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Abstract

We advocate the use of an Indirect Inference method to estimate the parameter of a

COGARCH(1,1) process for equally spaced observations. This requires that the true model

can be simulated and a reasonable estimation method for an approximate auxiliary model. We

follow previous approaches and use linear projections leading to an auxiliary autoregressive

model for the squared COGARCH returns. The asymptotic theory of the Indirect Inference

estimator relies on a uniform SLLN and asymptotic normality of the parameter estimates of

the auxiliary model, which require continuity and differentiability of the COGARCH process

with respect to its parameter and which we prove via Kolmogorov’s continuity criterion. This

leads to consistent and asymptotically normal Indirect Inference estimates under moment

conditions on the driving Lévy process. A simulation study shows that the method yields a

substantial finite sample bias reduction compared to previous estimators.
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1 Introduction

The COGARCH(1,1) process was introduced in Klüppelberg et al. [23] as a continuous time

analog of the discrete time GARCH(1,1) process. It is defined as

Pt(θ) =

∫ t

0
σs(θ)dLs, t ≥ 0, (1.1)

with parameter θ (to be specified in Section 2), L is a Lévy process with Lévy measure νL 6≡ 0 and

having càdlàg sample paths. The volatility process (σs(θ))s≥0 is predictable and its stochasticity

depends only on L. The COGARCH process satisfies many stylized features of financial time

series and is suited for modeling high-frequency data (see Bayracı and Ünal [2], Bibbona and

Negri [4], Haug et al. [15], Maller et al. [31], Klüppelberg et al. [25], and Müller [32]).
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In many practical problems, one observes the log-price process (Pi∆(θ0))ni=1 on a fixed grid

of size ∆ > 0 and the question of interest is how to estimate the true parameter θ0. The data

used for estimation are returns (Gi(θ0))ni=1, where

Gi(θ0) := P∆i(θ0)− P(i−1)∆(θ0) =

∫ i∆

(i−1)∆
σs(θ0)dLs. (1.2)

Several methods have been proposed to estimate the parameter of a COGARCH process. A

method of moments was proposed in Haug et al. [15], Bibbona and Negri [4] used prediction

based estimation as developed in Sørensen [41], and Maller et al. [31] proposed a pseudo max-

imum likelihood (PML) method which also works for non-equally spaced observations. Both

moment and prediction based estimators are consistent and asymptotically normal under cer-

tain regularity conditions. The asymptotic properties of the PML estimator were studied in

Iannace [18] and in Kim and Lee [22], which require that ∆ ↓ 0 as n→∞. For the COGARCH

process, Bayracı and Ünal [2] used Indirect Inference with an auxiliary discrete-time GARCH

model with Gaussian residuals. No theoretical results were proved, but their simulation study

suggests that Indirect Inference estimators achieve a similar performance as the PML estimator

of Maller et al. [31] for fixed ∆ > 0. Furthermore, Müller [32] proposed a Markov chain Monte

Carlo method, when L is a compound Poisson process.

In this paper we advocate an Indirect Inference method, different to the one suggested in

Bayracı and Ünal [2], to estimate the COGARCH parameter and derive the asymptotic proper-

ties of the estimator. Such methods were introduced in Smith [40] and generalized in Gourieroux

et al. [12], and offer a way to overcome many estimation problems by a clever simulation method.

In short, it only requires that the true model can be simulated and a reasonable estimation

method for an approximate auxiliary model.

Indirect Inference was originally introduced for complex econometric models to overcome the

estimation problem of an intractable likelihood function, as e.g. for continuous time models with

stochastic volatility (see Bianchi and Cleur [3], Jiang [20], Laurini and Hotta [28], Raknerud and

Skare [37], and Wahlberg et al. [43]). Indirect Inference can also be used as a vehicle to produce

estimators which are robust, when there are outliers in the observations (see de Luna and

Genton [8] for robust estimation of a discrete time ARMA and Fasen-Hartmann and Kimmig

[10] of a continuous time ARMA). Another motivation is given in Gourieroux et al. [13, 14],

where it is shown that Indirect Inference can reduce the finite sample bias considerably. This is

our motivation to study the asymptotic properties of Indirect Inference estimators (IIE) in the

context of COGARCH estimation.

The Indirect Inference procedure works as follows. Let π denote the parameter of an auxiliary

model chosen for the COGARCH returns (Gi(θ0))ni=1 or some transformed random variables.

From this data we estimate π and obtain π̂n. For many different θ ∈ Θ we simulate K ≥ 1

independent samples of size n of COGARCH returns (G
(k)
i (θ))ni=1 and compute the estimators

π̂n,k(θ) for k = 1, . . . ,K. The IIE of θ is then defined as

θ̂n,II := arg min
θ∈Θ

(
π̂n −

1

K

K∑
k=1

π̂n,k(θ)

)>
Ω

(
π̂n −

1

K

K∑
k=1

π̂n,k(θ)

)
, (1.3)
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where Ω is a symmetric and positive definite weight matrix. Under certain regularity conditions,

IIEs are consistent and asymptotically normal. These regularity conditions are mainly related

to three aspects: (A) find an auxiliary model whose parameter is connected to the COGARCH

parameter through a one-to-one binding function, (B) prove strong consistency and asymptotic

normality of π̂n, and (C) prove that the estimator π̂n(θ), as a function of θ, satisfies conditions

for the application of a uniform strong law of large numbers (SLLN) and a delta method for the

asymptotic normality.

The starting point (A) is an appropriate auxiliary model that provides a one-to-one binding

function. We follow previous approaches and use linear projections leading to an auxiliary au-

toregressive (AR) model of appropriate order for the squared COGARCH returns (G2
i (θ))i∈N.

Often the properties of the binding function are assessed via simulation (see Lombardi and Cal-

zolari [30] and Garcia et al. [11]), but for our models the binding function can be proved to be

one-to-one.

Part (B), strong consistency and asymptotic normality of the estimator π̂n of the AR model

parameter π, is obtained in a similar way as in classical time series analysis (see e.g. Brockwell

and Davis [7]), extending the theory to residuals, which may not be white noise, but an arbitrary

stationary and ergodic process with finite variance. The SLLN and asymptotic normality of π̂n

will then be a consequence of the fact that (G2
i (θ))i∈N is also strong mixing with appropriate

mixing coefficients.

(C) is related to regularity conditions of the map θ 7→ π̂n(θ). To achieve strong consistency

of the IIE we need to show that

sup
θ∈Θ
‖π̂n(θ)− πθ‖

a.s.→ 0, n→∞.

To move from point-wise to uniform convergence we use a uniform SLLN in a compact parameter

space Θ. For the estimator we study here, the application of a uniform SLLN holds provided that

Gi(θ) is a continuous function in θ and E supθ∈ΘG
4
i (θ) <∞ for all i ∈ N. The continuity of this

map does not follow directly from the continuity of σs(θ) for fixed s, because the Lévy process

in the stochastic integral in (1.2) may have infinite variation. Under conditions on the moments

and the characteristic exponent of the driving Lévy process, we find a version of Gi(θ) which is

continuous by Kolmogorov’s continuity criterion, and as a result we conclude strong consistency

of the IIE θ̂n,II. A Taylor expansion of π̂n(θ) around the true parameter θ0 yields asymptotic

normality by the delta method. This will require continuous differentiability of Gi(θ) in θ,

which will follow from a result of Hutton and Nelson [16] together with Kolmogorov’s continuity

criterion.

Our paper is organised as follows. We start in Section 2 with the formal definition of a

stationary COGARCH process as returns process, and recall its relevant properties. We also

present the autoregressive auxiliary model of the squared returns and define the least squares

estimator (LSE) and Yule-Walker estimator (YWE) of the AR parameter, as well as the binding

function giving the link to the COGARCH parameter. In Section 2.3 we present the IIE and

the conditions, which guarantee a uniform SLLN and asymptotic normality of the IIE. In Sec-

tion 3 we prove strong consistency and asymptotic normality of the LSE and YWE under the

non-standard conditions of stationary ergodicity and a mixing property. Section 4 is dedicated
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to strong consistency and asymptotic normality of the IIE of the COGARCH process. Section 5

presents a simulation study and shows that the bias reduction based on the IIE is indeed sub-

stantial compared to previous estimators. Technical results like conditions for the existence of

a version of the COGARCH returns, which is continuous in its parameter and other auxiliary

results are summarized in an Appendix.

Throughout we write ‖ · ‖ for the `1-norm in Rd for d ∈ N and recall that in Rd all norms

are equivalent. For a matrix A ∈ Rp×q we also write ‖A‖ for the matrix norm generated by the

`1-norm. For a vector x ∈ Rd and a d × d positive definite matrix Ω we write ‖x‖Ω = x>Ωx.

Furthermore, we denote by Lp the space of p-integrable random variables, and by dim(A) the

dimension of a subset A of Rd. For a function f(θ) in R with θ ∈ Rq the gradient with respect

to θ is ∇θf(θ) = ( ∂
∂θl
f(θ))ql=1 ∈ Rq and ∇2

θf(θ) = ( ∂2

∂θkθl
f(θ))qk,l=1 ∈ Rq×q denotes the Hessian

matrix.

2 COGARCH process, auxiliary AR representation and Indi-

rect Inference Estimation

2.1 Definition of the COGARCH process

For the parameter space of the COGARCH process given as {θ = (β, η, ϕ)> : β, η, ϕ > 0}, we

construct a strictly stationary version of the volatility process as in Klüppelberg et al. [23]. First

define the process (Ys(θ))s≥0 by

Ys(θ) := ηs−
∑

0<u≤s
log(1 + ϕ(∆Lu)2), s ≥ 0, (2.1)

with Laplace transform Ee−pYs(θ) = esΨθ(p), where

Ψθ(p) = −pη +

∫
R

((1 + ϕx2)p − 1)νL(dx), p ≥ 0. (2.2)

We shall often use the fact that for p > 0 by Lemma 4.1(a) in [23],

E|L1|2p <∞ if and only if |Ψθ(p)| <∞.

Define the volatility process (σ2
t (θ))t≥0 by

σ2
t (θ) :=

(
β

∫ t

0
eYs(θ)ds+ σ2

0(θ)
)
e−Yt−(θ), t ≥ 0, (2.3)

where Yt−(θ) denotes the left limit at t and σ2
0(θ) the starting value of the volatility process. If

E|L1|2 <∞ and Ψθ(1) < 0, then by Lemma 4.1(c) of [23], σ2
t (θ)

d→ σ2
∞(θ) as t→∞, where

σ2
∞(θ)

d
= β

∫ ∞
0

e−Ys(θ)ds.

Setting the starting value as

σ2
0(θ)

d
= β

∫ ∞
0

e−Ys(θ)ds, independent of L, (2.4)
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by Theorem 3.2 of [23] for such θ the process (σ2
t (θ))t≥0 is strictly stationary. Then by Propo-

sition 4.2 of [23] for the stationary process and k ∈ N,

Eσ2k
0 (θ) <∞ if and only if EL2k

1 <∞ and Ψθ(k) < 0. (2.5)

Furthermore, for k = 1, 2 either of this implies that the squared returns from (1.2) have cor-

responding finite moments (Proposition 5.1 of [23]). Additionally, by Corollary 3.1 of [23] the

process (Pt(θ))t≥0 defined in (1.1) with stationary (σt(θ))t≥0 has stationary increments.

2.2 AR representation for the squared returns

We estimate the COGARCH parameter, when the log-price process is observed on a regular

grid of fixed size ∆ > 0, such that the data are modelled by the returns (Gi(θ))i∈N as defined

in (1.2).

We state the basic assumptions and recall some properties of the COGARCH process.

Proposition 2.1 (Theorems 3.1 and 3.4 in Haug et al. [15]). Assume that:

(A1) The parameter vector θ = (β, η, ϕ)> satisfies β, η, ϕ > 0.

(A2) EL1 = 0 and VarL1 = 1.

(A3) The variance cL of the Brownian component of L is known and satisfies 0 ≤ cL < VarL1.

(A4) EL4
1 <∞.

(A5)
∫
R x

3νL(dx) = 0.

(A6) Ψθ(2) < 0.

Denote the expectation and variance of the squared returns process by

µθ = EG2
1(θ) and γθ(0) = VarG2

1(θ)

Then the following holds:

(a) The autocovariance function of the squared returns process is given by

γθ(h) = Cov(G2
i (θ), G2

i+h(θ)) = γθ(0)kθe
−hρθ , h ∈ N. (2.6)

(b) If µθ, γθ(0), kθ, ρθ > 0, then these parameters uniquely determine θ.

(c) The process (Gi(θ))i∈N is α-mixing with exponentially decaying mixing coefficients.

Assume that the driving Lévy process satisfies assumptions (A2)-(A5) of Proposition 2.1.

We take as parameter space of the COGARCH process a compact set Θ satisfying the relevant

conditions of Proposition 2.1; more precisely,

Θ ⊂M := {θ = (β, η, ϕ)> : β, η, ϕ > 0,Ψθ(2) < 0 and µθ, γθ(0), kθ, ρθ > 0}. (2.7)

In what follows, we assume that the true model parameter θ0 ∈ Θ. We present the auxiliary AR

model using the structure of COGARCH squared returns. Define the centered squared returns

for θ ∈ Θ as

G̃2
i (θ) := G2

i (θ)− µθ, i ∈ N. (2.8)
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Proposition 2.2 (Auxiliary AR(r) model). Let θ ∈ Θ and r ≥ 2 be fixed. Define

Ui(θ) := G̃2
i+r(θ)− PHiG̃2

i+r(θ), i ∈ N,

where Hi = sp{G̃2
i+r−j(θ), j = 1, . . . , r} is the closed span in the Hilbert space L2. Then there

exist unique real numbers aθ,1, . . . , aθ,r such that

Ui(θ) = G̃2
i+r(θ)−

r∑
j=1

aθ,jG̃
2
i+r−j(θ), i ∈ N. (2.9)

Moreover, the process (Ui(θ))i∈N is strictly stationary with EUi(θ) = 0 and VarUi(θ) <∞.

Proof. The proof adapts the proof of Proposition 2.2 of Fasen-Hartmann and Kimmig [10] for

the COGARCH process. Since θ ∈ Θ ⊂M, by Proposition 2.1(a), the autocovariance function

of (G̃2
i (θ))i∈N satisfies γθ(0) > 0 and γθ(h) → 0 as n→∞. By Proposition 5.1.1 of Brockwell

and Davis [7] it follows that the autocovariance matrix of (G̃2
i (θ))ri=1 is non-singular. Hence, the

numbers aθ,1, . . . , aθ,r are uniquely given by
aθ,1

aθ,2
...

aθ,r

 =


γθ(0) γθ(1) . . . γθ(r − 1)

γθ(1) γθ(0) . . . γθ(r − 2)
...

...
...

γθ(r − 1) γθ(r − 2) . . . γθ(0)


−1

γθ(1)

γθ(2)
...

γθ(r)

 (2.10)

leading to (2.9).

Proposition 2.2 gives an AR(r) representation for r ≥ 2 for the COGARCH squared returns

from (2.8) by rewriting (2.9) as G̃2
i+r(θ) =

∑r
j=1 aθ,jG̃

2
i+r−j(θ) + Ui(θ) for i ∈ N. Let

πθ := (µθ,aθ, γθ(0))> = (µθ, aθ,1, . . . , aθ,r, γθ(0))>, (2.11)

and let C ⊂ Rr be a compact subset of the set containing all possible real coefficients of a strictly

stationary AR(r) process. Then we define a compact parameter space of the auxiliary model as

Π :=
[
− 1

ε
,
1

ε

]
× C ×

[
ε,

1

ε

]
, (2.12)

where ε is a small positive constant.

We will investigate two well-known estimators of πθ in (2.11), namely the least squares

estimator (LSE) and the Yule-Walker estimator (YWE) defined by

π̂n,LS(θ) =

 µ̂n(θ)

ân,LS(θ)

γ̂n(0;θ)

 and π̂n,YW(θ) =

 µ̂n(θ)

ân,YW(θ)

γ̂n(0;θ)

 , (2.13)

respectively, whose components are given as follows.

Definition 2.3 (LSE and YWE). The estimators of the mean and variance are given by

µ̂n(θ) =
1

n

n∑
i=1

G2
i (θ) and γ̂n(0;θ) =

1

n

n∑
i=1

(G2
i (θ)− µ̂n(θ))2.
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(a) The LSE of (aθ,1, . . . , aθ,r)
> is given by

ân,LS(θ) = arg min
c∈C

Sn(c;θ),

for C as in (2.12), and

Sn(c;θ) :=

1

n− r

n−r∑
i=1

(
(G2

i+r(θ)− µ̂n(θ))− c1(G2
i+r−1(θ)− µ̂n(θ))− · · · − cr(G2

i (θ)− µ̂n(θ))
)2
.

(b) The YWE of (aθ,1, . . . , aθ,r)
> is given by

ân,YW(θ) = Γ̂−1
n (θ)γ̂n(θ), n ∈ N, (2.14)

where Γ̂−1
n (θ) = (γ̂n(i− j;θ))ri,j=1 and γ̂n(θ) = (γ̂n(1;θ), . . . , γ̂n(r;θ))> are defined in terms of

the empirical autocovariance function

γ̂n(h;θ) =
1

n

n−h∑
i=1

(G2
i (θ)− µ̂n(θ))(G2

i+h(θ)− µ̂n(θ)), h, n ∈ N, n > h.

We now define a function that will connect the COGARCH process to its auxiliary AR model

from Proposition 2.2.

Proposition 2.4 (Binding function). Define the binding function π : Θ → Π by π(θ) = πθ as

in (2.11). Then π is injective and continuously differentiable for r ≥ 2.

Proof. As in the proof of Lemma 2.5 in Fasen-Hartmann and Kimmig [10], we decompose π :

Θ→ Π into three maps π = π1 ◦ π2 ◦ π3. Define π1 : Θ→ R4 by

π1(θ) = (µθ, kθ, ρθ, γθ(0))>,

which is by Proposition 2.1(b) injective. Next define π2 : π1(Θ)→ Rr+2 by

π2(µθ, kθ, ρθ, γθ(0)) = (µθ, γθ(1), . . . , γθ(r), γθ(0))>.

By (2.6), γθ(h) = γθ(0)kθe
−hρθ for every h ∈ N, and simple algebra shows that kθ and ρθ are

uniquely determined by

kθ =
γ2
θ(1)

γθ(0)γθ(2)
and ρθ = log

(γθ(1)

γθ(2)

)
, (2.15)

and, therefore, π2 is injective. Finally, define the map π3 : π2(π1(Θ))→ Π, by

π3(µθ, γθ(1), . . . , γθ(r), γθ(0)) = (µθ, aθ,1, . . . , aθ,r, γθ(0))>.

The map π3 is injective, since γθ(1), . . . , γθ(r) are uniquely determined by aθ,1, . . . , aθ,r and

γθ(0). We need r ≥ 2 in order to recover (γθ(1), γθ(2)) from (γθ(0), aθ,1, aθ,2) using the system

of Yule-Walker equations (2.10), so that (2.15) remains valid. This implies the injectivity of the

composition π.
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Now we prove that π is continuously differentiable. The map π1 is given in terms of equations

(3.6)-(3.9) of Theorem 3.1 in Haug et al. [15], which are continuously differentiable maps of

Ψθ(1) and Ψθ(2) as defined in (2.2). By assumption (A4) of Proposition 2.1 the Lévy process

L has finite fourth moment and, therefore, both Ψθ(1) and Ψθ(2) exist and are continuously

differentiable in θ. By (2.6), π2 is continuously differentiable. Finally, π3 is also continuously

differentiable since it is defined recursively by means of the Yule-Walker equations (2.10). This

proves that the composition π is continuously differentiable.

2.3 Indirect Inference Estimation

Let π̂n(θ) denote an estimator of the auxiliary AR(r) model for r ≥ 2 based on the returns

(Gi(θ))ni=1, where θ lies in a compact subset Θ of M as in (2.7). We define now the IIE for the

COGARCH process.

Definition 2.5 (IIE). Let Gn := (Gi(θ0))ni=1 be the returns as defined in (1.2). Let π̂n be one of

the estimators given in (2.13) of πθ0 as defined in (2.11). For arbitrary θ ∈ Θ and k = 1, . . . ,K

let π̂n,k(θ) be estimators of πθ based on independent simulated paths Gn,k(θ) := (G
(k)
i (θ))ni=1.

Let Ω be a symmetric and positive definite weight matrix. Define the function

L̂II : Θ→ [0,∞) based on Gn by L̂II(θ,Gn) :=
∥∥∥π̂n − 1

K

K∑
k=1

π̂n,k(θ)
∥∥∥
Ω
.

Then the IIE of θ0 is defined as

θ̂n,II := arg min
θ∈Θ

L̂II(θ,Gn). (2.16)

Concerning the asymptotic behavior of the IIE one would hope that strong consistency and

asymptotic normality of the auxiliary model estimators also implies strong consistency and

asymptotic normality of the IIE. However, as the Indirect Inference method is based on the

simulation of the COGARCH process for many different parameters, we need a stronger (uni-

form) consistency result and also additional regularity conditions to ensure this. The following

is a modification of Propositions 1 and 3 of Gourieroux et al. [12], and it is the analog of

Theorem 3.2 of Fasen-Hartmann and Kimmig [10] in the context of our model.

Proposition 2.6. Assume the setting of Definition 2.5 and r ≥ 2.

(a) If the uniform SLLN

sup
θ∈Θ
‖π̂n(θ)− πθ‖

a.s.→ 0, n→∞, (2.17)

holds, then the IIE (2.16) is strongly consistent:

θ̂n,II
a.s.→ θ0, n→∞.

(b) Assume additionally to (2.17) that the following hold:

(b.1) for every n ∈ N the map θ 7→ π̂n(θ) is continuously differentiable,

(b.2) for every θ ∈ Θ we have
√
n(π̂n(θ)− πθ)

d→ N (0,Σθ) as n→∞, and

8



(b.3) for every sequence (θn)n∈N with θn
a.s.→ θ0 it also holds that

∇θπ̂n(θn)
P→ ∇θπθ0 , n→∞,

and ∇θπ(θ0) has full column rank 3.

(b.4) The true parameter θ0 lies in the interior of Θ.

Then the IIE (2.17) is asymptotically normal:

√
n(θ̂n,II − θ0)

d→ N (0,Ξθ0), n→∞,

where the asymptotic variance is given by

Ξθ0 = (Jθ0)−1Iθ0(Jθ0)−1 (2.18)

with

Jθ0 = (∇θπθ0)>Ω(∇θπθ0) and

Iθ0 = (∇θπθ0)>Ω
(

1 +
1

K

)
ΣθΩ(∇θπθ0). (2.19)

Proof. Part (a) follows as a particular case of the proof of Theorem 3.2 of [10]. For part (b), we

need to check assumptions (C.3)-(C.5) of Theorem 3.2 in [10]. By construction of the estimator

(2.13) the asymptotic covariance matrices in (C.3) and (C.4) are identical, so that (b.2) implies

(C.3) and (C.4). Instead of verifying (C.5) we modify the argument in [10] (under (b.1) and

(b.4)) when manipulating the first order condition

0 = ∇θL̂II(θ̂n,II,Gn) = 2(∇θπ̂n(θ̂n,II))
TΩ(π̂n(θ̂n,II)− π̂n). (2.20)

We perform, as in Theorem 3.2 in Newey and McFadden [33], a Taylor expansion of order 1

around the true value θ0 of the function π̂n(θ̂n,II) in (2.20). After rearranging the terms this

leads to

√
n(θ̂n,II − θ0) = −

(
(∇θπ̂n(θ̂n,II))

TΩ(∇θπ̂n(θn))
)−1

(∇θπ̂n(θ̂n,II))Ω
√
n(π̂n(θ0)− π̂n),

where θn is such that ‖θn− θ0‖ ≤ ‖θ̂n,II− θ0‖. The asymptotic normality is now a consequence

of taking the limit for n→∞ and using (a), (b.2) and (b.3).

3 Auxiliary AR model - strong consistency and asymptotic nor-

mality

Our objective is to investigate the asymptotic behavior of the IIE for the COGARCH param-

eter θ using an AR(r) model for fixed r ≥ 2 as auxiliary model. This amounts to verifying all

assumptions of Proposition 2.6. As a first step we investigate consistency and joint asymptotic

normality of the parameter estimator of the auxiliary AR(r) model, which results from the pro-

jection of Proposition 2.2, and may have a non-zero mean. It is worth noticing that the noise

9



(Ui(θ))i∈N from (2.9) is defined as the projection error over the finite past. Thus, Ui(θ) is orthog-

onal to Hi = sp{G̃2
i+r−j(θ), j = 1, . . . , r}, but we cannot guarantee that it is also orthogonal to

sp{G̃2
i+r−j(θ), j ∈ N}, so it may not be a white noise process. Therefore, the classical asymptotic

theory for the estimation of autoregressive processes (when data come from an AR model with

white noise residuals) does not apply directly. Since the residuals are stationary and ergodic with

zero mean and finite variance, and since Ui(θ) is orthogonal to Hi = sp{G̃2
i+r−j(θ), j = 1, . . . , r},

we can obtain results by modifying the classical arguments.

We shall do this for the two estimators from Definition 2.3 and recall that in classical time

series theory they are asymptotically equivalent (cf. the proof of Theorem 8.1.2 in Brockwell

and Davis [7]). To the best of our knowledge, this has not yet been covered in the literature.

Remark 3.1. This section provides asymptotic results for the estimators of the auxiliary AR

model for some arbitrary, but fixed COGARCH parameter θ, where the dependence on θ is

irrelevant, and we omit it for ease of notation. We define (Wi)i∈N := (G2
i )i∈N and rewrite the

auxiliary AR(r) model of Proposition 2.2 with parameter π = (µ,a, γ(0)) as

W̃i+r =

r∑
j=1

ajW̃i+r−j + Ui, i ∈ N,

where W̃i = G̃2
i = Wi − µ, µ = EW1 and γ(0) = VarW1.

3.1 Strong consistency of LSE and YWE

Lemma 3.2. Let the assumptions of Proposition 2.1 hold. Then as n→∞, µ̂n
a.s.→ µ and

γ̂n(h)
a.s.→ γ(h) for all h ∈ N0.

Proof. From Proposition 2.1 we know that E|W1| <∞ and (Wi)i∈N is ergodic, so that Birkhoff’s

ergodic theorem (see e.g. Theorem 4.4 in Krengel [27]) gives immediately µ̂n
a.s.→ µ as n→∞.

To prove almost sure convergence of the empirical autocovariance function, we first investigate

it, when the mean µ is known:

γ∗n(h) :=
1

n

n−h∑
i=1

(Wi − µ)(Wi+h − µ), h ∈ N0. (3.1)

Since WiWi+h is for every i ∈ N a measurable map of finitely many values of (Wi)i∈N, the

sequence (WiWi+h)i∈N is ergodic. From Proposition 2.1(a), E|W1W1+h| <∞, so that Birkhoff’s

ergodic theorem gives γ∗n(h)
a.s.→ γ(h) as n→∞. Simple algebra shows that

γ̂(h)− γ∗(h) =
1

n

n−h∑
i=1

(Wi +Wi+h − µ̂n − µ)(µ− µ̂n). (3.2)

Since µ̂n
a.s.→ µ, the difference γ∗n(h)− γ̂n(h)

a.s.→ 0 as n→∞; hence, γ̂n(h)
a.s.→ γ(h) as n→∞.

Theorem 3.3 (Consistency of LSE and YWE). Let the assumptions of Proposition 2.1 hold.

Then as n→∞, ân,LS
a.s.→ a and ân,YW

a.s.→ a.

10



Proof. We start by proving strong consistency of the LSE, when the mean µ is known:

a∗n,LS = arg min
c∈C

S∗n(c), (3.3)

for C as in (2.12), and

S∗n(c) =
1

n− r

n−r∑
i=1

(
(Wi+r − µ)− cr(Wi+r−1 − µ)− · · · − c1(Wi − µ)

)2
.

As in Section 8.10* of [7] we write the auxiliary AR(r) model in matrix form as

Ỹn = W̃na+Un, n ∈ N,

where Ỹn = (W̃r+1, . . . , W̃n)>,Un = (U1, . . . , Un−r)
> and W̃n is the n× r design matrix,

W̃n =


W̃r W̃r−1 . . . W̃1

W̃r+1 W̃r . . . W̃2

...
...

...

W̃n−1 W̃n−2 . . . W̃n−r

 . (3.4)

Then notice that

(n− r)S∗n(c) = (Ỹn − W̃nc)
>(Ỹn − W̃nc),

revealing the LSE as a linear regression-type estimator given by

a∗n,LS = (W̃>
n W̃n)−1W̃>

n Ỹn, (3.5)

provided that the r × r matrix W̃>
n W̃n is invertible. We prove that n−1W̃>

n W̃n converges a.s.

to an invertible matrix. For each fixed u, v ∈ {1, . . . , r} the (u, v)-th entry of this matrix is

1

n

n−r−1∑
i=0

W̃r+1−u+iW̃r+1−v+i.

Since W̃r+1−u+iW̃r+1−v+i is for every i ∈ N0 a measurable map of finitely many values of (Wi)i∈N,

the sequence (W̃r+1−u+iW̃r+1−v+i)i∈N0 is ergodic. Since EW 2
1 < ∞ Birkhoff’s ergodic theorem

gives

1

n

n−r−1∑
i=0

W̃r+1−u+iW̃r+1−v+i
a.s.→ EW̃1W̃1+|u−v|, n→∞, (3.6)

and thus n−1W̃>
n W̃n

a.s.→ Γ as n→∞, where Γ is the autocovariance matrix of the squared

COGARCH returns, which is non-singular (cf. the proof of Proposition 2.2). Thus, Γ is invertible

and therefore the estimator given in (3.5) is well defined for n large enough. With (3.5) we

calculate

a∗n,LS − a = (W̃>
n W̃n)−1W̃>

n (W̃na+Un)− a

= n(W̃>
n W̃n)−1 1

n
W̃>

n Un

= n(W̃>
n W̃n)−1 1

n

n∑
i=1

(
W̃i+r −

r∑
j=1

ajW̃i+r−j

)
W̃i+r−1

...

W̃i


=: (n−1W̃>

n W̃n)−1 1

n

n∑
i=1

Zi. (3.7)

11



Since Zi is for every i ∈ N a measurable map of finitely many values of (Wi)i∈N, the sequence

(Zi)i∈N is ergodic. According to Proposition 2.2, W̃i+r −
∑r

j=1 ajW̃i+r−j is uncorrelated with

W̃i, . . . , W̃i+r−1 for all i ∈ N. Since E|Z1| <∞ Birkhoff’s ergodic theorem gives

1

n

n∑
i=1

Zi
a.s.→ EZ1 = 0.

This together with the fact that the first term of (3.7) converges a.s. to Γ−1 shows that

a∗n,LS
a.s.→ a, n→∞.

It remains to prove that (ân,LS − a∗n,LS)
a.s.→ 0 as n→∞. Write the LSE in the matrix form

ân,LS = (W̄>
n W̄n)−1W̄>

n Ȳn,

where W̄n and Ȳn denote the matrix and vector defined in Eq. (3.4), with entries of the form

W̄i = Wi − µ̂n. Using the matrix identity A−1x−C−1y = A−1(x− y) +A−1(C −A)C−1y gives

(ân,LS − a∗n,LS) =
(W̄>

n W̄n

n

)−1(W̄>
n Ȳn
n

− W̃
>
n Ỹn
n

)
+
(W̄>

n W̄n

n

)−1(W̃>
n W̃n

n
− W̄

>
n W̄n

n

)(W̃>
n W̃n

n

)−1(W̃>
n Ỹn
n

)
.

(3.8)

By Birkhoff’s ergodic theorem n−1W̄>
n W̄n, n

−1W̃>
n W̃n and n−1W̃>

n Ỹn converge a.s. to two ma-

trices and a vector, respectively. Additionally, by (3.2) we can apply Birkhoff’s ergodic theorem

to obtain as n→∞,(W̄>
n Ȳn
n

− W̃
>
n Ỹn
n

)
a.s.→ 0 and

(W̃>
n W̃n

n
− W̄

>
n W̄n

n

)
a.s.→ 0,

showing that the LSE is consistent. For the YWE the proof is a direct consequence of Lemma 3.2

and the continuous mapping theorem.

3.2 Asymptotic normality of the LSE and YWE

One of the requirements for asymptotic normality of the IIE of the COGARCH parameter θ is

condition (b.2) of Proposition 2.6. This means we have to prove asymptotic normality of π̂n,LS

and π̂n,YW. We start with an auxiliary result.

Lemma 3.4. Let the assumptions of Proposition 2.1 hold. Let a∗n,LS be the LSE defined in (3.3)

and a∗n,YW be the modification of the YWE defined in (2.14), when the true mean µ is known,

i.e., with γ̂n(·) replaced by γ∗(·) from (3.1). Then as n→∞,

(a)
√
n(µ̂2

n − µ2)
P→ 0,

(b)
√
n(a∗n,YW − ân,YW)

P→ 0,

(c)
√
n(a∗n,YW − a∗n,LS)

P→ 0, and

(d)
√
n(a∗n,LS − ân,LS)

P→ 0.
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Proof. (a) Write
√
n(µ̂2

n − µ2) =
√
n(µ̂n + µ)(µ̂n − µ) and notice that by Lemma 3.2 we only

need to show that
√
n(µ̂n + µ) is bounded in probability. It follows from (2.6) that γ(h) decays

exponentially with h and thus
∑∞

h=−∞ |γ(h)| < ∞. Let ε > 0 be fixed and apply Chebyshev’s

inequality to get

P(
√
n|µ̂n + µ| > ε) ≤ ε−2nVar(µ̂n)→ ε−2

∞∑
h=−∞

γ(h) <∞, n→∞,

where the convergence follows from Theorem 7.1.1 in Brockwell and Davis [7].

(b) Write a∗n,YW = (Γ∗n)−1γ∗n with autocovariance function γ∗(·) defined in (3.1). Using prop-

erties of the inverse matrix we get

√
n(a∗n,YW − ân,YW)

=
√
n
(
Γ̂−1
n γ̂n − (Γ∗n)−1γ∗n

)
= Γ̂−1

n

√
n(Γ∗n − Γ̂n)(Γ∗n)−1γ̂n + (Γ∗n)−1√n(γ̂n − γ∗n).

The estimators Γ̂n,Γ
∗
n and γ̂n are all bounded in probability. For fixed h ∈ N0 it follows from

(3.2) and Lemma 3.4(a) that
√
n(γ̂n(h) − γ∗n(h))

P→ 0 as n→∞. Therefore,
√
n(Γ∗n − Γ̂n) and

√
n(γ̂n − γ∗n) also converge to zero in probability, which entails (b).

(c) This follows similarly as in the proof of Theorem 8.1.1 in Brockwell and Davis [7].

(d) By (3.8) and observing that n−1W̄>
n W̄n, n−1W̃>

n W̃n and n−1W̃>
n Ỹn are bounded in

probability, we only need to show that n−
1
2 {W̄>

n Ȳn − W̃>
n Ỹn} and n−

1
2 {W̃>

n W̃n − W̄>
n W̄n}

converge to zero in probability as n→∞. These terms only depend on the autocovariance

function of the process (Wi)i∈N and therefore convergence in probability to zero follows from
√
n(γ̂n(h)−γ∗n(h))

P→ 0 as n→∞ as can be seen from (3.2), and the fact that
√
nµ̂n is bounded

in probability.

The following is the main result of this Section and proves Proposition 2.6(b.2).

Theorem 3.5 (Asymptotic normality of the LSE and YWE). Let the assumptions of Proposi-

tion 2.1 hold. Assume additionally that E|L1|8+ε < ∞ and Ψθ(4 + ε
2) < 0 for some ε > 0 and

that the matrix Σ defined in (3.9) is positive definite. Then, both LSE and YWE for the AR(r)

model for r ≥ 2 are asymptotically normal with covariance matrix

Σ =





1 0 . . . 0 0

0

Γ−1

0
...

...

0 0

0 0 . . . 0 1

Σ∗, (3.9)

where Γ is the autocovariance matrix of (Wi)
r
i=1,

Σ∗ = EC1C
>
1 + 2

∞∑
i=1

EC1C
>
1+i, (3.10)
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with Ci ∈ Rr+2 given by

Ci =



W̃i

(W̃i+r −
∑r

j=1 ajW̃i+r−j)W̃i+r−1

...

(W̃i+r −
∑r

j=1 ajW̃i+r−j)W̃i

W 2
i − µ2


(3.11)

Proof. Write

√
n(π̂n,LS − π) =

√
n

 µ̂n − µ
ân,LS − a
γ̂n(0)− γ(0)

 =
√
n

 0

ân,LS − a∗n,LS

µ2 − µ̂2
n

+
√
n

 µ̂n − µ
a∗n,LS − a

γ̂n(0) + µ̂2
n − EW 2

1


(3.12)

and

√
n(π̂n,YW − π) =

√
n

 µ̂n − µ
ân,YW − a
γ̂n(0)− γ(0)



=
√
n

 0

ân,YW − a∗n,YW

µ2 − µ̂2
n

+
√
n

 0

a∗n,YW − a∗n,LS

0

+
√
n

 µ̂n − µ
a∗n,LS − a

γ̂n(0) + µ̂2
n − EW 2

1

 . (3.13)

We apply Lemma 3.4 to the right-hand side of (3.12) and (3.13) and find that it suffices to prove

that

√
n

 µ̂n − µ
a∗n,LS − a

γ̂n(0) + µ̂2
n − EW 2

1

 d→ N (0,Σ), n→∞.

Using (3.7) we write

√
n

 µ̂n − µ
a∗n,LS − a

γ̂n(0) + µ̂2
n − EW 2

1

 =
√
n


1
n

∑n
i=1(Wi − µ)

n(W̃>
n W̃n)−1 1

n

∑n
i=1Zi

1
n

∑n
i=1(Wi − µ̂n)2 + µ̂2

n − EW 2
1



=





1 0 . . . 0 0

0

n(W̃>
n W̃n)−1

0
...

...

0 0

0 0 . . . 0 1

1√
n

n∑
i=1

 Wi − µ
Zi

W 2
i − EW 2

1



=: Bn
1√
n

n∑
i=1

Ci.

(3.14)

For the asymptotic normality of (3.14) we use the Cramér-Wold device and show that

√
n
( 1

n

n∑
i=1

λ>Ci

)
d→ N (0,λ>Σ∗λ), n→∞,
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for all vectors λ ∈ Rr+2 such that λ>Σ∗λ > 0. It follows from Proposition 2.1(c) that the squared

returns process (Wi)i∈N is α-mixing with exponentially decaying mixing coefficients. Since each

Ci is a measurable function of Wi, . . . ,Wi−r it follows from Remark 1.8 of Bradley [6] that

(λ>Ci)i∈N is also α-mixing with mixing coefficients satisfying αC(n) ≤ αW (n− (r + 1)) for all

n ≥ r+2. Therefore
∑∞

n=0(αC(n))
ε

2+ε <∞ for all ε > 0. Since E|L1|8+ε <∞ and Ψθ(4+ ε
2) < 0

it follows from (2.5) that E|W1|4+ε/2 <∞ and, as a consequence, E|λ>C1|2+ε/4 <∞. Thus, the

CLT for α-mixing sequences applies (see Theorem 18.5.3 of Ibragimov and Linnik [19]) so that

√
n
( 1

n

n∑
i=1

λ>Ci

)
d→ N (0, ζ), n→∞,

where

ζ = Eλ>C1C
>
1 λ+ 2

∞∑
i=1

Eλ>C1C
>
1+iλ.

After rearranging this equation we find (3.10). Let Bn = (bnu,v)
r+2
u,v=1 denote the matrix as defined

in (3.14). Using (3.6) we get, as n→∞,

bnu,v
a.s.→ E(W1 − µ)(W1+|u−v| − µ), 2 ≤ u, v ≤ r + 1.

Then the inner block of the matrix Bn converges a.s. to Γ−1. This gives (3.9) which finishes the

proof.

4 IIE of the COGARCH process - strong consistency and asymp-

totic normality

The objective of this section is to prove strong consistency and asymptotic normality of the IIE

of the COGARCH parameter θ. Let (Gi(θ0))ni=1 be the returns originating from a COGARCH

log-price process (1.1). As auxiliary model we will use an AR(r) model for fixed r ≥ 2 as in

Proposition 2.2, whose parameters are estimated by one of the estimators π̂n from Definition 2.3,

which we consider as functions of the COGARCH parameter θ.

4.1 Preliminary results

We begin with an auxiliary result, which is a consequence of Theorem 3.2 of [23].

Lemma 4.1. Assume that E|L1|2 <∞ and Ψθi(1) < 0 for i = 1, . . . , d. Then for every t > 0,

(σ2
t (θ1), . . . , σ2

t (θd))
d
= (σ2

0(θ1), . . . , σ2
0(θd))

In what follows we shall need for fixed ϕ > 0 the stochastic process

Ks(ϕ) =
∑

0<u≤s

(∆Lu)2

1 + ϕ(∆Lu)2
, s ≥ 0. (4.1)

Lemma 4.2. The process (Ks(ϕ))s≥0 is a Lévy process and E|Ks(ϕ)|p <∞ for all p ∈ N.
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Proof. That (Ks(ϕ))s≥0 is a Lévy process is clear. Since

sup
s≥0
|∆Ks(ϕ)| = sup

s≥0

(∆Ls)
2

1 + ϕ(∆Ls)2
≤ 1

ϕ
<∞ (4.2)

it follows that (Ks(ϕ))s≥0 has bounded jumps and therefore it has moments of all orders (see

e.g. Theorem 2.4.7 of [1]).

For p ≥ 1 consider the sets

Θ(p) ⊂M(p) := {θ ∈M : Ψθ
(
p
)
< 0}, (4.3)

where Θ(p) is compact, and recall from (2.5) that the condition Ψθ
(
p) < 0 implicitly requires

E|L1|2p <∞.

Lemma 4.3. Let p ≥ 1 and t ≥ 0 be fixed and consider the sets Θ(p) and M(p) as in (4.3).

Then

(a) there exist numbers θ∗1, . . . ,θ
∗
N ∈M(p) such that

sup
θ∈Θ(p)

e−Yt(θ) ≤
N∑
j=1

e−Yt(θ
∗
j ).

(b) (Proposition 2 in Klüppelberg et al. [24]) there exists some σ∗ > 0 such that σ0(θ) ≥ σ∗

a.s. for all θ ∈ Θ.

Proof. (a) We use a Heine-Borel argument to control the exponential term. Since Θ(p) is compact

we can find a finite collection of open sets (Θ
(p)
j )Nj=1 such that Θ(p) ⊆ ∪Nj=1Θ

(p)
j ⊂M(p). For each

fixed j the closure Θ
(p)
j is a subset ofM(p) and therefore there exists a point θ∗j = (β∗j , η

∗
j , ϕ

∗
j )
> ∈

M(p) such that η ≥ η∗j , ϕ ≤ ϕ∗j for all θ ∈ Θ
(p)
j . This implies that for all θ ∈ Θ

(p)
j :

Yt(θ) = ηt−
∑

0<u≤t
log(1 + ϕ(∆Lu)2) ≥ η∗j t−

∑
0<u≤t

log(1 + ϕ∗j (∆Lu)2) = Yt(θ
∗
j ), t ≥ 0.

Therefore,

sup
θ∈Θ(p)

e−Yt(θ) ≤
N∑
j=1

e−Yt(θ
∗
j ),

proving the statement.

Remark 4.4. Both π̂n,YW (by (2.14)) and π̂n,LS (as in the proof of Proposition 5.6 in Fasen-

Hartmann and Kimmig [10]) can be written as a map g : Rr+2 → Rr+2 for r ≥ 2 with g(x) =

(g1(x), . . . , gr+2(x)) for x = (x1, . . . , xr+2) applied to the vector

fn(θ) =
( 1

n

n∑
i=1

G2
i (θ),

1

n

n−h∑
i=1

G2
i (θ)G2

i+h(θ), h = 0, . . . , r
)
, n ∈ N. (4.4)

Since g involves only matrix multiplications and matrix inversion of non-singular matrices, it

inherits the smoothness properties of Gi(θ) for i ∈ N. Since (Gi(θ))i∈N is stationary and ergodic,

Birkhoff’s ergodic theorem applies and fn(θ) converges as n→∞ pointwise to

f(θ) = (EG2
1(θ),EG2

1(θ)G2
1+h(θ), h = 0, . . . , r). (4.5)
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Remark 4.5. The results that follow are related to continuity and differentiability of the random

elements (Gi(θ),θ ∈ Θ) for i ∈ N with respect to θ. According to (2.3) and (2.4) we find

Gi(θ) =

∫ i∆

(i−1)∆
σs((β, η, ϕ))dLs =

√
β

∫ i∆

(i−1)∆
σs((1, η, ϕ))dLs =

√
β Gi((1, η, ϕ)),

which is linear in
√
β, hence, (Gi(θ),θ ∈ Θ) is obviously continuous in β and has a partial

derivative with respect to β > 0.

4.2 Strong consistency of the IIE

To ensure strong consistency of θ̂n,II, we need to verify that π̂n(θ) satisfies the uniform SLLN

of Proposition 2.6(a). The results of Lemma 3.2 and Theorem 3.3 guarantee point-wise strong

consistency. Uniform strong consistency will hold by continuity of g (cf. Lemma A.2), if we can

apply a uniform SLLN to the sequence in (4.4).

Since the sequence of random elements (Gi(θ),θ ∈ Θ)i∈N is stationary and ergodic, we

need to show (cf. Theorem 7 in Straumann and Mikosch [42]) that Gi(θ) is for every i ∈ N a

continuous function of θ on Θ or on some compact subset Θ(p) of Θ and that

E sup
θ∈Θ(p)

G4
i (θ) <∞.

Proving that Gi(θ) is ω-wise continuous in its parameter θ is not straightforward, since

Gi(θ) =

∫ i∆

(i−1)∆
σs(θ)dLs

is a stochastic integral, driven by an arbitrary Lévy process, which also drives the stochastic

volatility process. If L has finite variation, we can use dominated convergence to show continuity,

but this is not possible when L has infinite variation sample paths; cf. Remark 4.9 below.

However, as we shall show in the next result, applying Kolmogorov’s continuity criterion, we

can always find a version (G
(c)
i (θ))i∈N of the sequence (Gi(θ))i∈N, which is continuous on a

possibly smaller compact parameter space Θ(p) ⊆ Θ for Θ.

Theorem 4.6 (Hölder continuity). Assume that E|L1|2p(1+ε) < ∞ for some p > 2 and ε > 0.

Then there exists a version (G
(c)
i (θ))i∈N of the random elements (Gi(θ))i∈N which is Hölder

continuous of every order γ ∈ [0, (p− 2)/(2p)) on Θ(p(1+ε)) as defined in (4.3). Additionally, for

every q ∈ [0, 2p), i ∈ N, and for

Ui = sup
0<‖θ1−θ2‖<1

θ1,θ2∈Θ(p(1+ε))

|G(c)
i (θ1)−G(c)

i (θ2)|
‖θ1 − θ2‖γ

(4.6)

we have

E sup
θ∈Θ(p(1+ε))

|G(c)
i (θ)|q <∞ and EU qi <∞. (4.7)

Proof. Without loss of generality we prove this for i = 1. We find a continuous version of the

random element G1(θ) on Θ(p(1+ε)). We first prove continuity with respect to (η, ϕ) and assume

17



that θ1,θ2 ∈ Θ(p(1+ε)) with β1, β2 = 1. Using the simple inequality |a − b|2p ≤ |a2 − b2|p, the

stationarity of σ0(θ) in Lemma 4.1, its differentiability in (A.9) and the mean value theorem

gives ∫ ∆

0
E|σs(θ1)− σs(θ2)|2p ds ≤

∫ ∆

0
E|σ2

s(θ1)− σ2
s(θ2)|p

= ∆E|σ2
0(θ1)− σ2

0(θ2)|p

≤ ∆
(
E sup
θ∈Θ(p(1+ε))

|∇η,ϕσ2
0(θ)|p

)
‖θ1 − θ2‖p <∞

(4.8)

by Lemma A.5 with k = 1. By (A2) of Proposition 2.1, (Lt)t≥0 is a martingale. Since E|L1|2p <∞
and

∫ ∆
0 E|σs(θ1) − σs(θ2)|2pds < ∞ we can apply Theorem 66 of Ch. 5 in Protter [35] to the

stochastic integral in (1.1) and obtain

E|G1(θ1)−G1(θ2)|2p = E
∣∣∣ ∫ ∆

0
(σs(θ1)− σs(θ2))dLs

∣∣∣2p ≤ c∗ ∫ ∆

0
E|σs(θ1)− σs(θ2)|2pds,

where c∗ is a positive constant. This combined with (4.8) gives

E|G1(θ1)−G1(θ2)|2p ≤ c∆‖θ1 − θ2‖p, (4.9)

where c = c∗∆E supθ∈Θ(p(1+ε)) |∇η,ϕσ2
0(θ)|p. Since β1, β2 = 1 we show continuity with respect to

(η, ϕ); i.e. the parameter space has dimension d = 2. Since p > 2 = d we can apply Kolmogorov’s

continuity criterion (Theorem 10.1 in Schilling and Partzsch [38], see also Theorem 2.5.1 of Ch.

5 in Khoshnevisan [21]). Then there exists a version (G
(c)
1 (θ),θ ∈ Θ(p(1+ε))) of (G1(θ),θ ∈

Θ(p(1+ε))) which is Hölder continuous of every order γ ∈ [0, (p−2)/(2p)); hence, also continuous.

Since Θ is compact, Lemma A.1 together with (4.9) gives E supθ∈Θ(p(1+ε)) |G(c)
1 (θ)|q < ∞ for

every q ∈ [0, 2p). Finally, the second expectation in (4.7) is finite by Theorem 10.1 in [38].

Now because of Remark 4.5, G
(c)
1 (θ) is linear in

√
β and therefore the results can be gener-

alized for the map θ 7→ G
(c)
1 (θ) on Θ(p(1+ε)). Indeed, let β∗ be as in (A.15) and

β∗ = inf{β > 0 : (β, η, ϕ) ∈ Θ} > 0.

Now, for arbitrary θ1,θ2 ∈ Θ(p(1+ε)) we can use Remark 4.5, the mean value theorem for β 7→
√
β

and the Hölder continuity of order γ of (η, ϕ) 7→ G
(c)
1 ((1, η, ϕ)), the definition of the `1-norm

and the fact that γ ∈ (0, 1) to get

|G(c)
1 (θ1)−G(c)

1 (θ2)|

≤ |G(c)
1 ((1, η1, ϕ1))−G(c)

1 ((1, η2, ϕ2))|
√
β∗ +

1

2
√
β∗
|β1 − β2| sup

θ∈Θ(p(1+ε))

|G(c)
1 (θ)|

≤ K‖(η1, ϕ1)− (η2, ϕ2)‖γ
√
β∗ +

1

2
√
β∗
|β1 − β2|γ |2β∗|1−γ sup

θ∈Θ(p(1+ε))

|G(c)
1 (θ)|

≤ ‖θ1 − θ2‖γ
(
K
√
β∗ +

1

2
√
β∗
|2β∗|1−γ sup

θ∈Θ(p(1+ε))

|G(c)
1 (θ)|

)
,

(4.10)

showing the Hölder continuity of θ 7→ G
(c)
1 (θ) on Θ(p(1+ε)). Now, the first expectation in (4.7) is

finite since |G(c)
1 (θ)| ≤ β∗|G(c)

1 ((1, η, ϕ))|. Now let θ1,θ2 ∈ Θ(p(1+ε)) be such that 0 < ‖θ1−θ2‖ <
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1. Using the inequality at the first line of (4.10) and the definition of the `1-norm gives

sup
0<‖θ1−θ2‖<1

θ1,θ2∈Θ(p(1+ε))

|G(c)
1 (θ1)−G(c)

1 (θ2)|
‖θ1 − θ2‖γ

≤

(
sup

0<‖θ1−θ2‖<1

θ1,θ2∈Θ(p(1+ε))

|G(c)
1 ((1, η1, ϕ1)−G(c)

1 ((1, η2, ϕ2)|
‖θ1 − θ2‖γ

)√
β∗

+ sup
0<‖θ1−θ2‖<1

θ1,θ2∈Θ(p(1+ε))

|β1 − β2|
2
√
β∗‖θ1 − θ2‖γ

|G(c)
1 (θ)|

≤

(
sup

0<‖θ1−θ2‖<1

θ1,θ2∈Θ(p(1+ε))

|G(c)
1 ((1, η1, ϕ1)−G(c)

1 ((1, η2, ϕ2)|
‖(η1, ϕ1)− (η2, ϕ2)‖γ

)√
β∗ +

1

2
√
β∗

sup
θ∈Θ(p(1+ε))

|G(c)
1 (θ)|

(4.11)

Applying the supremum and raising both sides of (4.11) to the power q gives the result.

Remark 4.7. In view of Theorem 4.6 we will from now on work with a continuous version of

the returns (Gi(θ),θ ∈ Θ(p(1+ε)))i∈N.

Theorem 4.8 (Strong consistency of the IIE). Assume that E|L1|2p(1+ε) < ∞ for some p > 2

and ε > 0 and let (Gi(θ0))ni=1 be the returns (1.2) with parameter θ0 ∈ Θ(p(1+ε)) from (4.1).

Suppose that the auxiliary AR(r) model for r ≥ 2 is estimated by the LSE or the YWE of

Definition 2.3. Then

θ̂n,II
a.s.→ θ0, n→∞.

Proof. According to Proposition 2.6(a), strong consistency of the IIE will follow if as n→∞,

sup
θ∈Θ(p(1+ε))

‖π̂n,LS(θ)− πθ‖
a.s.→ 0 and sup

θ∈Θ(p(1+ε))

‖π̂n,YW(θ)− πθ‖
a.s.→ 0.

By Remark 4.4 and Lemma A.2 it suffices to prove that

sup
θ∈Θ(p(1+ε))

‖fn(θ)− f(θ)‖ a.s.→ 0, n→∞, (4.12)

for fn and f as defined in (4.4) and (4.5), respectively. The Cauchy-Schwarz inequality gives for

every h ∈ N0,

E sup
θ∈Θ(p(1+ε))

G2
1(θ)G2

1+h(θ) ≤
(
E sup
θ∈Θ(p(1+ε))

G4
1(θ)

) 1
2
(
E sup
θ∈Θ(p(1+ε))

G4
1+h(θ)

) 1
2
<∞.(4.13)

The right-hand side of (4.13) is finite by Theorem 4.6. It also follows from the same theorem

that E supθ∈Θ(p(1+ε)) G2
1(θ) < ∞ and, hence, by Theorem 7 in Straumann and Mikosch [42] the

uniform SLLN holds and we obtain for all h ∈ N0 as n→∞,

sup
θ∈Θ(p(1+ε))

∣∣∣ 1
n

n∑
i=1

G2
i (θ)− EG2

1(θ)
∣∣∣ a.s.→ 0 and

sup
θ∈Θ(p(1+ε))

∣∣∣ 1
n

n∑
i=1

G2
i (θ)G2

i+h(θ)− EG2
1(θ)G2

1+h(θ)
∣∣∣ a.s.→ 0.

(4.14)

Hence (4.12) follows from (4.14) finishing the proof.
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Remark 4.9. If the Lévy process (Lt)t≥0 has finite variation sample paths, then the stochastic

integral in (1.2) can be treated pathwise as a Riemann-Stieltjes integral, such that continuity

of (Gi(θ),θ ∈ Θ)i∈N follows from Lemma 4.3(c) and dominated convergence. Therefore, Theo-

rem 4.6 is valid for θ0 ∈ Θ ⊇ Θ(p(1+ε)) for p > 2 and some ε > 0. Additionally, since the total

variation process is also a Lévy process we can use Theorem 66 of Ch. 5 in Protter [35] to show

that EL4
1 < ∞ implies E supθ∈ΘG

4
i (θ) < ∞ for all i ∈ N. Therefore, also Theorem 4.8 is valid

for θ0 ∈ Θ ⊇ Θ(p(1+ε)).

4.3 Asymptotic normality of the IIE

In order to prove asymptotic normality of the IIE, we need to verify the conditions (b.1), (b.2)

and (b.3) of Proposition 2.6. We recall that (b.2) has been proved in Theorem 3.5, and it remains

to prove (b.1) and (b.3), which are related to the smoothness of π̂n(θ) as a function of θ.

4.3.1 Differentiability properties of (Gi(θ),θ ∈ Θ(p(1+ε)))

Condition (b.1), refers to the differentiability of the map π̂n(θ). By Remark 4.4 and the chain

rule we only need to prove differentiability of Gi(θ) with respect to θ for every i ∈ N. Since

Gi(θ) is defined in terms of a stochastic integral we can not simply interchange the order of the

Riemann differentiation and the stochastic integration, however, under appropriate regularity

conditions formulated in Hutton and Nelson [16] this is possible.

We start by investigating the candidate for the differential of (Gi(θ),θ ∈ Θ(p(1+ε))) with

Θ(p(1+ε)) as in (4.3), namely the map

θ 7→
∫ i∆

(i−1)∆
∇θσs(θ)dLs := ∇θGi(θ). (4.15)

We show in Lemma 4.10 that we can find a version of the integral on the rhs, which is continuous

on a subset Θ(2p(1+ε)) of Θ(p(1+ε)). Then, Theorem 4.11 asserts that Gi(θ) is differentiable on

Θ(2p(1+ε)) and that its differential is indeed given by (4.15).

Lemma 4.10 (Hölder continuity of derivatives). Assume that E|L1|4p(1+ε) <∞ for some p > 2

and ε > 0. Then there exists a version (∇θG
(c)
i (θ))i∈N of the random elements (∇θGi(θ))i∈N

which is Hölder continuous of every order γ ∈ [0, (p − 2)/p) on Θ(2p(1+ε)) as defined in (4.3).

Additionally, for every q ∈ [0, p), i ∈ N, l ∈ {1, 2, 3}, and for

Vi = sup
0<‖θ1−θ2‖<1

θ1,θ2∈Θ(2p(1+ε))

| ∂∂θlGi(θ1)− ∂
∂θl
Gi(θ2)|

‖θ1 − θ2‖γ
(4.16)

we have

E sup
θ∈Θ(2p(1+ε))

∣∣∣ ∂
∂θl

Gi(θ)
∣∣∣q <∞ and EV q

i <∞.

Proof. Without loss of generality we consider i = 1. Note that in view of Remark 4.5 we can

write (4.15) as( 1

2
√
β

∫ ∆

0
σs((1, η, ϕ))dLs,

√
β

∫ ∆

0

∂

∂η
σs((1, η, ϕ))dLs,

√
β

∫ ∆

0

∂

∂ϕ
σs((1, η, ϕ))dLs

)>
. (4.17)
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From Remark 4.7 the first component of (4.17) is continuous in β even on Θ. For the remaining

two components, we show continuity with respect to (η, φ). Thus, assume that θ1,θ2 ∈ Θ(2p(1+ε))

with β1, β2 = 1.

Using the distributional property of σs(·) in Lemma 4.1 and the differentiability of θ 7→ σs(θ)

in Lemma A.4 gives for every Borel set B ∈ B(R) that

P
( ∂
∂η

(σs(θ1)− σs(θ2)) ∈ B
)

= P
(

lim
h→0,h∈Q

[σs(θ1 + (h, 0))− σs(θ1)]− [σs(θ2 + (h, 0))− σs(θ2)]

h
∈ B

)
= lim

h→0,h∈Q
P
( [σs(θ1 + (h, 0))− σs(θ1)]− [σs(θ2 + (h, 0))− σs(θ2)]

h
∈ B

)
= lim

h→0,h∈Q
P
( [σ0(θ1 + (h, 0))− σ0(θ1)]− [σ0(θ2 + (h, 0))− σ0(θ2)]

h
∈ B

)
= P

( ∂
∂η

(σ0(θ1)− σ0(θ2)) ∈ B
)
,

so that
∂

∂η
(σs(θ1)− σs(θ2))

d
=

∂

∂η
(σ0(θ1)− σ0(θ2)). (4.18)

Similar calculations show that (4.18) is also valid for ∂
∂η replaced by ∂

∂ϕ . Thus, (∇η,ϕσs(θ))s≥0

is stationary and it follows from its differentiability in (A.10) and the mean value theorem that∫ ∆

0
E‖∇η,ϕσs(θ1)−∇η,ϕσs(θ2)‖p ds = ∆E‖∇η,ϕσ0(θ1)−∇η,ϕσ0(θ2)‖p

≤ ∆
(
E sup
θ∈Θ(p(1+ε))

‖∇2
η,ϕσ0(θ)‖p

)
‖θ1 − θ2‖p <∞,

by Lemma A.5 with k = 2. The rest of the proof follows along the same lines as in Theorem 4.6.

Theorem 4.11 (Differentiable version of (Gi(θ))i∈N). Assume the conditions of Lemma 4.10.

Then there is a version (Gi(θ),θ ∈ Θ(2p(1+ε)))i∈N for Θ(2p(1+ε)) as in (4.3), which is continuously

differentiable and its derivative is given a.s. by (∇θGi(θ),θ ∈ Θ(2p(1+ε)))i∈N.

Proof. Without loss of generality we consider i = 1. From Remark 4.5 it follows that G1(θ) =
√
βG1((1, η, ϕ)) so that obviously

∂

∂β
G1(θ) =

1

2
√
β
G1((1, η, ϕ)) =

∫ ∆

0

∂

∂β
σs(θ)dLs.

Interchanging the partial differentiation with respect to (η, φ) and the stochastic integral requires

the four regularity conditions of Theorem 2.2 in Hutton and Nelson [16]. Let Ft := σ({Ls, 0 ≤
s ≤ t}), such that (Ft)t≥0 is the filtration generated by the Lévy process L. Condition (i) of that

paper is satisfied, since (σt(θ))t≥0 is predictable, we consider the parameter space M with the

Borel σ-algebra, and the parameter θ is independent of t. Since σs(θ) =
√
βσs((1, η, ϕ)) these

regularity conditions need only to be checked for the map (η, ϕ) 7→ σs((1, η, ϕ)). Condition (ii)

requires that
∫ ∆

0 σ2
s(θ)d〈L〉s < ∞ a.s. for every θ ∈ Θ(2p(1+ε)), where 〈L〉 = (〈L〉s)s≥0 is the
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characteristic of the martingale L. Since L is a square integrable Lévy process, 〈L〉s = sEL2
1

and thus this condition holds since s 7→ σs(θ) has bounded sample paths on the compact [0,∆].

The first part of condition (iii) requires that for every fixed s, the map θ 7→ σs(θ) is absolutely

continuous. From the definition of σ2
s(θ) in (2.3) we have for β1 = β2 = 1,

σ2
s(θ) = e−Ys−(θ)

(∫ s

0
eYv(θ)dv +

∫ ∞
0

e−Yv(θ)dv
)

=: h(θ)(f(θ) + g(θ)). (4.19)

Then for fixed θ1,θ2 ∈ Θ(2p(1+ε)) we use Lemma A.4 in combination with the mean value theorem

and Lemma 4.3(a) to get

|σ2
s(θ1)− σ2

s(θ2)| (4.20)

≤
∣∣∣(f(θ1) + g(θ1))

(
h(θ1)− h(θ2) + h(θ2)

(
f(θ1)− f(θ2) + g(θ1)− g(θ2

))∣∣∣
≤ (h(θ2) + f(θ1) + g(θ1))

(
|h(θ1)− h(θ2)|+ |f(θ1)− f(θ2)|+ |g(θ1)− g(θ2)|

)
≤ sup

θ∈Θ
{h(θ) + f(θ) + g(θ)}

(
|h(θ1)− h(θ2)|+ |f(θ1)− f(θ2)|+ |g(θ1)− f(θ2)|

)
≤ ‖θ1 − θ2‖

N∑
j=1

{
sup
θ∈Θ

(h(θ) + f(θ) + g(θ))
}{

e−Ys(θ
∗
j )(s+Ks(ϕ∗))

+

∫ s

0
eYv(θ∗j )(v +Kv(ϕ∗))dv +

∫ ∞
0

e−Yv(θ∗j )(v +Kv(ϕ∗))dv
}
,

where (θ∗j )
N
j=1 ∈M(2p(1+ε)). Since Θ is compact and for each fixed s ≥ 0, θ 7→ σs(θ) is continu-

ous, supθ∈Θ{h(θ) + f(θ) + g(θ)} is finite. Furthermore, Lemma A.3 implies that the other three

random variables at the right-hand side of (4.20) have finite first moment, and are therefore also

a.s. finite. Thus (4.20) implies that the map θ 7→ σ2
s(θ) is a.s. Lipschitz continuous on Θ(2p(1+ε))

and, as a consequence, absolutely continuous on Θ(2p(1+ε)). For the second part of condition (iii)

we recall first that we have assumed that β = 1, such that we focus on the partial differentiation

of the parameter (η, ϕ)>. A non-decreasing predictable process (λt)t≥0 is needed such that for

every t and θ ∈ Θ(2p(1+ε)) ∫ t

0
‖∇η,ϕσs(θ)‖2d〈L〉s < λt, a.s.

From (4.19), the product rule and Proposition 2 in [24] we find

‖∇η,ϕσs(θ)‖ ≤ 1

2σ∗
{‖∇η,ϕh(θ)‖(f(θ) + g(θ)) + h(θ)‖∇η,ϕf(θ) +∇η,ϕg(θ)‖}. (4.21)

We use Lemma A.4 and the definition of the process (Yt(θ))t≥0 in (2.1). First note that

η ≤ sup{η > 0 : (β, η, ϕ) ∈ Θ} =: η∗ <∞, ϕ ≥ inf{ϕ > 0 : (β, η, ϕ) ∈ Θ} =: ϕ∗ > 0 (4.22)

and we get the bound

f(θ) =

∫ s

0
eYv(θ)dv =

∫ s

0
exp

{
ηv −

∑
0<u≤s

log (1 + ϕ(∆Lu)2)
}

dv ≤ seη∗s. (4.23)
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Hence it follows from (4.19) that

‖∇η,ϕf(θ)‖ =

∫ s

0
veYv(θ)dv +

∫ s

0
eYv(θ)Kv(ϕ)dv ≤

(
s+Ks(ϕ∗)

)
seη

∗s, (4.24)

‖∇η,ϕh(θ)‖ = se−Ys−(θ) + e−Ys−(θ)Ks(ϕ) ≤ e−Ys(θ)
(
s+Ks(ϕ∗)

)
, (4.25)

‖∇η,ϕg(θ)‖ =

∫ ∞
0

ve−Yv(θ)dv +

∫ ∞
0

e−Yv(θ)Kv(ϕ)dv ≤
∫ ∞

0

(
v +Kv(ϕ∗))e

−Yv(θ)dv.(4.26)

From (4.21) and the bounds given in (4.23), (4.24), (4.25), and (4.26) we obtain

‖∇η,ϕσs(θ)‖ ≤ 1

2σ∗
e−Ys(θ)(s+Ks(ϕ∗))

(
seη

∗s +

∫ ∞
0

e−Yv(θ)dv
)

(4.27)

+
1

2σ∗
e−Y s−(θ)

{
(s+Ks(ϕ∗))se

η∗s +

∫ ∞
0

e−Yv(θ)(v +Kv(ϕ∗))dv

}
=: ls(θ).

Using the compactness of Θ(2p(1+ε)), (4.27) and Lemma 4.3(a) gives

sup
(η,ϕ)∈Θ(2p(1+ε))

‖∇η,ϕσs(θ)‖ ≤ sup
(η,ϕ)∈Θ(2p(1+ε))

ls(θ) ≤
N∑
j=1

ls(θ
∗
j ),

where (θ∗j )
N
j=1 in M(2p(1+ε)). Thus,

∫ t

0
‖∇η,ϕσs(θ)‖2d〈L〉s < 1 + EL2

1

∫ t

0

∣∣ N∑
j=1

ls(θ
∗
j )
∣∣2ds := λt, 0 ≤ t ≤ ∆,

which is a well defined process. Since (λt)t≥0 is adapted to the filtration (Ft)t≥0 and continuous,

it is predictable. The fourth regularity condition we need to check is that the maps

θ 7→
∫ ∆

0
σs(θ)dLs and θ 7→

∫ ∆

0
∇η,ϕσs(θ)dLs

are continuous, which has been proved in Theorem 4.6 and Lemma 4.10. This concludes the

proof.

Remark 4.12. In view of Theorem 4.11 we will from now on work with returns (Gi(θ),θ ∈
Θ(2p(1+ε)))i∈N with Θ(2p(1+ε)) as in (4.3), which are continuously differentiable with

∇θGi(θ) =

∫ i∆

(i−1)∆
∇θσs(θ)dLs, i ∈ N.

As a consequence, also the map θ 7→ π̂n(θ) is continuously differentiable on Θ(2p(1+ε)), hence,

condition (b.1) of Proposition 2.6 holds.

4.3.2 Convergence of the derivatives

Finally, we prove condition (b.3) of Proposition 2.6

Proposition 4.13 (Consistency of the derivatives). Assume that E|L1|4p(1+ε) < ∞ for some

p > 2/5 and ε > 0. Let π̂n be one of the estimators π̂n,LS and π̂n,YW from Definition 2.3. Then

for every sequence (θn)n∈N ⊂ Θ(2p(1+ε)) and θn
a.s.→ θ0 we have ∇θπ̂n(θn)

P→ ∇θπθ0 as n→∞.
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Proof. Recall from Remark 4.4 that we can write the two estimators π̂n,LS and π̂n,YW as a

continuously differentiable map g : Rr+2 → Rr+2, whose Jacobi matrix exists and all partial

derivatives of g are continuous. Hence, π̂n(θ) = (g1(fn(θ)), . . . , gr+2(fn(θ)))> for θ = (β, η, ϕ) =:

(θ1, θ2, θ3), and we obtain for the partial derivatives by the chain rule

∂

∂θl
gk(fn(θ)) =

(∂gk(fn(θ))

∂x1
, . . . ,

∂gk(fn(θ))

∂xr+2

)( ∂

∂θl
fn(θ)

)
. (4.28)

for every l = 1, 2, 3 and k = 1, . . . , r + 2. By the continuous mapping theorem and (4.28) it

suffices to prove that as n→∞,

fn(θn)
P→ f(θ0) and

∂

∂θj
fn(θn)

P→ ∂

∂θl
f(θ0), l = 1, 2, 3.

Let l ∈ {1, 2, 3} be fixed. It follows from (4.14) and from Lemma B.2 that as n→∞,

sup
θ∈Θ(2p(1+ε))

‖fn(θ)− f(θ)‖ P→ 0 and sup
θ∈Θ(2p(1+ε))

∥∥∥ ∂

∂θl
fn(θ)− ∂

∂θl
f(θ)

∥∥∥ P→ 0. (4.29)

Since

‖fn(θn)− f(θ0)‖ ≤ ‖fn(θn)− f(θn)‖+ ‖f(θn)− f(θ0)‖

≤ sup
Θ(2p(1+ε))

‖fn(θ)− f(θ)‖+ ‖f(θn)− f(θ0)‖, (4.30)

from the continuity of f on Θ(2p(1+ε)), the fact that θn
P→ θ0, and (4.29) it follows that fn(θn)

P→
f(θ0). Similar calculations as in (4.30) show that

∂

∂θl
fn(θn)

P→ ∂

∂θl
f(θ0)

concluding the proof.

We are now ready to state asymptotic normality of the IIE.

Theorem 4.14 (Asymptotic normality of the IIE). Assume that E|L1|4p(1+ε) < ∞ for some

p > 2/5 and ε > 0. Let (Gi(θ0))ni=1 be the returns (1.2) with true parameter θ0 is an element

of the interior of Θ(2p(1+ε)) as defined in (4.3). Suppose that the auxiliary AR(r) model for

r ≥ 2 is estimated by the LSE or the YWE of Definition 2.3. If the matrix Σ = Σθ0 defined in

Theorem 3.5 is positive definite and ∇θπ(θ0) has full column rank 3, then

√
n(θ̂n,II − θ0)

d→ N (0,Ξθ0), n→∞,

where Ξθ0 is defined in (2.18).

Proof. The asymptotic normality follows from Proposition 2.6. Since θ ∈ Θ(2p(1+ε)) ⊆ Θ(p(1+ε)) ⊆
Θ, Theorem 4.8 implies condition (a). Conditions (b.1) and (b.3) are valid by Proposition 4.13

and the fact that ∇θπ(θ0) has full column rank 3. Furthermore, (b.2) holds by Theorem 3.5,

since Σθ0 is positive definite.
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Remark 4.15 (Estimation of the asymptotic covariance matrix of θ̂n,II). The asymptotic co-

variance matrix of θ̂n,II given in Theorem 4.14 depends on K,∇θπθ0 ,Σθ0 and Ω. Using the map

θ 7→ ∇θπθ from (2.11) we compute ∇θπθ̂n,II. An application of the continuous mapping Theo-

rem in combination with the continuity of θ 7→ ∇θπθ and Theorem 4.8 gives ∇θπθ̂n,II
a.s.→ ∇θπθ0.

Recall Σθ0 as in (3.9) which depends on the inverse of the autocovariance function Γθ0 and on

Σ∗θ0 as defined in (3.10). A strongly consistent estimator of Γθ0 is given by Γθ̂n,II. Let Ĉk be as

in (3.11) with Wk replaced by G2
k(θ0) and π = (µ,a, γ(0)) replaced by π̂n. Then we estimate

Σ∗θ0 by

µ̂n,C1,CT1
+ 2

n−r−1∑
i=1

µ̂n,C1,CT1+i
,

where

µ̂n,C1,CT1+i
=

1

n− i− r

n−i−r∑
k=1

CkC
T
k+i, i = 0, . . . , n− r − 1.

Remark 4.16. If the Lévy process (Lt)t≥0 has finite variation sample paths, then the stochas-

tic integral in (1.2) can be treated pathwise as a Riemann-Stieltjes integral, such that contin-

uous differentiability of (Gi(θ),θ ∈ Θ)i∈N follows by dominated convergence with dominating

function as in (4.27). Therefore, Theorem 4.11 is valid for θ0 ∈ Θ ⊇ Θ(2p(1+ε)) for some

p > 2 and ε > 0. Additionally, since the total variation process is also a Lévy process we

can use Theorem 66 of Ch. 5 in Protter [35] to show that, if EL8+δ
1 < ∞ for some δ > 0, then

E supθ∈Θ(p(1+ε)) ‖∇θGi(θ)‖4+δ/2 <∞ for all i ∈ N. This combined with Remark 4.9 and a domi-

nated convergence argument can be applied to show that Lemma 4.13 is valid for θ0 ∈ Θ(2p(1+ε)),

and, as a consequence, also Theorem 4.14.

5 Simulation study

The data used for estimation is a sample of COGARCH squared returns G2
n = (G2

i (θ0))ni=1 as

defined in (1.2) with true parameter value θ0 ∈ Θ as in (2.7) observed on a fixed grid of size

∆ = 1. We choose a pure jump Variance Gamma (VG) process as the Lévy process, which has

infinite activity and has been used successfully for modeling stock prices (see Haug et al. [15] and

reference therein). The Lévy measure of the VG process with parameter C > 0 has Lebesgue

density

νL(dx) =
C

|x|
exp{−(2C)1/2|x|}dx, x 6= 0. (5.1)

The Indirect Inference method of Gourieroux et al. [12] based on simulations was originally

proposed to estimate models where the binding function is difficult or impossible to compute.

However, the binding function θ 7→ πθ from Proposition 2.4 can be computed explicitly from

the formulas given in Theorem 3.1 of Haug et al. [15] and the Yule-Walker equations in (2.10),

leading to the IIE

θ̂n,II∗ := arg min
θ∈Θ

‖π̂n − πθ‖Ω. (5.2)

We perform a simulation study to evaluate the finite sample performance of the IIE θ̂n,II∗ in (5.2)

and also to compare it with the method of moments (MM) estimator θ̂n,MM (Algorithm 1 in Haug
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et al. [15]) and the optimal prediction based (OPB) estimator θ̂n,OPB (equation (7) in Bibbona

and Negri [4]). As in the simulation studies in [4, 15], we take the VG process with true parameter

value θ0 = (0.04, 0.053, 0.038) and C = 1 in (5.1), which implies Ψθ0(4) = −0.0261 < 0. Under

these conditions, all three estimators θ̂n,MM (Theorem 3.8 in [15]), θ̂n,OPB (Theorem 3.1 in [4])

and IIE θ̂n,II∗ (Theorem 4.8) are consistent.

The MM is based on r empirical autocovariances, OPB based on r predictors, and IIE based

on an AR(r) auxiliary model. Inspection of several empirical autocovariance functions of the

squared returns G2
n with n = 10 000 revealed r = 70 as a suitable number of lags in most of the

cases. Since we have to fix r in a simulation study, we choose r = 70 for all three estimators.

We compare the three estimators in a simulation study in Section 5.1. Then we show in

Section 5.2 how the IIE based on simulations defined in (2.16) can reduce the finite sample bias

of θ̂n,II∗ considerably. Finally, to understand how the condition Ψθ0(4) < 0 affects the estimation,

we investigate the finite sample bias of both IIEs with two different true parameter values θ
(1)
0

and θ
(2)
0 satisfying Ψ

θ
(2)
0

(4) < Ψθ0(4) < Ψ
θ
(1)
0

(4) < 0, where Ψ
θ
(1)
0

(4) is near zero.

5.1 Simulation results

The computations were performed using the R software (R Core Team [36]). Simulation of the

COGARCH process and computation of θ̂n,MM and θ̂n,OPB are performed with the COGARCH

R package from Bibbona et al. [5] (see also the YUIMA R package in Iacus et al. [17] for the

simulation and estimation of higher order COGARCH models). We first compute θ̂n,MM based

on the sample G2
n. The estimators θ̂n,OPB and θ̂n,II∗ are computed via the optimization routine

optim in R, which requires an initial parameter value and we take θ̂n,MM. To compute π̂n in (5.2)

we use the YWE from Definition 2.3 and take the identity matrix for Ω to compute θ̂n,II∗ . In

principle, there is an optimal choice of Ω (see Remark 3 of de Luna and Genton [8] and Prop. 4

of Gourieroux et al. [12]). It depends on the covariance matrix Σ of the auxiliary model in (3.9)

(see also Remark 4.24(b) in [10]). This matrix depends on an infinite series and on covariances

between COGARCH returns to the powers 2,4,6 and 8, and has no explicit expression. According

to Remark 3 of [8] and empirical evidence reported on p. S97f of Gourieroux et al. [12] the gain of

efficiency when using the optimal weight matrix is negligible, so that we only consider estimators

based on the identity matrix for Ω.

We focus on the YWE for the auxiliary model, a comparison including the LSE will be given

in Do Rêgo Sousa [9]. The estimator θ̂n,OPB only returns a result when Ψθ̂n,OPB
(4) < 0. The

estimators θ̂n,MM and θ̂n,II∗ always return a value. The results are given in Table 5.1, where we

excluded those paths for which the condition Ψθ̂n(4) < 0 is not satisfied for at least one of the

estimators compared here. The results are based on 1 000 independent samples of COGARCH

squared returns.

The results in Table 5.1 for the estimators θ̂n,MM and θ̂n,OPB are similar to those of Table 2

in Bibbona and Negri [4]. The OPB estimator has the smallest RMSE. The MM has the smallest

relative bias for the parameter ϕ, and the OPB the smallest for β and φ. The estimator θ̂n,II∗

performed similarly to θ̂n,MM, but it has a large bias for the parameters β and ϕ. This is probably

due to the fact that θ̂n,II∗ depends on π̂n, which is a biased estimator of π even for AR models
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Mean Std RMSE RB

β̂ 0.04698 0.02032 0.02148 0.17457

θ̂n,II∗ η̂ 0.05038 0.01482 0.01504 -0.04939

ϕ̂ 0.03243 0.00994 0.01139 -0.14663

β̂ 0.05226 0.01805 0.02182 0.30658

θ̂n,MM η̂ 0.05662 0.01576 0.01616 0.06827

ϕ̂ 0.03667 0.01023 0.01031 -0.03513

β̂ 0.04439 0.01609 0.01667 0.10965

θ̂n,OPB η̂ 0.05274 0.01317 0.01317 -0.00489

ϕ̂ 0.03583 0.00815 0.00843 -0.05712

β̂ 0.04204 0.02032 0.02041 0.05105

θ̂n,II η̂ 0.05318 0.01623 0.01622 0.00336

ϕ̂ 0.03661 0.00955 0.00965 -0.03661

Table 5.1: Performance assessment based on 1 000 independent samples of COGARCH squared returns

G2
n for n = 10 000, sampled with parameter values β0 = 0.04, η0 = 0.053 and ϕ0 = 0.038: mean, standard

deviation (Std), root mean squared error (RMSE) and relative bias (RB). Both IIEs θ̂n,II∗ in (5.2) and

θ̂n,II in (5.3) used the identity matrix for Ω. The IIE θ̂n,II is based on K = 100 simulated paths.

with i.i.d. noise as shown in Shaman and Stine [39]. The auxiliary AR model from Proposition 2.2

has stationary and ergodic residuals, and certainly π̂n has a bias, which propagates to the IIE.

As a remedy, we use the IIE based on simulations and show that it can reduce the bias of θ̂n,II∗ ,

it also outperforms θ̂n,MM and θ̂n,OPB.

5.2 Finite sample bias

In Gourieroux et al. [13, 14] it is shown that Indirect Inference based on simulations can reduce

the finite sample bias considerably, in particular, when the bias originates from the estimator of

the auxiliary model. The idea of the bias reduction is that the IIE

θ̂n,II = arg min
θ∈Θ

∥∥∥∥π̂n − 1

K

K∑
k=1

π̂n,k(θ)

∥∥∥∥
Ω

, K ∈ N, (5.3)

from Definition 2.5 finds a θ ∈ Θ which minimizes the distance between two biased estimators,

π̂n and 1
K

∑K
k=1 π̂n,k(θ). As they have a similar bias, they have a chance to cancel. We proceed

to investigate the finite sample performance of the estimator θ̂n,II in (5.3).

According to [14], the number of simulated paths K in (5.3) has to be large enough to ensure

that E π̂n(θ) is well approximated by 1
K

∑K
k=1 π̂n,k(θ) for all θ appearing in the optimization

algorithm. Furthermore, the asymptotic variance of the IIE decreases with K (see Eq. (2.19)).

To compute θ̂n,II we need to evaluate the function

θ 7→ 1

K

K∑
k=1

π̂n,k(θ) (5.4)

for all θ giving a representation of the parameter space. To compute (5.4) for a fixed θ, we

simulate K independent samples Gn,k(θ) := (G
(k)
i (θ))ni=1 for k = 1, . . . ,K. For different θ we
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n = 5 000

Mean Std RMSE RB

β̂ 0.04710 0.02196 0.02307 0.17738

θ̂n,II∗ η̂ 0.04977 0.02036 0.02061 -0.06094

ϕ̂ 0.03168 0.01317 0.01461 -0.16637

β̂ 0.04999 0.03228 0.03377 0.24968

θ̂n,II η̂ 0.05935 0.02458 0.02538 0.11974

ϕ̂ 0.03990 0.01379 0.01391 0.04989

n = 7 500

Mean Std RMSE RB

β̂ 0.05093 0.02015 0.02291 0.27323

θ̂n,II∗ η̂ 0.05401 0.01786 0.01788 0.01896

ϕ̂ 0.03439 0.01158 0.01212 -0.09502

β̂ 0.04181 0.02375 0.02381 0.04537

θ̂n,II η̂ 0.05322 0.01897 0.01896 0.00408

ϕ̂ 0.03668 0.01093 0.01101 -0.03487

Table 5.2: Performance assessment based on 1 000 independent samples of COGARCH squared returns

G2
n for n = 5 000 and n = 7 500, sampled with parameter values β0 = 0.04, η0 = 0.053 and ϕ0 = 0.038:

mean, standard deviation (Std), root mean squared error (RMSE) and relative bias (RB). Both IIEs θ̂n,II∗

in (5.2) and θ̂n,II in (5.3) used the identity matrix for Ω. The IIE θ̂n,II is based on K = 100 simulated

paths.

use the same pseudo-random numbers to generate the K independent samples, which turns (5.4)

into a deterministic function of θ and thus suitable for optimization.

In order to save computation time when computing (5.4) we use for every simulated path the

fact that Gn,k(θ) =
√
βGn,k((1, η, φ)) (see Remark 4.5) and thus it follows from Definition 2.3

that

π̂n,k(θ) =

 µ̂n(θ)

ân,k(θ)

γ̂n,k(0;θ)

 =

 βµ̂n,k((1, η, φ))

ân,k((1, η, φ))

β2γ̂n,k(0; (1, η, φ))

 . (5.5)

As it is computationally impossible to perform the optimization (5.3) for all θ ∈ Θ, we have

to restrict Θ in a reasonable way, and we restrict Θ to values in the set

Θrest := {θ ∈ Θ : Ψθ(4) < 0, θ ∈ (0, β̂max)× (0, η̂max)× (0, ϕ̂max)}

where β̂max, η̂max and ϕ̂max are upper bounds for the estimated parameters from Table 5.1 for

all 1 000 independent samples G2
n and all estimators.

For K = 100 and n = 10 000, every evaluation of (5.4) takes approximately 13 minutes on

a personal computer. The next goal would be to evaluate (5.3) using a gradient based routine.

This is out of reach with respect to computation time. As a remedy we adopt the strategy of

precomputing (5.4) on a fine grid Θgrid ⊂ Θrest. The set Θgrid was created by generating an

equally spaced grid on Θrest with componentwise distance for the parameters η and ϕ equal to
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Figure 1: QQ plots of the estimators θ̂n,II of θ0 as in Table 5.1 for n = 5 000 (top line) and n = 10 000

(bottom line).

0.001 (resulting in about 6.000 different points). The grid for the component β was then created

with spacing 0.001, but without the need to simulate the COGARCH path again by using the

relation in (5.5). Afterwards, with COGARCH returns G2
n generated independently from the

samples Gn,k(θ), k = 1, . . . ,K, applied to compute (5.4), we compute π̂n, and the estimator

θ̂n,II is then simply given by

arg min
θ∈Θgrid

∥∥∥∥π̂n − 1

K

K∑
k=1

π̂n,k(θ)

∥∥∥∥
Ω

,

where we choose the identity matrix for Ω. The results are presented in the bottom line of Ta-

ble 5.1. We notice a significant bias reduction for the simulation based estimator θ̂n,II compared

to θ̂n,II∗ . The standard deviation of the estimator for η is slightly larger for θ̂n,II, but this is

expected since the simulations increase the asymptotic variance by a factor of (1 + 1
K ) as can

be seen from (2.19). The relative bias of θ̂n,II is also smaller than those of the estimators θ̂n,MM

and θ̂n,OPB. Since the standard deviations of the components of θ̂n,II are larger than for those

of θ̂n,OPB and the bias reduction is comparable for the parameters η and ϕ, the RMSE does not

seem to improve, even though the bias of θ̂n,II is smaller.

We also compare the performance of the IIE with and without simulation for different sample

sizes n with θ0 as in Table 5.1. The results are given in Table 5.2. For n = 5 000 we only observe

a bias reduction of θ̂n,II for η̂, whereas the bias reduction of θ̂n,II is noticeable for all three

components already for n = 7 500 and of course for n = 10 000; cf. Table 5.1.

We also can see in Figure 1 that for n = 5 000 and n = 10 000 the asymptotic normality of
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θ̂n,II has not yet been reached, although some improvement for growing sample sizes is visible

in the QQ plots of β̂ and η̂, however not for ϕ̂.

To clarify if the bias reduction of θ̂n,II depends on the choice of the true parameter values

we perform a simulation study with two different values: θ
(1)
0 = (0.04, 0.051, 0.040) and θ

(2)
0 =

(0.04, 0.055, 0.036). Both values are in the stationarity region with

Ψ
θ
(1)
0

(4) = −0.0060, Ψθ0(4) = −0.0261, Ψ
θ
(2)
0

(4) = −0.0460.

The results are presented in Table 5.3. As for θ0 in Table 5.1, they also show significant bias

reduction for both values for the estimator θ̂n,II based on simulations, when compared to θ̂n,II∗ .

However, the bias for β̂(1) is much higher than for β̂ and β̂(2) reflecting the fact that Ψ
θ
(1)
0

(4)

is very close to zero. The estimators η̂(1) and ϕ̂(1) seem to be robust with respect to this fact.

Additionally, the relative biases for β̂(2) and ϕ̂(2) are even smaller than those for β̂ and ϕ̂ and

β̂(1) and ϕ̂(1).

θ
(1)
0 = (0.04, 0.051, 0.040)

Mean Std RMSE RB

β̂ 0.05452 0.02341 0.02754 0.36298

θ̂n,II∗ η̂ 0.05027 0.01294 0.01296 -0.01433

ϕ̂ 0.03478 0.00857 0.01003 -0.13046

β̂ 0.04586 0.02133 0.02211 0.14658

θ̂n,II η̂ 0.05142 0.01421 0.01421 0.00827

ϕ̂ 0.03788 0.00872 0.00897 -0.05300

θ
(2)
0 = (0.04, 0.055, 0.036)

Mean Std RMSE RB

β̂ 0.04315 0.01858 0.01883 0.07886

θ̂n,II∗ η̂ 0.05177 0.01603 0.01635 -0.05867

ϕ̂ 0.03109 0.01057 0.01165 -0.13643

β̂ 0.04084 0.01829 0.01830 0.02090

θ̂n,II η̂ 0.05571 0.01666 0.01667 0.01295

ϕ̂ 0.03570 0.00948 0.00948 -0.00828

Table 5.3: Performance assessment based on 1 000 independent samples of COGARCH squared returnsG2
n

for n = 10 000, sampled with parameter values θ
(1)
0 = (0.04, 0.051, 0.040) and θ

(2)
0 = (0.04, 0.055, 0.036):

mean, standard deviation (Std), root mean squared error (RMSE) and relative bias (RB). Both IIEs θ̂n,II∗

in (5.2) and θ̂n,II in (5.3) used the identity matrix for Ω. The IIE θ̂n,II is based on K = 100 simulated

paths.
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A Appendix to Section 4.1

The first Lemma states important properties about moments of a continuous version of a stochas-

tic process found via Kolmogorov’s continuity criterion. The property stated in (A.1) is used to

apply a uniform SLLN in Theorem 4.8. Lemma A.4 is used to compute ∇θσ2
0(θ) and ∇2

θσ
2
0(θ),

needed to find a continuous version of the map θ 7→
∫ i∆

(i−1)∆ σs(θ)dLs in Theorem 4.6, and of

θ 7→
∫ i∆

(i−1)∆∇θσs(θ)dLs in Lemma 4.10.

Lemma A.1. Let (X(θ),θ ∈ Θ) be a stochastic process with Θ ⊂ Rd+ compact for d ∈ N.

Assume that there exist positive constants p, c, ε such that for all θ1,θ2 ∈ Θ:

E|X(c)(θ1)−X(θ2)|p ≤ c‖θ1 − θ2‖d+ε.

Then there exists a continuous version (X(c)(θ),θ ∈ Θ) of (X(θ),θ ∈ Θ) such that

E sup
θ∈Θ
|X(c)(θ)|q <∞. (A.1)

Proof. Since Θ is compact we can use the Heine-Borel theorem to find a finite collection of open

sets (Θj)
N
j=1 such that Θ ⊂ ∪Nj=1Θj and ‖θ1 − θ2‖ ≤ δ∗ for every θ1,θ2 ∈ Θj . Choosing an

arbitrary θj ∈ Θj ∩Θ for j = 1, . . . , N and using |a− b|q ≤ 2q−1|aq − bq| gives for q < p,

E sup
θ∈Θ
|X(c)(θ)|q ≤

N∑
j=1

E sup
θ∈Θj

|X(c)(θ)|q

≤
N∑
j=1

2q−1E sup
θ∈Θj

{
|X(c)(θ)−X(c)(θj)|q + |X(c)(θj)|q

}
≤ 2q−1

N∑
j=1

(1 + E|X(c)(θj)|q) <∞,

since E|X(c)(θ)|p <∞ for all θ ∈ Θ.

The next Lemma gives necessary conditions for the existence of a continuous version of a

stochastic process, and of fractional moments of order p ≥ 1 of a random variable that appears

when computing inequalities involving moments of σ2
0(θ).

The following Lemma is well-known from Analysis, and can be found for instance as Exer-

cise 6 in Ch. 15.7 of [26].

Lemma A.2. Suppose that g : Rp → Rq is continuous and that

sup
θ∈Θ
‖fn(θ)− f(θ)‖ a.s.→ 0, n→∞,

where (fn(θ))n∈N is a sequence of random vectors in Rp, f : Θ ∈ Rd 7→ Rp is a deterministic

function and Θ is compact. Then as n→∞,

sup
θ∈Θ
‖g(fn(θ))− g(f(θ))‖ a.s.→ 0.
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Lemma A.3. Let p, b ≥ 1, a, k ≥ 0, θ ∈M be fixed and (Ks(ϕ̃))s≥0 as defined in (4.1) for fixed

ϕ̃ > 0. If E|L1|2p(1+ε) <∞ and Ψθ(p(1 + ε)) < 0 for some ε > 0, then

E
(∫ ∞

0
(sa + skKb

s(ϕ̃))e−Ys(θ)ds

)p
<∞.

Proof. The proof is similar to the proof of Proposition 4.1 in Lindner and Maller [29]. For every

j ∈ N0 define Qj(θ) :=
∫ j+1
j (sa + skKb

s(ϕ̃))e−Ys(θ)ds. Then

EQpj (θ) = E
(∫ j+1

j
(sa + skKb

s(ϕ̃))e−Ys(θ)ds
)p

≤ E
(

sup
j≤s≤j+1

(sa + skKb
s(ϕ̃))e−Ys(θ)

)p
≤ E

((
(j + 1)a + (j + 1)kKb

j+1(ϕ̃))p sup
j≤s≤j+1

e−pYs(θ)
)

(A.2)

≤
(
E
(
(j + 1)a + (j + 1)kKb

j+1(ϕ̃)
)p(1+ε)/ε

)ε/(1+ε)(
E sup
j≤s≤j+1

e−p(1+ε)Ys(θ)
)1/(1+ε)

by the Hölder inequality. Since by Lemma 4.3 (Ks(ϕ̃))s≥0 is a Lévy process with moments of all

orders, repeated differentiation of the characteristic function of Kj+1(ϕ̃) gives a constant c > 0

such that

E
(
(j + 1)a + (j + 1)kKb

j+1(ϕ̃)
)p(1+ε)/ε ≤ c(j + 1)mp(1+ε)/ε, (A.3)

where m = a + k + b. Since the process (eYs(θ)−sΨθ(1))s≥0 is a martingale, we can use Doob’s

martingale inequality, the Laplace transform in (2.2) and the fact that Ψθ(1) < 0 to get

E sup
j≤s≤j+1

e−p(1+ε)Ys(θ) ≤ e−(j+1)p(1+ε)Ψθ(1)E sup
j≤s≤j+1

e−p(1+ε)Ys(θ)+sp(1+ε)Ψθ(1)

≤ e−(j+1)p(1+ε)Ψθ(1)Ee−p(1+ε)Yj+1(θ)+p(1+ε)(j+1)Ψθ(1)

= Ee−p(1+ε)Yj+1(θ)

= e(j+1)Ψθ(p(1+ε)).

(A.4)

Equation (A.2) together with (A.3) and (A.4) gives

EQpj (θ) ≤ c∗(j + 1)mpe(j+1)Ψθ(p(1+ε))/(1+ε) <∞, (A.5)

where c∗ = cε/(1+ε). Let α := bpc be the integer part of p and suppose that p > α. Then

(∫ n

0
(sa + skKb

s(ϕ̃))e−Ys(θ)ds
)p

=
( n−1∑
j=0

Qj(θ)
)p

=

n−1∑
j1=0

· · ·
n−1∑
jα=0

Qj1(θ) . . . Qjα(θ)
( n−1∑
jα+1=0

Qjα+1(θ)
)p−α

≤
n−1∑
j1=0

· · ·
n−1∑
jα=0

n−1∑
jα+1=0

Qj1(θ) . . . Qjα(θ)Qp−αjα+1
(θ).

(A.6)

If p is an integer the last sum in (A.6) disappears. By (A.5), for each j = 1, . . . , α+ 1, Qj ∈ Lp

so we can apply the Hölder inequality with 1
p + · · ·+ 1

p + p−α
p = 1 to the right-hand side of (A.6).
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This together with (A.5) gives

E
(∫ n

0
(sa + skKb

s(ϕ̃))e−Ys(θ)ds
)p

≤
n−1∑
j1=0

· · ·
n−1∑
jα=0

n−1∑
jα+1=0

(
E(Qpj1(θ)

) 1
p . . .

(
EQpjα(θ)

) 1
p
(
E(Qpjα+1

(θ)
) p−α

p (A.7)

≤ c∗
( n−1∑
j=0

(j + 1)me(j+1)/(p(1+ε))Ψθ(p(1+ε))
)α( n−1∑

j=0

(j + 1)m(p−α)e(j+1)(p−α)/(p(1+ε))Ψθ(p(1+ε))
)
.

Since Ψθ(p(1+ε)) < 0 both series in (A.7) converge. The monotone convergence theorem applied

to the expectation in the first line of (A.7) gives the result.

Lemma A.4. Let θ = (β, η, ϕ) with β, η, ϕ > 0 and consider the process (Ys(θ))s≥0 as in (2.1).

Let Ks(ϕ) be as defined in (4.1). Then:

(a) For every fixed s > 0,

∇η,ϕ
(
e−Ys(θ)

)
= e−Ys(θ)

(
−s

Ks(ϕ)

)
. (A.8)

(b) If E|L1|2(1+ε) <∞ and Ψθ(1 + ε) < 0 for some ε > 0, then

∇η,ϕ
(∫ ∞

0
e−Ys(θ)ds

)
=

∫ ∞
0

e−Ys(θ)

(
−s

Ks(ϕ)

)
ds (A.9)

and

∇2
η,ϕ

(∫ ∞
0

e−Ys(θ)ds
)

=

∫ ∞
0

e−Ys(θ)

(
s2 −sKs(ϕ)

−sKs(ϕ) (d2
s(ϕ) + d′s(ϕ))

)
ds. (A.10)

Proof. (a) The partial derivatives of Ys(θ) = ηs−
∑

0<u≤s log(1 + ϕ(∆Lu)2) are given by

∂Ys(θ)

∂η
= s and

∂Ys(θ)

∂ϕ
= −Ks(ϕ),

where the derivative with respect to ϕ follows by dominated convergence since we have the

following bound independent of ϕ:

Ks(ϕ) ≤
∑

0<u≤s
(∆Lu)2 <∞. (A.11)

A simple application of the chain rule gives (A.8).

(b) It follows from Lemma 4.3(a) that we can find a collection of points (θ∗j )
N
j=1 inM such that

sup
θ∈Θ

e−Ys(θ) ≤
N∑
j=1

e−Ys(θ
∗
j ), s ≥ 0. (A.12)

The first derivative of Ks(ϕ) follows from dominated converge with the upper bound in (A.11)

and is given by

K ′s(ϕ) = −
∑

0<u≤s

(∆Lu)4

(1 + ϕ(∆Lu)2)2
, s ≥ 0.
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Now, similar calculations as in (4.2) show that |K ′s(ϕ)| ≤ Ks(ϕ∗)/ϕ∗ for ϕ∗ as defined in (4.22).

This combined with (A.12) allows us to obtain an upper bound for the sum of the bounds of

the absolute values of the integrals at the r.h.s. of (A.9) and (A.10) given by

N∑
j=1

∫ ∞
0

e−Ys(θ
∗
j )(s+ s2 +Ks(ϕ∗)(1 + 2s+ 1/φ∗) + d2

s(ϕ∗)
)
ds. (A.13)

Since E|L1|2(1+ε) < ∞ and Ψθ∗j (1 + ε) < 0 for all j = 1, . . . , N we can apply Lemma A.3 with

p = 1 to prove that the integral in (A.13) has finite first moment and is therefore well defined.

This allows us to use dominated convergence to differentiate under the integral sign and then

use the chain and product rule combined with (A.8) to obtain (A.9) and (A.10).

Lemma A.5. Let p ≥ 1 and k ∈ {1, 2}. If E|L1|2kp(1+ε) <∞ for some ε > 0 then

E sup
θ∈Θ(p(1+ε))

‖∇kη,ϕσ2
0(θ)‖p <∞ and E sup

θ∈Θ(kp(1+ε))

‖∇kη,ϕσ0(θ)‖p <∞.

Proof. For k ∈ {1, 2} let Rkp denote the integral defined in (A.13) with (θ∗j )
N
j=1 ∈M(kp(1+ε)) as

in (4.3). By the same argument preceding (A.13) and from (2.4) we get

sup
θ∈Θ(kp(1+ε))

(
‖∇η,ϕσ2

0(θ)‖+ ‖∇2
η,ϕσ

2
0(θ)‖

)
≤ cβ∗Rkp, k = 1, 2, (A.14)

where c > 0 and

β∗ = sup{β > 0 : (β, η, ϕ) ∈ Θ} <∞. (A.15)

Since from Lemma 4.3(b) we know that σ0(θ) ≥ σ∗ > 0, the chain rule implies that

‖∇η,ϕσ0(θ)‖ ≤ 1

σ∗
‖∇η,ϕσ2

0(θ)‖. (A.16)

Using (A.16) combined with the chain rule for the second order derivative gives

‖∇2
η,ϕσ0(θ)‖ ≤ 1

4σ∗
‖∇2

η,ϕσ
2
0(θ)|+ 1

8(σ∗)3
‖∇η,ϕσ2

0(θ)‖2. (A.17)

Using (A.14) combined with (A.16) gives

E sup
θ∈Θ(p(1+ε))

‖∇η,ϕσ0(θ)‖p ≤ E
( 1

σ∗
cβ∗Rp

)p
<∞,

by an application of Lemma A.3. Now, (A.14) combined with (A.17) gives

E sup
θ∈Θ(2p(1+ε))

‖∇2
η,ϕσ0(θ)‖p ≤ E

( 1

4σ∗
cβ∗R2p +

1

8(σ∗)3
(cβ∗R2p)

2
)p

<∞,

by an application of the Cauchy-Schwartz inequality and Lemma A.3 with p replaced by 2p.
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B Appendix to Section 4.2

Lemmas B.2 and B.1 are used in the proof of Proposition 4.13 to control the convergence of

arithmetic means defined in terms of the sequences (Gi(θ))i∈N and (∇θGi(θ))i∈N with ∇θGi(θ)

defined in the sense of Remark 4.12.

Lemma B.1. Let θ = (β, η, φ) =: (θ1, θ2, θ3) with β, η, φ > 0 and ∆ > 0. Suppose that E|L1|2 <
∞ and Ψθ(1) < 0. Let (σt(θ))t≥0 be the stationary volatility process starting with σ0(θ) as in

(2.4) independent of L. Then for all three components of θ the sequences(∫ i∆

(i−1)∆
σs(θ)dLs,

∫ i∆

(i−1)∆

∂

∂θj
σs(θ)dLs

)
i∈N

are stationary and ergodic.

Proof. Consider without loss of generality j = 1. Define the i.i.d. sequence (Sk)k∈Z with

Sk = (∆Lu, (k − 1)∆ < u ≤ k∆).

We consider

((σs(θ),θ ∈ Θ), (i− 1)∆ < s ≤ i∆) =: g(θ,θ ∈ Θ, (Sk)
i
k=−∞)

as a measurable function of all relevant jumps ∆Lu. Additionally, since limits of differentiable

functions are measurable, there exists a measurable map h such that

(
∂

∂θ1
σs(θ), (i− 1)∆ < s ≤ i∆) = h((Sk)

i
k=−∞, (θ + (c, 0, 0))c∈Q).

By observing that a stochastic integral is defined as a measurable map depending on the inte-

grand and integrator processes, we can write∫ i∆

(i−1)∆
σs(θ)dLs = g((Sk)

i
k=−∞,θ) and

∫ i∆

(i−1)∆

∂

∂θ1
σs(θ)dLs = h((Sk)

i
k=−∞, (θ + (c, 0, 0))c∈Q).

Using Proposition 5 in Straumann and Mikosch [42] (see also Theorem 2.1 in Krengel [27]) we

can conclude the stationarity and ergodicity of the process (Gi(θ),∇Gi(θ))i∈N based on the

stationarity and ergodicity of the sequence (Si)i∈Z and the measurability of g and h.

Lemma B.2. If E|L1|4p(1+ε) < ∞ for some p > 5/2 and ε > 0 then for every l ∈ {1, 2, 3} and

h ∈ N0 we have

sup
θ∈Θ(2p(1+ε))

∣∣∣ ∂
∂θl

( 1

n

n−h∑
i=1

G2
i (θ)G2

i+h(θ)
)
− ∂

∂θl

(
EG2

1(θ)G2
1+h(θ)

)∣∣∣ P→ 0, n→∞. (B.1)

Proof. The proof follows closely the strategy in the proof of Proposition 5.5 in Fasen-Hartmann

and Kimmig [10], which divides the proof into three steps: Pointwise convergence, local Hölder

continuity, and stochastic equicontinuity. Let l ∈ {1, 2, 3} and h ∈ N0 be fixed. Write µ̂n(h;θ) =
1
n

∑n−h
i=1 G

2
i (θ)G2

i+h(θ). Then, a simple application of the chain and product rule gives

∂

∂θl
µ̂n(h;θ) =

1

n

n−h∑
i=1

[
2Gi(θ)

( ∂

∂θl
Gi(θ)

)
G2
i+h(θ) + 2G2

i (θ)Gi+h(θ)
( ∂

∂θl
Gj+h(θ)

)]
. (B.2)
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Step 1. Pointwise convergence. Let θ ∈ Θ(2p(1+ε)) be fixed. It follows from Lemma B.1 that

the sequence (Gi(θ), ∂
∂θl
Gi(θ))i∈N is stationary and ergodic. Additionally, it follows from the

lemma’s assumptions combined with Theorem 4.6, Lemma 4.10 and the Hölder inequality with
1
5 + 2

5 + 2
5 = 1 that

EG1(θ)
( ∂

∂θl
G1(θ)

)
G2

1+h(θ)

≤ (EG5
1(θ))1/5

(
E
( ∂

∂θl
G1(θ)

)5/2
)2/5

(EG5
1+h(θ))2/5 <∞.

(B.3)

The same calculations in (B.3) can be applied to show that the expectation of the second term

in the summation (B.2) is also finite. This allows us to apply Birkhoff convergence theorem to

conclude that
∂

∂θl
µ̂n(h;θ)

P→ EG2
1(θ)G2

1+h(θ), n→∞.

Step 2. ∂
∂θl
µ̂n(h;θ) is locally Hölder-continuous on Θ(2p(1+ε)). For i ∈ N let Ui and Vi be as

defined in (4.6) and (4.16), respectively. By stationarity of (Gi(θ),θ ∈ Θ)i∈N and ( ∂
∂θl
Gi(θ),θ ∈

Θ)i∈N, Ui
d
= U1, Vi

d
= V1 and for every θ1,θ2 ∈ Θ(2p(1+ε)) with ‖θ1 − θ2‖ < 1 it follows from

Theorem 4.6 and Lemma 4.10 that there exists γ ∈ (0, 1) such that for all i ∈ N:

|Gi(θ1)−Gi(θ2)| ≤ Ui‖θ1 − θ2‖γ

and ∣∣∣ ∂
∂θl

Gi(θ1)− ∂

∂θl
Gi(θ2)

∣∣∣ ≤ Vi‖θ1 − θ2‖γ .

Using the inequality

|a1b1c
2
1 − a2b2c

2
2| ≤ |a1||b1||c1 + c2||c1 − c2|+ |a1||c2

2||b1 − b2|+ |b2c2
2||a1 − a2|,

valid for every a1, a2, b1, b2, c1, c2 ∈ R gives for all i ∈ N,∣∣∣Gi(θ1)
( ∂

∂θl
Gi(θ1)

)
G2
i+h(θ1)−Gi(θ2)

( ∂

∂θl
Gi(θ2)

)
G2
i+h(θ2)

∣∣∣
≤ 2

(
sup

θ∈Θ(2p(1+ε))

|Gi(θ)|
∣∣∣ ∂
∂θl

Gi(θ)
∣∣∣|Gi+h(θ)|

)
Ui+h‖θ1 − θ2‖γ

+

(
sup

θ∈Θ(2p(1+ε))

|Gi(θ)||G2
i+h(θ)|

)
Vi‖θ1 − θ2‖γ

+

(
sup

θ∈Θ(2p(1+ε))

∣∣∣ ∂
∂θl

Gi(θ)
∣∣∣|G2

i+h(θ)|
)
Ui‖θ1 − θ2‖γ

=: Ii,h‖θ1 − θ2‖γ .

(B.4)

Another application of the Hölder inequality combined with (4.7) and an analogous result for

∇θGi(θ) gives EI1,h <∞. Similar calculations as in (B.4) can be used to show that for all i ∈ N∣∣∣G2
i (θ1)Gi+h(θ1)

( ∂

∂θl
Gi+h(θ1)

)
−G2

i (θ2)Gi+h(θ2)
( ∂

∂θl
Gj+h(θ2)

)∣∣∣ ≤ I∗i,h‖θ1 − θ2‖γ , (B.5)
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with EI∗1,h <∞.

Step 3. Stochastic equicontinuity. Let ξ, ν > 0 and 0 < δ < min{1, ηξ/E(I1,h+I∗1,h)}. Then,

it follows from (B.2), (B.4), (B.5) and Markov’s inequality that

P

(
sup

0<‖θ1−θ2‖<δ
θ1,θ2∈Θ(2p(1+ε))

∣∣∣ ∂
∂θl

µ̂n(h;θ1)− ∂

∂θl
µ̂n(h;θ2)

∣∣∣ > η

)
≤ E(I1,h + I∗1,h)

δγ

η
< ξ.

This together with the pointwise convergence in Step 1 allow us to conclude the uniform con-

vergence in (B.1) by means of Theorem 10.2 in Pollard [34].
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[24] C. Klüppelberg, A. Lindner, and R. Maller. Continuous time volatility modelling: COGARCH versus

Ornstein-Uhlenbeck models. In Y. Kabanov, R. Liptser, and J. Stoyanov, editors, The Shiryaev

Festschrift: From Stochastic Calculus to Mathematical Finance, pages 393–419. Springer, Berlin,

2006.
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