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Chair of Communication Networks, Technical University of Munich, Germany

E-mail: {markus.kluegel, mu.he, wolfgang.kellerer, peter.babarczi}@tum.de

Abstract—For communication networks research, flexibility of
network design and networking solutions is considered a compet-
itive advantage. However, this advantage is typically only claimed
on an argumentative level and neither formally supported nor
thoroughly investigated. To support the claim of flexibility and to
make the flexibility of different solutions comparable, its degree
must be quantified and thus made measurable. In this work, we
propose a mathematical basis to quantify a degree of flexibility
achieved by communication networks. We motivate that flexibility
can be cast to the “size” of a set of achievable demand changes.
Consequently, we propose the use of mathematical measure
theory to quantify achieved networking flexibility. We derive
several implications on the basic structure of flexibility, extend
the insights towards a utility of flexibility and develop systematic
approaches for both analytical and empirical measurement of
flexibility. We apply the insights to several use-cases, showing
that flexibility is in fact not as straight-forward to argue as it
seems at first glance.

I. INTRODUCTION

In the last decades, communication networks have inter-
weaved with all areas of our society, influencing areas as
different as social media, industrial production and health-
care. New application requirements create a need for dynamic
changes of the used networking resources, e.g., to react to
social events or to shifts of communication demands. It is
commonly accepted that the ossification of existing networks
– in particular, of the Internet – constitutes a lack of flexibility
to adapt networks to changing requirements efficiently and on
a sufficiently small time-scale.

In recent years, several concepts have emerged to provide
more flexibility in networks through virtualization and control-
plane programmability [1]. The split between data plane
and control plane, proposed by software defined networking
(SDN) [2], is regarded as the basic concept to allow flexible
network adaptation. In addition, network virtualization (NV)
[3] allows the sharing of physical network resources by
different, independent networks. Further, the softwarization of
network functions via network function virtualization (NFV)
[4], replacing previously used middle-boxes, enables dynamic
adaptations that add to flexibility. Altogether, these paradigms
act as an enabler towards more flexible network operation.

On the other hand, legacy network implementations, too,
are to some extent flexible. They are able to dynamically adapt
their system states in reaction to changing requirements, e.g.,
by using appropriate protocols. Although increased flexibility
is often claimed in context of SDN, NV and NFV, a formal
argument for support is mostly missing in the respective

literature. Instead, flexibility is claimed from an intuitive
notion of adaptivity and neglects potential trade-offs that might
be induced by adding more complexity into already complex
networking systems. To formally analyze the impact of flex-
ibility on communication networks, to strengthen arguments
for and against it and enable meaningful trade-off analysis,
flexibility needs to be quantified in a formally clean fashion.
Clearly, when such a quantification is possible, this enables
follow-up arguments: (i) it allows the relative comparison of
systems and their ordering in the sense of being more or less
flexible; (ii) it allows establishment of flexibility scaling-laws,
similar to algorithmic complexity discussions; (iii) it allows
explicit design of systems for increased flexibility; (iv) and
most importantly, it allows a tractable trade-off analysis with
respect to introduced cost, time and system complexity.

In this work we propose a metric to capture flexibility in
a quantitative fashion, instead of by intuitive arguments. We
argue that mathematically, flexibility can be cast to the “size”
of an appropriately defined set of achievable demand changes.
Consequently, we propose the use of mathematical measure
functions to capture it. We show that the use of such measures
complies with common intuition of the word “flexible”. We
further develop an empirical measurement procedure that can
serve to compare two systems with respect to flexibility.

The rest of the paper is organized as follows. In Section II
we enumerate basic research results on flexibility. The main
contributions of the paper are introduced in Section III and
Section IV, which contain the theoretical and empirical results
on the measure, respectively. Our numerical evaluations of
concrete use cases are presented in Section V. Finally, the
possible extensions of the proposed metric is discussed in
Section VI and then the paper is concluded in Section VII.

II. RELATED WORK

Flexibility has emerged recently as a core target for com-
munication network designs and is explicitly or implicitly
touched by many works on SDN, NV and NFV, but even the
understanding of the word “flexible” strongly differs among
different papers. The works that directly discuss or target
flexibility itself, and that we are aware of, can be reduced
to [5]–[8]. In [5], [6] the authors discuss the flexibility of
traffic engineering solutions in data centers, arguing against the
assumption that wired connections are inflexible. To support
their argument, the used flexibility metric is the throughput
performance for increasing traffic, compared to a “throughput



proportional” behavior. Works [7], [8] propose to measure
flexibility by using an acceptance ratio over a set of induced
change requests. While this measure is compatible with the
notion we develop here, the authors don’t introduce any formal
argument of why it reflects the flexibility of a system.

While not commonly discussed in networking, flexibility
analysis is a tool that has been used in other scientific
contexts [9]–[20], such as manufacturing systems or manage-
ment science, where an increased interest exists already for
more than four decades. The main contributors seen here are
works on flexible manufacturing systems (FMS) and decision
theory. An FMS [9]–[14], [20] can be re-configured to match
changing requirements, e.g., to change production volume,
production flow or produced product. As shown in the survey
[10], many works follow the naive approach of defining a
flexibility function and demanding different properties from
intuition, e.g., that it should increase with production volume
but decrease with required production time. As argued in [10],
each function falls into one out of five main streams, which
are generalized in [12], however without resulting in a single,
consistent metric. This is criticized in [14], as some of the
introduced metrics are even shown to produce inconsistent rel-
ative orderings of more or less flexible manufacturing systems.
Exceptions are the works [9], [13], which define flexibility
more formally as the weighted efficiency of machines over a
possible task set [9] and the distance that can be traversed by
an FMS in a given state space [13].

In contrast to FMS, decision theory considers the impact of
decision flexibility [15]–[19], which is consistently defined and
treated throughout the literature. Here, the focus is on compa-
nies that need to make decisions, influencing an unknown or
only partly known future. Decision flexibility is then defined
either as the amount of future options enabled by a current
decision, or their revenue to the decision maker.

Combining both views of FMS and decision theory, flexibil-
ity is in general related to an option set, i.e., a set of possible
tasks, achievable system states or available decisions. Further,
it is often extended towards the quality of available options,
e.g., in terms of machine efficiency or decision reward.

A. Contribution of this Work

After discussing the related literature on flexibility, the gap
which we try to fill is obvious: while other fields have several
decades of history on formal flexibility investigations, compa-
rable approaches for communication networks can hardly be
found – in a time where flexibility is one of the key promises
given by network researchers. We aim at starting the formal
analysis of network flexibility by proposing a corresponding
metric, making it measurable. Obviously, there is no such
thing as “the” definition of flexibility, such that there also is
no single way to assess it. However, we aim at providing a
clean flexibility notion that (i) is applicable to communication
networks, (ii) is consistent with the intuitive usage of the term,
that (iii) does not lead to mathematical inconsistencies and (iv)
can be assessed analytically as well as empirically.

To be specific, we target flexibility as size of a feasible
demand change set, which is in line with the definition of
decision flexibility and major parts of the understanding gained
for FMS [9], [13]. In contrast to most existing works, we
do not directly incorporate the utility of flexibility into the
metric but rather try to capture the essence of flexibility itself.
However, we discuss in Section VI how the utility of flexibility
can be evaluated. Furthermore, we propose a measurement
procedure for empirical assessment of flexibility, which is
consistent with the analytical framework.

III. NETWORK FLEXIBILITY

Just as most high-level terms, such as “creativity”, “intelli-
gence” or “fairness”, the meaning of the term flexibility is not
easily defined in a clear fashion, nor can any short definition
capture the full meaning of the term. However, to specify what
a flexibility analysis of communication networks would be
about, we must specify what we refer to with the term in this
context. From our literature review, we realize that the main
features of interest for communication networks are threefold,
referring to (i) variety of adaptation possibilities, (ii) speed
of adaptation and (iii) overhead/cost of adaptation. Without
claiming completeness of this definition, we refer to flexibility
in the following fashion:

Definition 1: Network flexibility is the ability of a com-
munication network to adapt its state to changing conditions
promptly and with little effort.

A state here can be, e.g., the routes used by communication
flows or network resource usage patterns. The effort can be
related to any cost metric, such as overhead, complexity or
monetary cost, and the conditions can be externally given
or actively demanded. In an abstract sense, different states
can be realized by a given system implementation, which is
bound to specific protocols, hardware and software modules.
A change of state can then happen on different time-scales
and with differing effort and lead or not lead to a proper
adaptation to changing conditions. It is this interaction of
changing conditions, state change, speed of change and change
effort that impact our view on flexibility.

A. System Model

We consider a communication system that can be described
by a system state S ∈ S, where S contains all possible states
that the system can realize. The state can reflect, e.g., the
routes used by communication flows, end-to-end connectivity
patterns, network resource usage patterns or the positions of
network functions or controllers. We assume it to be given
in an appropriate descriptive form, which can be a set, tuple,
matrix or vector but is in principle not limited to such.

Furthermore, we define a demand set Ω that captures
demands posed to the network. Demands are requirements on
the network state and can be used to model, e.g., connection
requests, rate or Quality of Service (QoS) demands. Each
demand di ∈ Ω is associated with a set of valid states
V(di) ⊆ S , in which the demand is satisfied. Over time,
the demands will vary and the system will adapt its state in



order to satisfy them. A demand change is an event denoted
by the tuple of initial demand di and new demand dj , i.e.,
di,j = (di, dj) for di, dj ∈ Ω. Each change di,j demands
that the system is adapted from Si 7→ Sj , where Si ∈ V(di),
Sj ∈ V(dj), respectively1.

Assume a system implementation X ∈ X , where X is the
set of possible implementations, which is bound to specific
algorithms, protocols, hardware and software modules. Due to
its nature, X can realize any system state out of a set SX ⊆ S.
Consequently, ∀di ∈ Ω there is a set of valid states, VX(di) =
SX ∩ V(di), that can be achieved by X .

An example set-up is shown in Fig. 1, which consists of a
network with connection requests among the nodes. Here, the
demands di are the connection requests and the valid system
states V(di) for demand di are the possible realizations (i.e.,
routings) of the connection. In Fig. 1 the given implementation
X realizes each connection according to a shortest path routing
algorithm and hence will deterministically select a realization
with the minimum number of hops from V(di) for every
demand. As result, VX(di) contains the single system state
corresponding to the chosen shortest path. A demand change
d1,4 = (d1, d4) will induce a system state change from
S1 7→ S4, the realization of which requires a certain amount
of time and comes at a certain cost. In general, the time
required for the system to react is described by the reaction
time τX : SX × SX 7→ R+, which maps each possible
state change of an implementation X to its appropriate time
value (e.g., time elapsed until the new flow is established
in Fig. 1). Furthermore, each demand change is associated
with an adaptation cost, which is described by the mapping
cX : SX × SX 7→ R+ and reflects the effort of realizing the
state change (e.g., the number of forwarding table changes).

For the sake of simplicity and readability, throughout this
paper we restrict ourselves to the simple model introduced
above. In particular, we consider the case that VX(di) ∈ SX
is either empty or a single element, i.e., the demands are
formulated in a way that only a single state will satisfy it.
This applies, e.g., to systems where the demand itself is a
system state or to systems that adapt themselves towards a
unique optimum state, as in the given example. In this model
τX and cX become deterministic, memoryless mappings on
Ω×Ω 7→ R+, respectively. As we will discuss in Section VI,
the introduced framework can be extended towards more
general valid sets VX(di) and system behaviors.

B. Formal Flexibility Definition

A quantifier for flexibility should exhibit some properties
to match the way we use the terminology. As we want to
be able to sort systems and implementations with respect to
flexibility, its quantifier should allow an ordering (i.e., a “≤”
operation), in which more flexible system should achieve a
larger flexibility value. Furthermore, it should be possible to
have a “totally inflexible” system, which intuitively should be

1A demand change (e.g., in flow rate) does not necessarily induce a state
change if the actual realization (e.g., flow routing) is in both V(di) and V(dj).
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Fig. 1. Network with demand set Ω = {d1 = (v1, v2), d2 = (v1, v3), d3 =
(v1, v4), d4 = (v2, v3), d5 = (v2, v4), d6 = (v3, v4)}. Valid system states
for d1 and d4 are V(d1) = {v1 − v2, v1 − v3 − v2, v1 − v3 − v4 − v2}
and V(d4) = {v2 − v3, v2 − v1 − v3, v1 − v3 − v4 − v2}. The subset of
valid states a shortest path routing algorithm X can realize are VX(d1) =
{S1} = {v1 − v2} for d1 and VX(d4) = {S4} = {v2 − v3} for d4.

assigned value zero. Because such an inflexible system is less
flexible than any other system, flexibility should have non-
negative values.

From our previous discussion, flexibility is related to the
amount of demand changes that a system can support, to
the time scale at which it can serve a demand and to the
effort associated with it. Using the system model described
in Section III-A, we define the set of achievable demand
changes by the considered system implementation X under
given reaction time constraint T and cost constraint C as:

AX(T,C) = {di,j ∈ Ω× Ω : i 6= j;VX(di),VX(dj) 6= ∅;
τX(di,j) ≤ T ; cX(di,j) ≤ C} .

The first line only ensures that di,j is a valid demand
change, i.e., it can be performed by implementation X . Next,
we assess the flexibility of a system implementation as the
“size” of the set2 AX(T,C).

Definition 2: Given a system implementation X with the
set of achievable demand changes AX(T,C) with respect to
time and cost constraints T and C. The flexibility of X is
defined as µ(AX(T,C)), where µ is an appropriate measure
on Ω× Ω.

C. Implications

The size of achievable demand changes indeed meets our
intuitions about flexibility. This we show with the following
observations, which follow directly from Definition 2 and the
properties of mathematical measures:

Observation 1: Implementation X that cannot react to any
demand change has zero flexibility (i.e., is inflexible), as
AX(T,C) = ∅ and hence µ(AX(T,C)) = 0.

The strictness of Observation 1, demanding that the system
cannot react to any demand change, in fact implies that only
few systems can be claimed to be completely inflexible.

Observation 2: Implementation X is more flexible than Y
if it can react to more demand changes under time and cost
constraints T , C, indicated by µ(AY (T,C)) ≤ µ(AX(T,C)).
Trivially, this is the case when AY (T,C) ⊆ AX(T,C).

Observation 3: If implementation X and Y can realize
different demand changes, an implementation Z = X ∪Y can

2Although for set size usually operator |·| is used, we will use set function
µ(·) instead to emphasize the variety of measures which can be applied.



be constructed, that selects among X and Y the one that can
realize a given demand change within the constraints, with
ties broken arbitrarily. It holds ∀T,C that µ(AZ(T,C)) ≥
max{µ(AX(T,C)), µ(AY (T,C))}.

Proof: This follows from AZ(T,C) = AX(T,C) ∪
AY (T,C) which induces µ(AZ(T,C)) = µ(AX(T,C)) +
µ(AY (T,C)) − µ(AX(T,C) ∩ AY (T,C)) [21] and hence
µ(AZ(T,C)) ≥ max{µ(AX(T,C)), µ(AY (T,C))}.

The arguments given in Observations 2 and 3 in fact reflect
the perspective that is found often in literature when flexibility
is claimed: By enabling re-configuration of the network, its
functions, flows or similar, the resulting system is one that
can do anything it could do before, and more. Thus, it must
be more flexible. From a formal perspective, this argument
is only partly applicable to real systems, as it assumes that
the reconfiguration itself does not induce any substantially
increased delay or cost. As soon as the reconfiguration induces
a non-negligible delay or cost overhead, there are time or
cost constraints under which the re-configuration itself is a
drawback that can actually make the network less flexible.
When network operation requires reaction times or cost ef-
ficiency corresponding to these tight constraints, the impact
of this decrease needs to be investigated, otherwise increased
flexibility can be an empty promise.

While the evaluation over a “size” of achievable demand
changes has an intuitive relation to flexibility, the introduc-
tion of time and cost constraints is at first a little counter-
intuitive. However, their use is in accordance with the multi-
dimensionality of flexibility that has been observed already in
the discussed literature. Formally, we establish the “dimen-
sions” adaptivity, reactivity and cost-efficiency: Consider two
system implementations X , Y with associated sets AX(T,C)
and AY (T,C), respectively3. Then, we define the following:

Definition 3: We say that implementation X is at least as
reactive as Y if

∀T : µ(AY (T,∞)) ≤ µ(AX(T,∞)), (1)

that X is at least as cost-efficient as Y if

∀C : µ(AY (∞, C) ≤ µ(AX(∞, C)), (2)

and that X is at least as adaptive as Y if:

µ(AY (∞,∞)) ≤ µ(AX(∞,∞)). (3)

The reactivity property states that, disregarding cost, imple-
mentation X can react to demand changes at least as fast
as implementation Y . Analogy holds for cost-efficiency with
respect to cost. The notions of reactivity and cost-efficiency
can be interpreted as Pareto-superiority in the time and cost
dimensions. Finally, adaptivity states that, independent of time
and cost, implementation X can react to at least as many
demand changes as implementation Y . One can argue that
X is more flexible than Y if it is better in any of these
properties. Hence, each constraint combination (T,C) of the
flexibility evaluation can be interpreted as an emphasis on

3We denote with “∞” if a constraint is infinitely relaxed on that parameter.

the adaptivity, reactivity and cost-efficiency property, with
more stringent constraints enforcing better reactivity and cost-
efficiency. Therefore, in the rest of the paper, we will focus
only on the general term flexibility, but keep in mind that
the findings are applicable to all of these dimensions with
an appropriate constraint selection. Furthermore, for ease of
notation, we will drop inputs X , T , C when they do not
explicitly contribute to understanding and write µ(A) instead
of µ(AX(T,C)).

D. Flexibility Measures

We have motivated that flexibility can be quantified by a
measure µ on AX(T,C), which reflects the size of the set
of achievable demand changes. However, with this definition
flexibility is by no means a unique metric. For example, the
use of different measure types, such as the Dirac measure
versus the counting measure, will result in different flexibility
values and even might lead to different relative orderings of
systems. A special case is that if µ is a valid measure, then
µ′(A) = cµ(A) for any constant c > 0 fulfills all properties of
a measure, too [21]. In this case, although µ′ and µ will have
different absolute values, they will induce the same ordering
of implementations with respect to flexibility and hence can
be considered equivalent. Therefore, in order to eliminate at
least this scaling effect, we can normalize the measure with
respect to an arbitrary base set B ⊆ Ω × Ω that satisfies 0 <
µ(B) <∞, by defining:

µB(A) :=
1

µ(B)
µ(A) (4)

It is easily seen that any scaling factor cancels out for µB:

µ′B(A) =
1

cµ(B)
cµ(A) =

1

µ(B)
µ(A) = µB(A). (5)

Different choices for B can in general lead to different
intuitive interpretations. The direct “amount” of achievable
demands in AX(T,C) can be represented as the choice of
a set with µ(B) = 1, and then has the following intuition:

µ(A) = µB(A) = # achievable demand changes. (6)

Although we consider Eq. (6) as a measure for flexibility,
the outcome will be a number between [0, µ(Ω2)], which is a
rather arbitrary output.

Another option is the normalization by the maximum
number of achievable demand changes over all possible
implementations X ∈ X , i.e, B := A∗, where A∗ =
arg maxX µ(AX(T,C)). This measure has the intuitive mean-
ing of flexibility degree ϕ(A) := µA∗(A), which is

ϕ(A) =
µ(A)

µ(A∗)
=

# achievable changes by X
# max. achievable changes over X

.

Obviously ϕ(A) ∈ [0, 1], which motivates the term degree.
A flexibility degree of one corresponds to a system being
“100%”, i.e., maximum flexible. However, we note that it is
not easy to find µ(A∗) in general.



IV. EMPIRICAL FLEXIBILITY EVALUATION

By the introduced theoretical framework in Section III,
measuring the flexibility of system implementation X requires
the identification of set AX(T,C) – i.e., the set of possible
demand changes under time constraint T and cost constraint
C. In this section we discuss how to empirically measure and
compare the flexibility of different system implementations.

A. Observed Flexibility

An intuitive way to empirically observe the measure of
AX(T,C) for given (T,C) constraints is introduced in the
following. Given a system under test whose flexibility shall
be estimated. Furthermore, we can identify a set of demand
changes D ⊆ Ω× Ω with µ(D) <∞ such that AX(T,C) ⊆
D holds. We select an infinite length challenge sequence
C = {di1,j1 , di2,j2 , di3,j3 , . . .}, which may contain arbitrary
demand changes from D. We argue that challenging the system
with this sequence and observing its reaction for each demand
change, the flexibility measure can be evaluated. First, for each
demand change di,j ∈ D, we assume that it occurs in C with
a relative frequency

ν(di,j) = lim
K→∞

1

K

K∑
k=1

1{di,j = dik,jk}. (7)

1{·} therein is the indicator function, which is one if the
logical statement is true and zero otherwise. We refer to ν as
the challenge profile, which is imposed onto the system under
test by sequence C. By counting the number of changes that
are in A, we measure:

µν(A) =

∫
di,j∈D

ν(di,j)1{di,j ∈ A}dµ =

∫
di,j∈A

ν(di,j)dµ,

where the second equality holds because A ⊆ D and the
integral

∫
· dµ denotes Lebesgue integration, which is an

abstraction of integration towards arbitrary measurable set
systems [21]. Intuitively, the system under test reacts to
challenge profile ν and exhibits a certain degree of flexibility,
referred to as observed flexibility. Now, because ν has all
properties of a normalized density with cumulative measure of∫
D ν(di,j)dµ = 1, it can be interpreted as a probability density

function, reflecting the probability of a demand change being
challenged by the sequence C. This leads to

µν(A) =

∫
di,j∈D

ν(di,j)1{di,j ∈ A}dµ

= E {1{di,j ∈ A} | C} = Pr{di,j ∈ A | C}.(8)

E{·} therein is the expectation value and Pr{·} the proba-
bility of an event occurring. That is, the observed flexibility
corresponds to the expectation of the challenges contained in
C being in A under the specific challenge profile ν. From
the definition of the set A, the expectation is nothing but the
probability that the system can react to the challenged demand
changes within the target time and cost constraints (T,C).

B. Uniform and Non-Uniform Challenge Profiles

A design choice for estimating flexibility is the sequence
C. In particular, if it can be chosen such that the challenge
profile is uniform, i.e., ∀di,j ∈ D : ν(di,j) = 1/µ(D), then
the observed flexibility is:

µν(A) =

∫
di,j∈D

ν(di,j)1{di,j ∈ A}dµ (9)

=
1

µ(D)

∫
di,j∈A

1dµ =
µ(A)

µ(D)
= µD(A), (10)

which is proportional to µ(A). Hence, we get back to a
normalized version of the exact flexibility defined in Sec-
tion III-D, with the selection of B = D. As we have argued,
µD(A) is equivalent to µ(A) in that it induces the same
relative ordering.

On the other hand, if ν is not uniform, we will have a
weighted flexibility value with more emphasis on the chal-
lenges that occur more often. This better matches observed
system behavior in a running environment, as the system might
be challenged with the same demand changes (e.g., in flow
demands, connection requests, virtual network requests, etc.)
multiple times, while others might not be requested at all.
Although such flexibility value will be distorted with respect
to our original definition, we can claim it to be the flexibility
that the system exhibits when it has to respond only to a certain
challenge profile.

C. Estimating Flexibility

In practice, the challenge sequence will be finite, which
further distorts the resulting values because the targeted rel-
ative frequencies might not be matched precisely. However,
the empirical flexibility evaluation boils down to estimating
the event probability from (8). Consider a challenge sequence
Ĉ of finite length N , with elements randomly chosen out of
D with uniform distribution. By using the empiric mean as
estimator for the expectation, an estimate for µD(A) can be
created, which is

µ̂D(A) =
µ̂(A)

µ̂(D)
=

∑N
k=1 1{dik,jk ∈ A}

N
. (11)

The intuitive meaning of this estimated flexibility can be
reduced to

µ̂D(A) =
# of supported challenges

# of posed challenges
. (12)

Indeed, equation (12) takes exactly the form proposed in [7],
[8], such that we are able to re-motivate it. The given results
lead to an overall estimation flow of flexibility as is given in
Algorithm 1. Due to the behavior of the empiric mean, the
estimate becomes arbitrarily precise for N →∞:

lim
N→∞

µ̂D(A) = E {1{di,j ∈ A}} = µD(A). (13)

A measure defined this way will always be out of the interval
[0, 1], which follows the intuition of the flexibility degree



Algorithm 1 Estimate Flexibility µ̂D(A)

1: Input: X , Ω, T,C, D, N
2: Variables: ΣA := 0
3: Create sequence Ĉ with N elements out of D
4: for k ∈ {1, ..., N} do
5: Impose demand change dik,jk

6: Observe δX :=

{
1, if dik,jk is realized
0, else

7: Measure τX(dik,jk), cX(dik,jk)
8: ∆ := 1{δX = 1 ∧ τX(dik,jk) ≤ T ∧ cX(dik,jk) ≤ C}
9: ΣA := ΣA + ∆

10: end for
11: Output µ̂D(A) := ΣA/N

defined in Section III-D. However, in this case it is not
guaranteed that 100% flexibility is reachable, because D might
contain non-achievable demand changes in contrast with A∗.

V. EXPERIMENTAL RESULTS

A. Dynamic Controller Placement in SDN

Consider an SDN network described by a graph G =
(N , E), that is managed by 1, 2, .., |N | controllers, which
program the network switches in a centralized fashion to serve
the flow demands in the network. As SDN decouples control
plane and data plane, such a centralized network management
is claimed flexible in literature. However, the control also
introduces additional latency, i.e., a flow setup time, whenever
the forwarding path of a new flow needs to be configured [7].
Our evaluation target thus is the impact of this latency.

We model this set-up as follows. The network state is given
by the current paths on which the flows are embedded, as
well as the positions of the controllers in the network. We
assume that the controller positions are optimized towards
a minimum average flow set-up time at each instant. So
when the flows are changing, the network might react with
a controller migration. A demand di ∈ Ω represents a set of
flows, specified by a set of triplets (s, t, r), each indicating
source s ∈ N , target t ∈ N and the requested number of
flows r ∈ N+ between s and t. The set of all possible new
flows is defined as Ω = N ×N ×N+. Assume a time-slotted
network operation, such that in each slot a set of new flows di
are in the network and their forwarding paths need to be set
up by the control plane. Because the network optimizes the
controller positions, the associated state VX(di) is the optimal
controller placement that minimizes the average flow setup
time given the demand di, as well as the implemented paths.
Because the used paths and controller positions are uniquely
defined, VX(di) contains a single element ∀di ∈ Ω. We can
model different numbers of controllers as different system
implementations Xn and realize that VXn

(di) of different
system implementations are completely different, respectively.
However, they can be compared due to the same demand sets.
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Fig. 2. Flexibility comparison of different system implementations (1 or 3
controllers) with varying constraints T and C. Each square represents the
average flexibility of 50 simulation runs on 100 length challenge sequences.

To react to a demand change di,j , the control plane first
needs to find the optimal placement VX(dj) that induces a
certain cost cX(di,j) = cX(dj), defined as the optimal average
flow setup time with VX(dj). If the current optimal placement
VX(dj) is different from the previous optimal placement
VX(di), a certain delay τX(di,j) is induced to record the
control plane adaptation time [8]. The adaptation is counted
as a success if and only if cX(di,j) < C and τX(di,j) < T .

The numerical results of this use case are generated using
the flow of Algorithm 1 on the Abilene network topology.
Intuitively, one would expect that adding more controllers
introduces higher flexibility in adapting different sets of new
flows. Fig. 2 shows the heatmap of the flexibility value with
different time and cost constraint values. X1 and X3 represent
the system implementation with 1 controller and 3 controllers
respectively. In general, the flexibility value of each system
implementation increases when T or C increases, meaning that
relaxed constraints allow more adaptation successes. Besides,
X3 is more flexible for most of the C and T constraint
combinations. A counter-intuitive observation, however, is that
for tight T and relaxed C, X1 is more flexible than X3 (upper-
left corner of the heatmap). This is because in this region,
the optimal placement of X1 does not vary much but a fixed
position is optimal for a majority of the demands, whereas
that of X3 changes more frequently and induces adaptation
time that violates the time constraint. This effect corresponds
to the reactivity and cost-efficiency perspective, which are
given in the lines indicated with ∞. Comparing these, we
can claim that X3 is more cost-efficient than X1. However,
for low time constraints X1 is more reactive, as it does not
invest the time to re-optimize its state. Finally, both systems
are equally adaptive, as is seen in the upper right corner, as
both can, in principle, serve any of the challenged demands.

B. Protection Routing

In this use case we consider routing under use of different
protection approaches. Each flow is routed from source to
target node and in addition, the flow should be protected
against single-link failures. The protection is implemented in
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a network with running flows already embedded, such that the
network of free capacity, which can be considered as available
network topology on which protection should be established,
is varying. Flexibility is evaluated as the ability to provide
protection under different underlying capacities. In particular,
we consider three different protection schemes [22], namely:
• 1 + 1 dedicated path protection, which requires a disjoint

path-pair between the source si and target node ti. The
whole user data, split into two parts AB and requiring
two capacity units, is sent along both paths.

• Diversity coding (DC), requires three disjoint paths be-
tween the source and target node. On each path, only a
single capacity unit is required, as data halves A, B and
redundancy data A XOR B is sent along the paths.

• Generalized diversity coding (GDC) [22], which com-
bines the previous two approaches in order to circumvent
their weaknesses, namely the bottleneck links with one
unit of free capacity for 1 + 1 (it can use only links with
2 capacity units), and the topological limit of DC (lack
of three disjoint paths), respectively.

We can formally argue that GDC is the most adaptive
approach from the three according to Observation 3, as it con-
tains both 1+1 and DC as special cases owing to its adaptable
protection structure. In order to show this quantitatively, in our
experimental evaluation we took a snapshot from the consid-
ered topology, and represent the state of the network as the free
capacities on the links and the currently embedded protection
paths. A demand is given as a source target pair, di = (si, ti)
and the case of no demand is denoted as d0, respectively. The
demand sequence Ĉ = {d0,1, d0,2, . . . , d0,n} contains single-
shot demand changes. Time and cost constraints are relaxed to
infinity here, as we are interested in the adaptivity perspective.

Fig. 3 contains our simulation results, which were obtained
by increasing the number of bottleneck links on two topologies
with different average node degrees. One can observe, that in
the denser network with increased node degree in Fig. 3(a),
where three disjoint paths exist between the node-pairs more
often, diversity coding is equally as flexible as GDC. Fur-
thermore, as the number of bottleneck links increases (i.e.,
with higher traffic load), the number of protectable node-

pairs for 1 + 1 decreases, making it the less flexible choice.
On the other hand, in the sparser network in Fig. 3(b) only
between the 54% of node-pairs exist three disjoint paths, which
makes DC the less flexible choice up to 30% of bottleneck
links. In the scenario with 30% bottleneck links the flexibility
of 1 + 1 decreases to 54% as well. Hence, indeed in this
limited situation GDC is 38% more flexible than any of its
counterparts. In general, GDC is never less flexible than any
of the other two schemes, which backs up our intuition.

C. Traffic Flexibility in Data Centers

The introduction of flexibility enables a formal argument for
and against flexibility of systems. This shall be demonstrated
on the argumentative line of [6]. In this work, the authors
argue in favor of static network topologies in data centers,
which they claim to be in fact more flexible than reconfigurable
topologies that use optical or radio links to bypass a fat-tree
topology. The argument is that while reconfigurable topologies
are obviously more flexible in adapting the topology, their
performance in serving end-to-end traffic is not automatically
better. For comparison, the authors choose different topologies
to connect data centers apart from the fat tree and, on the other
side, a re-configurable topology. For the latter, the number of
ports is reduced, following the argument that both implemen-
tations should require equal cost C, whereas re-configurable
ports in general cost more. The provided throughput of all
interconnects is compared for skewed traffic matrices while
scaling the traffic and it is shown with simulations that for low
scaling factors, which is claimed to be the region of interest,
the static topologies support more traffic. The authors conclude
that static data center topologies can be more flexible in terms
of supporting throughput than re-configurable ones.

We argue that our introduced flexibility metric conforms and
backs up both claims. First, note that the dynamic implemen-
tation X can realize every possible topology demand changes
which the static implementation Y can with less adaptation
time and cost. Hence, AY (T,C) ⊆ AX(T,C), which is
stated in Observation 2 and shows that the adaptive system is
clearly more flexible. On the other hand, if the sequence Ĉ is
based on demands di that corresponds only to traffic matrices
with low traffic, as these are in both VX (di) and VY(di), an
adaptive strategy cannot serve these demands with lower time
and cost than a static one. Hence, with such a sequence Ĉ a
static implementation can realize all demand changes that an
adaptive can. Hence, it is considered to be more flexible in
this respect, as stated in [6] as well. However, considering the
whole spectrum of traffic matrices, investigating different set-
ups or introducing strict timing or low budget constraints might
give different order on the flexibility of these approaches.
Therefore, in Section VI we discuss how these different
aspects can be incorporated in our flexibility evaluation.

VI. FURTHER DISCUSSION

A. Non-Uniform Demand Utilities

In the flexibility evaluation discussed so far every demand
change was considered equally important. However, the dif-



ference between flexibility of an implementation and its utility
might be excessive when non-uniform utilities are evaluated.
Consider a utility function where only two demand changes
di,j and dj,i are actually assigned a non-zero value. Hence,
any two system implementation X and Y capable of reacting
to these two changes will have the same utility. In contrast,
their flexibility can very well differ if X is able to handle
only these two demand changes while Y is flexible enough to
react within constraints (T,C) to any possible demand. Thus,
utility is independent of the flexibility property itself. In fact,
there might be cases in which the utility perspective would
encourage the use of less flexible implementations.

We will now show how the utility of different demands
can be incorporated in our flexibility metric. Given a utility
function u : Ω × Ω 7→ R+ that reflects to how valuable the
ability to change a certain demand from one to another is
assumed. In many cases, the utility of a demand change is
mostly impacted by the utility of its target demand, which can
be appropriately modeled. Then, for given constraints (T,C),
we define the utility of flexibility (UoF) as:

Ξ(AX(T,C)) =

∫
di,j∈A

u(di,j)dµ. (14)

Equation (14) reflects to the total utility enabled by allowing
the switching between demands.

Estimation of utility can be established analog to estimation
of flexibility, by designing a challenge sequence out of a set
D ⊆ A with profile ν and defining an observed utility

Ξν =

∫
di,j∈D

u(di,j)ν(di,j)1{di,j ∈ A}dµ

= E {u(di,j) | di,j ∈ A,C} . (15)

When ν is uniform, Ξν = Ξ/µ(D) holds, which again allows
comparison among different implementations. An estimation
process can then be created by replacing Line 9 in Algorithm
1 with ΣA := ΣA + u(dik,jk) · ∆. Finally, we close with
the observation that the observed flexibility for non-uniform
challenges from Section IV-A can be expressed as UoF if
utility u(di,j) is selected as the relative frequency ν(di,j) of
occurrence the sequence C.

B. Joint Flexibility of Different System Set-Ups

When estimating the flexibility of a system under test,
we typically want to consider the outcome of many specific
set-ups in a Monte-Carlo fashion to ensure the validity of
empirical analysis. However, the normalization set B exhibits
dependencies on the set-up, which have to be addressed
accordingly.

Consider a set K of system set-ups, in which we want
to measure the flexibility of two system implementations X
and Y , respectively. The different set-ups could correspond
to different network graphs, on which two flow embedding
algorithms are evaluated for their flexibility, for example.
Intuitively, we want to evaluate the overall performance, e.g.,
by averaging flexibility over set-ups, summing them up or

considering the maximum and/or minimum achieved flexi-
bility. For a consistent comparison over different system set-
ups, it must be ensured that ∀k, k′ ∈ K : µ(Bk) = µ(Bk′),
i.e., that the same normalization is used. This is intuitive at
first glance but often needs to be explicitly ensured, e.g.,
if Bk depends on the currently used set-up, such as the
underlying topology. When the normalization sets differ, the
used measures will in fact vary for different set-ups k, k′,
which can lead to inconsistent orderings. Obviously, averaging
over such different measures need not give any insightful
results. To guarantee consistent result, an overall measure can
be defined using µ(Btot) =

∑
k µ(Bk). As a result, flexibility

can be evaluated with a consistent measure over all different
set-ups, leading to the outcome of

µBtot(A) =

|K|∑
k=1

µ(Ak)

µ(Btot)
=

|K|∑
k=1

µ(Ak)

µ(Bk)

µ(Bk)

µ(Btot)
,

=

|K|∑
k=1

wkµBk
(Ak), (16)

where wk =
µ(Bk)

µ(Btot)
;

∑
k

wk = 1.

In words, the total measure is a weighted sum over the
measures of each set-up, where the weights denote the relative
sizes of the normalization sets Bk.

C. Probabilistic State Changes

We are aware that the given system assumptions under
which we argue our main derivation – i.e., deterministic
behavior of τX and cX and the restriction of valid sets VX(di)
to a single state – are rather simple. However, extension
towards more sophisticated system models is possible.

In order to capture a more general system, we need to
relax the assumption that VX(di) contains only one state and
further adapt the description of system reaction to demand
change. We can describe the behavior of state evolution in
a time-slotted fashion as S[τ ], where each slot τ denotes a
time interval [(τ − 1)T, τT ] of width T , which is the chosen
time constraint. Implementation X is then captured by a
probabilistic mapping on the slot-to-slot behavior, i.e., by
pX : SX × Ω 7→ FSX , where FSX is the set of probability
densities on SX . In words, considering that the implementation
X is currently in state Si ∈ SX and the current demand is
di ∈ Ω, the mapping px(Si, di) defines the probability for
each state S′ ∈ SX that the system will adapt itself towards
S′ within the time constraint T corresponding to one slot.
This formulation is similar to a Markov-chain, however, the
state transitions depend on di and hence are not automatically
memoryless. If the system is designed to satisfy the demand
di, it will adapt towards a state in VX(di) within a slot with
high probability. If S ∈ VX(di) already, the state might remain
in S or change itself towards other states in VX(di). Also, if
VX(di) is empty, i.e., the demand is infeasible to satisfy for
implementation X , the system might stay in its current state or
end up in another in the course of trying to satisfy the demand.



All of these opportunities can be captured by an appropriate
mapping pX .

Now, as VX(di) may contain more than one state, when
a demand change di,j is considered it is not certain from
which state Si ∈ S the system will start adapting, nor at
which state S[τ ] it will be in slot τ after the demand change.
Further, the reaction time τX and cost cX are no longer
deterministic but random variables. Finally, the system behav-
ior is not memoryless with respect to a challenge sequence
C = {di1,j1 , di2,j2 , . . .}. This is because when the history
before demand change dik,jk is changed, the starting state
at the event of the next demand change might also change,
leading to different time and cost values.

Even though the relaxation of assumptions makes the pre-
sented evaluation significantly more complex, the principle
way of evaluating flexibility can be extended. First, because
τX , cX become random variables, the indication of τX ≤ T ,
cX ≤ C, used for the definition of AX(T,C), is not binary
but rather relates to a probability. Consequently, the flexibility
measure µ(AX(T,C)) needs to be extended to an expectation
E{µ(AX(T,C))} of the respective measure function4. As for
the history dependence of S[τ ] on C, we can introduce the
assumption that there is an upper bound K, such that states
before τ−K have a negligible impact on the state probabilities
in slot τ . Using this, we can re-define the demands Ω′ := ΩK

to be not a demand but a demand sequence of length K. The
elements of Ω′ are then again independent of each other. By
creating a challenge sequence C′ = {d′i1,j1 , d

′
i2,j2

, . . .} with
∀k : d′ik,jk ∈ Ω′ ×Ω′ and defining τX and cX with respect to
the time and cost of each d′ik,jk , the derivation and Algorithm 1
can be applied. Finally, by using the probability perspective
of Eq. (8), it can be shown that Algorithm 1 will then lead to
an estimation of E{µ(AX(T,C))}.

VII. CONCLUSIONS AND FUTURE WORK

In this work we derived the basic elements of evaluating
flexibility in a network set-up. We defined what we consider
as “flexibility” and argued that it is related to the size of the set
of achievable demand changes that a system implementation
can react to. We further showed that any mathematical measure
function can, in general, serve as a flexibility metric. Building
on these analytical results, a measurement flow for empirical
assessment of flexibility was proposed. We applied the metric
to the set-ups of path protection, flow embedding and traffic
engineering in data centers and showed it to reflect our intu-
ition on flexibility, as well as to enable concise argumentation.

In our measure we consider only the adaptation cost to
demand changes. However, having a more flexible system
might induce some additional equipment, operational and
security costs, while the complexity of the algorithms might
be considered as a pro-action cost as well. Such a cost analysis
of flexibility will be done as a future work.

4The original measure can be extended to an appropriate probability space.
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