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Abstract—One remaining challenge for Automated Driving
(AD) that remains unclear to this day is its assessment for
market release. The application of previous strategies derived
from the V-model is infeasible due to the vast amount of
required real-road testing to prove safety with an acceptable
significance. A full set of requirements covering all possible
traffic scenarios for testing and AD system can still not be
derived to this day. Several approaches address this issue by
either improving the set of test cases or by including other
virtual test domains in the assessment process. However, all
rely on simulations that can not be validated as a whole and
therefore not be used for proving safety.

This work addresses this issue and exhibits a method to verify
the use of simulation in a scenario-based assessment process.
By introducing a pipeline for reprocessing real-world scenarios
as test cases we demonstrate where errors emerge and how
these can be isolated. We unveil an issue in simulation which
may cause behavior changes of the AD function in resimulation
and thus makes the straight forward use of simulation in
the assessment process impossible. A solution promising to
minimize reprocessing errors and to avoid this behavior change
is presented. Finally, this enables the local variation of real-
world driving tests in a solely simulative context yielding verified
and usable results.

Index Terms—Autonomous vehicles, Vehicle safety, Risk anal-
ysis, Performance analysis

I. INTRODUCTION

While recent advances in Automated Driving (AD) move
towards SAE level 3 and higher [1]-[3], it remains unclear
how to assess them for the release on the market [4]. Despite
the regulations for the release being well defined in ISO
26262 [5], the estimated volume of required real-road testing
is 5. 10°km [6], [7], which is infeasible to be covered
under economical and temporal aspects. Additionally, it
does not guarantee the coverage of every possible situation.
Hence, current research in assessment methods tends towards
scenario-based testing [8]-[10].

Preliminary to the assessment of AD, Advanced Driver-
Assistance Systems (ADAS) were tested by means of
the V-model [11]. Herein, real-world testing is substituted
by Simulation-in-the-Loop (SIL), Vehicle-in-the-Loop (VIL)
or Hardware-in-the-Loop (HIL) tests in early development
stages. Nevertheless, real-world testing remains the last
instance before release. This is possible as an ADAS is
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generally subject to a limited scope of driving scenarios and
the driver is still available as a fallback layer. However, the
scope of AD is unlimited with respect to driving scenarios
and, therefore, results in a large amount of required real-
road testing mentioned before. Also, the driver has to take
less responsibility through the increasing SAE levels, drops
out as fallback to the driving task at level 3 and finally is
obsolete in level 5.

To cope with this problem, the following three approaches
emerge current research. The first tries to minimize the
number of test cases by avoiding redundancies [8]. Starting
the test case generation from observed critical scenarios is
the second attempt [9], [12]. Both attempts rely on the
fact that a generated test case can be conducted on real
roads, which is not entirely true. A specific scenario can
not exactly be reconstructed in reality, but in virtual testing
domains like SIL, VIL or HIL. As a consequence, the last
approach suggests enabling those virtual domains to assist in
the assessment process [10].

Simulation can never be validated in its entirety [13] as
errors emerge due to modeling and simplifying the reality.
However, it is possible to compare a test case in reality to
the simulation and verify the simulation locally. Since it is
not possible to reconstruct a virtual test case on real roads
with adequate precision, reprocessing of actual driving tests
seems more promising. Still, errors emerge along the pipeline
of reprocessing. It has been shown that quantification of those
is possible and supports the local cross-verification of test
cases [14].

In this work, we introduce a pipeline for reprocessing driv-
ing scenarios recorded in the real world. Based on a deeper
analysis of errors, the following hypotheses are established:

1) The reprocessing error can be quantified and tracked
back to its sources

2) The local sensor offset causes behavior changes in the
reprocessing that can be avoided by scenario-based
sensor models

3) A locally verified simulation can enable valid local
scenario variations that participate in the assessment
process

The rest of this work is structured as follows. Section
IT describes the reprocessing pipeline in detail before the
subsequent analysis isolates the major error sources in section
IIl. Afterward, in section IV, an investigation of the error
causes leads to the use of scenario-based sensor models.
Under the assumption of a locally verified simulation, section
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Fig. 1.

Flow chart of the reprocessing pipeline presented in this work. Both Ground Truth (GT) and Sensor Data (SD) traces are extracted from a

measurement of the prototype vehicle and converted into the according scenario description. A resimulation of the latter provides traces and scenarios for
GT (rGT) and SD (rSD) respectively. The assessment evaluates the behavior of the AD function in all available scenarios.

V provides prototypic results of a local scenario variation and
its benefits to the assessment of AD. Finally, the conclusion
is drawn in section VI.

II. REPROCESSING PIPELINE

In this section, the individual components of the applied
reprocessing pipeline are discussed in detail. Fig. 1 shows a
flow chart of the complete reprocessing pipeline and its three
major modules - preprocessing, simulation and assessment.
The starting point is a measurement from the prototype
setup explained later in section II-A containing the recorded
real-world measurements. The reprocessing module extracts
relevant information from the measurement and converts the
traces into a scenario description format. This format contains
all relevant information to be interpreted and resimulated by a
simulation framework with the same embedded AD function
as in the real-world experiment. Resulting traces are again
converted into the scenario description to be evaluated in the
assessment module based on a sensitive accident risk measure
and compared to the original ones. The described pipeline is
executed in parallel for recorded Sensor Data (SD) and for
Ground Truth (GT). Further, the resimulations of GT and SD
are addressed as rGT and rSD respectively in the remainder
of this work.

The focus of this section is on the functionality and
necessity of each component, whereas the resulting approx-
imation errors in comparison to the real-world test and their
propagation through the reprocessing pipeline is covered in
the following section III.

A. Measurement Setup

Before discussing each component individually the cre-
ation of an initial measurement by a real-world experiment
is reviewed. As illustrated in the flow chart of Fig. 1, the
measurement contains the SD meaning the information from
the vehicles standard sensor equipment as well as the GT
information. The latter is an approximation as reality can not
be described in arbitrary detail. However, the applied Differ-
ential Global Positioning System (DGPS) depicted in Fig. 2
allows an accuracy of 1.0cm for the position, 0.05km/h for
the velocity and 0.1rad/m for the vehicle heading through a
reference antenna with a known position. In comparison to
other error magnitudes discussed later, this can be interpreted
as GT information.

Lidar Camera

I Radar

Fig. 2. Sensor setup of the prototype vehicle used for recording the
measurements in this work. The depicted cones only show the schematic
sensors arrangement and field of view for the tree sensor types Radar, Lidar
and camera. GT is obtained through a DGPS system using a reference
antenna with known position.

An AD function strongly relies on two kinds of mea-
surements. The first is the aggregation of the data of the
vehicle equipped with the AD function itself, namely the
EGO vehicle, which is required for self-localization and
path planning. Secondly, the understanding of its surrounding
including the road, obstacles and other traffic objects (TOs)
defines the basis for the AD function’s decisions. Hence,
a wide range of sensors is key components to the system
[15]. The applied sensor setup for the EGO vehicle shown
in blue is illustrated in Fig. 2. It includes Radar, Lidar
and camera systems. The sensor fusion of the AD function
takes the provided information of all three systems with an
individual confidence level into consideration and generates
the fused object list [16]. Within this list, each detected
object is assigned a unique ID and its corresponding dynamic
and static quantities describing its state. In combination
with the localization on the map, the object list including
predictions of its states illustrates the environment model for
the AD function. Further, planning and decision making in
the function relies on the odometry data of the EGO vehicle
and the generated environment model and is referred to as
SD.

The accuracy among the acquired data for a single object
in the SD varies depending on the sensor setup. In general,
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the position measurement is the most accurate quantity
whereas velocity or especially heading have a larger error.
In case of velocity and heading it is challenging to obtain
meaningful values from cameras or point clouds and thus
these quantities are mostly calculated by changes in position.
As a consequence, this calculation method leads often to
a time delay and an inconsistency between the measured
position and velocity or heading values in the object list.
Section III gives a concrete overview of the sensor errors
which are present in the acquired data by directly comparing
the SD to the GT in terms of position, velocity and heading.

B. Scenario Description

An important role in the reprocessing pipeline is the
description of a scenario. Particularly, a scenario in the auto-
motive context is a timely series of scenes, each containing
static and dynamic properties of the traffic participants and
their surroundings [17]. In addition, the description has to
fulfill certain requirements [14] to be in accordance with a
suitable assessment method for AD [7]:

o The description has to be unambiguous concerning all
objects and their temporal sequences.

o The description has to be consistent in case of redundant
information.

o The degree of description accuracy has to be sufficient
to not affect the performance of the AD function by
simplifying relevant information.

The first requirement demands an unambiguous descrip-
tion in the manner of a recipe on how the scenario is
designed. This means there must not be an uncertainty in
the description of a scenario which could be interpreted
differently in any simulation framework. The results from
two individual simulation frameworks will most likely differ
but this is part of the simulation error and not an issue of the
scenario description. This can be solved by a standardized
implementation of the scenario interpretation module within
the simulation framework, for example, a trajectory follower
for the simulated TO. A further assessment and performance
comparison of the simulation results would be meaningless
as, indeed, already the underlying scenario is not the same
due to the free interpretation possibility. Thus, the missing
unambiguous feature would also prevent the aggregation of
results from different sources like for example a critical sce-
nario database of different manufacturers and the associated
knowledge gain.

The second required feature for the description is a consis-
tent representation of the listed quantities [10]. This relates
especially to the representation of an object trajectory. In
general, a list of position points with corresponding times-
tamps is under the condition of a sufficient sampling rate
equally suited as a time depended velocity and heading curve
including a starting position. Of course, there is no reason
not to include redundant representations but they have to
be consistent among each other. The arising problem from
this consistency requirement happens by converting measured
data into the description. As already mentioned in section
II-A, the quantities in the object list of SD are not consistent
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Fig. 3. The scenario description fit on GT data for position, velocity and
heading is shown as thin green lines for TO and thin blue lines for EGO.
This fit is superimposed on the actual GT data shown as thicker lines.

and one has to choose a certain representation. Indeed, the
AD function is planning on a scenario which is not existing
in reality as its quantities are inconsistent. Again the precise
errors caused by converting GT and SD into the scenario
description is covered in section III.

Lastly, the representation of traces in the description cho-
sen for this work is discussed. Considering the accuracy of
the position coordinates in the measured data on the one
hand and the clearer and less inflated structure of a time-
dependent curve on the other hand, leads to both benefits
being combined for a description of traces. This means, the
description uses the curve representation in terms of velocity
and heading but the data is obtained by fitting the measured
position data via equation (1).

Z1(t) = v(t) - cos(6(t))
Z2(t) = v(t) - sin(6(¢))

The velocity and heading curves are implemented as
independent splines of cubic polynomials. The number of
spline sections for velocity and heading is dynamic and au-
tomatically determined by increasing the number of sections
until a desired threshold in the cost function is reached. This
threshold is engineered to be small enough to be negligible
compared to the inconsistency error raised by the conversion
into the scenario description. Now fitting the splines formu-
lates as an optimization problem with their spline parameters
as optimization target. Within the cost function, heading and
velocity splines are integrated by the use of equation (1)
yielding position values. Then, the root-mean-square error
of the Euclidean distance to the measured position results in
the cost value for minimization.

Fig. 3 shows an exemplary scenario fitting on GT data. On
the bottom, the measured velocity and heading values, which
are not part of the fitting process itself, are superimposed
with the resulting splines from the position-based fit. The
upper plot compares the position resulting from the integra-

O(t) = w

sty=a
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Errors emerging from the reprocessing pipeline
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Fig. 4. Errors emerging from the reprocessing pipeline for distance d, velocity v and heading € as rows. The columns represent the steps of the pipeline
for either GT or SD. Each cell contains boxes for the EGO vehicle and TO colored according to their type respectively. The boxes themselves enframe
lower (25%) to upper (75%) quantile with whiskers to the full extent. Error mean and standard deviation are embedded as diamonds in the boxes.

tion of those splines trough equation (1) with the original
data and shows that errors in the trajectory can hardly be
observed. Hence, the shown scenario description is capable
of representing the scenario while being consistent and
unambiguous. The exact errors of this fit and the difficulty
with inconsistencies in SD are further considered in section
1.

C. Resimulation

The next step in the reprocessing pipeline is the resimu-
lation of the described scenario. The simulation framework
will guide the described objects along their predefined time-
depended path given by the velocity and heading spline from
the scenario description. Besides its starting conditions, the
AD function in the EGO vehicle is free to perform during
the resimulated scenario. Of course, the applied function
is the same as the one used in the real-world experiment.
The quality of the underlying physical models, which are
responsible for the movement of the EGO vehicle according
to the desired path of the AD function in the simulation
framework, is partly responsible for the simulation error.
Another part of this error is the capability of the simulation
of following the scenario description in terms of matching
the starting conditions and preserving object trajectories.

D. Risk Assessment

A useful test framework should always provide measures
for quantifying the test results in an understandable manner.
A test’s passed or failed condition can hardly be derived
by just inspecting the measured or simulated traces itself.
Hence, the very last part of the presented pipeline calculates a
measure assessing the behavior of the AD vehicle. Certainly,
a wide range of measures concerning accident risk, passenger
comfort and compliance with traffic laws, etc. is required for
the final release of AD [10]. For this proof of concept, we
focus on a single measure concerning accidents as avoiding
those is the primary goal of the function.

The conversion from pure trace to such a measure is
described in [18]. Herein a set of possible predictions for
TOs defines the possible outcomes of a driving scene — a

single step in time of the scenario — at first. These predictions
incorporate naturalistic driving behavior derived from the
euroFOT large scale driving study [19] and the vehicle model
from equation 1. This set is counterchecked with the planned
path of the EGO vehicle for possible accidents in the near
future. Evasion trajectories for every possible accident lead
to the Time-to-React (TTR) value. The weighted TTRs are
consolidated considering the trajectorie’s probability into a
single value of risk for the regarded scene. Iteration over all
scenes of the scenario results in a time series of accident-
related risks.

In this framework, the measure is computed on the data
from the scenario description as it is physically consistent,
which is crucial for the underlying predictions. As a low
accident risk is a direct evidence for a well-performing AD
function, this measure is suitable for the assessment pipeline.

Having discussed all required components for the re-
processing pipeline, a deeper insight on arising errors is
necessary to verify the usability of the simulation.

III. ERROR PROPAGATION

The introduced pipeline enables the virtual reprocessing
of real-world experiments that are necessary to locally verify
the simulation. Certainly, virtual testing will never reveal
the exact same result as a real-road drive. In this section,
the sources and magnitudes of errors emerging from the
reprocessing pipeline are discussed. After every step of the
pipeline, there exists a representation of vehicle traces. This
enables isolation and quantification of the errors by compar-
ing input and output traces of every step independently. The
used test case for this example is a cut-in and brake maneuver,
in which the EGO vehicle drives 100km/h autonomously
on the right lane and is inferred by a TO cutting into the
lane from the left followed by a braking maneuver. Fig. 4
accompanies this section by showing the magnitudes of errors
for the position Ad, velocity Av and heading A6 in each
row. The columns represent the steps in which the errors
emerge, separated by SD and GT, while each cell contains
box plots for the EGO and TO errors. The boxes itself range
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Scenario SD velocity compared to GT and SD data
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Fig. 5. The fitting of SD is compared to GT and SD traces. This fit converges
towards GT and hence corrects the error in SD.

from the lower (25%) to the upper (75%) quantile and the
whiskers depict the complete extent of the error. Lastly, the
inner diamond of the boxes represent the errors mean and
standard deviation.

The first error emerges through sensors equipped by the
EGO vehicle and is depicted in the first column of Fig. 4.
As already explained in section II-A, the prototype vehicle
features both standard AD sensors and reference sensor
technology considered as SD and GT respectively. The self-
measurement thus the odometry of the EGO vehicle reveals
negligible offsets, whereas the TO imposes greater difficulty
to the sensor setup. While Av and A0 are unbiased, the
position offset of the TO Ad shows a continuous offset of
~ 1.4m, which in this scenario makes the TO appear farther
away than it is in reality. Hence, the SD scenario seen by the
EGO vehicle and the GT scenario differ significantly from
each other. Therefore, the subsequent errors of the pipeline
are presented for both cases individually.

In the next step, the data is made interpretable for the
simulation framework by fitting into the scenario description
format from section II-B. Columns 2 and 3 of Fig. 4 reveal
that the errors arising by fitting the GT are significantly lower
as with SD. While the reference sensors deliver accurate
and physically consistent data, which enable a precise fitting
of the scenario, the SD is not as consistent. However, an
unambiguous scenario description must be consistent and
errors emerge by compromising the inconsistency within SD.
Fig. 5 compares GT and SD velocity to the scenario fit of
SD. As the fitting is performed solely on position values
over time, the inconsistency of velocity not matching those
position values is removed. Furthermore, due to the position
errors low variance, the velocity is “corrected” towards the
GT during fitting. Solely the position offset of the sensor
error explained before remains in the SD scenario besides
the fitting error itself.

Additional errors arise from the simulation of the scenarios
itself due to inaccuracies in modeling the physical world.
They are presented in columns 4 and 5 of Fig. 4. The error
of EGO and TO have to be considered apart from each other.
While the TO error is only defined by the capability of the
simulation to follow the predefined traces in the scenario, the
EGO vehicle is free in its movement and decisions. For GT
the vehicle is presented with accurate data it has not seen
in the real driving test. For example, the described position
offset is not present. Hence, in this scenario, the TO appears

Both resimulation traces compared to GT
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Fig. 6. The GT trace is compared to those of GT and SD resimulation for the
last 3s of the scenario. In both resimulations, the EGO behaves differently
to the measured GT by initiating a lane change to the left.

closer to the EGO vehicle than the sensors have seen it. Fig.
6 compares the GT trace of the EGO vehicle to both GT
and SD resimulated traces. The more accurate detection of
the TO causes a behavior change in the EGO vehicle already
observed in [14]. Due to the closer appearance of the TO
to the EGO vehicle and the greater deceleration, the AD
function decides to avoid the TO on the left instead of just
braking. This change is also present in the resimulation of
SD. Although the position offset is present in this case, the
correction of velocity reveals the deceleration earlier to the
EGO vehicle due to the explained removal of the delay. Due
to the position offset being present in the SD resimulation,
its error is smaller in the SD pipeline than it is in the GT
pipeline.

Afterward, the simulated traces are fitted into the scenario
description again to make the assessment and comparability
to the original scenario easier. As the simulation provides
smooth and consistent data in both cases, the scenario fitting
errors depicted in columns 6 and 7 of Fig. 4 are negligibly
low.

Lastly, columns 8 and 9 summarize the errors of the whole
pipelines from the GT information to either rGT or rSD
scenario fit. It becomes apparent that the pipeline errors major
influence is the simulation error with the extent being lower
in the SD pipeline.

Summarizing, the errors in the reprocessing pipelines are
constructed by

ARPgr = AFITgr + ASIMgr + AFITgr
ARPsp = AS + AFITsp + ASIMgp + AFIT,sp,

where AFITgrsprcrrsp are the fitting errors for the respec-
tive traces, ASIMgrsp are the simulation errors and AS is
the sensor error. The components AFITgr, AFITgp, and
AFIT,gr are negligibly low. ASIMgr is the main influence
on the GT reprocessing pipeline error and is caused by the
EGO vehicle seeing the GT as opposed to reality, where SD is
present. Contrarily, the SD reprocessing pipeline has multiple
significant errors. The deleted inconsistencies are expressed
in AFITsp, which in succession also causes the behavior
change manifested in ASIMgr. Lastly, AS presents the offset
to the actual GT scenario. Hence, the error progression can
approximately be reduced to

ARPGT ~ ASIMGT
ARPSD ~ AS + AFITSD + ASIMSD

2

3)
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Velocity of scenario GT compared to rGT and rSD
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Fig. 7. The EGO vehicles GT velocity trace compared to both resimulations
shows the behavioral changes caused by errors in the pipelines in the upper
half. For reference, the TO’s velocity is also shown. The lower half expresses
this effect on the risk measure for the same case.

Both pipelines show significant changes in the outcome
with respect to the EGO vehicle’s behavior, making a straight
forward use of the simulated results in the process of AD
assessment not suitable. However, the sources and the cause
of the errors can be isolated and quantified, confirming
hypothesis 1. The next section discusses an approach to use
the gathered information for improving and locally verifying
the simulation.

IV. TOWARDS LOCAL CROSS-VERIFICATION OF
SIMULATION

So far a reprocessing pipeline and an in-depth analysis of
the arising errors is presented. It is shown, that due to these
errors a behavioral change of the AD function can happen in
the virtual world. Such changes put the simulated scenario in
a different category than the measured one, making a direct
comparison for local verification meaningless. This section
analyses the cause of the changes and suggests a solution to
avoid those.

The upper half of Fig. 7 compares the velocity profiles of
the GT scenario to both resimulations of GT and SD for the
known measurement of section III. We observe the reaction to
the interfering TO as drops in the velocity profiles of the EGO
vehicle in GT, rGT and rSD shown in solid blue, dashed blue
and dashed cyan respectively. Comparing the resimulated GT
behavior to the actual behavior reveals an earlier reaction of
approximately 1s in the simulation:

Atreact,(}T(—)rSD = treact,GT - treact,rGT ~ ls. (4)

Considering the observed over-approximation of ~ 1.4m in
the TOs distance in SD and the EGO vehicles speed of
100km/h, the reaction should only happen

Asgq

VEGO

tag, = ~ 0.05s 5)

later for resimulation. However, the observed reaction delay
is by far greater

Atreact,GT<—)rSD > tAs,d' (6)

Now comparing rGT to rSD with respect to the same reaction
criteria, the observed difference reveals approximately the
calculated difference from the miss-sensed position of the
TO:

Atreacl,rGT<—>rSD ~ tAS,d (7)

In section III it is already observed that the sensor mea-
surements contain physical inconsistencies that can not be
reproduced within the simulation, causing the simulation er-
ror to dominate the overall pipeline error. This inconsistency
manifests in the observed scenario by timely delays of the
TO’s velocity and heading, which is neglected by the choice
of generating the scenario description in both GT and SD. As
most of the reaction difference can not be explained by the
offset in vehicle distance in GT and SD, which still remains in
the scenario description, it becomes obvious that the dynamic
sensor error is the main cause of the behavioral change.

This observation is further reinforced by the lower half
of Fig. 7, where the comparison of the same scenario is
shown for the risk measure of section II-D. While both
resimulations, rGT depicted in dashed green and rSD in
dashed red, remain in the same magnitude, while the original
GT risk in solid green is more than a magnitude greater. Due
to the nature of the applied risk measure and the resemblance
as accident probabilities as rare events, the shown values
differ in magnitudes. Hence, a logarithmic scale is suitable
to make the measure comparable.

It becomes apparent that without an appropriate repre-
sentation of the sensors in the simulation the local cross-
verification is not possible. Just adding the known and ob-
served offset in the simulation might offer reasonable results
for this exact scenario, but not for subsequent variations in
the local subspace. Additionally, this offset is only known
with present reference GT sensors. Hence, the deployment
of suitable sensor models is not evitable.

The given observations show that for this specific scenario
time delays, as manifested in the dynamic sensor error, biased
offsets and sensor noises are present. Especially the time
delay and bias are dependent on the driven scenario itself,
which suggests the use of scenario-based sensor models to
improve the simulation. Such a model is assumed to be
derivable from a reasonable set of real-world test drives
with the same equipped reference sensors, as the errors are
dependent on the static and dynamic properties of the TO
and interpolation is possible to a certain degree. A model
featuring both static and dynamic errors is applicable to the
reprocessing of GT, while SD only requires the dynamic part
as static errors are preserved.

It is also apparent that the risk measure from Fig. 7 is
robust against static errors such as ~ 1.4m, revealing only
minor changes. Hence, eradicating the behavioral changes in
the simulation through the suggested sensor models promises

1594

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 10:46:40 UTC from IEEE Xplore. Restrictions apply.



accurate local simulative results in risk measure with the
present reprocessing pipeline.

Having the same behavior in both reality and simulation
makes measuring the distance of the results and hence locally
verifying the simulation meaningful, encouraging hypothesis
2. Combined with the described sensor models, variations
in the local space of the scenario promise deeper insight
into the AD function behavior and deliver valid virtual test
kilometers.

V. SIMULATIVE ASSESSMENT THROUGH VARIATION

So far by just accurately reprocessing a scenario from
reality, no additional information with respect to the assess-
ment of the AD function itself is gathered. The scenario
can also be assessed with its real-world information. Based
on the assumption that if the simulation can reprocess a
given scenario accurately enough, local variations in purely
a simulative domain also provide valid results. Exploring
the local scenario space does not only generate additional
test kilometers for the statistical reliability proof, but it
also provides information about the local risk gradient for
critical scenarios. The purpose of this kind of explorations
is not to find completely new kinds of scenarios but to
create meaningful, physically feasible and slightly changed
derivatives of the original scenario. The confidence in such
variations is coupled to the simulations local accuracy derived
from the previous cross-verification.

The generation of a representative ensemble composed of
locally related scenarios is a sophisticated task. Only little
research is available in this area [20]-[22] and most of it
targets global variation and test case generation, which is
not suitable for this work. A simple variation of certain
parameters in the description is not valid as many parameters
are not independent of each other. The most complicated
process is the meaningful variation of an object trajectory
as it is expressed by parameters which have to preserve the
C? continuity of the velocity and heading spline. In detail,
variating the position coordinates in order to form a mean-
ingful cut-in geometry without taking care of the temporal
component will lead to jumps in the velocity or heading
over the time profile. Therefore, geometrical variations to the
cut-in geometry are only applied locally around the point of
crossing the lane of the EGO. This is established by fitting
a cubic Bezier spline to the geometry of the trajectory. The
trajectory is divided into equitemporal sections with the start
and end point of each section marking the two fixpoints of
a Bezier curve. The two remaining support points which
are required for a cubic Bezier curve are optimized under
the conditions of C? continuity between two neighboring
Bezier curves. To yield a unique solution for this optimization
problem, four additional constraints have to be added. These
can be utilized to fix the velocity and heading values at the
start of the first and at the end of the last Bézier curve. Based
on the constructed Beézier curve only certain fix points can be
variated which after the optimization process leads mainly to
a local change of the trajectory shape. In the case of a cut-in
scenario, we choose fix points around the lane change for

Trace of simulated variations compared to the GT
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Fig. 8. The simulations of 300 variations of the original scenario are

compared to the resimulation of GT by trace (upper), velocity (middle) and
risk (lower). The variations of the TO are shown in purple and the for the
EGO in blue. The risk of the rGT scenario is shown as reference in green.

variation. Beézier curves which are further from the variation
located are less affected by trajectory changes.

However, the newly generated shape of the trajectory
still lacks a smooth temporal representation for heading and
velocity around the variation as the varied fix points keep
their original time component. A solution to this problem is
exploiting the smooth nature of splines by applying again
the fitting algorithm explained in section II-B. This method
works only under the condition that the effects of the
variation are small and locally limited in comparison to the
length of the trajectory. This way, it is more costly for the
loss function to make many changes along the only slightly
variated trajectory parts than it is to fix the strongly variated
sections. Besides the smoothing effect of the fitter, the
trajectory is already expressed in the representation required
for the scenario description.

Certainly, this method of variation is not optimal and
might not always yield naturalistic and physically realistic
trajectories. Nevertheless, for this proof of concept, it is
sufficient as we only want to demonstrate that a purely local
variation can support the assessment of AD. For that reason,
the variation is not verified in more detail concerning a
realistic representation of the local scenario space.

An example variation for the previously observed scenario
is given in Fig. 8. The upper and middle part show the traces
and velocities of 300 variations of the TO in purple and the
simulated EGO vehicle in blue. Close local variation can be
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observed from the closeness of the paths in the trace plot
on the road. Similar velocity profiles and traces prove the
variation’s affiliation to the same scenario category and hence
are comparable to the original resimulated GT. However, a
few outliers are present due to the non-optimal variation used.
Also, the reaction time of the simulated EGO vehicle varies
according to the different TO behavior. As the sensor models
suggested in section IV are not yet implemented, the EGO
vehicle is expected to behave similarly to the resimulated
GT and not the measured GT. The lower part of Fig. 8
superimposes the distribution of the risk measures maximum
over the actual maximum from GT. It can be observed
that also the accident-related risk of the variations assemble
around the rGT marked in green, emphasizing the validity of
the simulative results and local variation.

Summarizing, this section shows that local variations
around a given verified scenario can yield additional valuable
and valid information to the assessment of AD, confirming
hypothesis 3. However, questions concerning the valid range
of this local variation combined with a measure of validity
and the method behind it itself still remain open to further
research. Also, it has to be guaranteed that naturalistic object
trajectories are provided.

VI. CONCLUSION AND FUTURE WORK

After declaring the necessity of virtual test domains, this
work introduces a reprocessing pipeline with the goal to
locally verify simulation for its deployment in the assessment
process of AD. An in-depth investigation of arising errors
reveals the major sources of those and isolated their cause.
Realizing that the latter even cause behavioral changes in
the AD function concluded that a straight forward cross-
verification of simulation with real-world driving tests is
meaningless. Further, the behavioral changes are investigated
and scenario-based sensor models are suggested as a promis-
ing relief to this issue. Based on the assumption of a locally
cross-verified simulation, a prototypic local scenario variation
is applied. The results show that even a simple variation can
provide additional test kilometers and is a promising starting
point to gather more information about the risk measures
local gradient.

Overall, the presented method to include simulation as
a valid component in the assessment process promises to
produce relief to the required amount of test kilometers.
The proof of concept is investigated on exemplary real data
with corroborative results. The remaining required parts to
fulfill this goal have been derived. Hence, future work and
research have to focus on developing and validating the
suggested scenario-based sensor models. Additionally, the
applied variation needs to be improved regarding its range of
validity and compliance to naturalistic TO behavior. Finally,
a measure of confidence in the simulative kilometers bound
to the cross-verification is desirable.

ACKNOWLEDGMENT

The authors gratefully acknowledge the financial support
by the BMW Group within the CAR@TUM project.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

1596

REFERENCES

SAE International, “Taxonomy and Definitions for Terms Related
to Driving Automation Systems for On-Road Motor Vehicles,” SAE
international, Tech. Rep. J3016, Sep. 2016.

E. Taylor, “BMW says self-driving car to be level 5 capable by
2021, Apr. 2017, https://ca.news.yahoo.com/bmw-says-self-driving-
car-level-5-capable-140103759—finance.html, accessed 24 Aug. 2018.
F. Lambert, “Tesla CEO Elon Musk: ‘self-driving will encompass
all modes of driving by the end of next year,” Mar
2018, https://electrek.co/2018/03/11/tesla-ceo-elon-musk-self-driving-
next-year/, accessed 16 Oct. 2018.

W. Wachenfeld and H. Winner, “The New Role of Road Testing for
the Safety Validation of Automated Vehicles,” in Automated Driving.
Springer, 2017, pp. 419-435.

“ISO/DIS 26262-1 - Road vehicles — Functional safety,” 2011.

H. Winner and W. Wachenfeld, “Absicherung automatischen Fahrens,”
Munich, 2013.

W. Wachenfeld and H. Winner,
Fahrens,” in Autonomes Fahren.
doi:10.1007/978-3-662-45854-9_21.
C. Amersbach and H. Winner, “Functional Decomposition: An Ap-
proach to Reduce the Approval Effort for Highly Automated Driving,”
in 8. Tagung Fahrerassistenz, 2017.

General Motors Company, “Self-driving safety report,” Detroit, 2018,
https://www.gm.com/content/dam/company/docs/us/en/gmcom/gmsafe
tyreport.pdf, accessed 16 Oct. 2018.

K. Groh, T. Kuehbeck, M. Schiementz, and C. Chibelushi, “Towards
a Scenario-Based Assessment Method for Highly Automated Driving
Functions,” in 8th Conference on Driver Assistance, Munich, Sep.
2017.

H. Winner, S. Hakuli, and G. Wolf, Handbuch Fahrerassistenzsysteme:
Grundlagen, Komponenten und Systeme fiir aktive Sicherheit und
Komfort.  Springer-Verlag, 2011.

T. Helmer, K. KompaB, L. Wang, T. Kiihbeck, and R. Kates, “Safety
Performance Assessment of Assisted and Automated Driving in
Traffic: Simulation as Knowledge Synthesis,” in Automated Driving.
Springer, 2017, pp. 473-494.

D. J. Murray-Smith, Testing and Validation of Computer Simulation
Models. Springer, 2015, doi:10.1007/978-3-319-15099-4.

K. Groh, S. Wagner, T. Kuehbeck, and A. Knoll, “Simulation and its
contribution to evaluate highly automated driving functions,” in SAE
Technical Paper. SAE International, 04 2019.

E. M. Guillaume Girardin, “Sensors and Data Management for Au-
tonomous Vehicles,” Yole Développement, Tech. Rep., 2015.

K. Banerjee, D. Notz, J. Windelen, S. N. Gavarraju, and M. He,
“Online Camera LiDAR Fusion and Object Detection on Hybrid
Data for Autonomous Driving,” in 2018 IEEE Intelligent Vehicles
Symposium, IV 2018, Changshu, China, June 26-29, 2018. 1EEE,
2018.

S. Ulbrich, T. Menzel, A. Reschka, F. Schuldt, and M. Maurer,
“Defining and substantiating the terms scene, situation, and scenario
for automated driving,” in Intelligent Transportation Systems (ITSC),
2015 IEEE 18th International Conference on. IEEE, 2015, pp.
982-988.

S. Wagner, K. Groh, T. Kuehbeck, M. Doerfel, and A. Knoll, “Using
Time-To-React Based on Naturalistic Traffic Object Behavior for
Scenario-Based Risk Assessment of Automated Driving,” in Proceed-
ings of the IEEE Intelligent Vehicle Symposium. Changhsu, China:
IEEE, 2018, pp. 1521-1528.

C. Kessler and A. Etemad, “European Large-Scale Field Operational
Tests on In-Vehicle Systems - SP 6 D6.8 FOT Data,” Ford Research
& Advanced Engineering Europe, Tech. Rep., Jun. 2012.

A. Andrews, M. Abdelgawad, and A. Gario, “Towards world model-
based test generation in autonomous systems,” in 2015 3rd Interna-
tional Conference on Model-Driven Engineering and Software Devel-
opment (MODELSWARD), Feb. 2015, pp. 1-12.

C. Sippl, F. Bock, D. Wittmann, H. Altinger, and R. German, “From
simulation data to test cases for fully automated driving and ADAS,”
Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), vol.
9976 LNCS, pp. 191-206, 2016.

E. Rocklage, H. Kraft, A. Karatas, and J. Seewig, “Automated scenario
generation for regression testing of autonomous vehicles,” in 2017
IEEE 20th International Conference on Intelligent Transportation
Systems (ITSC), Oct. 2017, pp. 476-483.

“Die Freigabe des Autonomen
Springer, 2015, pp. 439464,

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 10:46:40 UTC from IEEE Xplore. Restrictions apply.



