0 0.0125 z3 0.09
z1 0.025 z4 0.25

h2 5, 119, 178
St r 5.00e −3 z2 0.0425

1.10z0 0.01375 z3 0.1
z1 0.0275 z4 0.25

h3 3, 610, 851
St r 6.25e −3 z2 0.045

1.23z0 0.015 z3 0.1125
z1 0.030 z4 0.25

h4 1, 865, 760
St r 7.50e −3 z2 0.0475

1.50z0 0.01625 z3 0.125
z1 0.0325 z4 0.25
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Figure 7.4: Computational grid h4 for wind flow around a
highrise building: the mesh is composed of 1.86 . 106 tetrahedral

elements

simulation time is ≈ 10 mi n u t e s as recommended by the architectural
institute of japan standards, where the aeroelastic instability or vortex-
induced vibration occurs within this period (AIJ [159]). Furthermore, ten
minutes wind is sufficient to cover most of the flow frequencies in the
micrometeorology region in the wind autospectrum (Abodonya [16]). In
the simulation design, the Courant Friedrichs-Lewy (CFL) number is set
to C F L ≤ 1.0. The time step is defined from the CFL number as:

∆t =
C F L ∗d xmi n

UZr e f

(7.3)

This leads to a time step size ∆t ≈ 0.07 s for the finest grid. In order to
obtain a higher temporal resolution, the time step is defined for the finest
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mesh (h1) as∆t = 0.01 s . Furthermore, the time step is coarsened with the
same rate as the spatial resolution.

7.3 Simulation Quality Assessment

In this section, the newly proposed framework is applied to the simulation
of the ABL flow around a highrise building. Four main steps are required
to judge the quality of a wind simulation:

1. Code verification: The code verification framework was introduced
in Chapter 3. Moreover, the code’s functionalities, used to simulate
the problem under investigation, are verified as shown in the pro-
posed test scenarios in Chapter 5. Thus, once the needed functions
are verified, it is safe to estimate the wind loads and quantify the
numerical errors.

2. Design of the test case: The design of the test case under investigation
is introduced in Section 7.2.

3. Selection of the quantities of interest (QOI): In simulating natural
wind flow around a bluff body, it is imperative to pick quantities that
represent mean values and fluctuating effects. Meanwhile, both local
and integral quantities are to be considered. The measured QOI are
presented in Section 7.3.1

4. Data analysis and numerical error estimation: The newly developed
procedures introduced in Chapter 3 is used for solution verification
and summarized in appendix C. Moreover, the methodology was
tested for general fluid flow around bluff bodies in Chapter 6 to test
its performance. Thus, the new methodology is used in this case for
uncertainty evaluation for the QOI, as presented in Section 7.4 and
Section 7.5.
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7.3.1 Measurement Quantities Selection

The selection of the QOI in simulating natural wind flow is split into two
cases:

1. Empty channel1 simulation: It is performed to make sure that the
numerically generated wind field is in a good agreement with the
experimental results. The following data is acquired in simulating
the empty channel:

• Monitoring the stream-wise velocity (UZr e f
) at the domain cen-

ter at reference height (Zr e f ). The points are located at X ∈
[−3.6H , 0.0] , Y = 0.0, Z = Zr e f . Then, the following informa-
tion is extracted from the signal:

a) Mean UZr e f

b) Integral length scale (LUx
)

c) Turbulent kinetic energy (T K E )
d) At some selected points, the spectral analysis is performed

to check the frequency loss due to mapping of the gener-
ated wind field to the fluid domain inlet.

• Vertical wind profile is measured along Z ∈ [0.0, H ], X = 0.0,
Y = 0.0. Then, the mean wind velocity and turbulence intensity
are calculated. The simulated flow characteristics are compared
to the experimental flow. The numerical wind is regenerated;
if the simulated flow parameters do not match the experimen-
tal flow parameters, it mainly means wind speed at reference
height and turbulence intensity.

2. Performing the actual simulation: The structure response to wind
load is simulated, and the following quantities are measured:

• Monitoring the stream-wise velocity (UZr e f ) at the domain
center at reference height (Zr e f ). The points are located at
X ∈ [−3.6H ,−0.5D ] , Y = 0.0, Z = Zr e f . Then, the following
information is extracted from the signal and compared:

a) Mean UZr e f

1 Empty channel simulation means simulation using exactly the same setup without
the presence of the structure
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b) Integral length scale (LUx
)

c) Turbulent kinetic energy (T K E )

• Resultant force coefficients: the force coefficient is defined as:

CF =
F

0.5ρa i r U 2
Zr e f

D H
(7.4)

• Pressure coefficients: the pressure coefficient is defined as:

CP =
P −Pi n f

0.5ρa i r U 2
Zr e f

(7.5)

The pressure is measured at 500 taps located as shown in Fig-
ure 7.5.
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Figure 7.5: Location of pressure taps along the highrise building
facade from all sides. The taps are equally spaced in both

directions and all distances are in meters

182



7.4 Results Empty Channel

7.4 Results Empty Channel

In this section, the mapping of the numerically generated wind field to
the fluid domain is checked, and the effect of mesh refinement is studied.
Linear mapping is used to impose the wind field on the fluid domain inlet,
as shown in.

Figure 7.6: The mapping between numerically generated wind
flow and computational domain having a transient inlet boundary

condition (Andre [163])

The grid size has a significant effect on the preservation of the wind char-
acteristics. Therefore, the empty channel simulation is performed first to
check the quality of the simulated wind at the building location. This is
very crucial in simulating ABL flows.

The stream-wise velocity is measured, and the mean wind profile is cal-
culated. The numerically simulated wind profile is compared to the the-
oretical log-profile and experimental profile. The experimental profile
can be found in Tokyo Polytechnic University Aerodynamic Database [158].
Figure 7.7 left plot shows the mean wind profile. The mean statistical uncer-
tainty in the simulated wind field is shown to be minimal, which indicates
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a sufficient simulation time to converge the statistics. Meanwhile, the nu-
merical uncertainty due to discretization is shown. It can be clearly seen
that the simulated mean wind velocity is in a good agreement with the
experimental wind velocity. Also, the numerical uncertainty estimation is
reasonable and bounds the experimental data. The near-wall region, from
the ground to 50me t e r s of the building height, is a bit deviating from the
experimental values, due to the use of coarse meshes, not resolving the
boundary layer and not using a wall-function. Therefore, it is very crucial to
perform parametric studies and estimate the modeling uncertainties em-
anated from the selection of the boundary conditions and wall-functions.
The evaluation of the modeling uncertainties is not in the scope of this
work.

Figure 7.7: Vertical stream-wise velocity wind profile along line
at Z ∈ [0.0, H ] , X = 0.0, Y = 0.0. On the left is the mean velocity.

On the right is the turbulence intensity.

Figure 7.7 right shows the turbulence intensity. It is crucial to notice that
the numerical uncertainty is very high at some points, because of the ran-
dom nature of the flow2. Turbulence intensity is a susceptible measure

2 Further discussion on having too conservative numerical uncertainty can be found
in Section 8.1.2
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that is profoundly affected by the grid size. The most important point is the
Zr e f , where the simulated wind turbulence should match the experimen-
tal turbulence. In ideal cases, both numerical and experimental profiles
should be identical, but it can not be achieved because the numerical
wind generator fits turbulence at one point, the reference height. With
the assessment of the numerical uncertainty of the turbulence intensity
profile, it can be seen that the numerical uncertainty encloses the exper-
imental data. The simulation over-estimates the wind turbulence at the
bottom of the fluid domain because the boundary layer is not resolved at
the bottom wall. Therefore, the effect of not resolving the boundary layer
is highly investigated in the measurement of the QOI, such as Cp , CD , and
CFY

, discussed in Section 7.5.

Furthermore, the stream-wise velocity is measured at different locations
from the inlet domain boundary to the location where the structure will be
positioned. The points are located at X ∈ [−3.6H , 0.0] , Y = 0.0, Z = Zr e f ,
are equally spaced.

Figure 7.8: Mean stream-wise velocity (UZr e f ) from inlet to
structure. The points are located at X ∈ [−3.6H , 0.0] , Y = 0.0,

Z = Zr e f .

Figure 7.8 shows the mean stream-wise velocity. It can be observed that
the mean velocity is conserved from the inlet to the structure and in a
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good agreement with the experimental mean velocity. Both statistical and
numerical uncertainty are measured. It can be noticed that the mean
statistical quantity is converging very well with less than 5 % statistical
uncertainty. Also, the numerical uncertainty is very reasonable and bounds
the experimental value. The numerical uncertainty for most of the points
is less than 10 %.

For a better judgment on the conservation of turbulence properties, both
turbulent kinetic energy (TKE) and integral length scale ((LUx

)) are calcu-
lated from the velocity signal at each point. The effect of the inlet boundary
condition can be clearly seen in Figure 7.9 at location X =−3.6H . The TKE
is unrealistic due to the effect of the boundary condition. Figure 7.9 shows
the TKE, where the numerical simulation over-predicts the TKE. The mean
statistical uncertainty for TKE is negligible, which implies a converging
statistic. Moreover, the numerical uncertainty is very reasonable for most
of the points3.

Figure 7.9: Mean turbulent kinetic energy from inlet to structure.
The points are located at X ∈ [−3.6H , 0.0] , Y = 0.0, Z = Zr e f .

Figure 7.10 shows the (LUx
), where the numerical simulation under-

predicts the (LUx
) in the regions very close to the inlet. Then, the flow’s (LUx

)
3 Discussion on having too conservative numerical uncertainty can be found in Sec-

tion 8.1.2
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is well simulated at the region close to the structure. The (LUx
) simulation is

not dependent on the grid size only, but also the domain size; the domain
should be big enough to accommodate large vortex size. Therefore, the
distance from the inlet boundary to the structure location should be long
enough to allow for the redevelopment of the flow vortices. The numerical
error is estimated for the (LUx

). It can be observed in Figure 7.10 that the
estimation is conservative at some points where data does not have a clear
convergence behavior, and large variations occur with refinement.
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Figure 7.10: Mean integral length scale from inlet to structure.
The points are located at X ∈ [−3.6H , 0.0] , Y = 0.0, Z = Zr e f .

Finally, it can be safely said that the numerically generated wind complies
satisfactorily with the target profile and wind characteristics and can be
used to predict the wind load on the structure under investigation.
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7.5 Results Highrise

After checking the quality of the simulated atmospheric boundary layer
wind field, the highrise building is simulated. The velocity field is recorded
from the inlet to the structure to monitor the turbulence characteristics of
the incoming wind field. Also, it is important to compare to the results ob-
tained from empty-channel simulations. Figure 7.11 represents the mean
stream-wise wind velocity.

720 670 620 570 520 470 420 370 320 270 220 170 120 70 20 0
Distance from structure to inlet [m]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

M
ea

n 
V x

 [m
/s

]

In
le

t B
ou

nd
ar

y

UX mean gen wind

h1
h2

h3
h4

Predicted Exact
Exp.

Numerical Uncer
Statistical Uncer

Figure 7.11: Highrise building simulation: The mean
stream-wise velocity (UZr e f ) is measured for points located at

X ∈ [−3.6H ,−0.75D ], Y = 0.0, and Z = Zr e f . The points are
arranged from the inlet to the structure.

It can be seen that the mean wind speed is preserved and approaching
zero as it gets closer to the structure. The mean statistical uncertainty is
negligible≤ 1 %, which indicates a sufficient simulation run time. Moreover,
the numerical uncertainty is reasonably estimated. The performance of the
LSRMONTE approach is outstanding for this QOI except for the two points
located at 570 and 420. The unrealistic numerical uncertainty at these two
points is due to undefined solution convergence over the four sequentially
refined grids. Although LSRMONTE is not sensitive to discrete solutions
in the asymptotic range, there are still some limitations on the capability
of the newly proposed approach, as explained in detail in Section 8.1.2.
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This unrealistic estimation can be avoided by using a biased version of
the LSRMONTE. The biased LSRMONTE filters the discrete solutions for
fitness to be used for the LSRMONTE uncertainty estimation.

Figure 7.12 shows the numerical and statistical uncertainty for the tur-
bulent kinetic energy for the approaching flow at UZr e f

. The effect of the
boundary conditions on the simulation of the wind field can be remarked
by the unrealistic error estimated at the first three points4. Otherwise, the
numerical uncertainty is well predicted for TKE at most of the remaining
points. The error in the estimation of TKE at station 170 is over-predicted
because data has an anomalous behavior. Compared to the numerical
uncertainty, the mean statistical uncertainty is negligible.

Figure 7.12: Highrise building simulation: The mean turbulent
kinetic energy is measured for points located at

X ∈ [−3.6H ,−0.75D ], Y = 0.0, and Z = Zr e f . The points are
arranged from the inlet to the structure

Figure 7.13 presents the LUx
, where the simulated flow has an integral

length scale smaller than that of the numerically generated data near the
inlet boundary. Therefore, it is vital to have enough distance to the struc-
ture for the flow to develop. Based on observations from Figure 7.10 and

4 Further discussion on having too conservative numerical uncertainty can be found
in Section 8.1.2

189



7 Atmospheric Boundary Layer Flow Around a Highrise Building: Solution
Verification

Figure 7.13, it can be safely said that a distance from 2.5H to 3.5H is suffi-
cient for the redevelopment of the flow from the inlet boundary. Afterward,
the flow integral length scale is higher than the numerically generated data
on coarse meshes. It can be observed that the finer the mesh, the better
the LUx

estimation. Moreover, the numerical uncertainty is reasonably
estimated for almost all the points4, which proves the ability of the newly
developed solution verification technique (LSRMONTE) to estimate errors
in complex problems.
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Figure 7.13: Highrise building simulation: The mean integral
length scale (LUx ) is measured for points located at

X ∈ [−3.6H ,−0.75D ], Y = 0.0, and Z = Zr e f . The points are
arranged from the inlet to the structure

Overall, the performance of the empty channel simulations in represent-
ing the wind field is very close to that of the flow with the structure. The
simulations’ behavior is different in the regions away from the building
and very close to the inlet boundary.
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7.5.1 Force Coefficients

Simulation performance and numerical uncertainty are evaluated for the
flow integral quantities. The statistical uncertainty is kept minimum for
flow under investigation by running the simulation for a sufficient time
and sampling frequency. Table 7.2 shows the statistical uncertainty com-
puted for different simulations run time. Statistical uncertainty is com-
puted with a 95 % confidence using the BCA-MBB technique introduced
in Section 3.3.4.1. It can be seen that statistical uncertainty is considered
negligible for the simulation under investigation when running for more
than 500 s e c s .

Total Simulation Time Statistical uncertainty for CD [%]

h1 h2 h3 h4

50 23.8 25.4 23.1 23.2

100 15.5 16.4 15.8 15.1

200 6.9 6.7 7.0 6.9

300 5.4 5.5 5.0 5.0

400 4.0 4.1 3.9 3.9

500 3.2 3.0 3.4 3.1

Table 7.2: The statistical convergence uncertainty for different
grid resolutions for the mean drag coefficient, CD .

Figure 7.14 (a) shows the mean drag force coefficient, CD , and the esti-
mated numerical uncertainty. It can be observed that the numerical error
is reasonably estimated and bounds the experimental solution for all the
grids. The CD has a 14.5% estimated error compared to a 7.9% exact error
with the experimental results. A monotonic convergence is observed in
the estimation of the numerical error for C R M S

Y and C R M S
L represented in

Figure 7.14 (d) and (e), respectively. An oscillatory convergence is exercised
for CD , C ′D and CY presented in Figure 7.14 (a), (b) and (c) respectively.
Moreover, the LSRMONTE approach assumed a second-order convergence
for all the measured QOIs. It is observed that the estimated numerical error
is higher than the exact error for most of the QOIs, except for the C ′D . For the
C ′D , the error estimation on the grid h4 only is higher than the exact error.

Moreover, the error estimation for CY is too conservative, since CY should
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be zero, and the simulation results are oscillating around zero. Finally, all
the results are summarized in Table 7.3.
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Figure 7.14: The numerical uncertainty for the mean drag force
coefficient, CD , drag force coefficient standard deviation, C ′D ,

mean cross-wind force coefficient, CY , RMS cross-wind force
coefficient, C R M S

Y , RMS lift coefficient, C R M S
L .
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Table 7.3: The numerical solution with the respective
discretization uncertainty estimate at different grid resolutions for
the mean drag coefficient, CD , drag coefficient standard deviation,
C ′D , mean cross-wind force coefficient, CY , RMS cross-wind force
coefficient, C R M S

Y , RMS lift coefficient, C R M S
L , and experimental

data taken from Tokyo Polytechnic University Aerodynamic
Database [158]

φ CD C ′D CY C R M S
Y C R M S

L

h1
φh1 1.313 0.346 -0.013 0.376 0.247

UN um ± 0.191 ± 0.120 ± 0.043 ± 0.154 ± 0.076

h2
φh2 1.336 0.347 0.002 0.378 0.250

UN um ± 0.119 ± 0.111 ± 0.017 ± 0.155 ± 0.056

h3
φh3 1.318 0.357 0.008 0.342 0.254

UN um ± 0.136 ± 0.105 ± 0.034 ± 0.214 ± 0.064

h4
φh4 1.307 0.334 -0.003 0.294 0.240

UN um ± 0.175 ± 0.160 ± 0.012 ± 0.295 ± 0.096

E x p . φe 1.216 0.192 0.002 —– 0.325

P r e . φP e 1.338 0.361 -0.001 0.451 0.257

h1 εe x c . 7.90% 80.2% 55.0% —– 24.0%

h1 εe s t . 14.5% 34.7% 100.0% 40.9% 30.7%

7.5.2 Pressure Coefficients

Pressure coefficients (CP ) are the most sensitive parameter to measure for
the evaluation of simulation quality. The LSRMONTE approach is used for
the estimation of the numerical error for the mean pressure coefficient
(CP ). Figure 7.15 shows the locations of the lines S1, S2, and S3 that are
used to thoroughly investigate the (CP ) distribution on the structure.

Figure 7.16 shows the flow features around the simulated highrise build-
ing. The domain is colored with the instantaneous velocity field at T =
209 s e c o nd s . Moreover, the structure is colored with the magnitude of the
pressure coefficients CP . It can be clearly seen that positive CP − v a l ue s
are observed in the windward face and suction on the right-side of the
structure. More discussion is presented in subsequent paragraphs using
point-wise comparisons.

193



7 Atmospheric Boundary Layer Flow Around a Highrise Building: Solution
Verification

x
y

z

wind

dir
ect

ion

S1S3

S2

Figure 7.15: Highrise building geometry showing the locations
of the (CP )measurement lines

Figure 7.16: CWE simulation domain for flow around a Highrise
building: the domain is colored by instantaneous stream-wise

velocity and the structures is colored by (CP )
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Figure 7.17 shows the (CP )measured at the center-line of the windward
side of the building. It can be observed that the numerical simulation
under-estimates (CP ) on the building’s top region, 120 < H < 200. On
the other hand, (CP ) is over-estimated closer to the building’s bottom,
where strong turbulence occurs in the near-wall region. Also, the estimated
numerical uncertainty is too conservative at some of the regions where
flow vortices are formed5. Having a declining (CP ) as the building’s bottom
is approached can be explained through the formation of the horseshoe
vortex (Ricci et al. [155] and Randerson [165]).

Figure 7.17: Mean pressure coefficients (CP )measured along S1
line at the windward building side. Left figure shows the estimated
statistical uncertainty for grid h1. Right figure shows the predicted
discretization uncertainty for grid h1 and the results are compared

to experimental data.

Having higher pressures at the building’s top and bottom, near the ground,
is caused by the vertical component of the velocity gradient that charac-
terizes the approaching boundary layer (Ricci et al. [155]). Ricci et al. [155]
states that “This pressure gradient drives the flow downwards close to the
windward surface of the high-rise building and, as it approaches the ground

5 Further discussion on having too conservative numerical uncertainty can be found
in Section 8.1.2
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surface, deviates the flow upwind. This is considered the mechanism re-
sponsible for the instability of the incoming boundary layer (Randerson
[165]), which also controls the position of the horseshoe vortex core.”

Furthermore, Figure 7.18 shows the pressure distribution along the center-
line at the leeward side of the building. The (CP ) is in a very good agreement
with the experimental values. Meanwhile, the numerical uncertainty is
reasonably estimated and bounds the experimental data. Only towards the
bottom of the building, near the ground, the numerical error estimation is
too conservative. In Figure 7.17 and Figure 7.18, the statistical uncertainty
is negligible, because the simulation runs for a sufficient period of time.

Figure 7.18: Mean pressure coefficients (CP )measured along S1
line at the leeward building side.

Figure 7.19 shows the (CP )measured at the mid-height along the four sides
of the high-rise building. The performance of the LSRMONTE technique in
estimating the numerical error is outstanding. Also, it is a bit conservative
near the edges where flow detachment occur6. Moreover, the statistical
uncertainty is negligible, and the numerical results are in alignment with
the experimental data.

6 Further discussion on having too conservative numerical uncertainty can be found
in Section 8.1.2
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Figure 7.19: Mean pressure coefficients (CP )measured along S2
line. Left figure shows the estimated statistical uncertainty for grid
h1. Right figure shows the predicted discretization uncertainty for

grid h1 and the results are compared to experimental data.

Figure 7.20 and Figure 7.21 show the (CP ) over the center-line on the lateral
sides of the building. It is very interesting to observe that the numerical
error estimation reflects the flow complexity. It can be seen that the esti-
mated numerical error is too conservative at a number of points, especially
those located near the building’s top7. This path, in particular, is located
in a very challenging zone for numerical simulation. Flow separation and
reattachment are expected at different locations along the lateral sides. Fur-
thermore, the highest suction is recorded at the lateral sides of the building.
Both Figure 7.20 and Figure 7.21 show very small statistical uncertainty.

Figure 7.22 and Figure 7.23 compare the numerical (CP ) distribution
on all surfaces of the building to the experimental data. The numerical
CP − v a l ue s are in a good agreement with experimental values. The nu-
merical solution over-estimates (CP ) at some locations on the windward
surface (Figure 7.22). In contrast, the numerical solution under-estimates

7 Further discussion on having too conservative numerical uncertainty can be found
in Section 8.1.2
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Figure 7.20: Mean pressure coefficients (CP )measured along S3
line at the left building side. Left figure shows the estimated

statistical uncertainty for grid h1. Right figure shows the predicted
discretization uncertainty for grid h1 and the results are compared

to experimental data.

the (CP ) at some locations on the leeward surface (Figure 7.22). These lo-
cations are approximately the top and bottom 25% of the building’s height.
Furthermore, the numerical simulation under-estimates the (CP ) at some
locations on both lateral surfaces (Figure 7.23). The lateral surfaces experi-
ence the most complex flow for a numerical simulation.

Moreover, the estimated numerical error is presented in Figure 7.24. The
numerical error is estimated using the LSRMONTE technique. The error
map shows a need for refinement at the top and bottom 25% of the build-
ing’s height. The results shown in Figure 7.24 are for original proposed
LSRMONTE with 99.7% confidence interval (CI) for uncertainty estimation.
The uncertainty estimator can be tuned to be less conservative, using 68.3%
CI, but still representative as shown in Figure 7.25. For a general tuning of
the uncertainty estimator, a large number of simulations is required and it
might be different from one simulation case study to another. Thus, it is
highly recommended to start the evaluation with the original LSRMONTE.
Therefore, it can be safely stated that the LSRMONTE is performing well.
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Figure 7.21: Mean pressure coefficients (CP )measured along S3
line at the right building side. Left figure shows the estimated

statistical uncertainty for grid h1. Right figure shows the predicted
discretization uncertainty for grid h1 and the results are compared

to experimental data.

This conclusion is also supported by the exact error computed with exper-
imental data. The exact error is presented in Figure 7.26. It can be seen
that approx. 92% of the points have en exact error ≤ 20%. In general, the
results show that refining the top and bottom 25% of the building’s height
improves the simulation quality. Also, the current grid size (h1) is adequate
for the objectives of this research.

Finally, the estimation of the numerical uncertainty for all the QOI shows
an acceptable simulation quality. It can be observed on all the figures that
some of the points are having a too conservative numerical uncertainty
because the performance of the LSRMONTE is highly dependent on the
data behavior as discussed in Section 8.1.2.
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Figure 7.22: Mean pressure coefficients (CP ) distribution on the
windward and leeward faces of the high-rise building: Numerical
and Experimental. The y-axis represents the building height (m )

and x-axis represents side distance (m ). The color map shows the
(CP )
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Figure 7.23: Mean pressure coefficients (CP ) distribution on the
right and left faces of the high-rise building: : Numerical and

Experimental. The y-axis represents the building height (m ) and
x-axis represents side distance (m ). The color map shows the (CP )
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Figure 7.24: Estimated numerical uncertainty of the mean
pressure coefficients (CP ) distribution on all faces of the high-rise
building: the color bar indicates the estimated uncertainty using

LSRMONTE with 99.7% CI uncertainty estimator
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Figure 7.25: Estimated numerical uncertainty of the mean
pressure coefficients (CP ) distribution on all faces of the high-rise
building: the color bar indicates the estimated uncertainty using

LSRMONTE with 68.3% CI uncertainty estimator
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Figure 7.26: Error of the mean pressure coefficients (CP )
compared to experimental data on all faces of the high-rise
building: the color bar indicates the calculated error from

experimental results
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8
DISCUSSION, CONCLUSION AND OUTLOOK

8.1 Discussion on the Verification Methodology
Performance

In this section, the performance of the newly proposed verification method-
ology’s different components is discussed after assessing the performance
in Chapter 5, Chapter 6 and Chapter 7.

8.1.1 Code Verification

Code verification is the first building block of the developed methodology.
The developed framework and benchmarks precisely evaluate the abilities
and limits of the CFD simulation code under investigation. The hierarchical
order of the developed benchmarks has been used successfully to detect
bugs and reveal possible improvements of the software, which influence
the order of accuracy.
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8.1.2 Solution Verification

The solution verification procedures are mainly developed to assess the
mapping effects in simulating atmospheric boundary layer (ABL) flows,
quantify the statistical convergence uncertainty, and estimate discretiza-
tion uncertainty.

• Assess mapping effects: the assessment is performed by comput-
ing and monitoring changes of flow parameters such as mean wind
speed, turbulent kinetic energy, and integral length scale at different
stations located along the upstream flow. The monitoring approach
is mainly proposed to assess numerical ABL wind flow on an empty
domain to ensure the mean wind speed’s conformity. Moreover,
Moreover, the integral length scale assessment shows the breakup
in the flow structures near the inlet and the flow development as
it travels in the upstream region. The unrealistic value of the tur-
bulent kinetic energy at the inlet boundary indicates the mapping
effect. Thus, it is imperative to have a sufficient upstream distance
to minimize the artificial effects of mapping and allow for flow rede-
velopment.

• Statistical convergence error: the importance of quantifying the
statistical convergence error with uncertainty evolves from having
unsteady turbulent flow. The biased-corrected accelerated moving
block bootstrap (BCA-MBB) is a powerful tool for computing statis-
tics with uncertainty, which saves the computational power required
to repeat the simulations many times to obtain meaningful statistics.
Moreover, quantifying statistical convergence can help answer the
question: Is the simulation time sufficient for converging statistics?
Is the sampling frequency sufficient? The performance of the BCA-
MBB is not guaranteed when computing extreme value statistics
with uncertainty.

• Discretization error estimation: In this work, the discretization error
estimation consists of both error and uncertainty estimation. Thus,
it is also called discretization uncertainty estimation (LSRMONTE).
LSRMONTE is developed with particular emphasis on dealing with
non-monotonically converging data and defining the error estima-
tor’s uncertainty based on the uncertainty in the parameters defining
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the error term. Figure 8.1 shows a schematic representation of possi-
ble data behavior for discrete solutions with mesh refinement. The
performance of all the available discretization uncertainty estima-
tors is the same for monotonically converging data in Figure 8.1a.
The LSRMONTE showed a less conservative estimate compared to
the state of the art methods, but still reliable especially when having
anomalous data behavior as shown in Figure 8.1b, 8.1c, 8.1e, and
8.1f.
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Figure 8.1: Schematic representation of possible behavior for
computed solutions under mesh refinement. The y-axis represents

the numerical solution (φ). The x-axis represents the log of the
typical grid size (h ). The dashed lines are intended to guide the eye.

The behavior of the LSRMONTE is extremely conservative to be re-
alistic when data behavior is not defined, as shown in Figure 8.1d.
Not-defined data behavior is the main reason for unrealistic estima-
tion using LSRMONTE. A data behavior is not-defined when two
sequentially refined grids produce the same result, which implies
the need for a higher refinement ratio. To study the not-defined data
behavior, let us investigate the mean pressure coefficient (CP ) at
point 258 located along line S2 in the highrise building simulation
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presented in Section 7.5.2. Figure 8.2 right shows the unrealistic
uncertainty estimation, using LSRMONTE, when having a discrete
solution is approximately the same for grids h2 and h1. The unrealis-
tic estimate results from a numerical instability when performing
curve fitting for the flat part of the cure formed by solutions on grids
h2 and h1. To overcome this behavior, a biased version of the LSR-
MONTE is defined where only three data points are used to estimate
the error and the discrete solution of grid h1 is ignored. The newly
defined version is called biased because it ignores part of the data.
Figure 8.2 left shows the performance of the LSRMONTE biased so-
lution. In the biased solution, the performance of the LSRMONTE
has an outstanding improvement.
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Figure 8.2: Discretization uncertainty estimation, LSRMONTE,
for Mean pressure coefficient (CP ) point 258 located along line S2
in the highrise building simulation presented in Section 7.5.2 for

four sequentially refined grids

To study the performance of the LSRMONTE over the state of the art
procedure (LSR1), see Section 2.2.1.5, the interquartile range (IQR)
for the error is calculated for the 500 pressure tabs located on the
highrise building simulated in Chapter 7. Figure 8.3 shows the IQR
box plot. It can be seen that the median of the error using LSR1 is the
highest. Also, the dispersion of the data is very high, which implies the
high conservativeness of the estimator, knowing that most of the data
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are non-monotonically converging. Moreover, LSRMONTE_BIASED
is providing better results than LSRMONTE because the data with
unrealistic uncertainty is treated. It can be seen that LSRMONTE
has a much better median and very low dispersion compared to
LSR1, and LSRMONTE_BIASED has a bit better median and lower
dispersion than LSRMONTE.
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Figure 8.3: Interquartile range (IQR) box plot for the error
calculated at 500 pressure tabs located on the highrise building

simulated in Chapter 7

Overall, it can be concluded that the LSRMONTE has an outstand-
ing performance with the limitation of dealing with data having an
undefined convergence.
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8.2 Conclusions

In this thesis, an integrated, flexible, and modular framework was devel-
oped for quality assessment of Computational Wind Engineering (CWE)
simulations. The new development was applied to a finite element-based
fluid solver with an emphasis on eddy-resolving models. The particular
application was the simulation of Atmospheric Boundary Layer (ABL) flow
around a high-rise building. In this context, the assessment of the numeri-
cal results from simulating natural wind flow using eddy-resolving models
was the main methodical focus.

The developed framework consists of two main steps: code verification
and solution verification. After selecting the computational models to
be used, code verification was performed to ensure the correctness of
the code implementation. Moreover, the application of interest was to
be simulated, and Quantities of Interest (QOI) were to be selected for the
intended application. Solution verification activities were performed on
the QOI on different grid levels to estimate the numerical uncertainty. The
complete framework has been introduced in Chapter 3.

The developed stringent code verification procedure for assessing simu-
lation code with a hierarchical manner was presented in this thesis. The
increasing complexity of the proposed benchmarks, Section 3.2, has been
successfully used to detect code deficiencies, and propose possible im-
provements to the code, which influence the code’s order of convergence
(Chapter 5). The order of accuracy tests using the Method of Manufactured
Solutions (MMS) ensured their ability to form a rigorous and strict tool for
software consistency testing. The developed benchmarks were not meant
to test the code’s physical efficiency but the numerical code implemen-
tation. The development of the test cases is software-independent. The
assessed CWE software Kratos Multi-Physics showed second-order conver-
gence in space and time. Due to the linearization of the W B Z −α(B o s s a k )
time integration scheme implemented in the code, the formal temporal
order of convergence dropped to a lower level than the scheme could theo-
retically achieve. The convergence of the W B Z −α(B o s s a k ) scheme was
conditionally dependent on the selection of the time step size. Theoreti-
cally speaking, the error is decreasing with smaller time step size, which is
not always achieved in the W B Z −α(B o s s a k ) time discretization scheme
implemented in Kratos Multi-Physics. However, it is always right when
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using the B D F 2 time discretization scheme on the same code. There-
fore, it can be safely concluded that the tested functionalities in KRATOS
Multiphysics have a second-order convergence.

The developed solution verification methodology consists of a sequence
of steps that has been introduced in Section 3.3. The error estimation has
two components: statistical uncertainty and numerical uncertainty. The
statistical uncertainty has been introduced in Section 3.3.4. The numerical
uncertainty estimation technique, introduced in Section 3.3.5, puts a great
emphasis on the definition of the parameters involved in the error evalu-
ation using Richardson Extrapolation based on power series expansion.
The development has focused mainly on the definition of the grid size
(Section 3.3.5.1), error estimation for non-monotonically converging data,
and the discretization uncertainty estimation (Section 3.3.5.3). The Least-
Square Root with Monte Carlo Sampling (LSRMONTE) has been introduced
for the discretization error estimation with a special focus on simulations,
not in the asymptotic range and non-monotonically converging data.

The solution verification methodology has been applied to general fluid
flow around a 3-D circular cylinder and 3-D square prism (Chapter 6). The
performance of the solution verification approach was useful in providing
insights into the simulation quality in general. More precisely, mesh qual-
ity was tested, and from the estimated numerical uncertainty, the regions
where mesh improvement is needed were detected. The uncertainty esti-
mator provides unrealistic values at points where improvement is required,
especially when dealing with local quantities or integral quantities that are
highly influenced by flow turbulence. Furthermore, if the simulation runs
for sufficiently enough time, statistical uncertainty should be negligible.
The same conclusions can be drawn from the simulation of the ABL flow
around a high-rise building (Chapter 7).

It was safely concluded that simulation quality must be checked in the CWE
community, even if there remains a great deal of work to be conducted in
this research area. The performance of the newly proposed quality assess-
ment guidelines is outstanding. The performance was checked when the
numerically estimated uncertainty was compared to experimental results.

Finally, there is still a long way to go until simulation quality techniques
are mature enough to be used in daily engineering practice. This thesis
presents the first milestone for a complete reliability assessment method
and overcoming challenges of CWE simulations.
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8.3 Outlook

Based on the performed simulations and analysis of the results in Chapter 6
and Chapter 7, more studies are needed to build confidence in CWE, such
that:

• Input and modeling parameters uncertainties must be quantified to
have a complete framework for verification and validation in CWE.

• It is crucial to study the effect of the integral length scale of the nu-
merically generated wind on the structure response. In most of the
literature, the ABL flow is presented by the mean wind velocity pro-
file and turbulence intensity, which are not sufficient to describe the
natural wind flow.

• Numerical simulation codes must be rigorously tested before usage
in practice, and code limitations must be clearly defined. In other
words, verification and validation activities must be performed re-
peatedly to assure quality.

• Well-studied validation data are needed for CWE simulations.

• Representation of natural wind flows in both physical and numerical
wind tunnel is not accurate. In the physical wind tunnel, there is a
maximum limit for the size of the approaching vortices. In the nu-
merical wind tunnel, small scales of turbulence are not resolved but
modeled. Consequently, a more detailed study is needed to compare
the limitations and advantages of both physical and numerical wind
tunnels.

• The domain size in all directions has a direct effect on the quality of
the results. Thus, detailed instructions are needed for the design of
the domain size. The dimensions of the domain should be related to
the size of the largest vortex (integral length scale).

• The identification of mesh quality is highly dependent on the quan-
tity of interest. For the same grid, solution quality can be very good
for an integral quantity, such as the mean drag force coefficient, and
can be very bad for another quantity, such as the root mean square
for the cross-wind force coefficient.
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• The total sampling time and sampling frequency are crucial in iden-
tifying the statistical convergence and quality of the results.

• The results obtained from the LSRMONTE can be used for the design
of the finer grid with higher quality, where the weaknesses in the
coarse grids are identified.

Finally, more work is required in developing benchmarks for validating
CWE simulations, uncertainty quantification for input and modeling pa-
rameters, and optimization of the domain size. Moreover, real-time mea-
sures for the convergence of the simulation quantities of interest are needed
to save computational time and apply verification methodology for all nu-
merically simulated structures.
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A
CALCULATION OF STATISTICS

The definitions of the statistics for a general variable (x ) time series
�

xn

�N−1

n=0
,

with length N , as presented in this thesis are given below.

A.1 Mean

The mean of the variable is computed as

x =
N−1
∑

n=0

xn

N
. (A.1)

A.2 Standard Deviation

The variable standard deviation is computed as

σx =

√

√

√

N−1
∑

n=0

|x ′n |2

N
. (A.2)
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A Calculation of Statistics

A.3 Root-Mean Square

The RMS of the variable is computed as

x R M S =

√

√

√

N−1
∑

n=0

x 2
n

N
. (A.3)

A.4 Pearson Autocorrelation

The autocorrelation at the time delay τ=m∆t is computed as

ρm
x =

1

σ2
x N

N−1
∑

n=0

x ′n x ′m+n mo d N . (A.4)

A.5 Spectral Density

The discrete Fourier transform of the velocity fluctuation is computed as

x̂ ′m =

p
2T

N

N−1
∑

n=0

x ′n exp

�

−
2πi mn

N

�

, m = 0...N −1. (A.5)

The spectral density at the frequency f =m/T is given by

S m
x = |x̂ ′m |2 (A.6)

and is estimated by dividing the total time series into sub-intervals (usually
8 or 16), computing Equation (A.5) on each sub-interval and averaging the
results (Andre [163]).
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B
CALCULATION OF FLOW PARAMETERS

The definitions of the turbulence parameters for a time series of wind
velocity as presented in this thesis are given below.

B.1 Turbulent Kinetic Energy (TKE)

The TKE for a 3-D velocity field u (x ,y ,z ,t ), having u =u +u ′ is computed as

T K E =
1

2
u ′2. (B.1)

B.2 Turbulent Kinetic Energy Dissipation Rate (TKEDR)

The TKEDR is defined as the gradient of the TKE and is computed as

T K E D R =−
d (T K E )

d (t )
. (B.2)

The gradient is computed using a central difference scheme.
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B Calculation of Flow Parameters

B.3 Integral Time and Length Scales

The integral time scale (T s ) and integral length scale (L s ) are defined for
the longitudinal turbulent wind speed (u ) as

T s =

∫ τz e r o

τ=0

ρ(τ)d (τ), τz e r o is the time lag (τ) for ρ(τ) = 0 (B.3)

The autocorrelation (ρ(τ)) can be evaluated as shown in Section A.4. Then,
the integral length scale is computed as

L s = u .T s . (B.4)

B.4 Courant–Friedrichs–Lewy Number (CFL)

The C F L is computed from the cell size d x and time step size∆t as

C F L =
d x

∆t
(B.5)

B.5 Estimation of y +

The y + can be estimated using the density ρ, absolute viscosity µ, cell size
near wall (wall distance) d x and friction velocity u∗ as Y plus wall distance
estimation [166]:

y + =
d x ρ u∗
µ

(B.6)

the u∗ is evaluated as

u∗ =
√

√τw

ρ
(B.7)

where τw is the wall shear stress computed as

τw =C f
1

2
ρU 2

∞ (B.8)
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B.5 Estimation of y +

where U∞ is the free-stream velocity and C f is the skin friction and is
computed using the Schlichting skin-friction correlation, which is valid
for R e < 109 as

C f = [2l o g10(R e )−0.65]−2.3 (B.9)

and R e is calculated as

R e =
ρU∞ Lb

µ
(B.10)

where Lb is a characteristic length for the boundary.
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C
COMPLETE VERIFICATION METHODOLOGY

Specify the Application of Interest

ABL wind load assessment on structures using CWE simulations. For-
mulate the flow problem: by defining

• the objective of the computation

• the structure geometry

• the characteristics of the approaching wind

• the dimensionality of the model

• the state of the flow (steady or unsteady)

• the domain size

• the flow regime (laminar or turbulent)
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C Complete Verification Methodology

Define Simulation Prerequisites

Simulation software selection and identification of the:

• Numerical method (problem formulation)

• Spatial discretization scheme

• Temporal discretization scheme

• Theoretical order of convergence in space and time

• Available boundary conditions

• Solution strategies for linear equation system

Check Correctness of Code Implementation

At this stage code verification activities, which are introduced in Sec-
tion 3.2 and applied in Chapter 5, are performed as:

1. Having either exact or manufactured solutions (φ), use symbolic
math programming to compute source terms ŝ mo m

f and ŝ ma s s
f as:

ŝ mo m
f =

∂ û

∂ t
︸︷︷︸

Inertia

+∇ . (û û )
︸ ︷︷ ︸

Convection

−∇ . (2νD̂ )
︸ ︷︷ ︸

Viscous

+ ∇P̂ r
︸︷︷︸

Pressure

(C.1)

ŝ ma s s
f =∇ . û (C.2)

2. Define boundary conditionsφγ = φ̂γ =φ(x=x γ,t ) and initial condi-
tionφ(x ,t=0) = φ̂(x ,t=0)

3. Here the Taylor-Green Vortex (TGV) is the base benchmark, be-
cause ŝ mo m

f = 0 and ŝ ma s s
f = 0 and can be used to test black-box

codes. The TGV is defined as

ûx = e −2νt sin(x )cos(y ) (C.3)
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C Complete Verification Methodology

û y =−e −2νt cos(x )sin(y ) (C.4)

P̂ r =
ρ

4
e −4νt (cos(2x ) + sin(2y )) (C.5)

where ν= 0.2 and ρ = 1.0

4. Define domain size, spatial and temporal resolution, and simula-
tion time

5. Generate computational grid such as structured mesh, unidirec-
tional structured mesh, alternate diagonal structured mesh and
unstructured mesh

6. Define sampling points in space and sampling intervals in time to
be consistence in error calculation

7. Perform the simulation

8. Evaluate the error for N sampling points using E2 and Ei norms as

E2 = ||φ−φ||2 =

√

√

√ 1

N

N
∑

n=1

(φn − φ̂n )2 (C.6)

Ei =ma x |φn − φ̂n |, n ∈ [1, N ] (C.7)

9. Repeat simulation with systematic refinement for the following
cases:

• Refine in space using very small time step

• Refine in time using very fine grid size

• Refine in space and time simultaneously

The following conditions must be followed:
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C Complete Verification Methodology

• The refinement ratio either in space or in time must be equal
to the theoretical order of convergence

• Simulation should be repeated for at least four sequential
refinement steps to rigorously investigate the convergence
trend

10. Calculate the observed order of convergence as

p =
log

�

E (hc o a r s e )
E (h f i ne )

�

log (r )
(C.8)

11. If the observed matches the theoretical order of convergence for
all the refinement cases shown in step 9, it can be safely said that
the code under investigation is verified. Otherwise, more tests are
required to debug for coding mistakes

12. These benchmarks are developed for rigorous code testing and
it is only replacing the TGV exact solution defined in step 3. The
benchmarks are manufactured solutions in which ŝ mo m

f 6= 0 and
ŝ ma s s

f = 0. All the previous steps are repeated for the following
benchmarks:

a) IN: the field terms are defined as

ûx = sin(t ) (C.9)

û y =−sin(t ) (C.10)

P̂ r = sin(t ) (C.11)

where ν= 0.1 and ρ = 1.0

b) PRES: the field terms are defined as

ûx = e −2νt sin(x )cos(y ) (C.12)

û y =−e −2νt cos(x )sin(y ) (C.13)

226



C Complete Verification Methodology

P̂ r =ρe −4νt (cos(2x ) + sin(2y )) (C.14)

where ν= 0.1 and ρ = 1.0

c) CON: the field terms are defined as

ûx = e −2νt sin(x )cos(y ) (C.15)

û y =−e −2νt cos(x )sin(y ) (C.16)

P̂ r =
ρ

40
e −4νt (cos(2x ) + sin(2y )) (C.17)

where ν= 0.05 and ρ = 1.5

d) VIS: the field terms are defined as

ûx = e −2νt sin(x )cos(y ) (C.18)

û y =−e −2νt cos(x )sin(y ) (C.19)

P̂ r =
ρ

4
e −4νt (cos(2x ) + sin(2y )) (C.20)

where ν= 0.5 and ρ = 0.3

13. For any of the benchmarks: if p = pf → stop code is verified for
this benchmark, else

• check if the benchmark is correctly implemented

• if the benchmark is correctly implemented, find code bugs
and rerun the simulation, then continue with other bench-
marks introduced in step 12

• if not implemented correctly, detect and correct benchmark
implementation, then repeat testing (steps 4 - 11)

14. Document results

Design and Execution of Numerical Simulations
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C Complete Verification Methodology

Condition: the software must successfully pass the code verification
benchmarks to be eligible for simulating the problem under investiga-
tion.

• Model the geometry and flow domain

• Establish the boundary and initial conditions

• Generate the grid

• Establish the simulation strategy

• Establish (output) sampling for the quantities of interest

• Perform the simulation for at least four sequentially refined grids
in space and time simultaneously.

Solution Verification to Quantify Numerical Error

The theoretical background is introduced in Section 3.3 and applied in
Chapter 6 and Chapter 7.

• Model the geometry and flow domain

• Establish the boundary and initial conditions

• Generate the grid

• Establish the simulation strategy

• Establish (output) sampling for the quantities of interest

• Perform the simulation for at least four sequentially refined grids
in space and time simultaneously.

• Quantify numerical errors:

1. Input:

a) quantities of interestΦi and typical grid size hi , where
i ∈ {1,2, ..., N } and N is the number of the sequentially
coarsened grid (i = 1 denotes the finest grid and i =N
denotes the coarsest grid)
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C Complete Verification Methodology

b) Φi is a time series

2. Assumptions:

a) Iterative and convergence errors are kept minimum to
be ignored

b) N ≥ 4

3. Evaluation of statistics with uncertainty
The theoretical background is introduced in Section 3.3.4.

– Compute statistics according to equations in appendices
A and B

– For anyΦi , use the BCA-MBB Non-parametric bootstrap-
ping to compute statistics with uncertainty:
The BCA-MBB non-parametric bootstrap is presented
in Efron et al. [167] as

a) Let’s call Φi time series x. The non-parametric in-
ference begins with an observed data set

x= (x1, x2, ..., xn ), (C.21)

where the xi are independent and identically dis-
tributed (iid) observations from an unknown proba-
bility distribution F on a space χ ,

xi
i nd∼ F, i = 1, 2, ..., n . (C.22)

The space χ can be anything with no parametric
form assumed for F

b) A real-valued statistic θ̂ has been computed by ap-
plying some estimating algorithm t (·) to x,

θ̂ = t (x); (C.23)

and the objective is to assign a confidence interval
to θ̂

c) A non-parametric bootstrap sample x∗,

x∗ = (x ∗1 , x ∗2 , ..., x ∗n ) (C.24)

is composed of n random draws, with replacement
using MBB shown in Section 3.3.4.1, from the set of
original data {x1, x2, ..., xn}
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d) Bootstrap replication is produced

θ̂ ∗ = t (x∗), o f θ̂ (C.25)

which produces B such replications

θ̂ ∗i = t (x∗i ), i = 1, 2, ..., B , (C.26)

e) The vector of bootstrap replications, say

t∗ = (θ̂ ∗1 , θ̂ ∗2 , ..., θ̂ ∗B ), (C.27)

is used to provide estimate for Ĝ (the cdf of the boot-
strap distribution of θ̂ ) and ẑ0,

ẑ0 = Φ
−1Ĝ (θ̂ ) (C.28)

where Φ is the standard normal cdf

f) estimate the acceleration a using the jackknife dif-
ferences di ,

â =
1

6

∑n
i=1 d 3

i
�∑n

i=1 d 2
i

�3/2
, di = θ̂(i )− θ̂(·) (C.29)

g) The standard method l e v e l −α endpoint

θ̂s t a nd (α) = θ̂ ± z (α)σ̂ (C.30)

where θ̂ is computed using BCA as

θ̂B C A(α) =G −1Φ

�

z0+
z0+ z (α)

1−a (z0+ z (α))

�

(C.31)

and σ̂ is computed using the empirical standard
deviation of the θ̂ ∗i values,

σ̂=

√

√

√

√

∑B
i=1

�

θ̂ ∗i − θ̂ ∗·
�2

(B −1)
, θ̂ ∗· =

∑

θ̂ ∗i
B

(C.32)
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4. Evaluation of discretization uncertainty

The theoretical background is introduced in Section 3.3.5.

Condition: the statistical uncertainty calculated in step 3
should be small enough to continue with the evaluation of
the discretization uncertainty.

– Having the the statistical value ofΦi calledφi

– Estimate the typical grid size hi using the conventional
definition h a v g

i and using the weighting average defini-
tion h w a v g

i (Section 3.3.5.1) as

h a v g
i =















3
Ç

V o l
#o f c e l l s in 3−D

2
Ç

Ar e a
#o f c e l l s in 2−D
L e ng t h

#o f s e g me n t s in 1−D

(C.33)

and,

h w a v g
i =

nz
∑

i=1

wi hzi
(C.34)

where hzi
is the cell size corresponding to zone zi , nz is

the number of zones and wi is defined as:

wi =
1

hzi
∑nz

i=1
1

hzi

(C.35)

ensuring that

nz
∑

i=1

wi = 1 (C.36)

hi can be any value between h a v g
i and h w a v g

i , it can be

described by a normal distribution with mean (hi =µ=
h a v g

i +h w a v g
i

2 ) and standard deviation (σ=
�

�

�

h a v g
i −h w a v g

i
2

�

�

�).

– The discretization uncertainty procedures are described
in algorithm C.1
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Algorithm C.1: LSRMONTE Algorithm

Input :Vectorφi {i = 1, 2, ..., ng and ng number of grids}
Vector hi called hi here for ease of notations
Vector h a v g

i and h w a v g
i

Output :Vectorφi

Vectorφ0 estimated exact solution
Vector Uφ(φi ) uncertainty for variableφi

Require: define error functions:
1: δ1 =φi −φ0 =αhi

2: δ2 =φi −φ0 =αh 2
i

3: δ12 =φi −φ0 =α1hi +α2h 2
i

4: δpj
=φi −φ0 =αh

pj

i
Require: define least-squares functions:

5: SR E

�

φ0,α, p
�

=
È

∑ng

i=1

�

φi −
�

φ0+αh p
i

�

�2
,

6: S1

�

φ0,α
�

=
È

∑ng

i=1

�

φi −
�

φ0+αhi

�

�2
,

7: S2

�

φ0,α
�

=
È

∑ng

i=1

�

φi −
�

φ0+αh 2
i

�

�2
,

8: S12

�

φ0,α1,α2

�

=
È

∑ng

i=1

�

φi −
�

φ0+α1h 1
i +α2h 2

i

�

�2
,

9: Spj

�

φ0,α
�

=
s

∑ng

i=1

�

φi −
�

φ0+αh
pj

i

�
�2

10:

Require: compute weights for least-squares functions:

11: wi =
1

hi
∑ng

i=1
1

hi

,

Ensure:
∑ng

i=1 wi = 1
Require: define least-squares functions:

12: S w
R E

�

φ0,α, p
�

=
È

∑ng

i=1 wi

�

φi −
�

φ0+αh p
i

�

�2
,

13: S w
1

�

φ0,α
�

=
È

∑ng

i=1 wi

�

φi −
�

φ0+αhi

�

�2
,

14: S w
2

�

φ0,α
�

=
È

∑ng

i=1 wi

�

φi −
�

φ0+αh 2
i

�

�2
,

15: S w
12

�

φ0,α1,α2

�

=
È

∑ng

i=1 wi

�

φi −
�

φ0+α1h 1
i +α2h 2

i

�

�2
,

16: S w
pj

�

φ0,α
�

=
s

∑ng

i=1 wi

�

φi −
�

φ0+αh
pj

i

�
�2
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17: Error Estimation
18: initialize Fs ← 0.0
19: solve SR E and S w

R E for
�

φ0,α, p
�

and get standard deviationσ f i t for
each fit

20: if pSR E
> 0 and/or pS w

R E
> 0 then

21: Monotonic convergence
22: if pSR E

> 0 or pS w
R E
> 0 then

23: keep fit with p > 0 and its respectiveσ f i t

24: else
25: Keep fit with minimumσ f i t

26: end if
27: if 0.5≤ p ≤ 2.0 then
28: εφ←αh p

i
29: σ←σ f i t

30: Fs ← 1.25
31: else if p > 2.0 then
32: solve S1, S2, S w

1 , S w
2

33: ifσS1
< {σS2

∧σS w
1
∧σS w

2
} then

34: εφ←αhi , σ←σS1

35: else ifσS2
< {σS1

∧σS w
1
∧σS w

2
} then

36: εφ←αh 2
i , σ←σS2

37: else ifσS w
1
< {σS1

∧σS2
∧σS w

2
} then

38: εφ←αhi , σ←σS w
1

39: else
40: εφ←αh 2

i , σ←σS w
2

41: end if
42: else
43: solve S1, S2, S w

1 , S w
2 , S12, S w

12 ,
44: ifσS1

< {σS2
∧σS w

1
∧σS w

2
∧σS12

∧σS w
12
} then

45: εφ←αhi , σ←σS1

46: else ifσS2
< {σS1

∧σS w
1
∧σS w

2
∧σS12

∧σS w
12
} then

47: εφ←αh 2
i , σ←σS2

48: else ifσS w
1
< {σS1

∧σS2
∧σS w

2
∧σS12

∧σS w
12
} then

49: εφ←αhi , σ←σS w
1

50: else ifσS w
2
< {σS1

∧σS2
∧σS w

1
∧σS12

∧σS w
12
} then

51: εφ←αh 2
i , σ←σS w

2

52: else ifσS12
< {σS1

∧σS2
∧σS w

1
∧σS w

2
∧σS w

12
} then

53: εφ←α1hi +α2h 2
i , σ←σS12

233



C Complete Verification Methodology

54: else ifσS w
12
< {σS1

∧σS2
∧σS w

1
∧σS w

2
∧σS12

} then
55: εφ←α1hi +α2h 2

i , σ←σS w
12

56: end if
57: end if
58: else if pSR E

< 0∧pS w
R E
< 0 then

59: Anomalous Data Behavior
60: p is not defined
61: p is assumed p ∈ [0.5, 2]
62: p ← 0.5
63: for p ≤ 2 do
64: pj ← p
65: solve Spj

and S w
pj

66: if pj == 0.5∧σSpj
<σS w

pj
then

67: εφ←αh
pj

i , σ←σSpj

68: else if pj == 0.5∧σS w
pj
<σSpj

then

69: εφ←αh
pj

i , σ←σS w
pj

70: else if pj != 0.5∧σ<σSpj
then

71: εφ←αh
pj

i , σ←σSpj

72: else if pj != 0.5∧σ<σS w
pj

then

73: εφ←αh
pj

i , σ←σS w
pj

74: end if
75: p ← p +0.1
76: end for
77: solve S12, S w

12
78: ifσS12

<σ then
79: εφ←α1hi +α2h 2

i , σ←σS12

80: else ifσS w
12
<σ then

81: εφ←α1hi +α2h 2
i , σ←σS w

12

82: end if
83: end if
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84: Uncertainty Estimation Uφ(φi )
Require: calculate data range parameter∆Φ:

85:

∆Φ←
(φi )ma x − (φi )mi n

ng −1
(C.37)

86: if Fs == 0.0 then
87: calculate Fs h as in Equation (3.37)
88: Fs ← 1.25+ Fs h

89: end if
90: ifσ<∆Φ then
91: Uφ(φi )← Fsεφ(φi ) +σ+ |φi −φ f i t | i f σ<∆Φ,
92: else
93: Uφ(φi )← Fs

σ
∆φ (εφ(φi ) +σ+ |φi −φ f i t |) i f σ≥∆Φ.

94: end if
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D
LEAST-SQUARES SOLUTION FOR POWER

SERIES EXPANSIONS

The solution of the least-squares for the power series expansions shown in
Equation (3.22) to Equation (3.29) is presented and this solution is valid for
weighted (wi = n wi = 1.0) and non-weighted (n wi = ng wi ) approaches
(Eça et al. [12]). ng represents the number of grids.

D.1 Single Term Expansion with Three Unknowns

This solution is valid for single term expansions with three unknowns
�

φ0,α, p
�

and id obtained from the minimum of the function:

S w
R E

�

φ0,α, p
�

=

√

√

√

ng
∑

i=1

wi

�

φi −
�

φ0+αh p
i

�

�2
, (D.1)
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D Least-Squares Solution for Power Series Expansions

which is solved by getting:

∂ S w
R E

∂ φ0
= 0,

∂ S w
R E

∂ α
= 0,

∂ S w
R E

∂ p
= 0 (D.2)

This leads to a system of non-linear equations as

φ0 =
ng
∑

i=1

wiφi −α
ng
∑

i=1

wi h p
i , (D.3)

α=

∑ng

i=1 wiφi h p
i −

�

∑ng

i=1 wiφi

��

∑ng

i=1 wi h p
i

�

∑ng

i=1 wiφi h 2p
i −

�

∑ng

i=1 wiφi

��

∑ng

i=1 wi h p
i

� (D.4)

ng
∑

i=1

wiφi h p
i log(hi )−φ0

ng
∑

i=1

wi h p
i log(hi )−α

ng
∑

i=1

wi h 2p
i log(hi ) = 0 (D.5)

which has a standard deviation given by

σS w
R E
=

√

√

√

√

∑ng

i=1 n wi

�

φi −
�

φ0+αh p
i

�

�2

�

ng −3
� (D.6)

D.2 Single Term Expansion with pj −o r d e r Term

The minimum of the function is computed to getφ0 a nd α

S w
pj
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D.3 Two-Term Expansion with First and Second-Order Terms

which is obtained from
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This leads to a system of linear equations
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that has a standard deviation given by
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D.3 Two-Term Expansion with First and Second-Order
Terms

φ0,α1 a nd α2 are obtained from the minimum of the function
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which is solved by

∂ S w
12

∂ φ0
= 0,

∂ S w
12

∂ α1
= 0,

∂ S w
12

∂ α2
= 0 (D.12)

239



D Least-Squares Solution for Power Series Expansions

This leads to a system of linear equations
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that has a standard deviation given by
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SIMULATION DETAILS: FLOW OVER A FLAT

PLATE

The data for the estimation of the discretization uncertainty was obtained
from the workshop on estimation of discretization errors based on grid
refinement studies (Workshop on Estimation of Discretization Errors Based
on Grid Refinement Studies [168]). A typical grid is shown in Figure E.1.

Figure E.1: Grid design for flow over a flat plate at R e = 107 and
R e = 109
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E Simulation Details: Flow Over a Flat Plate

The domain is a rectangle of length 1.5L and width 0.25L , where L is the
plate length. As shown in Figure E.1, the inlet is located 0.25L from the
leading edge of the plate and the outlet is located 0.25L from the trailing
edge of the plate. The mesh densities are shown in Table E.1.

ri Nx Ny Nc e l l s

R e = 107 R e = 109 R e = 107 R e = 109

1.000 1537 193 321 294912 491520

1.231 1249 157 261 194688 324480

1.455 1057 133 221 139392 232320

1.600 961 121 201 115200 192000

2.000 769 97 161 73728 122880

2.462 625 79 131 48672 81120

2.909 529 67 111 34848 58080

3.200 481 61 101 28800 48000

4.000 385 49 81 18432 30720

4.923 313 40 66 12168 20280

5.818 265 34 56 8712 14520

6.400 241 31 51 7200 12000

8.000 193 25 41 4608 7680

Table E.1: Mesh densities for flow over a flat plate

The boundary conditions for stream-wise velocity Vx , vertical velocity
Vy , pressure P , turbulent kinetic energy k , turbulent frequency ω and
undamped eddy-viscosity ν̃1 are defined as shown in Table E.2

1 yc 2 is the distance of the near-wall center to the plate
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E Simulation Details: Flow Over a Flat Plate

Boundary Inlet Outlet Symmetry Top Plate

Vx V∞
∂ Vx
∂ x = 0 ∂ Vx

∂ y = 0 ∂ Vx
∂ y = 0 Vx = 0

Vy Vy = 0
∂ Vy
∂ x = 0 Vy = 0

∂ Vy
∂ y = 0 Vy = 0

P Pi n t e r i o r
∂ P
∂ x = 0 ∂ P

∂ y = 0 P = 0 ∂ P
∂ y = 0

k 1.5x 10−4V 2
∞

∂ k
∂ x = 0 ∂ k

∂ y = 0 ∂ k
∂ y = 0 k = 0

ω 109 k
V∞L

∂ ω
∂ x = 0 ∂ ω

∂ y = 0 ∂ ω
∂ y = 0 ωc 2 =

80V∞L
y 2

c 2

ν̃ 10−9V∞L ∂ ν̃
∂ x = 0 ∂ ν̃

∂ y = 0 ∂ ν̃
∂ y = 0 ν̃= 0

Table E.2: Boundary conditions for flow over a flat plate
simulation
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approaches to estimating turbulent kinetic energy dissipation rate
from low and moderate resolution velocity fluctuation time
series.” In: Atmospheric Measurement Techniques Discussions
(2017), pp. 1–17. DOI: 10.5194/amt-2016-401.

[101] D. Nicolaides, D. R. Honnery, and J. Soria. “Autocorrelation
Functions and the Determination of Integral Length with
Reference to Experimental and Numerical Data.” In: 15th
Australasian Fluid Mechanics Conference 1.December (2004),
pp. 1–4.

[102] L. Eca, G. Vaz, and M. Hoekstra. “Iterative Errors in Unsteady Flow
Simulations : Are they Really Negligible ?” In: NuTTS-2017,
Wageningen, the Netherlands. October. 2017, pp. 1–5.

[103] D. Haughton and J. Haughton. “Bootstrapping.” In: Living
Standards Analytics. New York, NY: Springer New York, 2011,
pp. 221–234. ISBN: 978-1-4614-0384-5. DOI:
10.1007/978-1-4614-0385-2_11.

[104] R. Theunissen, A. Di Sante, M. L. Riethmuller, and R. A. Van Den
Braembussche. “Confidence estimation using dependent circular
block bootstrapping: Application to the statistical analysis of PIV
measurements.” In: Experiments in Fluids 44.4 (2008), pp. 591–596.
DOI: 10.1007/s00348-007-0418-8.

[105] D. N. Politis and H. White. “Automatic Block-Length Selection for
the Dependent Bootstrap.” In: Econometric Reviews 23.1 (2004),
pp. 53–70. DOI: 10.1081/ETC-120028836.

[106] A. Patton, D. N. Politis, and H. White. “Correction to automatic
block-length selection for the dependent bootstrap by D. Politis
and H. White.” In: Econometric Reviews 28.4 (2009), pp. 372–375.
DOI: 10.1080/07474930802459016.

[107] B. Efron and R. J. Tibshirani. An introduction to the bootstrap.
Mono. Stat. Appl. Probab. London: Chapman and Hall, 1993.

268

https://doi.org/10.1007/s10652-016-9504-x
https://doi.org/10.5194/amt-2016-401
https://doi.org/10.1007/978-1-4614-0385-2_11
https://doi.org/10.1007/s00348-007-0418-8
https://doi.org/10.1081/ETC-120028836
https://doi.org/10.1080/07474930802459016


BIBLIOGRAPHY

[108] G. Stephanie. Bootstrap Sample: Definition, Example Kernel
Description. http://http:
//www.statisticshowto.com/bootstrap-sample/.
Accessed: 2018-03-27. 2016.

[109] D. Karlis. An introduction to Bootstrap Methods. 17th Conference
of Greek Statistical Society. Apr. 2004.

[110] C. Shalizi. Lecture notes in The Bootstrap. Feb. 2011.

[111] A. C. Davison and D. V. Hinkley. Bootstrap Methods and their
Application. Cambridge Series in Statistical and Probabilistic
Mathematics. Cambridge University Press, 1997. DOI:
10.1017/CBO9780511802843.

[112] C. Evans. scikits-bootstrap. Version 1.0.0. Jan. 8, 2019.

[113] E. J. Allen. “Application of Richardson Extrapolation to Linear
Functional Equations with Mildly Smooth Solutions.” In:
International Journal of Computer Mathematics 47.3-4 (1993),
pp. 239–250. DOI: 10.1080/00207169308804181.

[114] J. O. Rawlings, S. G. Pantula, and D. a. Dickey. Applied Regression
Analysis: A Research Tool. 1998, p. 671. ISBN: 0387984542. DOI:
10.1007/b98890.

[115] T. Phillips and C. J. Roy. Global Deviation Uncertainty Estimator
Applied to the 2017 Workshop on Estimation of Discretization
Errors. Las Vegas, Nevada, 2017.

[116] R. Codina and J. Blasco. “Stabilized finite element method for the
transient Navier–Stokes equations based on a pressure gradient
projection.” In: Computer Methods in Applied Mechanics and . . .
182 (2000), pp. 277–300. DOI:
10.1016/S0045-7825(99)00194-2.

[117] R. Codina, J. Principe, and M. Ávila. “Finite element approximation
of turbulent thermally coupled incompressible flows with
numerical sub-grid scale modelling.” In: International Journal of
Numerical Methods for Heat and Fluid Flow 20 (2010), pp. 492–516.
DOI: 10.1108/09615531011048213.

269

http://http://www.statisticshowto.com/bootstrap-sample/
http://http://www.statisticshowto.com/bootstrap-sample/
https://doi.org/10.1017/CBO9780511802843
https://doi.org/10.1080/00207169308804181
https://doi.org/10.1007/b98890
https://doi.org/10.1016/S0045-7825(99)00194-2
https://doi.org/10.1108/09615531011048213


BIBLIOGRAPHY

[118] R. Codina. “Stabilized finite element approximation of transient
incompressible flows using orthogonal subscales.” In: Computer
Methods in Applied Mechanics and Engineering 191.39-40 (2002),
pp. 4295–4321. DOI: 10.1016/S0045-7825(02)00337-7.

[119] R. Codina. “Pressure Stability in Fractional Step Finite Element
Methods for Incompressible Flows.” In: Journal of Computational
Physics 170.1 (2001), pp. 112–140. DOI:
10.1006/jcph.2001.6725.

[120] R. Codina. “A Stabilized Finite Element Method for Generalized
Stationary Incompressible Flows.” In: Computer Methods in
Applied Mechanics and Engineering 190.20-21 (2001),
pp. 2681–2706. DOI: 10.1016/S0045-7825(00)00260-7.

[121] R. Codina and S. Badia. “On some pressure segregation methods of
fractional-step type for the finite element approximation of
incompressible flow problems.” In: Computer Methods in Applied
Mechanics and Engineering 195.23-24 (2006), pp. 2900–2918. DOI:
10.1016/j.cma.2004.06.048.

[122] I. Hanzlicek. “Staggered Algorithms for Fluid-Structure Interaction
Staggered Algorithms for Fluid-Structure Interaction.” Master
Thesis. Technical University of Munich, 2015, p. 71.

[123] T. J. Hughes. “Multiscale phenomena: Green’s functions, the
Dirichlet-to-Neumann formulation, subgrid scale models, bubbles
and the origins of stabilized methods.” In: Computer Methods in
Applied Mechanics and Engineering 127.1-4 (1995), pp. 387–401.
DOI: 10.1016/0045-7825(95)00844-9.

[124] T. J. Hughes, G. R. Feijóo, L. Mazzei, and J.-B. Quincy. “The
variational multiscale method—a paradigm for computational
mechanics.” In: Computer Methods in Applied Mechanics and
Engineering 166.1-2 (1998), pp. 3–24. DOI:
10.1016/S0045-7825(98)00079-6.

[125] W. L. Wood, M. Bossak, and O. C. Zienkiewicz. “An alpha
modification of Newmark’s method.” In: International Journal for
Numerical Methods in Engineering 15.10 (Oct. 1980),
pp. 1562–1566. DOI: 10.1002/nme.1620151011.

270

https://doi.org/10.1016/S0045-7825(02)00337-7
https://doi.org/10.1006/jcph.2001.6725
https://doi.org/10.1016/S0045-7825(00)00260-7
https://doi.org/10.1016/j.cma.2004.06.048
https://doi.org/10.1016/0045-7825(95)00844-9
https://doi.org/10.1016/S0045-7825(98)00079-6
https://doi.org/10.1002/nme.1620151011


BIBLIOGRAPHY

[126] M. Arnold and O. Brüls. “Convergence of the generalized-α
scheme for constrained mechanical systems.” In: Multibody
System Dynamics 18.2 (2007), pp. 185–202. DOI:
10.1007/s11044-007-9084-0.

[127] D. Fauconnier, C. Bogey, and E. Dick. “On the performance of
relaxation filtering for large-eddy simulation.” In: Journal of
Turbulence 14.1 (2013), pp. 22–49. DOI:
10.1080/14685248.2012.740567.

[128] W. M. van Rees, A. Leonard, D. I. Pullin, and P. Koumoutsakos. “A
comparison of vortex and pseudo-spectral methods for the
simulation of periodic vortical flows at high Reynolds numbers.”
In: Journal of Computational Physics 230.8 (2011), pp. 2794–2805.
DOI: 10.1016/j.jcp.2010.11.031.

[129] M. E. Brachet, D. Meiron, S. Orszag, B. Nickel, R. Morf, and
U. Frisch. “The Taylor-Green vortex and fully developed
turbulence.” In: Journal of Statistical Physics 34.5-6 (1984),
pp. 1049–1063. DOI: 10.1007/BF01009458.

[130] S. Bhatt and M. Student. “Solution of the Taylor-Green Vortex
Problem Using Artificial Compressibility Method in Generalized
Curvilinear Co-ordinates.” In: ().

[131] D. Fauconnier, C. De Langhe, and E. Dick. “Construction of
explicit and implicit dynamic finite difference schemes and
application to the large-eddy simulation of the Taylor-Green
vortex.” In: Journal of Computational Physics 228.21 (2009),
pp. 8053–8084. DOI: 10.1016/j.jcp.2009.07.028.

[132] A. Mastellone, F. Capuano, S. Benedetto, and L. Cutrone. “Problem
C3 . 5 Direct Numerical Simulation of the Taylor-Green Vortex at
Re = 1600.” In: TILDA Tests 0 (2015), pp. 1–5.

[133] J. R. Bull and A. Jameson. “Simulation of the Taylor–Green Vortex
Using High-Order Flux Reconstruction Schemes.” In: AIAA Journal
53.9 (2015), pp. 2750–2761. DOI: 10.2514/1.J053766.

[134] C. Bajer. “Time integration methods - still questions.” In:
Theoretical Foundations of Civil Engineering 10 (Jan. 2002),
pp. 45–54.

271

https://doi.org/10.1007/s11044-007-9084-0
https://doi.org/10.1080/14685248.2012.740567
https://doi.org/10.1016/j.jcp.2010.11.031
https://doi.org/10.1007/BF01009458
https://doi.org/10.1016/j.jcp.2009.07.028
https://doi.org/10.2514/1.J053766


BIBLIOGRAPHY

[135] P. Beaudan and P. Moin. “Numerical experiments on the flow past
a circular cylinder at sub-critical Reynolds number.” In: Stanford
University Report No. TF-62 (1994), pp. 1–262.

[136] A. G. Kravchenko and P. Moin. “Numerical studies of flow over a
circular cylinder at ReD=3900.” In: Physics of Fluids 12.2 (2000),
pp. 403–417. DOI: 10.1063/1.870318.

[137] P. Parnaudeau, J. Carlier, D. Heitz, and E. Lamballais.
“Experimental and numerical studies of the flow over a circular
cylinder at Reynolds number 3900.” In: Physics of Fluids 20.8
(2008), pp. 1–14. DOI: 10.1063/1.2957018.

[138] J. Franke. “Large eddy simulation of the flow past a circular
cylinder at ReD=3900.” In: Journal of Wind Engineering and
Industrial Aerodynamics 90 (2002), pp. 1191–1206. DOI:
10.1016/S0167-6105(02)00232-5.

[139] H. Ouvrard, B. Koobus, A. Dervieux, and M. V. Salvetti. “Classical
and variational multiscale LES of the flow around a circular
cylinder on unstructured grids.” In: Computers and Fluids 39.7
(2010), pp. 1083–1094. DOI:
10.1016/j.compfluid.2010.01.017.

[140] S. Wornom, H. Ouvrard, M. V. Salvetti, B. Koobus, and A. Dervieux.
“Variational multiscale large-eddy simulations of the flow past a
circular cylinder: Reynolds number effects.” In: Computers and
Fluids 47.1 (2011), pp. 44–50. DOI:
10.1016/j.compfluid.2011.02.011.

[141] L. Bruno, D. Fransos, N. Coste, and A. Bosco. “3D flow around a
rectangular cylinder: A computational study.” In: Journal of Wind
Engineering and Industrial Aerodynamics 98.6-7 (2010),
pp. 263–276. DOI: 10.1016/j.jweia.2009.10.005.

[142] K. Lam and L. Zou. “Experimental study and large eddy simulation
for the turbulent flow around four cylinders in an in-line square
configuration.” In: International Journal of Heat and Fluid Flow
30.2 (2009), pp. 276–285. DOI:
10.1016/j.ijheatfluidflow.2009.01.005.

272

https://doi.org/10.1063/1.870318
https://doi.org/10.1063/1.2957018
https://doi.org/10.1016/S0167-6105(02)00232-5
https://doi.org/10.1016/j.compfluid.2010.01.017
https://doi.org/10.1016/j.compfluid.2011.02.011
https://doi.org/10.1016/j.jweia.2009.10.005
https://doi.org/10.1016/j.ijheatfluidflow.2009.01.005


BIBLIOGRAPHY

[143] V. D’Alessandro, S. Montelpare, and R. Ricci. “Detached-Eddy
simulations of the flow over a cylinder at Re = 3900 using
OpenFOAM.” In: Computers & Fluids June (2016). DOI:
10.1016/S0168-0102(03)00212-8.

[144] T. Kawata, Y. Naka, and S. Obi. “Simultaneous measurement of
fluctuating velocity and pressure in the near wake of a circular
cylinder.” In: Experiments in Fluids 55.5 (2014). DOI:
10.1007/s00348-014-1731-7.

[145] F. Pereira, G. Vaz, and L. Eca. “An assessment of Scale-Resolving
Simulation models for the flow around a circular cylinder.” In:
Turbulence, Mass and Heat Transfer 8, Sarajevo, Bosnia 2013 (2015),
pp. 1–17. DOI: 10.13140/RG.2.1.2758.4489.

[146] C. Norberg. “Fluctuating lift on a circular cylinder: Review and new
measurements.” In: Journal of Fluids and Structures 17.1 (2003),
pp. 57–96. DOI: 10.1016/S0889-9746(02)00099-3.

[147] P. W. Bearman and E. D. Obasaju. “An experimental study of
pressure fluctuations on fixed and oscillating square-section
cylinders.” In: Journal of Fluid Mechanics 119 (June 1982),
pp. 297–321. DOI: 10.1017/S0022112082001360.

[148] D. A. Lyn, S. Einav, W. Rodi, and J.-H. Park. “A laser-Doppler
velocimetry study of ensemble-averaged characteristics of the
turbulent near wake of a square cylinder.” In: Journal of Fluid
Mechanics 304 (1995), pp. 285–319. DOI:
10.1017/S0022112095004435.

[149] S. Nanda. “Flow past a square-prism : A numerical study.” Master
Thesis. Technical University of Delft, 2016.

[150] A. K. Saha, K. Muralidhar, and G. Biswas. “Experimental study of
flow past a square cylinder at high Reynolds numbers.” In:
Experiments in Fluids 29.6 (Dec. 2000), pp. 553–563. DOI:
10.1007/s003480000123.

[151] T. Khademinezhad, P. Talebizadeh, and H. Rahimzadeh.
“Numerical Study of Unsteady Flow around a Square Cylinder in
Compare with Circular Cylinder.” In: Dvm ().

273

https://doi.org/10.1016/S0168-0102(03)00212-8
https://doi.org/10.1007/s00348-014-1731-7
https://doi.org/10.13140/RG.2.1.2758.4489
https://doi.org/10.1016/S0889-9746(02)00099-3
https://doi.org/10.1017/S0022112082001360
https://doi.org/10.1017/S0022112095004435
https://doi.org/10.1007/s003480000123


BIBLIOGRAPHY

[152] S. Dutta, P. K. Panigrahi, and K. Muralidhar. “Experimental
Investigation of Flow Past a Square Cylinder at an Angle of
Incidence.” In: Journal of Engineering Mechanics 134 (2008),
pp. 788–803. DOI:
10.1061/(ASCE)0733-9399(2008)134:9(788).

[153] T. Arslan, G. K. El Khoury, B. Pettersen, and H. I. Andersson.
“Simulations of flow around a three-dimensional square cylinder
using LES and DNS.” In: The Seventh International Colloquium on
Bluff Body Aerodynamics and Applications Ldv (2012), pp. 909–918.

[154] B. Gera, P. K. Sharma, and R. K. Singh. “CFD analysis of 2D
unsteady flow around a square cylinder.” In: Int. J. Appl. Eng. Res.
1.3 (2010), pp. 602–610.

[155] M. Ricci, L. Patruno, I. Kalkman, S. de Miranda, and B. Blocken.
“Towards LES as a design tool: Wind loads assessment on a
high-rise building.” In: Journal of Wind Engineering and Industrial
Aerodynamics 180 (2018), pp. 1–18. DOI:
https://doi.org/10.1016/j.jweia.2018.07.009.

[156] M. Péntek, A. Winterstein, M. Vogl, P. Kupás, K.-U. Bletzinger, and
R. Wüchner. “A multiply-partitioned methodology for
fully-coupled computational wind-structure interaction
simulation considering the inclusion of arbitrary added mass
dampers.” In: Journal of Wind Engineering and Industrial
Aerodynamics 177 (2018), pp. 117–135. DOI:
https://doi.org/10.1016/j.jweia.2018.03.010.

[157] M. S. Thordal, J. C. Bennetsen, and H. H. H. Koss. “Review for
practical application of CFD for the determination of wind load on
high-rise buildings.” In: Journal of Wind Engineering and
Industrial Aerodynamics 186 (2019), pp. 155–168. DOI:
https://doi.org/10.1016/j.jweia.2018.12.019.

[158] Tokyo Polytechnic University Aerodynamic Database.
http://wind.arch.t-
kougei.ac.jp/system/eng/contents/code/tpu. Accessed:
2018-10-30.

274

https://doi.org/10.1061/(ASCE)0733-9399(2008)134:9(788)
https://doi.org/https://doi.org/10.1016/j.jweia.2018.07.009
https://doi.org/https://doi.org/10.1016/j.jweia.2018.03.010
https://doi.org/https://doi.org/10.1016/j.jweia.2018.12.019
http://wind.arch.t-kougei.ac.jp/system/eng/contents/code/tpu
http://wind.arch.t-kougei.ac.jp/system/eng/contents/code/tpu


BIBLIOGRAPHY

[159] AIJ. “Wind Loads.” In: AIJ Recommendations for Loads on
Buildings. Ed. by Architectural Institute of Japan. 4th. Editi. Tokyo:
Architectural Institute of Japan, 2005. Chap. CHAPTER 6, pp. C6–1 –
C6–81. ISBN: 978-4-8189-5003-0.

[160] Y. Tamura, T. Ohkuma, H. Kawai, Y. Uematsu, and K. Kondo.
“Revision of AIJ Recommendations for Wind Loads on Buildings.”
In: May 2004, pp. 1–10. ISBN: 978-0-7844-0700-4. DOI:
10.1061/40700(2004)60.

[161] J. Mann. “Wind field simulation.” In: Probabilistic Engineering
Mechanics 13.4 (1998), pp. 269–282.

[162] H. Alsofi. “CWE Simulation of Dynamic Wind Loading on
Wide-Span Membrane Structures.” Master Thesis. Technische
Universität München, 2013.

[163] M. S. Andre. “Aeroelastic Modeling and Simulation for The
Assessment of Wind Effects on a Parabolic Trough Solar Collector.”
Doctoral. Technical University of Munich, May 2018, p. 171. ISBN:
978-3-943683-50-9.

[164] Y. Tominaga, A. Mochida, S. Murakami, and S. Sawaki.
“Comparison of various revised k–εmodels and LES applied to
flow around a high-rise building model with 1:1:2 shape placed
within the surface boundary layer.” In: Journal of Wind
Engineering and Industrial Aerodynamics 96.4 (Apr. 2008),
pp. 389–411. DOI: 10.1016/j.jweia.2008.01.004.

[165] D. Randerson. “Atmospheric science and power production.” In:
(July 1984). DOI: 10.2172/6503687.

[166] Y plus wall distance estimation. https://www.cfd-
online.com/Wiki/Y_plus_wall_distance_estimation.
Accessed: 2020-02-21.

[167] B. Efron and B. Narasimhan. “The automatic construction of
bootstrap confidence intervals.” In: Journal of Computational and
Graphical Statistics 0.ja (2020), pp. 1–32. DOI:
10.1080/10618600.2020.1714633. eprint:
https://doi.org/10.1080/10618600.2020.1714633.

275

https://doi.org/10.1061/40700(2004)60
https://doi.org/10.1016/j.jweia.2008.01.004
https://doi.org/10.2172/6503687
https://www.cfd-online.com/Wiki/Y_plus_wall_distance_estimation
https://www.cfd-online.com/Wiki/Y_plus_wall_distance_estimation
https://doi.org/10.1080/10618600.2020.1714633
https://doi.org/10.1080/10618600.2020.1714633


BIBLIOGRAPHY

[168] Workshop on Estimation of Discretization Errors Based on Grid
Refinement Studies.
http://web.tecnico.ulisboa.pt/ist12278/
Discretization/Workshop_discretization_2017.htm.
Accessed: 2018-07-30.

[169] H. R. Kunsch. “The Jackknife and the Bootstrap for General
Stationary Observations.” In: The Annals of Statistics 17.3 (1989),
pp. 1217–1241.

[170] C. Rogers, W. L. Oberkampf, J. S. Kaizer, and R. Crane. Its Too
Complex to Validate ! Minneapolis, 2018.

[171] I. B. Celik and D. R. Parsons. “Prediction of discretization error
using the error transport equation.” In: Journal of Computational
Physics 339.304 (2017), pp. 96–125. DOI:
10.1016/j.jcp.2017.02.058.

[172] B. J. Geurts and J. Fröhlich. “A framework for predicting accuracy
limitations in large-eddy simulation.” In: Physics of Fluids 14.6
(2002). DOI: 10.1063/1.1480830.

[173] F. Jörg, H. Antti, S. Heinke, and C. Bertrand. BEST PRACTICE
GUIDELINE FOR THE CFD SIMULATION OF FLOWS IN THE
URBAN ENVIRONMENT QUALITY ASSURANCE AND
IMPROVEMENT OF. May. 2007, pp. 1–52. ISBN: 3000183124.

[174] G. Bitsuamlak and E. Simiu. “CFD’s potential applications : a wind
engineering perspective.” In: 2008 (2010).

[175] F. Stern, R. Wilson, and J. Shao. “Quantitative V & V of CFD
simulations and certiÿcation of CFD codes.” In: International
Journal for Numerical methods in Fluids 50.August 2005 (2006),
pp. 1335–1355. DOI: 10.1002/fld.1090.

[176] L. Eça and M. Hoekstra. “Code Verification of unsteady flow
solvers with method of manufactured solutions.” In: International
Journal of Offshore and Polar Engineering 18.2 (2008), pp. 120–126.
DOI: 10.1115/1.1412235.

[177] D. Pelletier. “Verification, validation, and uncertainty in
computational fluids dynamics.” In: Canadian Journal of Civil
Engineering 37.7 (2010), pp. 1003–1013. DOI: 10.1139/L10-032.

276

http://web.tecnico.ulisboa.pt/ist12278/Discretization/Workshop_discretization_2017.htm
http://web.tecnico.ulisboa.pt/ist12278/Discretization/Workshop_discretization_2017.htm
https://doi.org/10.1016/j.jcp.2017.02.058
https://doi.org/10.1063/1.1480830
https://doi.org/10.1002/fld.1090
https://doi.org/10.1115/1.1412235
https://doi.org/10.1139/L10-032


BIBLIOGRAPHY

[178] L. Eca, M. Hoekstra, P. J. Roache, and H. Coleman. “Code
verification, solution verification and validation: an overview of
the 3rd Lisbon workshop.” In: 19th AIAA Computational Fluid
Dynamics June (2009), AIAA 2009–3647. DOI:
10.2514/6.2009-3647.

277

https://doi.org/10.2514/6.2009-3647

	List of Symbols
	Contents
	Introduction
	Motivation
	Verification of Computer Codes
	Research Need in CWE Simulations
	Input Error
	Modeling Error
	Numerical Error

	Research Objectives
	Thesis Outline

	Verification: Literature Review
	Code Verification
	The Method of Exact Solutions (MES)
	The Method of Manufactured Solutions (MMS)
	General Procedures of the MMS
	Requirements of a Good Manufactured Solution
	Initial and Boundary Conditions
	Code Verification Assessment for Steady and Unsteady Simulations
	Strengths and Limitations of the MMS


	Solution Verification
	Solution Verification: Available Approaches
	Rules of thumb for plumes
	Turbulence length scales and cell size
	Single Grid Estimators
	LES Index of Quality Measure
	Richardson Extrapolation Based Methods
	The Method of Nearby Problems (MNP)

	Summary of Solution Verification Methods

	Summary

	Proposed Simulation Credibility Assessment Methodology
	Procedure Preliminaries
	Code Verification Assessment Framework
	Calculation of the Global Error
	Order of Convergence
	Formal Order of Convergence
	Observed Order of Convergence


	Solution Verification Assessment Guidelines
	Properties of the Solution Verification Framework
	Procedures for Solution Verification Framework
	Round-off and Iterative Errors
	Statistical Convergence Error
	Bootstrapping
	Bootstrapping Short Example

	Discretization Error Estimation
	Definition of the Typical Grid Size
	Cell Size Measure: Short Example
	Discretization Uncertainty Estimator
	Application of the Discretization Uncertainty Estimator


	Summary

	The VMS Simulation Code: KRATOS Multiphysics
	Governing Equations
	Discretization
	Spatial Discretization
	Quasi-static ASGS formulation
	Quasi-static OSS formulation

	Temporal Discretization
	Formal Order of Convergence


	Code Verification: Application to KRATOS Multiphysics
	KRATOS Multiphysics Tested Functionalities
	Code Verification Benchmark Workflow
	Calculation of the Error and Order of Convergence
	Spatial and Temporal Resolutions
	Design of Test Cases
	Evaluation of Source Terms
	Boundary and Initial Conditions
	Solution Accuracy
	Simulation Setup
	Taylor-Green Vortex (TGV)
	Uni-Directional Triangular Grid
	Structured Quadrilateral Grid

	Inertia Dominated Simulation
	Uni-Directional Triangular Grid
	Structured Quadrilateral Grid

	Pressure Dominated Simulations
	Convection Dominated Simulations
	Viscous Dominated Simulations

	Summary

	Solution Verification Methodology Applications
	3-D Flow Around a Circular Cylinder
	Computational Domain and Boundary Conditions
	Numerical Results and Discussion

	3-D Flow Around a Square Prism
	Computational Domain and Boundary Conditions
	Numerical Results and Discussion
	Integral Quantities
	Local Quantities



	Atmospheric Boundary Layer Flow Around a Highrise Building: Solution Verification
	Experimental Setup
	Computational Setup
	Simulation Quality Assessment
	Measurement Quantities Selection

	Results Empty Channel
	Results Highrise
	Force Coefficients
	Pressure Coefficients


	Discussion, Conclusion and Outlook
	Discussion on the Verification Methodology Performance
	Code Verification
	Solution Verification

	Conclusions
	Outlook

	Calculation of Statistics
	Mean
	Standard Deviation
	Root-Mean Square
	Pearson Autocorrelation
	Spectral Density

	Calculation of Flow Parameters
	Turbulent Kinetic Energy (TKE)
	Turbulent Kinetic Energy Dissipation Rate (TKEDR)
	Integral Time and Length Scales
	Courant–Friedrichs–Lewy Number (CFL)
	Estimation of y+

	Complete Verification Methodology
	Least-Squares Solution for Power Series Expansions
	Single Term Expansion with Three Unknowns
	Single Term Expansion with pj-order Term
	Two-Term Expansion with First and Second-Order Terms

	Simulation Details: Flow Over a Flat Plate
	List of Figures
	List of Tables
	Bibliography

