
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Domain Parallelization of SGDE based
Classification

Jan Schopohl

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Domain Parallelization of SGDE based
Classification

Domänen-Parallelisierung von SGDE
basierter Klassifikation

Author: Jan Schopohl
Supervisor: Prof. Dr. rer. nat. habil. Hans-Joachim Bungartz
Advisor: Kilian Röhner, M.Sc.
Submission Date: 15.04.2019

I confirm that this bachelor’s thesis in informatics is my own work and I have docu-
mented all sources and material used.

Munich, 15.04.2019 Jan Schopohl

Abstract

This thesis describes cluster-level domain-parallelization of a sparse grid density esti-
mation (SGDE) based classification algorithm. The Online phase of the implementation
of this algorithm in the SG++ toolbox was parallelized using MPI and the ScaLAPACK
library. This means that distributed compute resources can be efficiently used as the
implementation is not constrained to one node. Instead of a data-parallel approach,
model parallelization was chosen in order to achieve greater flexibility and efficiency
on complex grids. The parallel classifier was integrated into the existing datamining
pipeline of the SG++ toolbox. The performance of the new approach was evaluated for
weak and strong scaling and the influence of parallelization parameters was considered.
The results of the scaling tests were mostly as expected, however refinement was
identified as a bottleneck.

iii

Zusammenfassung

Diese Arbeit beschreibt die Domänen-Parallelisierung eines Klassifikationsalgorithmus
der auf Dünngitter Dichteschätzung basiert. Die Online Phase des Algorithmus wurde
mit Hilfe von MPI und der ScaLAPACK Bibliothek auf Cluster-Ebene parallelisiert und
in die SG++ Bibliothek integriert. Dadurch können Rechenressourcen effizient genutzt
werden und der Algorithmus ist nicht auf einen Rechnerknoten beschränkt. Statt eines
Datenparallelen Ansatzes wurde eine Parallelisierung des Modells ausgewählt, mit
dem Ziel größere Flexibilität und Effizienz bei komplexen Gittern zu erreichen. Der
parallelisierte Algorithmus wurde in die bestehende Datamining Pipeline der SG++ Bib-
liothek integriert. Die Auswirkungen von verschiedenen Parametern auf die Leistung
wurden untersucht und es wurden Tests zur Skalierbarkeit durchgeführt. Die Ergeb-
nisse dieser Tests waren weitgehend wie erwartet, allerdings stellt die Verfeinerung des
Gitters einen Engpass dar.

iv

Contents

Abstract iii

1. Introduction 1

2. Theoretical Background 3
2.1. Machine Learning . 3
2.2. Sparse Grids . 5
2.3. Sparse Grid Density Estimation and Classification 8

3. Parallelized Algorithm 11
3.1. Evaluation of Parallelization Concepts for SGDE 11

3.1.1. Node-Level and Cluster-Level Architectures 11
3.1.2. Parallelization Approaches . 12

3.2. Current State . 13
3.3. Proposed Algorithm . 15
3.4. Matrix Distribution . 17

4. Implementation 20
4.1. ScaLAPACK . 20
4.2. Matrix distribution . 21
4.3. Integration of the Parallel Algorithm into the Datamining Pipeline . . . 23

5. Evaluation 27
5.1. Analysis of the proposed algorithm . 27
5.2. Scalability . 29

5.2.1. Strong Scaling . 29
5.2.2. Weak Scaling . 33

6. Future Work 37

7. Conclusion 39

A. Appendix 40

Bibliography 45

v

1. Introduction

As the means to acquire and process large amounts of data have rapidly increased,
the capabilities of data mining and machine learning algorithms are steadily growing.
There is a wide range of applications for these methods, such as autonomous driving
and analysis of medical images. In machine learning, one typically wants to learn
patterns from large sets of data. While the increasing quantity of data helps to create
more accurate models, it also means that a large amount of computing power is needed.
This is especially the case for large and complex models, which are often needed to
achieve a good solution.

As a result, a single compute node, even with efficient node-level parallelization,
might not have sufficient power to train and evaluate the model in a reasonable time
frame. Therefore, parallelization has to be done on a cluster-level to efficiently use all
available resources.

A common machine learning task is classification, which means that a model should
be trained to map from a data sample to a class label. Algorithms that solve this
problem for high dimensional data commonly have to use dimensionality reduction in
order to keep the method computationally feasible. However, this can cause a reduction
of classification performance, as important information in the data can be lost.

One approach to solve this problem is by using classification based on sparse grid
density estimation (SGDE). This algorithm first estimates the probabilistic density
using basis functions centered on grid points in the data space and then classifies the
data according to the highest probability given by the density functions. To keep the
dimensionality of the data and avoid information loss, sparse grids are used instead of
full grids: The grid adapts to the problem space and only keeps grid points in areas of
high interest, for example along the decision boundary. This enables a balance between
model accuracy and complexity. A more detailed description of these concepts can be
found in Chapter 2.

The full implementation of these structures is quite complex, however the SG++
library provides implementations for a wide range of sparse grid algorithms [Pfl10].

As large and complex models are needed needed in order to achieve good per-
formance and generalization, and the datasets can be very large, there is a need to
efficiently parallelize the SGDE algorithm in SG++. In the past, domain parallelization
has mainly been done on a node level using frameworks such as OpenMP [HP11].

1

http://sgpp.sparsegrids.org/
http://sgpp.sparsegrids.org/

1. Introduction

For data parallelization, there have been efforts for cluster-level parallelization of
this method [Bod17], however the model itself was not distributed. As the use of
domain-parallelization might lead to more flexible and more efficient use of computing
resources, this approach is desirable. Therefore, this thesis describes the concepts,
algorithmic changes and implementation of this form of cluster-level parallelization for
the SGDE-based classification algorithm in SG++. The algorithmic considerations are
described in Chapter 3. The new algorithm was integrated into the datamining pipeline
of the SG++ library, this is described in Chapter 4. Additionally, the performance and
scaling of this approach are evaluated in Chapter 5.

2

2. Theoretical Background

This chapter gives a basic introduction to the concepts of Machine Learning and Sparse
Grids. Furthermore, the principle of the SGDE algorithm and Offline/Online splitting
are explained.

2.1. Machine Learning

The basic concept of Machine Learning is to automatically extract useful patterns from
data [Mur12; Bis06]. The common goal is to train a model using training data and
achieve good generalization on unseen data. The first step is to train the model using
a training set Strain. The output of the model can then be evaluated using an error
metric. A common problem is that a model memorizes the exact training data and
produces significantly worse results on unseen data. This is referred to as overfitting
and means that the model does not generalize well. To identify this problem, a model
should always be evaluated on a different dataset than the training set. Therefore it is
common to split the whole dataset S into training set Strain, validation set Sval and test
set Stest. The validation set can be used to analyse the performance of the model during
training and subsequently tweak the model parameters. As this can implicitly also
cause overfitting on the validation set, the final evaluation of the model should be done
on a previously unseen test set, as this will show whether the model has generalized
properly.

When approximating a function, large oscillations in the predicted value for small
variations of the input are usually the result of overfitting. One approach to avoid this
problem is regularization, which prevents such irregularities by enforcing smoothness
criteria. Regularization operators are usually denoted as Λ, while the strength of
regularization can be controlled by a factor λ. A common example is to penalize large
coefficients in the model.

While there are many different tasks in machine learning, we can generally identify
two main categories: Supervised learning and unsupervised learning.

3

2. Theoretical Background

Supervised Learning The goal of algorithms of this type is to approximate an un-
known function f (x) = y, so mapping from an input xi to a target yi. In the case that y
is a discrete class label y ∈ {1, . . . , C}, we call this a classification problem. In this case,
the goal is to find a good prediction ŷ for the unknown function using a set of training
data Strain = {(xi, yi)}M

i=1, which is made up from M samples of d-dimensional input xi
and corresponding labels yi.

Unsupervised Learning In unsupervised learning, there are no labels given for train-
ing, just M d-dimensional data samples x. Hence the training set in this case is just
Strain = {xi}M

i=1, which also means that there are multiple possible learning tasks. One
common task is density estimation, where the model tries to learn the probability density
function p(x) of the data set.

SGDE based classification In the case of SGDE based classification, the supervised
learning task is based on density estimation for every class, so a unsupervised machine
learning method. The basic approach is to learn the class conditionals p(x|y = c) using
sparse grid density estimation. This can be done by splitting the training set into
samples of each class, namely sets Sctrain = {xi ∈ Strain : yi = c} [Peh13]. Then we can
train models that estimate pc(x) = p(x|y = c) on these training sets. The prior class

probabilities p(y = c) can be estimated as empirical probabilities p(y = c) =
|Sctrain |
|Strain|

and the posterior p(y = c|x) can then be computed using Bayes’ rule:

p(y = c|x) = p(x|y = c)p(y = c)

∑C
c′=1 p(x|y = c′)p(y = c′)

(2.1)

Note that for classification, we are only interested in the maximum posterior, so we can
ignore the denominator in Bayes’ rule, as it is just a normalizer and the same for every
class. Thus, the classifier can be defined as

ĉ(x) = arg max
c′∈{1,...,C}

p(x|y = c)p(y = c) = arg max
c′∈{1,...,C}

p(y = c|x) (2.2)

This is considered a probabilistic, generative approach to classification, as it does not
directly learn a mapping between input data and class labels but instead uses class
conditional probabilities and Bayes’ rule to derive the estimate.

4

2. Theoretical Background

2.2. Sparse Grids

Consider a grid-based approach to estimate the probability density function on a data
set with d-dimensions. In the case of a full grid and refinement level n, we discretize
the domain using equidistant grid points with a mesh width of hn = 2−n in each
dimension [Pfl10]. This means that we have to evaluate O(h−d

n) = O(2dn) grid points
for interpolation of the function. This exponential growth when adding dimensions is
referred to as curse of dimensionality and makes a full-grid approach computationally
infeasible for high dimensional problems. Therefore, sparse grids are used, which try
to adapt to the data so only relevant subspaces of the grid have to be evaluated. The
following sections introduce the basic concepts of sparse grids, which are largely the
same as for full grids. For a more detailed review of sparse grids, refer to [BG04; PPB10;
Peh13].

Hierarchical basis functions Grid-based approaches rely on a set of hierarchical basis
functions, here the simple hat function will be used:

ϕ(x) := max(1− |x|, 0) (2.3)

It should be noted that there are multiple other basis functions that can be used, details
about these can be found in [Pfl10]. Sparse-grids are constructed using a hierarchy of
levels, meaning the basis functions are translated and dilated to be centered on grid
points xl,i := 2−li, where l is the level and i is an index 0 < i < 2l :

ϕl,i(x) := ϕ(2lx− i) (2.4)

One important property of this hierarchy is that the support of basis functions is getting
smaller with increasing level l, which means that the influence of these basis functions
is getting more limited to local parts of the interpolated function. This concept can be
seen in Figure 2.1. As we are interested in the d-dimensional case, we extend the basis
functions using a tensor product,

ϕl,i(x) =
d

∏
j=1

ϕlj,ij(xj), (2.5)

where l and i now are d-dimensional indices for level and index in each dimension. As
a note on notation, sparse grid basis functions are sometimes referred to with only one
index instead of l and i, this still means that a hierarchy is used, the grid points are
just enumerated for simplicity.

5

2. Theoretical Background

(1)

Figure 2.1.: One-dimensional hierarchical basis functions which form the (sparse) grid
space V(1)

3 . Figure adapted from [Pfl10].

To define the subspaces Wl for each level and dimension of the grid, index sets are
introduced,

Il := {i ∈Nd : 1 ≤ ij ≤ 2lj − 1, ij odd, 1 ≤ j ≤ d}, (2.6)

then we can define the hierarchical subspaces as

Wl := span{ϕl,i(x) : i ∈ Il}. (2.7)

To obtain a sparse grid space V(1)
n , we sum up a selection of these subspaces,

V(1)
n :=

⊕
|l|1≤n+d−1

Wl , (2.8)

using the l1-norm |l|1 = ∑i li. The two-dimensional sparse grid space with l = 3 and its
subspaces are shown in Figure 2.2. We can then define the interpolation f̂ (x) ∈ V(1)

n on
a sparse grid as the sum of basis functions, each multiplied with a hierarchical surplus
αl,i:

f̂ (x) := ∑
|l|1≤n+d−1,i∈Il

αl,i ϕl,i(x). (2.9)

The idea behind this is that a sparse grid essentially selects the subspaces with the high-
est contribution to the interpolation to maintain accuracy while reducing complexity.
As the number of grid points is reduced, the cost for evaluation of the interpolation
is reduced to O(h−1

n (log2 h−1
n)d−1) = O(2nnd−1), which is a significant improvement

compared to the cost for a full grid of O(2dn).

6

2. Theoretical Background

l1=1 l1=2 l1=3 l1

l2=1

l2=2

l2=3

l2

V3
(1)

Figure 2.2.: Hierarchical subspaces for the two-dimensional case of a sparse grid space
V(1)

3 . Next to the axis, the basis functions are shown for each level. On the
right, a sparse grid formed from all subspaces in V(1)

3 is shown. Figure
taken from [Pfl10].

Adaptivity Depending on the interpolation problem, some areas of the grid space
might require a finer grid than others. Therefore the sparse grid can be refined and
coarsened in certain areas or dimensions in order to better adapt to the problem, which
means achieving a better solution without increasing costs too much. As evaluating all
possible refinement candidates is infeasible, an adaptivity criterion is needed [Pfl10;
Peh13]. A simple criterion is to refine the grid points with the highest absolute
surplusses |αl,i|, as this indicates a large influence on the interpolation. Because of this,
it makes sense to add the hierarchical children of such points. This criterion is widely
used and quite robust, however it is important to keep in mind that it does not fit every
application.

7

2. Theoretical Background

2.3. Sparse Grid Density Estimation and Classification

While it is possible to directly estimate a classification function using a sparse grid, a
method introduced by [Peh13] can naturally cope with multiple classes and usually
leads to better results. The method builds a probabilistic classifier based on density
estimation for every class, such as introduced in Section 2.1. This means that an efficient
density estimation method is needed. Using a training data set Sctrain = {xi}M

i=1, an
initial guess pε can be created: As an example, let pε = 1

M ∑M
i=1 δxi , where δxi is a

Dirac delta function centered on the training point xi. This initial value is overfitted
on the training set, however the density function can then be estimated by adding
regularization with spline smoothing and searching for a function in the space V such
that

p̂(x) = arg min
f∈V

∫
Ω
(f (x)− pε(x))2dx + λ||Λ f ||2L2 , (2.10)

where regularization strength can be controlled by the parameter λ. As further de-
scribed in [Peh13], this can then be transformed into a system of linear equations:

(R + λC)α = b. (2.11)

Let N be the number of grid points and 〈·, ·〉L2 the L2 inner product. R is a N × N
matrix with entries Rij = 〈ϕi, ϕj〉L2 , where the entries essentially describe the overlap
of the basis functions. C is a N × N matrix as well and the entries are defined as
Cij = 〈Λϕi, Λϕj〉L2 , where Λ is an regularization operator. It is often set to the identity
matrix, so C = I, as this provides efficient regularization. Only the right hand side
of the linear system is dependent on the data, as vector b of size N is defined as
bi =

1
M ∑M

j=1 ϕi(xj). The system can then be solved in order to calculate the vector
of surplusses α and interpolate the density function as p̂(x) = ∑N

i=1 αi ϕi(x). A major
advantage of this method is that the N × N matrix on the left hand side, (R + λC),
which is referred to as system matrix, is not dependent on the data set. This means that
a factorization of the system matrix can be pre-computed in an Offline phase, and the
linear system is then solved using the training data in an Online phase. As a result,
the Online phase has a runtime complexity of O(N2) instead of O(N3) without an
Offline/Online split [Peh13]. This property is very useful, as the same factorization of
the system matrix can often be used multiple times, for example to train with multiple
batches or data, on different datasets or to evaluate hyperparameter settings.

Offline phase The Offline phase is used to compute a factorization of the system
matrix (R + λC). This means that the grid parameters and regularization method have
to be chosen in this phase. The system matrix is then decomposed in order to allow

8

2. Theoretical Background

efficient solve operations of the linear system in the Online phase. Multiple different
decomposition types have been implemented and evaluated in the SG++ toolbox before.
However, currently mostly the Cholesky or Orthogonal decomposition is used, as both
allow for refinement of the grid and therefore updates of the decomposition during
the Online phase. Another criterion for the choice of decomposition type is the ability
to vary regularization strength during the Online phase. This is currently only fully
supported by Eigen decomposition and Orthogonal decomposition. A comparison of
different decomposition types is provided by [Fuc18], the Cholesky decomposition and
Orthogonal decomposition are also described in the following paragraphs.

Online phase In the Online phase, vector b is computed with batches of training
data of size M. Then the decomposition created in the Offline phase is used to solve
the linear system for α. After this training step, the performance of the model can be
evaluated on a validation set and, depending on decomposition type, the grid might be
refined and the regularization strength tweaked. This algorithm can be repeated until
sufficient performance is achieved. This thesis targets the parallelization of the Online
phase of the model, as this step is usually repeated many times and therefore runtime
is an important property.

Cholesky decomposition The Cholesky decomposition was integrated into the SGDE
learner by [Sie16]. During the Offline phase, the symmetric and positive definite system
matrix is decomposed as

R + λC = LLT, (2.12)

where L is a lower triangular matrix. In the Online phase, we can then solve the linear
system (LLT)α = b using forward and back substitution. The factorization can be
efficiently updated after grid refinement or coarsening. The regularization strength λ

can also be altered, however this has a runtime complexity of O(N3), meaning it is of
the same order as recomputing the whole factorization.

Orthogonal decomposition To efficiently update the regularization strength, an Or-
thogonal decomposition can be used, which was implemented for SGDE by [Bos17]. In
this case, the Offline phase consists of decomposing the matrix R into

R = QTQT, (2.13)

where Q is orthogonal and T is a symmetric tridiagonal matrix. Setting C = I, the linear
system can then be solved in the online phase using basic linear algebra operations:

α = QT−1QTb + Bb. (2.14)

9

2. Theoretical Background

The matrix B is an additive component which is needed for updates of the decomposi-
tion after refinement. While this method is overall slightly slower than the Cholesky
decomposition, the grid can be adapted and regularization strength can also be changed
efficiently.

10

3. Parallelized Algorithm

This chapter describes the choice of the parallelization type and explains the concept of
the parallelized algorithm.

3.1. Evaluation of Parallelization Concepts for SGDE

There is a number of different parallelization types that can be applied to the SGDE
algorithm. When looking at the architecture of the parallel system, we can differen-
tiate between node-level and cluster-level approaches. Looking at how the algorithm
decomposes the problem, one can further distinguish data-parallel and model-parallel
approaches, where the domain of the model is parallelized.

3.1.1. Node-Level and Cluster-Level Architectures

The most common form of parallelization can be found on a node-level, using a
shared-address-space for communication. This can be done using frameworks such
as OpenMP, which offers convenient compiler directives to automatically parallelize
parts of a program. In the SG++ library, this has already been used to parallelize
evaluations of functions, for example using the UpDown scheme [Pfl10]. An alternative
approach was used by [HP11], where vectorization techniques were combined with
OpenMP parallelization and lead to better performance. OpenMP has also been used to
parallelize parts of the SGDE algorithm [Let17]. However, all these concepts are limited
to a shared-memory system, so usually one node. This avoids communication costs,
but also introduces a synchronization overhead, as it has to be ensured that shared data
is not corrupted, so mechanisms like locks are needed. Furthermore, the resources of
clusters cannot be exploited using node-level parallelism.

We can solve this problem by using cluster-level parallelization with a message
passing architecture. This means that multiple nodes, each with their own memory and
address space, can be used. Communication between the nodes is handled by sending
and receiving messages, which is commonly done using the message passing interface
(MPI) protocol. This increases communication overhead, however it can avoid the need
for locks and other synchronization techniques, as the address spaces are not shared, so
data corruption cannot occur as easily. The most obvious advantage of this architecture

11

3. Parallelized Algorithm

is the ability to harness the resources of large clusters. It should also be noted that MPI
programs can run on a single node if needed, as an environment with separate address
spaces and message passing can easily be emulated. Therefore the message passing
architecture can offer a high degree of scalability. In SG++, parallelization with MPI has
previously been implemented using batch parallelization, which is elaborated in the
next section [Bod17]. This thesis proposes another cluster-level parallelization approach.
A more detailed comparison of parallel architectures can be found in [Kum02].

3.1.2. Parallelization Approaches

When looking beyond architectural differences in parallelization, an important choice
is the decomposition of the problem. One approach is to decompose the data and
operating on different parts of the data in parallel, which is referred to as data parallelism.
Another approach is to decompose the model domain itself, this is called model or
domain parallelism.

Data parallelization When using data parallelization, a common approach is to split
the dataset into batches. These batches can then be mapped onto different worker
nodes and the model can be trained on multiple nodes in parallel, each using a different
data batch. The results can then be combined on a master node. This approach was
proposed and implemented by [Bod17]. As all nodes train the whole model, each
node has to possess a copy of it and keep it synchronized with the other nodes. This
leads to the advantage that batches can be distributed onto the nodes efficiently using
a scheduling algorithm and the load can be balanced well on the cluster. However,
this also creates a communication overhead, as batch assignments, results and model
synchronization messages have to be sent.

Furthermore, the current implementation is not integrated into the SG++ datamining
pipeline, where SGDE-based classification was implemented by [Fuc18]. This structure
streamlined and integrated the codebase of different datamining methods in SG++
and offers a user friendly interface. An integration of the parallel batch learner into
the pipeline was evaluated, however this was not possible with reasonable effort, as it
would require major changes in the datamining pipeline.

Domain Parallelization In order to integrate a cluster-level parallelization approach
into the datamining pipeline, a method using domain parallelization was chosen. This
means that the model itself is decomposed and mapped onto different nodes, where
every node trains part of the model, each using the same data.

12

3. Parallelized Algorithm

Combigrid parallelization Two different approaches for this were evaluated, combi-
grid and spatial decomposition. The combigrid approach uses the sparse grid combina-
tion technique, this means solutions for subspaces of the sparse grid, which are full
grids themselves, can be calculated in parallel and then combined to a sparse grid
solution. Details can be found in [Pfl10]. The advantage of such a method is that solvers
for full grids can be used on the subspaces. While this sort of split of a sparse grid is
straightforward to implement and would minimize communication overhead, the over-
all cost for the computation of the solution using this method is higher. Furthermore,
spatial adaptivity of the grid is not possible when using full subspaces, which severely
limits the usefulness of this method for larger SGDE problems.

Spatial parallelization Therefore a spatial decomposition of the model was chosen
as parallelization model. The concept of this is to split the grid space, which for SGDE
can be achieved by splitting the linear system (R + λI)α = b and distributing it across
multiple nodes. This approach can be integrated into the datamining pipeline with
reasonable effort and full adaptivity of the grid is possible. However, the linear system
has to be synchronized for refinements and potentially be redistributed, which adds
a communication overhead. Compared to the combigrid approach, it does not carry
an additional computational overhead, as a direct sparse grid solver is used. Another
advantage of this approach is that the granularity of the parallelization can be controlled
by the type of split of the system matrix. This makes the approach highly configurable
and adaptable to different system architectures.

3.2. Current State

The current state of the classification algorithm in the SG++ datamining pipeline is
shown in Algorithm 1. The latest version was implemented by [Fuc18] and uses a
classification method based on SGDE, as described in Section 2.3. This means that a
SGDE model is trained for every class. Note that the algorithm is a batch learner and
processes only part of the dataset in each iteration. This helps to reduce the memory
needed and the computational cost per iteration to compute vector b. Additionally,
it offers support for streaming, so adding new data to the model while training. As
a consequence, the computation of bt for the current iteration t also incorporates the
vector bt−1 from the previous iteration:

bt =
1

Mtotal
(βbt−1 +

M

∑
j=1

ϕ(xj)) (3.1)

13

3. Parallelized Algorithm

Algorithm 1 Current classification algorithm that is implemented in the datamining
pipeline.

1: Load dataset, split training and validation data
2: for epoch e← 1 . . . E do
3: Reset datasource (shuffle if necessary)
4: while datasource has another batch of training data do
5: Strain ← datasource.nextBatch()
6: Split the batch into classes to obtain subsets Sctrian

7: for c← 1 . . . C do
8: compute αc: update_sgde(Sctrian)

9: Evaluate the model on the validation set and calculate the error
10: if refinement necessary (can be based on error) then
11: Refine or coarsen the grid
12: Update the factorization and size of datastructures

13:

14: function update_sgde(Sctrain)
15: Input is Sctrain with M samples of class c
16: if first iteration then
17: Create grid
18: Load system matrix factorization
19: Initialize datastructures needed for Online phase

20: . compute the density function
21: Use the M samples in the batch to calculate bt =

1
Mtotal

(βbt−1 + ∑M
j=1 ϕ(xj))

22: solve the linear system (R + λC)α = b using the factorization

The factor β weights the previous batches and is usually set to 1, Mtotal refers to the
total number of points in all batches up to and including the current. The step of
actually solving the linear system varies depending on the factorization that was used
in the Offline phase.

After the SGDE models have been updated, grid refinement or coarsening may take
place. There are numerous configuration options for this step: Usually, refinement
takes place based on the error on the validation set. How many refinement steps are
considered and how many points are refined in each step can also be configured, along
with the criterion according to which points are chosen for refinement. After each
refinement, the factorization of the system matrix has to be updated, which is different
depending on factorization type.

The next section explains how the model of this algorithm can be parallelized.

14

3. Parallelized Algorithm

3.3. Proposed Algorithm

As discussed in Section 3.1.2, the goal of this thesis is to split up the model and
distribute it. This means splitting the grid, which can also be achieved by distributing
the linear system (R + λI)α = b, as each row can be seen as representing a basis
function of the grid.

In Algorithm 2, the proposed algorithm is shown, changes compared to the current
algorithm are highlighted in red. An important point is that the main structure of the
algorithm can remain similar, which makes it easier to integrate it into the datamining
pipeline. The most important difference is the distribution of the system matrix
factorization and the distributed generation of bt along with the solve operation. The
exact distribution of the matrices and vectors is described in the next section.

Furthermore, there is no clear master and worker distinction of tasks, instead all
tasks perform almost the same steps, except for a few minor details. The reason
for this is that as a result of the matrix distribution, static scheduling is used, as
matrix operations can be distributed quite evenly and dynamic scheduling would cause
constant redistribution of the matrices and vectors. Additionally, the framework used
for implementation, ScaLAPACK, is not suited for dynamic scheduling of operations.

As a result, refinement is also done by all nodes. This might seem like a waste
of resources at first, but because of the static scheduling all processes have to stay
synchronized quite closely , so all processes would have to wait if one process does
the refinement. Additionally, there would be need for further network traffic and
synchronization if the refinement would only be performed on one node, and the
algorithm would get more complex, making it harder to integrate into the current
structure of the pipeline. To improve the proposed solution, it is recommended that
refinement is fully parallelized in the future, as discussed in Chapter 6.

When computing b or the error function, datapoints have to be evaluated on the
sparse grid, meaning the interpolation of the function that the grid approximates has
to be computed, which was introduced in Equation (2.9). While there are approaches
which vectorize this operation by taking advantage of modern hardware [HP11],
here the classical recursive implementation is used. This evaluation algorithm takes
advantage of the property that only a single product αl,i ϕl,i(x) in one subspace, so of
the same multiindex l, can be unequal to zero. This means that only a fraction of these
products have to be evaluated. As a consequence, every process also has to keep a full
local copy of the vector α to execute this evaluation algorithm, because it might need to
access values of α that are not in its local split. Along with refinement this is the reason
that α has to be gathered on all processes after the update of the SGDE model.

15

3. Parallelized Algorithm

Algorithm 2 Proposed parallel classification algorithm. Changes compared to the
current algorithm that was described in Algorithm 1 are highlighted in red.

1: Load dataset, split training and validation data
2: for epoch e← 1 . . . E do
3: Reset datasource (shuffle if necessary)
4: while datasource has another batch of training data do
5: Strain ← datasource.nextBatch()
6: Split the batch into classes to obtain subsets Sctrian

7: for c← 1 . . . C do
8: Distributed computation of αc: update_sgde_parallel(Sctrian)

9: Gather α on all processes, needed for evaluation and refinement
10: Distributed evaluation of the model on the validation set, compute error
11: if refinement necessary (can be based on error) then
12: Refine or coarsen the grid
13: Update the factorization and size of datastructures
14: Redistribute factorization and other datastructures
15: function update_sgde_parallel(Sctrain)
16: Input Sctrain with M samples of class c
17: if first iteration then
18: Create grid
19: Load system matrix factorization
20: Distribute system matrix factorization
21: Initialize (distributed) datastructures needed for Online phase

22: . compute the density function
23: Distributed calculation of bt =

1
Mtotal

(βbt−1 + ∑M
j=1 ϕ(xj))

24: Solve the distributed linear system (R + λC)α = b using the factorization

Depending on the factorization type used in the Offline phase, the solver for the
linear system and the update and redistribution after a refinement are different. The
currently most useful factorization types, Orthogonal and Cholesky factorization, are
considered in the following paragraphs.

Orthogonal Decomposition In this case there are three matrices which have to be
distributed, Q, T−1 and B. However, the linear system can then be solved with simple
linear algebra operations, as described in Equation (2.14). Therefore the solve operation
can be distributed by using a parallelized BLAS library, such as PBLAS which is
included in ScaLAPACK, for details see Chapter 4.

16

3. Parallelized Algorithm

Cholesky Decomposition For this factorization, only the lower triangular matrix
L has to be distributed, which means less overhead compared to the Orthogonal
decomposition. To solve the linear system, forward and backward substitution have to
be performed. These operations can also be parallelized using the ScaLAPACK library.

3.4. Matrix Distribution

A central component of the proposed algorithm is the decomposition scheme of
matrices and vectors. As the ScaLAPACK library was used for implementation, a
two-dimensional block cyclic distribution scheme was chosen [Bla+97].

Assume we have Pr · Pc processes which form a process grid with Pr rows and Pc

columns. Note that this process grid should not be confused with the sparse grid itself,
it is just an organization structure for multiple processes. Thus, each process in the grid
has a row index pr and a column index pc. Now, the goal is to distribute a matrix A or
vector a evenly on all processes in order to efficiently perform distributed LAPACK or
BLAS operations. The Scalable Linear Algebra PACKage (ScaLAPACK) library solves
this by using the two dimensional block cyclic distribution.

The scheme will be explained for the case of a matrix A with r rows and c columns,
however a vector can be mapped in the same way, it will be handled as a matrix with
one column. First, the matrix is divided into two-dimensional blocks of br rows and
bc columns. Then, the blocks are cyclically assigned to the processes, so block (m, n)
is assigned to process (m mod Pr, n mod Pc). To efficiently use the local memory
hierarchy of every process, the all blocks of one process are stored contiguously. This
means we now have multiple indices for each entry of the matrix: The global index (i, j),
the index of the element in the corresponding block (x, y) and the local index in the
memory of the process (xp, yp), which is calculated using the coordinate of the block
in the local memory of the process (l, m). Given the global index (i, j), the following
formulas can be derived to compute the other indices:

(pr, pc) =

(⌊
i

br

⌋
mod Pr,

⌊
j

bc

⌋
mod Pc

)
(3.2)

(l, m) =

(⌊
i

Pr · br

⌋
,
⌊

j
Pc · bc

⌋)
(3.3)

(x, y) = (i mod br, j mod bc) (3.4)

(xp, yp) = ((l · br) + x, (m · bc) + y) (3.5)

When given the local index (xp, yp) and the index of the process (pr, pc) of an element,

17

3. Parallelized Algorithm

the global index can be computed according to

(xp, yp) =

((⌊
xp

br

⌋
Pr + pr

)
br + (xp mod br),

(⌊
yp

bc

⌋
Pc + pc

)
bc + (yp mod bc)

)
.

(3.6)

An example of a 5× 5 matrix distributed onto a 2× 2 process grid can be seen in
Figure 3.1. While small matrices, such as in the example, are not necessarily distributed
completely evenly, these differences even out for large matrices when an appropriate
block size is chosen. Furthermore, a key advantage of the two-dimensional block cyclic
distribution is that for large matrices, every process receives multiple parts of each
row and column. This prevents bottlenecks in solve operations, as it assures that every
process is part of most operations.

Another advantage of this scheme is the flexible configuration: The shape of the
process grid and the block size can be changed to account for special cases. As the
SGDE algorithm heavily depends on BLAS operations, we can change to process grid
shape from a square to a row, so p× 1 processes, to distribute the operations more
efficiently, as further evaluated in Chapter 5. Additionally, the contiguous storage on
every process enables local BLAS operations to take advantage of the memory hierarchy
[Bla+97].

18

3. Parallelized Algorithm

a00 a01 a02 a03 a04

a10 a11 a12 a13 a14

a20 a21 a22 a23 a24

a30 a31 a32 a33 a34

a40 a41 a42 a43 a44

p00

p10

p00

p01

p11

p01

p00

p10

p00

p00 p01

p10 p11

2× 2 process grid:

a00 a01 a04

a10 a11 a14

a40 a41 a44

m = 0

m = 1

l = 0 l = 1p00
a02 a03

a12 a13

a42 a43

m = 0

m = 1

l = 0p01

a20 a21 a24

a30 a31 a34
m = 0

l = 0 l = 1p10
a22 a23

a32 a33
m = 0

l = 0p11

Figure 3.1.: Example of a matrix of size r = c = 5 being mapped onto a process grid of
size Pr = Pc = 2 according to the two-dimensional block cyclic distribution
scheme. Block size is set to br = bc = 2. In the upper part of the figure, the
split of the global matrix into blocks is shown, along with the mapping of
blocks onto processes. In the lower part, the local memory of the processes
is shown.

19

4. Implementation

This chapter describes implementation of the parallel algorithm that was presented in
the previous chapter in the SG++ library. In particular, it describes the integration of
the ScaLAPACK library [Bla+97] into the SG++ codebase1 and the changes made to
the datamining pipeline. At the end of the chapter, challenges encountered during the
implementation are described.

4.1. ScaLAPACK

The core of the parallel algorithm is the distributed solve operation of the linear system.
As this operation is based on basic methods from linear algebra, there are libraries that
provide optimized distributed implementations for this problem type. The Scalable
Linear Algebra PACKage (ScaLAPACK)2 library was chosen for this purpose. The
advantage of this library is that is is widely available on high performance computing
systems and has a similar interface as the Linear Algebra PACKage (LAPACK)3 and
the Basic Linear Algebra Subprograms (BLAS)4. However, most parts of ScaLAPACK
are written in Fortran, which means that special care has to be taken when ScaLA-
PACK routines are called from C++. This was deemed an acceptable tradeoff for the
advantages offered by ScaLAPACK.

The main part of ScaLAPACK provides distributed versions of common LAPACK
functions. As the implementation of LAPACK functions is based on BLAS, ScaLAPACK
functions are largely based on parallel BLAS (PBLAS), which is closely integrated into
the library [Bla+97; Int19]. Local operations can then be done using a BLAS library,
which can be optimized for the specific platform. The actual communication between
multiple processes is handled by Basic Linear Algebra Communication Subprograms
(BLACS)5, which optimizes communication tasks for linear algebra, such as sending
and receiving matrices. BLACS is based on a communication protocol such as MPI,
therefore it can be optimized and dependent on the specific platform it is used on.

1https://github.com/SGpp/SGpp
2https://www.netlib.org/scalapack/
3https://www.netlib.org/lapack/
4https://www.netlib.org/blas/
5https://www.netlib.org/blacs/

20

https://github.com/SGpp/SGpp
https://www.netlib.org/scalapack/
https://www.netlib.org/lapack/
https://www.netlib.org/blas/
https://www.netlib.org/blacs/

4. Implementation

ScaLAPACK

LAPACK PBLAS

BLACS

MPI

BLAS

Platform independent

Platform dependent

Figure 4.1.: Hierarchy of the ScaLAPACK library [Bla+97; Int19]. ScaLAPACK provides
distributed versions of LAPACK routines, internally PBLAS is used to
parallelize BLAS operations. Communication is based on BLACS, which
in turn uses the MPI protocol. Portability is combined with efficiency by
splitting the hierarchy in a platform dependent and independent part.

The structure of ScaLAPACK can also be represented as a hierarchy, as shown in
Section 4.1. While the upper part of the hierarchy, ScaLAPACK and PBLAS, is platform
independent, the lower part, which consists of BLAS, BLACS and a MPI library, is
platform dependent. Therefore, the global, distributed interface is common among all
platforms, while the underlying libraries that do most of the actual local processing,
BLAS, BLACS and MPI, can be optimized for performance on a specific platform. This
gives ScaLAPACK good portability while not sacrificing performance.

4.2. Matrix distribution

As noted above, calling Fortran routines from C++ code is not necessarily straightfor-
ward. The main reason for this is that Fortran uses column-major order for array access
instead of row-major order like C++, which means that access to two-dimensional
arrays is essentially transposed. This can become an problem for matrix operations,
as a matrix created in C++ code appears as the transposed matrix to program parts
written in Fortran. Furthermore, in Fortran indices start at 1 and in C++ at 0. To contain

21

4. Implementation

and resolve these problems in a small part of the code, two classes were introduced:
DataMatrixDistributed and DataVectorDistributed.

These classes represent distributed matrices or vectors and replace the SG++ classes
DataMatrix and DataVector, which represent local matrices or vectors. Additionally,
the new classes provide a wrapper around common ScaLAPACK functions, which
deals with the issues that arise from calling Fortran code from C++. This includes
translating the indices and switching certain parameters to account for the transposed
access to matrices. A performance loss by explicit transposition of matrices is also
avoided. Consequently, the user of these classes does not have to worry about any of
these problems.

Note that SG++ handles matrices and vectors in two separate classes. This enables
interfaces to differentiate between matrices and vectors, which is useful as certain
operations only support vectors or matrices. However in ScaLAPACK, distributed
vectors are just handled as matrices with one column. Therefore, all matrix distribution
methods are implemented in DataMatrixDistributed, whereas DataVectorDistributed is
just composed of a matrix object with one column.

To distribute a matrix among multiple processes, communication functions are
needed. This is provided by BLACS, which also manages the processes in a grid
structure. The process grid is needed as ScaLAPACK uses a two-dimensional block
cyclic matrix distribution scheme, as introduced in Section 3.4. To represent the process
grid and provide access to common BLACS routines, the class BlacsProcessGrid was
introduced.

On every process, an object of type DataMatrixDistributed stores a local part of the
matrix according to its position in the process grid. Furthermore, the class provides
methods to distribute or gather matrices, which send block after block of the matrix
to the correct process using BLACS routines. As the access to the process grid and
C++ arrays of local data is transposed in the Fortran routines, column and row indices
are internally swapped in the DataMatrixDistributed and DataVectorDistributed class.
This leads to the correct results without having to perform actual transpose operations,
which would incur a performance loss.

A simplified class diagram of the components described in this section is shown in
Figure 4.2.

22

4. Implementation

scalapack

mapped onto

DataMatrixDistributed

- localData : std::vector<double>
- grid : std::shared_ptr<BlacsProcessGrid>

+ get(row, col)
+ set(row, col, val)
+ add(a : DataMatrixDistributed)
+ sub(a : DataMatrixDistributed)
. . .

DataVectorDistributed

- data : DataMatrixDistributed

+ get(row)
+ set(row, val)
+ scale(a : double)
+ dot(y : DataVectorDistributed)
. . .

BlacsProcessGrid

+ initializeBlacs()
+ exitBlacs()
. . .

Figure 4.2.: New classes added for the Integration of ScaLAPACK into SG++. DataMa-
trixDistributed and DataVectorDistributed replace the classes DataMatrix
and DataVector in the parallel version of the algorithm.

4.3. Integration of the Parallel Algorithm into the Datamining
Pipeline

Next we look into the integration of the proposed parallel algorithm into the datamining
pipeline of the SG++ library.

Datamining pipeline The datamining pipeline is a part of SG++ which allows users
to easily execute different datamining tasks on sparse grids. Additionally, it provides a
modular structure that can be extended easily. The SGDE based classifier was integrated
into the datamining pipeline by [Fuc18]. A simplified class diagram of the pipeline is
shown in Figure 4.3, however users only have to interact with classes derived from the
SparseGridMiner. This class offers functionality to receive an extensive configuration
through a JSON file and instantiate the proper modules required for the datamining
task described in this configuration. Then, the learning process can be started and the
results can be evaluated through this class.

23

4. Implementation

Configuration As the parallel algorithm requires new configuration options, a Par-
allelConfiguration module was added. This allows to specify the shape of the process
grid and the block size for the distribution scheme. When the SG++ library is compiled
with the USE_SCALAPACK option and the parallel configuration options are found in
the JSON file, the miner uses the parallel version of the algorithm.

Algorithm module Strictly speaking, the algorithm module is not part of the datamin-
ing pipeline itself, however it provides the actual computational operations. Both the
computation of factorization of the system matrix as well as the solve operation for
the linear system during the online phase are implemented in the algorithm module.
Depending on the configuration of the pipeline, different factorization types can be
used. As currently mostly the Cholesky and Orthogonal decompositions are used, the
parallel algorithm was only implemented for these decomposition types.

DBMatOffline This class represents the factorization of the system matrix. It was
extended in order to distribute the decomposed matrix among the processes and update
this decomposition after refinement. The classes DBMatOfflineChol and DBMatOffline-
OrthoAdapt inherit from it and were also adapted as needed for this purpose. Currently,
all processes still have to hold the whole decomposition locally in addition to the
distributed version, as this is needed for updates after refinements. This should be
improved in future versions, as described in Chapter 6.

DBMatOnlineDE In order to handle the Online phase of the SGDE algorithm, this
class is used. While the base class implements the general part of the computation of the
density function, subclasses for the different decomposition types handle the solve step
of the linear system. Parallel versions of the solve step using the distributed datastruc-
tures from the scalapack module were implemented in DBMatOnlineDEOrthoAdapt and
DBMatOnlineDEChol. To use this interface, the method computeDensityFunctionParallel
was added to DBMatOnlineDE in order to also makes use of the distributed datastruc-
tures. Additionally, functionality for distributed evaluation of the validation set on the
model was added. As this and the computation of the vector b relies on evaluation of
multiple datapoints on the sparse grid, the class AlgorithmMultipleEvaluationDistributed
was added to provide the functionality of AlgorithmMultipleEvaluation in a parallel
manner. As already noted in Algorithm 2, this requires a full local copy of α on every
process, as the recursive evaluation algorithm might require access to values which do
not lie in the local part of α.

24

4. Implementation

DBMatDecompMatrixSolver While the subclasses of DBMatOnlineDE update the
decomposition in case of refinement and prepare the solve step, the actual solve opera-
tion for the linear system is implemented by subclasses of DBMatDecompMatrixSolver.
Parallel solve operations were added to DBMatDMSOrthoAdapt and DBMatDMSChol.
The new methods make use of ScaLAPACK and the distributed matrices and vectors
introduced in the previous section to solve the linear system for α in a parallel way.

ModelFittingDensityEstimationOnOffParallel Parallel density estimation was inte-
grated into the pipeline by adding the class ModelFittingDensityEstimationOnOffParallel
as a subclass of ModelFittingDensityEstimation. It provides the same functionality as
ModelFittingDensityEstimationOnOff, however it adds a distributed version of the surplus
vector α and uses the parallel interface of DBMatOnlineDE. Furthermore, it initializes
and synchronizes the local and distributed versions of α and the matrix factorization
when needed.

ModelFittingClassification The class ModelFittingClassification uses a density estima-
tion model for each class to implement the SGDE based classification algorithm. The
class was adapted in order to use parallel models when parallel configuration options
are found. Furthermore, the evaluate method was changed in order to make use of the
tasks managed by the process grid instead of using OpenMP in this case.

This class also handles the refinement of the models, however this was not yet
changed, as refinement is still serial and is done on every process in order to avoid
additional communication overhead.

25

4. Implementation

datamining pipeline

algorithm

holds

has one per class

1..*

solve

uses factorization

SparseGridMiner

- dataSource
- model
- scorer

+ learn()

ModelFittingBase

- config

+ fit()
+ refine()
+ update()
+ evaluate()

ModelFittingClassification

- models
- processGrid

ModelFittingBaseSingleGrid

- grid
- alpha

ModelFittingDensityEstimation

ModelFittingDensityEstimationOnOffParallel

- online
- processGrid
- alphaDistributed

DBMatOffline

- lhsMatrix
- lhsDistributed

+ syncDistributedDecomposition()

DBMatOnline

DBMatOnlineDE

- bSave
- bSaveDistributed

+ computeDensityFunction()
+ eval()
+ solveSLE()
+ computeDensityFunctionParallel()
+ evalParallel()
+ solveSLEParallel()
+ syncDistributedDecomposition()

DBMatDecompMatrixSolver

DBMatDMSOrthoAdapt

+ solve()
+ solveParallel()

DBMatDMSChol

+ solve()
+ solveParallel()

Figure 4.3.: Simplified class diagram of the datamining pipeline and algorithm module.
Classes and methods that were added to implement the parallel algorithm
are shown in green. Adapted from [Fuc18].

26

5. Evaluation

In this chapter, the parallel algorithm is tested and its performance is evaluated.
Furthermore, general laws about parallel algorithms are presented. First, we consider
the configuration of the algorithm and discuss bottlenecks, then we examine strong
and weak scaling. Note that all performance evaluations presented here refer to the
Online phase only, the system matrix decompositions were pre-computed and stored
beforehand.

5.1. Analysis of the proposed algorithm

To begin with, the general behavior of the algorithm is analyzed. This means checking
its correctness compared to the previous version, identifying good parameters for the
configuration, and evaluating the MPI communication behavior. Note that all tests in
this chapter were performed with OMP_NUM_THREADS set to 0 in order to avoid any
interference of OpenMP and MPI tasks.

Correctness Given a correct implementation, the proposed algorithm, which is shown
in Algorithm 2, should lead to the same results as the previous implementation. The
mathematical operations are equal and there is no dynamic scheduling of the algorithm
itself, so all operations should be deterministic. To check for implementation errors,
unit tests were developed, especially the distributed datastructures were checked for
correctness this way. Furthermore, tests on multiple datasets with different config-
urations were performed. For each run, the previous implementation and the new
algorithm were compared using the same configuration. The results were always
equivalent, the only differences observed were very small and insignificant rounding
errors. Consequently, we can reasonably expect that the implementation is correct and
the proposed algorithm returns the essentially same results as the previous version.

Configuration tuning The implementation of the parallel algorithm offers configu-
ration options for the block size and the shape of the process grid. To explore the
influence of different values for these options, some test runs were conducted. A
configuration with 4 MPI tasks was chosen for this comparison.

27

5. Evaluation

First, different shapes of the process grid were tested. Assuming there are p2

processes available, one possible choice would be a square p× p grid of processes, as
this ensures an uniform distribution of matrices. However, vectors are only distributed
onto one column of the process grid, which suggest that for matrix vector BLAS
operations a process grid of shape p2 × 1 might be better suited. A 1× p2 grid would
not be a good choice, as vectors are only mapped to a single process in this case. As
the SGDE algorithm uses multiple vector operations, it is expected that a p2 × 1 grid
delivers the best performance.

To confirm this expectation, multiple tests with an increasing numbers of processors
from 1 up to 36 and a fixed problem size were performed. As expected, the configuration
with a column-like process grid of p2 × 1 processors had the lowest runtime. The
results were very similar for both Orthogonal and Cholesky decomposition for all
configurations. When a square grid configuration of p× p processes was chosen, the
performance was similar to a column shaped grid with p× 1 processes, which is likely
the result of vector operations only using the p processes of the first column. Row
shaped process grids with 1× p2 processes show almost no performance improvement
with increased number of processes, which is also as expected. In conclusion, the
column-shaped process grid shape was found to be the best configuration for our
algorithm by far, so all further tests were performed using this configuration.

Second, the influence of the block size for matrix distribution was explored. The
block size should not be too big, as this could negatively impact load balancing and
lead to very large MPI packets. It should also not be too small, as this could negatively
affect efficiency of distributed operations and lead to a flood of small MPI packets. As
[Bla+97] suggests to start with a block size of 64× 64, block sizes of 32× 32, 64× 64
and 128× 128 were compared.

The configuration with blocks of size 64× 64 performed best, however the difference
to the smaller block size of 32× 32 was very small. Only the configuration with the
larger block size of 128× 128 performed notably worse. This indicates that overall, the
exact block size does not seem to be very important, as long as it is not too large.

MPI Communication An important aspect of the behavior of the implementation is
the MPI Communication overhead. It is desirable that the time spent on communicating
and waiting on other tasks is as low as possible. Using the Intel Application Perfor-
mance Snapshot tools, time spent in MPI routines was measured for configurations
with 4 tasks and 32 tasks using the same global problem size. The absolute time spent
on MPI communication was only marginally longer for the configuration 32 processes,
which means there is almost no added MPI overhead when increasing the number
of tasks. However, a sufficient problem size per node is necessary, as otherwise the
fixed time needed for communication can make up a large part of total runtime, as this
decreases with added tasks.

28

5. Evaluation

5.2. Scalability

To test how the parallel algorithm performs when the number of processes is increased,
scalability testing has to be performed. Generally, we can differentiate between strong
scaling and weak scaling. The former means that the global problem size stays constant,
for the later the local problem size is fixed. Both types of scalability are explored in the
following sections.

5.2.1. Strong Scaling

In the case of strong scaling we are interested in decreasing the runtime of the algorithm
by keeping a constant global problem size and increasing the number of MPI tasks,
which means there are more processes available.

Expectation As the runtime is expected to decrease, we are interested in the speedup
S = T1

Tp
, where T1 is the runtime of the serial program and Tp is the runtime of the

program with p processes [Pac11]. In an ideal case, the speedup during the strong
scaling test would be linear in the number of processes, so S = p. Most programs are
not completely parallelized, but contain serial parts, therefore a linear speedup is hard
to achieve. This is described by Amdahls law [Amd67], which can be formulated as

1
rs +

rp
p

. (5.1)

With rs and rp being serial and parallel fraction of the program, so rs + rp = 1, the
equation describes the effect that a large speedup can only be excepted if the serial
overhead is quite small.

As the refinement of the grid in our algorithm is not yet parallelized, the expected
speedup for configurations with extensive refinement is limited. Without refinement,
there is only a smaller overhead, which consists mostly of setup operations, handling of
the dataset and communication overhead for distributed operations. Given a sufficient
problem size, the program should achieve a large speedup in this case.

To relate the actual speedup to the ideal performance, the efficiency E = S
Tp

= T1
p·Tp

can
be used, which can also be represented as a percentage.

Test setup The tests were run on the Linux Cluster CoolMUC-2 provided by Leibniz-
Rechenzentrum1. To keep the problem size and runtime for all tests reasonable, up to
32 MPI tasks on 4 nodes were used, the tasks were evenly distributed onto the nodes

1https://doku.lrz.de/display/PUBLIC/CoolMUC-2

29

https://doku.lrz.de/display/PUBLIC/CoolMUC-2

5. Evaluation

for all tests. In the following tests, each configuration was run 10 times. The number
of OpenMP threads was set to one to prevent interference with MPI tasks. First, the
previous implementation was timed to set a reference, then the runs were conducted
with the number of MPI tasks p equal to the powers of two from 1 up to 32. For the
scaling tests, a dataset derived from Data Release 10 (DR10) of the Sloan Digital Sky
Survey2 project was used [Ahn+14]. The training set is four-dimensional and includes
over 640 000 samples of two classes.

The strong scaling test was performed with and without refinement, furthermore
Orthogonal and Cholesky decompositions were used. This lead to 4 different test
configurations. In all configurations, training was done for one epoch with a batch
size of 50 000 and λ = 10−5. The block size of the two-dimensional block cyclic
distribution was set to 64× 64 and the process grid was shaped into a row in order to
perform optimal results. For the versions with refinement, an error based refinement
strategy with the zerocrossing refinement functor was used, per refinement 10 points
were updated and there was a maximum of 10 refinements.

Results The results of the version without refinement can be seen in Figure 5.1, for
the test with refinement in Figure 5.2. As expected, the scaling without refinement is
significantly better, which follows Amdahls law. Furthermore, neither version has ideal
linear scaling, as there is a some communication overhead for MPI and some parts of
the code, such as initialization, setup of the grid, loading the data and decomposition
is still serial. This is exaggerated for a larger number of processors, as the problem size
per node gets smaller, which means the fraction of runtime needed for the overhead
increases. This can also be measured using the efficiency, which drops from about
90% for 2 processes to just over 20% for 32 processes. Because of this, the runtime for
32 tasks stagnates and does not significantly decrease anymore. For a larger initial
problem size, this problem could be overcome.

2Official SDSS-III Acknowledgement
Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions,
the National Science Foundation, and the U.S. Department of Energy Office of Science. The SDSS-III
web site is http://www.sdss3.org/.
SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of
the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group,
Brookhaven National Laboratory, Carnegie Mellon University, University of Florida, the French
Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica
de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University,
Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute
for Extraterrestrial Physics, New Mexico State University, New York University, Ohio State University,
Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation
Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University
of Washington, and Yale University.

30

5. Evaluation

reference 1x1 2x1 4x1 8x1 16x1 32x1

MPI tasks

0

20

40

60

80

100

120

140

160

ru
nt

im
e

in
se

co
nd

s

decomposition

Orthogonal

Cholesky

Figure 5.1.: Results of the strong scaling test on the dr10 dataset without refinement.
Very similar performance for both Orthogonal and Cholesky decomposi-
tions is observed. Scaling efficiency starts out good and stagnates compared
to ideal performance as the problem size per node gets smaller.

When looking at the version with refinement enabled, this effect is even more
pronounced, as the serial fraction of the runtime is already very large initially. Note
that there is an added communication overhead for the redistribution of the updated
decomposition after refinement. As the performance gain in the parallel part stagnates,
this overhead causes the overall runtime to even increase again. Furthermore, we can
see that with refinement the version with Orthogonal decomposition is significantly
slower than with the Cholesky decomposition. This is caused by the fact that more
refinements are performed in the Orthogonal version, as the decision to refine is based
on a heuristic.

31

5. Evaluation

reference 1x1 2x1 4x1 8x1 16x1 32x1

MPI tasks

0

100

200

300

400

500

600

ru
nt

im
e

in
se

co
nd

s

decomposition

Orthogonal

Cholesky

Figure 5.2.: Results of the strong scaling test on the dr10 dataset with refinement en-
abled. As refinement acts as a bottleneck, scaling efficiency is not very good.
When the Orthogonal decomposition is used, the runtime for refinement is
significantly higher than with Cholesky decomposition. For a high number
of parallel tasks, the refinement step takes most of the runtime, so the
overhead of further parallelization outweights any further gains.

Conclusion We can conclude that the algorithm scales as expected, however there
is room for improvement as refinement leads to a large overhead. As a solution to
this, the refinement part of the algorithm has to be parallelized as well, this is further
described in Chapter 6.

32

5. Evaluation

5.2.2. Weak Scaling

In weak scaling, the goal is to test the performance of the program with increasing
numbers of MPI processes while keeping the problem size per process fixed [Pac11]. The
Online phase of the SGDE algorithm with a total of M datapoints, a batch size of m and
a system matrix of size N has a theoretically runtime complexity of O(M

m (m + N2)) =

O(m
b N2). Therefore, to keep the problem size fixed per process we have to increase

both M and m by the same factor.

Expectation As the problem size is constant per process, ideally the runtime should
stay constant as well, regardless of the number of processes and global problem size.
However in reality, this goal can often not be met entirely, as the communication
overhead increases with number of nodes. Furthermore, for our implementation,
memory consumption rises per node when the global problem size is increased, this
might lead to a longer time needed for memory allocation or out of memory errors
when the problem size grows too large.

Test setup For the weak scaling tests, the DR10 dataset was used again. To achieve
the correct values for the total number of datapoints and batch size, only part of the
dataset was used for each test. A validation portion of 0.1 was used for all runs, so the
global size of the validation set grows, while the size per process also stays constant.
The following table shows the global problem size for the weak scaling test from 1 up
to 32 processes:

Number of processes 1 2 4 8 16 32
M 18000 36000 72000 144000 288000 576000
m 1800 3600 7200 14400 28800 57600
|Strain|+ |Sval | 20000 40000 80000 160000 320000 640000

Weak scaling tests were conducted using Orthogonal and Cholesky decomposition,
with and without refinement. The remaining configuration options were the same as
for the strong scaling test. For each configuration, 10 runs were conducted.

Results The average runtime of the weak scaling test without refinement can be seen
in Figure 5.3, the results of the test with refinement are shown in Figure 5.4.

For the test without refinement, there is a slightly growing overhead when increasing
the number of processes. However, the overhead grows much slower than the global
problem size. Furthermore, there is a relatively high variance between the runs, which
might be explained by the short overall runtime. When doubling the number of tasks,
there are also some combinations where the runtime decreases, especially for the

33

5. Evaluation

Orthogonal decomposition. This could be caused by external influences on the runtime
or increased communication efficiency for certain numbers of tasks.

Note that with refinement, the weak scaling test is not quite well defined. As
refinement increases the number of grid points, the local problem size grows, which
is expected to increase the runtime. However, the decision to perform refinement is
based on the error function, which usually decreases when a larger training set is used.
Consequently the number of refinements can decrease as the number of tasks increases.
This can also be observed in the sudden drops in runtime in the results of the weak
scaling test with refinement. Note that more refinements are performed in the version
with Orthogonal decomposition, which results in the slower runtime compared to the
Cholesky decomposition. When ignoring the drops, the general trend is similar as
without refinement. Comparing the overall runtime with the test without refinement, it
becomes clear that refinement takes most of the runtime at this problem size. However,
refinement also carries an additional communication overhead, as the system matrix
factorization has to be redistributed after refinement. The increase of this overhead can
be observed clearly observed when the number of processes exceeds 16.

Conclusion While there is a slightly growing overhead when increasing the number
of processors, the weak scaling results were generally as expected. When compared
to the growth of the global problem size, the increase of overhead is not significant.
Furthermore, the local problem size in this test was quite small, as it was limited by the
size of the dataset. With a larger problem size, the variance and fraction of overhead
should further decrease.

34

5. Evaluation

reference 1x1 2x1 4x1 8x1 16x1 32x1

MPI tasks

0

5

10

15

20

25

30

35

40

ru
nt

im
e

in
se

co
nd

s

decomposition

Orthogonal

Cholesky

Figure 5.3.: Results of the weak scaling test on the DR10 dataset without refinement.
The results show a higher variance between runs than for the strong scaling
tests, which is likely caused by the relatively small problem size per node.
Weak scaling efficiency shows only a small overhead when increasing the
number of MPI tasks. The version with Cholesky decomposition performs
slightly more consistent than Orthogonal decomposition, which is likely
caused by a lower communication overhead, as fewer matrices have to be
distributed.

35

5. Evaluation

reference 1x1 2x1 4x1 8x1 16x1 32x1

MPI tasks

0

100

200

300

400

500

ru
nt

im
e

in
se

co
nd

s

decomposition

Orthogonal

Cholesky

Figure 5.4.: Results of the weak scaling test on the DR10 dataset with refinement. For
certain configurations, the runtime gets significantly lower. This is caused
by increased classification accuracy, which is a result of the larger global
problem size, leading to a lower number of overall refinements. However,
with an increasing number of tasks, additional communication overhead
for distributing the updated decomposition causes a drop in performance.

36

6. Future Work

As already noted at some points in the previous chapters, there are some areas where
further improvements of the current algorithm and implementation are possible. This
was outside the scope of this thesis, however it can be implemented in the future to
enhance the performance of the algorithm presented here.

Parallelization of refinement As shown in the previous chapter, enabling refinement
leads to a significant runtime overhead. This is mostly caused by the fact that refinement
is currently done in serial. Consequently, a significant performance gain can be expected
from parallelizing the refinement operation as well as the update of the system matrix
decomposition that follows refinement. As the refinement function is currently called
on all learners, integration of a parallel refinement algorithm should be possible.
Depending on the factorization type used, implementing a parallel system matrix
update should essentially involve translating conventional linear algebra operations
to ScaLAPACK operations, which can be performed by the DataMatrixDistributed and
DataVectorDistributed classes. However, these classes might need to be extended if
further operations are needed.

Optimization of memory usage In addition to achieving a lower runtime, paralleliza-
tion of the system matrix updates can also be used to lower memory usage. Currently,
DBMatOffline class has to store both a local and a distributed version of the factor-
ization. For the Orthogonal decomposition, there are even multiple matrices in the
DBMatOfflineOrthoAdapt and DBMatOnlineOrthoAdapt classes that are stored in this
redundant manner. When a local refinement and matrix factorization update is no
longer needed, these classes can be refactored to eliminate the local storage during the
Online phase and therefore reduce memory usage.

Vectorization of mass evaluation To create the vector b and for calculation of the
error function, all datapoints of the training or validation set have to be evaluated on
the sparse grid. While this is parallelized in the new algorithm, it currently uses a
highly recursive evaluation algorithm. While this algorithm is optimal in theory, it
has been shown that using vectorization of modern hardware to directly calculate the

37

6. Future Work

interpolation ∑i αi ϕi is faster [HP11]. Therefore, it should be explored whether it is
possible to exceed the performance of the current implementation by parallelizing the
vectorized version of the evaluation routine.

Parallelization of the Offline phase While not related to the performance of the
Online phase, the runtime of the Offline phase can get unreasonable long for high
dimensional problems. This could be solved by using ScaLAPACK to parallelize the
calculation of the matrix decomposition.

38

7. Conclusion

As a result of this thesis, a model-parallelization approach was successfully imple-
mented for the SGDE based classification algorithm in the SG++ library. This involved
evaluation of different parallelization approaches, design of a distributed algorithm,
analysis of the matrix distribution scheme and implementation, including integration
into the datamining pipeline. Furthermore, the ScaLAPACK library was integrated into
the SG++ toolbox and easy to use wrapper classes were created for the distributed data
structures. This provides a good basis for futher parallelization projects. Some areas
where this would be beneficial have been identified in the previous chapter.

The performance of the implementation was analyzed and evaluated with strong
and weak scaling tests. Results were largely as expected and only degraded when
insufficient problem sizes were reached. However, it was identified that refinement
creates a bottleneck which severly limits speedup, consequently this area should have
high priority for further parallelization.

Overall, an efficient parallel implementation of the classifier was combined with the
highly configurable and easy to use datamining pipeline. It is expected that this enables
efficient learning even on highly dimensional datasets with a large number of grid
points. Therefore, the capabilities of the SGDE based classifier in the SG++ library were
increased by this addition.

39

A. Appendix

40

A. Appendix

MPI tasks
run # reference 1× 1 2× 1 4× 1 8× 1 16× 1 32× 1

1 149.81 136.61 90.53 53.79 29.55 21.80 20.18
2 141.32 132.60 83.26 47.95 29.83 22.57 20.24
3 140.53 152.44 81.04 49.33 29.47 21.92 20.40
4 140.11 137.27 81.76 50.19 30.59 21.74 20.18
5 129.97 151.27 82.53 48.77 29.69 23.83 20.03
6 128.32 137.84 81.38 48.82 30.12 21.84 20.48
7 124.24 150.92 83.53 48.03 29.72 23.15 20.98
8 140.08 150.53 83.13 48.96 29.32 22.50 20.11
9 140.48 150.76 81.61 49.29 29.39 21.65 20.68

10 140.40 148.99 82.63 48.18 32.13 23.15 20.38

Figure A.1.: Results of the strong scaling test without refinement and with Orthogonal
decomposition. Runtime for the 10 runs is given in seconds.

MPI tasks
run # reference 1× 1 2× 1 4× 1 8× 1 16× 1 32× 1

1 140.49 127.59 80.41 50.67 27.26 20.16 18.69
2 136.33 127.23 76.36 44.68 28.47 20.44 18.59
3 136.50 136.08 76.41 45.26 27.28 20.27 18.78
4 136.37 128.05 76.06 46.43 27.33 21.77 18.72
5 125.19 135.46 77.07 44.69 27.89 20.45 18.68
6 120.74 134.10 77.68 44.63 27.62 20.35 19.63
7 121.32 135.73 77.29 45.13 29.55 20.88 19.17
8 136.64 135.86 77.81 49.94 27.23 20.34 18.57
9 119.03 126.98 77.34 45.39 28.10 20.30 19.81

10 118.99 134.38 76.06 44.43 27.59 20.42 18.62

Figure A.2.: Results of the strong scaling test without refinement and with Cholesky
decomposition. Runtime for the 10 runs is given in seconds.

41

A. Appendix

MPI tasks
run # reference 1× 1 2× 1 4× 1 8× 1 16× 1 32× 1

1 554.24 553.70 505.21 445.99 411.80 401.74 533.63
2 535.97 564.79 500.98 463.15 413.81 401.38 490.41
3 531.31 561.85 473.52 443.58 410.90 423.13 521.82
4 531.23 559.26 503.16 445.79 434.67 401.75 526.97
5 551.22 547.41 481.35 456.54 411.81 404.37 521.19
6 546.08 557.40 505.96 448.59 435.20 427.24 519.49
7 530.18 568.28 490.24 461.26 412.30 402.58 527.19
8 528.97 561.59 476.43 437.89 438.85 402.28 564.83
9 528.54 572.29 477.38 437.63 433.87 421.38 566.76
10 531.22 546.59 485.18 436.27 411.61 426.64 537.55

Figure A.3.: Results of the strong scaling test with refinement and with Orthogonal
decomposition. Runtime for the 10 runs is given in seconds.

MPI tasks
run # reference 1× 1 2× 1 4× 1 8× 1 16× 1 32× 1

1 264.94 258.18 180.42 135.05 124.02 95.86 120.47
2 274.25 264.18 174.33 151.50 125.39 94.40 100.69
3 262.49 246.51 176.73 135.61 128.72 94.69 122.60
4 239.13 243.40 174.83 149.34 125.72 115.50 103.36
5 259.35 253.03 173.57 151.95 108.24 115.10 121.51
6 259.30 253.56 173.90 150.90 127.28 94.62 123.20
7 264.80 243.39 173.75 151.42 125.63 94.99 121.74
8 255.49 246.74 174.84 149.04 127.01 95.00 122.16
9 266.89 249.57 174.15 150.12 123.69 114.89 121.14
10 259.86 250.76 176.51 140.12 107.34 114.97 123.24

Figure A.4.: Results of the strong scaling test with refinement and with Cholesky
decomposition. Runtime for the 10 runs is given in seconds.

42

A. Appendix

MPI tasks
run # reference 1× 1 2× 1 4× 1 8× 1 16× 1 32× 1

1 16.85 22.73 22.35 56.92 14.95 14.66 18.17
2 8.69 17.55 25.47 30.12 24.02 24.87 29.41
3 8.70 22.56 16.14 25.53 14.02 14.61 18.36
4 8.70 17.66 17.81 15.49 25.19 14.50 29.03
5 8.70 22.63 16.53 26.04 13.68 14.91 18.37
6 8.74 17.86 25.49 15.64 23.95 24.69 23.19
7 8.76 22.95 17.41 26.18 13.95 14.61 18.33
8 8.69 17.59 25.45 15.54 23.89 24.63 23.33
9 8.79 17.57 15.61 20.15 13.88 14.77 18.34
10 8.81 27.57 16.27 16.91 23.74 19.64 28.38

Figure A.5.: Results of the weak scaling test without refinement and with Orthogonal
decomposition. Runtime for the 10 runs is given in seconds.

MPI tasks
run # reference 1× 1 2× 1 4× 1 8× 1 16× 1 32× 1

1 12.07 11.64 13.69 16.26 16.67 18.14 16.98
2 9.44 11.69 21.00 17.29 11.61 13.01 16.73
3 9.38 11.71 10.87 12.33 11.63 23.44 16.69
4 9.33 17.00 20.77 12.45 23.03 29.43 16.55
5 9.29 12.41 10.75 23.07 21.67 23.09 16.87
6 9.39 12.00 20.99 22.73 23.58 23.19 16.67
7 9.39 22.40 15.78 13.04 22.09 18.06 16.75
8 9.31 11.93 11.07 12.50 21.75 12.99 16.84
9 9.46 11.63 20.81 22.54 23.48 18.52 16.71
10 9.32 22.07 17.72 23.76 11.63 13.24 16.99

Figure A.6.: Results of the weak scaling test without refinement and with Cholesky
decomposition. Runtime for the 10 runs is given in seconds.

43

A. Appendix

MPI tasks
run # reference 1× 1 2× 1 4× 1 8× 1 16× 1 32× 1

1 360.31 380.75 427.99 220.05 232.68 236.56 262.26
2 356.05 379.54 419.18 207.52 208.79 211.42 291.03
3 357.70 378.19 418.72 211.45 211.85 237.27 281.97
4 355.48 381.90 395.08 207.34 233.03 211.48 309.42
5 355.63 379.84 420.65 206.39 235.02 211.30 281.19
6 355.33 379.57 419.19 240.32 232.13 236.11 314.41
7 355.22 379.12 403.96 74.37 207.40 212.73 306.44
8 356.13 378.83 418.43 213.59 206.87 236.87 288.19
9 355.74 379.02 394.52 207.01 234.49 235.99 283.96
10 356.17 380.03 419.37 214.29 209.80 236.21 278.58

Figure A.7.: Results of the weak scaling test with refinement and with Orthogonal
decomposition. Runtime for the 10 runs is given in seconds.

MPI tasks
run # reference 1× 1 2× 1 4× 1 8× 1 16× 1 32× 1

1 50.45 52.11 33.74 87.28 79.17 85.15 160.15
2 46.90 51.42 30.67 81.76 79.71 84.89 160.06
3 46.60 54.26 30.37 84.60 79.13 84.99 159.53
4 47.07 51.77 30.40 82.03 79.06 86.23 159.92
5 46.94 58.26 33.19 82.08 82.71 86.76 159.66
6 46.64 52.12 32.22 84.23 78.90 85.37 160.19
7 46.88 51.44 30.35 81.84 82.61 85.28 159.55
8 46.69 51.31 32.28 82.37 79.78 85.73 159.74
9 46.89 51.90 37.29 82.71 78.88 84.84 160.49
10 47.63 52.56 30.76 81.87 82.27 84.90 159.09

Figure A.8.: Results of the weak scaling test with refinement and with Cholesky decom-
position. Runtime for the 10 runs is given in seconds.

44

Bibliography

[Ahn+14] C. P. Ahn, R. Alexandroff, C. A. Prieto, F. Anders, S. F. Anderson, T. Ander-
ton, B. H. Andrews, É. Aubourg, S. Bailey, F. A. Bastien, et al. “The tenth
data release of the Sloan Digital Sky Survey: first spectroscopic data from
the SDSS-III Apache Point Observatory galactic evolution experiment.” In:
The Astrophysical Journal Supplement Series 211.2 (2014), p. 17.

[Amd67] G. M. Amdahl. “Validity of the single processor approach to achieving large
scale computing capabilities.” In: Proceedings of the April 18-20, 1967, spring
joint computer conference. ACM. 1967, pp. 483–485.

[BG04] H.-J. Bungartz and M. Griebel. “Sparse grids.” In: Acta numerica 13 (2004),
pp. 147–269.

[Bis06] C. M. Bishop. Pattern Recognition and Machine Learning (Information Science
and Statistics). Berlin, Heidelberg: Springer-Verlag, 2006. isbn: 0387310738.

[Bla+97] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon,
J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker,
and R. C. Whaley. ScaLAPACK Users’ Guide. Philadelphia, PA: Society for
Industrial and Applied Mathematics, 1997. isbn: 0-89871-397-8 (paperback).

[Bod17] V. Bode. “Parallelization of a Sparse Grids Batch Classifier.” Bachelor’s
thesis. Technical University of Munich, 2017.

[Bos17] D. Boschko. “Orthogonal Matrix Decomposition for Adaptive Sparse Grid
Density Estimation Methods.” Bachelor’s thesis. Technical University of
Munich, 2017.

[Fuc18] D. Fuchsgruber. “Integration of SGDE-based Classification into the SG++
Datamining Pipeline.” Bachelor’s thesis. Technical University of Munich,
2018.

[HP11] A. Heinecke and D. Pflüger. “Multi- and Many-Core Data Mining with
Adaptive Sparse Grids.” In: Proceedings of the 8th ACM International Confer-
ence on Computing Frontiers. New York, USA: ACM, May 2011, 29:1–29:10.
isbn: 9781450306980.

[Int19] Intel(R). Intel Math Kernel Library Developer Reference. 2019.

45

Bibliography

[Kum02] V. Kumar. Introduction to Parallel Computing. 2nd. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 2002. isbn: 0201648652.

[Let17] M. Lettrich. “Iterative Incomplete Cholesky Decomposition for Datamin-
ing using Sparse Grids.” Studienarbeit/SEP/IDP. Technical University of
Munich, 2017.

[Mur12] K. P. Murphy. Machine learning: a probabilistic perspective. en. Adaptive
computation and machine learning series. Cambridge, MA: MIT Press, 2012.
isbn: 978-0-262-01802-9.

[Pac11] P. Pacheco. An introduction to parallel programming. Elsevier, 2011.

[Peh13] B. Peherstorfer. “Model Order Reduction of Parametrized Systems with
Sparse Grid Learning Techniques.” Dissertation. München: Technische
Universität München, 2013.

[Pfl10] D. Pflüger. Spatially Adaptive Sparse Grids for High-Dimensional Problems.
München: Verlag Dr. Hut, Aug. 2010. isbn: 9783868535556.

[PPB10] D. Pflüger, B. Peherstorfer, and H.-J. Bungartz. “Spatially adaptive sparse
grids for high-dimensional data-driven problems.” In: Journal of Complexity
26.5 (Oct. 2010). published online April 2010, pp. 508–522. issn: 0885-064X.

[Sie16] A. Sieler. “Refinement and Coarsening of Online-Offline Data Mining
Methods with Sparse Grids.” Bachelor’s thesis. Technical University of
Munich, 2016.

46

	Abstract
	Contents
	Introduction
	Theoretical Background
	Machine Learning
	Sparse Grids
	Sparse Grid Density Estimation and Classification

	Parallelized Algorithm
	Evaluation of Parallelization Concepts for SGDE
	Node-Level and Cluster-Level Architectures
	Parallelization Approaches

	Current State
	Proposed Algorithm
	Matrix Distribution

	Implementation
	ScaLAPACK
	Matrix distribution
	Integration of the Parallel Algorithm into the Datamining Pipeline

	Evaluation
	Analysis of the proposed algorithm
	Scalability
	Strong Scaling
	Weak Scaling

	Future Work
	Conclusion
	Appendix
	Bibliography

