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1. Introduction

In this article we study the probability of tail events for random linear functions of regularly
varying random vectors. Throughout all random elements are defined on the same probability
space (Ω,F ,P). Suppose Z is a non-negative random vector with multivariate regularly varying

tail distribution on E(1)
d := [0,∞)

d \ {0} with index −α1 ≤ 0, denoted as MRV(α1,E(1)
d ). A

precise definition of this notion is given in Section 2. Furthermore, let A be a q×d random matrix
independent of Z. For X = AZ, our goal is to find P(X ∈ tC) for large values of t and a wide
variety of sets C ⊂ [0,∞)

q
.

A classical result on the tail behavior of a product of random variables, now known as Breiman’s
Theorem, states that given independent non-negative random variables Z and A, where Z has a
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2 B. Das, V. Fasen, and C. Klüppelberg

univariate regularly varying tail distribution with index −α ≤ 0 and E[Aα+δ] <∞ for some δ > 0,
the tail distribution of X = AZ is also regularly varying with index −α. More precisely,

P(AZ > t) ∼ E[Aα]P(Z > t), as t→∞. (1.1)

This was stated first in Breiman (1965) for α ∈ [0, 1] and established for all α ≥ 0 in Cline and
Samorodnitsky (1991). The inherent applicability of this result to stochastic recurrence equations
and portfolio tail risk computations has lead to a few generalizations in the past decades. A
generalization of Breiman’s Theorem by relaxing the assumption of independence of the random
variables A and Z to asymptotic independence was provided in Maulik, Resnick and Rootzén
(2002). On the other hand, a weakening of the conditions on A such that (1.1) holds was given in
Denisov and Zwart (2007).

A vector-valued generalization of (1.1) was obtained in Basrak, Davis and Mikosch (2002,

Proposition A.1) where the d-dimensional non-negative random vector Z ∈ MRV(α1,E(1)
d ) for

α1 ≥ 0 is independent of a q×d-dimensional random matrix A with E‖A‖α1+δ <∞ for some δ > 0.

The result states that in such a case X = AZ ∈ MRV(α1,E(1)
q ) where E(1)

q = [0,∞)
q \ {0}. A

generalization of this result with respect to the dependence and joint regular variation assumptions
on (A,Z) was given in Fougeres and Mercadier (2012). On the other hand, Janssen and Drees
(2016, Theorem 2.3) generalized Proposition A.1 in Basrak, Davis and Mikosch (2002) so that

one may compute probabilities of tail sets C contained in E(q)
q = (0,∞)q when q = d and A is

of full rank (and certain other conditions). For Z ∈ MRV(αd,E(d)
d ) they show that X = AZ ∈

MRV(αd,E(d)
d ).

Consider the following example to fix ideas in this setting. Let Z = (Z1, . . . , Zd)
> be comprised

of iid (independent and identically distributed) Pareto random variables with P(Zi > z) = z−α

for z > 1, where α > 0, and let A be a d × d random matrix independent of Z satisfying the
conditions for both Basrak, Davis and Mikosch (2002, Proposition A.1) and Janssen and Drees

(2016, Theorem 2.3). Then X = AZ ∈ MRV(α,E(1)
d ) and X = AZ ∈ MRV(dα,E(d)

d ). Hence
for sets of the form [0,x]c and (x,∞) with x > 0, we are able to compute for t→∞:

P(AZ ∈ t[0,x]c) ∼ t−αE[µ1(AZ ∈ [0,x]c)], (1.2)

P(AZ ∈ t(x,∞)) ∼ t−dαE[µd(AZ ∈ (x,∞))], (1.3)

for some measures µ1 and µd to be elaborated on later. Moreover, the expectations on the right
hand side of both (1.2) and (1.3) are non-trivial and finite; hence our probability estimates are
valid. Thus (1.2) allows us to compute probabilities of events described as “at least one of the
components of X is large”, whereas (1.3) allows us to compute probabilities of events described as
“all components of X are large”. Natural questions to inquire of here would be, what if we want
to compute such probabilities when the matrix A is not invertible, or perhaps q 6= d. We may also
wish to find the probability that “at least three of the components of X are large” or “exactly
two of the components of X are large”. We can check that, although a probability computation
akin to (1.2) is possible in such a case, it will often render the measure µ1 and hence, the right
hand side of (1.2) to be zero. On the other hand, (1.3) will fail to answer such a question if either
q 6= d or the particular set of concern does not have all components to be large. To the best of
our knowledge, (1.2) and (1.3) are the only results that compute probabilities of extreme sets for
random linear functions of regularly varying vectors. In our work, we provide a generalization of
Breiman’s Theorem which allows us to compute such probabilities for more general extreme sets.
For example, in this particular setting of Z being iid Pareto, our results show that

P(AZ ∈ tC) ∼ t−iαE(k)
i

[
µi(A

−1(C))
]
, t→∞. (1.4)

where the index i ∈ {1, . . . , d} depends on the structure of the matrix A and the set C, and E
(k)
i

represents an expectation over an appropriate subspace of the probability space; see Section 3.2
for the definition. Finding the correct exponent i under a general set-up forms the basis of this
paper.
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Further related literature: A few other publications have also exhibited interesting applications
and generalizations of Breiman’s Theorem, albeit in different contexts. In Jessen and Mikosch
(2006), the authors provide partial converses to Breiman’s Theorem: assuming A and Z to be
non-negative independent random variables, if AZ has a regularly varying tail distribution, they
find conditions when Z will also have a regularly varying tail distribution. In Tillier and Winten-
berger (2017) we find an extension of Breiman’s multivariate result to vectors of random length,
determined for instance by a Poisson random variable. In a more general setting, Chakraborty and
Hazra (2018), extend Breiman’s result for multiplicative Boolean convolution of regularly vary-
ing measures. Finally, the monograph Buraczewski, Damek and Mikosch (2016) provides many
applications of Breiman’s result and its generalizations in the area of stochastic modeling with
power-law tails.

Our interest in computation of probabilities of the form (1.4) is motivated by a wide range of
applications in mind. Regularly varying tail distributions have been used to model power-law tail
behavior in stochastic models in applications including hydrology, finance, insurance, telecommu-
nication, social networks and many more. A regularly varying random vector like Z ∈ [0,∞)

d
can

be used to represent investment risks from multiple stocks (in finance) or losses pertaining to dif-
ferent insurance companies (in an insurance context). In such applications a q× d random matrix
A represents randomly weighted choices of portfolios Z of a group of stockholders or business
entities, or, randomly weighted exposures of insurance companies to losses, respectively. Thus a
common quantity of interest to compute here is P(AZ ∈ tC) for tail sets C representing a variety
of worst case scenarios relating to multiple portfolios, or bankruptcy or loss for multiple insurers.

Our paper is organized as follows. We provide a summary of notations used in the paper in
Section 1.1 to finish up the introduction. In Section 2, we discuss multivariate regular variation
with M-convergence in different subspaces of [0,∞)

d
which provides a set up for the main result

of the paper. Our main result extending Breiman’s Theorem is developed in Section 3. In Section
4, we provide applications of the model in the context of bipartite networks, where q agents can
be exposed to the risk of d objects where Z ∈ [0,∞)

d
are the risks of the objects. The exposures

of the agents is represented by X = AZ and illustrate the behavior of tail risk of the agents for
possible structures of the weighted adjacency matrix A ∈ [0,∞)

q×d
. We conclude with indications

to future directions of research in Section 5.

1.1. Notations

Various notations and concepts used in this paper are summarized in this section. Vector operations
are always understood component-wise, e.g., for vectors x = (x1, . . . , xd)

> and y = (y1, . . . , yd)
>,

x ≤ y means xi ≤ yi for all i. For a constant t ∈ R and a set C ⊆ Rd, we denote by tC := {tx :
x ∈ C}. Further notations are tabulated below. References are provided wherever applicable.

RVβ Regularly varying functions with index β ∈ R; that is, functions f : R+ 7→ R+

satisfying limt→∞ f(tx)/f(t) = xβ , for x > 0; see Resnick (2008);
Bingham, Goldie and Teugels (1989); de Haan and Ferreira (2006); for details.

V ∈ RV−α A random variable V with distribution function FV is regularly varying
(at infinity) if FV := 1− FV ∈ RV−α for some α ≥ 0.

Rd+ [0,∞)d for dimension d ≥ 1.

v(1), . . . , v(d) Order statistics of v = (v1, . . . , vd)
> ∈ Rd+ such that v(1) ≥ v(2) ≥ . . . ≥ v(d).

CA(i)
d {v ∈ Rd+ : v(i+1) = 0}, i = 1, . . . , d− 1; also define CA(0)

d = {0}.

M(C \ C0) The set of all non-zero measures on C \ C0 which are finite on Borel subsets
bounded away from C0.

µn → µ Convergence in M(C \ C0); see Section 2.1 and Das, Mitra and Resnick (2013);
Hult and Lindskog (2006); Lindskog, Resnick and Roy (2014) for details.
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MRV(α, b, µ,E) Multivariate regular variation on the space E = C \ C0, where C and C0

are closed cones in Rd+. Here −α ≤ 0 is the index of regular variation,
b is the scaling function, and µ is the limit measure. We often omit one
or more of the arguments. See Definition 2.2 for details.

τ
(k)
q (x) d(x,CA(k−1)

q ) = x(k), the distance between x ∈ Rq+ and CA(k−1)
q ,

where d(x,y) = ||x− y||∞; see Section 3 for details.

τ
(k,i)
d,q (A) sup

z∈E(i)
d

τ(k)
q (Az)

τ
(i)
d (z)

for A ∈ Rq×d+ ; see Section 3 for details.

‖ · ‖ For x ∈ Rd, ‖x‖ denotes some vector norm and for a matrix A ∈ Rq×d,
‖A‖ denotes the corresponding operator norm.

2. Multivariate regular variation and convergence concepts

We use the notion of M-convergence of measures to define multivariate regular variation on Eu-
clidean spaces and subsets thereof; see Das, Mitra and Resnick (2013); Lindskog, Resnick and Roy
(2014) for details. In particular, we investigate regular variation of a random vector X, which is

given as X = AZ, where Z ∈ Rd+ = [0,∞)
d

is multivariate regularly varying with index −α ≤ 0
and A is a q × d random matrix independent of Z such that E[‖A‖α+δ] <∞ for some δ > 0 and
some operator norm ‖ · ‖ for matrices.

Our goal is to obtain a complete picture concerning linear functions X = AZ which possess
multivariate regular variation on a sequence of subspaces of Rd+ (also called hidden regular varia-
tion), thus extending results from Basrak, Davis and Mikosch (2002); Janssen and Drees (2016).
The particular choice of subsets where we seek regular variation are natural, depending on the
type of extreme sets for which we seek to find probabilities; see Mitra and Resnick (2011) for
examples. The necessary definitions and results formulated with respect to M-convergence are
discussed below.

Consider the space Rd+ endowed with a metric d(x,y) satisfying for some c > 0

d(cx, cy) = c d(x,y), (x,y) ∈ Rd+ × Rd+. (2.1)

Any metric d defined by a norm as d(x,y) = ‖x− y‖ will always satisfy (2.1). In this paper, we
use the sup-norm d(x,y) = ||x − y||∞ as our choice of metric d, since the distance of a point
y ∈ Rd+ to a specific closed set can be represented as an order statistic of the co-ordinates of y;
see (3.3).

Recall that a cone C ⊂ Rd+ is a set which is closed under scalar multiplication: if x ∈ C then
cx ∈ C for c > 0. A closed cone of course, is a cone which is a closed set in Rd+. Now we define
multivariate regular variation using convergence of measures on a closed cone C ⊂ Rd+ with a
closed cone C0 ⊂ C deleted. Moreover, we say that a subset Λ ⊂ C \ C0 is bounded away from
C0 if d(Λ,C0) = inf{d(x,y) : x ∈ Λ,y ∈ C0} > 0. The class of Borel measures on C \ C0 that
assign finite measure to all Borel sets B ⊂ C \ C0, which are bounded away from C0, is denoted
by M(C \ C0).

In this paper, regular variation on cones is defined using M-convergence, which is slightly
different from vague convergence which has been traditionally used in multivariate regular vari-
ation. Reasons for the preference of M-convergence are presented in Das and Resnick (2015, Re-
mark 1.1); see also Das, Mitra and Resnick (2013); Lindskog, Resnick and Roy (2014). In the space

E(1)
d = Rd+ \ {0} the notions of vague convergence and M-convergence are identical.

Definition 2.1. Let C0 ⊂ C ⊂ Rd+ be closed cones containing 0. Let µn, µ be Borel measures
on M(C \ C0) and

∫
f dµn →

∫
f dµ as n→∞ for any bounded, continuous, real-valued function

f whose support is bounded away from C0, then we say µn converges to µ in M(C \C0), and write
µn → µ in M(C\C0).
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Definition 2.2. Let C0 ⊂ C ⊂ Rd+ be closed cones containing 0. A random vector V =
(V1, . . . , Vd)

> ∈ C is regularly varying on C \ C0 if there exists a function b(·) ∈ RV1/α for
α ≥ 0, called the scaling function, and a non-null (Borel) measure µ(·) ∈ M(C \ C0) called the
limit or tail measure such that

tP(V /b(t) ∈ · )→ µ(·), t→∞,

in M(C\C0). We write V ∈MRV(α, b, µ,C\C0) or, V ∈MRV(α, µ,C\C0) if the scaling function

is contextually irrelevant. If C \C0 = [0,∞)
d \ {0} =: E(1)

d , we simply write V ∈MRV(α, µ,E(1)
d )

or V ∈MRV(α, µ).

For α > 0, a possible choice of b is given by using tP(max{V1, . . . , Vd} > b(t)) → 1 as t → ∞.
Since b ∈ RV1/α, the limit measure µ(·) has a scaling property:

µ(c · ) = c−αµ( · ), c > 0.

2.1. Regular variation on a sequence of subspaces

We define regular variation on a specific sequence of subspaces of Rd+ following Mitra and Resnick
(2011). For v ∈ Rd+, write v = (v1, . . . , vd)

>. Moreover, the order statistics for any vector v ∈ Rd+
is defined as

v(1) ≥ v(2) ≥ . . . ≥ v(d),

where v(i) denotes the i-th largest component of v. First we define closed sets which we think

of as a union of co-ordinate hyper-planes of various dimensions in Rd+. Let CA(0)
d := {0} and for

1 ≤ i ≤ d− 1 define

CA(i)
d =

⋃
1≤j1<...<jd−i≤d

{v ∈ Rd+ : vj1 = 0, . . . , vjd−i
= 0} := {v ∈ Rd+ : v(i+1) = 0}.

Here CA(i)
d represents the union of all i-dimensional co-ordinate hyperplanes in Rd+. Also define

CA(d)
d := {v ∈ Rd+ : v(d) > 0}. Now define the following sequence of subcones of Rd+:

E(1)
d := Rd+ \ CA

(0)
d = Rd+ \ {0} = {v ∈ Rd+ : v(1) > 0}, (2.2)

E(i)
d := Rd+ \ CA

(i−1)
d = {v ∈ Rd+ : v(i) > 0}, 2 ≤ i ≤ d. (2.3)

Hence E(1)
d is the non-negative orthant with {0} = CA(0)

d removed, E(2)
d is the non-negative orthant

with all one-dimensional co-ordinate axes removed, E(3)
d is the non-negative orthant with all two-

dimensional co-ordinate hyperplanes removed, and so on. Clearly, we have

E(1)
d ⊃ E(2)

d ⊃ . . . ⊃ E(d)
d .

Note that according to our definition E(d)
d = CA(d)

d . We also define for i = 1, . . . , d,

CA(i)
d \CA

(i−1)
d = {v ∈ Rd+ : exactly i co-ordinates of v are positive} =:

(d
i)⋃

j=1

C̃A
(i)

d (j), (2.4)

where C̃A
(i)

d (j) denotes the j-th i-dimensional co-ordinate hyperplane in Rd+ with i positive and
d− i zero co-ordinates in some ordering of the hyperplanes. We note in passing that

CA(d)
d = E(d)

d = C̃A
(d)

d (1).

A recipe for finding regular variation in the above sequence of cones can be devised as follows.

To start with, suppose V ∈MRV(α1, b1, µ1,E(1)
d ) with α1 > 0.
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6 B. Das, V. Fasen, and C. Klüppelberg

(1) If µ1(E(d)
d ) > 0, we seek no further regular variation on cones of Rd+.

(2) If µ1(E(d)
d ) = 0, we may find an i ∈ {2, . . . , d} such that µ1(E(i−1)

d ) > 0, yet µ1(E(i)
d ) = 0.

Hence µ1 concentrates on CA(i−1)
d . So we seek regular variation in E(i)

d = Rd+ \ CA
(i−1)
d .

Suppose there exists bi(t) ↑ ∞ with limt→∞ b1(t)/bi(t) = ∞ and µi 6= 0 on E(i)
d such that

V ∈ MRV(αi, bi, µi,E(i)
d ). Then, αi ≥ α1, bi(·) ∈ RV1/αi

and µi(c · ) = c−αiµi( · ) for c > 0.

Hence V has regular variation on E(i)
d with parameter −αi.

(3) In the next step, if µi(E(d)
d ) > 0, we stop looking for regular variation; otherwise we keep

seeking regular variation through E(i+1)
d , . . . ,E(d)

d sequentially.

The idea of regular variation on a sequence of cones is easier understood with an example.

Example 2.3. For d ≥ 2, suppose V = (V1, . . . , Vd)
> and V1, . . . , Vd are iid Pareto(α) random

variables with α > 0 such that P(Vi > t) = t−α, t ≥ 1.

(i) First we observe that for all i = 1, . . . , d, we have V ∈MRV(αi, bi, µi,E(i)
d ) with αi = iα and

bi(t) = t1/(iα) where the limit measure µi on E(i)
d is such that for any z = (z1, . . . , zd)

> ∈ E(d)
d ,

µi({v ∈ E(i)
d : vj1 > zj1 , . . . , vji > zji for some 1 ≤ j1 < . . . < ji ≤ d})

=
1(
d
i

) ∑
1≤j1<···<ji≤d

(zj1zj2 · · · zji)
−α

. (2.5)

This follows from Example 5.1 in Maulik and Resnick (2005) and Example 2.2 in Mitra and
Resnick (2011). Hence, if

C = {v ∈ Rd+ : v1 > z1, . . . , vi > zi} (2.6)

we find

P(V ∈ tC) = t−iα (z1z2 · · · zi)−α + o(t−iα), t→∞. (2.7)

(ii) The measure µi as defined in (2.5) concentrates on CA(i)
d \ CA

(i−1)
d .

(iii) In general, from part (i) we conclude that for any Borel set C ⊂ E(i)
d which is bounded away

from CA(i−1)
d ,

P(V ∈ tC) = t−iαµi(C) + o(t−iα), t→∞.

So, in case µi(C) = 0, we get P(V ∈ tC) = o(t−iα) as t→∞. However, if C is of the form
(2.6), or a finite union of such sets (for fixed i), from (2.7) we know that µi(C) > 0.

Remark 1. Although multivariate regular variation can be defined for a very general class of
cones in Rd+ (see Das, Mitra and Resnick (2013); Lindskog, Resnick and Roy (2014); Mitra
and Resnick (2011) for examples), for the purposes of this paper, restricting to the sub-cones

E(1)
d , . . . ,E(d)

d defined in (2.2) and (2.3) suffices. For an example of regular variation with infinite
sequence of indices on an infinite sequence of cones contained in the space R2

+, see Das, Mitra and
Resnick (2013, Example 5.3).

Definition 2.4. Suppose V = (V1, . . . , Vd)
> ∈ MRV(αi, bi, µi,E(i)

d ) and F←
V (i)(s) = inf{t ∈

R : FV (i)(t) ≥ s} is the generalized inverse of the distribution function FV (i) of V (i), where
V (1) ≥ . . . ≥ V (d) are the order statistics of V1, . . . , Vd. If bi(t) = F←

V (i) (1− 1/t), we call bi(·) the
canonical choice of the scaling function.
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Linear functions of regularly varying vectors 7

3. Breiman’s Theorem and regular variation on Euclidean
subspaces

In this section we provide a complete characterization of the vector-valued generalization addressed

in Basrak, Davis and Mikosch (2002, Proposition A.1) for the space E(1)
q and its subsequent

modification for E(q)
q for q = d provided in Janssen and Drees (2016, Theorem 2.3). We investigate

the vector X = AZ, where A ∈ Rq×d is a random matrix which is independent of Z ∈ Rd+, and

Z is multivariate regularly varying on subspaces E(i)
d for i = 1, . . . , d. We provide asymptotic rates

of convergence of tail probabilities for P(AZ ∈ tC) for Borel sets C ⊂ E(k)
q for k = 1, . . . , q. For

the sake of convenience, first we present the two available results addressing this issue.
Throughout ‖·‖ denotes an arbitrary vector and operator norm, only the metric d(·, ·) is always

defined by the sup-norm. Most results quoted from previous papers appeared with asymptotic
properties and definitions in terms of vague convergence, we restate them here with respect to
M-convergence.

Theorem 3.1 (Basrak, Davis and Mikosch (2002, Proposition A.1)). Let Z ∈ Rd+ be a ran-

dom vector such that Z ∈ MRV(α1, µ1,E(1)
d ) with α1 ≥ 0 and A ∈ Rq×d+ be a random matrix

independent of Z with 0 < E[‖A‖α1+δ] <∞ for some δ > 0. Then

P(t−1AZ ∈ · )
P(‖Z‖ > t)

→ E
[
µ1({z ∈ E(1)

d : Az ∈ · })
]

=: µ1(·), t→∞, (3.1)

in M(E(1)
q ). In particular, we have AZ ∈MRV(α1, µ1,E

(1)
q ).

Remark 2. A couple of remarks are in order here.

(i) For ‖Z‖ to become large, it suffices that one component of Z becomes large. Hence P(‖Z‖ >
t) ∼ cP(Z(1) > t) as t → ∞ for some constant c > 0, and P(Z(1) > t) provides the rate of
convergence of P(t−1AZ ∈ · ) to zero.

(ii) The observation in (1.2) is an easy consequence of this theorem.

For certain sets in E(1)
q , it is possible that the right hand side of (3.1) turns out to be zero,

rendering the result uninformative. A partial solution for guaranteeing a non-zero limit in (3.1)
is provided in Janssen and Drees (2016), when q = d and where convergence occurs in the space

E(d)
d = (0,∞)d, which means that we focus on sets, where all components of X = AZ are large,

translated into the event {X(d) > t}.
The formal setting in Janssen and Drees (2016) is as follows. Define τ : Rd+ → R+ to be the

distance of a point x ∈ Rd+ from the space CA(d−1)
d := [0,∞)

d \ (0,∞)d in the sup-norm, given by

τ(z) := d(z,CA(d−1)
d ) = z(d). For a deterministic matrix A ∈ Rd×d we define the analog

τ(A) := sup
z∈E(d)

d :τ(z)=1

τ(Az) = sup
z∈∂ℵ(d)d

τ(Az), (3.2)

where for i ∈ {1, . . . , d},

∂ℵ(i)
d = {x ∈ E(i)

d : d(x,CA(i−1)
d ) = 1}.

Theorem 3.2 (Janssen and Drees (2016, Theorem 2.3)). Let Z ∈ Rd+ be a random vector such

that Z ∈ MRV(αd, µd,E(d)
d ) and A ∈ Rd×d be a random matrix independent of Z. Assume

τ(A) > 0 almost surely and E[τ(A)αd+δ] <∞ for some δ > 0. Then

P(t−1AZ ∈ ·)
P(τ(Z) > t)

→ E
[
µd({z ∈ E(d)

d : Az ∈ ·})
]

=: µd(·), t→∞,

in M(E(d)
d ). In particular, we have AZ ∈MRV(αd, µd,E

(d)
d ).
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8 B. Das, V. Fasen, and C. Klüppelberg

Remark 3. A couple of remarks are necessary to explain the result stated above.

(i) Note that P(τ(Z) > t) = P(Z(d) > t) which provides the rate of convergence of P(t−1AZ ∈
·) to zero as t→∞.

(ii) The observation in (1.3) is an easy consequence of Theorem 3.2.
(iii) Theorem 3.2 is designed for a specific situation in the context of stochastic volatility models.

It is restrictive in its assumptions and may fail to capture a variety of instances where the
right hand side of (3.1) is zero. In particular, for a square random matrix A with almost
surely non-negative entries, Theorem 3.2 requires that A is almost surely invertible and,
moreover, that its inverse has almost surely non-negative entries (see Janssen and Drees
(2016, Lemma 2.2)). This entails that almost all realizations of A are row permutations of
diagonal matrices with positive diagonal entries (cf. Ding and Rhee (2014)).

3.1. Extension of Breiman’s Theorem to Euclidean subspaces

In light of the previous results, we provide a multivariate extension to Breiman’s Theorem which
entails non-trivial convergence for a multitude of forms of A. Let A ∈ Rq×d+ be deterministic.
We define the analog sequence of subcones of Rq+ as in (2.2)-(2.3) and proceed as follows. For

k = 1, . . . , q, define τ
(k)
q : Rq+ → R+ to be the distance of a point x ∈ Rq+ from the space CA(k−1)

q

in the sup-norm, given by

τ (k)
q (x) = d(x,CA(k−1)

q ) = x(k). (3.3)

Furthermore, we define in analogy to (3.2) the function τ
(k,i)
q,d : Rq×d+ → R+ given by

τ
(k,i)
q,d (A) = sup

z∈E(i)
d

τ
(k)
q (Az)

τ
(i)
d (z)

= sup
z∈E(i)

d

(Az)(k)

z(i)
= sup

z∈∂ℵ(i)d

τ (k)
q (Az). (3.4)

Note that τ
(q,d)
q,d (A) = τ(A) from (3.2) if q = d.

Although the functions τ
(k)
q , τ

(k,i)
q,d are not necessarily seminorms on the induced vector space

(see Horn and Johnson (2013, Section 5.1)), they admit to some useful properties as listed below.
We call a row of A trivial, if it is a zero vector.

Lemma 3.3. For every deterministic matrix A ∈ Rq×d+ and z ∈ Rd+ the following hold for
i = 1, . . . , d and k = 1, . . . , q:

(a) τ
(k)
q (Az) ≤ τ (k,i)

q,d (A)τ
(i)
d (z).

(b) τ
(k,i)
q,d (A) ≤ τ (k−1,i)

q,d (A).

(c) τ
(k,i)
q,d (A) ≤ τ (k,i+1)

q,d (A).

(d) τ
(q,1)
q,d (A) > 0 if and only if all rows of A are non-trivial.

(e) τ
(k,1)
q,d (A) ≤ τ (1,1)

q,d (A) <∞.

Proof.

(a) By definition we have

τ (k)
q (Az) = τ (k)

q

(
A

z

τ
(i)
d (z)

)
τ

(i)
d (z) ≤ τ (k,i)

q,d (A)τ
(i)
d (z).

(b) and (c) immediately follow from the definition.
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(d) If A = (Aij)i,j has no trivial row, denoting e = (1, . . . , 1)> ∈ Rd+, we have

τ
(q,1)
q,d (A) ≥ τ

(q)
q (Ae)

τ
(1)
d (e)

= min
1≤i≤q

d∑
j=1

Aij > 0,

the final domination being a consequence of each row of A having at least one positive entry.

On the other hand, suppose that τ
(q,1)
q,d (A) > 0 and A has a trivial row. Then for any

z ∈ E(1)
d , we have

τ (q)
q (Az) = min

1≤i≤q

d∑
j=1

Aijzj = 0.

This implies

τ
(q,1)
q,d (A) = sup

z∈E(i)
d

τ
(q)
q (Az)

τ
(1)
d (z)

= 0,

which is a contradiction. Hence A cannot have a trivial row.
(e) The first inequality follows from (b). Moreover

τ
(1,1)
q,d (A) = sup

z∈∂ℵ(1)d

(Az)(1) = sup
z∈E(1)

d :z(1)=1

(Az)(1) ≤ d max
1≤i≤q,1≤j≤d

Aij <∞.

For a deterministic matrix A ∈ Rq×d+ and C ⊆ Rq+, the pre-image of C is given by

A−1(C) = {z ∈ Rd+ : Az ∈ C}.

The following lemma characterizes the mapping of the subspaces of Rd+ under the linear map A
and is key to the results to follow.

Lemma 3.4. Let A ∈ Rq×d+ be a deterministic matrix with all rows non-trivial. Then for fixed
i ∈ {1, . . . , d} and fixed k ∈ {1, . . . , q}, the following are equivalent:

(a) A−1(E(k)
q ) ⊆ E(i)

d .

(b) 0 < τ
(k,i)
q,d (A) <∞.

Proof. (a)⇒(b): Let A−1(E(k)
q ) ⊆ E(i)

d . First suppose that τ
(k,i)
q,d (A) = 0. Hence by definition,

from (3.4) we have that τ
(k)
q (Az) = (Az)(k) = 0 for every z ∈ E(i)

d . Thus

A−1(E(k)
q ) ∩ E(i)

d = ∅

contradicting the premise.

Now suppose that τ
(k,i)
q,d (A) = ∞. Let M = τ

(1)
q (Ae) where e = (1, 1, . . . , 1)T ∈ Rd+. Then there

exists a z ∈ ∂ℵ(i)
d = {z ∈ Rd+ : z(i) = 1} such that τ

(k)
q (Az) ≥ M + d. Fix such a z and without

loss of generality assume that z1 ≥ z2 ≥ . . . ≥ zd (otherwise we may arrange columns of A
accordingly). Hence z(i) = zi = 1. Define z∗ ∈ Rd+ by converting the last d− i components of z to
1. Hence

z∗ = (z1, . . . , zi−1, 1, . . . , 1)>.

Since the components of z∗ and z are ordered and component-wise z∗ ≥ z, we have τ
(k)
q (Az∗) ≥

τ
(k)
q (Az) ≥M + d. Now, define

z∗e := z∗ − e = (z1 − 1, . . . , zi−1 − 1, 0, . . . , 0)>.
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10 B. Das, V. Fasen, and C. Klüppelberg

Clearly z∗e ∈ Rd+ as well as z∗e /∈ E(i)
d since z

∗(i)
e = z∗e,i = 0. Note that τ

(k)
q (Az∗) ≥M +d means at

least k-elements of Az∗ are larger than M + d, whereas τ
(k)
q (Ae) ≤ τ

(1)
q (Ae) = M by definition.

Hence all elements of Ae are at most M . Since Az∗e = Az∗ −Ae, at least k elements of Az∗e are

greater or equal to d. Therefore, τ
(k)
q (Az∗e) ≥ d > 0. Thus Az∗e ∈ E(k)

q which is a contradiction.

(b)⇒(a): Let x ∈ E(k)
q . Then τ

(k)
q (x) > 0. Furthermore, let A−1(x) := {z ∈ Rd+ : Az = x} and

let zx ∈ A−1(x) ⊆ Rd+. Then by Lemma 3.3(a),

τ
(i)
d (zx) ≥ τ

(k)
q (Azx)

τ
(k,i)
q,d (A)

=
τ

(k)
q (x)

τ
(k,i)
q,d (A)

> 0,

implying zx ∈ E(i)
d . Hence A−1(E(k)

q ) ⊆ E(i)
d .

Example 3.5. The following example illustrates the equivalence shown in Lemma 3.4. Suppose
that

A =


1 1 1 0

1 1 0 1

1 0 1 1

0 1 1 1


and z = (z1, z2, z3, z4)>. Then

x = Az = (z1 + z2 + z3, z1 + z2 + z4, z1 + z3 + z4, z2 + z3 + z4)>.

For k = q = 4 we find

τ
(4,1)
4,4 (A) = sup

z∈E(1)
4

x(4)

z(1)
= 3 <∞, τ

(4,2)
4,4 (A) = sup

z∈E(2)
4

x(4)

z(2)
= 3 <∞,

τ
(4,3)
4,4 (A) = sup

z∈E(3)
4

x(4)

z(3)
=∞.

The supremum value of 3 in the first two cases is attained at z = (z, z, z, z)> for z > 0. The final

equality is attained by using z∗ = (z4, z3, z2, z)> for z > 0, where z∗ ∈ E(3)
4 . Hence according to

Lemma 3.4 we have
A−1(E(4)

4 ) ⊆ E(2)
4 (and by inclusion also E(1)

4 ).

This means that the pre-image A−1(E(4)
4 ) contains vectors z ∈ R4

+, whose largest two components
are positive, and the other two components can be either zero or positive.

This example can be compared to Janssen and Drees (2016, Lemma 2.2) where only τ
(4,4)
4,4 (A)

is considered, which for this example is infinite by Lemma 3.3(c). The only choice for A where

τ
(4,4)
4,4 (A) < ∞ are permutations of diagonal matrices with positive diagonal entries; see Remark

3 (iii). �

3.2. Main Result

The key result extending Theorems 3.1 and 3.2, incorporating general random matrices A ∈ Rq×d+

and a wide variety of tail sets, is provided in this section. If Z ∈MRV(α, µ) with asymptotically

independent components, implying µ(Rd+ \ CA
(d−1)
d ) = µ({z ∈ R+

d : z(d) > 0}) = 0, we may seek

and find multivariate regular variation in subcones E(i)
d for i = 1, . . . , d as seen in Section 2.1.

Theorem 3.6 provides the appropriate non-null limit and its rate in the presence of such regular
variation for AZ.
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For k = 1, . . . , q and ω ∈ Ω define Aω := A(ω) and

ik(Aω) = arg max{j ∈ {1, . . . , d} : τ
(k,j)
q,d (Aω) <∞},

which creates a partition of Ω given by

Ω
(k)
i := {ω ∈ Ω : ik(Aω) = i}, i = 1, . . . , d.

We write P
(k)
i ( · ) := P( · ∩ Ω

(k)
i ) and E

(k)
i [ · ] := E[ ·1

Ω
(k)
i

]. This means, for fixed k, we summarize

all ω ∈ Ω, such that Aω yields the same ik, and we work on measure spaces (Ω
(k)
i ,F ∩Ω

(k)
i ,P

(k)
i )

indexed by i = 1, . . . , d.

Theorem 3.6. Let i ∈ {1, . . . , d} be fixed and Z ∈ Rd+ a random vector such that Z ∈
MRV(αi, bi, µi,E(i)

d ) with canonical choice of bi as in Definition 2.4. Also let A ∈ Rq×d+ be a
random matrix with almost surely no trivial rows independent of Z. Furthermore, assume that the
following conditions are satisfied for some k ∈ {1, . . . , q}:

(i) for some δ = δ(i, k) > 0 we have

E
(k)
i

[
τ

(k,i)
q,d (A)αi+δ

]
:=

∫
Ω

(k)
i

τ
(k,i)
q,d (A)αi+δ dP <∞,

(ii) µi(C̃A
(i)

d (j)) > 0 for all j = 1, . . . ,
(
d
i

)
.

Then we have

P
(k)
i (AZ ∈ t · )

P(τ
(i)
d (Z) > t)

→ E
(k)
i

[
µi({z ∈ E(i)

d : Az ∈ · })
]

=: µi,k(·), t→∞, (3.5)

in M(E(k)
q ).

Proof. If P(Ω
(k)
i ) = 0 then (3.5) is trivially satisfied because the left and right hand side are

zero. Thus we assume that P(Ω
(k)
i ) > 0. Let C ⊂ E(k)

q be a Borel set which is bounded away

from CA(k−1)
q and satisfies E

(k)
i

[
µi(∂A

−1(C))
]

= 0. Then there exists a constant δC such that

τ
(k)
q (x) = x(k) > δC for all x ∈ C. Using Lemma 3.3(a), we have for all t > 0, M > 0

P
(k)
i (AZ ∈ tC, τ (k,i)

q,d (A) > M) ≤ P
(k)
i (τ (k)

q (AZ) > tδC , τ
(k,i)
q,d (A) > M)

≤ P(τ
(k,i)
q,d (A)τ

(i)
d (Z) > tδC , τ

(k,i)
q,d (A) > M,Ω

(k)
i ).

Since τ
(i)
d (Z) = Z(i) ∈ RV−αi , and A and Z are assumed to be independent, the univariate

version of Breiman’s Theorem in combination with E
(k)
i [τ

(k,i)
q,d (A)αi+δ] <∞ yields

lim sup
t→∞

P
(k)
i (AZ ∈ tC, τ (k,i)

q,d (A) > M)

P(τ
(i)
d (Z) > t)

≤ lim sup
t→∞

P(1{τ(k,i)
q,d (A)>M}∩Ω

(k)
i
τ

(k,i)
q,d (A)τ

(i)
d (Z) > tδC)

P(τ
(i)
d (Z) > t)

= δ−αi

C E[τ
(k,i)
q,d (A)αi1{τ(k,i)

q,d (A)>M}∩Ω
(k)
i

].

Note that A−1(C) := {z ∈ Rd+ : Az ∈ C} is again a.s. bounded away from CA(i−1)
d , since for

x ∈ C, ω ∈ Ω
(k)
i , and zx ∈ A−1

ω (C) ⊆ Rd+ we have by Lemma 3.3(a),

τ
(i)
d (zx) ≥ τ

(k)
q (Aωzx)

τ
(k,i)
q,d (Aω)

=
τ

(k)
q (x)

τ
(k,i)
q,d (Aω)

>
δC

τ
(k,i)
q,d (Aω)

> 0 (3.6)
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12 B. Das, V. Fasen, and C. Klüppelberg

and, thus, P
(k)
i (A−1(C) ⊆ E(i)

d ) = 1. Hence abbreviating a := Aω and conditioning on A, by
independence of Z and A, we obtain

lim
t→∞

P
(k)
i (AZ ∈ tC, τ (k,i)

q,d (A) ≤M)

P(τ
(i)
d (Z) > t)

= lim
t→∞

∫
{τ(k,i)

q,d (a)≤M}

P(Z ∈ ta−1(C))

P(τ
(i)
d (Z) > t)

dP
(k)
i (a)

=

∫
{τ(k,i)

q,d (a)≤M}
µi(a

−1(C)) dP
(k)
i (a)

= E
(k)
i

[
µi

(
A−1(C)1{τ(k,i)

q,d (A)≤M}

)]
,

where we used for the third equality that E
(k)
i [µi(∂A

−1(C))] = 0 in combination with Pratt’s

lemma (Pratt, 1960), since for τ
(k,i)
q,d (Aω) ≤M we have for the integrand

P(Z ∈ tA−1
ω (C))

P(τ
(i)
d (Z) > t)

≤
P(τ

(k,i)
q,d (Aω)τ

(i)
d (Z) > tδC)

P(τ
(i)
d (Z) > t)

≤
P(Mτ

(i)
d (Z) > tδC)

P(τ
(i)
d (Z) > t)

→Mαiδ−αi

C , t→∞.

We need to show that E
(k)
i [µi(A

−1(C))] < ∞. Define B
(i)
d (δ) := {z ∈ Rd+ : τ

(i)
d (z) ≤ δ}. By the

homogeneity of µi and (3.6) we have

E
(k)
i

[
µi(A

−1(C))
]
≤ E

(k)
i

[
µi

(
B

(i)
d

(
δC/τ

(k,i)
q,d (A)

)c)]
= µi

((
B

(i)
d (δC)

)c)
E

(k)
i

[
τ

(k,i)
q,d (A)αi

]
<∞.

To finish the proof it remains to show that E
(k)
i [µi(A

−1(E(k)
q ))] > 0.

Case 1: Suppose 1 ≤ i < d. Let ω ∈ Ω
(k)
i . We know from Lemma 3.4 that A−1

ω (E(k)
q ) ⊆ E(i)

d .

By definition, CA(i)
d \CA

(i−1)
d ⊂ E(i)

d . We claim that

(CA(i)
d \CA

(i−1)
d ) ∩A−1

ω (E(k)
q ) 6= ∅.

If not, then we have A−1
ω (E(k)

q ) ⊆ E(i)
d \ (CA(i)

d \CA
(i−1)
d ) = Rd+\CA

(i)
d = E(i+1)

d . Therefore by

Lemma 3.4, τ
(k,i+1)
q,d (Aω) <∞. But this is a contradiction to the definition of Ω

(k)
i since ω ∈ Ω

(k)
i .

So let z ∈ (CA(i)
d \CA

(i−1)
d ) ∩A−1

ω (E(k)
q ). Then by (2.4), we have z ∈ C̃A

(i)

d (j∗) for some 1 ≤ j∗ ≤(
d
i

)
. Let Iz := {j ∈ {1, . . . , d} : zj > 0}. Clearly,

CA(i)
d (j∗) = {z ∈ Rd+ : zj > 0 for j ∈ Iz and zj = 0 for j ∈ {1, . . . , d}\Iz}.

Hence for every z∗ ∈ CA(i)
d (j∗) we have that some component of Aωz

∗ is positive if and only if
the corresponding component of Aωz is positive, since Aω has only non-negative entries. Thus

Aωz
∗ ∈ E(k)

q , i.e., z∗ ∈ A−1
ω (E(k)

q ). Hence, we get that

C̃A
(i)

d (j∗) ⊆ A−1
ω (E(k)

q ) ⊆ E(i)
d .

Since due to assumption (ii), µi has positive mass on each of the
(
d
i

)
hyperplanes C̃A

(i)

d (j), this
results in

µi(A
−1
ω (E(k)

q )) ≥ µi(C̃A
(i)

d (j∗)) ≥ min
j
µi(C̃A

(i)

d (j)) > 0,

and

E
(k)
i [µi(A

−1(E(k)
q ))] ≥ min

j
µi(C̃A

(i)

d (j)) > 0,
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which proves the claim for 1 ≤ i < d.

Case 2: Suppose i = d. Let ω ∈ Ω
(d)
d . Take z ∈ A−1

ω (E(k)
q ) ⊆ E(d)

d , then all components of z

and Aωz ∈ E(k)
q are positive. Thus Aω has no trivial row and we get that for every z∗ ∈ E(d)

d

also Aωz
∗ has only positive components, i.e., Aωz

∗ ∈ E(k)
q . This results in E(d)

d = A−1
ω (E(k)

q ) and

E
(k)
d [µd(A

−1(E(k)
q ))] = µd(E(d)

d ) > 0.

Remark 4. The condition that µi(C̃A
(i)

d (j)) > 0 for all j = 1, . . . ,
(
d
i

)
could be relaxed to

µi(C̃A
(i)

d (j)) > 0 for at least one j ∈ {1, . . . ,
(
d
i

)
}, but showing that the limit measure is non-zero

turns out to be a cumbersome exercise and needs to be done with proper care. In many examples,
the measures µi turn out to be exchangeable with respect to their co-ordinates and the assumption
being true for all j = 1, . . . ,

(
d
i

)
is not uncommon. One such example is given in Example 2.3

where Zi are iid Pareto(α) for α > 0 and we have µi(C̃A
(i)

d (j)) > 0 for all j = 1, . . . ,
(
d
i

)
.

Theorem 3.6 provides regular variation limit measures for sets in E(k)
q restricted to Ω

(k)
i , when-

ever the two conditions are satisfied and, as a consequence, we have the following limit probabilities.

Theorem 3.7. Let Z ∈ Rd+ be a random vector such that for all i = 1, . . . , d, we have Z ∈
MRV(αi, bi, µi,E(i)

d ) with canonical choice of bi as in Definition 2.4. Moreover, for all i =

1, . . . , d − 1 we assume bi(t)/bi+1(t) → ∞ as t → ∞. Let A ∈ Rq×d+ be a random matrix with

almost surely no trivial rows independent of Z. Furthermore, let C ⊂ E(k)
q for k ∈ {1, . . . , q} be a

Borel set bounded away from CA(k−1)
q with E

(k)
i [µi(∂A

−1(C))] = 0 for all i = 1, . . . , d.
Suppose further that

(i) E
(k)
i

[
τ

(k,i)
q,d (A)αi+δ

]
<∞ for some δ = δ(i, k) > 0,

(ii) µi(C̃A
(i)

d (j)) > 0 for all j = 1, . . . ,
(
d
i

)
.

Then the following results hold.

(a) We have

P(AZ ∈ tC) =

d∑
i=1

P(Z(i) > t)
[
E

(k)
i [µi(A

−1(C))] + o(1)
]
, t→∞. (3.7)

(b) Define

i∗k := arg min{i ∈ {1, . . . , d} : P(Ω
(k)
i ) > 0}. (3.8)

Then we have

P(AZ ∈ tC)

P(Z(i∗k) > t)
→ E

(k)
i∗k

[
µi∗k(A−1(C))

]
= µi∗k,k(C) =: µk(C), t→∞,

in M(E(k)
q ). Hence, AZ ∈MRV(αi∗k , µk,E

(k)
q ).

Proof.

(a) Since {Ω(k)
i , 1 ≤ i ≤ d} forms a partition of Ω, P(AZ ∈ tC) =

∑d
i=1 P

(k)
i (AZ ∈ tC). Hence

using (3.5) and observing that

P(τ
(i)
d (Z) > t) = P(Z(i) > t) ∼ 1/b←i (t), t→∞,

we have

P(AZ ∈ tC) =

d∑
i=1

[
P(Z(i) > t)

[
E

(k)
i [µi(A

−1(C))] + o(1)
]]
, t→∞.
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14 B. Das, V. Fasen, and C. Klüppelberg

(b) Now, since {Ω(k)
i , 1 ≤ i ≤ d} forms a partition of Ω, there exists a j ∈ {1, . . . , d} with

P(Ω
(k)
j ) > 0 and hence, i∗k is well-defined. Note that using (3.7), we have for any Borel set

C ⊂ E(k)
q bounded away from CA(k−1)

q with E
(k)
i (µi(∂A

−1(C))) = 0 for i = 1, . . . , d, the
following asymptotic behavior:

P(AZ ∈ tC)

P(Z(i∗k) > t)
=

[
E

(k)
i∗k

[µi∗k(A−1(C))] + o(1)
]

+

d∑
i=i∗k+1

[
P(Z(i) > t)

P(Z(i∗k) > t)
E

(k)
i [µi(A

−1(C))] +
o(P(Z(i) > t)))

P(Z(i∗k) > t)

]
→ E

(k)
i∗k

[
µi∗k(A−1(C))

]
= µk(C), t→∞,

since for all i = i∗k + 1, . . . , d we have bi∗k(t)/bi(t)→∞, and hence

P(Z(i) > t)

P(Z(i∗k) > t)
∼
b←i∗k

(t)

b←i (t)
→ 0, t→∞.

Hence AZ ∈MRV(αi∗k , µk,E
(k)
q ).

Remark 5. When we assume Z ∈ MRV(αi, bi, µi,E(i)
d ) for all i = 1, . . . , d, with

bi(t)/bi+1(t) → ∞ as t → ∞ for all i = 1, . . . , d − 1, it results in restricting the supports for

the measures µi to CA(i)
d \ CA

(i−1)
d ; a specific case is discussed in Example 2.3.

Remark 6. If Z has asymptotically independent components, and each component has distri-
bution tail P(Zj > t) ∼ κjt

−α as t → ∞ for some α, κj > 0, then we get a generalization of
Theorem 3.2 of Kley, Klüppelberg and Reinert (2016). We investigate such structures further in
the next section.

The following example illustrates the image and pre-image of sets under the map A : z 7→
Az = x as well as the regions, where the limit measure is positive in a 3-dimensional setting. We
emphasize that for this example our theory is not really necessary, the calculations can be done
by hand, but it helps in clarifying the ideas and the notation needed for more complex examples
to follow.

Example 3.8. Let Z = (Z1, Z2, Z3)> have iid Pareto(α) marginal distributions with P(Zi >

z) = z−α, z > 1 for some α > 0 as in Example 2.3. Then Z ∈ MRV(iα, bi, µi,E(i)
3 ) for i = 1, 2, 3

where b1(t) = (3t)1/α, b2(t) = (3t)1/(2α) and b3(t) = t1/(3α) are the canonical choices and

µ1

( 3⋃
i=1

{
v ∈ R3

+ : vi > zi
})

=
1

3
(z−α1 + z−α2 + z−α3 ),

µ2

( ⋃
1≤i6=j≤3

{
v ∈ R3

+ : vi > zi, vj > zj
})

=
1

3
{(z1z2)−α + (z2z3)−α + (z3z1)−α},

µ3 ((z1,∞)× (z2,∞)× (z3,∞)) = (z1z2z3)−α

for z1, z2, z3 > 0. Consider the matrix

A =

1 1 0

0 1 1

1 0 1

 .
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Linear functions of regularly varying vectors 15

x1

x2

x3

z1

z2

z3

Figure 1. The left plot has the region C = (1,∞)3 in blue in x = (x1, x2, x3) co-ordinates. The right plot has the
region A−1(C) in blue from Example 3.8 in z = (z1, z2, z3) co-ordinates. The red region shows the support of the
measure µ2.

Then, under the map A : z 7→ Az = x, the region C = (1,∞)3 ⊂ E(3)
3 has pre-image given by

A−1(C) = {z ∈ R3
+ : z1 > 1, z2 > 1} ∪ {z ∈ R3

+ : z2 > 1, z3 > 1} ∪ {z ∈ R3
+ : z3 > 1, z1 > 1}.

It is easy to check that i∗3 = 2, as defined in (3.8). Hence, with µ2(A−1(C)) = 1 we obtain

P(AZ ∈ tC) ∼ P(Z(2) > t)µ2(A−1(C)) ∼ 3t−2α, t→∞.

Figure 1 gives a plot of the region C and the transformed region A−1(C) colored in blue. The
red region on the right plot shows the support of the measure µ2. �

Remark 7. In Theorem 3.7, we ascertain the asymptotic behavior of P(AZ ∈ tC) for certain

sets C ⊂ E(k)
q . Specifically, from Theorem 3.7 (b) we have

P(AZ ∈ tC) = P(Z(i∗k) > t)E
(k)
i∗k

[µi∗k(A−1(C))] + o(P(Z(i∗k) > t), t→∞,

where i∗k is defined in (3.8). If E
(k)
i∗k

[µi∗k(A−1(C))] = 0, we only get

P(AZ ∈ tC) = o(P(Z(i∗k) > t), t→∞.

However, under certain assumptions on A and C we can say more about the precise rates, illus-
trated in the following results.

Proposition 3.9. Let the assumptions and notations of Theorem 3.7 hold. Define

ῑ = ῑC := min{d, inf{i ∈ {i∗k, . . . , d} : E
(k)
i

[
µi(A

−1(C))
]
> 0}}. (3.9)

Suppose for all i = i∗k, . . . , ῑ− 1 and ω ∈ Ω
(k)
i that A−1

ω (C) = ∅. Then

P(AZ ∈ tC) = P(Z(ῑ) > t)E
(k)
ῑ [µῑ(A

−1(C))] + o(P(Z(ῑ) > t)), t→∞. (3.10)

Proof. Since by assumption, for all i = i∗k, . . . , ῑ − 1 and ω ∈ Ω
(k)
i , we have A−1

ω (C) = ∅, we
obtain

P
(k)
i (AZ ∈ tC) = 0. (3.11)
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16 B. Das, V. Fasen, and C. Klüppelberg

Therefore due to the definition of i∗k,

P(AZ ∈ tC) =

d∑
i=i∗k

P
(k)
i (AZ ∈ tC)

=

d∑
i=ῑ

P
(k)
i (AZ ∈ tC)

= P(Z(ῑ) > t)E
(k)
ῑ [µῑ(A

−1(C))] + o(P(Z(ῑ) > t)), t→∞,

using Theorem 3.6.

The additional assumption made in Proposition 3.9 is often satisfied by random matrix struc-
tures. One such example is a random matrix with only one positive entry in each row. Such
matrices are for instance proposed in the examples of Section 4.1. Moreover, if A ∈ Rd×d+ and we
follow the assumptions of (Janssen and Drees, 2016, Theorem 2.3), we also obtain such matrices;
cf. Remark 3(iii). The following proposition formalizes the result in this case.

Proposition 3.10. Let the assumptions and notations of Theorem 3.7 hold. Moreover, let C ⊂

E(k)
q be such that C =

N⋃
l=1

Γl for some N ∈ N, where each Γl is of the form:

Γ = {x ∈ Rq+ : xj1 > γ1, . . . , xjk > γk}.

and E
(k)
i [µi(∂A

−1(C))] = 0 for all i = 1, . . . , d. Let ῑ be defined as in (3.9). If the random matrix
A has a discrete distribution and has exactly one positive entry in each row, then (3.10) holds.

Proof. If we show that for all i = i∗k, . . . , ῑ− 1 and ω ∈ Ω
(k)
i , we have A−1

ω (C) = ∅, then applying

Proposition 3.9 we get the result. Fix i ∈ {i∗k, . . . , ῑ−1}. By definition, we have E
(k)
i [µi(A

−1(C))] =

0. Suppose there exists ω ∈ Ω
(k)
i with

A−1
ω (C) ∩ (CA(i)

d \ CA
(i−1)
d ) 6= ∅.

Then there exists x∗ ∈ C ⊂ E(k)
q and z∗ ∈ CA(i)

d \ CA
(i−1)
d ⊂ E(i)

d with Aωz
∗ = x∗ ∈ C.

Since z∗ ∈ CA(i)
d \CA

(i−1)
d , exactly i components of z∗ are positive. Without loss of generality let

z∗1 , . . . , z
∗
i > 0. Now for any z = (z1, . . . , zi, 0, . . . , 0) with zj ≥ z∗j , we have Az ≥ Az∗ = x∗ and

by the structure of C, we have Az ∈ C. Hence

{z ∈ Rd+ : zj ≥ z∗j , j = 1, . . . , i and zi+1 = . . . = zd = 0} ⊆ A−1
ω (C) ∩ (CA(i)

d \ CA
(i−1)
d ).

Now from assumption (ii) of Theorem 3.7 and the homogeneity of the measure µi, we have

0 < µi
(
{z ∈ Rd+ : zj ≥ z∗j , j = 1, . . . , i and zi+1 = . . . = zd = 0}

)
≤ µi(A

−1
ω (C)) ≤ E

(k)
i [µi(A

−1(C))]

P(A = Aω)
,

since A has a discrete distribution and P(A = Aω) > 0. Hence E
(k)
i [µi(A

−1(C))] > 0, which is a
contradiction. Thus

A−1
ω (C) ∩ (CA(i)

d \ CA
(i−1)
d ) = ∅. (3.12)

Now suppose that A−1
ω (C) 6= ∅. Then there exist x ∈ C ⊂ E(k)

q and z ∈ E(i)
d with Aωz = x ∈ C.

Since ω ∈ Ω
(k)
i , exactly i columns of Aω have at least one positive entry. W.l.o.g. assume these

are the first i columns of Aω. Then for

z∗ := (z1, . . . , zi, 0, . . . , 0) ∈ CA(i)
d \ CA

(i−1)
d
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Linear functions of regularly varying vectors 17

we have
Aωz

∗ = Aωz = x ∈ C

since columns i + 1, . . . , d of Aω have all entries zero and hence the last d − i entries of z or z∗

do not count towards the computation of x. Hence z∗ ∈ A−1
ω (C) ∩ (CA(i)

d \ CA
(i−1)
d ), which is a

contradiction to (3.12). This gives the statement.

4. Bipartite networks

Risk-sharing in complex systems is often modeled using a graphical network model, one such
example being the bipartite network structure for modeling losses in insurance markets or financial
investment risk as proposed in Kley, Klüppelberg and Reinert (2016); Kley, Klüppelberg and
Reinert (2018). In these papers, only first order asymptotics of risk measures based on the agents’
and market’s tail risks are derived. In the same spirit, but going beyond first order approximations,
we consider a vertex set of agents A = {1, . . . , q} and a vertex set of objects (insurance claims or
investment risks) O = {1, . . . , d}.

Agents:

Objects:

A1 A2 A3

O1 O2 O3 O4

Figure 2. A bipartite network with q = 3 agents and d = 4 objects.

Each agent k ∈ A chooses a number of objects i ∈ O to connect with. Figure 2 provides an
example of such a network. This choice can be random according to some probability distribution.
A basic model assumes k and i connect with probability

P(k ∼ i) = pki ∈ [0, 1], k = 1, . . . , q, i = 1, . . . , d.

Let Zi denote the risk attributed to the i-th object and Z = (Z1, . . . , Zd)
> forms the risk vector.

Assume that the graph creation process is independent of Z. The proportion of loss of object i
affecting agent k is denoted by

fk(Zi) = 1(k ∼ i)WkiZi,

where Wki > 0 denotes the effect of the i-th object on the k-th agent. Now define the q×d weighted
adjacency matrix A = (Aki)k=1,...,q,i=1,...,d ∈ Rq×d+ by

Aki = 1(k ∼ i)Wki, . (4.1)

The total exposure of the agents given by X = (X1, . . . , Xq)
>, where Xk =

∑d
i=1 fk(Zi) can

be represented as

X = AZ.

Our goal is to find the probability of tail risks of some or all agents in terms of X.
In Kley, Klüppelberg and Reinert (2016); Kley, Klüppelberg and Reinert (2018), proportional

weights are used to distribute the insurance loss of object i affecting agent k or to diversify the
investment risk of an agent. The weights complicate calculations and only affect the values of the
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18 B. Das, V. Fasen, and C. Klüppelberg

limit measures, resulting in different constants, whereas the rate of convergence remains the same.
As they rather blur the mathematical insight, we work in Section 4.1 with unweighted adjacency
matrices. However, they can be incorporated in the calculations by appropriate multiplications
using the independence of A and Z. We consider a weighted adjacency matrix in Section 4.2,
when we investigate dependent objects in contrast to independent ones; see Examples 4.4 and 4.5
below. Throughout we formulate our examples and results in terms of investment risk.

4.1. Independent objects

For illustration we start with an example, which shows how regular variation of X = AZ for
independent Pareto-tailed components of Z and random adjacency matrices transforms into reg-
ular variation of X. The choice of C specifies the tail risk, and in this example we calculate the
asymptotic tail risk explicitly for two different kinds of sets leading to two different asymptotic
rates.

Example 4.1. Suppose there are two products P1 and P2 in the market with associated risks Z1

and Z2 respectively, which are independent and P(Zi > z) ∼ κiz
−α for α > 0 as z → ∞ with

constants κi > 0 for i = 1, 2. Assume there are three investors, each of whom may either invest in
one unit of P1 or one unit of P2 or one unit of both (we assume that they always invest). Hence
there are 3× 3× 3 = 27 possible market investments which may be represented by the matrix A so
that the joint risk of the investors is given by X = AZ. Now the 27 possibilities for the matrix A
are given by

A1 =

1 1
1 1
1 1

 , A2 =

1 0
1 0
1 0

 , A3 =

0 1
0 1
0 1

 ,

A4 =

1 1
1 0
1 0

 , A5 =

1 0
1 1
1 0

 , A6 =

1 0
1 0
1 1

 , A7 =

1 1
0 1
0 1

 , A8 =

0 1
1 1
0 1

 , A9 =

0 1
0 1
1 1

 ,

A10 =

1 1
1 1
1 0

 , A11 =

1 0
1 1
1 1

 , A12 =

1 1
1 0
1 1

 , A13 =

1 1
1 1
0 1

 , A14 =

0 1
1 1
1 1

 , A15 =

1 1
0 1
1 1

 ,

A16 =

1 1
1 0
0 1

 , A17 =

1 0
1 1
0 1

 , A18 =

1 0
0 1
1 1

 , A19 =

1 1
0 1
1 0

 , A20 =

0 1
1 1
1 0

 , A21 =

0 1
1 0
1 1

 ,

A22 =

1 0
1 0
0 1

 , A23 =

0 1
1 0
1 0

 , A24 =

1 0
0 1
1 0

 , A25 =

0 1
0 1
1 0

 , A26 =

1 0
0 1
0 1

 , A27 =

0 1
1 0
0 1

 ,

and let qm := P(A = Am) ≥ 0 for m = 1, . . . , 27 such that
∑27
k=1 qm = 1,

∑15
m=1 qm > 0 and

q16 + q19 > 0.
Suppose we want to assess the risk of all investors being above a high threshold t > 0. Moreover,
we also want to find the probability that when all risks of the investors are above t, the risk of
the first investor is larger than that of the second which is larger than the one of the third, i.e.,
X1 > X2 > X3 > t. Hence given t > 0 and

C1 = {x ∈ E(3)
3 : xi > 1, i = 1, 2, 3} = (x,∞), (4.2)

C2 = {x ∈ E(3)
3 : x1 > x2 > x3 > 1}, (4.3)
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Linear functions of regularly varying vectors 19

we want to compute P(X ∈ tCi) for i = 1, 2. First note that Z ∈ MRV(α, b1(t), µ1,E(1)
2 ) and

Z ∈MRV(2α, b2(t), µ2,E(2)
2 ) where b1(t) = ((κ1+κ2)t)1/α, b2(t) = (κ1κ2t)

1/(2α) and for (z1, z2) ∈
(0,∞)2,

µ1({v ∈ E(1)
2 : v1 > z1 or v2 > z2}) =

κ1

κ1 + κ2
z−α1 +

κ2

κ1 + κ2
z−α2 ,

µ2({v ∈ E(2)
2 : v1 > z1, v2 > z2}) = (z1z2)−α.

In order to compute the necessary probabilities, we first need to compute i∗k as defined in Theo-

rem 3.7 based on τ
(k,i)
3,2 (Am) for k = 1, 2, 3 and m = 1, . . . , 27. We can check that for m = 1, . . . , 15,

τ
(k,1)
3,2 (Am) <∞, k = 1, 2, 3,

τ
(k,2)
3,2 (Am) =∞, k = 1, 2, 3.

Hence for m = 1, . . . , 15, we get ik(Am) = 1 for k = 1, 2, 3. On the other hand for m = 16, . . . , 27,
we observe that

τ
(k,1)
3,2 (Am) <∞, k = 1, 2, 3,

τ
(3,2)
3,2 (Am) <∞, τ

(2,2)
3,2 (Am) = τ

(1,2)
3,2 (Am) =∞.

Therefore for m = 16, . . . , 27, we get i3(Am) = 2, i2(Am) = 1, and i1(Am) = 1.
Clearly from our assumptions,

P(Ω
(3)
1 ) =

15∑
m=1

qm =: q1 +Q1 +Q2 > 0, and, P(Ω
(3)
2 ) =

27∑
m=16

qm > 0,

where

Q1 = q2 + q4 + q5 + q6 + q10 + q11 + q12, Q2 = q3 + q7 + q8 + q9 + q13 + q14 + q15.

Note that both C1, C2 ⊂ E(3)
3 . Applying Theorem 3.7(b) results in i∗3 = 1 and we have

X ∈MRV(α, b1(t) = ((κ1 + κ2)t)1/α, µ3,E
(3)
3 ), where µ3(·) = E

(3)
1 [µ1(A−1(·))].

First consider the set C1 as defined in (4.2). Since

E
(3)
1 [µ1(A−1(C1))] =

15∑
m=1

qmµ1({z ∈ E(1)
2 : Amz ∈ C1})

=
[(q1 +Q1)κ1 + (q1 +Q2)κ2]

κ1 + κ2
> 0, (4.4)

we have

P(X ∈ tC1) ∼ P(Z(1) > t)E
(3)
1 [µ1(A−1(C1))]

∼ [(q1 +Q1)κ1 + (q1 +Q2)κ2] t−α, t→∞.

The same result can be obtained from Proposition 3.9, since (4.4) indicates ῑ = ῑC1
= 1. Now

consider the set C2 as in (4.3). Note that in this case,

E
(3)
1 [µ1(A−1(C2))] =

15∑
m=1

qmµ1(A−1
m (C2)) = 0, and,

E
(3)
2 [µ2(A−1(C2))] = q16µ2({z ∈ E(2)

2 : A16z ∈ C2}) + q19µ2({z ∈ E(2)
2 : A19z ∈ C2})
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20 B. Das, V. Fasen, and C. Klüppelberg

=
1

2
(q16 + q19) > 0.

Hence using notation from Proposition 3.9, we have ῑ = ῑC2 = 2. Furthermore, for m = 1, . . . , 15
we have A−1

m (C2) = ∅. Therefore the assumptions of Proposition 3.9 are satisfied and we obtain

P(X ∈ tC2) ∼ P(Z(2) > t)E
(3)
2 [µ2(A−1(C2))] ∼ 1

2
κ1κ2(q16 + q19)t−2α.

�

Examples for different choices of risk sets C are aplenty considering the numerous risk situations
for a group of agents. In what follows, we address tail risks for extreme events where the portfolio
risk of all agents are above a high threshold in a more systematic way. Such events are represented
by sets of the form t(x,∞). In case we want to study the problem for a specific set of agents, we
need only to consider a reduced set of rows of the adjacency matrix A.

We suppose that each agent is able to take investment decisions according to a probability
distribution, where the agents’ choices are independent of each other. Hence, we may assume for
each agent k ∈ A = {1, . . . , q} that there exist subsets Jk1, . . . , Jkmk

of investments O = {1, . . . , d}
such that

P(Aki = 1 for i ∈ Jkl, and Aki = 0 for i ∈ Jckl) = pkl

for pkl ∈ [0, 1] and
∑mk

l=1 pkl = 1. We may also consider Aki = Wki > 0 for i ∈ Jkl as in (4.1).
Our examples also show exactly how our results extend those of Theorem 3.2 of Janssen and

Drees Janssen and Drees (2016) in multiple directions. Firstly, we allow for a non-square matrix
A with q ≥ d, whereas the result in Janssen and Drees (2016) was restricted to q = d. For compu-
tational ease we restrict to the case where the components of Z are independent. Although this

results in Z ∈ MRV(dα, µd,E(d)
d ) as required in Janssen and Drees (2016), we obtain AZ to be

multivariate regularly varying with different indices in different spaces; whereas in the aforemen-

tioned paper, the indices of regular variation of Z and AZ on E(d)
d remain identical.

Our first result provides tail probabilities for the agents’ risk exposures for a model, where each
agent invests in exactly one investment possibility and the investment possibilities are independent
of each other. Moreover, agents take their investment decisions independently.

To invest into one investment possibility is a risk averse investment strategy for small α. Ac-
cording to Remark 13.3(b) of Rüschendorf Rüschendorf (2013), for α ≤ 1 portfolio diversification
does not reduce the danger of extreme losses, but typically increases extreme risks.

Proposition 4.2. Let Z1, . . . , Zd be independent random variables such that
P(Zi > t) ∼ κit

−α for α > 0 as t → ∞ with constants κi > 0 for i ∈ O = {1, . . . , d}. Let
A ∈ {0, 1}q×d for q ≥ d be a random adjacency matrix, where for all k ∈ A = {1, . . . , q} indepen-
dently,

P(Aki = 1 and Akj = 0 for j 6= i) = 1
d−1 , i ∈ {1, . . . , d}\{k}, k ∈ {1, . . . , d},

P(Aki = 1 and Akj = 0 for j 6= i) = 1
d , i ∈ {1, . . . , d}, k ∈ {d+ 1, . . . , q}.

(a) For 1 ≤ k ≤ q − 1 we have AZ ∈MRV(α, b1(t), µk,E
(k)
q ) with

µk(·) = E
(k)
1

[
µ1({z ∈ E(1)

d : Az ∈ · })
]
,

where µ1([0, z]
c
) = K−1

1

∑d
i=1 κiz

−α
i for z ∈ E(1)

d , b1(t) ∼ (K1t)
1/α and K1 =

∑d
i=1 κi.

(b) We have P(Ω
(q)
1 ) = 0 and for 2 ≤ i ≤ d and x = (x1, . . . , xq)

> ∈ E(q)
q we have as t→∞,

P
(q)
i (AZ ∈ t(x,∞)) = ∆i

∑
1≤j1<···<ji≤d

{
i∏
l=1

κjlxjl

}
t−iα + o(t−iα).
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where

∆i =

(
i− 1

d− 1

)i(
i

d− 1

)d−i(
i

d

)q−d
− i
(
i− 2

d− 1

)i−1(
i− 1

d− 1

)d+1−i(
i− 1

d

)q−d
.

(c) For k = q we have AZ ∈ MRV(2α, b2(t), µq,E
(q)
q ) with b2(t) ∼ (K2t)

1/2α where

K2 =
∑d

1≤i<j≤d κiκj and

µq((x,∞)) =
2q−2

(d− 1)ddq−d
K−1

2

∑
1≤i<j≤d

κiκj(xixj)
−α,

such that for x ∈ E(q)
q as t→∞,

P(AZ ∈ t(x,∞)) =K2µq((x,∞))t−2α + o(t−2α).

Proof. First note that using similar arguments as in Lemma 2.3, we have for any i = 1, . . . , d

that Z ∈MRV(iα, bi, µi,E(i)
d ) with canonical choices bi(t) ∼ (Kit)

1/(iα) and

Ki =
∑

1≤j1<···<ji≤d

i∏
l=1

κjl . (4.5)

Moreover, for z = (z1, . . . , zd)
> ∈ E(d)

d we have

µi({v ∈ E(i)
d : vj1 > zj1 , . . . , vji > zji for some 1 ≤ j1 < · · · < ji ≤ d})

=
1

Ki

∑
1≤j1<···<ji≤d

i∏
l=1

κjlz
−α
jl
, (4.6)

and

P(τ
(i)
d (Z) > t) = P(Z(i) > t)∼ 1/b←i (t) ∼ Kit

−iα, t→∞.

The structure of A guarantees that E
(q)
i

[
τ

(k,i)
q,d (A)iα

]
= 1, satisfying condition (i) of Theorems 3.6

and 3.7. Also, referring to Remark 4 and (4.6), we have µi(C̃A
(i)

d (j)) > 0 for all j = 1, . . . ,
(
d
i

)
,

satisfying condition (ii) in Theorems 3.6 and 3.7. Now we show the various parts of the result.

(a) Let 1 ≤ k ≤ q − 1. Then P(Ω
(k)
1 ) > 0 and hence, the conclusion follows from Theorem 3.7.

(b) Since each row of A has exactly one entry 1 and all others zero, we have for i = 1, . . . , d,

Ω
(q)
i = {ω ∈ Ω : exactly i columns of Aω have at least one entry 1},

because τ
(k,i)
q,d (Aω) <∞ if and only if there are not more than i columns of Aω with positive

entries.
Clearly Ω

(q)
1 = ∅ and we have P(Ω

(q)
1 ) = 0.

Now for 1 ≤ j1 < . . . < ji ≤ d and i = 1, . . . , d define

Ω
(q)
j1,...,ji

:= {ω ∈ Ω : exactly columns j1, . . . , ji of Aω have at least one entry 1}.

Hence for 2 ≤ i ≤ d,

P(Ω
(q)
j1,...,ji

) =

(
i− 1

d− 1

)i(
i

d− 1

)d−i(
i

d

)q−d
− i
(
i− 2

d− 1

)i−1(
i− 1

d− 1

)d+1−i(
i− 1

d

)q−d
=: ∆i.
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Now an application of Theorem 3.6 yields

P
(q)
i (AZ ∈ t(x,∞))

= P(τ
(i)
d (Z) > t)E

(k)
i

[
µi({z ∈ E(i)

d : Az ∈ (x,∞)})
]

+ o
(
P(τ

(i)
d (Z) > t)

)
=

∑
1≤j1<···<ji≤d

µi
(
z ∈ Rd+ : zj1 > xj1 , . . . , zji > xji

)
P
(
Ω

(q)
j1,...,ji

)
Kit
−iα + o(t−iα)

= ∆i

∑
1≤j1<···<ji≤d

i∏
l=1

κjlx
−α
jl
t−iα + o(t−iα)

which is the result in (b).
(c) Using notation from Theorem 3.7, we have i∗d = 2. Also note that for i < j,

P(Ω
(q)
i,j ) = ∆2 =

2q−2

(d− 1)qdq−d
.

Therefore using Theorem 3.7(b) we have AZ ∈MRV(2α, b2(t), µq,E
(q)
q ) and as t→∞,

P(AZ ∈ t(x,∞)) = E
(q)
2 [µ2(A−1((x,∞)))]P(Z(2) > t) + o(P(Z(2) > t))

=
{ ∑

1≤i<j≤d

µ2(z ∈ Rd+ : zi > xi, zj > xj)P
(

Ω
(q)
i,j

)}
K2t

−2α + o(t−2α)

=
{ ∑

1≤i<j≤d

κiκj(xixj)
−α
} 2q−2

(d− 1)qdq−d
t−2α + o(t−2α)

which shows (c).

Proposition 4.2 shows that for sets C ⊂ E(k)
q for k ∈ {1, . . . , q− 1}, P(AZ ∈ tC) is of the order

t−α. But for sets of the form t(x,∞) which belong to E(q)
q , we observe a tail probability of the

order t−2α. However, if we restrict A to Ω
(k)
i as in part (b), we may observe tail probabilities of

the order t−iα for all i = 2, . . . , d.
In the next example we show that tail probabilities of other orders can also be observed for

risk sets of the form t(x,∞). Here we fix q = d and consider the same investment scenario as in
Proposition 4.2; i.e., each agent invests in exactly one investment possibility and agents take their
investment decisions independently. As before each row is a unit vector, but the distribution of A
changes. Given m ∈ {1, . . . , d− 1}, the single 1 in each row is chosen uniformly on a subset of size
d−m, the subset changing across each row.

From a mathematical point of view, we obtain multivariate regular variation with different

indices on E(d)
d depending on the choice of m. Such a model leads to explicit expressions for the

asymptotic tail probabilities for P(AZ ∈ t(x,∞)).

Proposition 4.3. Let Z1, . . . , Zd be independent random variables such that
P(Zi > t) ∼ κit

−α for α > 0 as t → ∞ with constants κi > 0 for i ∈ O = {1, . . . , d}.
Let 1 ≤ m ≤ d − 1, m ∈ N and A ∈ {0, 1}d×d be a random adjacency matrix, where for all
k ∈ A = {1, . . . , d} independently

P(Aki = 1 and Akj = 0 for j 6= i) =
1

d−m
, i ∈ Ik,

where Ik is defined as

Ik =

{
{1, . . . , d}\{k, . . . , k +m− 1} if k +m− 1 ≤ d,
{1, . . . , d}\{{k, . . . , d} ∪ {1, . . . , k +m− 1− d}} if k +m− 1 > d.
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Also define for m+ 1 ≤ i ≤ d,

q
(m)
i =

id−(i+m−1)(i−m)i−m+1
∏m−1
l=1 (i− l)2

(d−m)d
.

Then the following assertions hold:

(a) For 1 ≤ k ≤ d−m we have AZ ∈MRV(α, b1, µk,E
(k)
d ) with

µk(·) = E
(k)
1

[
µ1({z ∈ E(1)

d : Az ∈ · })
]
,

and for d−m < k ≤ d we have AZ ∈MRV(jα, bj , µk,E
(k)
d ) with

µk(·) = E
(k)
j

[
µj({z ∈ E(j)

d : Az ∈ · })
]
,

where j = k+m+ 1− d, µj is defined as in (4.6), and bj(t) ∼ (Kjt)
1/jα with Kj as in (4.5).

(b) For m+ 1 ≤ i ≤ d, and x ∈ E(d)
d we have as t→∞,

P
(d)
i (AZ ∈ t(x,∞)) =

 ∑
1≤j1<···<ji≤d

i∏
l=1

κjlx
−α
jl

{q(m)
i − q(m)

i−1

}
t−iα + o(t−iα).

(c) For k = d, part (a) applies with

µd((x,∞)) = K−1
m+1q

(m)
m+1

 ∑
1≤j1<···<ji≤d

i∏
l=1

κjlxjl

 , x ∈ E(d)
d ,

with Km+1 as in (4.5), and we have as t→∞,

P(AZ ∈ t(x,∞)) =Km+1µd((x,∞))t−(m+1)α + o(t−(m+1)α).

Proof. For m ≤ i+ 1 ≤ d,

q
(m)
i = P({ω ∈ Ω : only in columns j1, . . . , ji of Aω appears 1})

such that P(Ω
(d)
j1,...,ji

) = q
(m)
i − q

(m)
i−1 and P(Ω

(d)
j1,...,jm+1

) = q
(m)
m+1. The proposition can then be

proved in a similar manner as Proposition 4.2, and is omitted here.

4.2. Dependent objects

In this section we contrast independent objects as we have considered previously with a specific
dependence structure of the components of Z. Moreover, we also investigate the influence of
weights in a numerical example. Let X = AZ be the investment portfolios of five agents, each of
whom connects to a subset of three objects whose risks are given by Z. We estimate the tail risks
for k = 1, . . . , 5:

P(risk of at least k of the portfolios > t) =: P(X ∈ tDk).

We use a weighted adjacency matrix, which is now, however, deterministic and in both examples
given by

A =


W11 0 0

0 W22 0

0 0 W33

W41 W42 0

0 W52 W53
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with weights W11,W22,W33,W41,W42,W52,W53 > 0. Also for the convenience of computing the
limit measures of the sets Dk we assume W41W

−1
11 +W42W

−1
22 > 1 and W52W

−1
22 +W53W

−1
33 > 1.

Moreover, we assume that Z = (Z1, Z2, Z3)> has a probability distribution given by

P(Z1 ≤ z1, Z2 ≤ z2, Z3 ≤ z3) = (1 + θ(κ1κ2κ3)ρ(z1z2z3)−ρα)

3∏
i=1

(1− κiz−αi ), (4.7)

for zi ≥ κ1/α
i , where κi > 0, i = 1, 2, 3, α > 0, ρ ≥ 1, 0 ≤ θ ≤ 1. For θ = 0 the components of Z are

independent Pareto (cf. Example 4.4) and for ρ = 1, θ = 1 they are dependent (cf. Example 4.5).
Such dependence in terms of copulas has been discussed in Rodŕıguez-Lallena and Úbeda Flores
(2004).

This setting implies that in the two examples below, the underlying distribution of Z has either
independent marginals or at least it has a tractable form; the adjacency matrix A is relatively
simple, in order to provide an interpretable illustration.

Example 4.4. Suppose Z1, Z2, Z3 are independent random variables such that

P(Zi > z) = κiz
−α, z > κ

1/α
i with constants κi > 0 for i = 1, 2, 3. We calculate all relevant

quantities. First, the tails of the order statistics are given for t→∞,

P(Z(1) > t) = (κ1 + κ2 + κ3)t−α + o(t−α),

P(Z(2) > t) = (κ1κ2 + κ2κ3 + κ3κ1)t−2α + o(t−2α),

P(Z(3) > t) = (κ1κ2κ3)t−3α.

(4.8)

We have Z ∈MRV(iα, bi, µi,E(i)
3 ) with canonical bi given by

b1(t) = (κ1 + κ2 + κ3)1/αt1/α,

b2(t) = (κ1κ2 + κ2κ3 + κ3κ1)1/2αt1/2α, (4.9)

b3(t) = (κ1κ2κ3)1/3αt1/3α,

and limit measures

µ1

( 3⋃
i=1

{
v ∈ R3

+ : vi > zi
})

= (κ1 + κ2 + κ3)−1
3∑
i=1

κiz
−α
i ,

µ2

( ⋃
1≤i6=j≤3

{
v ∈ R3

+ : vi > zi, vj > zj
})

= (κ1κ2 + κ2κ3 + κ3κ1)−1
∑

1≤i6=j≤3

κiκj(zizj)
−α,

µ3 ((z1,∞)× (z2,∞)× (z3,∞)) = (z1z2z3)−α.

(4.10)

Note that Dk ⊂ E(k)
5 for k = 1, . . . , 5. We can check from the form of A that

i∗1 = 1, i∗2 = 1, i∗3 = 1, i∗4 = 2, i∗5 = 3.

Hence using Theorem 3.7, along with (4.8) and (4.10), we have as t→∞,

P(AZ ∈ tD1) ∼ P(Z(1) > t)µ1(A−1(D1))

∼ [κ1(max(Wα
11,W

α
41)) + κ2(max(Wα

22,W
α
42,W

α
52)) + κ3(max(Wα

33,W
α
53))] t−α.

Similarly, we can show that as t→∞,

P(AZ ∈ tD2) ∼ P(Z(1) > t)µ1(A−1(D2))

∼ [κ1(min(Wα
11,W

α
41)) + κ2(min(Wα

22,W
α
42,W

α
52)) + κ3(min(Wα

33,W
α
53))] t−α.
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Figure 3. The probabilities of the tail events tD1, tD2, tD3, tD4 are asymptotically equal in both Examples 4.4
and 4.5 and are plotted in the left panels with α = 1 in the top and α = 2 in the bottom. The probabilities of the
tail events tD5 are asymptotically different in the two examples and are plotted in the right panels (α = 1 in the
top and α = 2 in the bottom). Values are plotted for 20 ≤ t ≤ 100.

P(AZ ∈ tD3) ∼ P(Z(1) > t)µ1(A−1(D3))

∼ κ2 min(Wα
22,W

α
42,W

α
52) t−α,

P(AZ ∈ tD4) ∼ P(Z(2) > t)µ2(A−1(D4))

∼ [κ1κ2W
α
11 min(Wα

22,W
α
52) + κ2κ3 min(Wα

22,W
α
42)Wα

33

+ κ3κ1 min(Wα
33,W

α
53) min(Wα

11,W
α
41)] t−2α,

P(AZ ∈ tD5) ∼ P(Z(3) > t)µ3(A−1(D5)) ∼ κ1κ2κ3W
α
11W

α
22W

α
33t
−3α.

The forms for P(AZ ∈ tD4) and P(AZ ∈ tD5) become more complicated if we do not assume
W11,W22,W33,W41,W42,W52,W53 > 0. Furthermore, if all weights are equal to one, the above
formulas hold true.

As an illustration, we fix κ1 = 1, κ2 = 2, κ3 = 3. Moreover, let W11 = W22 = W33 = 1,
W41 = 2,W42 = 2, and W52 = W53 = 3. The five probabilities obtained above are plotted for the
case α = 1, 2 in Figure 3 for 20 ≤ t ≤ 100. We also compare the probability for the event tD5 in
this example and in Example 4.5; see the right two panels of Figure 3. �
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Example 4.5. Suppose Z1, Z2, Z3 are dependent with joint distribution (4.7) for ρ = θ = 1.
Otherwise assume the setting as in Example 4.4 We calculate again all relevant quantities. First,
the tails of the order statistics are given for t→∞,

P(Z(1) > t) = (κ1 + κ2 + κ3)t−α + o(t−α),

P(Z(2) > t) = (κ1κ2 + κ2κ3 + κ3κ1)t−2α + o(t−2α),

P(Z(3) > t) = κ1κ2κ3(κ1 + κ2 + κ3)t−4α + o(t−4α).

Notice that the only difference from (4.8) is in the term P(Z(3) > t). Hence, for i = 1, 2 we have

Z ∈ MRV(iα, bi, µi,E(i)
3 ) with canonical choice for bi as in (4.9) and µi as in (4.10). On the

other hand, we have Z ∈MRV(4α, b3, µ3,E(3)
3 ) with

b3(t) = (κ1κ2κ3(κ1 + κ2 + κ3))1/(4α)t1/(4α),

and

µ3 ((z1,∞)× (z2,∞)× (z3,∞)) = (κ1 + κ2 + κ3)−1
3∑
i=1

κiz
−α
i (z1z2z3)−α.

As in Example 4.4, we have i∗1 = 1, i∗2 = 1, i∗3 = 1, i∗4 = 2, i∗5 = 3. Using Theorem 3.7, along with
(4.8) and (4.10), we have the same limits for P(AZ ∈ tDk) for k = 1, . . . , 4. The only difference
occurs for k = 5, where we have for t→∞,

P(AZ ∈ tD5) ∼ P(Z(3) > t)µ3(A−1(D5))

∼ [κ1κ2κ3W
α
11W

α
22W

α
33(κ1W

α
11 + κ2W

α
22 + κ3W

α
33)] t−4α.

Again we fix κ1 = 1, κ2 = 2, κ3 = 3 and let W11 = W22 = W33 = 1, W41 = 2,W42 = 2, and
W52 = W53 = 3, as in Example 4.4. The probabilities for events tD1, tD2, tD3, tD4 asymptotically
remain the same as in Example 4.4 (matching the plots in the left two panels of Figure 3 for the
case α = 1, 2). In the right panels Figure 3 we plot the values for tD5 when α = 1, 2; clearly these
values differ in the two examples. �

5. Conclusion

This work is motivated by the need to find probabilities of a variety of extreme events under a
linear transformation of regularly varying random vectors. By an extension of Breiman’s Theorem
we have shown that probabilities of many such events can be calculated, if we have information on
the regular variation property of the underlying random vector on specific subcones of the positive
quadrant. Most of the subsets C of such cones have linear boundaries and hence form a polytope,
whose pre-image under linear transformation also turns out to be a polytope in Rd+. Computing

the limit measures E
(k)
i [µi(A

−1(C))] in such cases means finding the appropriate boundaries of
the polytope which can become quite complicated. For moderate dimensions of the matrix A,
numerical solutions can be obtained even when the distributional forms of Z and A are more
complicated.

We envisage wide application of such results in areas of risk management. There are clear im-
plications for computing conditional value at risk, as well as a variety of conditional risk measures.
We also believe that an alternative characterization of the rate of decay of tail probabilities can
be provided via connectivity of the row components (in the bipartite network model, the agents);
this work is under current investigation.
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