
c©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists,
or reuse of any copyrighted component of this work in other works.

Evaluating the Control and Management Traffic in
OpenStack Cloud with SDN

Mu He, Alberto Martı́nez Alba, Ehab Mansour, Wolfgang Kellerer
Technical University of Munich

Email: {mu.he,alberto.martinez-alba,ehab.mansour,wolfgang.kellerer}@tum.de

Abstract—The performance of cloud computing depends heav-
ily on the networking infrastructure, which carries the data
traffic between the VMs, as well as the essential control and
management traffic. Meanwhile, networks in data centers are be-
coming softwarized with the Software Defined Networking (SDN)
paradigm to fuel their programmability and flexibility. However,
since SDN switches need to contact the controller frequently
for their configuration and flow rules setup, the overall data
traffic forwarding performance can suffer, if the control and
management plane gets congested. In order to proactively avoid
such congestion, we need to study the involved traffic in detail.
In this work, we perform an elaborate traffic evaluation on
a real OpenStack cloud deployment and evaluate the types of
exchanged messages in the control and management plane and
their respective traffic volume. The evaluation reveals that the
control and management traffic scales with the number of VMs
and the VM-related events, and therefore provides guidelines for
planning and operating the cloud networking infrastructure.

Index Terms—Software Defined Networking, OpenStack, Net-
work Measurement

I. INTRODUCTION

In recent years, cloud computing is getting more popular
due to its advantage in efficient infrastructure management and
on-demand service provisioning. In fact, virtualizing comput-
ing, storage, and networking resources can drastically reduce
the initial investment and operational maintenance costs [1].
Among several cloud computing solutions, OpenStack is an
open-source project that aims to create a cloud with simplicity,
scalability and rich functionality [2]. Until now, OpenStack
has formed a strong ecosystem with abundant functional
modules. Meanwhile, the rise of SDN tends to transform our
networks into the ones that can be programmed. A centralized
controller takes over the control of all forwarding entities
and dynamically provisions the networking resources with its
global knowledge in an efficient manner.

Integrating SDN into OpenStack benefits from the flexible
management of forwarding entities and can therefore provide
an optimized network virtualization service [3]. The controller
configures the software switches in the servers (e.g., Open
vSwitch) and controls the lifetime of the virtualized interfaces
with management plane protocols. Furthermore, it installs flow
rules in both software and hardware switches and guide their
forwarding behaviors with the control plane protocol (e.g.,
OpenFlow). Typically, the traffic of control and management
plane runs through the same networking infrastructure, which
is separated from the one that carries the data plane traffic
inside the cloud, i.e., out-band management and control. This

0 200 400 600 800

Congestion Level

0.1

0.2

0.3

0.4

A
v
g
.

D
e
la

y
[m

s]

Fig. 1: Impact of the link congestion level on the average delay of
control plane packets, i.e., Packet-Ins and Flow-Mods.

separation is necessary, because the inter-VM communication
can potentially occupy high bandwidth for distributed com-
puting applications, leaving small room for the control and
management traffic.

However, a cloud with a large number of VMs (more than
100 K [4]) can also suffer from high control and manage-
ment traffic, which influences the responsiveness of the two
planes and even the performance of data forwarding [5]. A
motivational example demonstrates such impact. We connect
an ONOS controller to a Cbench [6] instance, which emulates
an SDN switch, with a 1 Gbps link. To add link congestion,
we use iperf to generate cross traffic with bandwidth ranging
from 0 to 800 Mbps. Fig. 1 shows that the average delay of
control plane packets, i.e., Packet-Ins and Flow-Mods, experi-
enced by the cBench instance, increases when the networking
infrastructure has higher congestion level. In this case, a new
flow needs to wait longer before its forwarding path can be
configured in the forwarding entities, which is critical for time-
sensitive communication and overall application performance.

Therefore, an elaborate measurement and analysis of the
control and management plane traffic is needed to better under-
stand its potential performance bottleneck. Previous works of
networking performance evaluation and analysis in this regard
focus on either OpenStack alone [3], [7], [8], or control plane
of SDN itself [9]–[13]. An evaluation of OpenStack with SDN
is still missing in the literature. Besides, most evaluations rely
on software emulation such as Mininet, without a considera-
tion of real hardware devices.

To fill this research gap, we face two major challenges in
this work. First, there is no off-the-shelf solution of integrating
OpenStack with hardware SDN switches available. Simplified
Overlay Network Architecture (SONA) [14] suggests using
ONOS to manage the servers; but for the data network it
adopts legacy networking devices. Second, we need to design
the evaluation procedure which can give us the most insights.
The control and management plane traffic highly depends
on the number of VMs and their networking interfaces, as

well as the actions we take for them such as VM creation
and migration. We need to consider all possible scenarios. In
summary, our contributions are listed as follows:
• we deploy a real OpenStack setup with an SDN controller

running the control and management plane and control-
ling both servers and switches.

• we analyze the control and management plane messages,
as well as the volume of each traffic type with different
VM numbers and distributions.

The paper is organized as follows. Sec. II summaries the
related-work of measurement regarding SDN control plane
and OpenStack networking. Sec. III introduces the scenario of
extending the networking component of OpenStack with SDN
support. In Sec. IV, we present the measurement methodology
and analyze the collected results. Sec. V concludes the paper.

II. RELATED WORK

The analysis of SDN control plane traffic mainly focuses
on (i) flow setup and (ii) inter-controller synchronization.
Bianco et al. [9] analyzed the amount of OpenFlow messages
for installing a new flow. For the synchronization, a single
update to synchronize the NIB (Network Information Base)
can generate 4π transactions, where π equals to the number of
controllers [10]. Meanwhile, empirical models are developed
to quantify the synchronous traffic of consistency protocols
between the controllers [11], [12]. The impact of data plane
topology on the control plane traffic is studied in [13].

There are several works that evaluate the performance of
OpenStack Networking. Callegati et al. [7] focused on the
network virtualization by measuring the packet throughput
with two different networking providers: Linux Bridge and
Open vSwitch. A comparison of networking performance be-
tween OpenStack and AWS EC2 demonstrated that OpenStack
can provide high bandwidth and low latency between the
VMs [8]. Malik et al. [3] evaluated OpenStack with different
networking management entities such as OFAgentm, Ryu and
OpenDaylight, and they concluded that OpenDaylight provides
a significant advantage of efficiency over the other alternatives.

To the best of our knowledge, this is the first paper that
evaluates the control and management plane traffic based on
a real OpenStack deployment with SDN. Further, this work
analyzes the exchanged messages, as well as the impact of the
number of VM and their distributions on the induced traffic.

III. OPENSTACK WITH SDN

To integrate SDN into OpenStack, we need to understand
how to deploy OpenStack manage the networking resources
with Neutron. In the setup, both software (i.e., OVS) and
hardware switches are controlled by a single SDN controller.

A. Setup Overview

OpenStack manages compute, storage and networking re-
sources throughout the cloud computing infrastructure in a
flexible manner. It keeps evolving to enable more features and
higher stability. The operator can choose from an abundant
set of components to create the deployment that best suits its

Node 1

NIC1NIC1

NIC2NIC2 NIC3NIC3

Node 1

NIC1

NIC2 NIC3

Node 2

NIC1NIC1

NIC2NIC2 NIC3NIC3

Node 2

NIC1

NIC2 NIC3

Node 3

NIC1NIC1

NIC2NIC2 NIC3NIC3

Node 3

NIC1

NIC2 NIC3

Node 4

NIC1NIC1

NIC2NIC2 NIC3NIC3

Node 4

NIC1

NIC2 NIC3

ControllerController

InternetInternet

N
IC

1
N

IC
1

SW1 SW2

SW3

SW4

SW5

Fig. 2: Experiment OpenStack deployment with SDN integration.
Node 1 to 4 and the controller are servers, and SW1 to SW5 are
hardware switches.

own requirements [2]. The components run in heterogeneous
infrastructure, and new hardware can be easily included.

We deploy five homogeneous servers: one as controller node
and the other four as compute nodes (see Fig. 2). We enable the
following components: Nova for compute service, Neutron for
networking, Keystone for identity service, Glance for image
service, Cinder for block storage and Horizon for dashboard.

Each compute node is connected to three networks. The data
network which carries the traffic between the VMs is enabled
via NIC1. We build the topology of the data network with a
tree structure, which will be introduced in III-C. The man-
agement of software switches, the control of OpenFlow, and
the internal communication between OpenStack components
are realized by the management network via NIC2. We use
a legacy Layer 2 switch to forward the management traffic.
For security reasons, this network should be reached only
within the data center. NIC3 provides the access to the storage
network (by Cinder), which is omitted in the figure.

B. OpenStack Networking

Fig. 3 demonstrates the logical architecture of Neutron
with several modules. The color represents the location of
each module. Neutron Server exposes the networking API to
the operator and listens to networking requests from other
OpenStack components. After getting a request, e.g., creating
a virtual network, Neutron Server calls the Neutron Plugin
to handle it. Neutron Plugin maintains the logical networking
states of OpenStack by fulfilling two tasks. First, it builds
the logical connection between Neutron Server and Neutron
Database. Second, it forwards the request from Neutron Server
to Neutron Agent, which finally implements the request on Net-
work Provider. Neutron Database stores all networking states
persistently, including the created networks, subnets, ports, etc.
Network Provider is the entity that implements the networking
service, and it can be Linux Bridge, Open vSwitch (OVS)
or physical switch that supports Neutron. The communication
between the different modules is handled by the Message
Queue. In OpenStack, various Advanced Message Queuing
Protocol (AMQP) frameworks, e.g., RabbitMQ and ZeroMQ,
are supported to provide peer-to-peer communication.

Network

Provider

Neutron

Server

Neutron

Plugin(s)

Neutron

Database

Neutron

Agent(s)
Message

Queue

Controller Node

Compute Node

Communication Channel

Fig. 3: Neutron architecture with components residing in different
nodes.

With the Modular Layer 2 (ML2) plugin, Neutron endows
the flexibility of realizing the same functionality with different
Network Providers in different compute nodes. For example,
two VMs in two compute nodes of the same Layer 2 network
can ping each other, when one node is equipped with Linux
Bridge and the other with OVS. Furthermore, when we pro-
pose a new networking technology to Neutron, we only need
to rewrite the interface to ML2 instead of the whole plugin.

C. Integrating SDN

The integration of SDN in our OpenStack deployment con-
sists of two parts. First, we use SONA to provision virtualized
networks with VXLAN-based L2 tunneling by OVS. Second,
the data network between the compute nodes is connected
via SDN hardware switches. Both software and hardware
switches are controlled by a single ONOS controller through
different applications. A legacy switch forwards the control
and management traffic from the management port of each
hardware switch and from NIC2 of each compute node to the
controller node.

1) Virtual Network Providers: SONA in ONOS controller
consists of OpenStackNode, OpenStackNetworking and a set
of supporting applications. OpenStackNode bootstraps and
manages the OVS in the compute nodes. When a compute
node is added to the deployment, OpenStackNode connects
to the OVSDB of the node and creates an integration and
a tunneling bridge in the node. The interfaces of all VMs
are connected to the integration bridge, which handles traffic
filtering and VLAN header attachment. The tunneling bridge
implements the VXLAN encapsulation and realizes the inter-
connection between VMs of a same internal network. The data
network interface of the compute node (i.e., NIC1) is attached
to the tunneling bridge.

2) Networking Fabric: Modern data center topologies are
tree-like to ensure high bandwidth and connection reliability.
To follow this structure, we connect each leaf switch (SW1
and SW2) with two compute nodes, and then connect the
two leaf switches to the core switch (SW3). The data traffic
between the VMs are transmitted in VXLAN tunnels. We
enable the reactive forwarding application in ONOS to forward
the VXLAN traffic. SW4 works as a hardware Virtual Tunnel
End Point (VTEP) to facilitate the connection between the
VMs and the external networks, e.g., the Internet. Notably,
SW4 operates with its internal OVSDB to add and remove
the VXLAN headers and does not need OpenFlow.

3) Hardware Gateway: SW5 acts as the gateway of the
whole networking infrastructure. First, it filters out the part of

traffic that is intended for the inside VMs from the external
networks. Second, together with the controller, it handles the
external ARPs for the VMs. The controller maintains a table of
each VM’s IP address and the MAC address of the compute
node where the VM locates. When SW5 receives an ARP
request, it forwards the request to the controller as a Packet-In
message and afterwards the controller responds with an ARP
reply as a Packet-Out message.

IV. MEASUREMENT METHODOLOGY AND RESULTS

In this section, we first present our measurement setup.
Our intention is to evaluate all types of traffic exchanged
in the control and management plane between the controller
node and the devices. We expect that VM-related events and
number of VMs will impact both periodic synchronous and
asynchronous traffic.

A. Measurement Setup

We use the OpenStack Newton release to perform our
measurement and analysis. For the SDN controller, we adopt
ONOS 1.10 with SONA 2.1.0. The manipulation of the VM
is performed via OpenStackClient CLI [15].

To analyze the periodic synchronous messages, we sample
the traffic for 5 minutes and evaluate the intervals of different
message types. To obtain the asynchronous messages, we
create different numbers of VMs on compute node 1, migrate
them to compute node 2, and terminate them in the end. The
traffic traces are dumped during VM creation, migration and
termination, which are used for bandwidth analysis. Following
a similar approach [11], we measure the traffic every 1 second
to get the consumed bandwidth samples, which we then
average through a sliding window of 20 seconds.

Whereas bandwidth analysis indicates the potential high
bandwidth consumption that can jeopardize real-time latency
(shown in Fig. 1), traffic volume analysis, on the other hand,
demonstrates the link usage on the long run. To this end,
we create different numbers of VMs each with an internal
interface and wait until the VMs are ready. We dump the traffic
for 120 seconds and sum up the total number of Bytes of each
message type. To gain statistical confidence, each scenario is
repeated 20 times.

B. Traffic Type Analysis

The control and management traffic consists of the follow-
ing components. (i) OpenFlow switch protocol runs between
the controller and the software switches (OVS in all compute
nodes), as well as the hardware switches (SW1, SW2, SW3
and SW5). The port of ONOS is 66531. (ii) The database of
the software switch, i.e., OVSDB, needs a connection to the
controller (port 6640) with the OVSDB management protocol.
(iii) AMQP messages implements the RPC (Remote Procedure
Call) between different components of OpenStack. The port
number in use is 5672. (iv) RESTful HTTP service by the
controller node (port 9696) provides an up-to-date information
of the networking state. All traffic types run with TCP.

1All port numbers are default ones in our OpenStack deployment.

Controller Node
Port Status: Added

Port Status Modified

 LLDP from New Port

Flow-Mod Add

Port Status: Deleted

Flow-Mod Delete

Compute Node 1 Compute Node 2

Flow Removed

Flow-Mod Add

Barrier

Barrier

Barrier

Flow-Mod Delete

Barrier

Flow Removed

C
re

at
io

n
M

ig
ra

ti
o
n

T
er

m
in

at
io

n

Fig. 4: Sequence of OpenFlow messages exchanged between the
controller node and the compute nodes that host the VM during VM
creation, migration and termination.

1) Periodic Synchronous Messages: Only traffic (i) and (ii)
induce periodic synchronous messages. The controller node
needs to maintain an updated view of the status of the software
and hardware switches in the infrastructure. Synchronization
messages of OpenFlow are observed for both OVS and hard-
ware switches. First, LLDP packets are sent to each switch for
topology discovery every 3 seconds. Second, the controller
asks for the status of table, flow and port every 5 seconds
and the status of group, group description and meter every 10
seconds. For the OVSDB in the four compute nodes and in
SW4, the controller node first sends an echo request message
to a compute node, which afterwards replies with an echo reply
and a status report. This synchronization of type (ii) happens
every 5 seconds. Periodic synchronization induces the least
occupied bandwidth (i.e., zero bandwidth) during the lifetime
of all involved devices in the cloud deployment.

2) Asynchronous Messages: The asynchronous messages
take place whenever the status of the VM changes. There
are three types of VM’s status change (which we define as
VM-related events) in OpenStack: creation, migration and
termination. Note that for migration we only consider the
live case, i.e., to migrate a VM without shutting it down,
as it is widely adopted in modern clouds to enable runtime
consolidation [1]. In the following, we analyze the exact
message exchange sequence when a VM with one internal
network interface is created, migrated and then terminated. We
focus on OpenFlow because of its complexity; for the other
message types, the involved packets are mainly status updates
or process calls. Fig. 4 demonstrates the OpenFlow message
sequence between the controller node and the two compute
nodes that host the VM.

Whenever a VM is being created, the first generated Open-
Flow message is a Port-Status from the compute node to the
controller indicating a new detected port (port 9 in this case),
after the OVS integration bridge creates that port. The second
message is another Port-Status that reports the update of the
newly detected port in the same direction. These two messages
force ONOS to update its internal database of switch’s ports
and to start updating the database of topology. The controller
issues the topology update by sending two Packet-Out with
LLDP messages to the new port.

Controller Node

Flow-Mod Add

Flow-Mod Delete

Compute Node 3

Flow Removed

Barrier

Barrier

C
re

at
io

n
M

ig
ra

ti
o
n

T
er

m
in

at
io

n

Flow-Mod Add

Barrier

Flow-Mod Delete

Barrier

Fig. 5: Sequence of OpenFlow messages exchanged between the
controller node and the other compute nodes (except node 1 and
2) during VM creation, migration and termination.

Now the OpenstackNetworking application of ONOS im-
plements the respective flow rules in the compute node under
the network configuration. We set the IP of the existing VM
and the new VM as 10.0.0.1 and 10.0.0.10 respectively. A
set of Flow-Mod(Add) messages from the controller install
the following flow rules. (i) All traffic from port 9 is tagged
with an ID (e.g., 100) and then passed to the next flow table.
(ii) All traffic with IP destination 10.0.0.10 and tunnel ID
100 is forwarded to port 9 with the MAC destination of the
10.0.0.10 interface. (iii) All traffic with IP source 10.0.0.1
and destination 10.0.0.10 is passed to the next table. (iv)
All traffic with IP source 10.0.0.10 and destination 10.0.0.1
is passed to the next table. (v) All traffic from IP source
10.0.0.10 are passed to the next table. All flow rules apply to
IPv4 traffic and are with priority of 30000. SONA leverages a
pipeline [14] of flow rule tables for packet processing. Flow
rule (i) belongs to the VNI table and it associates traffic from
a port with its corresponding network to ensure the logical
isolation between different networks. The remaining flow rules
belonging to the switching table facilitate the inter-connection
between the two VMs. Since two VMs reside in the same
node, we do not observe flow rules for VXLAN encapsulation.
Furthermore, because of the default security group and no
routing is configured, we do not see flow rules of the ACL
and routing table. The Barrier messages make sure that all
flow rules are successfully inserted in the respective tables.

When the new VM is migrated from node 1 to node
2, we first observe Port-Status indicating the corresponding
port is deleted from the OVS bridge in node 1. ONOS then
sends a set of Flow-Mod(Delete) together with Barrier to
remove the obsolete flow rules. When a flow rule gets deleted,
the OVS sends a Flow-Removed back to the controller and
acknowledges the removal. Afterwards, a similar set of Flow-
Mod(Add) are sent to compute node 2 with Barriers.

When terminating the VM, we observe Flow-Mod(Delete),
Barrier and Flow-Removed messages in a row, which is similar
to the first part of VM migration. The only difference is that
there is no Port-Status indicating the delete of the port.

The message sequence between the controller node and the
other compute nodes is demonstrated in Fig. 5. During VM
creation, a new flow rule is added that forwards all traffic
with IP destination 10.0.0.10 and VNI tag 100 to the port
that is associated with the physical interface of the compute

0 120 240 360 480

Time [s]

100

101

102

B
a
n
d
w

id
th

[k
b
p
s]

Ini. Mig. Ter.

OpenFlow

OVSDB

AMQP

(a) Compute Node 1

0 120 240 360 480

Time [s]

100

101

102

B
a
n
d
w

id
th

[k
b
p
s]

Ini. Mig. Ter.

OpenFlow

OVSDB

AMQP

(b) Compute Node 2
Fig. 6: Traffic bandwidth of OpenFlow, AMQP and OVSDB messages
between the controller node and the two compute nodes during VM
creation, migration and termination.

0 120 240 360 480

Time [s]

0

10

20

B
a
n
d
w

id
th

[k
b
p
s]

Ini. Mig. Ter.

SW1

SW2

SW3

SW4

SW5

Fig. 7: Aggregated traffic bandwidth between the controller node
and the five hardware switches during the creation, migration and
termination of a VM. Note that the curve of SW3 is always higher
than that of SW1 and SW2.

node. The flow rule will get refreshed when the VM migration
happens: the same rule is deleted and afterwards added again.
Finally, Flow-Mod(Delete) and Barrier erase the new flow rule.

If the VM has another interface of the external network, i.e.,
it needs connectivity to outside the infrastructure, more flow
rules need to be inserted to the OVS. In fact, we observe more
Flow-Mod(Add) and Barrier messages during VM creation for
the additional external interface. Following the same trend as
before, these flow rules are also removed from one compute
node and then reinstalled in another compute node during VM
migration. Due to lack of space, we leave out the detailed
analysis of this scenario.

As a summary, the integration of SDN induces different
types of control and management traffic. Whereas only Open-
Flow and OVSDB create synchronization messages periodi-
cally, all traffic types generate asynchronous messages when
VM-related events happen.

C. Traffic Bandwidth/Volume Analysis

1) Impact of the VM-related events on bandwidth:
Fig. 6 reveals the fluctuation of traffic from the controller node
to the two compute nodes. Initially, one VM exists in node
1, whereas node 2 is empty. The bandwidth of OpenFlow
messages is stable for both nodes. During VM creation at
node 1, we only observe peaks of OpenFlow and OVSDB
for node 1. VM migration again triggers peaks for both nodes,
and during VM termination, peaks of all traffic types appear in
node 2 and peaks of OpenFlow and AMQP appear in node 1.

In the following, we first evaluate the bandwidth of Open-
Flow and OVSDB messages because of periodic synchroniza-
tion (introduced in IV-B1), which are denoted as BOpenFlow and
BOVSDB respectively. Each VM contributes the same amount of
data that should be synchronized for both types of messages.
Therefore, we can assume that the synchronization bandwidth

0 1 2 3 4 5 6 7 8 9

OpenFlow 294.9 337.0 368.1 384.0 420.6 473.0 529.4 549.1 605.8 662.8

OVSDB 30.5 64.2 98.6 133.2 167.8 202.2 239.0 272.1 308.4 343.7

AMQP 179.0 199.2 216.7 251.3 253.3 269.4 281.0 295.0 307.7 336.0

0

250

500

750

1000

1250

T
ra

ffi
c

V
o
lu

m
e

[K
B

] OpenFlow

OVSDB

AMQP

Fig. 8: Total traffic volume of the synchronous messages (OpenFlow,
OVSDB, and AMQP) for different number of VMs in the same
compute node.

between the controller and the compute node is proportional
to the number of VMs in the compute node, and we have

BOpenFlow = Πvm × bvm
OpenFlow + b0OpenFlow [kbps]

BOVSDB = Πvm × bvm
OVSDB + b0OVSDB [kbps],

(1)

where Πvm represents the number of VMs, bvm
∗ represents the

average bandwidth increment per VM, and b0∗ denotes the
zero bandwidth when no VM resides in the node. Note that
1 kbps = 1 kB/(8 ∗ 1 s). After performing linear regression
on the collected data, we can estimate that

bvm
OpenFlow = 2.68 b0OpenFlow = 18.72 [kbps]

bvm
OVSDB = 2.32 b0OVSDB = 1.94 [kbps].

(2)

For the bandwidth peaks, we focus on the maximal values
because they indicate the worst case traffic increments when
VM-related events should happen. We leave out the analysis
of AMQP traffic, because the peaks appear rather irregularly.
We add superscript “Max” on each bandwidth symbol B to
represent the maximum. Similar to the synchronization traffic,
the additional traffic grows linearly with the number of VMs:

BMax
OpenFlow = BOpenFlow + Πvm × δ

ini|mig|ter
OpenFlow [kbps]

BMax
OVSDB = BOVSDB + Πvm × δ

ini|mig|ter
OVSDB [kbps],

(3)

where δ
ini|mig|ter
∗ denotes the average bandwidth increment

per VM because of VM-related events. Applying the same
methodology, we can estimate that

δini
OpenFlow = 6.19 δmig

OpenFlow = 3.57 δter
OpenFlow = 4.04 [kbps]

δini
OVSDB = 7.62 δmig

OVSDB = 6.23 δter
OVSDB = 5.04 [kbps].

(4)

Fig. 7 depicts the traffic bandwidth between the controller
node and the five hardware switches. The three tree switches,
i.e., SW1 to SW3, create constantly similar bandwidths of
OpenFlow synchronization. After zooming in, the traffic for
SW3 (around 9.0 kbps) is slightly higher than that for SW1
and SW2 (both around 8.8 kbps). As the hardware VTEP, SW4
only synchronizes its OVSDB periodically with the controller
node (no OpenFlow) and creates the least traffic. Since SW5
handles ARP requests from outside the cloud, it issues quite
a lot of Packet-Ins on top of OpenFlow synchronization. We
could not observe any regular pattern, and on average, SW5
has around 20 kbps traffic with the controller.

A study of the traffic bandwidth, particularly its peaks
when VM-related events happens, can help with estimating the

OpenFlow OVSDB AMQP

0

250

500

750

1000

T
ra

ffi
c

V
o
lu

m
e

[K
B

]

Compute Node 1

Compute Node 2

Fig. 9: Total traffic volume of the synchronous messages (i.e.,
OpenFlow, OVSDB, and AMQP) for different distribution of 8 VMs.
The bars from left to right represent the number of VMs in node 1
as 8, 6, 4, 2, and 1.

worst-case control and management plane performance. For
instance, when the VMs in the cloud need frequent migrations
to ensure load balancing of computational resource [16], we
would expect higher bandwidth of control and management
traffic, which can potentially harm the flow setup performance.

2) Impact of the number of VMs on traffic volume:
We split and categorize the traces according to the devices
and traffic types. Fig. 8 illustrates the averaged traffic volume
of OpenFlow, OVSDB and AMQP respectively, with 99.9%
confidence interval. The exact numbers are listed under the
figure. We leave out the traffic of RESTful service due to
its tiny contribution to the overall traffic volume. With linear
regression, we obtain the following on the collected data

VOpenFlow = 39.91 × Πvm + 282.87 [kB]
VOVSDB = 34.84 × Πvm + 29.22 [kB]
VAMQP = 16.17 × Πvm + 186.08 [kB],

(5)

where V∗ denotes the total traffic volume of one traffic type
and Πvm represents the number of VMs.

OpenFlow messages contributes the largest volume propor-
tion (more than 50%). To maintain the global view, OpenFlow
keeps a frequent synchronization of all details such as table,
flow and port of each forwarding device. The volume of
OVSDB synchronization messages also grows fast with more
VMs. This is because the status of the connected VMs in
the OVS is transmitted in the form of plain and sparse JSON
string. Data compressing techniques can greatly reduce the size
of the payload. Furthermore, the volumes of AMQP messages
throughout different simulation runs differ, which results in
large confidence interval.

3) Impact of the VM distribution on traffic volume: We
next variate the distribution of VMs. In total 8 VMs distribute
with different patterns in compute node 1 and 2, i.e., the
number of VMs in node 1 ranges from 8 to 0. Fig. 9 shows
the total traffic volume of OpenFlow, OVSDB and AMQP
messages for node 1 and 2 from all scenarios.

We make the following observations. First, more VMs in
a compute node induces more traffic for that node, which is
consistent with the previous evaluation. There is no obvious
difference for the total accumulated traffic on the two nodes for
OVSDB and AMQP messages. On average, OVSDB messages
add up to 340 kB, and AMQP messages add up to 520 kB.
However, the accumulated OpenFlow traffic volume increases,
when the VMs are more equally distributed. Furthermore, for
the hardware switches, there is no obvious impact of the VM

distribution on their respective control and management plane
traffic (not shown in the figure).

To sum up, periodic synchronous control and management
plane traffic scales with the number of VMs and their re-
spective network interfaces. VM-related events induce asyn-
chronous traffic, whose bandwidth also scales the number of
involved VMs and interfaces. The distribution of VMs only
impacts OpenFlow messages; the even distribution leads to
the highest overall traffic volume.

V. CONCLUSION

We consider a real OpenStack deployment with an SDN
controller managing all hardware switches and servers. Our
investigation focuses on the traffic of the control and man-
agement plane, which consists of different message types.
The evaluation provides insights for cloud operators to design
and operate their deployment. The networking infrastructure
should be able to host the potential control and management
traffic volume that scales with the number of VMs and
their interfaces. Furthermore, the VM-related events should be
scheduled carefully to avoid sudden giant bandwidth increase.

ACKNOWLEDGMENT

This work has been funded by ERC FlexNets Project (grant
No 647158), and the authors alone are responsible for the
content of the paper.

REFERENCES

[1] A. Corradi et al., “VM consolidation: A real case based on OpenStack
Cloud,” Futur. Gen. Computer Systems, vol. 32, pp. 118–127, 2014.

[2] “OpenStack,” https://www.openstack.org/, last accessed: 2019-04-10.
[3] A. Malik et al., “A measurement study of open source SDN layers

in OpenStack under network perturbation,” Computer Communications,
vol. 102, pp. 139–149, 2017.

[4] M. Dalton et al., “Andromeda: Performance, isolation, and velocity
at scale in cloud network virtualization,” in Proceedings of NSDI.
USENIX, 2018, pp. 373–387.

[5] S. Jain et al., “B4: Experience with a globally-deployed software defined
WAN,” in ACM SIGCOMM CCR, vol. 43, no. 4. ACM, 2013, pp. 3–14.

[6] A. Tootoonchian et al., “On Controller Performance in Software-Defined
Networks,” in Proceedings of ICC. ACM, 2012, pp. 1–6.

[7] F. Callegati et al., “Performance of Network Virtualization in cloud
computing infrastructures: The OpenStack case,” in Proceedings of
CloudNet. IEEE, 2014, pp. 132–137.

[8] M. Kang et al., “A Comparison of System Performance on a Private
OpenStack Cloud and Amazon EC2,” in Proceedings of CLOUD. IEEE,
2017, pp. 310–317.

[9] A. Bianco et al., “Evaluating the SDN control traffic in large ISP
networks,” in Proceedings of ICC. IEEE, 2015, pp. 5248–5253.

[10] T. Koponen et al., “Onix: A distributed control platform for large-scale
production networks,” in Proceedings of OSDI, vol. 10. USENIX, 2010,
pp. 1–6.

[11] A. S. Muqaddas et al., “Inter-controller traffic in ONOS clusters for
SDN networks,” in Proceedings of ICC. IEEE, 2016, pp. 1–6.

[12] ——, “Inter-controller traffic to support consistency in ONOS clusters,”
IEEE TNSM, vol. 14, no. 4, pp. 1018–1031, 2017.

[13] M. Z. Naseer et al., “The effect of network topology on the control
traffic in distributed SDN,” in Proceedings of Networking. IFIP, 2018.

[14] “SONA: DC Network Virtualization - ONOS - Wiki,”
https://wiki.onosproject.org/display/ONOS/SONA%3A+DC+Network+
Virtualization, last accessed: 2019-04-10.

[15] “OpenStack Docs: OpenStackClient,” https://docs.openstack.org/
python-openstackclient/pike/, last accessed: 2019-04-10.

[16] C. Ghribi et al., “Energy efficient VM scheduling for cloud data centers:
Exact allocation and migration algorithms,” in Proceedings of CCGrid.
IEEE, pp. 671–678.

