
Habilitationsschrift

A Perspective of Timing in the Nanometer Era

vorgelegt dem Fakultätsrat der Fakultät für Elektrotechnik und

Informationstechnik – Technische Universität München

von

Dr.-Ing. Bing Li

Vorsitz des Fachmentorats: Prof. Dr.-Ing. Ulf Schlichtmann

Fachmentoren: 1. Prof. Dr.-Ing. Norbert Wehn

2. Prof. Dr. Krishnendu Chakrabarty

Acknowledgments

Since 2014, I have been working on my Habilitation, which leads to this final thesis.

During this period, Professor Ulf Schlichtmann gave me all the help that is possible,

not only in research but also on a much more general scale. Without his insightful

advice and reliable support this thesis could not happen.

For my Habilitation, Professor Norbert Wehn, Professor Doris Schmitt-Landsiedel,

and Professor Krishnendu Chakrabarty kindly supported me as Fachmentoren. I am

very grateful to them for their generous help.

During the Habilitation period, I also had chances to work with other researchers.

Professor Tsung-Yi Ho and I worked together to establish the research team on mi-

crofluidic biochips in the EDA institute at TUM. Supported by his expertise and

with countless discussions with him, this team has grown quickly and successfully.

I have also taken much time from Professor Krishnendu Chakrabarty on various

occasions. It was really enjoyment to talk with him with ideas flowing from dis-

cussions. Meanwhile, several professors have kindly collaborated with me. Some

of them are Professor Yiyu Shi, Professor Bei Yu, Professor David Z. Pan, Professor

Jiang Hu, Professor Paul Pop, Professor Bhargab B. Bhattacharya, Professor Robert

Wille, Professor Hailong Yao, Professor Masanori Hashimoto, Professor Iris Hui-Ru

Jiang and Professor Mark Po-Hung Lin. I appreciate their help and support very

much.

Inside the EDA institute, I collaborated closely with Dr. Tsun-Ming Tseng, Li Zhang,

Chunfeng Liu and Ying Zhu. I thank them sincerely for their essential contribu-

tion to my Habilitation. In addition, I would like to thank Dr. Helmut Gräb and

Dr. Daniel Müller-Gritschneder for their long-term support. I also thank Susanne

Werner, Hans Ranke and Tobias Baur, whom I bothered very often in these years.

The other colleagues in the EDA institute have created a nice atmosphere for research

and it was a pleasure to work with them.

Munich, January 2018

Bing Li

Contents

1 Introduction 1

2 State of the Art of Timing 5

2.1 Digital Circuits and Timing Constraints 5

2.2 Timing with Process Variations . 8

2.3 Hierarchical Statistical Timing Analysis 12

2.4 Timing with Setup-Hold Time Interdependency 14

2.5 Aging . 16

2.6 Circuit Tuning . 18

2.7 Summary . 20

3 Statistical Timing Analysis and Criticality Computation for Circuits with

Post-Silicon Clock Tuning Elements 21

4 Design-Phase Buffer Allocation for Post-Silicon Clock Binning by Iterative

Learning 37

5 Efficient Delay Test and Prediction for Post-Silicon Clock Skew Configura-

tion under Process Variations 53

6 Timing beyond the Traditional Paradigm 69

6.1 VirtualSync: Delay-based Timing Synchronization 72

6.1.1 Background and Motivation of VirtualSync 75

6.1.2 Problem Formulation of VirtualSync 78

6.1.3 Delay Units . 79

6.1.4 Relative Timing References . 81

I

6.1.5 Synchronizing Logic Waves by Delay Units 82

6.1.6 Summary . 87

6.2 Timing Camouflage for Netlist Security 87

6.2.1 Motivation and Basic Concept of Timing Camouflage 89

6.2.2 Wave-Pipelining . 91

6.2.3 Attack Techniques and Counter Measures 93

6.2.4 Summary . 97

7 Sequential Design and Timing for Flow-based Microfluidic Biochips 99

7.1 Background of Flow-based Biochips . 99

7.2 Design Automation for Flow-based Biochips of Large Integration . . . 110

7.2.1 Sequential Design for Flow-based Biochips 110

7.2.2 Biochip Architectures for Sequential Design 114

7.2.3 Timing and Flow-based Biochips 116

8 Conclusion 119

Bibliography 123

Publications of the author during the Habilitation period 143

1 Introduction

Integrated Circuits (IC) have become an essential part of human activities. They are

the key drivers of many innovations and economic progress, thanks to the rapid

advances in design and manufacturing technology of the IC industry in the past

several decades [Int]. From mobile phones to supercomputers and from automotive

electronics to artificial intelligence, these small chips are connecting people, automat-

ing their everyday life, and opening new views to the world with their supreme

computing power.

Microscopically viewed, IC chips are composed of tiny transistors, each of which has

a size of about 10 nanometers. Within an area of 1 cm2, more than 2.5×109 transistors

can be manufactured [App]. Logic gates are constructed from these transistors and

connected to implement various computing functions. To coordinate computing

activities of logic gates, a regular clock signal is distributed inside a chip to initiate

the computing activities synchronously. To guarantee that all logic blocks finish their

computation in time, they need to meet special timing constraints in relation to the

period of the clock signal. Accordingly, the performance of a digital circuit is defined

by its clock frequency, representing how many times new data can be processed by

the circuit in a second.

For decades, the IC industry followed the Dennard scaling concept [DGY+74]. Roughly

speaking, every new process generation would result in about 30% reduction in

propagation delay, and thus enable about 30% higher clock frequencies. From the

introduction of the first microprocessor in 1971, the Intel 4004 running at 740kHz,

to the 2004 introduction of the Intel Pentium 4 in 90nm technology, running at 3.4

GHz, the clock frequency increased about 4.600 times, or roughly 29% annually.

1

1 Introduction

Unfortunately, this major driving force of the IC industry has essentially come to a

stop. Although feature sizes are still continuously being reduced to smaller geome-

tries to integrate an increasing number of transistors for complex integrated circuits,

voltage scaling has stopped due to power limitations. Since leakage power concerns

prevent a further downscaling of threshold voltages Vth, dynamic power consump-

tion has become a big challenge, especially in designs with a high clock frequency,

thus hindering a further increase of clock frequency.

As the feature size of IC manufacturing technology is scaled down into deep sub-

micron region, further undesirable side-effects have also appeared. A major concern

has been the process variations in manufacturing as it has become more difficult to

accurately control important physical parameters such as gate length, oxide thick-

ness, line edge roughness, or doping profiles at ever-smaller dimensions [Nas01].

Consequently, the variations of key parameters also increased, even with the σ val-

ues reaching around 15% of the nominal values. Some of these variations may have

a low correlation [SBC97], so that they could not be addressed by the traditional

best-/worst-case timing analysis and signoff strategies, which verify the ability of a

circuit to work at a given clock frequency with the best cases and the worst cases

derived from the manufacturing process. Because of these developments, the pres-

sure to squeeze more performance out of process technologies by innovative design

approaches and methodologies has increased significantly.

Similar to process variations, another effect that has become practically relevant

since about 10 years is aging of transistors as well as the ensuing reliability issues.

When currents flow through transistors, stress is accumulated on them. Gradually,

chips may become slower compared with the fresh state right after manufacturing.

Aging covers several effects impacting devices in nanometer manufacturing nodes,

most prominently Hot Carrier Injection (HCI), Negative Bias Temperature Instabil-

ity (NBTI), Electromigration (EM), Time-Dependent Dielectric Breakdown (TDDB),

as well as Positive BTI (PBTI), which is also increasingly becoming a consideration.

For example, NBTI and HCI result in an increase of Vth or decrease of Ion, respec-

tively, causing a loss of performance, up to 20% over time. These aging effects

have been around for a long time, and their increasing relative magnitude in today’s

2

manufacturing technologies cannot be ignored anymore; Otherwise, the exceedingly

large guardband reserved for aging in the traditional design flow would cancel any

further advances in manufacturing technologies and essentially put the IC industry

into a stalling state.

Since the industry embraced manufacturing technologies with the feature size below

14/10 nm, it has become obvious that timing analysis is no longer a solved problem.

The challenges to enable a new timing paradigm and to realize innovative solutions

to manage design complexity and to break performance stagnancy in modern ICs

require a thorough examination of the existing design philosophy and work flows. In

this thesis, accordingly, the challenges of timing in the nanometer era are analyzed.

Furthermore, a new perspective of timing will be discussed to open new doors for

optimizing timing performance of digital circuits. In addition, it provides a new

technique to enhance the security of netlists against counterfeiting by invalidating

the traditional single-period clocking scheme.

The rest of this thesis is organized as follows. In Chapter 2, the state of the art of

techniques dealing with timing challenges is reviewed. These include analysis meth-

ods such as statistical timing analysis (SSTA) and aging evaluation, as well as active

tuning methods such as post-silicon clock skew tuning. In Chapters 3–5, details of

a post-silicon clock tuning technique are discussed to demonstrate the demands of

research efforts from statistical analysis to post-silicon test due to the evolution of

the timing paradigm. In Chapter 6, a new perspective to view the traditional timing

definition will be provided. This new view may potentially pave new ways for opti-

mizing timing performance of digital circuits, and it also provides a new dimension

in the hardware security domain to counter netlist counterfeiting. Thereafter, a dis-

cussion of applying the relatively mature timing paradigm of digital circuits to the

development of an emerging technology, flow-based microfluidic biochips, will be

summarized in Chapter 7. Finally, conclusions are drawn in Chapter 8.

3

1 Introduction

4

2 State of the Art of Timing

2.1 Digital Circuits and Timing Constraints

Digital circuits contain two types of gates. Logic gates, e.g., AND, OR and NOT

gates, implement the function of the circuit. Sequential gates, e.g., flip-flops and

latches, on the contrary, do not make any contribution to the logic function directly.

Instead, they are used to synchronize intermediate steps of the computation. An

example of a digital circuit is shown in Figure 2.1.

A sequential gate, henceforth with flip-flop as example, is only activated at a given

moment to store the data from its input. Except this exact moment, the stored

data and the output of the flip-flop do not change, no matter what happens at its

input. Consequently, flip-flops sitting on combinational paths in a sequential circuit

partition the circuit into separate logic/combinational functional blocks. The data at

the outputs of a combinational block are latched into the flip-flops connected to them

at a given moment. Thereafter, any changes at the outputs of the combinational block

and thus the inputs of the flip-flops do not affect the data stored inside the flip-flops,

until the next latching moment comes. Since the outputs of flip-flops are connected

to the inputs of combinational blocks, the starting time of logic computation can

thus be synchronized.

To coordinate the activities of logic blocks, a clock signal is generated and distributed

to all flip-flops. The flip-flops are activated at a clock edge, e.g., the rising clock edge

henceforth. Since the clock signal reaches all flip-flops at the same time, the latching

activities of flip-flops trigger signal transitions at the inputs of logic blocks simul-

taneously. Because at each rising clock edge new computations are initiated, the

5

2 State of the Art of Timing

clk

QD

QD

QD

A

B

C

D

Y

Figure 2.1: Structure of s27 from the ISCAS89 [BBK89] benchmark set.

performance of a circuit is thus often represented by its clock frequency, indicating

how many input data can be processed in a second by the circuit.

Since the logic blocks in a digital circuit are activated by the clock signal periodically,

the logic computation inside of a logic block must finish its execution before the data

at its outputs are latched into the flip-flops of the next stage. The time difference

between two consecutive activations of a logic block is the clock period T.

A flip-flop also needs some time to store the data correctly, the data at its input must

be stable within a small time window before the rising clock edge, i.e., setup time

tsu before the rising clock edge. Similarly, the data must stay stable hold time th

after the rising clock edge. As illustrated in Figure 2.2, the data must be stable in a

flip-flop

clk

D Q

clk

Q

D

tsu th

dcq

Data stable

T

Figure 2.2: Setup time (tsu), hold time (th) and clock-to-q delay (dcq) of a flip-flop.

6

2.1 Digital Circuits and Timing Constraints

a1

a2

a3

a5 = a4 + d4

a4 = max{a1 + d1, a2 + d2, a3 + d3}

d1

d3

d2

1

2

3

4 5
d4

Figure 2.3: max and sum operations. a1–a5 are arrival times and d1–d4 represent de-

lays of logic gates and interconnects.

window surrounding the rising clock edge to guarantee a correct latching behavior

of the flip-flop. Since the latest time a data signal arrives at a flip-flop is determined

by the longest combinational path in the logic blocks, and the earliest change is

caused by the shortest combinational path in the logic blocks, the timing constraints

considering all logic blocks in a circuit can be written as

maxp∈P{dcq + dp + tsu} ≤ T (2.1)

minp∈P{dcq + dp} ≥ th (2.2)

where p is a path with delay dp from the set P representing all the paths in the

combinational blocks. dcq is the delay of the flip-flop. In reality, flip-flops may have

different setup times and hold times depending on their structures and dimensions.

In (2.1) and (2.2), these properties are assumed as the same for all flip-flops to sim-

plify the discussion.

To verify the timing constraints (2.1) and (2.2), the delays of combinational paths

need to be calculated. However, it is timing-consuming and unnecessary to enu-

merate all combinational paths. Instead, the delay information can be merged by

propagating only the maximum or minimum delay information forward in the cir-

cuit. To trace the maximum delay of combinational paths to verify the setup time

constraint (2.1), two atomic operations, max and sum, are applied recursively in tim-

ing analysis. This concept is illustrated in Figure 2.3, where the arrival times of

signals at nodes are denoted as a1–a5 and the delays of logic gates and intercon-

nects are denoted as d1–d4. When a combinational component is passed, its delay

7

2 State of the Art of Timing

is added to the arrival time. When multiple arrival times converge at a node, the

maximum of them is calculated and propagated further. Since logic functions are

not considered, the task of timing analysis becomes merely to efficiently traverse a

graph representing the circuit structure and delays.

To improve circuit performance, the easiest way is to boost its clock frequency,

or, equivalently, shorten the clock period. In 2004 the International Technology

Roadmap for Semiconductors (ITRS) has predicted that, driven by advances in man-

ufacturing technology, the clock frequency would increase by 21% every year, jump-

ing from about 2.9 GHz in 2002 to 33.4 GHz in 2015. This optimistic estimation

has been, however, adjusted in 2013, predicting that the clock frequency may reach

5.9 GHz in 2015, leading to only 4% annual growth rate. This slowdown of clock

frequency increase is caused by several factors, including process variations, power

consumption, noise, and reliability and aging issues.

2.2 Timing with Process Variations

In a digital circuit, the latest time a signal becomes stable is after it travels through

the combinational path with the largest delay, called the longest path henceforth.

The delay of this path is equal to the sum of all the delays of logic gates and in-

terconnects on the path. These delays are, however, not fixed values in reality due

to the imperfection in manufacturing processes. In fact, it is not possible to deliver

logic gates or interconnects with the exact design parameters, e.g., physical dimen-

sions, from the manufacturing process. Instead, the parameters of logic gates and

interconnects vary in different chips of the same design, a phenomenon called pro-

cess variations [Nas01], so that some of them have large delays but others may have

small delays.

Process variations have been existing since the beginning of the semiconductor in-

dustry. They did not significantly affect the design flow in the past because the

variations were relatively small, so that they could be dealt with by allocating perfor-

mance margins easily. In advanced technology nodes, these variations have become

8

2.2 Timing with Process Variations

Process Variations

Within-Die Die-to-Die

Systematic

IndependentCorrelated

Non-Systematic

Figure 2.4: Variation Classification [BCSS08].

relatively large, e.g., reaching a one-sigma variation of 15.7% in 70nm manufactur-

ing node [Nas01], so that they cannot easily be compensated anymore by allocating

excessive performance margins. In addition, local variations have become more rel-

evant compared to global variations, making the performances of devices exhibit

a low correlation. Therefore the traditional worst-case-based design methodology

cannot properly handle them anymore, because in the worst-case-based methodol-

ogy the cases that all devices become slow or fast are checked, which may be too

pessimistic in view of local variations.

Process variations cannot be determined before real manufacturing happens and

in different manufactured chips their final effects are different. During the design

phase, timing analysis is still required because designers need to evaluate how the

manufactured chips perform after experiencing process variations. Consequently,

the performances of logic gates and interconnects need to be modeled statistically as

random variables according to the manufacturing data from foundries, leading to a

boom of research on statistical timing analysis (SSTA) [BCSS08].

Process variations can be classified into different categories, as shown in Figure 2.4.

Systematic variations, e.g., the randomness in interconnect metal thickness, are caused

in part by design characteristics such as the density of interconnects on a metal

layer, so that they can be extracted and modeled according to the design informa-

tion even before manufacturing. The variations of this type can be directly incor-

porated into post-OPC (Optical Proximity Correction) timing analysis to improve

9

2 State of the Art of Timing

the accuracy [YCS05]. Non-systematic variations, however, cannot be determined

before manufacturing, since they are the results of the inaccuracy in process control

during manufacturing. Consequently, they need to be modeled as random vari-

ables when the circuit is designed. Such variations include those in doping density

and layout-independent metal thickness. Non-systematic variations can be split fur-

ther into die-to-die variations (interdie variations) and within-die variations (intradie

variations) [SBC97]. Die-to-die variations take effect equally on all devices and inter-

connects on a die. For example, the chips at the center of a wafer are usually faster

than chips located closer to the boundary of a wafer. Within-die variations have

different effects on devices and interconnects on a die, leading to deviation between

device parameters inside a chip after manufacturing. If the within-die variations of

parameters exhibit no correlation, they become a purely random effect, such as the

random distortion caused by lens during photolithography and the purely random

variations in doping.

In timing analysis, the delays of the longest and the shortest paths should be cal-

culated to verify (2.1) and (2.2). In the case that all gate delays are fixed values,

this is not a challenging task. When process variations are considered, however, the

computational complexity increases extraordinarily, because the max and sum oper-

ations become statistical. Moreover, the results of these operations should maintain

the correlation to the other random variables, so that the same formulas of the max

and sum operations can be applied recursively. For example, the result a4 of max and

sum operations at node 4 in Figure 2.3 should be represented in the same form as d4

so that the sum operation can be applied to calculate a5 similarly.

Several models have been proposed to express the correlation between process pa-

rameters. In the quadtree model [ABZ+03b, ABZ03a], different layers are used to

represent the random components shared by devices in areas of different scales.

This quadtree model, however, does not model the local correlation uniformly. To

overcome this problem, the correlation model in [CS03] partitions the die area into

a uniform grid with n cells, and a random variable is assigned for each grid cell. To

simplify statistical computations in timing analysis, these variables are expressed as

linear combinations of independent random variables decomposed by methods such

10

2.2 Timing with Process Variations

as principal component analysis (PCA) [Jol02]. This correlation model can deal with

any correlation between process parameters rather accurately, and it is extended

in [CZV+08] to partition the die area using hexagonal grid cells.

The correlation models discussed above are all first-order and only sufficient to

deal with the dependency between Gaussian random variables. To include depen-

dency information of a higher order, methods like independent component analy-

sis [HKO01] have been applied, as in [SS06, SS08].

With random variables representing process parameters expressed as linear combi-

nations of independent random variables, the delay of a gate can also be expressed

similarly, such as in the canonical delay model in [VRK+04]. In statistical timing

analysis, while the sum of two statistical delay variables in the canonical form can

be computed relatively easily, the computation of the maximum of them is, how-

ever, very challenging. In this computation, not only the mean and variance of the

maximum should be calculated, but also the correlation between the maximum and

the other delay variables should be maintained to apply the computations of sum

and max in the same form recursively. In [VRK+04], the maximum of two canonical

expressions is approximated in the same form using the concept of tightness prob-

ability, which requires time-consuming computations compared with the maximum

computation of two constants in traditional worst-/best-case timing analysis.

The discussion on statistical timing analysis has exposed the difference between

statistical timing analysis (SSTA) and traditional static timing analysis (STA). In STA,

the maximum of two arrival times is only a simple comparison of two numbers. But

in SSTA, it involves a lot more computation not only for the mean and the variance

but also for maintaining the correlation between random variables during arrival

time propagation. Furthermore, the linear timing analysis methods above assume

that gate delays are approximated as Gaussian random variables. This limitation

has been relaxed in [ZSL+05, ZCH+05, FLZ07] by representing timing properties

as quadratic functions of independent Gaussian random variables. Moreover, gate

delays can also been expressed as linear combinations of non-Gaussian variables, as

in the method in [SS06, SS08], while the method in [CZNV05] proposes a general

framework to incorporate linear and nonlinear combinations of Gaussian and non-

11

2 State of the Art of Timing

Gaussian random variables.

The methods above are all block-based since at each component only the maximum

or minimum of the variables is propagated. Path-based methods have also been

explored for statistical timing analysis, e.g., in [ABZ+02, OB04]. These methods first

identify a set of combinational paths from a circuit and analyze their performances

individually. Afterwards, the performance of the whole circuit is computed from

the performances of these paths. Path-based methods can only process a given set

of combinational paths, which, however, are still not easy to identify accurately from

the circuit [LLCP08]. Based on path-based statistical timing analysis, common paths

have been studied in [ZF02, Vis07] and noises have been considered in [ENH09,

ESN+10] to reduce timing pessimism.

2.3 Hierarchical Statistical Timing Analysis

To counter the immense computational effort required for timing analysis consider-

ing process variations, hierarchical statistical timing analysis has been investigated

to accelerate system-level timing analysis.

Hierarchical timing analysis splits timing analysis into two steps. At first, timing

properties inside submodules are extracted individually. Afterwards, the timing

models of all the submodules in a circuit are combined together to perform timing

analysis of the whole design.

A timing model contains interface timing information of a module, which is usually

the delay information of: 1) direct paths from inputs to outputs, type A in Figure 2.5;

2) paths from inputs that can reach a flip-flop or a latch inside the module, type B;

3) paths from an internal flip-flop or a latch to an output, type C; 4) paths between

flip-flops or latches, type D. The statistical path delays of type D carry correlation

information between modules and are required in hierarchical statistical timing anal-

ysis for correlation reconstruction, as to be discussed later in this section.

For static timing analysis without consideration of process variations, timing model

extraction has been explored in [DMS+02] to extract black-box models, which only

12

2.3 Hierarchical Statistical Timing Analysis

o1

o2

l1

i1

i2

i3

DB C

B

f1
f2

l2 CD

A

Figure 2.5: Timing paths in timing model extraction.

contain interface timing information. The methods in [KM97, MKB02, ZZH+06,

LKS+08] apply graph transformation operations to merge nodes and edges rep-

resenting the timing information of the original circuit, leading to gray-box timing

models because timing information inside the modules is exposed. For sequential

circuits, Interface Logic Model (ILM) in [DMS+02] keeps all the combinational paths

between input ports to the first-level flip-flops and from the last-level flip-flops to the

output ports. The Extracted Timing Model (ETM) [DMS+02], however, collapses all

such paths to reduce the size of timing models, sacrificing the flexibility of keeping

the original parasitics information associated with the original logic gates and inter-

connects. For latch-based circuits, all latches can be retained in the timing model

as in [MKB02], or the depth of transparency from the input ports to internal latches

and from the internal latches to the output ports are assumed as given [VPMS97], so

that the number of latches potentially traveled transparently can be determined.

When process variations are considered, timing model extraction methods for com-

binational circuits and sequential circuits with flip-flops in [KM97,MKB02,DMS+02,

ZZH+06, LKS+08] can be applied similarly, but with the maximum and sum com-

putations replaced by the corresponding statistical versions. For sequential circuits

with latches, the depth of transparency becomes statistical [LCS10, LCS12]. There-

fore, timing models should be extracted with respect to the probabilities of trans-

parency depths [LCS09a, LCXS13], which are affected by the statistical path delays

in the original circuit.

13

2 State of the Art of Timing

module A

module B

Die

Figure 2.6: Grid partition of the chip in hierarchical statistical timing analysis.

When integrating extracted statistical timing models into timing analysis of the

whole circuit, a special challenge should be met when process variations are consid-

ered. At the top level, the die area occupied by each module is partitioned to model

the correlation between variations when generating timing models, such as using the

uniform grid in [CS03]. When the extracted models are placed together, the grids

inside them may not be aligned, as illustrated in Figure 2.6. Therefore, the relation

between these grids should be established. In [GVTG08, GVTG09], this problem is

addressed by linear transformation between the coefficients of independent random

variables. But there might be no solution from this method if the transformation

matrix is not selected properly. This method is improved in [LCS+09b, LCXS13] by

using the coefficient matrices of submodules and the top grid directly.

2.4 Timing with Setup-Hold Time Interdependency

Process variations may affect path delays in a sequential circuit statistically. If the

delay of a path in a manufactured chip exceeds the clock period minus the setup time

of a flip-flop, a timing violation is assumed to happen. In reality, however, the data

may still be latched into the flip-flop correctly even in view of a violation of the setup

time constraint (2.1), but the clock-to-q delay may increase significantly, leading to a

delay increase of the combinational paths of the next stage. If those paths are short,

the increased delay does not cause timing violation in the next stage. As shown in

Figure 2.7(a), a flip-flop can work with different setup-hold time combinations with

14

2.4 Timing with Setup-Hold Time Interdependency

delay
increase

hold
slack

setup slack

meta-

region
stable

110%
120%

100%

A

hold
slack

setup slack

110%

(a) (b)

setup

hold

time

time

Figure 2.7: Delay curves of a flip-flop. (a) Curves of setup/hold slack combinations

with respect to different constant clock-to-q delays. Setup and hold slacks

are the time differences between the signal switches and the clock edge.

(b) Characterization point of setup time and hold time in traditional STA.

different clock-to-q delays. In the traditional definition, the setup time and hold time

are simply approximated as the point A in Figure 2.7(b), losing the flexibility of the

flip-flop completely.

The setup-hold interdependency has be investigated in [SFD+06,SDT+07] to exploit

the compensation between setup time and hold time combinations with respect to

a given clock-to-q delay. In addition, a method based on Euler-Newton tracing

is introduced in [SR07, SR08] to characterize the delay curves of flip-flops. These

methods, however, do not consider the relation between clock-to-q and setup/hold

times, leading to a limited performance improvement. To remove this limitation the

method in [JB05] uses a quadratic programming model to calculate the optimal clock

period directly, but it is incapable of solving the high-order programming problem

for large circuits. To simplify the three dimensional model, the method in [CLS12]

applies an analytic function and calculates the minimum clock period by iterations.

In addition, the method in [KL14] approximates the three dimensional delay sur-

face using linear planes. In calculating the minimum clock period of a circuit, this

method, however, splits the problem into two-dimensional problems. Furthermore,

the method in [YTJ15] proposes an efficient algorithm to capture timing violations

15

2 State of the Art of Timing

in a circuit very efficiently, but only the relation between clock-to-q delay and setup

slack is considered in this method. Most recently, the method in [ZLS16b] models

the delay surface using piecewise polygons and performs the timing analysis us-

ing integer linear programming together with reduction techniques. In addition,

process variations are considered together with setup-hold interdependency for flip-

flop models in [HAP08], but how to incorporate the generated statistical models in

statistical timing analysis is still open.

2.5 Aging

With the diminishing dimensions of devices, a new challenge that has been around

for a long time, aging of ICs, has also started to attract increasing attention since

about 10 years. The term aging covers a number of effects impacting devices in

nanometer manufacturing nodes, most prominently Hot Carrier Injection (HCI),

Negative Bias Temperature Instability (NBTI), Electromigration (EM), Time Depen-

dent Dielectric Breakdown (TDDB), and Positive BTI (PBTI).

With aging the performance of devices deteriorates by up to 20% over time. The anal-

ysis of aging effects is challenging, since the amount of aging depends on a number

of factors, among which are Vdd, temperature, frequency and also the amount of

switching or the specific voltage level a transistor experiences. Accordingly, both the

specific structure of a circuit and its real usage contribute to the results of aging. Ag-

ing analysis is further complicated by the fact that NBTI degradation partly recedes

once a stress condition is removed, known as recovery effect.

Aging analysis traditionally has focused on the potential effect of aging on indi-

vidual transistors. As a result of such transistor analysis, an overall safety margin

was added into the timing signoff to guarantee the correct functionality of the chips.

This coarse-grained approach is increasingly less feasibly because, on the one hand,

aging has become more pronounced, and on the other hand, the timing budget is

becoming increasingly tight, thus not being able to tolerate a large timing margin

anymore. Consequently, it has become desirable to analyze the aging of a given

circuit specifically to provide more fine-grained information.

16

2.5 Aging

Figure 2.8: Aging graph pruning [LBS10] of the ISCAS85 circuit c17 depicted in (a).

Timing graph of this circuit and the reduced graph are shown in (b) and

(c), respectively.

To calibrate aging effects, transistor-level simulation is required. Though traditional

transistor aging models are accurate, they are too slow for analyzing large ICs. To

solve this problem, research has been undertaken to analyze HCI and NBTI and the

factors influencing them, and to develop timing models and algorithms for aging

analysis on gate level, leading to a speedup of aging analysis by orders of magnitude

[BM09,CWT11,KKS06,KKS07,PKK+06,KBW+14,AKGH16,KME+16]. The AgeGate

model [LGS09, LBS10, LBS12] is probably still the state of the art in gate-level aging

analysis today. This aging model can handle both HCI and NBTI. It is independent of

the current use profile, defined by Vdd and temperature T over the lifetime of the IC.

It also incorporates the aging effect of each transistor in a gate individually and the

aging of output slope, both of which are required for accurate timing analysis. The

approach of AgeGate builds on the canonical delay model [VRK+04] so that it can be

integrated into standard industrial STA-based timing signoff flows smoothly [KS15].

The AgeGate model was extended later to take module-level aging analysis into

account, speeding up aging analysis further, while maintaining a good accuracy

[LBS14]. This approach extracts a timing graph of a module from the original gate-

level netlist. Thereafter, the graph is pruned significantly. For example, any path

that can never become critical under aging and process variations is not considered

in the analysis. The concept of this pruning is illustrated in Figure 2.8. Empirical

results have confirmed that the number of timing paths can be reduced by up to four

orders of magnitude or even more for aging analysis. The reduced timing graphs

17

2 State of the Art of Timing

of modules can not only be used to accelerate aging analysis, but also to identify

critical paths to be monitored online, hence enabling a systematic design approach

by combining periodic monitoring of a circuit during its operation and online tuning.

Similar to statistical timing analysis, the characterization of aging still aims to cap-

ture more detailed delay information of logic gates for timing analysis in the design

flow. During the design phase, aging effect still have to be considered statistically

since both process variations and aging affect manufactured chips individually and

produce different critical paths in different chips after manufacturing. To counter the

aging effects actively, post-silicon tuning techniques can also be applied to adjust the

timing properties of individual chips. Techniques in this category include body bias

tuning [KSB06, GLL+15], voltage control [And05, KCL+17, KLS+15] as well as clock

tuning [NSG+06, TZC05, LN14].

2.6 Circuit Tuning

While process variations must be modeled as random variables during the design

phase, their effects become fixed in individual chips after manufacturing. These

chips have different performance because process variations affect them differently.

Similarly, aging is also a temporal effect of individual chips. To counter these effects

actively, manufactured chips may be tuned accordingly to change the clock skews or

body bias with respect to the fixed effects of process variations and usage profiles.

In a sequential circuit, the clock signal reaches all flip-flops at the same moment.

With this strict assumption, the performance of the circuit is determined by the

longest path in the circuit, no matter how fast the other paths are. To balance the

performance between different paths, clock edges can be tuned toward fast paths

so that slow paths receive more timing budget to finish their signal propagation to

improve the overall yield [LCS11, LS15].

There are various structures of post-silicon clock tuning [TRND+00,TKMH04,MFDN05,

NSG+06]. For example, the delay buffer in [NSG+06] is illustrated in Figure 2.9,

18

2.6 Circuit Tuning

scanin 0 1 2
shift

scanout

configuration bits

CLK_IN CLK_OUT

Figure 2.9: Post-silicon delay tunable buffer in [NSG+06].

where the delay between the clock input CLK_IN and the output CLK_OUT is con-

trolled by the values of three registers configured through the test access port (TAP).

To perform post-silicon clock tuning, delay buffers should be inserted into the circuit

during the design phase. Since these buffers occupy die area, a tradeoff should be

made to balance the yield improvement and the enlarged area. When deciding how

many buffers to insert into a circuit, the method in [TBCS04] presents a technique

based on clock scheduling to balance the skews resulting from process variations.

In [KK17] this problem is solved using a graph-based algorithm. In [TZC05] several

algorithms are proposed to insert buffers into the clock tree to guarantee a given

yield and minimize the total area taken by these tunable buffers. Furthermore, the

method in [ZLS16c, ZLL+18] solves this problem with a sampling-based technique

to recognize a limited number of locations to insert tunable buffers for yield im-

provement. The computational complexity of this method is reduced using machine

learning in [YZLS17]. In [KS07], this problem is solved together with gate sizing.

In [NK09], the placement of tunable buffers is explored and a considerable yield

improvement has been observed.

After manufacturing, the tunable buffers should be configured to adjust the clock

skews in the manufactured chips. This configuration requires that delay information

should be captured for these chips. In [LN14], this post-silicon configuration is

performed by searching a configuration tree together with graph pruning and buffer

grouping. In [NK08,TGB09] path delays are measured individually in manufactured

chips and delay buffers are tuned accordingly. Since this individual measurement

is not efficient, statistical prediction and aligned delay test have been introduced

19

2 State of the Art of Timing

in [ZLS16a].

To minimize design and operating margins, post-silicon tuning can be applied for

online adjustment to counter aging effects, where each chip adapts its operating

conditions such as supply voltage and body bias dynamically. This adaptation can

deal with dynamic environmental fluctuation and aging as well as process varia-

tions. For adaptive voltage scaling, two strategies are widely used. The first one is

based on error detection and recovery, such as proposed in [DRS+06, YYX11, LN12].

The second one is based on error prediction and prevention, e.g., canary flip-flop

[SK07,FHMO12], slack monitor [BCH+15] and timing error predictive flip-flop (TEP-

FF) [IMK+13]. In these methods, sensors are used to detect/predict timing errors,

and supply voltages or clock skews are adjusted according to the sensor outputs.

For adaptive circuit optimization, a stochastic error rate estimation method is intro-

duced in [IMK+13, IMHO15], by modeling adaptive clock control under dynamic

delay variation as a continuous-time Markov process.

2.7 Summary

Statistical timing analysis and post-silicon tuning are still incremental steps in the

framework of traditional sequential design, where logic computation is finished

within one clock period. Consequently, only the timing constraints (2.1) and (2.2)

need to be satisfied, either by constraining the delays of logic paths or by tuning

clock skews to allow a smaller clock period T.

When clock tuning components are considered, statistical timing analysis becomes

more complex, because clock skews are determined with respect to the fixed effects

of process variations after manufacturing. This statistical analysis will be discussed

in Chapter 3. To determine the effective locations to insert tunable buffers, yield

optimization with a limited set of buffers needs to be addressed, as to be discussed

in Chapter 4. The configuration of post-silicon tunable buffers relies on circuit delays

after manufacturing. In Chapter 5, post-silicon test and buffer configuration will be

explained in detail. Chapters 3–5 have been published as [LS15, ZLL+18, ZLS+].

20

3 Statistical Timing Analysis and

Criticality Computation for Circuits

with Post-Silicon Clock Tuning

Elements

21

1784 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 11, NOVEMBER 2015

Statistical Timing Analysis and Criticality
Computation for Circuits With Post-Silicon

Clock Tuning Elements
Bing Li and Ulf Schlichtmann, Member, IEEE

Abstract—Post-silicon clock tuning elements are widely used
in high-performance designs to mitigate the effects of process
variations and aging. Located on clock paths to flip-flops, these
tuning elements can be configured through the scan chain so
that clock skews to these flip-flops can be adjusted after man-
ufacturing. Owing to the delay compensation across consecutive
register stages enabled by the clock tuning elements, higher yield
and enhanced robustness can be achieved. These benefits are,
nonetheless, attained by increasing die area due to the inserted
clock tuning elements. For balancing performance improvement
and area cost, an efficient timing analysis algorithm is needed to
evaluate the performance of such a circuit. So far this evaluation
is only possible by Monte Carlo simulation which is very time-
consuming. In this paper, we propose an alternative method using
graph transformation, which computes a parametric minimum
clock period and is more than 104 times faster than Monte Carlo
simulation while maintaining a good accuracy. This method also
identifies the gates that are critical to circuit performance, so
that a fast analysis-optimization flow becomes possible.

Index Terms—Criticality computation, post-silicon clock tun-
ing, statistical timing analysis, yield.

I. INTRODUCTION

PROCESS variations have become relatively larger in
recent technology nodes. This trend makes the tradi-

tional worst-case timing analysis too pessimistic, leading to
expensive overdesign and depriving designers of the valuable
information of performance and yield. Modeling timing char-
acteristics of a circuit more accurately, statistical static timing
analysis (SSTA) has gained much attention in the research
community in recent years [2]. This method represents pro-
cess variations with random variables directly and computes
the complete performance-yield curve, either in a parametric
form or described by statistical properties, e.g., moments of
different orders. Consequently, the yield of the circuit at any
given clock period can be evaluated easily.

According to the assumption of the distributions of pro-
cess variations, the method used to model gate delays, and

Manuscript received June 20, 2014; revised December 11, 2014; accepted
April 15, 2015. Date of publication May 12, 2015; date of current version
October 16, 2015. This work was supported in part by the German Research
Foundation through the Transregional Collaborative Research Centre, Invasive
Computing (SFB/TR 89). A preliminary version of this paper was published
in the proceeding of IEEE/ACM International Conference on Computer-Aided
Design, 2011 [1]. This paper was recommended by Associate Editor P. Gupta.

The authors are with the Institute for Electronic Design Automation,
Technische Universität München, Munich 80333, Germany (e-mail:
b.li@tum.de; ulf.schlichtmann@tum.de).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2015.2432143

the statistical operations in timing propagation, statistical tim-
ing algorithms can be roughly classified into several groups.
First-order methods [3]–[5] use the canonical linear form [5]
to represent gate delays and arrival times so that the recursive
computations in timing analysis can be simplified but at the
expense of accuracy. To improve modeling and propagation
accuracy, quadratic methods are proposed in [6]–[10], using
second-order polynomials to approximate gate delays and
arrival times. Moreover, other methods, such as [11]–[13], can
handle non-Gaussian delays and arrival times during timing
propagation.

The research on statistical timing analysis focuses mainly
on delay representation and arrival time propagation in combi-
national circuits and the resulting methods are implicitly appli-
cable to circuits with flip-flops. In high-performance circuits,
flip-flops with post-silicon clock tuning elements [14], [15]
have also been deployed to counter process variations and
improve circuit robustness. The tunable or programmable ele-
ments are inserted into the clock network to flip-flops that are
relevant to critical paths. After manufacturing, the delay val-
ues of these elements are adjusted through the test access port
(TAP) to assign critical paths more timing budget by shift-
ing the clock edges toward the stages with smaller delays.
By allowing delay compensation across consecutive register
stages, chips that might have failed to meet the timing spec-
ification can be revitalized. Therefore, with clock tuning ele-
ments the circuit can achieve a higher yield than without them.

Several methods have already been proposed for statisti-
cal timing analysis and optimization of circuits with clock
tuning elements. In [16], a clock scheduling method is devel-
oped and clock tuning elements are selectively inserted to
balance the skews due to the process variations. Further,
in [17] algorithms are proposed to minimize the total area
of these clock tuning elements or to minimize the number
of them in the circuit. In these methods, the yield of the
circuit is computed using Monte Carlo simulation which con-
sumes much runtime. In [18], the yield loss due to process
variations and the total cost of clock tuning elements are for-
mulated together for gate sizing. The resulting optimization
problem is solved using a stochastic cutting-plane method
with an STA scheme based on Monte Carlo simulation. This
method still converges slowly due to the long runtime of yield
evaluation. Moreover, the placement of clock tuning elements
is investigated in [19] and a considerable benefit is observed
when the clock tree is designed using the proposed tuning
system.

The methods discussed above are applied as presilicon opti-
mization or post-silicon adjustment before shipping the chips
to customers. Recently, further advances have been made

0278-0070 c© 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

LI AND SCHLICHTMANN: STATISTICAL TIMING ANALYSIS AND CRITICALITY COMPUTATION 1785

to apply the clock tuning elements on-line to improve the
life-time performance [20]–[23]. The method in [21] adjusts
the clock skews during runtime according to the occur-
rence of timing errors to achieve much better performance
in timing-speculative circuits. The method in [23] explores the
insertion of clock tuning elements and in-system configuration
to reduce performance degradation due to aging. In addition,
Lak and Nicolici [22] proposed an efficient post-silicon tuning
method for each individual chip by searching a configura-
tion tree combined with graph pruning. Moreover, the method
in [20] applies clock tuning elements to compensate dynamic
delay variations induced by temperature.

The research on statistical timing analysis and optimization
has shown the advantage of using post-silicon clock tuning
elements in high-performance designs. However, two issues
still have not been addressed. The first is the need for a fast
statistical timing analysis method, with which the runtime of
the methods above can be reduced. Currently, these methods
use Monte Carlo simulation to compute the yield of the circuit
considering process variations and are thus time-consuming.

The second issue is how to identify a set of critical gates
for optimization of such a circuit containing post-silicon clock
tuning elements. In statistical timing analysis the probability
of a gate affecting the circuit performance is called criticality
and many methods have been proposed to describe and com-
pute the criticalities of gates efficiently. In [5], the concept
of criticality is first explored without considering correla-
tion. In [24], the sensitivities of gate and path delays to the
circuit delay are computed. In [25], the criticalities are com-
puted using a cutset-based method combining with a binary
tree partition. Furthermore, in [26] a fast criticality compu-
tation method is proposed with incremental yield gradients.
Additionally, in [27] a clustering-based pruning is proposed
to speed up the computation and improve the accuracy of
criticalities. For ranking critical gates tiered criticalities are
calculated to provide an order of statistical delays in [28], and
for computing criticalities incrementally the reversible statisti-
cal max/min operation is investigated in [29]. These methods,
though accurate and fast, do not consider post-silicon clock
tuning elements, which allow the compensation of path delays
across register stages but make the criticality computation
more complicated.

In this paper, we propose a fast algorithm to evaluate the
circuit performance in the presence of post-silicon clock tun-
ing elements, so that yields of the circuit at different given
clock periods can be calculated easily. Additionally, we inves-
tigate the criticalities of gate delays in the context that timing
compensation is allowed across register boundaries. The reg-
isters considered in this paper are all edge-triggered flip-flops.
The main contributions of this paper are as follows.

1) The proposed method computes a parametric minimum
clock period for the circuit with post-silicon clock tun-
ing elements. The statistical properties of this minimum
clock period, such as mean and variance, are directly
available so that the yield of the circuit at any given
clock period can be evaluated very fast. Since the com-
puted circuit performance is in a parametric form, it can
be easily integrated into other optimization methods that
are built upon statistical timing analysis.

2) The proposed method is much faster, more than 104

times, than Monte Carlo simulation, by handling the
path delay compensation across registers with a loop
evaluation algorithm based on graph transformation.

3) The criticalities of gate delays considering post-silicon
clock tuning elements are defined and computed for
circuit optimization. The proposed method can capture
the critical gates within very short runtime, therefore,
enabling a fast analysis-sizing cycle.

The rest of this paper is organized as follows. In Section II,
we give an overview of the timing constraints considering
delay tuning elements in circuits with edge-triggered flip-flops.
These difference constraints are represented by using a con-
straint graph in the formulation. In Section III, the basic idea of
calculating statistical minimum clock period from a constraint
graph is defined and graph transformations are applied to
extract it. Based on this result, the sequential criticality across
flip-flop stages is defined to capture critical gates considering
delay tuning elements. In Section IV, several implementation
techniques are explained to accelerate the proposed algorithm.
We discuss experimental results in Section V and conclude this
paper in Section VI.

II. BACKGROUND AND PROBLEM FORMULATION

In this section, we describe the timing constraints of digital
circuits with post-silicon clock tuning elements. These tuning
elements can be configured after manufacturing to change the
clock skews to flip-flops, according to path delays affected
by process variations. Environmental variations are not con-
sidered in this method. In our formulation, all registers are
edge-triggered flip-flops. Though transparent latches can also
take advantage of these tuning elements, problem formulation
becomes more complex in this case, because a timing con-
straint between a pair of latches contains more variables, so
that the method discussed in this paper becomes inapplicable.

A. Timing Constraints for Circuits With Post-Silicon
Clock Tuning Elements

In high-performance digital designs, clock tuning ele-
ments are directly inserted into the clock paths to flip-flops.
The intentional clock skews from these tuning elements are
adjusted after manufacturing to counter process variations
and aging effects [21]–[23]. These clock tuning elements may
have various implementations and characteristics. The method
in [30] produces tuning elements with precise adjustable
delays shorter than 30 ps by way of voltage-controlled driver
strength. The implementation in [15] uses a delay line and is
capable of generating delays with 1 ps resolution. The de-skew
buffers in [14] are built with CMOS inverters and arrays of
passive loads, with 170 ps delay range and 8.5 ps step size.
In [31], the delay element is made with a controlled contention
circuit to provide a delay range around 140 ps with eight steps.
The delays of these tuning elements can be adjusted via TAP
after manufacturing [14].

Fig. 1 illustrates an example of two flip-flops with clock
tuning elements, where the clock signals clki and clkj are not
aligned anymore after passing the tuning elements, so that the
timing budget allowed for the combinational circuit between
flip-flops i and j can be regulated by the configurable delays
xi and xj. Assume that the clock signal switches at reference
time 0. Then the clock events at flip-flops i and j happen at time
xi and xj, respectively. Therefore, a signal change at the output
of flip-flop i starts propagation at time xi and reaches flip-flop
j at the latest at time xi + dij, where dij is the maximum delay
of the combinational circuit between i and j. To guarantee the
setup time constraint of j, this signal at the input of j should

1786 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 11, NOVEMBER 2015

Fig. 1. Flip-flops with tuning elements. Clock signals clki and clkj reach
flip-flops unaligned due to the configurable delays xi and xj. sj is the setup
time of flip-flop j and hj is the hold time of j. T is the clock period.

be stable sj time before the rising clock edge of j, where sj
is the setup time of j. Therefore, the timing constraint for the
combinational circuit can be written as

xi + dij ≤ xj + T − sj (1)

where T is the clock period. Let, wij = dij + sj. Then (1) is
equivalent to

xj − xi ≥ wij − T. (2)

Similar to setup time constraints, hold time constraints
should also be included to guarantee that the signal propa-
gated from the clock edge of flip-flop i does not affect the
latching function of flip-flop j in the same cycle. Therefore,
the tunable delays should satisfy the following constraint:

xi + dij ≥ xj + hj (3)

where dij is the minimum combinational delay between i and j;
hj is the hold time of j. Let, wij = hj − dij. Then, we can
write (3) as

xi − xj ≥ wij. (4)

In addition to the constraints (2) and (4), the maximum
configurable delay or the tuning range is also limited due
to area and power consumption [14], [15], [30], [31]. For a
tuning element with delay xi, its range is constrained as

0 ≤ xi ≤ ri (5)

where ri is a constant representing the largest delay that the
tuning element can add to the clock signal.

To guarantee the proper function of a circuit with clock tun-
ing elements, the constraints (2), (4), and (5) are created for
each pair of flip-flops between which there is a combinational
path. Compared with the timing constraints of digital circuits
without clock tuning elements, the constraints (2) and (4)
contain additional variables xi and xj which establish the rela-
tion between the delays across register stages. In the above
timing constraints, dij and dij can be calculated using the tra-
ditional breadth- or depth-first propagation algorithms with
statistical max and sum operations. However, in each con-
straint (2) or (4), the configurable delays xi and xj of the
tuning elements can only be determined after manufacturing.
In traditional static timing analysis, there are no such post-
silicon tunable parameters. Therefore, by leaving out xi and xj,
the constraint (2) simply defines a lower bound for the clock

period T , so that the minimum clock period of the circuit can
be computed easily by calculating the maximum of all the
lower bounds. But this method does not work any longer in the
presence of the configurable delays xi and xj. In addition, wij
and wij are random variables, thus excluding the direct applica-
tion of linear programming solvers to find the minimum clock
period constrained by (2), (4), and (5), as in the classic clock
skew optimization problem [32]. In addition, Fishburn [33]
provided a method to deal with discrete delay settings by
adapting Bellman–Ford algorithm. This method works well
with deterministic delays, but is still unable to solve the differ-
ential constraints when path delays become random variables
due to process variations.

B. Graph Representation of Difference Constraints

To establish a fast statistical timing algorithm for circuits
with post-silicon clock tuning elements, we represent the con-
straints (2), (4), and (5) using a directed graph and calculate
the statistical minimum clock period by graph transformation.
In each of the above constraints, there are not more than two
variables xi or xj. Therefore, all these constraints together form
a difference constraint problem [34], from which a constraint
graph can be constructed. The constraint graph contains a node
for each flip-flop, corresponding to a variable xi or xj. If a con-
straint (2) exists for flip-flops i and j, meaning that there is
at least one combinational path from i to j, a setup edge is
created from node i to j in the graph, with the weight wij − T .
Similarly, for the hold time constraint corresponding to (4) a
hold edge is created from node j to i with the weight wij. To
incorporate (5) into the constraint graph, a root node is created
and shared by all the range constraints. The constraint itself
can be split into xi ≥ 0 and −xi ≥ −ri. For the former a range
edge is created from the root node to node i with the weight 0;
for the latter a range edge from node i to the root node with
the weight −ri.

In Fig. 2(b), the constraint graph of s27 from ISCAS89
benchmarks is illustrated as example. The nodes 1–3 represent
the three flip-flops in Fig. 2(a). Edges between these nodes rep-
resent timing constraints (2) and (4), where only the weights of
edges created from (2) contain −T . Node 0 is the shared root
node. Edges to and from the root node correspond to the range
constraints (5). In this example, we assume every flip-flop has
a clock tuning element to show the basic idea. In reality, only
those flip-flops that are relevant to critical paths are assigned as
tuning elements during circuit optimization [17]. In construct-
ing the constraint graph, if a flip-flop has no tuning element,
the corresponding variable xi or xj in (2) and (4) is fixed to 0
since no delay adjustment is possible. Consequently, the con-
straints (2) and (4) degrade into range constraints with only
one variable, or additional yield constraints if both variables
are set to 0.

The edge weights in the constraint graph contain random
variables wij and wij defined in (2) and (4), respectively, so
that linear programming cannot be applied directly as in [32].
Another method to compute the minimum clock period is
derived from the equivalence of difference constraints and non-
positive loops in the constraint graph [34]. For a given clock
period T , this equivalence specifies that a set of valid values
for xi and xj that meets (2), (4), and (5) exists if and only if the
sum of the edge weights from any loop in the constraint graph
is not greater than 0. For example, the loop formed by the two
setup edges and one hold edge across loop 2 → 3 → 1 → 2

LI AND SCHLICHTMANN: STATISTICAL TIMING ANALYSIS AND CRITICALITY COMPUTATION 1787

(b)

(a)

Fig. 2. Construction of constraint graph. Nodes 1–3 correspond to the flip-
flops with clock tuning elements. Edges between these nodes represent timing
constraints (2) and (4). Node 0 is the shared root node. Edges to and from
the root node represent the range constraints (5). (a) s27 from ISCAS89
benchmarks without IO ports. (b) Constraint graph of s27.

in Fig. 2(b) should meet

(w23 − T) + (w31 − T) + w21 ≤ 0. (6)

In the constraint graph, if all loops meet the conditions
similar to (6), the given clock period T can be definitely
achieved by configuring the clock tuning elements. For a brief
explanation, assume that all loops are nonpositive. Under this
condition, the Bellman–Ford algorithm [34] can always find
the largest distances from the root node to all the other nodes
in the graph. These maximum distances together form a valid
configuration to all the tunable elements. For example, for a
setup time constraint described by (2), we create an edge from
node i to j with the weight wij − T in constructing the con-
straint graph. The maximum distance from the root node to j
calculated by the Bellman–Ford algorithm is no smaller than
the distance from the root node to i plus the edge weight;
otherwise the distance to j is not largest from the root node.
That is to say, the maximum distances can naturally meet the
constraint (2). This reasoning is valid for all the setup time
constraints (2) and the hold time constraints (4). In addition,
the range constraints (5) are guaranteed similarly by the range
edges constructed from xi ≥ 0 and −xi ≥ −ri described ear-
lier. Therefore, all the maximum distances together form a
valid solution for the tunable delays.

Inversely, if there is a loop across which the sum of all edge
weights is positive, the given clock period T is infeasible. For
example, if (6) is violated, we can deduce from (2) and (4) a
contradiction as

0 = (x3 − x2) + (x1 − x3) + (x2 − x1) ≥ (7)

(w23 − T) + (w31 − T) + (
w21

)
> 0. (8)

In this case, the Bellman–Ford algorithm does not converge
after sufficient iterations. Therefore, a valid solution for the
system of difference constraints (2), (4), and (5) requires that
the loops in the constraint graph must be nonpositive. Here,
we have only explained the basic idea about the equivalence

between the nonpositive loop condition and the existence of a
solution for the difference constraint system. A detailed proof
can be found in [34].

The above discussion shows that the nonpositive loop con-
dition can be used to verify whether a given clock period T
is feasible. This concept has been applied in [35] for clock
schedule optimization, in [36] to determine the skew range
in static timing analysis, in [37] for clock skew synthesis, and
in [38] for statistical timing verification of circuits using level-
sensitive latches. In the following sections, we will explain
a fast method based on parametric graph transformation and
pruning techniques to calculate the statistical minimum clock
period without enumerating all the loops in the graph.

III. STATISTICAL TIMING ANALYSIS AND
CRITICALITY COMPUTATION

In this section, we first explain the concept of comput-
ing the statistical minimum clock period from the constraint
graph of a circuit using parametric graph transformations in
Sections III-A and III-B. The basic idea of using these trans-
formations was first introduced in [39] for statistical timing
analysis of latch-controlled circuits. The challenges in apply-
ing these transformations to large graphs will be addressed
by several techniques in Section IV. More importantly, we
define the sequential criticality considering timing compensa-
tion between sequential stages in Section III-C. This concept
is a new layer of criticality above the criticality definitions
in [5], [25], and [27].

In the following discussion, we assume that each flip-flop
has an individual clock tuning element, for simplification. The
case that tuning elements are shared by multiple flip-flops can
be modeled easily using the cluster method in [23].

A. Defining Tm Using Constraint Graph

In Section II, we have discussed that the system of differ-
ence constraints formed by (2), (4), and (5) is equivalent to
the condition that the constraint graph has no positive loops.
In case of static timing analysis, this condition can be verified
using the Bellman–Ford algorithm for a given clock period.
When process variations are considered, however, timing anal-
ysis becomes more complex because delays are represented
by random variables. In the proposed method, we compute
the statistical minimum clock period Tm for such a circuit by
graph transformation while keeping the clock period T as an
unknown variable. The resulting Tm is a random variable from
which the yield at any given clock period can be calculated
easily.

For convenience, we write the edge weights in the constraint
graph into a general form wij − kijT . For setup edges specified
by (2), kij = 1 and wij = wij; for hold edges specified by (4),
kij = 0 and wij = wji; for range edges (5), kij = 0 and wij = 0
or wij = −ri. For hold edges, we have switched the indexes
so that the edge with a weight in the general form always has
the direction from i to j. Assuming that the clock period is
still unknown, we can express the nonpositive loop condition
exemplified by (6) using edge weights in the general form as

wl =
∑

i,j

(
wij − kijT

) =
∑

i,j

wij −
∑

i,j

kijT ≤ 0 (9)

where l is the index of the loop, wl is the weight of the loop,
and the sum computation is applied over all edges on the loop.

1788 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 11, NOVEMBER 2015

According to the definition of wij − kijT , kij is equal to
0 or 1. For loop l, if the sum of the coefficients

∑
i,j kij is

zero, there is no setup edge on the loop. In this case, (9) is
a condition which only affects the yield of the circuit due to
hold time constraints, but it has no effect on the minimum
clock period. If

∑
i,j kij > 0, the loop l contains setup edges

and the constraint (9) specifies a lower bound for the clock
period T as

Tl =
∑

i,j

wij

/∑

i,j

kij ≤ T (10)

where Tl is called loop constraint in the following discussion.
The constraint (10) from a loop creates a lower bound for

the feasible clock period. If all loops in the constraint graph
are considered, the minimum clock period Tm for the circuit
can be computed as

Tm = max
l∈L

Tl (11)

where L is the set of all loops in the constraint graph except
those that only include hold or range edges. The loops of the
latter type meet the condition

∑
i,j kij = 0 and are denoted by

the set L̄. Thereafter, the constraints (9) from these loops can
be merged as

max
l∈L̄

⎧
⎨

⎩

∑

i,j

wij

⎫
⎬

⎭
≤ 0. (12)

Because this variable only affects the yield of the circuit and
its computation is similar to (11), we will focus only on the
discussion of computing the minimum clock period Tm in the
following.

To compute the minimum clock period Tm from all loops
using (11) and the constraint in (12) directly requires that Tl
from every loop should be extracted. Obviously it is impracti-
cal to enumerate all these loops due to their prohibitive number
in a large graph. In the following, we will discuss three basic
graph transformation operations to unroll loops gradually and
extract the loop constraints in the form of Tl at the same time.

B. Computing Tm Using Graph Transformation

Instead of enumerating all loops in the constraint graph, we
compute Tm in (11) using an iterative method based on graph
transformation to capture the loop constraints Tl in (10). Three
basic graph transformation operations are used in the proposed
method: self-loop removal, serial merge, and parallel merge.
Here, a self-loop is formed by only one edge starting and
ending at the same node, while a general loop may contain
a chain of edges. Assume that the weight of the edge that
forms a self-loop at node i is wii − kiiT . The nonpositive loop
constraint explained in the preceding section can be written as

wii − kiiT ≤ 0 (13)

and thus be transformed to

wii/kii ≤ T, kii > 0 (14)

wii ≤ 0, kii = 0. (15)

For example, the self-loop with the weight w11 − T at node 1
in Fig. 2(b) requires that T ≥ w11 while the self-loop with
the weight w11 only constrains the yield. The self-loops are
removed from the constraint graph right away once they appear
and the corresponding constraints are merged in (11) and (12),
respectively.

Fig. 3. Serial merge operation. Direct edges are created after node v is
removed. New edge weights are calculated as the sums of the former weights.

The self-loops are removed and need not to be considered
again in capturing the constraints from other loops, because the
extracted lower bounds in the form of (14) or (15) guarantee
that the weight of the edge in a self-loop is not positive, so that
the weights of other loops including this edge cannot increase
compared with the case that the self-loop is not included. For
example, in Fig. 2(b) there is a loop formed by the setup edge
from node 3 to 1, then the self-loop with weight w11 −T , then
the hold edge from 1 to 2 and the setup edge from 2 to 3. If
the clock period T is not less than w11, the timing constraint
is guaranteed implicitly if the constraint from the loop without
the edge forming the self-loop can be met.

After removing self-loops, a typical structure in the con-
straint graph is illustrated on the left side of Fig. 3. The serial
merge operation removes node v from this structure and cre-
ates direct edges between each predecessor and each successor
of node v. The weight of a new edge is equal to the sum of
the weights of the edges from which the new edge is con-
structed. Therefore, the constraint from any loop that passes
through node v is not affected. The new weight is also in the
general form wij − kijT , so that the serial merge operation can
be applied iteratively.

In the serial merge operation, a predecessor node and a
successor node may be the same. For example, if we apply
the serial merge operation to node 1 in Fig. 2(b) after all
original self-loops are removed, a new self-loop is constructed
at node 2 due to the setup edge from node 2 to 1 and the hold
edge from 1 to 2, with edge weight w21 − T + w21. This self-
loop is immediately removed from the graph during the graph
transformation and the timing constraint T ≥ w21+w21 is cap-
tured and merged to Tm using (11). Because the serial merge
operation creates direct edges between predecessor and suc-
cessor nodes iteratively, the newly created and then removed
self-loops actually contain the sum of the edge weights from
the original constraint graph. In other words, the original loops
in the graph are collapsed by graph transformation and their
loop constraints are captured by self-loops eventually.

After each serial merge operation the number of nodes in
the constraint graph is reduced by 1, but many new edges may
be created in the graph, because in the worst case m × n new
edges could be created for the node v with m predecessors
and n successors. Usually, this is far larger than the number
of the removed m + n edges, thus, causing the edge number
in the graph to increase very quickly during the transforma-
tion. Actually applying the serial merge operation repeatedly
to capture all loop constraints without further pruning is equiv-
alent to enumerating all the loops in the graph directly, which
is very time-consuming for a large constraint graph. To solve
this problem, we will apply various pruning techniques to be
discussed in Section IV to reduce the number of edges in each
iteration.

Besides the serial merge operation, we apply the paral-
lel merge operation to reduce the number of edges further.

LI AND SCHLICHTMANN: STATISTICAL TIMING ANALYSIS AND CRITICALITY COMPUTATION 1789

Algorithm 1: Computing the Minimum Clock
Period Tm From the Constraint Graph Using Graph
Transformation
L1 G: the constraint graph created from (2), (4) and (5);
L2 ν, νi, νj: nodes involved in graph transformation operations;
L3 N: the number of nodes in the original constraint graph.
L4 foreach node ν in the constraint graph G do
L5 remove_self_loops (ν);
L6 update_Tm ();
L7 end
L8 for k=1 to N do
L9 prune_edges (G);

L10 ν=select_node (G);
L11 serial_merge (ν);
L12 foreach predecessor node νi of ν do
L13 remove_self_loops (νi);
L14 update_Tm ();
L15 foreach successor node νj of ν do
L16 if there exist parallel edges connecting nodes νi and

νj then
L17 parallel_merge (νi, νj);
L18 end
L19 end
L20 end
L21 end

Fig. 4. Parallel merge operation. Edges connecting the same nodes and having
the same coefficients of T are merged. The new edge weight is computed as
the maximum of the former edge weights. In this case, −k1 is equal to −k2.

In the constraint graph, if there are multiple edges between
two nodes, these edges are called parallel edges. For exam-
ple, between nodes 1 and 3 in Fig. 2(b) there are two sets of
parallel edges. Additionally, parallel edges may also be cre-
ated by the serial merge operation. For example, if node 1 in
Fig. 2(b) is removed by the serial merge operation, new par-
allel edges appear between nodes 2 and 3. These new edges
may also have the same coefficient kij of T , so that they can
be merged to reduce the number of edges, by the operation
called parallel merge and illustrated in Fig. 4. If the coeffi-
cients −k1 and −k2 of T in the weights of the two parallel
edges in Fig. 4 are equal, the first two edges can be merged
into one edge, whose weight is computed as the maximum
of two former edge weights. If these two coefficients are not
equal, we cannot merge the two parallel edges because T is
kept as an unknown variable to catch its lower bounds con-
strained by loops so that we cannot compare the weights of
the two edges directly. Similar to the serial merge operation,
parallel merge operation does not affect the constraints from
the weights of loops that pass through i and j, because the
maximum weight of the loops through the merged edges is
maintained by the new edge.

Applying the graph operations discussed above iteratively,
we can capture all loop constraints and compute the min-
imum clock period Tm by Algorithm 1. At the beginning,
the algorithm removes all original self-loops in L4–L7 to
reduce the number of edges. In each of the following iter-
ations, a node is removed using the serial merge operation
denoted by serial_merge (ν) where ν is the node selected by

Fig. 5. Critical paths in the presence of clock tuning elements whose tuning
ranges are up to 3. The paths with the delays 6 instead of the path with the
delay 8 are critical.

the function select_node (G) from the constraint graph G. The
function remove_self_loops (ν) removes edges that form self-
loops at node ν. These self-loops may exist in the original
constraint graph or are results from merging the edges on the
loops by iterative serial merge operations. For each of these
self-loops the constraint in the form of (10) is computed and
Tm is updated by the function update_Tm () using (11). After
each serial operation, only checking the nodes that are the
predecessors of the removed node at L12 is enough, since a
self-loop can only be formed when the predecessor and suc-
cessor of the removed node are the same. After each serial
merge operation, parallel merge operations are applied to com-
press edges in the graph further. The algorithm needs to run
N iterations, where N is the number of the nodes in the orig-
inal constraint graph. The constraints from all the loops are
captured when eventually all of the nodes are deleted.

Algorithm 1 only shows the basic concept of applying graph
transformation operations. In spite of the self-loop removal
and parallel merge operations, the number of edges in the
constraint graph may still increase very fast. To solve this
problem, we apply pruning techniques denoted by the func-
tion prune_edges (G) and discuss them as well as the function
select_node (G) used to select the next candidate for the serial
merge operation in Section IV.

C. Computing Criticalities Considering Clock
Tuning Elements

For circuit optimization the timing analysis tool should
report a set of gates that are critical to the circuit perfor-
mance. The probability that a gate delay affects the circuit
performance is called criticality [5], [25], [27]. Because clock
tuning elements allow the path delays to compensate each
other across flip-flops, critical paths in such circuits may span
more than one stage. An example of these critical paths is
shown in Fig. 5, where the inverters represent combinational
paths with delays above them. The ranges of the clock tuning
elements are 3. In this example, we use deterministic delays to
show the basic idea. In real circuits, process variations expand
the delays to statistical distributions, which we discuss right
after explaining this example.

In Fig. 5, if the clock tuning elements are not considered, the
critical path is between flip-flops 1 and 2. However, the clock
tuning element at flip-flop 2 allows a minimum clock period
of 5 at this stage if the intentional skew is configured to 3.
On the contrary, the minimum clock period constrained by the
paths between flip-flops 4 and 6 is still 6, because the change
of the clock skew to flip-flop 5 invariably increases the clock
period constrained by one of these two combinational paths.
Therefore, the paths between flip-flops 4 and 6, though not
having the largest combinational delay in the circuit, become
the critical paths.

To capture the critical paths in the presence of clock tuning
elements, we first define the criticalities for loops and edges in
the constraint graph. Thereafter, the concept in [25] and [26]

1790 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 11, NOVEMBER 2015

is extended to include this information into the computation of
criticalities for combinational gates. Note here, other criticality
computation methods such as [27] can also be extended by
incorporating the loop constraints similarly.

According to (11), the circuit performance is constrained
by the loop constraints Tl from all the loops in the constraint
graph. Because edge weights are random variables in real
circuits, any loop has a probability to dominate the circuit
performance. The probability that a loop l is critical is thus
defined as

cl = prob{Tl ≥ Tm} (16)

where Tm is defined in (11). Because Tm is the maximum of the
loop constraints, the definition of cl in (16) is the probability
that the loop constraint Tl is not smaller than any constraints
from other loops. The larger cl is the more the loop l affects
the circuit performance. Therefore, cl is called loop criticality
for loop l and a loop with a large cl is a critical loop. The
edges on a critical loop are candidates for optimization.

In the constraint graph an edge may be on multiple loops.
If any of these loops dominates the circuit performance, the
edge is critical. Therefore, for an edge e representing the com-
binational delay between a pair of flip-flops, the sequential
criticality is defined as

ce = prob

⎧
⎨

⎩

∨

l∈Le

(Tl ≥ Tm)

⎫
⎬

⎭
(17)

= prob

⎧
⎨

⎩
¬

⎛

⎝
∧

l∈Le

(Tl < Tm)

⎞

⎠

⎫
⎬

⎭
(18)

= prob

{
¬

(
max
l∈Le

{Tl} < Tm

)}
(19)

= prob

{
max
l∈Le

{Tl} ≥ Tm

}
(20)

where Le is the set of loops across e and maxl∈Le{Tl} is the
maximum of the constraints from all these loops. ∧ means
logic and, ∨ logic or, and ¬ logic not.

An edge in the constraint graph, if not connected to the root
node, corresponds to a combinational delay between a pair of
flip-flops in the circuit. In the following, we will discuss the
definition of criticalities for combinational gate delays con-
sidering the effect of clock tuning elements. The discussion
will focus on maximum combinational delays constrained by
setup time constraints (2). The criticalities corresponding to
hold time constraints (4) can be computed similarly.

The sequential criticality above indicates whether the maxi-
mum delay of combinational paths between a pair of flip-flops
is critical. In statistical timing analysis, it is often required to
calculate the probability that a gate is on a critical path for cir-
cuit optimization, as in [5], [25], and [27]. In the following,
we explain how the sequential criticality is incorporated into
the definition of criticalities for gate delays, using the cut-set
concept in [25] and [26] as an example. Note that, the pro-
posed sequential criticality is an additional layer above the
existing definitions of criticality, and it can be combined with
any of the methods in [5], [25], and [27].

The cutset concept in [25] and [26] is introduced to define
the criticality of a gate in a combinational circuit. This concept
is illustrated in Fig. 6, where the paths in the combina-
tional circuit between flip-flops i and j can be partitioned

Fig. 6. Path partition for computing criticalities of combinational
delays [25], [26]. The gate delay is critical if the paths across it dominate
the other paths.

into two sets: Pg and Pḡ. Pg contains the paths going through
the gate g; Pḡ contains all the other paths between i and j.
The gate delay is critical if the path with the maximum delay
passes it, that is to say, the critical path belongs to Pg. The
maximum path delay dPg from Pg can be computed by

dPg = dig + dg + dgj (21)

where dig is the maximum delay from i to the input of g, and
dgj is the maximum delay from the output of g to j. dg is
the gate delay. Therefore, the probability that the gate delay
is critical can be defined as

cno_tuning
g = prob

{
dPg ≥ dPḡ

}
(22)

= prob
{
dPg ≥ max

{
dPg , dPḡ

}}
(23)

= prob
{
dPg ≥ dij

}
(24)

where dPḡ is the maximum path delay from Pḡ; dij is the max-
imum delay of all paths between i and j. Note that, (22)–(24)
are valid only under assumption of an exact statistical maxi-
mum function [26].

In the circuit, the gate g may be on the combinational
paths between many pairs of flip-flops, corresponding to a
set of edges, written as Eg, in the constraint graph. For
example, in Fig. 2(a), the NOR gate connected directly to
the output of flip-flop 2 is on the combinational paths from
flip-flop 2 to flip-flops 1, 3, and itself, respectively. If any
of these paths is critical, the gate is a critical gate. By
combining (17)–(20) and (24), the criticality of a gate delay
in the presence of clock tuning elements is defined as

cg = prob

⎧
⎨

⎩

∨

e∈Eg

(
max
l∈Le

{Tl} ≥ Tm ∧ dPg ≥ dij

)
⎫
⎬

⎭
(25)

= prob

⎧
⎨

⎩

∨

e∈Eg

(
0 ≥ max

{
Tm − max

l∈Le
{Tl}, dij − dPg

})
⎫
⎬

⎭

(26)

where edge e is between nodes i and j in the constraint graph,
and Le is the set of loops containing edge e in the graph.

Let, Ce = max{Tm − maxl∈Le{Tl}, dij − dPg}. Then (26) can
be rewritten as

cg = prob

⎧
⎨

⎩

∨

e∈Eg

(0 ≥ Ce)

⎫
⎬

⎭
(27)

= prob

⎧
⎨

⎩
¬

⎛

⎝
∧

e∈Eg

(Ce > 0)

⎞

⎠

⎫
⎬

⎭
(28)

= prob

{
¬

(
min
e∈Eg

{Ce} > 0

)}
(29)

= prob

{
min
e∈Eg

{Ce} ≤ 0

}
. (30)

LI AND SCHLICHTMANN: STATISTICAL TIMING ANALYSIS AND CRITICALITY COMPUTATION 1791

To compute the criticalities, several variables
in (17)–(20) and (25)–(30) should be known. The mini-
mum clock period Tm can be computed using Algorithm 1.
The path delays dij and dPg can be computed using an SSTA
engine as in [25] and [26]. The computation of maxl∈Le{Tl}
for an edge e in the constraint graph needs to trace the loops
containing the edge e and is explained in the following by
extending Algorithm 1.

In Algorithm 1, the function remove_self_loops () deletes
self-loops and updates Tm with the newly computed Tl
using (11). These loops are either in the original graph, or
created from multiple edges by the serial and parallel merge
operations. In Algorithm 1, we only keep the weights of the
edges during the iterations. Consequently, we have no infor-
mation to identify the original edges from which a new lower
bound Tl is generated, so that we cannot update maxl∈Le{Tl}
for individual edges. To solve this problem, we maintain an
edge tracing list for each new edge to trace the edges from
which the new edge is created. When two consecutive edges
are replaced by a new edge during the serial merge opera-
tion, the edge tracing lists maintained for the two replaced
edges are combined together to construct the new edge list.
Because the edges in the graph may have different edge tracing
lists, the parallel merge operation in Fig. 4 cannot be applied
directly even if the edge weights have the same coefficients
of T , because, we need to keep separate edge records so that
we can trace back to the original edges when new self-loop
constraints are extracted. This limitation increases the num-
ber of edges during the graph transformation and leads to a
long runtime. In Section IV, we will explain how to adapt the
parallel merge operation to handle edge tracing lists. In the
iterations, each time when a self-loop is formed, the loop is
removed and the loop constraint Tl defined in (10) is updated
into the random variable holding maxl∈Le{Tl} for each edge in
the edge tracing list. After the iterations are finished, all loop
constraints are extracted and the loop constraint maxl∈Le{Tl}
for each original edge is computed, so that the criticality for
gate delays defined in (30) can be calculated.

The basic concept of criticality computation is summarized
in Algorithm 2. The main structure of this algorithm is similar
to that of Algorithm 1 because they both capture the nonposi-
tive constraints from loops. The difference is that Algorithm 1
updates the extracted constraints into Tm by the function
update_Tm () using (11), but in L8–L10 and in L21–L25
Algorithm 2 updates the constraints into the random vari-
ables holding maxl∈Le{Tl} for individual edges that contribute
to the weight of the removed self-loop, using the function
update_loop_constraint (). After the iterations L12–L32 are
finished, we have the loop constraints maxl∈Le{Tl} for all the
edges. Thereafter, the criticalities for gate delays are calculated
using (30) in L33–L35, where dij and dPg are calculated for the
combinational paths corresponding to edge e. In this process,
we only need to consider the edges with the sequential criti-
cality ce larger than 0, because other edges are dominated by
these edges and thus do not affect the minimum clock period.

IV. ACCELERATION TECHNIQUES AND DISCUSSION

In computing the minimum clock period and criticalities,
the edges in the constraint graph are transformed as shown
in the main iterations of Algorithms 1 and 2. By connect-
ing the predecessors and successors of a node directly, the
serial merge operations in the iterations actually unroll all

Algorithm 2: Computing Criticalities of Gate Delays
by Edge Tracing
L1 G: the constraint graph created from (2), (4) and (5);
L2 ν, νi, νj: nodes involved in graph transformation operations;
L3 ε, εi, εj: edges involved in criticality computation;
L4 N: the number of nodes in the original constraint graph.

L5 Calculate Tm using Algorithm 1;

L6 foreach node ν in the constraint graph G do
L7 remove_self_loops (ν);
L8 foreach removed edge ε do
L9 update_loop_constraint (ε);

L10 end
L11 end
L12 for k=1 to N do
L13 prune_edges (G, Tm);
L14 ν=select_node (G);
L15 serial_merge (ν);
L16 foreach new edge ε created from the successive edges εi and

εj by serial merge operation do
L17 update_tracing_lists (ε, εi, εj);
L18 end
L19 foreach predecessor νi of ν do
L20 remove_self_loops (νi);
L21 foreach removed edge ε in a self-loop do
L22 foreach edge εi in the tracing list of ε do
L23 update_loop_constraint (εi);
L24 end
L25 end
L26 foreach successor node νj of ν do
L27 if there exist parallel edges connecting nodes νi and

νj then
L28 parallel_merge (νi, νj);
L29 end
L30 end
L31 end
L32 end
L33 foreach edge ε with the sequential criticality cε > 0 do
L34 compute_combinational_gate_criticality ();
L35 end

loops to capture the nonpositive constraints. Without further
improvements, these algorithms may be very time-consuming
due to the large number of loops in the constraint graph. In
this section, we discuss implementation techniques to enhance
Algorithms 1 and 2 for better performance.

A. Eliminating Edges Using Ranges of Clock
Tuning Elements

The first technique, we use is to remove the edges that are
dominated by other edges in the constraint graph. These edges
have small weights so that any configuration of the clock
tuning elements does not make them critical. This idea has
been used in [22] for post-silicon configuration. In this paper,
we extend it to handle statistical delays and apply it during
iterations to process edges formed by the serial merge opera-
tions. These new edges represent the concatenated edges on the
paths in the original constraint graph, so that they are potential
candidates to be pruned due to the delay compensation across
multiple flip-flop stages.

Consider the edge between flip-flops 2 and 3 in Fig. 5,
where the ranges of the tuning elements are 3. In any delay
configuration of these tuning elements, the path connecting
these flip-flops does not affect the minimum clock period, so
that we can remove it before starting the graph transforma-
tion. Now, we consider another example in Fig. 2(b). If the
weight w23 − T of the setup edge from node 2 to 3 is smaller
than −r2, the setup time constraint from this edge can never be

1792 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 11, NOVEMBER 2015

violated, because the largest possible configurable clock skew
to flip-flop 2 is −r2 and the smallest one to flip-flop 3 is 0.
In the constraint graph, the edge from node 2 to the root node
with the weight −r2 is created according to the former range
constraint, and the edge from the root node to node 3 with the
weight 0 is created according to the latter range constraint.
If w23 − T < −r2 holds as discussed above, the setup edge
is always dominated by the concatenated edges from node
2 to the root node with the weight −r2 and from the root
node to node 3 with the weight 0. Therefore, the setup edge
actually makes no contribution to the minimum clock period.
Consequently, we can remove this edge safely without losing
any accuracy in statistical timing analysis. In the general case,
an edge with the weight wij − kijT can be removed if it meets

wij − kijT < −ri (31)

where ri is the largest configurable delay of the clock tuning
element attached to the source node i of the edge.

In the condition (31), wij, kij, and ri are already known.
Because a feasible clock period T should always be not less
than the minimum clock period Tm, that is, T ≥ Tm, we check
the condition (31) using

wij − kijTm < −ri (32)

which is a sufficient condition of (31). In the iterations of
Algorithm 1, Tm increases gradually when new loop con-
straints are merged into it using (11). Therefore, the edge
elimination technique is more effective in pruning edges in
the later iterations of Algorithm 1 and in the computation of
criticalities in Algorithm 2. Since both wij and Tm are random
variables, the condition (32) can only hold with a probability as

prob
{
wij − kijTm < −ri

}
. (33)

If this pruning probability for an edge approximates 1, for
example, if it is larger than 0.98 as in our experiments, we
remove the edge from the constraint graph to reduce runtime.
This technique is implemented in the function prune_edges ()
in Algorithms 1 and 2.

B. Pruning Edges by Parallel Dominance

In the serial merge operation in Fig. 3, direct edges are cre-
ated between the predecessors and successors of the removed
node. After many iterations, a large number of parallel edges
may appear. But the parallel merge operation in Fig. 4 can
only handle parallel edges with the same coefficients of T .
To reduce the number of edges in the constraint graph further,
we compare the weights of parallel edges and remove the edge
whose weight is dominated by the other edges.

Consider two edges with the weights w1−k1T and w2−k2T
where k1 	= k2. If the weight of the second edge is dom-
inated by the weight of the first edge, the second edge is
removed from the constraint graph. The removal condition can
be expressed as

w1 − k1T > w2 − k2T. (34)

In case of k2 − k1 > 0, we can transform (34) into

T > (w2 − w1)/(k2 − k1). (35)

Similar to the computation in (31)–(33), we substitute Tm for
T to create a sufficient condition of (35) as

Tm > (w2 − w1)/(k2 − k1). (36)

Fig. 7. Parallel pruning. The edge with the weight w2−k2T can be removed if
it is statistically dominated by the edge with the weight w1−k1T . This removal
shall not affect the accuracy of Tm and the lower bounds Tl in (17)–(30) of the
edges that are on the loops passing the dominated edge to guarantee correct
criticalities.

Because edge weights are random variables, the comparison
can only be performed statistically. Therefore, we compute the
probability of parallel dominance as

prob{Tm > (w2 − w1)/(k2 − k1)}. (37)

If this probability is close to 1, the second edge is dominated
by the first edge so that it can be removed from the constraint
graph.

The parallel pruning technique removes edges whose delays
are statistically dominated by others. In the following, we
explain this technique with more details. In the example illus-
trated in Fig. 7, two parallel edges form loops with the edge
having the weight w3 − k3T representing the paths from node
j to i. Assume that the edge with the weight w2 −k2T is domi-
nated by the edge with the weight w1 −k1T and removed from
the graph. Furthermore, assume that in the current iteration in
Algorithm 1 the lower bound of T created by the extracted
loop constraints is Tc, which is the current value of Tm before
the loop constraints from the two loops in Fig. 7 are processed.
Let, T1 = (w1 + w3)/(k1 + k3) and T2 = (w2 + w3)/(k2 + k3).
If the only constraint from the dominating edge is extracted,
the new constraint for T can be written as

T ≥ max{Tc, T1} = T ′. (38)

Thereafter, if the constraint from the dominated edge would
be included, the constraint for T becomes

T ≥ max
{
T ′, T2

}
. (39)

This augmented constraint should be equivalent to (38) so that
the second edge can be removed safely. A sufficient condition
for this requirement is T ′ > T2, which we will deduce from
the dominance condition (34) and the condition k2 − k1 > 0
for (36). From (38), we have

T ′ ≥ T1 = (w1 + w3)/(k1 + k3) ⇔ k1T ′ + k3T ′ ≥ w1 + w3.

(40)

If the edge pruning technique is applied in Algorithm 1 to
calculate the minimum clock period, the new loop constraints
are updated into Tm using (11) gradually. At the moment of
edge pruning, the variable Tm used in the condition (36) is
actually Tc in (38), so that we can write the pruning condition
in (36) as

T ′ ≥ Tc > (w2 − w1)/(k2 − k1) ⇔ k2T ′ − k1T ′ > w2 − w1.

(41)

Adding both sides of (40) and (41), respectively, we have

k2T ′ + k3T ′ > w2 + w3 ⇔ T ′ > (w2 + w3)/(k2 + k3) = T2.

(42)

Comparing (39) and (42) we know that (36) is a sufficient
condition for the safe removal of the dominated edge.

LI AND SCHLICHTMANN: STATISTICAL TIMING ANALYSIS AND CRITICALITY COMPUTATION 1793

According to (40)–(42), we can apply the pruning technique
in Algorithm 1 to calculate Tm. When computing criticalities of
gate delays from (17) to (30) using Algorithm 2, the minimum
clock period Tm has been calculated by Algorithm 1 in L5 of
Algorithm 2. Therefore, we cannot assume that Tm used in (36)
is equal to Tc. Instead, we use (25) to explain the pruning
technique in criticality computation similar to (38)–(42). The
condition maxl∈Le{Tl} ≥ Tm in (25) can be rewritten as

max

{
max

l∈Le\l1,l2
{Tl} − Tm, T1 − Tm, T2 − Tm

}
≥ 0 (43)

where T1 and T2 are the loop constraints from the loops formed
by the two parallel edges and the third edge in Fig. 7, respec-
tively. Let, dc = max{maxl∈Le\l1,l2{Tl}−Tm, T1 −Tm}, and we
have

dc ≥ T1 − Tm = (w1 + w3)/(k1 + k3) − Tm ⇔ (44)

(k1 + k3)dc ≥ (w1 + w3) − (k1 + k3)Tm. (45)

From (36), we can deduce

(k2 − k1)Tm > w2 − w1. (46)

Adding both sides of (45) and (46) we have

(k1 + k3)dc > (w2 + w3) − (k2 + k3)Tm. (47)

Because Tm is the maximum of all loop constraints, it is no
smaller than maxl∈Le\l1,l2{Tl} and T1, so that we can deduce
that dc is not greater than 0. Therefore, (47) can be written as

0 > (w2 + w3) − (k2 + k3)Tm ⇔ (48)

Tm > (w2 + w3)/(k2 + k3) = T2. (49)

Thus, we can state that with the condition (36) the loop con-
taining the dominated edge with the weight w2 −k2T in Fig. 7
does not affect the minimum clock period and also does not
contribute to the criticalities of gate delays.

The parallel pruning technique above is implemented in the
function prune_edges () in Algorithms 1 and 2. During the
iterations, the serial merge operations create new edges repre-
senting paths in the original graph. Therefore, the new edge
weights are balanced between consecutive stages and exhibit
a tendency of being dominated by other parallel edges, so that
they can be handled effectively by the parallel pruning tech-
nique. This can also be explained by the fact that in most cases
a large combinational path delay in the circuit needs not to be
compensated by flip-flop stages far away.

The pruning technique is applied in each iteration of
Algorithm 2 to trim edges. The overall result is that only the
critical part of the graph is unrolled during the iterations so
that the runtime can be reduced. Moreover, the pruning tech-
nique also reduces redundant loops created by the serial merge
operation, as exemplified in Fig. 8 where the edge weights are
denoted as shown for simplification. In this graph, if node 1
is removed first by the serial merge operation, an edge with
the weight d21 + d13 is created from node 2 to node 3 in the
graph on the right. If node 2 is removed thereafter, this edge
is merged with the edge from 4 to 2 and a new edge with the
weight d41 + d12 + d21 + d13 will be created. The new edge
is dominated by the edge from node 4 to 3 with the weight
d41 + d13 because d12 + d21 is not greater than 0 and this
constraint has been captured by the self-loop at node 2. This
example shows that although the serial merge operation does
not miss any loop in the graph, it may create redundant edges.

Fig. 8. Redundant edge created by serial merge operation. The edges between
nodes 1 and 2 lead to a redundant edge from node 2 to 3 after node 1 is
removed by the serial merge operation.

These edges are then pruned under the condition of parallel
dominance discussed above, so that the number of the edges
in the constraint graph does not increase unnecessarily.

C. Merging Tracing Lists in Computing Criticalities

In computing criticalities of gate delays using Algorithm 2,
for each newly created edge we maintain an edge list to trace
edges from which the new edge is created. Each time when
a self-loop is removed, the loop constraint of each edge in
the tracing list is updated in L21–L25 of Algorithm 2. The
serial merge operation creates direct edges between predeces-
sors and successors of the removed node. For such a new edge
the traced edges in the lists of the two replaced edges are
merged into the new tracing list, unless a self-loop is formed
and the loop constraints for the traced edges are updated. The
operation of merging edge tracing lists is implemented in the
function update_tracing_lists () in L16–L18.

For parallel edges, we apply the pruning technique dis-
cussed above to reduce the number of edges in the function
prune_edges (). Specifically, if the coefficients of T in the edge
weights of parallel edges are equal, we can compress them
into one edge directly using the parallel merge operation par-
allel_merge () in L26–L30 of Algorithm 2. In this case, the two
parallel edges with the weights wij1 −k1T and wij2 −k2T can be
merged into a new edge. The new edge weight is calculated as
max{wij1, wij2} − k1T because k1 = k2. When computing the
criticalities, however, the parallel edges may have different
edge tracing lists and the new edge weight cannot be used for
the traced edges from any of the lists, because max{wij1 , wij2}
is different from wij1 and wij2 which are calculated across dif-
ferent loops. To solve this problem, we maintain a random
variable for each traced edge. In the above case, suppose we
have an edge e in the tracing list of the first merged edge. After
the parallel operation, weight difference max{wij1 , wij2} − wij1
is added to the tracing variable of e. This variable represents
the difference between the weight of the new edge and the
weight of the edge replaced by the parallel merge operation.
When a self-loop is formed later, the loop constraint Tl for
edge e can be recovered by the edge weight of the self-loop
minus the accumulated weight difference for computing the
criticalities of gate delays.

D. Node Order During Graph Transformation

In Algorithms 1 and 2, the next node for the serial merge
operation is selected by the function select_node (). The order
of the selected nodes may affect the performance significantly.
If a node with m predecessors and n successors is removed by
the serial merge operation, m × n new edges may be created.
An extreme case is the root node, which has edges to and
from all the other nodes. If the root node is removed using

1794 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 11, NOVEMBER 2015

the serial merge operation, between any two nodes in the graph
two new edges are constructed. In a graph with many nodes,
it is impractical to process so many edges by further graph
transformation.

In a complex graph, although an optimal node processing
order that guarantees the minimal number of edges during
graph transformation may exist, to find this optimal order is
very difficult and, even if it is possible, consumes much run-
time. In the proposed method, we select the next node for the
serial merge operation heuristically. In each iteration, we select
the node with the smallest node connection, which is defined
as mi × ni for node i, where mi is the number of predecessors
of i and ni the number of successors of i. With this heuristic
method, the nodes that might lead to many new edges after
their removal, for example, the root node, are processed later.
The pruning techniques applied to the edges in the earlier iter-
ations may reduce the number of the edges in the graph so
that the overall runtime can be reduced. In implementation, an
ordered list of all the nodes in the graph is maintained. Each
time when a node is removed by the serial merge operation,
the node connections of the predecessors and successors of
the removed node are updated for refreshing the node order.
Therefore, the next node for transformation is always at the
head of the ordered list so that the runtime in node selection
can be reduced.

E. Discussion

In Section III, the timing constraints (2), (4), and (5) are
represented in a constraint graph. The existence of a solution
for the constraint set is equivalent to the condition that all
loops in the graph have no positive accumulated weights. To
capture the timing constraints from loops, we apply the graph
transformation operations explained in Section III iteratively.
The feasibility of this method can be explained by using a
sample in Monte Carlo simulation. For such a sample all the
methods discussed above are still valid so that we can use
them to calculate a minimum clock period for this sample.
With all samples together, we have the distribution curve of the
minimum clock period. From the statistical view, we can still
apply the proposed method with the same node order and the
same merge operations to calculate the minimum clock period.
The only difference is that we should substitute statistical max
and sum computations for the static counterparts. This is the
same reasoning for statistical timing analysis of combinational
circuits, where we use the same propagation algorithm but
statistical computations.

The equivalence between the difference constraints and the
graph representation is valid only when the ranges defined
in (5) take continuous values. If the ranges of clock tuning
elements are discrete as in many implementations, integer
linear programming should be used to calculate the exact
minimum clock period for each sample in Monte Carlo simu-
lation. However, integer linear programming works differently
with each sample of Monte Carlo simulation, for example,
the different searching directions in finding the optimal value.
Therefore, we cannot establish a closed-form formulation, and
thus, cannot find a general method to perform fast statistical
timing analysis in this case.

Instead of computing the exact minimum clock period Td
directly, the result Tm by assuming that all tuning elements
have continuous ranges is a lower bound of the clock period
of the case with discrete ranges, since all discrete configuration
values are also feasible in the continuous configuration space.

Assume that the interval of the discrete ranges of the clock
tuning elements is θ . Then Tm + θ is an upper bound for the
minimum clock period in the discrete case, because for each
solution of the continuous case we can move the delay of
each tuning element to the nearest lower integer value to find a
feasible discrete configuration that leads to the minimum clock
period not larger than Tm + θ . According to this discussion,
we can conclude these two bounds as Tm ≤ Td ≤ Tm + θ . In
reality, the interval of the ranges may be very small compared
with the clock period, so that a good approximation accuracy
can still be expected.

V. EXPERIMENTAL RESULTS

The discussed algorithms were implemented in C++ and
tested using a 2.67 GHz CPU. We used five large circuits,
s5378 to s38584, from the ISCAS89 benchmarks and five other
large circuits, mem_ctrl to des_perf, from TAU 2013 variation-
aware timing analysis contest [40] for our experiments.
Information about these circuits is shown in Table I, where ns
is the number of flip-flops and ng the number of logic gates.
The largest circuit in the experiments has more than 8K flip-
flops and 86K logic gates. For experiments, we assumed that
each flip-flop has a clock tuning element to test the efficiency
of the proposed method with large constraint graphs. In prac-
tice, these tuning elements are selectively inserted considering
circuit performance and area cost at the same time, e.g., using
the methods in [16] and [17]. The ranges of the clock tuning
elements were set to 1/8 of the clock periods from the original
circuits, roughly the range used in [14]. The logic gates in the
circuits were mapped to a library from an industry partner.
The standard deviations of transistor length, oxide thickness
and threshold voltage were set to 15.7%, 5.3%, and 4.4% of
the nominal values, respectively [41]. The gate delays were
generated using the method proposed in [3], in which spatial
correlation from global and local variations is decomposed by
principal component analysis. The resulting timing model is
in a linear form of independent random variables. We used the
method in [5] to compute the sum and maximum/minimum of
random variables.

To verify the accuracy of the proposed method in comput-
ing the minimum clock period, we ran Monte Carlo simulation
with 10 000 samples. For each sample, the minimum clock
period constrained by (2), (4), and (5) was computed using a
linear programming solver [42]. The distribution formed by all
the performance samples was compared with Tm computed by
the proposed method. The results are shown in Table I, where
Eμ is the relative error of the mean of the minimum clock
period Tm, defined as |μSSTA − μMC|/μMC, where μSSTA and
μMC are the means of the minimum clock period computed by
the proposed method and by Monte Carlo simulation, respec-
tively. Similar to Eμ, Eσ shows the accuracy of the standard
deviation of the clock period. ET2σ

shows the relative yield
error at the 2σ clock period from Monte Carlo simulation.
From Eμ, Eσ , and ET2σ

, we can see that the results of the
proposed method have good accuracy and the predicted yields
have not more than 0.5% error.

The major advantage of the proposed method is its effi-
ciency. The runtimes of the proposed method working on dif-
ferent benchmark circuits are shown in Table I with tp in sec-
onds, and the runtimes of Monte Carlo simulation are shown
as tm in hours. The speedup ratios of the proposed method
compared with Monte Carlo simulation are shown in the rt col-
umn. From this comparison, we can conclude that the proposed

LI AND SCHLICHTMANN: STATISTICAL TIMING ANALYSIS AND CRITICALITY COMPUTATION 1795

TABLE I
RESULTS OF STATISTICAL TIMING ANALYSIS AND CRITICALITY COMPUTATION

Fig. 9. Edge numbers during node removal. The numbers of edges exhibit
monotonic decrease due to pruning and merging techniques.

Fig. 10. Runtime trend in relation to circuit size. Runtime versus number
of (a) nodes and (b) edges.

method is at least four orders of magnitude faster than
Monte Carlo simulation. Since Monte Carlo simulation is the
only existing method available for statistical timing analysis of
circuits with clock tuning elements, this comparison demon-
strates the advantage of the proposed method and its appli-
cability to accelerate methods that depend on the results of
statistical timing analysis, for example, in circuit optimization.

The proposed method unrolls the loops in the constraint
graph using the serial merge operation, and parallel edges are
pruned and merged to reduce the number of edges in the graph.
In the worst case, the complexity of the algorithm is expo-
nential in the numbers of nodes and edges in the constraint
graph. The efficiency of the proposed method results from
the techniques in Section IV, where edges are pruned during
graph transformations. The effect of these heuristic techniques
depends on the circuit structure and gate delays, so that the
computational complexity cannot be presented in an accu-
rate mathematical form. To demonstrate the efficiency of the
proposed method, we show the trends of the edge numbers in
the constraint graphs of several test cases in Fig. 9. In all these

(a) (b)

Fig. 11. Performance and runtime in relation to ranges of clock tuning
elements. Circuit performance increases as the ranges are increased, but is
bounded by the loops formed by paths across flip-flops exclusively. Runtime
increases because the pruning techniques (33) and (37) become less effective
with a decreased Tm. (a) Performance and (b) SSTA runtime versus ranges
of clock tuning elements.

cases, the numbers of edges actually decrease monotonically,
since only the edges that affect the minimum clock period
are kept in the graphs due to edge pruning, thus, explaining
the much shorter runtime compared with Monte Carlo simu-
lation. To show the complexity trend of the proposed method,
we illustrate the runtimes of processing circuits with differ-
ent sizes regarding the numbers of nodes and edges in the
constraint graphs in Fig. 10(a) and (b), respectively. These dia-
grams show that the runtime of the proposed method increases
with the circuit size, but still remains in the acceptable range.
The complexity has a similar trend if different global and local
variations are considered, because gate delays are usually rep-
resented in the same form, e.g., linear or quadratic polynomial
of independent random variables.

Using clock tuning elements the performance of a circuit
can be improved, as explained in Section II. However, the per-
formance improvement is bounded because after the ranges
of clock tuning elements reach a threshold the circuit per-
formance is determined by the maximum average edge delay
across loops exclusively. This maximum average edge delay
does not change as the ranges of the clock tuning elements are
enlarged, so that the circuit performance cannot be improved
by further time borrowing. To show the relation between cir-
cuit performance and ranges of clock tuning elements, we
tested the circuit performances of some benchmark circuits
by setting the ranges of tuning elements ri in (5) from Tn/16
to 6Tn/16 with Tn/16 as interval, where Tn is the clock period
without considering the clock tuning elements. The trends of
the mean values of the minimum clock periods are shown
in Fig. 11(a). From this diagram, we can see that the clock

1796 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 11, NOVEMBER 2015

Fig. 12. Approximation accuracy of discrete Monte Carlo simulation.
The results from SSTA for the circuits having clock tuning elements with
continuous ranges are lower bounds for the discrete cases.

(a)

(b)

Fig. 13. Approximation and bounds of minimum clock periods of circuits
with discrete clock tuning ranges. The upper and lower bounds have good
accuracy of approximation, but are not bounds exactly due to the approxima-
tion in statistical computations. Bounds of (a) s38584 and (b) des_perf with
discrete clock tuning ranges.

period of s38584 decreases as the ranges of clock tuning
elements are enlarged. But the clock period of pci_bridge32
nearly has no change when the ranges of clock tuning elements
are larger than 3Tn/16, because in this case the constraints
from loops across flip-flops dominate the circuit performance.
In Fig. 11(b), the trends of the runtimes of the proposed
method with respect to different ranges of clock tuning ele-
ments are also shown. It is obvious that the runtimes increase
as the ranges of clock tuning elements are enlarged, because
the pruning techniques (33) and (37) become less effective
with a decreased Tm. However, even with this increase, the
absolute runtime of the proposed method is still small. For
example, the analysis of the largest case des_perf finished
within 50 s but the corresponding Monte Carlo simulation did
not produce the result even in days. Therefore, the proposed
method can be used to evaluate the relation between the min-
imum clock period and the ranges of clock tuning elements
efficiently, so that designers have the chance to evaluate trade-
offs between performance and die size of the tuning elements.

To verify the proposed criticality computation, we sam-
pled the constraint graph in each iteration of Monte Carlo
simulation. Then, we calculated the distances between nodes
in the constraint graph using the Bellman–Ford algorithm.
After this, each edge was checked whether the loop across
it determines the minimum clock period computed by linear
programming. The criticalities from Monte Carlo simulation
and the proposed method are compared and the results are
shown in Table I. Owing to the approximation in the statistical
computations of SSTA engines, the criticalities cannot be

calculated accurately. As pointed out in [25], the skewness
of the distribution, which is not considered by many SSTA
engines, may cause large inaccuracy in criticality computation.
Especially when the delays of critical paths are compared with
the minimum clock period of the circuit, the criticality is very
sensitive to the inaccuracy of the statistical approximations.
Nevertheless, because the purpose to compute criticalities is
to select the gates for optimization, we compare the sets of
critical gates selected by Monte Carlo simulation and the pro-
posed method. In Table I, the columns >0.3 and >0.1 show
the numbers of gate delays with criticalities larger than 0.3 and
0.1, respectively. The comparison of criticalities for des_perf
was not fulfilled in the experiment due to the unaffordable
runtime in Monte Carlo simulation. In Table I, nc is the num-
ber of gates identified by Monte Carlo simulation, and nm is
the number of gates which are not captured by the proposed
method. Ec is the maximum difference between the criticalities
of gates which are not captured by the proposed method. For
example, for s9234, in the 78 gates with criticalities larger than
0.3 four gates are not captured. In these four missing gates,
the maximum criticality difference compared with the critical-
ities computed by Monte Carlo simulation is 0.09. From this
comparison, we can conclude that the proposed method can
capture most of the critical gates, but it may still miss some
due to the approximation in statistical computations, though
the difference between the criticalities is not large. The run-
time comparison for computing criticalities is shown in the
last three columns of Table I. The acceleration ratio of the pro-
posed method to Monte Carlo simulation is still remarkable,
particularly for the large benchmark circuits.

In Section IV, we have discussed the upper and lower
bounds of the minimum clock period Td for circuits contain-
ing clock tuning elements with discrete ranges. If we assume
the ranges are continuous and apply the proposed method, the
resulting minimum clock period Tm is a lower bound of Td. In
addition, if we increase Tm by θ which is the discrete interval
of the ranges of the clock tuning elements, we then create an
upper bound for Td. In Fig. 12, we show the differences of
means and standard deviations of Tm and Td. Here, the discrete
adjustable range has eight steps. These differences shown in
the y-axis in percentage demonstrate a reasonable approxima-
tion of Tm to Td generally. In Fig. 13(a) and (b), the cumulative
distribution functions of Tm as the lower bound, Td as the result
of Monte Carlo simulation, and Tm +θ as the upper bound for
circuits s38584 and des_perf are shown, respectively. In these
two comparisons, both bounds are lower bounds for s38584
and upper bounds for des_perf, due to the approximation in the
max and sum computations in statistical timing analysis. But
these bounds all exhibit a reasonable approximation accuracy.

VI. CONCLUSION

In this paper, we propose a fast method to compute the min-
imum clock periods for circuits with post-silicon clock tuning
elements. The delays of these elements can be adjusted for
each individual chip after manufacturing to achieve the maxi-
mum performance. The proposed method applies serial merge
operations to unroll the loops in the constraint graph so that
nonpositive loop constraints can be captured by self-loops.
Parallel merge operations and pruning techniques are applied
to trim edges during iterations to reduce runtime. Criticalities
of logic gates are also calculated by tracing the edges on
critical loops. Experimental results confirm that the propose

LI AND SCHLICHTMANN: STATISTICAL TIMING ANALYSIS AND CRITICALITY COMPUTATION 1797

method is faster than Monte Carlo simulation by several orders
of magnitude while still maintaining good accuracy.

REFERENCES

[1] B. Li, N. Chen, and U. Schlichtmann, “Fast statistical timing analysis
for circuits with post-silicon tunable clock buffers,” in Proc. Int. Conf.
Comput.-Aided Design, San Jose, CA, USA, 2011, pp. 111–117.

[2] D. Blaauw, K. Chopra, A. Srivastava, and L. Scheffer, “Statistical tim-
ing analysis: From basic principles to state of the art,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 27, no. 4, pp. 589–607,
Apr. 2008.

[3] H. Chang and S. S. Sapatnekar, “Statistical timing analysis considering
spatial correlations using a single PERT-like traversal,” in Proc. Int.
Conf. Comput.-Aided Design, San Jose, CA, USA, 2003, pp. 621–625.

[4] K. Kang, B. C. Paul, and K. Roy, “Statistical timing analysis using
levelized covariance propagation,” in Proc. Design Autom. Test Europe
Conf., vol. 2. Munich, Germany, 2005, pp. 764–769.

[5] C. Visweswariah, K. Ravindran, K. Kalafala, S. Walker, and S. Narayan,
“First-order incremental block-based statistical timing analysis,” in Proc.
Design Autom. Conf., San Diego, CA, USA, 2004, pp. 331–336.

[6] V. Khandelwal and A. Srivastava, “A general framework for accurate sta-
tistical timing analysis considering correlations,” in Proc. Design Autom.
Conf., Anaheim, CA, USA, 2005, pp. 89–94.

[7] Y. Zhan et al., “Correlation-aware statistical timing analysis with non-
Gaussian delay distributions,” in Proc. Design Autom. Conf., Anaheim,
CA, USA, 2005, pp. 77–82.

[8] L. Zhang, W. Chen, Y. Hu, J. A. Gubner, and C. C.-P. Chen,
“Correlation-preserved non-Gaussian statistical timing analysis with
quadratic timing model,” in Proc. Design Autom. Conf., Anaheim, CA,
USA, 2005, pp. 83–88.

[9] Z. Feng, P. Li, and Y. Zhan, “Fast second-order statistical static timing
analysis using parameter dimension reduction,” in Proc. Design Autom.
Conf., San Diego, CA, USA, 2007, pp. 244–249.

[10] S. Bhardwaj, S. Vrudhula, and A. Goel, “A unified approach for full chip
statistical timing and leakage analysis of nanoscale circuits considering
intradie process variations,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 27, no. 10, pp. 1812–1825, Oct. 2008.

[11] H. Chang, V. Zolotov, S. Narayan, and C. Visweswariah, “Parameterized
block-based statistical timing analysis with non-Gaussian parameters,
nonlinear delay functions,” in Proc. Design Autom. Conf., Anaheim,
CA, USA, 2005, pp. 71–76.

[12] J. Singh and S. Sapatnekar, “Statistical timing analysis with correlated
non-Gaussian parameters using independent component analysis,” in Proc.
Design Autom. Conf., San Francisco, CA, USA, 2006, pp. 155–160.

[13] A. Lange et al., “Probabilistic standard cell modeling considering non-
Gaussian parameters and correlations,” in Proc. Design Autom. Test
Europe Conf., Dresden, Germany, 2014, pp. 1–4.

[14] S. Tam et al., “Clock generation and distribution for the first
IA-64 microprocessor,” IEEE J. Solid-State Circuits, vol. 35, no. 11,
pp. 1545–1552, Nov. 2000.

[15] P. Mahoney, E. Fetzer, B. Doyle, and S. Naffziger, “Clock distribution
on a dual-core, multi-threaded Itanium-family processor,” in Proc. Int.
Solid-State Circuits Conf., San Francisco, CA, USA, 2005, pp. 292–293.

[16] J.-L. Tsai, D. Baik, C. C.-P. Chen, and K. K. Saluja, “A yield
improvement methodology using pre- and post-silicon statistical clock
scheduling,” in Proc. Int. Conf. Comput.-Aided Design, San Jose, CA,
USA, 2004, pp. 611–618.

[17] J.-L. Tsai, L. Zhang, and C. C.-P. Chen, “Statistical timing analy-
sis driven post-silicon-tunable clock-tree synthesis,” in Proc. Int. Conf.
Comput.-Aided Design, San Jose, CA, USA, 2005, pp. 575–581.

[18] V. Khandelwal and A. Srivastava, “Variability-driven formulation for
simultaneous gate sizing and post-silicon tunability allocation,” in Proc.
Int. Symp. Phys. Design, Austin, TX, USA, 2007, pp. 11–18.

[19] K. Nagaraj and S. Kundu, “A study on placement of post silicon clock
tuning buffers for mitigating impact of process variation,” in Proc.
Design Autom. Test Europe Conf., Nice, France, 2009, pp. 292–295.

[20] A. Chakraborty et al., “Dynamic thermal clock skew compensation using
tunable delay buffers,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 16, no. 6, pp. 639–649, Jun. 2008.

[21] R. Ye, F. Yuan, and Q. Xu, “Online clock skew tuning for timing specu-
lation,” in Proc. Int. Conf. Comput.-Aided Design, San Jose, CA, USA,
2011, pp. 442–447.

[22] Z. Lak and N. Nicolici, “A novel algorithmic approach to aid post-silicon
delay measurement and clock tuning,” IEEE Trans. Comput., vol. 63,
no. 5, pp. 1074–1084, May 2014.

[23] Z. Lak and N. Nicolici, “On using on-chip clock tuning elements to
address delay degradation due to circuit aging,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 31, no. 12, pp. 1845–1856,
Dec. 2012.

[24] X. Li, J. Le, M. Celik, and L. Pileggi, “Defining statistical sensitivity
for timing optimization of logic circuits with large-scale process and
environmental variations,” in Proc. Int. Conf. Comput.-Aided Design,
San Jose, CA, USA, 2005, pp. 844–851.

[25] J. Xiong, V. Zolotov, N. Venkateswaran, and C. Visweswariah,
“Criticality computation in parameterized statistical timing,” in Proc.
Design Autom. Conf., San Francisco, CA, USA, 2006, pp. 63–68.

[26] J. Xiong, V. Zolotov, and C. Visweswariah, “Incremental criticality and
yield gradients,” in Proc. Design Autom. Test Europe Conf., Munich,
Germany, 2008, pp. 1130–1135.

[27] H. Mogal, H. Qian, S. Sapatnekar, and K. Bazargan, “Clustering based
pruning for statistical criticality computation under process variations,”
in Proc. Int. Conf. Comput.-Aided Design, San Jose, CA, USA, 2007,
pp. 340–343.

[28] J. Xiong, C. Visweswariah, and V. Zolotov, “Statistical ordering of cor-
related timing quantities and its application for path ranking,” in Proc.
Design Autom. Conf., San Francisco, CA, USA, 2009, pp. 122–125.

[29] D. Sinha, C. Visweswariah, N. Venkateswaran, J. Xiong, and V. Zolotov,
“Reversible statistical max/min operation: Concept and applications to
timing,” in Proc. Design Autom. Conf., San Francisco, CA, USA, 2012,
pp. 1067–1073.

[30] E. Takahashi, Y. Kasai, M. Murakawa, and T. Higuchi, “Post-fabrication
clock-timing adjustment using genetic algorithms,” IEEE J. Solid-State
Circuits, vol. 39, no. 4, pp. 643–650, Apr. 2004.

[31] S. Naffziger et al., “The implementation of a 2-core, multi-threaded
Itanium family processor,” IEEE J. Solid-State Circuits, vol. 41, no. 1,
pp. 197–209, Jan. 2006.

[32] J. Fishburn, “Clock skew optimization,” IEEE Trans. Comput., vol. 39,
no. 7, pp. 945–951, Jul. 1990.

[33] J. P. Fishburn, “Solving a system of difference constraints with variables
restricted to a finite set,” Inf. Process. Lett., vol. 82, no. 3, pp. 143–144,
2002.

[34] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to
Algorithms. Cambridge, MA, USA: MIT Press, 1990.

[35] N. Shenoy, R. K. Brayton, and A. L. Sangiovanni-Vincentelli, “Graph
algorithms for clock schedule optimization,” in Proc. Int. Conf. Comput.-
Aided Design, Santa Clara, CA, USA, 1992, pp. 132–136.

[36] R. Deokar and S. Sapatnekar, “A graph-theoretic approach to clock skew
optimization,” in Proc. Int. Symp. Circuits Syst., London, U.K., 1994,
pp. 407–410.

[37] S.-H. Huang and Y.-T. Nieh, “Synthesis of nonzero clock skew circuits,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 25, no. 6,
pp. 961–976, Jun. 2006.

[38] R. Chen and H. Zhou, “Statistical timing verification for transparently
latched circuits,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 25, no. 9, pp. 1847–1855, Sep. 2006.

[39] B. Li, N. Chen, and U. Schlichtmann, “Fast statistical timing analysis of
latch-controlled circuits for arbitrary clock periods,” in Proc. Int. Conf.
Comput.-Aided Design, San Jose, CA, USA, 2010, pp. 524–531.

[40] (2013). TAU 2013 Contest: Variation Aware Timing Analysis. [Online].
Available: https://sites.google.com/site/taucontest2013/

[41] S. R. Nassif, “Modeling and analysis of manufacturing variations,”
in Proc. Custom Integr. Circuits Conf., San Diego, CA, USA, 2001,
pp. 223–228.

[42] Gurobi Optimizer Reference Manual, Gurobi Optim. Inc., Houston, TX,
USA, 2013. [Online]. Available: http://www.gurobi.com

Bing Li received the bachelor’s and master’s
degrees in communication and information engi-
neering from the Beijing University of Posts
and Telecommunications, Beijing, China, in 2000
and 2003, respectively, and the Dr.Ing. degree in
electrical engineering from Technische Universität
München (TUM), Munich, Germany, in 2010.

He is currently a Researcher with the Institute for
Electronic Design Automation, TUM. His current
research interests include timing and power analysis
and emerging systems.

Ulf Schlichtmann (S’88–M’90) received the
Dipl.Ing. and Dr.Ing. degrees in electrical engineer-
ing and information technology from Technische
Universität München (TUM), Munich, Germany, in
1990 and 1995, respectively.

He was with Siemens AG, Munich, and Infineon
Technologies AG, Munich, from 1994 to 2003,
where he held various technical and management
positions in design automation, design libraries, IP
reuse, and product development. He has been with
TUM as a Professor and the Head of the Institute

for Electronic Design Automation, since 2003. He served as the Dean of
the Department of Electrical Engineering and Information Technology, TUM,
from 2008 to 2011. His current research interests include computer-aided
design of electronic circuits and systems, with an emphasis on designing
reliable and robust systems.

3 Statistical Timing Analysis and Criticality Computation for Circuits with Post-Silicon

Clock Tuning Elements

36

4 Design-Phase Buffer Allocation for

Post-Silicon Clock Binning by

Iterative Learning

37

392 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 2, FEBRUARY 2018

Design-Phase Buffer Allocation for Post-Silicon
Clock Binning by Iterative Learning

Grace Li Zhang, Bing Li, Jinglan Liu, Yiyu Shi, Senior Member, IEEE, and Ulf Schlichtmann, Member, IEEE

Abstract—At submicrometer manufacturing technology nodes,
process variations affect circuit performance significantly. To
counter these variations, engineers are reserving more timing
margin to maintain yield, leading to an unaffordable overdesign.
Most of these margins, however, are wasted after manufactur-
ing, because process variations cause only some chips to be really
slow, while other chips can easily meet given timing specifications.
To reduce this pessimism, we can reserve less timing margin and
tune failed chips after manufacturing with clock buffers to make
them meet timing specifications. With this post-silicon clock tun-
ing, critical paths can be balanced with neighboring paths in
each chip specifically to counter the effect of process variations.
Consequently, chips with timing failures can be rescued and the
yield can thus be improved. This is specially useful in high-
performance designs, e.g., high-end CPUs, where clock binning
makes chips with higher performance much more profitable. In
this paper, we propose a method to determine where to insert
post-silicon tuning buffers during the design phase to improve the
overall profit with clock binning. This method learns the buffer
locations with a Sobol sequence iteratively and reduces the buffer
ranges afterward with tuning concentration and buffer grouping.
Experimental results demonstrate that the proposed method can
achieve a profit improvement of about 14% on average and up
to 26%, with only a small number of tuning buffers inserted into
the circuit.

Index Terms—Clock binning, iterative learning, post-silicon
tuning, process variations, yield.

I. INTRODUCTION

AT ADVANCED technology nodes, process variations
have become relatively larger, and thus caused expen-

sive overdesign due to timing margins reserved during the
design phase. To meet the challenges imposed by process

Manuscript received July 28, 2016; revised December 19, 2016; accepted
April 26, 2017. Date of publication May 9, 2017; date of current version
January 19, 2018. This work was supported in part by the German Research
Foundation (DFG) as part of the Transregional Collaborative Research Centre
“Invasive Computing” (SFB/TR 89). A preliminary version of this paper
was published in the Proceedings of the Design, Automation and Test
in Europe Conference, 2016 [1]. The major improvement of this paper
over [1] is to process multiple samples with an iterative learning procedure
using a low-discrepancy sample sequence (Sobol sequence). This paper was
recommended by Associate Editor P. Gupta.

G. L. Zhang, B. Li, and U. Schlichtmann are with the Institute
for Electronic Design Automation, Technical University of Munich,
80333 Munich, Germany (e-mail: grace-li.zhang@tum.de; b.li@tum.de;
ulf.schlichtmann@tum.de).

J. Liu and Y. Shi are with the Department of Computer Science and
Engineering, University of Notre Dame, Notre Dame, IN 46556 USA (e-mail:
jliu16@nd.edu; yshi4@nd.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2017.2702632

Fig. 1. Post-silicon tuning buffer in [4] with three configuration bits.

variations, previous methods model process variations as ran-
dom variables and incorporate them into timing analysis
directly, leading to a boom of research on statistical static
timing analysis (SSTA) in the last decade [2]. With the knowl-
edge of the distributions of process variations, SSTA methods
produce a performance-yield curve with which designers have
a chance to make a tradeoff between different design goals.
To alleviate the effect of process variations, many researchers
have also worked on circuit structure level to introduce special
devices and mechanisms. For instance, the Razor method [3]
boosts circuit performance up to the limit where timing errors
occur during circuit operation. Another technique to counter
process variations is to use post-silicon tuning devices to adapt
chips individually according to the effect of process variations
after manufacturing.

A widely used post-silicon tuning technique is clock tun-
ing with delay buffers. For example, the structure of the delay
buffer used in [4] is illustrated in Fig. 1. The delay of this
buffer can be changed by setting the configuration bits in the
three registers. In high-performance designs, tuning buffers
like this are inserted during the design phase. After manu-
facturing, the delay values of these buffers are configured to
allot critical paths more timing budget by shifting clock edges
toward the stages with smaller combinational delays. These
critical paths might be different in individual chips due to
process variations, so that only post-silicon tuning can coun-
terbalance them efficiently. By balancing delay budgets across
consecutive register stages, chips that might have failed to
meet timing specifications can be revitalized, leading to an
increased yield at the expense of additional area taken by
these buffers. This post-silicon tuning technique works seam-
lessly with other optimization techniques, e.g., gate/wire sizing
and timing-driven placement, since it mainly deals with delay
imbalance introduced in manufacturing by process variations
instead of during the design phase.

0278-0070 c© 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

ZHANG et al.: DESIGN-PHASE BUFFER ALLOCATION FOR POST-SILICON CLOCK BINNING BY ITERATIVE LEARNING 393

Post-silicon clock tuning buffers have various implementa-
tions and characteristics. The tuning buffer proposed in [5]
provides precise adjustable delays of less than 30 ps by
voltage-controlled driver strength. The design in [6] uses a
delay line to generate delays with 1-ps resolution. The de-skew
buffer in [7] consists of CMOS inverters and arrays of passive
loads and is capable of creating a 170-ps tunable delay range
in 8.5-ps steps. The controlled contention design [4] provides
a 140-ps delay range with eight steps. After manufacturing,
these delays can be adjusted through the test access port to
tune individual chips.

In recent years, several methods have been proposed for
statistical timing analysis and optimization of circuits with
post-silicon clock tuning buffers. In [8], a clock scheduling
method is developed and clock tuning buffers are selectively
inserted to balance the skews due to process variations. In [9],
algorithms are proposed to insert buffers into the clock tree
to guarantee a given yield, while either the number of buffers
or the total area of all buffers is minimized. The optimization
problem is solved by evaluating the yield gradient with simul-
taneous perturbation and Monte Carlo simulation. In [10],
the yield loss due to process variations and the total cost
of clock tuning buffers are formulated together for gate siz-
ing. The resulting optimization problem is solved using a
stochastic cutting-plane method with an STA scheme based on
Monte Carlo simulation. In [11], the placement of clock tuning
buffers is investigated and a considerable benefit is observed
when the clock tree is designed using the proposed tuning
system. In addition, the work in [12] proposes an efficient
post-silicon tuning method by searching a configuration tree
combined with graph pruning, and an insertion algorithm to
group buffers into clusters. The yield of a circuit with clock
tuning buffers can be evaluated efficiently using the method
in [13], and post-silicon testing methods for such circuits have
been discussed in [14] and [15].

The methods above are applied as presilicon optimization
or post-silicon adjustment before shipping the manufactured
chips to customers. Several other methods have exploited these
tuning buffers to improve circuit performance and reliability
online, i.e., while the circuit is running. The method in [16]
adjusts clock skews when the circuit is running according
to timing errors to achieve a better performance in timing-
speculative circuits. The method in [17] explores the insertion
of clock tuning buffers and in-system configuration to reduce
performance degradation due to aging. In addition, the method
in [18] applies clock tuning buffers to compensate dynamic
delay variations induced by temperature.

In order to take advantage of post-silicon tuning, these
buffers should be inserted into the circuit during the design
phase. Since they take die area and require special treat-
ment during physical design, the number of tuning buffers
in the circuit should be small to provide a good yield/profit
improvement. This is essentially a statistical optimization
problem when process variations are considered. Previous
methods [9], [10] solve this problem by path search or the
cutting plane method. In these methods, yield values of dif-
ferent combinations of buffer locations are evaluated using
Monte Carlo simulation. New combinations of buffer locations

are then selected to evaluate according to the yield gradient.
This is in fact a statistical extension of linear programming.
Since Monte Carlo simulation is used at many branching
points, this direct extension requires a large runtime to deter-
mine buffer locations, though the calculated buffer locations
may still fall into a local optimum in the problem space due
to the nature of path search.

In this paper, we propose a method to determine buffer loca-
tions by iterative learning. In each iteration we try to capture
the buffers that are important to the yield/profit of the circuit.
Afterward, we refine the identified buffer locations and com-
press buffer ranges to reduce area cost. The contributions of
the proposed method are as follows.

1) Instead of searching along a few paths in the problem
space to find a set of buffer locations, we use rep-
resentative sample points to identify the buffers that
are important to the yield/profit directly. Using a low-
discrepancy sample sequence, the proposed method can
identify the proper buffer locations efficiently.

2) We introduce a new way to model yield in representative
samples to convert a statistical optimization problem into
an ILP problem, so that heuristic statistical optimization
can be avoided.

3) We model the overall profit optimization problem
instead of the yield at a given clock period.
Consequently, the produced method can determine the
buffer locations with respect to multiple clock bins in
high-performance designs. When only one bin is used,
this method is equivalent to the yield improvement
problem with respect to a single clock period.

4) The proposed sampling-based method produces tuning
values in the representative chip samples. With these
values, buffers can be grouped according to their tuning
correlation to reduce area cost further.

5) Compared with other methods, the proposed method is
much faster, thanks to several acceleration techniques,
even when the intermediate sample batches are not
parallelized

The rest of this paper is organized as follows. We give an
overview of timing constraints for circuits with post-silicon
clock tuning buffers in Section II and formulate the buffer
allocation problem in Section III. We explain the proposed
method in detail in Section IV. Experimental results are shown
in Section V. The conclusion and future work are given in
Section VI.

II. TIMING CONSTRAINTS WITH CLOCK BUFFERS

In a circuit with post-silicon tuning buffers, the delays of
clock paths to flip-flops can be adjusted after manufacturing
for each chip individually. The concept of this tuning can be
explained using the example in Fig. 2(a), where four flip-flops
are connected into a loop by combinational paths. Without
post-silicon clock tuning, the minimum clock period of this
circuit is 8. If clock edges can be moved by adjusting the
delays of these tuning buffers, the minimum clock period can
be reduced to 5.5. For example, the buffer value x2 shifts
the launching clock edge at F2 0.5 units later and the buffer

394 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 2, FEBRUARY 2018

Fig. 2. Performance improvement using post-silicon tuning buffers. Minimum achievable clock period is 5.5. Tuning values in (a) and (b) are constrained in
[0, 4]. Setup time and hold time are assumed as 0 for simplicity. (a) Tuning configuration without reduction. (b) Reduced tuning configuration. (c) Reduced
tuning configuration with negative tuning values.

value x3 shifts the launching clock edge at F3 3 units later.
Therefore, with a clock period of 5.5, the combinational path
between F2 and F3 now has 5.5−0.5+3 = 8 time units to fin-
ish signal propagation. This shifting of the clock edge reduces
the timing budget of the path between F3 and F4 by 3 units,
but this path still works with the clock period 5.5 because the
buffer value x4 moves the clock edge at F4 further later.

The timing imbalance between combinational paths as in
Fig. 2(a) potentially appears when process variations become
large in advanced technology nodes. For an individual chip,
this post-silicon clock tuning is similar to the concept of useful
clock skews [19]. The difference is that the tuning values are
specific to each individual chip after manufacturing, so that the
effects of process variations can be dealt with specifically for
each chip. If the skew schedule problem in [19] is formulated
with process variations, the skew to a flip-flop should still be
identical in all manufactured chips, so that there is no chance
to tune the chips with respect to the individual effect of process
variations after manufacturing.

In Fig. 2(a), four tuning buffers are used. However, all the
delays of the buffers can be reduced by 0.5 time units and
the circuit still works with the clock period 5.5. This way,
the number of buffers can be reduced by one, as shown in
Fig. 2(b). Furthermore, we can reduce the number of buffers
even to two, if we can move the clock edge at F2 2.5 time
units earlier, so that the timing slack of the path between
F1 and F2 can be shifted to the path between F2 and F3
directly, as in Fig. 2(c). This negative delay can be imple-
mented by shortening the original clock path in advance to
introduce a negative delay in reference to the predefined arrival
time of clock signals. With negative clock delays allowed, tim-
ing budgets can be balanced in both clockwise direction and
counterclockwise direction, so that the number of required
buffers can be lowered to reduce area and post-silicon con-
figuration cost. The task of buffer allocation during the design
phase is thus to identify the smallest set of buffers with
which chips after manufacturing can be tuned to a higher
performance.

The timing constraints with clock tuning buffers can be
explained using Fig. 3, where two flip-flops with buffers are
connected by a combinational circuit. Assume that the clock
signal switches at reference time 0. Then the clock events
at flip-flops i and j happen at time xi and xj, respectively.

Fig. 3. Timing of circuits with tuning buffers.

To meet the setup time and hold time constraints, the following
inequations must be satisfied:

xi + dij ≤ xj + T − sj (1)

xi + dij ≥ xj + hj (2)

where xi and xj are delay values of tuning buffers, dij (dij) is
the maximum (minimum) delay of the combinational circuit
between flip-flops i and j, sj (hj) is the setup (hold) time of
flip-flop j, and T is the clock period. Here the clock buffers
introduce two delay variables into the constraints (1) and (2).
Without them, the two inequations fall back to the normal
timing constraints of digital circuits.

Owing to area constraints, the configurable delay of a clock
buffer usually has a limited range. Assume that the lower
bound of the tuning values of buffer i is ri and the upper
bound is ri + τi, where τi is the size of the buffer. The
delay value of buffer i can thus be constrained by a range
window as

ri ≤ xi ≤ ri + τi. (3)

Unlike [9], we model the range window of the tuning values
as asymmetrical with respect to 0 to achieve a maximal flex-
ibility. Furthermore, xi may take only discrete values due to
implementation limitations.

To guarantee the proper function of a circuit with clock
tuning buffers, the constraints (1)–(3) are created for each

ZHANG et al.: DESIGN-PHASE BUFFER ALLOCATION FOR POST-SILICON CLOCK BINNING BY ITERATIVE LEARNING 395

pair of flip-flops. For a chip after manufacturing, the vari-
ables dij, dij, sj and hj in (1) and (2) become fixed values.
These delays and timing properties in manufactured chips
can be measured using frequency stepping [20], such as
in [14], [15], and [21]. A detailed discussion of this tech-
nique can be found, e.g., in [21]. After the delays and timing
properties are measured, the values of xi and xj that make a
chip work with a given clock period T can be found eas-
ily using the Bellman–Ford algorithm [22] or using linear
programming.

In this paper, we only focus on determining buffer locations
during the design phase. Consequently, the path delays, setup
times and hold times should be considered as random vari-
ables modeled using data provided by foundries. With process
variations considered, the tuning delays xi and xj also become
statistical, because the clock buffers are subject to process vari-
ations too. These variations can be decomposed and merged
with the random variables representing dij, dij, sj, and hj, e.g.,
using the canonical form in [23]. For convenience, we assume
that a tuning delay can be configured to a fixed value in the
following discussion. The task of buffer allocation is thus to
determine the locations of buffers that can make as many chips
as possible meet the given timing specification after manufac-
turing, using only the statistical timing information available
during the design phase.

III. PROBLEM FORMULATION

In applying the post-silicon tuning technique, we need to
insert the buffers after logic synthesis is finished and before
physical design is started. Since buffers take precious die
area, and require additional test to configure them, the num-
ber of buffers in a design should be limited. In addition, the
ranges of the buffers should be reduced as much as possi-
ble. Furthermore, in high-performance designs such as CPUs,
chips are tested after manufacturing and assigned into bins of
different performance grades, and the price of a chip from a
bin of high speed is higher than that from a low-speed bin.
In this scenario, it is more important to improve the overall
profit of all bins than to improve the yield of the circuit with
respect to a single clock period.

The important notations that appear in this paper are listed
in Table I, and the problem of buffer allocation is formulated
as follows.

Input:
1) circuit structure and statistical path delays;
2) buffer specification, including the maximum allowed

size τi of buffers defined in (3) and the number of
discrete steps in the tunable delay range;

3) the maximum number of buffers allowed in the cir-
cuit Nb;

4) the number of performance bins Np. For the mth bin, an
upper bound Tm,u and a lower bound Tm,l are defined by
the designer. After manufacturing, a chip with a clock
period T assigned to the mth bin should meet Tm,l < T ≤
Tm,u. For a chip in the mth bin, the average profit is given
as pm. For convenience, we order the bins from high
performance to low performance, so that Tm,u = Tm+1,l.

TABLE I
NOTATIONS

Output:
1) a set of flip-flops at which tuning buffers should be

inserted on the their clock paths;
2) the sizes of the buffers inserted into the circuit. These

sizes must be no larger than the given maximum size τi.
Constraints:
1) for any pair of flip-flops i and j with combinational paths

between them, the constraints (1)–(3) hold;
2) the number of buffers inserted in the circuit must not

exceed Nb.
Objectives:
1) maximize the overall profit

P =
Np∑

m=1

pmym (4)

where ym is the percentage of the chips that are assigned
into the mth bin after manufacturing;

2) reduce the sizes of the inserted buffers while maintaining
the overall profit P .

In the definition of bins, the first bin has the highest
performance, and it has no lower bound for the clock period
T , so that T1,l can be set to any value no larger than zero.
After manufacturing, if a chip cannot be assigned to any of
those bins, i.e., T > TNp,u, this chip is considered as a part
of yield loss. The definition (4) is very general. If only one
bin is used, this problem falls back to the yield improvement
problem with respect to a single clock period.

In the problem formulation above, we do not include the
number of tuning buffers as a part of the optimization objec-
tive, because the relation between profit and the number of
buffers is very complex. With our formulation, designers can
generate several combinations of buffer number and profit,
and select the most appropriate setting according to their own
cost model. If necessary, however, the number of buffers can

396 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 2, FEBRUARY 2018

also be moved from a constraint into the optimization objec-
tive (4), and the proposed method can still work with only a
slight modification.

The predominant challenge in solving the optimization
problem above comes from the random variables in (1) and (2),
because only statistical timing information are available dur-
ing the design phase when the buffers are allocated. The profit
in (4) is thus defined similar to an expected value, which
is slightly larger than the actual profit after manufacturing
because statistical delays and timing properties cannot be mea-
sured exactly [21]. Another challenge is that the variables xi

and xj in (1) and (2) may take only discrete values in the range
window defined by (3). For example, the de-skew buffer in [7]
can be configured to only 20 discrete delays. In this case, inte-
ger linear programming (ILP) becomes almost the only method
available to deal with the constraint set defined by (1)–(3) after
the random variables are fixed by sampling.

To deal with the large number of samples in the problem
space, learning-based methods have been applied in the design
automation field extensively, e.g., for statistical path selection
considering large process variations [24], for sensor placement
in dynamic noise management systems [25], and for paramet-
ric yield estimation for analog/mixed signal circuits [26]. In
the following section, we will introduce an efficient iterative
learning-based method to capture buffer locations for yield
improvement.

IV. BUFFER ALLOCATION USING REPRESENTATIVE

SAMPLING

The buffer allocation problem is essentially a statistical opti-
mization problem. In the linear constraints in (1)–(3) the path
delays, setup times and hold times are correlated random vari-
ables. Instead of using path search or the cutting plane method
as in previous methods, we solve this problem using statistical
sampling. The basic idea is that we use a set of representative
samples and model the numbers of samples in the different
performance bins directly. We then determine buffer loca-
tions by maximizing the overall profit calculated from the
yield values of these bins and the profit per chip for each
bin. By sampling the random variables directly we can trans-
form the statistical optimization problem into an ILP problem.
Therefore, the relation between the statistical variables and the
profit of the circuit can be established directly. With this rela-
tion, we can then capture buffer locations that are sensitive to
yield/profit.

The flow of the proposed method is illustrated in Fig. 4. In
this flow, we first generate a low-discrepancy sample sequence
(Sobol sequence) and filter out the samples that are not
affected by any buffers. Thereafter, we try to capture buffer
locations and refine them iteratively. The ranges of buffers are
compressed and the number of buffers is reduced by grouping
in the end to reduce area cost. This flow will be explained in
detail in the following sections.

A. Sampling-Based ILP Modeling Between Statistical
Delays and Profit

Consider the case that we generate Ns samples from the joint
distribution of all the random variables in the optimization

Fig. 4. Prefiltering and iterative buffer allocation flow.

problem. If Ns is large enough, these samples can actually
emulate the chips after manufacturing. If we have tuning
buffers at the clock paths to some flip-flops, we can intro-
duce intentional clock skews customized for each sample,
or emulated chip, individually, to make the failing samples
work again, or to move low-performance samples into high-
performance bins. For each emulated chip we can now evaluate
how performance can be improved because the statistical vari-
ables in the constraints become fixed in the samples. This way,
we can establish the relation between buffer locations and the
profit, and use an ILP solver to determine the optimal buffer
allocation.

For the kth sample from the Ns samples, the con-
straints (1)–(3) become

xk
i + d

k
ij ≤ xk

j + Tk − sk
j (5)

xk
i + dk

ij ≥ xk
j + hk

j (6)

ri ≤ xk
i ≤ ri + τi (7)

where d
k
ij, dk

ij, sk
j , and hk

j are the kth sample values of random
variables dij, dij, sj, and hj; xk

i and xk
j are intentional clock

skews for this specific sample introduced by configuring the

ZHANG et al.: DESIGN-PHASE BUFFER ALLOCATION FOR POST-SILICON CLOCK BINNING BY ITERATIVE LEARNING 397

corresponding tuning buffers after manufacturing to improve
the performance, in other words, to reduce the minimum clock
period Tk. Note in (7) ri and τi are not indexed by k, because
if a buffer is inserted on the clock path to a flip-flop, it appears
in all the chips after manufacturing, and its range in all chips
is also the same.

To indicate whether there is a buffer inserted on the clock
path to the ith flip-flop, we assign a binary variable ci to it.
If there is no buffer inserted, ci is set to 0; otherwise, ci is
set to 1. Because a post-silicon clock skew can be added only
when a buffer appears, the skew or the tuning value of the
buffer at the ith flip-flop can be written as

xk
i =

{
0 if ci = 0
any value ∈ [ri, ri + τi] when ci = 1.

(8)

According to the definition of ci, we need only to force xk
i

to be 0 to disable the potential clock tuning when ci is equal
to 0. The constraint (8) can thus be transformed to

xk
i ≤ ci� (9)

−xk
i ≤ ci� (10)

where � is very large constant. If ci is set to 0, xk
i must be set

to 0 to meet (9) and (10). If ci is set to 1, these two constraints
have no effect because � is a predetermined constant larger
than any possible value of xk

i or −xk
i . In this case, xk

i is actually
constrained by (7).

With ci defined to indicate the appearance of a buffer at
the ith flip-flop, we can constrain the number of buffers in the
circuit easily as

∑

i

ci ≤ Nb (11)

where the sum on the left adds the ci variables for all flip-flops
in the circuit together, and Nb is the given upper bound of the
number of buffers allowed in the circuit.

To evaluate the performance of an emulated chip, we need to
compare the minimum clock period Tk of the kth sample with
the upper and lower bounds of the performance bins. If Tk falls
into the mth bin by meeting Tm,l < Tk ≤ Tm,u, the number of
the chips in this bin is increased by one. Instead of comparing
Tk with the bounds of the bins directly, we take advantage of
the fact that the yield values of the circuit in different bins
are a part of the optimization objective defined in (4) and
the price of a chip in a high performance bin is higher than
that in a low performance bin. We define the 0-1 variables
gk

m, m = 1, . . . , Np to represent whether the minimum clock
period Tk of the kth sample is smaller than the upper bound
of the mth bin. Therefore, gk

m can be constrained as

gk
m = 1 ⇐⇒ Tk ≤ Tm,u, m = 1, 2, . . . , Np. (12)

We then use gk
m to define another 0-1 variable bk

m which indi-
cates whether the kth sample falls into the mth bin meeting
Tm,l < Tk ≤ Tm,u, as

bk
m =

{
gk

m m = 1
gk

m − gk
m−1 m = 2, . . . , Np.

(13)

The constraint (12) can be transformed into

Tk − Tm,u ≤
(

1 − gk
m

)
�, m = 1, 2, . . . , Np (14)

where � is very large positive constant.
The constraints (13) and (14) can be explained as follows.

If Tk is no larger than the upper bound of the mth bin Tm,u,
the left side of (14) is negative, so that gk

m can be either 0
or 1; otherwise, gk

m must be 0. Since the objective of the
optimization problem is to increase the numbers of chips in
high-performance bins as much as possible, the solver will
assign all gk

m, gk
m+1, . . . , gk

Np
to 1 if Tk ≤ Tm,u, because the

bins are arranged in the high performance to low performance
order so that Tk is also smaller than Tm+1,u, . . . , TNp,u.
Therefore, the constraint (13) only keeps the bk

m for the fastest
bin to which the sample can be assigned to be 1, and for the
slower bins it is set to 0. Consequently, bk

m represents whether
the chip is assigned to the mth bin.

With bk
m we can calculate the numbers of emulated chips in

all bins easily, and the yield or the percentage ym for the mth
bin can be expressed as

ym =
Ns∑

k=1

bk
m

/
Ns (15)

where Ns is the total number of samples.
With the constraints defined above, the problem to optimize

the overall profit can be expressed as

maximize

Np∑

m=1

pmym (16)

s.t. (5)–(7), (9)–(11), and (13)–(15)

with respect to all flip-flops pair indexed by (i, j)

and k = 1, . . . , Ns. (17)

The basic idea of this formulation is that we use a given
number of samples to emulate chips after manufacturing and
model the bin assignment process. We then use an ILP solver
to maximize the profit in this simulated scenario to deter-
mine which flip-flops should have buffers. Since the relation
between the locations of buffers and the yield assignment is
established in this formulation, we can determine the locations
of buffers directly by solving the optimization problem above.
In previous methods [9], [10], the relation between buffer loca-
tions and yield is not analyzed directly. Instead, these methods
consider this relation as a separate evaluation problem, and
the yield values for different combinations of buffer locations
are calculated using Monte Carlo simulation, and only used
as a metric to determine the next decision points in the path
search or cutting plane methods. Consequently, Monte Carlo
simulation have to be executed many times, resulting in a large
runtime.

If the number of emulated samples Ns in the integer linear
optimization problem (16), (17) is large enough, the profit can
be modeled accurately and the values of ci in the solution
indicate the optimal locations to insert tuning buffers for the
maximum profit. However, a large Ns may increase the number
of constraints in (17) to the degree that the size of the ILP

398 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 2, FEBRUARY 2018

problem exceeds the capacity of all existing ILP solvers. To
deal with this scalability problem, we apply two techniques.

1) We reduce the number of emulated samples Ns by using
a low-discrepancy sample sequence instead of a purely
random sampling sequence.

2) We split the problem (16), (17) into subsets and use
them to learn the locations of buffers iteratively.

After each iteration, the candidates of buffer locations can be
refined.

B. Reducing the Number of Emulation Samples Using
Low-Discrepancy Sequence

The sampling-based concept above requires a large num-
ber of samples to guarantee the quality of the resulting buffer
locations. Consider the extreme case where we use only two
samples, which have different probabilities to appear in the
manufactured chips. In the formulation (16), (17), however,
we do not differentiate these two samples with respect to their
probabilities so that the two samples have the same influence
on the selection of buffers. Consequently, the formulation loses
accuracy because the calculated optimal profit deviates from
the real profit.

In traditional Monte Carlo simulation methods, this discrep-
ancy problem is solved by using a large number of samples.
Since the samples are generated according to the joint dis-
tribution of the variables, the number of points falling into
a part of the sampling space corresponds to the probability
of that region. The effect of probability can thus be handled
by (16) and (17) implicitly, because samples from regions with
large probabilities in the problem space appear more often
than samples from other regions. Another way to solve this
discrepancy problem is to use the probability of representa-
tive samples as further coefficients of the yield values in the
objective (16) directly. But it is not clear how many samples
should be generated to guarantee the quality of the result.

The third method to solve the problem of a large sampling
number is to use a low-discrepancy sequence such as stud-
ied in [27]. In such a sequence, the number of samples in a
given part of the sampling space is proportional to the prob-
ability of that region. The advantage of such a sequence is
that this quasi-random sequence ensures the low discrepancy
even with a small number of samples, so that it is widely used
in quasi-Monte Carlo methods to reduce runtime. In statisti-
cal timing analysis, this method also demonstrates a strong
advantage, e.g., more than 20 times acceleration has been
achieved in [28]. In this paper, we use the Sobol sequence
in [29] to reduce the number of samples Ns. The effect of this
sequence can be demonstrated using the examples in Fig. 5,
where Fig. 5(a) shows a purely random number sequence of
256 samples for two uniform-distributed variables. Fig. 5(b)
demonstrate that the Sobol sequence with the same number
of samples spreads more evenly in the space. The original
Sobol sequence follows uniform distribution, and it can be
transformed to other distributions easily using methods such
as the Box-Muller transform [30]. In our method, we use 1000
samples in the Sobol sequence, which are one tenth of the usu-
ally used 10 000 samples of random variables in SSTA [2]. In

Fig. 5. Purely random sequence and Sobol low-discrepancy sequence. Two
hundred fifty-six random samples of (a) two uniform variables and (b) Sobol
sequence for two uniform variables. (c) First 128 samples from the Sobol
sequence in (b). (d) Next 128 samples from the Sobol sequence in (b).

practice, test cases can converge even earlier with fewer than
1000 samples.

C. Buffer Allocation With Prefiltering and Iterative Learning

In the Ns samples, some might be fast enough to be assigned
into the fastest bin without tuning; others might be too slow
to be tuned into the slowest bin, even with all flop-flops con-
nected with tuning buffers. In both scenarios, tuning buffers
play no role in improving the overall profit. Therefore, we
exclude these samples from the ILP formulation (16), (17) to
reduce the number of variables and constraints.

To filter out the samples of the first type, we need only
to set all values of tuning buffers, xk

i and xk
j in (5) and (6)

to 0, and calculate the clock period Tk
min for this sample as

Tk
min = maxi,j{dk

ij+sk
j }. If Tk

min is smaller than the upper bound
of the fastest bin, this sample is fast enough and no tuning is
required. The constraint (6) is checked similarly. If all these
constraints can be met without tuning buffers, this sample is
excluded.

To filter out the samples that are too slow to be assigned
to a bin even with extensive buffer tuning, we evaluate each
path delay in a sample by verifying whether it is possible to
tune this path to meet the upper bound of the slowest bin
without considering the other paths. In the constraint (5), the
sum of the path delay d

k
ij + sk

j and xk
i − xk

j should be no larger
than Tk. We set buffer values xk

i and xk
j to the smallest and

the largest values that are possible according to buffer speci-
fications, respectively, and check whether the resulting clock
period Tk is smaller than the upper bound of the slowest bin.
If this still does not hold, there is no chance that this sam-
ple can be assigned to one of the bins and the corresponding

ZHANG et al.: DESIGN-PHASE BUFFER ALLOCATION FOR POST-SILICON CLOCK BINNING BY ITERATIVE LEARNING 399

sample is not included in the profit optimization problem. We
repeat this prefiltering checking using (6) to exclude samples
that do not work in any case due to unavoidable hold time
violations.

After prefiltering, the remaining samples are used to
determine buffer locations by solving the optimization
problem (16), (17). The number of these remaining sam-
ples is denoted as Nf . For a large circuit, the number of
remaining variables and constraints in this ILP problem may
still be too large to be dealt with by a modern solver. To
reduce the scale of the ILP problem further, we split the ILP
problem (16), (17) into subproblems and determine the buffer
locations with an iterative flow based on: 1) a subsequence of a
Sobol sequence still exhibits a good low discrepancy as shown
in Fig. 5(c) and (d) and 2) in a circuit only a small number
of buffers can be inserted due to area cost. The iterative flow
is illustrated in Fig. 4.

The first fact above shows that we may solve the ILP
problem (16), (17) with only a part of the Sobol sequence,
meaning that we can capture the buffer locations only using
a subset of samples. Therefore, we partition the whole
Sobol sequence into several parts so that each part con-
tains Nt samples which are processed together in one ILP
problem (16), (17). We call the samples processed in one
ILP problem a batch. In our implementation, the number of
samples Nt in one batch is determined by evaluating the num-
bers of variables and constraints and the capacity of the ILP
solver. Since variables in an ILP problem define the dimen-
sion of the problems space, they carry more complexity into
the ILP problem than constraints. Therefore, we consider the
complexity of a variable to be five times that of a constraint,
and the total number of the equivalent constraints should be
smaller than a constant, 2 × 106 for Gurobi [31] used in our
experiments.

Though the samples in subsequences generally have lower
discrepancy compared with a purely random sequence, there
are still some slight patterns in these subsequences because of
the small number of samples in one subsequence, as shown in
Fig. 5(c) and (d). Consequently, a subsequence with a limited
number of samples may not capture all the buffer locations. We
alleviate this problem by combining the buffer locations cap-
tured by different subsequences into a buffer set B′. Once we
finish solving (16) and (17) with all sample batches, the buffer
locations in B′ are the possible locations to insert buffers, as
shown in the inner loop in Fig. 4. In this loop, we also relax
the number of buffers from Nb to βNb in the constraint (11)
(β = 1.5 in our experiments) to increase the coverage of
potential buffer locations captured by the subsequences. We
will use a group technique to reduce the number of buffers
back to Nb after all location candidates are captured. The inner
iterative flow stops if no new buffer is added into the buffer
set B′ in the past three iterations.

After processing all sample batches in the inner loop, we
execute the iterative buffer allocation flow as the outer loop
in Fig. 4. In these iterations, only the buffer candidates in
B need to be modeled with variables ci as in (8) and only
the delays of paths connected to these buffer candidates need
to be sampled as (5)–(7). Consequently, more samples can

be processed in one iteration so that the number of batches
	Nf /Nt
 can be reduced. With these outer iterations, buffer
locations are gradually refined and the outer loop finishes if
the number of batches cannot be decreased.

D. Reducing Buffer Area by Tuning Concentration and
Grouping

The iterative optimization flow in Fig. 4 only determines the
locations to insert buffers for profit improvement after manu-
facturing. But the sizes of the buffers are not addressed. In this
section, we introduce a method to concentrate tuning values
toward each other and to group buffers thereafter.

The concept of area reduction can be explained using Fig. 6.
After executing the iterative buffer allocation in Fig. 4, the
tuning values of a buffer in all samples may be scattered in
a wide range such as in Fig. 6(a), because the solver only
minimizes the number of buffers, but does not consider the
relation between the tuning values of different samples, so
that it only returns one of the many feasible tuning combi-
nations. If we can concentrate the tuning values toward each
other, the real ranges of the buffers which cover all the tuning
values appearing in the samples can be reduced. In addition,
the concentrated tuning values may exhibit a high correlation
by forming similar trends of tuning values as in Fig. 6(c). This
resemblance can thus be used to group buffers.

To push the scattered tuning values into a narrower range,
we minimize their absolute values in the optimization, as illus-
trated in Fig. 6(a). In this way, the solver tries to return the
buffer values around 0 as much as possible using only the
buffer candidates in B and guaranteeing the profit P calculated
by executing the flow in Fig. 4. This process is formulated as
follows:

minimize
∑

i∈IB,k

|xk
i | (18)

s.t. (5)–(7), (9)–(11), and (13)–(15)

with respect to all flip-flops pair indexed by (i, j)

and k = 1, . . . Nf , and (19)
Np∑

m=1

pmym ≥ P (20)

where IB is the index set of all buffer locations in B. The
objective function (18) can be transformed into a linear form
easily as explained in [32].

The difference between the optimization problem (18)–(20)
and the optimization problem (16), (17) includes: 1) the objec-
tive becomes the sum of the absolute values of all tuning
values; 2) the buffer candidates are narrowed as the buffer
set B returned by the flow in Fig. 4; and 3) the profit becomes
a constraint to guarantee the tuning range concentration does
not affect the profit. By solving the problem (18)–(20), all tun-
ing values are pushed toward zero as illustrated in Fig. 6(b),
so that the buffer ranges become more compact.

Another technique to reduce area cost is to group buffers
that have similar tuning patterns into one buffer. For example,
if two buffers have very similar tuning values in all samples,
only one buffer needs to be built in the circuit and the delayed

400 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 2, FEBRUARY 2018

Fig. 6. Concentrating tuning values of a buffer in all samples. The x-axis represents the adjusted delays of the buffer in all samples, and the y-axis the
number of occurrences of the discrete delay values. (a) Scattered tuning values. (b) Tuning values concentrated toward zero. (c) Reduced buffer range after
concentrating tuning values toward the average.

clock signal is connected to two flip-flops. To make the pat-
terns in buffer tuning more obvious, we first calculate the
weighted average of all tuning values of a buffer after solv-
ing (18)–(20). Afterward, the buffer tuning values are pushed
further toward this average. This process makes the number
of different tuning values smaller, so that it is easier for two
buffers to have similar tuning patterns. The result of this step
is that buffer tuning values may form a peak at the tuning aver-
age as illustrated in Fig. 6(c). This step is very similar to the
problem formulation in (18)–(20), except that the optimization
objective is replaced by

minimize
∑

i∈IB,k

∣∣∣xk
i − xavg,i

∣∣∣ (21)

where xavg,i is the weighted average of all tuning values
calculated from the result of solving (18)–(20).

After tuning values are concentrated, we try to cover all
the tuning values using the smallest range window. The upper
bound of the size of this range window is predefined as τi

in (3). As shown in Fig. 6(c), the range window slides along
the x-axis. Since the y-axis represents the numbers of the cor-
responding tuning value occurrences in all samples, the total
number of buffer tunings covered by the window is the sum of
the tuning occurrences in the window. For yield improvement,
we select the range window that covers the largest number
of tunings, meaning that these tuning values are feasible in
post-silicon configuration. The other values that fall out of the
window are discarded. With this step, both buffer size τi and
lower bound ri in (3) are determined.

In the last step of buffer insertion, we group buffers with
similar tuning values to reduce the number of buffers inserted
into the circuit. Buffers in the same group are implemented
by only one physical buffer and the tuning values are shared
by all the flip-flops connected to the buffer. The concept of
grouping is illustrated in Fig. 7.

In grouping buffers, we first calculate the correlation
coefficients of tuning values of buffer pairs. If the mutual cor-
relation coefficients between several buffers are all above the
threshold r(i, j) and their distance is smaller than d(i, j), they
are grouped together and implemented with only one physical
buffer. In practice, designers can also constrain the total num-
ber of buffers in the circuit as Nb. If the number of buffers after
grouping still exceeds the specified number, the buffers with

Fig. 7. Buffer grouping according to tuning correlation and distance.
Correlation threshold r(i, j) is set to 0.8. Distance threshold d(i, j) between
buffers is set to ten times of the minimum distance between flip-flops.

the fewest tunings are removed until the number of buffers
meets the specification.

E. Acceleration Techniques

To improve the efficiency of the proposed method, we
sample statistical delays between flip-flops directly instead
of sampling delays of combinational gates. For example, the
delays in (1) and (2) are calculated using a statistical timing
engine only once. We then generate a Sobol sequence from
these statistical delays directly, instead of executing a static
timing analysis algorithm for each sample.

In addition, we filter connections between flip-flops accord-
ing to their statistical distributions. If the 3σ delay of a path
is still small enough not to affect the circuit performance, this
path is not included when creating the constraints (1) and (2).
For example, in the constraint (1) we first set xi to the largest
value and xj to the smallest value in the range windows,
respectively, and dij and sj to their 3σ values. If this extreme
setting still allows this path to work with a clock period in
the fastest bin, this path is simply discarded from the problem
formulation. Similarly, we also filter hold time constraints (2)
according to the −3σ values of path delays.

V. EXPERIMENTAL RESULTS

The proposed method was implemented in C++ and tested
using a 3.20-GHz CPU with one thread. We demonstrate the
results using circuits from the ISCAS89 benchmark set and
from the TAU 2013 variation-aware timing analysis contest.

ZHANG et al.: DESIGN-PHASE BUFFER ALLOCATION FOR POST-SILICON CLOCK BINNING BY ITERATIVE LEARNING 401

TABLE II
RESULTS OF BUFFER ALLOCATION FOR POST-SILICON BINNING

The number of flip-flops and the number of logic gates are
shown in the columns ns and ng in Table II, respectively.

The benchmark circuits in our experiments were sized using
a 45-nm library. We assumed that the maximum allowed buffer
ranges were 1/8 of the original clock period and tuning delays
of the buffers were discrete with 20 steps, as in [7]. The stan-
dard deviations of transistor length, transistor width and oxide
thickness were set to 15.7%, 11.1%, and 5.3% of the nom-
inal values, respectively. We used Gurobi [31] to solve the
optimization problems in the proposed method.

We used three bins in the experiments to improve the overall
profit. The boundaries between these bins were set to μT , μT +
0.5σT , and μT +σT , where μT and σT are the mean value and
the standard deviation of the clock period of the original circuit
without clock buffers. Chips with clock period larger than μT+
σT were considered as yield loss. With this setting, the original
yield values of these three bins without tuning buffers are 50%,
19.15%, and 14.98%, respectively. In all these test cases, the
numbers of allocated buffers Nb were constrained as lower
than 1% of the numbers of flip-flops in the circuits, as shown
in the nb column. After allocating post-silicon tuning buffers
using the proposed method, we ran Monte Carlo simulation
with these circuits to verify the yield improvement. In the
simulation, we generated 10 000 samples. For each sample we
calculated its minimum clock period using an ILP solver due
to the appearance of tuning buffers, and assigned the sample to
one of the performance bins. The yield value of a circuit in a
bin is the number of samples in that bin divided by 10 000. The
samples in our experiments are conceptually different from the
samples discussed in Section IV, because they were only used
to emulate post-silicon measurements. For each sample, we
verify whether a chip can be assigned into a bin by solving
the classical skew scheduling problem in [19]. In reality, the
delays and timing properties cannot be measured exactly from
the manufactured chips, so that the actual yield is slightly
smaller than the reported yield, as discussed in [21]. This yield,
however, still serves as a good indicator to determine buffer
locations.

The yield values of the three bins are shown in the columns
Yb1, Yb2, and Yb3 in Table II, respectively. Compared with the
yield values without clock buffers, we can see that the yield in
the first bin is increased significantly but the yield values of the
other two bins are smaller, because with tuning buffers chips

have a better chance to be tuned to a higher performance.
Adding the yield values of the three bins together, we can
calculate the yield of a circuit with respect to μT + σT ,
shown in the YμT+σT column. Compared with the original
yield 84.13%, the yield increase is shown in the column Yinc,
with an average 4.23%.

With these yield values in the three bins, we can calcu-
late the profit using (4). In the experiments, we set the profit
per chip of the three bins to 6, 2, and 1, respectively. The
overall profit increase is shown in the column Pinc, with an
average 14.29%. If we compare the column Pinc and the col-
umn Yinc, we can see that the improvement of profit is much
more significant than the overall yield improvement due to the
introduced tuning buffers and clock binning. To achieve this
profit improvement, the number of buffers in the circuit is still
less than 1% of the number of flip-flops. If we assume that a
buffer takes ten times area of a flip-flop and flip-flops take 5%
of the die area, the area cost of these buffers is about 0.5%
of the die area. Therefore, we can expect a good overall rev-
enue improvement, even when we consider the potential cost
of post-silicon configuration. A concrete evaluation of this cost
will be our future work.

In the proposed method, we also reduced the buffer sizes
by concentrating tuning values. The average buffer sizes in
the benchmark circuits are shown in the column sb. Compared
with the maximum allowed size 20, the buffer sizes have been
reduced effectively by the proposed method while maintaining
a good profit improvement. The execution time of the proposed
method is shown in the last column of Table II. The largest
execution time of the proposed method is 1816.81 s, which is
already acceptable because the proposed method is executed
offline only for a few times.

Since the runtime of solving an ILP problem depends on the
structure of constraints as well as their relations, it is difficult
to analyze the scalability of the proposed method theoreti-
cally. Instead, we tested this method by fixing the number of
samples in each batch to solve the buffer insertion problem
with respect to a given clock period μT + σT as used in
Table II. The relation between the number of samples in a
batch and the runtime is illustrated in Fig. 8. pci_bridge32
did not finish due to memory limitation, so that it was not
included in this evaluation. According to these results, the
runtime increases exponentially with respect to the number

402 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 2, FEBRUARY 2018

Fig. 8. Scalability trend of the proposed method with a fixed number of
samples in each batch.

(a)

(b)

Fig. 9. Yield and runtime comparison between the proposed method and the
brute-force method with 10 000 samples. (a) Yield comparison. (b) Runtime
comparison.

of samples, especially with large circuits. In the proposed
method, the number of samples in each batch is limited to
Nt as discussed in Section IV-C. This limitation might lead to
a yield degradation because the optimization problem is split
into several small problems. To verify the quality of the results
produced by the proposed method, we compared them with the
yield results of a brute-force method processing 10 000 sam-
ples as a whole, as shown in Fig. 9(a). With this comparison,
it can be observed that the yield degradation of the proposed
method is negligible, because the proposed work flow in Fig. 4
first tries to capture all the buffer locations that have a poten-
tial to affect the yield. Afterward, only these locations are
considered in further iterations so that a batch can contain
more samples, still leading to a good yield result. The run-
time of the brute-force method, however, is much larger than
the proposed method, as shown in Fig. 9(b).

In the profit definition (4), if we use only one bin, the
problem formulation becomes the problem to improve the

Fig. 10. Yield improvement with clock tuning buffers with respect to μT ,
μT + 0.5σT , and μT + σT , compared with the yield values without tuning
buffers.

(a)

(b)

Fig. 11. Yield increase with respect to different numbers of tuning buffers.
Target clock period is set to (a) μT and (b) μT + σT .

yield with respect to a single clock period. In our experiments,
we tested this single-bin setting using μT , μT + 0.5σT , and
μT + σT as the upper bounds of the single bins, respectively.
The results of yield improvement are shown in Fig. 10. In all
these test cases, the yield values have been improved effec-
tively, up to 18.19% for the circuit s15850 in the μT bin. In
these test cases, the yield improvement is consistently better
for bins with higher performance, because in these bins the
original yield values without tuning buffers are lower so that
there is a large potential for the tuning buffers to take effect.

In our experiments, we constrained the number of buffers
to be smaller than 1% of the number of the flip-flops. If this
number can be increased, we can expect an increase of yield
because there are more chances to tune the chips after manu-
facturing. To show the effect of more tuning buffers, we tested
the numbers of buffers equal to 1%, 3%, and 5% of the number
of flip-flops. For each of these buffer numbers, we calculated
the yield values with respect to the single clock periods μT

ZHANG et al.: DESIGN-PHASE BUFFER ALLOCATION FOR POST-SILICON CLOCK BINNING BY ITERATIVE LEARNING 403

TABLE III
RUNTIME COMPARISON WITHOUT AND WITH

ACCELERATION TECHNIQUES

TABLE IV
YIELD COMPARISON WITH [9]

and μT + σT , respectively. The results are shown in Fig. 11.
According to these experiments, we can see that the yield gen-
erally increases when the number of buffers inserted into the
circuit increases. Similar to the trend of the yield improve-
ment with respect to different clock periods in Fig. 10, the
yield improvement with respect to μT in Fig. 11(a) is more
obvious compared with the yield improvement with respect to
μT + σT in Fig. 11(b). For the former, the average improve-
ment of the 5% setting to the 1% setting is 6.78%, but for
the latter this improvement is only 2.75%. Consequently, we
can conclude that post-silicon buffers are more useful in high-
performance designs, specially with clock binning, where the
potential for profit/yield improvement is large.

To reduce the execution time of the proposed method, we
introduced several acceleration techniques. With the Sobol
sequence, the inner loop of the iterative flow in Fig. 4 con-
verged with the test cases usb_funct and pci_bridge32, while
the other cases used up all the samples. To demonstrate the
efficiency of the acceleration techniques, we disable all of
them and show the execution time in Table III. According to
this comparison, it is obvious that the proposed acceleration
techniques can shorten the execution time effectively.

The buffer insertion problem is also addressed in [9] with a
direct statistical model. For comparison, we show the results
from their paper and the results of our method applied to
the same set of circuits in Table IV. The N1 column shows
the number of buffers in [9], and the N2 column that of our
method. Note their method is designed for a clock network
with a tree structure and they do not group buffers as we do.
Consequently, there is a large difference between the num-
bers of buffers. The columns Y1 and Y2 show the yield values
from their method and our method with the same clock period
setting. In this comparison, the proposed method outperforms
the method in [9] with a higher yield, while the number of
clock tuning buffers is much smaller. Furthermore, we have
implemented the method in [12] and the yield comparison is
shown in Fig. 12. In this comparison, the numbers of inserted
buffers are equal, so that we can conclude that the proposed
method outperforms the method in [12] consistently.

In the last step of the proposed method, we group buffers
according to the correlation between tuning values. This cor-
relation information is a natural result of the sampling-based

Fig. 12. Yield comparison with the buffer insertion method in [12].

TABLE V
YIELD COMPARISON OF DIFFERENT GROUPING ALGORITHMS

(a)

(b)

Fig. 13. Comparison with [1]. (a) Yield improvement with the same setting.
(b) Comparison of execution time of both methods.

method. In [12], a grouping algorithm is also proposed accord-
ing to circuit structure and distances between flip-flops. We
compare the results of our correlation-based grouping method
with theirs and the results are shown in Table V, where Y1
is the yield with the grouping algorithm in [12] and Y2 is
the yield with the proposed correlation-based grouping. For
comparison, we have changed the numbers of buffers in the
proposed method so that they are equal to the ones in [12].
From this comparison, we can see that our method produces a
better yield, because we have the correlation information from
emulated samples.

The method proposed in [1] uses the same concept in this
paper, but it captures the locations of buffers by process-
ing emulated samples once at a time. Therefore, the relation
between tuning values in different samples is not incorporated.

404 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 2, FEBRUARY 2018

In addition, the method in [1] uses a purely random sequence
so that the number of samples is still large. To verify the
improvement of the proposed method, we mapped the circuits
used in [1] to the same library and tested the yield improve-
ment with respect to μT . The results are shown in Fig. 13(a),
where we can see that the proposed method produces a better
yield improvement than [1] with the same number of buffers.
Furthermore, we show the execution time of these methods in
Fig. 13(b). It is clear that the extended method in this paper
is more efficient than [1].

VI. CONCLUSION

In this paper, we propose a sampling-based method to deter-
mine locations and ranges of post-silicon tuning buffers in
a circuit to improve the overall profit with clock binning.
By establishing the relation between buffer locations and
the yield with an ILP model directly, the proposed method
can learn the buffer locations for yield improvement effec-
tively. With acceleration techniques such as a low discrepancy
sequence, the proposed method takes much less time than
previous methods. Experimental results confirm that the profit
of the circuit after manufacturing can be improved signifi-
cantly with a small number of buffers. Future tasks of this
paper include post-silicon testing and configuration of delays
buffers to achieve the given clock period or profit. The major
challenge is to make a good tradeoff between test cost and
profit improvement.

REFERENCES

[1] G. L. Zhang, B. Li, and U. Schlichtmann, “Sampling-based buffer
insertion for post-silicon yield improvement under process variability,”
in Proc. Design Autom. Test Europe Conf., Dresden, Germany, 2016,
pp. 1457–1460.

[2] D. Blaauw, K. Chopra, A. Srivastava, and L. Scheffer, “Statistical tim-
ing analysis: From basic principles to state of the art,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 27, no. 4, pp. 589–607,
Apr. 2008.

[3] D. Ernst et al., “Razor: A low-power pipeline based on circuit-level
timing speculation,” in Proc. Int. Symp. Microarchitect., San Diego, CA,
USA, 2003, pp. 7–18.

[4] S. Naffziger et al., “The implementation of a 2-core, multi-threaded
Itanium family processor,” IEEE J. Solid-State Circuits, vol. 41, no. 1,
pp. 197–209, Jan. 2006.

[5] E. Takahashi, Y. Kasai, M. Murakawa, and T. Higuchi, “Post-fabrication
clock-timing adjustment using genetic algorithms,” IEEE J. Solid-State
Circuits, vol. 39, no. 4, pp. 643–650, Apr. 2004.

[6] P. Mahoney, E. Fetzer, B. Doyle, and S. Naffziger, “Clock distribution
on a dual-core, multi-threaded Itanium R©-family processor,” in Proc. Int.
Solid-State Circuits Conf., 2005, pp. 292–293.

[7] S. Tam et al., “Clock generation and distribution for the first
IA-64 microprocessor,” IEEE J. Solid-State Circuits, vol. 35, no. 11,
pp. 1545–1552, Nov. 2000.

[8] J.-L. Tsai, D. Baik, C. C.-P. Chen, and K. K. Saluja, “A yield
improvement methodology using pre- and post-silicon statistical clock
scheduling,” in Proc. Int. Conf. Comput.-Aided Design, San Jose, CA,
USA, 2004, pp. 611–618.

[9] J.-L. Tsai, L. Zhang, and C. C.-P. Chen, “Statistical timing analy-
sis driven post-silicon-tunable clock-tree synthesis,” in Proc. Int. Conf.
Comput.-Aided Design, San Jose, CA, USA, 2005, pp. 575–581.

[10] V. Khandelwal and A. Srivastava, “Variability-driven formulation for
simultaneous gate sizing and postsilicon tunability allocation,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 27, no. 4,
pp. 610–620, Apr. 2008.

[11] K. Nagaraj and S. Kundu, “A study on placement of post silicon clock
tuning buffers for mitigating impact of process variation,” in Proc.
Design Autom. Test Europe Conf., 2009, pp. 292–295.

[12] Z. Lak and N. Nicolici, “A novel algorithmic approach to aid post-silicon
delay measurement and clock tuning,” IEEE Trans. Comput., vol. 63,
no. 5, pp. 1074–1084, May 2014.

[13] B. Li and U. Schlichtmann, “Statistical timing analysis and critical-
ity computation for circuits with post-silicon clock tuning elements,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 34, no. 11,
pp. 1784–1797, Nov. 2015.

[14] K. Nagaraj and S. Kundu, “An automatic post silicon clock tuning
system for improving system performance based on tester measure-
ments,” in Proc. Int. Test Conf., 2008, pp. 1–8.

[15] D. Tadesse, J. Grodstein, and R. I. Bahar, “AutoRex: An automated post-
silicon clock tuning tool,” in Proc. Int. Test Conf., Austin, TX, USA,
2009, pp. 1–10.

[16] R. Ye, F. Yuan, and Q. Xu, “Online clock skew tuning for timing specu-
lation,” in Proc. Int. Conf. Comput.-Aided Design, San Jose, CA, USA,
2011, pp. 442–447.

[17] Z. Lak and N. Nicolici, “On using on-chip clock tuning ele-
ments to address delay degradation due to circuit aging,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 31, no. 12,
pp. 1845–1856, Dec. 2012.

[18] A. Chakraborty et al., “Dynamic thermal clock skew compensation using
tunable delay buffers,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 16, no. 6, pp. 639–649, Jun. 2008.

[19] J. P. Fishburn, “Clock skew optimization,” IEEE Trans. Comput., vol. 39,
no. 7, pp. 945–951, Jul. 1990.

[20] K. S. Kim, S. Mitra, and P. G. Ryan, “Delay defect characteristics and
testing strategies,” IEEE Design Test Comput., vol. 20, no. 5, pp. 8–16,
Sep./Oct. 2003.

[21] G. L. Zhang, B. Li, and U. Schlichtmann, “EffiTest: Efficient delay test
and statistical prediction for configuring post-silicon tunable buffers,” in
Proc. Design Autom. Conf., Austin, TX, USA, 2016, pp. 1–6.

[22] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to
Algorithms. Cambridge, MA, USA: MIT Press, 1990.

[23] C. Visweswariah, K. Ravindran, K. Kalafala, S. G. Walker, and
S. Narayan, “First-order incremental block-based statistical timing anal-
ysis,” in Proc. Design Autom. Conf., 2004, pp. 331–336.

[24] J. Xiong, Y. Shi, V. Zolotov, and C. Visweswariah, “Statistical multilayer
process space coverage for at-speed test,” in Proc. Design Autom. Conf.,
San Francisco, CA, USA, 2009, pp. 340–345.

[25] T. Wang, C. Zhang, J. Xiong, and Y. Shi, “Eagle-Eye: A near-optimal
statistical framework for noise sensor placement,” in Proc. Int. Conf.
Comput.-Aided Design, San Jose, CA, USA, 2013, pp. 437–443.

[26] F. Gong, Y. Shi, H. Yu, and L. He, “Variability-aware parametric yield
estimation for analog/mixed-signal circuits: Concepts, algorithms, and
challenges,” IEEE Design Test, vol. 31, no. 4, pp. 6–15, Aug. 2014.

[27] A. Singhee and R. A. Rutenbar, “From finance to flip flops: A study of
fast quasi-Monte Carlo methods from computational finance applied to
statistical circuit analysis,” in Proc. Int. Symp. Qual. Electron. Design,
San Jose, CA, USA, 2007, pp. 685–692.

[28] V. Veetil, K. Chopra, D. Blaauw, and D. Sylvester, “Fast statistical
static timing analysis using smart Monte Carlo techniques,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 30, no. 6, pp. 852–865,
Jun. 2011.

[29] I. M. Sobol, “The distribution of points in a cube and the approximate
evaluation of integrals,” USSR Comput. Math. Math. Phys., vol. 7, no. 4,
pp. 86–112, 1967.

[30] G. E. P. Box and M. E. Muller, “A note on the generation of random
normal deviates,” Ann. Math. Stat., vol. 29, no. 2, pp. 610–611, 1958.

[31] Gurobi Optimization, Inc. (2013). Gurobi Optimizer Reference Manual.
[Online]. Available: http://www.gurobi.com

[32] D. Chen, R. G. Batson, and Y. Dang, Applied Integer Programming:
Modeling and Solution. Hoboken, NJ, USA: Wiley, 2011.

Grace Li Zhang received the master’s degree from
the School of Microelectronics, Xidian University,
Xi’an, China, in 2014. She is currently pur-
suing the Ph.D. degree with the Institute for
Electronic Design Automation, Technical University
of Munich, Munich, Germany.

Her current research interests include high-
performance and lower-power design, and emerging
systems.

ZHANG et al.: DESIGN-PHASE BUFFER ALLOCATION FOR POST-SILICON CLOCK BINNING BY ITERATIVE LEARNING 405

Bing Li received the bachelor’s and master’s
degrees in communication and information engi-
neering from the Beijing University of Posts and
Telecommunications, Beijing, China, in 2000 and
2003, respectively, and the Dr.-Ing. degree in elec-
trical engineering from the Technical University of
Munich (TUM), Munich, Germany, in 2010.

He is currently a Researcher with the Institute
for Electronic Design Automation, TUM. His cur-
rent research interests include high-performance and
lower-power design, and emerging systems.

Jinglan Liu received the B.E. degree in communica-
tion engineering from the Beijing University of Posts
and Telecommunications, Beijing, China, in 2014.
She is currently pursuing the Ph.D. degree with the
Department of Computer Science and Engineering,
University of Notre Dame, Notre Dame, IN, USA.

Her current research interests include low-power
system design and machine learning applications on
interdisciplinary fields.

Yiyu Shi (M’09–SM’14) received the B.S. (Hons.)
degree in electronic engineering from Tsinghua
University, Beijing, China, in 2005, and the M.S.
and Ph.D. degrees in electrical engineering from
the University of California at Los Angeles, Los
Angeles, CA, USA, in 2007 and 2009, respectively.

He is currently an Associate Professor with the
Departments of Computer Science and Engineering
and Electrical Engineering, University of Notre
Dame, Notre Dame, IN, USA. His current research
interests include 3-D integrated circuits and machine

learning on chips.
Dr. Shi was a recipient of several best paper nominations in top confer-

ences, the IBM Invention Achievement Award in 2009, the Japan Society
for the Promotion of Science Faculty Invitation Fellowship, the Humboldt
Research Fellowship for Experienced Researchers, the IEEE St. Louis Section
Outstanding Educator Award, Academy of Science (St. Louis) Innovation
Award, the Missouri S&T Faculty Excellence Award, the National Science
Foundation CAREER Award, the IEEE Region 5 Outstanding Individual
Achievement Award, and the Air Force Summer Faculty Fellowship.

Ulf Schlichtmann (S’88–M’90) received the
Dipl.-Ing. and Dr.-Ing. degrees in electrical engineer-
ing and information technology from the Technical
University of Munich (TUM), Munich, Germany, in
1990 and 1995, respectively.

He was with Siemens AG, Munich, and Infineon
Technologies AG, Munich, from 1994 to 2003,
where he held various technical and management
positions in design automation, design libraries, IP
reuse, and product development. He has been a
Professor and the Head of the Institute for Electronic

Design Automation, TUM, since 2003, where he served as the Dean of the
Department of Electrical and Computer Engineering, from 2008 to 2011. His
current research interests include computer-aided design of electronic circuits
and systems, with an emphasis on designing reliable and robust systems.

4 Design-Phase Buffer Allocation for Post-Silicon Clock Binning by Iterative Learning

52

5 Efficient Delay Test and Prediction for

Post-Silicon Clock Skew

Configuration under Process

Variations

53

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

EffiTest2: Efficient Delay Test and Prediction for
Post-Silicon Clock Skew Configuration under

Process Variations
Grace Li Zhang, Bing Li, Yiyu Shi Senior Member, IEEE, Jiang Hu Fellow, IEEE and Ulf

Schlichtmann Member, IEEE

Abstract—At nanometer manufacturing technology nodes, pro-
cess variations affect circuit performance significantly. This
trend leads to a large timing margin and thus overdesign in
the traditional worst-case circuit design flow. To combat this
pessimism, post-silicon clock tuning buffers can be deployed
to balance timing slacks of consecutive combinational paths in
individual chips by tuning clock skews after manufacturing. A
challenge of this method is that path delays of each chip with
timing failures should be measured to gather the information
for clock skew configuration. However, current methods for
delay measurement rely on path-wise frequency stepping, which
requires much time from expensive testers. In this paper, we
propose an efficient delay test framework (EffiTest2) to solve the
post-silicon testing problem by testing only representative paths
with delay alignment using the already-existing tunable buffers
in the circuit. Experimental results demonstrate that EffiTest2
can reduce the number of frequency stepping iterations by more
than 94% with only a slight yield loss.

Index Terms—Process Variations, Post-Silicon Tuning, Clock
Skew, Yield, Path Selection, Delay Test, Statistical Prediction

I. INTRODUCTION

Modern IC design faces tremendous challenges to achieve
performance goals while maintaining a profitable yield. For
example, at advanced technology nodes, increasing process
variations together with aging effects require a very large
timing margin, thus causing expensive overdesign. To combat
such challenges, process variations may be modeled directly
in timing analysis, leading to a boom of research on statistical
static timing analysis (SSTA) in the last decade [2]–[11].
With the information of distributions of process variations,
SSTA methods produce a performance-yield curve with which
designers have a chance to make a tradeoff between different

This work was partly supported by the German Research Foundation
(DFG) as part of the Transregional Collaborative Research Centre “Invasive
Computing” (SFB/TR 89) as well as NSF (CCF-1525749, CNS-1618824) and
SRC (2016-TS-2688).

A preliminary version of this paper was published in the Proceedings of
Design Automation Conference (DAC), 2016 [1].

Grace Li Zhang, Bing Li, and Ulf Schlichtmann are with the Chair
of Electronic Design Automation, Technical University of Munich (TUM),
Munich 80333, Germany (e-mail: grace-li.zhang@tum.de; b.li@tum.de;
ulf.schlichtmann@tum.de).

Yiyu Shi is with the Department of Computer Science and Engineering,
University of Notre Dame (e-mail: yshi4@nd.edu).

Jiang Hu is with the Department of Electrical and Computer Engineering,
Texas A&M University (e-mail: jianghu@tamu.edu).

Copyright (c) 2015 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

scanin
0 1 2

shift

scanout

configuration bits

CLK IN CLK OUT

Fig. 1: Post-silicon delay tunable buffer in [25].

design goals. This method can effectively reduce the timing
margin compared with traditional worst-case design, but it
still does not counter process variations actively. To alleviate
the effect of process variations, many researchers have also
worked on circuit level to introduce special devices and
mechanisms. For instance, the Razor method [12]–[15] boosts
circuit performance until timing errors occur, and recently
the performance capacity of flip-flops has been exploited to
the extreme limit by considering the interdependency between
setup and hold time [16]–[21].

Another direction to deal with process variations is to tune
chips after manufacturing. To apply this technique, tunable
components are inserted into the circuit during the design
phase. After manufacturing, chips with timing failures can be
rescued by tuning buffers with respect to the effect of process
variations, which become deterministic at this phase.

A widely used post-silicon tuning technique is clock tun-
ing using delay buffers with various structures [22]–[25].
An example of industrial applications of this technique is
demonstrated in [25]. The structure of the delay buffer (clock
vernier device) in this work is illustrated in Fig. 1, where
the three registers control the delay between the clock input
CLK IN and output CLK OUT. During the design phase,
tunable buffers of such type are inserted onto the clock paths
of selected flip-flops related to potential critical paths. After
manufacturing, the delay values of these buffers are adjusted
through the test access port (TAP) to create different clock
skews to these flip-flops. The objective of this tuning is to
allot critical paths more timing slack by shifting clock edges
toward stages with smaller combinational delays, so that a
manufactured chip can work at the designated frequency.

To apply the post-silicon tuning technique, tunable delay
buffers must be inserted into the circuit during the design
phase. In recent years, several methods have been proposed to
determine buffer locations and evaluate the potential resulting
yield improvement. In [26] a clock scheduling method is devel-

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 2

oped and tunable buffers are selectively inserted to balance the
skews resulting from process variations. In [27] the buffer al-
location problem is solved with a graph-based algorithm under
useful clock skew scheduling. In [28] algorithms are proposed
to insert buffers into the clock tree to guarantee a given yield,
while minimizing the total area of these tunable buffers or
the total number of them. This problem is investigated further
in [29], [30] with a sampling-based method to recognize a
limited number of locations to insert tunable buffers for yield
improvement. In [31] yield loss due to process variations and
the total cost of tunable buffers are formulated together for gate
sizing. In [32], the placement of tunable buffers is investigated
and a considerable improvement is observed when the clock
tree is designed using the proposed tuning system. With the
locations of tunable buffers known, the improved yield of the
circuit can be evaluated efficiently using the method in [33],
[34].

After manufacturing, necessary information, e.g., delays of
combinational paths, need to be extracted from chips with
timing failures for post-silicon clock skew scheduling. In
[35] an efficient post-silicon tuning method is proposed to
search a configuration tree together with graph pruning and
buffer grouping. The methods in [36], [37] measure path
delays individually in manufactured chips and tune them
accordingly. Furthermore, this post-silicon tuning technique
has been applied for on-line adjustment to improve lifetime
performance of a circuit in view of process variations and
aging [38], [39]. Moreover, the method in [40] applies tunable
buffers to compensate dynamic delay uncertainty induced by
temperature variations.

In applying post-silicon clock tuning, a major challenge
is that delays of combinational paths need to be measured
specifically for each chip after manufacturing. However, so
far this measurement is still performed by applying frequency
stepping to individual paths [35]–[37], which requires much
time from expensive testers.

In this paper, we investigate the post-silicon test problem
and propose an efficient framework (EffiTest2) to improve test
efficiency using statistical prediction and delay alignment. Our
contributions are as follows.

1) A path selection approach combining SVD/QRcp de-
composition and iterative accuracy evaluation is proposed to
choose the paths for post-silicon test. The delays of these paths
are used to predict the maximum delays between flip-flops
with tunable buffers.

2) Multiple paths are tested in parallel in our framework.
The delays of paths in a test batch are aligned statistically
during path assignment. Nonrepresentative paths with large
random variations are added into test batches to reduce inac-
curacy in delay estimation. During delay test, we also adjust
the already-existing tunable buffers to align the real delays of
paths adaptively so that a frequency step can capture delay
information of multiple paths.

3) Since predicted path delays are still in the form of
small ranges instead of exact numbers, configuration values
of tunable buffers are determined with respect to the upper
bounds of these ranges, so that potential timing violations due
to the inaccuracy in delay test and prediction can be reduced.

3

6

F1 F2

F4 F3

85
x3x4

x1 clk x20

00.5

-2.5

Fig. 2: Post-silicon clock tuning reduces the minimum clock
period from 8 to 5.5. Setup time and propagation delay of
flip-flops are assumed as 0.

4) Hold time constraints are incorporated by imposing
range constraints on configuration values of tunable buffers.
These additional constraints limit yield loss due to hold time
constraints by a given threshold to avoid further test iterations
on short paths.

The rest of this paper is organized as follows. In Section II
we give an overview of timing constraints for circuits with
post-silicon tunable buffers. We explain the proposed method
in detail in Section III. Experimental results are shown in
Section IV. Conclusions are drawn in Section V.

II. BACKGROUND OF POST-SILICON CLOCK TUNING

In a circuit with post-silicon tunable buffers, the propagation
delays of clock paths to flip-flops with tunable buffers can
be adjusted after manufacturing for each chip individually.
The concept of this technique can be explained using the
example in Fig. 2, where four flip-flops are connected into
a loop by combinational paths represented by inverters. The
numbers next to the inverters denote delays of the corre-
sponding combinational paths. During the design phase, these
combinational delays should be considered as statistical due
to process variations. But after manufacturing, the delays in
a single chip become fixed values, enabling a concrete clock
skew tuning to counter the effect of process variations.

In Fig. 2, if all the delays of the tunable buffers are set
to 0, this example is equivalent to the case without post-
silicon tuning. The minimum clock period is thus equal to
8 when setup time and propagation delays of the flip-flops are
assumed as 0. On the other hand, if clock edges can be moved
by adjusting the delays of the tunable buffers, the minimum
clock period can be reduced to 5.5. For example, the buffer
value x2 shifts the launching clock edge at F2 2.5 units earlier.
Therefore, with a clock period of 5.5, the combinational path
between F2 and F3 now has 5.5+2.5=8 time units to finish
signal propagation. This shifting of the clock edge reduces the
timing budget of the path between F1 and F2 to 5.5-2.5=3 units
after post-silicon tuning, which is still sufficient for this path
without violating any timing constraint. Note that the buffer
delays are defined with respect to a reference clock signal, so
that they can have negative values.

This clock tuning concept is similar to assigning useful
skews [41] to improve circuit performance. The difference,
however, is that the skew scheduling is executed individually
for each chip with timing failures after manufacturing. Since
critical paths in these chips may differ due to process varia-
tions, customized timing schemes generated in response to the

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 3

xjxi

clki

clk

clkj

comb. circuitFF FF

clkj

clk

clki

reference time 0

xj

hj
sj

xi

T

i j

Fig. 3: Timing with tunable buffers.

effect of process variations can rescue these chips by balancing
slacks across consecutive register stages.

Timing constraints with clock tunable buffers can be ex-
plained using Fig. 3, where two flip-flops with such buffers
are connected by a combinational circuit. Assume that the
clock signal switches at reference time 0. The clock events
at flip-flops i and j happen at time xi and xj , respectively. To
meet the setup time and hold time constraints, the following
constraints must be satisfied

xi + dij ≤ xj + T − sj ⇐⇒ T ≥ Dij + xi − xj (1)
xi + dij ≥ xj + hj ⇐⇒ xi − xj ≥ dij (2)

where xi and xj are delay values of tunable buffers, dij
(dij) is the maximum (minimum) delay of the combinational
circuit between flip-flops i and j, sj (hj) is the setup (hold)
time of flip-flop j, T is the clock period, Dij = dij + sj ,
and dij = hj − dij . The two constraints above indicate
that the clock tuning values xi and xj should be determined
according to Dij and dij . In delay test, the latter two values
are actually measured instead of the path delays dij and dij . In
the following, we will also refer to Dij and dij as maximum
delay and minimum delay for simplicity.

Owing to area cost, the configurable delay of a clock buffer
usually has a limited range. For buffer i, this range is specified
as ri ≤ xi ≤ ri + τi (3)
where ri and τi are constants determined by methods such
as [28]. In the range (3), xi may only take discrete values
according to the implementation of buffers.

After manufacturing, path delays in chips become de-
terministic. For a chip with timing failures, the delays of
combinational paths related to tunable buffers should be eval-
uated. Thereafter, the configuration values of tunable buffers
are determined by finding a feasible solution meeting the
constraints (1)–(3) with respect to the given clock period T .
The most challenging task of applying this post-silicon tuning
technique is delay evaluation of combinational paths after
manufacturing. These delays should be estimated relatively
accurately to configure buffers properly. But the cost of this
delay test on all failed chips must remain low; otherwise, the
benefit of using tunable buffers to improve yield may be offset
by the ensuing test cost.

In previous methods [26], [35]–[37], path delays are mea-
sured straightforwardly using frequency stepping. In this tech-
nique, a path is tested with a given clock period. If the sink
flip-flop of this path can latch data correctly, the setup time

Path selection for prediction

Test batch assignment

Scan test with delay alignment

Path delay range estimation

Buffer value configuration

Pass/fail test

Paths
to

predict

yes

Delay rangesno
small enough?

Hold time
tuning bounds

Paths to test

Fig. 4: Delay test and buffer configuration flow in EffiTest2.

constraint at the sink flip-flop is met, so that an upper bound
of the path delay is found. Thereafter, a smaller clock period
is applied until data cannot be latched correctly anymore to
find a lower bound of the path delay. With a binary search of
different frequency steps, the path delay can be approximated
by narrowing the range defined by the lower and upper bounds.

In using frequency stepping in this test scenario, the number
of iterations (frequency steps) might be large if many paths
are tested. Though there are some techniques that can be used
to combine tests of several paths to reduce the number of
iterations, no method has considered the fact that the tunable
buffers in the circuit can be used to align path delays, so that
a clock period can sweep the delay ranges of several paths
at the same time. For example, if delays of tunable buffers
in Fig. 2 could be set to values as shown, the delays of
the combinational paths are well balanced and can thus be
tested concurrently. To reduce test cost further, the correlation
information between path delays provided by statistical timing
analysis techniques [11] can also be used. Consequently, only
a set of representative paths need to be tested while the
maximum delays between flip-flops with tunable buffers are
estimated from the test results.

III. STATISTICAL PREDICTION AND ALIGNED DELAY
TEST FOR BUFFER CONFIGURATION

In post-silicon delay test, previous frequency stepping meth-
ods test all paths connected to flip-flops with post-silicon
tunable buffers individually. According to the test results, the
configuration bits of the tunable buffers are adjusted to make
the chips work with the required clock period. This exhaustive
path-wise test strategy is very expensive because it requires a
lot time from testers. Practically, however, not all paths delays
need to be evaluated exactly. Instead, they may only need to
be estimated with a given accuracy that is sufficient for post-
silicon configuration.

In this section, we introduce our method EffiTest2 to reduce
the total number of frequency stepping iterations in testing
path delays with two techniques: statistical prediction and
delay alignment during test. With the tested and estimated
delays, tunable buffers in chips with timing failures are then

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 4

TABLE I: Notations

P
All critical combinational paths between pairs of flip-flops
with at least one tunable buffer

Dp The statistical delays of combinational paths in P

Dm The statistical maximum delays between pairs of flip-flops
with at least one tunable buffer

Pt
The combinational paths that are tested using frequency
stepping

Dp
t The statistical delays of combinational paths in Pt

Dm
t

The selected maximum delays that can predict Dm\Dm
t

within a given accuracy
Pc The chosen combinational paths for maximum delays in Dm

t

Dc The statistical delays of combinational paths in Pc

configured to maximize the chance that manufactured chips
work with the given clock period T . In the test scenario, we
assume that the locations of buffers have been determined,
using a method such as [28], [30]. The flow of the proposed
method is summarized in Fig. 4. It includes four major
steps: path selection in Section III-A, test batch assignment
in Section III-B, frequency stepping with delay alignment in
Section III-C, buffer configuration in Section III-D, and hold
time constraints in Section III-E. The important notations used
in the following are listed in Table I.

The statistical delay prediction in Section III-A assumes
that path delays follow Gaussian distribution. In cases such
as ultra-low voltage designs, this assumption may be invalid.
In this scenario, the accuracy evaluation (6)–(7) needs to
be adapted accordingly while the overall flow can still be
deployed.

A. Path Selection and Statistical Delay Prediction

When tuning manufactured chips to resolve timing failures,
the maximum delays between flip-flop pairs need to meet
setup time constraints, and the minimum delays hold time
constraints, as defined in (1)–(2). Fig. 5 illustrates an example,
considering only setup time constraints. In this example, nodes
represent flip-flops, solid edges represent combinational paths
and dashed edges represent maximum path delays between
flip-flops. If a path between a pair of flip-flops is critical, the
clock edge to the flip-flop in the middle can be tuned to the
other side to give the critical path more slack, provided that
the timing constraints between the other pair of flip-flops are
not violated.

To determine the configuration of tunable buffers attached
to the flip-flops with respect to the setup time constraint (1),
the maximum delays between flip-flops need to be evaluated.
Since process variations affect combinational paths in manu-
factured chips differently, many paths between a pair of flip-
flops may be critical after manufacturing. Due to test cost, it is
impractical to test all combinational paths that can potentially
become critical with frequency stepping directly, as assumed
in [26], [35]–[37]. Instead, statistical delay prediction can be
deployed to estimate the maximum delays between flip-flops
using the data of representative combinational paths.

1) Concept of path selection for delay prediction:
Statistical delay prediction relies on the correlation between
path delays to maintain a high accuracy. Since a high correla-
tion indicates that two delays vary similarly in manufactured
chips, the measurement of one delay after manufacturing also

1 2 3

p1
p2
p3

p4

p5 1 2 3

D12 = max{d1, d2, d3}

D23D12

D23 = max{d4, d5}

(a) (b)

Fig. 5: Test scenario with maximum path delays, where nodes
represent flip-flops with tunable buffers. Multiple combina-
tional paths, p1–p5 with delays d1–d5, respectively, exist
between flip-flops with tunable buffers in (a). Post-silicon
skew configuration by tunable buffers is determined by the
maximum delays of all paths as simplified in (b).

discloses information about the other. In high-performance
designs, logic gates on a critical path usually are not spread
out all over the chip. Therefore, critical paths converging at
or leaving from flip-flops with buffers tend to form physical
clusters on the chip. This physical proximity results in a high
correlation between path delays [11], which can be exploited
to reduce the number of paths to be tested. For example, a
conditional statistical prediction technique [42] has been used
in [43] to predict the timing performance of a circuit from the
measurements of on-chip test structures.

Consider a pair of flip-flops to at least one of which a
tunable buffer is attached. Under process variations, usually
many combinational paths between this pair of flip-flops have
a probability to dominate the rest of them. We denote all these
paths in the circuit as a set P and their statistical delays as
Dp. The task of delay measurement is to extract sufficient
information about delays by testing only a small subset of
paths Pt ⊂ P. Assume the statistical delays of Pt are denoted
as Dp

t . The statistical prediction from Dp
t to Dp\Dp

t is a well-
known problem and has been studied extensively, e.g., in [44].

In post-silicon tuning, the individual delays of paths in
Dp, however, are not required. Instead, only the maximum
delays between each pair of flip-flops should be determined
as illustrated in Fig. 5(b). When process variations are consid-
ered, path delays are represented as random variables. The
maximum of a set of path delays can be calculated using
Monte Carlo simulation or statistical timing analysis. Assume
the statistical maximum delays are collected in a set Dm,
which contains one statistical maximum delay for every pair of
flip-flops to at least one of which a tunable buffer is attached.
We then need to establish the relation between the delays
Dp

t of selected combinational paths Pt ⊂ P to Dm, i.e.,
Dp

t → Dm.
To identify Pt from P, we need to consider all the

combinational paths between each pair of flip-flops with at
least one tunable buffer. This leads to a huge amount of
paths to be examined. To solve this problem, we introduce
a second level of statistical prediction. Instead of predicting
the maximum delays Dm, we use the measured delays Dp

t

to predict a subset Dm
t ⊂ Dm, provided that the predicted

values of Dm
t can also provide sufficient information for the

other maximum delays Dm\Dm
t , thus establishing a chained

relation Dp
t → Dm

t → Dm. Since Dm
t is a subset of

Dm, to identify it from Dm is the same statistical prediction
problem as discussed in [44]. Therefore, we only need to focus
on the task to find a set of combinational paths to predict

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 5

Dm

Dm
t

Dp
t

{d1, d2}

{D12}

{D12, D23}

frequency stepping

Dm

buffer configuration

iterative
selecion

maximum
delay

prediction reduce
path

search
scope

path
search

selection by
SVD/QRcp

Fig. 6: Relation between delay sets, using the test scenario
in Fig. 5 as example. The thin dashed lines represent the
relation between the delay sets for identifying representative
combinational paths. The thick dashed lines illustrate the real
test and prediction procedure.

Dm
t . The information of Dm

t is derived from the delays of
the combinational paths from which Dm

t is computed. This
characteristic allows us to search only the combinational paths
between those pairs of flip-flops corresponding to Dm

t , thus
reducing the effort of path enumeration significantly.

The relation between the delay sets discussed above is
illustrated in Fig. 6. We identify the representative maximum
delays Dm

t from Dm to reduce the path search scope. There-
after, the combinational paths between the pairs of flip-flops
whose maximum delays are Dm

t are examined to select the
combinational paths Dp

t for delay test. The details of these
steps are described as follows.

2) Determining a set of maximum delays Dm
t from Dm

using SVD-QRcp: In the delay prediction concept shown in
Fig. 6, the first step is to determine a subset of variables Dm

t

from Dm, so that the values of Dm
t can predict the values

of Dm. This problem has been studied previously such as in
[44]–[47] using an algorithm based on SVD-QRcp. Assume
that a delay from Dm is written as a linear combination of
M random components S = [s1, s2, . . . , sM]T , such as in the
canonical form in [3]. The delay Dm can then be expressed
as Dm = CS, where C is the coefficient matrix. The SVD-
QRcp algorithm first performs Singular Value Decomposition
(SVD) to decompose C as

C = UΛVT (4)

where U and V are unitary matrices and Λ is a diagonal
matrix with singular values in a descending order.

The large singular values in Λ reveal the importance of
delays that carry orthogonal statistical information. To select
the delays Dm

t to predict Dm\Dm
t the correspondence be-

tween the singular values and the delays in Dm needs to be
established using the permutation matrix in the QRcp (QR with
column pivoting) decomposition. Assume n delays should be
selected from Dm. Then the first n columns of U, written as
U[1:n] are decomposed as

UT
[1:n] = QRΠT (5)

where ΠT is a permutation matrix to identify the n most
important random variables from Dm.

To illustrate the decomposition process above, we use an
example with three delays in Dm, each of which is expressed
as a linear combination of three random components. The
SVD and QRcp are performed using the routines from the
LAPACK [48] and GSL [49] libraries. The coefficient matrix
C of Dm and the matrices after decomposition are shown in
the following.

C U Λ

10 6 1

13 4 2

7 5 1


 =



−0.59 0.43 −0.68
−0.69 −0.72 0.13

−0.43 0.55 0.72


 ×



19.83 0 0

0 2.76 0

0 0 0.31




VT

×



−0.90 −0.40 −0.18
−0.42 0.90 0.10

−0.12 −0.16 0.98




Q R ΠT

UT
[1:2]

=

[−0.69 −0.72
−0.72 0.69

]
×
[
0.99 0.09 −0.10
0 0.72 0.69

]
×



0 1 0

1 0 0

0 0 1




In the example above, two delays are selected to predict the
third one, so that only the first two columns of U, written as
U[1:2], are used in the QRcp decomposition. In the permutation
matrix ΠT , the first column shows that we need to select the
second delay because the only 1 in this column appears in the
second row. Similarly, the second column of ΠT shows that
we need to select the first delay.

The decomposition process above requires that we state the
number of delays n to be included in Dm

t . This number needs
to be decided so that the prediction accuracy is maintained.
Assume in a general case that N statistical variables Dt that
are selected to measure their values dt in a chip directly, and
another variable dk whose value should be predicted with dt.
Assume also that these delays follow Gaussian distributions,
which are widely used in statistical timing analysis [11]. Under
this assumption, these delays can be written together as D =[
dk

Dt

]
∼ NNN(µ,Σ), where µ is the mean value vector of D,

Σ is the covariance matrix of D, dk ∼ N(µk, σk) and Dt ∼
NNN(µt,Σt). Accordingly, µ and Σ can be expressed as µ =[
µk

µt

]
, and Σ =

[
σk Σk,t

Σt,k Σt

]
, where Σk,t = ΣT

t,k is the

covariance matrix between dk and Dt.
With the measured values dt of Dt, the mean value µ′k and

the variance σ′2k of dk under the condition Dt = dt can be
expressed as follows [42].

µ′k = µk + Σk,tΣ
−1
t (dt − µt) (6)

σ′2k = σ2
k −Σk,tΣ

−1
t Σt,k. (7)

After delay prediction, dk is still a random variable because
there are purely random process variations that reduce the
correlation between delays. However, the variance of the
predicted delays becomes smaller due to the second product
term in (7), indicating that the real path delay dk in a chip is
confined into a small range with a nonnegligible probability.
This range reduction results from the fact that the measurement
results of dt provide the information of the shared random
components between dk and Dt to reduce the variability of

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 6

Algorithm 1: Select Dm
t from Dm to reduce path search scope

Input : Coefficient matrix C of maximum delays Dm from SSTA
Output: Representative maximum delays Dm

t ⊆ Dm

L1 U← Decompose C using SVD (4);

L2 for i← 1 to |Dm| do
L3 U[1:i] ← First i columns of U;
L4 ΠT ← Decompose UT

[1:i]
using QRcp (5);

L5 Select Dm
t from Dm using ΠT ;

L6 foreach dk ∈ Dm\Dm
t do

L7 Compute σ′2
k using (7);

L8 if σ′
k > σth then

L9 goto L2;
L10 end
L11 end
L12 break;
L13 end
L15L15 return Dm

t

dk. Therefore, it may be unnecessary to measure the exact
delay of dk for buffer configuration after delay prediction
if the correlation between dk and Dt is high. On the other
hand, a small correlation allows the delay dk to vary freely,
leading to a relatively large variance even after statistical
prediction. Since the standard deviation σ′ represents how
wide the distribution of the predicted value of dk spreads, we
use it as an indicator of the prediction accuracy. If σ′ is lower
than a given threshold σth, the predicted value is considered
as having a sufficient accuracy.

In identifying Dm
t from Dm, if the standard deviation

σ′ of a delay from Dm\Dm
t exceeds σth, we increase the

number of delays from Dm to be selected and rerun the
QRcp decomposition. Since all delays in Dm contain a purely
random component from process variations [3], [11], σ′ cannot
be reduced to zero. Instead, it must be larger than the standard
deviation of the corresponding purely random component. In
EffiTest2, we enumerate all the delays in Dm to identify the
maximum σmax of the standard deviations of all the purely
random components and use σth = 2σmax as the threshold
of the prediction accuracy. Therefore, the iterations should
always converge because the given threshold σth is larger than
σmax, which is the accuracy when all delays are measured
directly. The selection process of Dm

t from Dm is summarized
in Algorithm 1.

3) Identifying representative paths using iterative se-
lection: The maximum delays Dm

t returned by Algorithm 1
are actually used to narrow the search scope of combinational
paths for delay test. In manufactured chips, only the delays
of these combinational paths can be measured with frequency
stepping directly [50], [51]. After Dm

t is identified from Dm,
we scan the circuit to find the starting and ending flip-flops
corresponding to Dm

t . For example, in Fig. 6 the maximum
delay D12 is identified from the set {D12, D23} using the
SVD-QRcp method described above. This maximum delay
indicates that the combinational paths between the flip-flops
1 and 2 in Fig. 5 are candidates for delay test. To reduce test
cost, only the minimum number of paths from them should be
tested using frequency stepping for post-silicon configuration.
For example, the delays of paths p1 and p2 may already
provide sufficient accuracy in predicting the maximum delays

Algorithm 2: Path selection to predict maximum delays Dm

Input : Maximum delays Dm from SSTA
Delay set Dm

t from Algorithm 1
Output: Selected paths Pt for delay test

L1 Pc ← ∅;
L2 foreach dk ∈ Dm

t do
L3 {ffsrc, ffdst} ← Find flip-flops corresponding to dk;
L4 Ps ← Trace five most critical paths ffsrc → ffdst;
L5 Pc ← Pc ∪Ps ;
L6 end
L7 Dc ← Delays of Pc;

L8 Dp
t ← ∅;

L9 for i← 1 to |Dc| do
L10 σ2

next ←∞;
L11 dnext ← null;
L12 foreach dc ∈ Dc\Dp

t do
L13 Dp′

t ← {dc} ∪Dp
t ;

L14 σ2
max ← 0;

L15 foreach dk ∈ Dm do
L16 Compute σ′2

k from Dp′
t to Dm using (7);

L17 if σ′2
k > σ2

max then
L18 σ2

max ← σ′2
k ;

L19 end
L20 end
L21 if σ2

max < σ2
next then

L22 σ2
next ← σ2

max;
L23 dnext ← dc;
L24 end
L25 end
L26 Dp

t ← {dnext} ∪Dp
t ;

L27 if σnext ≤ σth then
L28 Pt ← Paths corresponding to Dp

t ;
L29 break;
L30 end
L31 end
L33L33 return Pt

{D12, D23}, while more paths in addition to them may not
improve the prediction accuracy further, because the purely
random components in the maximum delays then dominate
the predicted values.

Because the number of combinational paths between a pair
of flip-flops is usually very large, the path candidates related
to Dm

t need to be reduced further. Since the combinational
paths related to the same pair of flip-flops are generally located
close to each other on the die, their delays exhibit a high
correlation due to proximity. Therefore, we need to consider
only a small subset of paths between each pair of flip-flops.
A static critical path identification is used in our method to
extract five combinational paths for each maximum delay in
Dm

t by forward and backward arrival time propagation. The
extracted combinational paths are denoted as a set Pc. The
delays of these paths are denoted as a set Dc.

The final step for path selection is to choose Pt from Pc.
The objective is that the measured values of the selected paths
Pt should be able to predict the delays of Dm with a sufficient
accuracy. A new challenge in this step is that the set of delays
Dc is not a subset of Dm, so that the SVD-QRcp method
cannot be used to identify the paths Pt. To solve this problem,
we enumerate all the path delays in Dc and select the delay
that can reduce the maximum of the variances of the predicted
values of Dm the most. The selection step stops when the
maximum of the standard deviations σ′k is smaller than the
threshold σth as used in Algorithm 1.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 7

1

2

3

4

5

6 7 9

8

a

b

p14 p34

p46 p67

p89

pab

p9a

p78

p7a

p24
p45 p′67

Fig. 7: Test scenario with multiple combinational paths. The
nodes represent flip-flops. The solid edges represent combina-
tional paths whose delays need to be tested using frequency
stepping. The dashed edges represent an additional path that
can also be tested without increasing the number of test
batches.

The procedure of selecting combinational paths for delay
test is summarized in Algorithm 2. In L1–L7 the combina-
tional paths related to Dm

t are saved in Pc and their statistical
delays in Dc. To select representative paths from Pc, the
loop L9–L31 adds one delay dnext from Dc into Dp

t in each
iteration. The newly selected delay dnext is the one from Dc

that, together with the already selected delays in Dp
t , predicts

the maximum delays Dm with the best accuracy. To identify
this delay, each delay in Dc\Dp

t is evaluated in L12–L25 as
dc, where dc and the current Dp

t are combined as Dp′
t to

evaluate the accuracy of predicting the maximum delays Dm

in the loop L15–L20 using (7). The prediction accuracy is
indicated as the maximum variance σ2

max of predicted values
of Dm, and the delay dc that can produce the smallest σ2

max is
selected and added into Dp

t . Meanwhile, the accuracy indicator
σ2
max is assigned to σ2

next. When σnext becomes lower than
the threshold σth, the selection procedure finishes and the
current Pt is returned as the paths to be tested using frequency
stepping.

B. Path Test Multiplexing

To predict the maximum delays Dm between flip-flops, the
delays Dp

t of representative combinational paths Pt need to be
tested. In frequency stepping, the delay of a path is compared
with the period of the test clock signal by checking whether the
sink flip-flop of the path latches data correctly. A violation of
the setup time constraint indicates the maximum delay exceeds
the test clock period. Since the data latching state of a flip-flop
can only indicate whether there is a timing violation, only the
delay of one path converging to it can be tested in one clock
cycle. In addition, paths leaving from a flip-flop cannot be
tested in parallel, because the values of the flip-flops need to
be set to trigger specific paths. In practice, the constraints may
be relaxed because some paths can share parts of test patterns.
In the following discussion, we will only assume the strictest
case without allowing this sharing of test vectors to simplify
the description of the proposed test multiplexing, which can
be adapted easily to deal with the relaxed test scenarios.

Consider the test scenario shown in Fig. 7, where the nodes
represent flip-flops and the edges represent combinational
paths. During delay test, the paths p14, p24, and p34 cannot
be processed in parallel, because they converge at the same
flip-flop. Similarly paths p45 and p46 cannot be tested at the
same time due to the shared source flip-flop. On the contrary,

paths that can be tested in parallel can be arranged into the
same group. For example, paths p14, p46, p67, p7a, and pab
can be tested with the same clock period together. These
paths are called a batch in the following discussion. In real
test scenarios, there might be cases that some paths in a
test batch cannot be activated by ATPG vectors at the same
time. These paths can be set as mutually exclusive and ar-
ranged into different test batches. The proposed method does
not consider the logic inconsistencies that might arise while
activating/propagating faults. However, we can use existing
methods, e.g., [52] and [53], to obtain testing compatibility,
i.e., subsets of paths which can be tested simultaneously for a
given set of paths that need to be tested. Accordingly, testing
compatibility of the representative combinational paths Pt

after path selection in Algorithm 2 can be derived with these
methods. The compatibility of Pt can be incorporated into
path test multiplexing to generate test batches in which paths
can be tested simultaneously.

Since the delays of paths in a test batch can be measured
in parallel, naturally we should arrange paths to be tested
into as few batches as possible to reduce the overall number
of frequency stepping iterations. To identify the minimum
number of test batches, we formulate this path arrangement
task into an Integer Linear Programming (ILP) problem.

Assume there are Nt (|Pt| = Nt) paths p1, p2, . . . , pNt to
be tested. For the path pj , we assign a 0-1 variable bi,j , i =
1, 2, . . . , Nt to indicate whether pj is assigned into the ith
batch. For all the selected paths, the variables can be written
into an Nt ×Nt submatrix, as shown in the first Nt columns
of the following matrix,


b1,1 b1,2 . . . b1,Nt
b1,Nt+1 . . . b1,Nt+Na

b2,1 b2,2 . . . b2,Nt
b2,Nt+1 . . . b2,Nt+Na

...
...

...
...

...
...

...
bNt,1 bNt,2 . . . bNt,Nt

bNt,Nt+1 . . . bNt,Nt+Na




(8)

where the columns correspond to the paths to be tested, and
the rows correspond to test batches.

Because a path delay needs to be measured only once, the
sum of the variables in a column in (8) should be equal to
one, written as

Nt∑

i=1

bi,j = 1, 1 ≤ j ≤ Nt. (9)

To prevent paths from converging at or leaving from the
same flip-flop to be arranged in the same batch, we add the
following constraints for each flip-flop,∑

pj∈IF
bi,j ≤ 1,

∑

pj∈OF

bi,j ≤ 1, 1 ≤ i ≤ Nt (10)

where IF is the set of paths converging at the flip-flop and
OF the set of paths leaving the flip-flop.

To reduce the number of batches, the number of rows
containing at least one 1 value in (8) should be minimized.
For the ith row corresponding to the ith test batch, we assign a
0-1 variable Bi to indicate whether this test batch is occupied,
so that bi,j ≤ Bi, 1 ≤ j ≤ Nt, 1 ≤ i ≤ Nt. (11)
By minimizing

∑Nt

i=1Bi, we can minimize the number of test

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 8

batches that are really occupied by test paths.
In test iterations, the delays of the paths in the same test

batch are always swept by the same test clock. If the delays of
these paths differ significantly, the test clock can only capture
the delay information of a part of them, while the other paths
are swept by changing the period of the clock signal in other
test iterations. Consequently, the number of iterations may
have to be increased. To improve test efficiency, we arrange
the paths with comparable delays into the same test batch
according to their statistical delay information.

Since comparable delays in a test batch mean that large
delays tend to be assigned in the same batch and small ones
in other ones, we simplify the delay balancing problem in path
arrangement by pushing paths with large delays into into the
same test batch as much as possible. For each test batch, we
assign a variable Wi, i = 1, 2, . . . , Nt to represent the sum of
the delays of the paths in the ith batch. Therefore, Wi can be
defined as

Wi =

Nt∑

j=1

bi,jµj , 1 ≤ i ≤ Nt (12)

where µj is the mean value of the jth path. If the jth path
is assigned into the ith batch, its delay contributes to Wi.
Afterwards, we maximize the weighted sum of

∑Nt

i=1 εiWi,
where εi are constants and εi > εi+1. With the weights εi in
the descending order, the paths with large delays tend to be
assigned to the first test batches to improve the efficiency of
frequency stepping.

After test batches are formed, there might still be some
unoccupied slots in a test batch because paths might not be
distributed evenly at flip-flops with buffers. For example, the
test scenario in Fig. 7 requires at least three test batches
because there are three edges converging at node 4. Therefore,
these test batches can cover not only the edge p67 but also p′67.
Because the batches of paths should be tested anyway, we add
additional paths to these empty test slots to gather more delay
information.

Additional paths are added according to the prediction
accuracy of their corresponding maximum delays. As dis-
cussed in Section III-A2, the predicted standard deviation
is used as an indicator of the prediction accuracy. Since a
large standard deviation σ′k calculated by (7) represents that
the corresponding maximum delay cannot be estimated with
enough accuracy, we first identify those maximum delays
whose predicted standard deviations are larger than a given
percentage of their original standard deviations, 10% in our
framework. Thereafter, for each of these delays, we find a
combinational path from the corresponding source flip-flop
to the sink flip-flop to reduce the predicted variance of the
delay. These newly identified combinational paths are written
as a set Pa with delays Da and |Da| = Na. To incorporate
these paths into the test batches, we assign 0-1 variables
bi,j , i = 1, 2, . . . , Nt, j = Nt + 1, Nt + 2, . . . , Nt + Na as
shown in the extended submatrix (8). Since it is preferred, but
not mandatorily required, to add these new paths into the test
batches, their appearance in the test batches can be constrained
as Nt∑

i=1

bi,j ≤ 1, Nt ≤ j ≤ Nt +Na. (13)

Consequently, a new path is included into one of the test
batches when the sum above is equal to 1. To incorporate
the new paths into test batches as many as possible, we
maximize the objective

∑
1≤i≤Nt,Nt+1≤j≤Nt+Na

bi,j . With
the new columns in (8), (11) and (12) should be revised to
incorporate the extended indexes as

bi,j ≤ Bi, 1 ≤ i ≤ Nt, 1 ≤ j ≤ Nt +Na (14)

Wi =

Nt+Na∑

j=1

bi,jµj , 1 ≤ i ≤ Nt. (15)

Considering the three objectives discussed above, we for-
mulate the path assignment task into an ILP problem as

Minimize α

Nt∑

i=1

Bi − β
Nt∑

i=1

εiWi − γ
∑

1≤i≤Nt
Nt+1≤j≤Nt+Na

bi,j (16)

Subject to (9)–(10) and (13)–(15) (17)

where α, β and γ are constants with α� β � γ to guarantee
the minimum number of test batches are generated. After
solving this problem, only the rows with at least a one in
(8) are kept as test batches, denoted as B.

C. Test with Delay Alignment by Tuning Buffers

After path batches are identified, they should be tested using
frequency stepping to determine the path delays. In this sec-
tion, we discuss how the delays of paths in a single batch are
measured. Note this is the only step in the proposed framework
that is executed by expensive testers able to generate various
clock signals with a high accuracy.

In frequency stepping, a clock period is applied to the chip
under test and the paths in a test batch are sensitized by test
vectors. If the setup time constraint (1) at a flip-flop is violated,
the data at this flip-flop cannot be latched correctly. This error
shows that Dij + xi − xj is larger than T so that T is its
lower bound. On the other hand, if the clock period is large
enough so that there is no timing violation, the constraint (1)
is met and T is an upper bound of Dij+xi−xj . By applying
different clock periods in a binary search style, the value of
Dij can be approximated with a given accuracy.

Consider the case shown in Fig. 8(a), where a delay has
given upper and lower bounds. These bounds are initialized
with µ±3σ, where µ and σ are the mean value and the standard
deviation of the delay calculated by statistical timing analysis.
When the delay is tested with a given clock period T in an
iteration, either a new upper bound or a new lower bound of
it is generated. Consequently, the corresponding delay range
is partitioned into two parts by T and the real delay value
falls into one of them. To partition the delay range efficiently,
it is preferable that T is aligned to the center of the range.
Otherwise, T might not partition the delay range evenly, but
instead slices it in small steps, leading to many test iterations
to estimate the delay, as illustrated in Fig. 8(b).

When several path delays in one test batch are considered
as in Fig. 8(c), it is not always possible to partition all the
delay ranges evenly with one clock period. However, we can
still find a clock period T that partitions several delay ranges

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 9

upper bound

lower bound

TDij
T

real delay

(a) (b)

T

(c)

d1

d2

d3

xi − xj > 0
xi − xj < 0

T

(d)

d1
d2d3

T

(e)

d1

d2

η2

η1

Fig. 8: Frequency stepping and delay range alignment.

at the same time, so that the ranges of these delays can be
reduced in one test iteration.

To use a clock period T to partition multiple delay ranges,
there must be some overlap between the delay ranges, such as
d2 and d3 in Fig. 8(c). According to (1), the actual constraint
that is tested using T is Dij+xi−xj . Since the tunable buffers
are already deployed in the circuit and their values xi and xj
can be adjusted through the scan chain, we change the value
of xi−xj to align the delay ranges, as illustrated in Fig. 8(d).
Consequently, a clock period can partition more delay ranges
so that the delays can be measured more efficiently compared
with the case in Fig. 8(c). In EffiTest2, at-speed scan test is
deployed for delay tests. At-speed scan test has been applied
in [36], [37] and investigated thoroughly in [54]. In this
method, scan chains are loaded with test vectors and two clock
pulses are applied at the functional frequency. Because the
configuration bits of buffers can be scanned into the chip under
test together with the test vectors, the proposed technique
requires no change to the existing test platform.

In real circuits, the buffer values xi and xj can only be
adjusted in a limited range as specified by (3). In addition,
these buffer values may affect more than one path delay. For
example, in Fig. 7 the buffer value of node 4 affects all the
paths converging at or leaving from it. To test the path delays
efficiently, we need to find a proper set of buffer values to
align the ranges of path delays as much as possible.

Assume that the upper and lower bounds of Dij between
nodes i and j are uij and lij , respectively. When the buffers
at the source and sink nodes of the path are considered, the
lower bounds and the upper bounds are shifted by xi − xj as
defined in (1). Therefore, the distance ηij between a given T
and the center of the shifted range of the path delay Dij can
be expressed as

ηij = |T − ((uij + lij)/2 + xi − xj)|. (18)

If we minimize the sum of ηij from all delay ranges, the
resulting T will approximate the centers of delay ranges as
much as possible, while the buffer values xi and xj are also
determined.

Minimizing the sum of ηij directly, however, cannot handle
the special case in Fig. 8(e) where the two delay ranges still
do not overlap even after the buffer values have been adjusted
to the limit. In this case, the sum of distances η1 + η2 is
independent of where T is placed between the centers of the
two ranges. To solve this problem, we sort the centers of delay
ranges determined in the previous test iteration. Thereafter, we
assign the weight k0 to the range whose center is in the middle
of the sorted list, and reduce the weights of other ranges by
kd successively. In the proposed method, we set k0 � kd, so
that the ranges at the middle of the sorted list have slightly

Algorithm 3: Test procedure with frequency stepping

Input: B: the queue of test batches

L1 foreach Bk ∈ B do
L2 while Bk contains an edge do
L3 T ← solve (19)–(26);
L4 test with frequency stepping(Bk , T);
L5 foreach pij in Bk do
L6 if passed(pij) then
L7 uij=T − xi + xj ;
L8 else
L9 lij=T − xi + xj ;

L10 end
L11 if uij − lij < ε then
L12 remove edge(pij , Bk);
L13 end
L14 end
L15 end
L16 end

higher priorities. With this weight assignment, the weights of
the two ranges in Fig. 8(e) are different so that the next test
clock period T should align at the center of the range with
the larger weight.

The optimization problem to determine the clock period T
and the corresponding set of buffer values xi and xj to align
delay ranges can thus be expressed as

Minimize
∑

i,j

kijηij (19)

Subject to ∀ path pij in the test batch
T − ((uij + lij)/2 + xi − xj) ≤Mzpij (20)

(T − ((uij + lij)/2 + xi − xj))− ηij ≤M(1− zpij) (21)

−(T − ((uij + lij)/2 + xi − xj)) + ηij ≤M(1− zpij) (22)

−(T−((uij + lij)/2 + xi − xj)) ≤Mznij (23)

−(T − ((uij + lij)/2 + xi − xj))− ηij ≤M(1− znij) (24)

(T − ((uij + lij)/2 + xi − xj) + ηij ≤M(1− znij) (25)

ri ≤xi ≤ ri + τi, rj ≤ xj ≤ rj + τj (26)

where (20)–(25) are linear constraints transformed from (18)
and M is a very large positive constant [55]; zpij and znij are
two 0-1 variables corresponding to the two cases that T −
((uij + lij)/2+ xi − xj) are no less than zero and no greater
than zero, respectively. (26) defines the ranges of buffer values
as in (3).

After the clock frequency and the corresponding buffer
values are determined by solving the ILP problem (19)–(26),
the paths in the current batch are tested. According to the test
result, either the upper bounds or the lower bounds of their
delays are updated. If the distance between the range bounds
uij and lij of a path is smaller than a threshold ε, which is set
to a constant times of the maximum of the mean values of the
path delays, 0.005 in our framework, the path is removed from
the current batch. The test iterations finish when all paths in the
batch have been removed. The pseudocode of the test process
is shown in Algorithm 3. The testing process of one test batch
only requires the calculation of buffer configuration and one
clock frequency. The test patterns are determined once and no
adaptive test generation based on the measurements from the
tester is needed.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 10

D. Buffer Configuration with Delay Estimation

To rescue chips with timing failures after manufacturing,
buffers can be configured according to results of the delay test
and prediction. Unlike delay alignment using existing tuning
buffers to reduce the number of test iterations above, this
step really configures tuning buffers so that the corresponding
chips can operate at the designated clock frequency. After a
path in Pt has been tested by frequency stepping, its delay is
confined to a range with a lower bound and an upper bound.
For another delay dk that is not measured directly but is
to be estimated, (6) and (7) are used to calculate the mean
value µ′k and the standard deviation σ′k. According to (6) and
(7), σ′k is determined exclusively by the covariance matrix,
but µ′k is affected by dt, which are the delays measured by
frequency stepping. When calculating µ′k, we use the upper
bounds of dt so that the estimated delays are conservative.
Since the variances of estimated delays are often non-zero,
which indicate that purely random variations still affect path
delays, we assign a lower bound and an upper bound µ′k−3σ′k
and µ′k+3σ′k for an estimated delay, so that all path delays are
constrained similarly for the following buffer configuration.

A real delay may take any value in the range defined by
the lower and upper bounds, but the exact location of this
delay in the range is unknown due to test resolution and
delay estimation. To tackle uncertainty, a conservative method
to configure the buffers is to assume the upper bounds of
the ranges to be path delays, so that the chip always works
with the resulting buffer configuration. This method, however,
may incorrectly report some chips as nonfunctional due to
pessimistic delay overestimation. To solve this problem, we
try to find a buffer configuration for a chip while assuming
the delays are as close to their corresponding upper bounds as
possible. By minimizing the distance of the assumed delays
from their corresponding upper bounds when determining the
buffer configuration, the chance that the chip works after
configuration becomes large, so that the final pass/fail test
will accept most post-silicon configured chips as functional.
Because the variances of predicted maximum delays differ
from each other, the distance to the upper bounds are also
scaled by the standard deviations of the predicted delays.

The optimization problem to find a buffer configuration
while minimizing the distance ξ of the assumed delays from
the corresponding upper bounds is described as follows.

Minimize ξ (27)
Subject to ∀ path pij
Td ≥ D′ij + xi − xj (28)

lij ≤ D′ij ≤ uij , ξ ≥ (uij −D′ij)/σ′ij (29)

ri ≤ xi ≤ ri + τi, rj ≤ xj ≤ rj + τj (30)

where D′ij is the assumed delay value of a path during buffer
configuration; σ′ij is the standard deviation of the correspond-
ing predicted delay; Td is the designated clock period for the
design; (28) and (30) are derived from (1) and (3), respectively.
By solving the optimization problem (27)–(30), a set of buffer
configuration values xi and xj can be found.

E. Tuning Bounds due to Hold Time Constraints

In the discussion above, we do not consider hold time
constraints. However, tuning buffers may affect hold time
constraints significantly if they are configured improperly. For
example, in Fig. 3, if xj is much larger than xi, the constraint
(2) may be violated.

As shown in (2), hold time constraints are affected by xi−xj
instead of individual values of xi and xj . In our method, we do
not test against hold time violations after configuring buffers.
Instead, we set a lower bound λij for xi−xj by sampling the
statistical distribution of dij in (2) so that a given yield can
be maintained.

Consider the case that dij in (2) is sampled M times for
all short paths and its value in the kth sample is dij,k. For
the kth sample, we use a 0-1 variable yk to represent that the
lower bound λij meet

λij − dij,k ≥M(yk − 1), for all short paths pij (31)

where M is a very large constant. The yield of the circuit
with respect to hold time can thus be constrained as∑

yi/M ≥ Y, i = 1, 2, . . .M (32)

where Y is a given yield for hold time constraints, set to
0.99 in our method. To allow buffers to have the largest
freedom in value configuration, we minimize the sum of all the
lower bounds

∑
i,j λij . After λij are determined, the buffer

configuration values can be constrained to avoid hold time
violation, as shown below

xi − xj ≥ λij . (33)

This constraint is added into the optimization problems in
Section III-C and Section III-D to incorporate hold time
constraints to determine buffer values xi and xj .

IV. EXPERIMENTAL RESULTS

The proposed framework was implemented in C++ and
tested using a 3.20 GHz CPU. We demonstrate the results with
four circuits, s9234 to s38584, from the ISCAS89 benchmark
set and four circuits, mem ctrl to pci bridge32, from the
TAU13 variation-aware timing analysis contest. Details of
these circuits are shown in Table II, where ns denotes the
number of flip-flops and ng the number of logic gates. The
numbers of inserted tunable buffers are shown in the column
nb, which were less than 1% of the numbers of flip-flops in
the benchmark circuits. The locations of these buffers were
determined using [30]. We set the maximum allowed buffer
ranges to 1/8 of the original clock period and all tuning delays
with 20 discrete steps [22]. The logic gates in the circuits
were sized and mapped using a 45 nm library. The standard
deviations of transistor length, oxide thickness and threshold
voltage were set to 15.7%, 5.3% and 4.4% of the nominal
values [56]. The correlation of variations between logic gates
is defined using the curve in [57]. The ILP solver for the
optimization problems was Gurobi [58].

In Table II the column |Dm| shows the numbers of max-
imum delays between flip-flops whose delays need to be
evaluated for post-silicon buffer configuration. If a flip-flop
is attached a tunable buffer, the maximum delays from all its

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 11

TABLE II: Test Results With Delay Alignment and Statistical Prediction

Circuit EffiTest2 Frequency Stepping Runtime
ns ng nb |Dm| |Dm

t | |Pt| |B| na nv n′
a n′

v ra(%) rv(%) Tp(s) Tt(s) Ts(s)

s9234 211 5597 2 87 6 7 5 46.33 6.62 871.31 10.02 94.68 33.91 5.93 0.06 0.00
s13207 638 7951 6 456 12 12 2 51.25 4.27 4550.88 9.98 98.87 57.20 16.34 0.10 0.00
s15850 534 9772 5 546 10 11 4 47.05 4.28 5452.90 9.99 99.14 57.17 50.46 0.12 0.01
s38584 1426 19253 14 437 14 14 3 61.42 4.39 4366.07 9.99 98.59 56.09 89.94 0.15 0.03
mem ctrl 1065 10327 10 2210 15 36 4 105.48 2.93 22038.12 9.97 99.52 70.62 299.63 0.69 0.06
usb funct 1746 14381 17 1402 13 28 2 87.98 3.14 13975.14 9.97 99.37 68.48 143.13 0.36 0.04
ac97 ctrl 2199 9208 21 1714 13 20 2 58.78 2.94 16879.47 9.85 99.65 70.16 146.53 0.24 0.02
pci bridge32 3321 12494 33 4501 22 58 6 181.60 3.13 44784.95 9.95 99.59 68.53 1712.57 0.92 0.79

fanin flip-flops to it and from it to all its fanout flip-flops are
added into Dm as discussed in Section III-A. Consequently,
these numbers may still be large, specially in the test cases
mem ctrl and pci bridge32, despite only a small number of
buffers (nb) are inserted into the circuits. The column |Dm

t |
shows the numbers of maximum delays Dm

t after applying
SVD-QRcp decomposition in Algorithm 1. These maximum
delays are identified from Dm and used to narrow the search
scope of real combinational paths. Due to statistical prediction,
the size of Dm

t is much smaller than that of Dm, so that
the number of paths that are really tested can be reduced
effectively. The numbers of real combinational paths to be
tested are shown in the column |Pt|. These paths are identified
by iterative selection in Algorithm 2. The tested delays of these
paths are used to predicted Dm. The efficiency of this delay
prediction can be demonstrated by the comparison between
|Pt| and |Dm| clearly, where the numbers of test paths are
only about 2%–3% of the numbers of the maximum delays
in most cases. The paths in Pt are grouped in test batches as
described in Section III-B, and the numbers of these batches
are shown in the column |B|. Since multiple combinational
paths are multiplexed during delay test, these numbers can be
much smaller than those of Pt.

In the experiments, we tested 10 000 simulated chips by
sampling statistical delays from statistical timing analysis.
The column na shows the average number of frequency
stepping iterations for each chip using EffiTest2, and the
column nv shows the average number of iterations per path,
where nv = na/|Pt|. For comparison, we implemented the
method applying frequency stepping to each path individ-
ually, as assumed in [26], [35]–[37]. The column n′

a in
Table II shows the average number of test iterations for each
chip. These large numbers confirm that the straightforward
frequency stepping method is impractical for large circuits.
Furthermore, the column n′

v shows the average number of
frequency stepping iterations per path where n′v = n′a/|Dm|.
The columns ra(%) and rv(%) show the reduction ratios
of the test iterations per chip and the test iterations per path
achieved using EffiTest2, where ra = (n′a−na)/n′a ∗ 100 and
rv = (n′v − nv)/n

′
v ∗ 100. Combining statistical prediction

and aligned delay test, EfiiTest2 can reduce the overall test
effort by more than 94% (94.68%∼99.65%). In addition, the
ratios of test iterations per path rv(%) demonstrate that test
reduction can reach from 33.91% to 70.62%. This reduction
comes only from test multiplexing and aligned delay test,
while the statistical prediction technique does not affect this
ratio. Both comparisons confirm that the proposed EffiTest2
framework reduces test effort significantly.

The runtimes of the proposed method are shown in the
last three columns in Table II, where Tp is the runtime for
path identification, batch assignment and hold time bound
computation before delay test starts. Because these steps are
performed offline, the runtime is already acceptable. The
column Tt(s) shows the average runtime when computing the
clock period T and the buffer configuration values for all test
batches of a chip. Since this computation can be performed
in parallel while path batches are tested, the runtime is also
acceptable compared with the execution time of scan test. The
last column Ts(s) shows the runtime to determine the final
buffer values using the method in Section III-D. This step is
not performed on high-end testers so that the efficiency is good
enough.

In the proposed framework, the results of aligned delay test
produce lower and upper bounds for delays. This inaccuracy
cannot be avoided due to the nature of delay test and it affects
the yields of the circuits after buffer configuration. In addition,
the technique of statistical prediction also introduces configu-
ration inaccuracy in the estimated delays. Consequently, it is
expected that the yield values of the circuits should drop from
the ideal yield values with delays assumed being measured
exactly. We tested several cases with two clock periods T1
and T2 and the results are shown in Table III. The yield in
this table was calculated by checking the setup and hold time
constraints between pairs of flip-flops for the 10000 simulated
chips after buffer configuration. If the timing constraints were
satisfied for a simulated chip that failed initially without buffer
configuration, we assumed the chip after buffer configuration
was rescued, so that the yield was improved by 0.01%. For
T1 and T2 the original yield values without buffers were 50%
and 84.13%, corresponding to the cases of setting the target
clock period to mean and mean plus standard deviation of the
clock period calculated by SSTA, respectively. The column yi
shows the yield values with a perfect delay measurement; the
column yt shows the yield values with delays measured by the
proposed method; and the column yr shows the yield drops
due to the inaccuracy in the tested delays, where yr = yi−yt.
In these results, we can see that the yield drops are around
1-2%, where the improved yield values are still far better than
those without buffers.

Since the results of the statistical prediction technique in
Section III-A depend on the correlations between path delays,
we manually increased the standard deviations of all delays
by 10%. These increased variations are added to the purely
random part of the delays so that the correlations between
delays are decreased accordingly. Figure 9 shows the yield
results of three cases with respect to the clock period T2 in

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 12

TABLE III: Yield Comparison

Circuit T1 T2
yi(%) yt(%) yr(%) yi(%) yt(%) yr(%)

s9234 52.77 52.51 0.26 85.01 84.99 0.02
s13207 63.58 61.98 1.60 89.88 89.81 0.07
s15850 68.19 67.08 1.11 93.51 92.63 0.88
s38584 64.67 63.01 1.66 92.33 91.56 0.77
mem ctrl 59.08 58.35 0.73 89.30 88.95 0.35
usb funct 54.98 53.69 1.29 86.72 85.85 0.87
ac97 ctrl 58.37 57.84 0.53 88.01 87.81 0.20
pci bridge32 60.56 58.87 1.69 89.10 88.08 1.02
Yield w/o tuning 50.00 84.13

s9
23

4

s1
32

07

s1
58

50

s3
85

84

mem
ctr

l

us
b

fun
ct

ac
97

ctr

pc
i bri

dg
e3

2

60

80

100

Y
ie

ld
(%

)

Ideal EffiTest2 w/o buffer

Fig. 9: Yield with enlarged random variation.

Table III: 1) ideal yield with buffers configured with presumed
accurate delays; 2) with buffers configured using tested and
predicted delays in EffiTest2; 3) no buffers in the circuits.
Compared with the results in Table III, the yield values in
Fig. 9 are lower due to the increased random variation. The
first two cases, however, demonstrate clearly that the yield
results were still improved impressively using tunable buffers
when compared with the cases without them. When testing and
configuring the buffer values with EffiTest2, the yield values
dropped slightly from the ideal cases in Fig. 9, because of
the expected inaccuracy in delay test and prediction. These
yield values, however, still followed the ideal cases closely,
confirming the strength of EffiTest2.

To verify the effectiveness of aligned delay ranges described
in Section III-B and Section III-C, we applied them directly to
reduce test iterations without statistical prediction. Figure 10
shows the comparison of the numbers of test iterations per path
in three cases: 1) path-wise frequency stepping, where around
ten iterations were needed for each path; 2) test multiplexing
without delay alignment using buffers; 3) multiplexing with
delay alignment using buffers in EffiTest2. The second case
used the method in Section III-B and Section III-C, but all
the buffers values were set to zero during test. Comparing
the results of the first case and the second case, we can
see that test multiplexing is a powerful technique to reduce
test iterations. When the technique of delay alignment is
applied, test iterations can be reduced further, as demonstrated
by the third case. These results confirm that even without
taking advantage of the correlations between path delays, the
proposed method can still reduce test cost significantly.

In the statistic prediction technique described in Algorithm 1
and 2, the iterations stop when the predicted maximum vari-
ances reach a threshold σth. In delay prediction, the variance
of a predicted variable cannot be lower than that of its purely
random component. To experiment with different thresholds
σth used in Algorithm 1 and 2, we first find the maximum

s9
23

4

s1
32

07

s1
58

50

s3
85

84

mem
ctr

l

us
b

fun
ct

ac
97

ctr

pc
i bri

dg
e3

2

5

10

15

It
er

.p
er

pa
th

Path-wise Path multiplexing EffiTest2

Fig. 10: Test comparison without statistical prediction.

of these purely random components of the predicted delays
and set the threshold as constant times of them. Figure 11(a)
shows the effect of these threshold values. As the threshold
value reaches 3.5×σmax, the yield values of the circuits start
to drop, because of the large range of the predicted delays.
In EffiTest2, this constant was set to 2.0. Similarly, in the
test procedure, the binary search of frequency stepping quits
when an accuracy is reached. We have also tested different
threshold values of ε in Algorithm 3 and the results are shown
in Figure 11(b), where the x axis shows the constant times of
the maximum of the mean values of the delays. As this number
reaches 0.01, slight accuracy loss starts to appear. This number
was set to 0.005 in EffiTest2 to maintain the test quality.

In Algorithm 1 and 2 we also increased the number of
variables in Dm

t gradually in the loops, instead of using a
binary search to reduce execution time. Figure 12 shows the
trend of accuracy improvement with the two cases s13207 and
pci bridge32. For these two circuits, the accuracy does not im-
prove notably after the number of variables becomes relatively
large. Using the threshold setting discussed in Section III-A,
this number was set to 12 for s13207 and 22 for pci bridge32
in the experiments. Furthermore, it can be observed that the
curves for these two circuits do not decrease monotonously,
so that a binary search may not return the best result. For
example, 15 instead of 12 variables for s13207, and 24 instead
of 22 variables for pci bridge32, should be selected if a binary
search would be used for these two cases.

To demonstrate the prediction accuracy using a given num-
ber of combinational paths for each maximum delay in Dm

t

as discussed in Section III-A, we compared the accuracy of
all delays in Dm when the number of selected combinational
paths is varied to from 1 to 10 in Algorithm 2. For a circuit,
the threshold of the prediction accuracy σth for path selection
in Algorithm 2 is set with respect to the standard deviations
of purely random components of path delays described in
Section III-A. Accordingly, the predicted maximum standard
deviations σmax in Dm are different in the tested circuits.
With more paths selected for testing, σmax decreases due to
the correlation information, however, with an increase of test
cost. Fig. 13 shows the trend of maximum standard deviations
σmax of predicted values of Dm with respect to the number of
selected paths. With the increase of the selected number, σmax

decreases, meaning the prediction accuracy is improved. When
the number of selected paths is larger than 5, the accuracy does
not change noticeably. Therefore, we set this number to 5 in
EffiTest2 to maintain the accuracy. The other circuits that are

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 13

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
80

90

100

Y
ie

ld
(%

)

s15850 s38584
ac97 ctr pci bridge32

(a)

0.001 0.005 0.01 0.015 0.02
80

90

100

Y
ie

ld
(%

)

s15850 s38584
ac97 ctr pci bridge32

(b)

Fig. 11: Prediction threshold and its effect on yield in Algorithm 1 and Algorithm 2
(a), and test threshold over yield in Algorithm 3 (b).

1 10 20 30
0

10

20

30

Pr
ed

ic
te

d
va

ri
an

ce

s13207

pci bridge32

Fig. 12: Effect of the number of se-
lected variables over prediction accu-
racy.

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

M
ax

im
um

pr
ed

ic
te

d
σ
m

a
x

s9234 s13207 ac97 ctrl

Fig. 13: Comparisons of predicted standard deviations using
different numbers of combinational paths. Lower values indi-
cate better prediction accuracy.

1.0

0.99

0.98

0.97

0.96

0.95

0.94

0.93

85

90

95

100

91.99

88.38Y
ie

ld
(%

)

1.0

0.99

0.98

0.97

0.96

0.95

0.94

0.93

88.56

85.92

s38584 pci bridge32

Fig. 14: Hold time threshold effect over yield.

not included in Fig. 13 show less trend changes in the predicted
standard deviations in terms of the number of combinational
paths.

In EffiTest2, we do not test short paths using frequency
stepping so that test iterations can be reduced. Instead, we
set adjustment ranges as described in Section III-E to reduce
hold time violations. These constraints are controlled by the
threshold Y in (32), whose effect over the yield values of
s38584 and pci bridge32 are shown in Fig. 14. In each of
these two figures, the two straight lines and the corresponding
numbers show upper bound and lower bound of the yield
values, where the former is computed by ignoring all hold
time violations and the latter is computed by not adding the
constraints in (32)–(33). When the threshold Y decreases to
0.98, the yield values of the circuits start to drop. Therefore,
we set Y to 0.99 in EffiTest2.

V. CONCLUSIONS

In this paper we have proposed an efficient framework
to reduce test cost in configuring tunable buffers in high-
performance designs. By providing customized clock schemes
to manufactured chips, timing failures may be alleviated by
intentional clock skews with respect to the effect of process

variations. The proposed framework combines statistical pre-
diction and aligned delay test with path multiplexing to reduce
test cost during post-silicon configuration. Consequently, the
number of test iterations can be reduced by more than 94%,
while the improved yield of the circuit is well maintained.
The effectiveness of these techniques has been confirmed by
experimental results using ISCAS89 and TAU13 benchmark
circuits. Future work will consider techniques combining post-
silicon tuning and flexible timing such as in [59].

REFERENCES
[1] G. L. Zhang, B. Li, and U. Schlichtmann, “EffiTest: Efficient delay test and

statistical prediction for configuring post-silicon tunable buffers,” in Proc.
Design Autom. Conf., 2016, pp. 60:1–60:6.

[2] H. Chang and S. S. Sapatnekar, “Statistical timing analysis considering spatial
correlations using a single PERT-like traversal,” in Proc. Int. Conf. Comput.-
Aided Des., 2003, pp. 621–625.

[3] C. Visweswariah, K. Ravindran, K. Kalafala, S. Walker, and S. Narayan,
“First-order incremental block-based statistical timing analysis,” in Proc.
Design Autom. Conf., 2004, pp. 331–336.

[4] L. Zhang, W. Chen, Y. Hu, J. A. Gubner, and C. C. Chen, “Correlation-
preserved non-gaussian statistical timing analysis with quadratic timing
model,” in Proc. Design Autom. Conf., 2005, pp. 83–88.

[5] J. Singh and S. Sapatnekar, “Statistical timing analysis with correlated non-
Gaussian parameters using independent component analysis,” in Proc. Design
Autom. Conf., 2006, pp. 155–160.

[6] A. Goel, S. B. K. Vrudhula, F. Taraporevala, and P. Ghanta, “A methodology
for characterization of large macro cells and IP blocks considering process
variations,” in Proc. Int. Symp. Quality Electron. Des., 2008, pp. 200–206.

[7] A. Goel, S. Vrudhula, F. Taraporevala, and P. Ghanta, “Statistical timing
models for large macro cells and IP blocks considering process variations,”
IEEE Trans. Semicond. Manuf., vol. 22, pp. 3–11, 2009.

[8] B. Li, N. Chen, M. Schmidt, W. Schneider, and U. Schlichtmann, “On
hierarchical statistical static timing analysis,” in Proc. Design, Autom., and
Test Europe Conf., 2009, pp. 1320–1325.

[9] B. Li, N. Chen, Y. Xu, and U. Schlichtmann, “On timing model extraction and
hierarchical statistical timing analysis,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 32, no. 3, pp. 367–380, 2013.

[10] R. Kumar, B. Li, Y. Shen, U. Schlichtmann, and J. Hu, “Timing verification for
adaptive integrated circuits,” in Proc. Design, Autom., and Test Europe Conf.,
2015, pp. 1587–1590.

[11] D. Blaauw, K. Chopra, A. Srivastava, and L. Scheffer, “Statistical timing
analysis: from basic principles to state of the art,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 27, no. 4, pp. 589–607, Apr. 2008.

[12] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler, D. Blaauw,
T. Austin, K. Flautner, and T. Mudge, “Razor: A low-power pipeline based
on circuit-level timing speculation,” in Proc. Int. Symp. Microarch., 2003, pp.
7–18.

[13] D. Blaauw, S. Kalaiselvan, K. Lai, W.-H. Ma, S. Pant, C. Tokunaga, S. Das,
and D. M. Bull, “Razor II: In situ error detection and correction for pvt and ser
tolerance,” in Proc. Int. Solid-State Circuits Conf., pp. 400–401.

[14] M. Fojtik, D. Fick, Y. Kim, N. R. Pinckney, D. M. Harris, D. Blaauw, and
D. Sylvester, “Bubble razor: Eliminating timing margins in an ARM cortex-m3
processor in 45 nm CMOS using architecturally independent error detection
and correction,” J. Solid-State Circuits, vol. 48, no. 1, pp. 66–81, 2013.

[15] I. Kwon, S. Kim, D. Fick, M. Kim, Y. Chen, and D. Sylvester, “Razor-lite:
A light-weight register for error detection by observing virtual supply rails,”
IEEE J. Solid-State Circuits, vol. 49, no. 9, pp. 2054–2066, 2014.

[16] N. Chen, B. Li, and U. Schlichtmann, “Iterative timing analysis based on
nonlinear and interdependent flipflop modelling,” IET Circuits, Devices &
Systems, vol. 6, no. 5, pp. 330–337, 2012.

[17] E. Salman, A. Dasdan, F. Taraporevala, K. Küçükçakar, and E. G. Friedman,
“Exploiting setup-hold-time interdependence in static timing analysis,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 26, no. 6, pp. 1114–
1125, 2007.

[18] S. Srivastava and J. S. Roychowdhury, “Interdependent latch setup/hold time
characterization via Euler-Newton curve tracing on state-transition equations,”
in Proc. Design Autom. Conf., 2007, pp. 136–141.

[19] A. B. Kahng and H. Lee, “Timing margin recovery with flexible flip-flop
timing model,” in Proc. Int. Symp. Quality Electron. Des., 2014, pp. 496–503.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 14

[20] Y. Yang, K. H. Tam, and I. H. Jiang, “Criticality-dependency-aware timing
characterization and analysis,” in Proc. Design Autom. Conf., 2015, pp. 167:1–
167:6.

[21] G. L. Zhang, B. Li, and U. Schlichtmann, “Piecetimer: a holistic timing analy-
sis framework considering setup/hold time interdependency using a piecewise
model,” in Proc. Int. Conf. Comput.-Aided Des., 2016, p. 100.

[22] S. Tam, S. Rusu, U. Nagarji Desai, R. Kim, J. Zhang, and I. Young, “Clock
generation and distribution for the first IA-64 microprocessor,” IEEE J. Solid-
State Circuits, vol. 35, no. 11, pp. 1545–1552, Nov. 2000.

[23] E. Takahashi, Y. Kasai, M. Murakawa, and T. Higuchi, “Post-fabrication clock-
timing adjustment using genetic algorithms,” IEEE J. Solid-State Circuits,
vol. 39, no. 4, pp. 643–650, Apr. 2004.

[24] P. Mahoney, E. Fetzer, B. Doyle, and S. Naffziger, “Clock distribution on a
dual-core, multi-threaded Itanium R©-family processor,” in Proc. Int. Solid-
State Circuits Conf., 2005, pp. 292–293.

[25] S. Naffziger, B. Stackhouse, T. Grutkowski, D. Josephson, J. Desai, E. Alon,
and M. Horowitz, “The implementation of a 2-core, multi-threaded Itanium
family processor,” IEEE J. Solid-State Circuits, vol. 41, no. 1, pp. 197–209,
Jan. 2006.

[26] J. Tsai, D. Baik, C. C.-P. Chen, and K. K. Saluja, “A yield improvement
methodology using pre- and post-silicon statistical clock scheduling,” in Proc.
Int. Conf. Comput.-Aided Des., 2004, pp. 611–618.

[27] J. Kim and T. Kim, “Adjustable delay buffer allocation under useful clock skew
scheduling,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 36,
no. 4, pp. 641–654, Apr. 2017.

[28] J. Tsai, L. Zhang, and C. C.-P. Chen, “Statistical timing analysis driven post-
silicon-tunable clock-tree synthesis,” in Proc. Int. Conf. Comput.-Aided Des.,
2005, pp. 575–581.

[29] G. L. Zhang, B. Li, and U. Schlichtmann, “Sampling-based buffer insertion
for post-silicon yield improvement under process variability,” in Proc. Design,
Autom., and Test Europe Conf., 2016, pp. 1457–1460.

[30] G. L. Zhang, B. Li, J. Liu, Y. Shi, and U. Schlichtmann, “Design-phase buffer
allocation for post-silicon clock binning by iterative learning,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 37, no. 2, pp. 392–405, 2018.

[31] V. Khandelwal and A. Srivastava, “Variability-driven formulation for simul-
taneous gate sizing and post-silicon tunability allocation,” in Proc. Int. Symp.
Phys. Des., 2007, pp. 11–18.

[32] K. Nagaraj and S. Kundu, “A study on placement of post silicon clock tuning
buffers for mitigating impact of process variation,” in Proc. Design, Autom.,
and Test Europe Conf., 2009, pp. 292–295.

[33] B. Li, N. Chen, and U. Schlichtmann, “Fast statistical timing analysis for
circuits with post-silicon tunable clock buffers,” in Proc. Int. Conf. Comput.-
Aided Des., 2011, pp. 111–117.

[34] B. Li and U. Schlichtmann, “Statistical timing analysis and criticality com-
putation for circuits with post-silicon clock tuning elements,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 34, no. 11, pp. 1784–1797,
2015.

[35] Z. Lak and N. Nicolici, “A novel algorithmic approach to aid post-silicon
delay measurement and clock tuning,” IEEE Trans. Comput., vol. 63, no. 5,
pp. 1074–1084, May 2014.

[36] K. Nagaraj and S. Kundu, “An automatic post silicon clock tuning system for
improving system performance based on tester measurements,” in Proc. Int.
Test Conf., 2008, pp. 1–8.

[37] D. Tadesse, J. Grodstein, and R. I. Bahar, “AutoRex: An automated post-silicon
clock tuning tool,” in Proc. Int. Test Conf., 2009, pp. 1–10.

[38] R. Ye, F. Yuan, and Q. Xu, “Online clock skew tuning for timing speculation,”
in Proc. Int. Conf. Comput.-Aided Des., 2011, pp. 442–447.

[39] Z. Lak and N. Nicolici, “On using on-chip clock tuning elements to address
delay degradation due to circuit aging,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 31, no. 12, pp. 1845–1856, Dec. 2012.

[40] A. Chakraborty, K. Duraisami, A. V. Sathanur, P. Sithambaram, L. Benini,
A. Macii, E. Macii, and M. Poncino, “Dynamic thermal clock skew compen-
sation using tunable delay buffers,” IEEE Trans. VLSI Syst., vol. 16, no. 6, pp.
639–649, Jun. 2008.

[41] J. Fishburn, “Clock skew optimization,” IEEE Trans. Comput., vol. 39, no. 7,
pp. 945–951, Jul. 1990.

[42] R. A. Johnson and D. W. Wichern, Applied multivariate statistical analysis.
Upper Saddle River: Pearson Prentice Hall, 2007.

[43] Q. Liu and S. S. Sapatnekar, “A framework for scalable postsilicon statistical
delay prediction under process variations,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 28, no. 8, pp. 1201–1212, Aug. 2009.

[44] F. Firouzi, F. Ye, K. Chakrabarty, and M. B. Tahoori, “Representative critical-
path selection for aging-induced delay monitoring,” in Proc. Int. Test Conf.,
2013, pp. 1–10.

[45] J. Yen and L. Wang, “Simplifying fuzzy rule-based models using orthogonal
transformation methods,” IEEE Trans. Systems, Man, and Cybernetics, Part B,
vol. 29, no. 1, pp. 13–24, 1999.

[46] L. Xie and A. Davoodi, “Representative path selection for post-silicon timing
prediction under variability,” in Proc. Design Autom. Conf., 2010, pp. 386–
391.

[47] F. Firouzi, F. Ye, K. Chakrabarty, and M. B. Tahoori, “Aging- and variation-
aware delay monitoring using representative critical path selection,” ACM
Trans. Design Autom. Electr. Syst, vol. 20, no. 3, pp. 1–39, Jun. 2015.

[48] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen,
LAPACK Users’ Guide, 3rd ed. Society for Industrial and Applied Mathe-
matics, 1999.

[49] M. Galassi et al., GNU Scientific Library Reference Manual, 3rd ed.
[50] S. Pateras, “Achieving at-speed structural test,” IEEE Des. Test. Comput.,

vol. 20, no. 5, pp. 26–33, 2003.
[51] X. Lin, R. Press, J. Rajski, P. Reuter, T. Rinderknecht, B. Swanson, and

N. Tamarapalli, “High-frequency, at-speed scan testing,” IEEE Des. Test.
Comput., vol. 20, no. 5, pp. 17–25, 2003.

[52] M. Michael and S. Tragoudas, “Function-based compact test pattern genera-
tion for path delay faults,” IEEE Trans. VLSI Syst., vol. 13, no. 8, pp. 996–1001,
Aug. 2005.

[53] I. Pomeranz, S. Reddy, and P. Uppaluri, “NEST: a nonenumerative test
generation method for path delay faults in combinational circuits,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 14, no. 12, pp. 1505–1515,
1995.

[54] P. Pant, J. Zelman, G. Colon-Bonet, J. Flint, and S. Yurash, “Lessons from at-
speed scan deployment on an intel itanium microprocessor,” in Proc. Int. Test
Conf., 2010, pp. 1–8.

[55] D. Chen, R. Batson, and Y. Dang, Applied Integer Programming: Modeling
and Solution. Wiley, 2011.

[56] S. R. Nassif, “Modeling and analysis of manufacturing variations,” in Proc.
Custom Integr. Circuits Conf., 2001, pp. 223–228.

[57] J. Xiong, V. Zolotov, and L. He, “Robust extraction of spatial correlation,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 26, no. 4, pp.
619–631, 2007.

[58] Gurobi Optimization, Inc., “Gurobi optimizer reference manual,” 2013.
[Online]. Available: http://www.gurobi.com

[59] G. L. Zhang, B. Li, M. Hashimoto, and U. Schlichtmann, “VirtualSync: Timing
optimization by sychronizing logic waves with sequential and combinational
components as delay units,” in Proc. Design Autom. Conf., 2018.

Grace Li Zhang received the master’s degree from the school of microelec-
tronics, Xidian University, Xi’an, China, in 2014. She is currently pursuing
the Ph.D. degree with the Chair of Electronic Design Automation, Technical
University of Munich (TUM). Her research interests include high-performance
and lower-power design, as well as emerging systems.

Bing Li received the bachelor’s and master’s degrees in communication and
information engineering from Beijing University of Posts and Telecommunica-
tions, Beijing, China, in 2000 and 2003, respectively, and the Dr.-Ing. degree in
electrical engineering from Technical University of Munich (TUM), Munich,
Germany, in 2010. He is currently a researcher with the Chair of Electronic
Design Automation, TUM. His research interests include high-performance
and lower-power design, as well as emerging systems.

Yiyu Shi (SM’06) is currently an associate professor in the Departments
of Computer Science and Engineering and Electrical Engineering at the
University of Notre Dame. He received his B.S. degree (with honors) in
Electronic Engineering from Tsinghua University, Beijing, China in 2005,
the M.S and Ph.D. degree in Electrical Engineering from the University
of California, Los Angeles in 2007 and 2009 respectively. His current
research interests include three-dimensional integrated circuits, and machine
learning on chips. In recognition of his research, he has received many best
paper nominations in top conferences. He was also the recipient of IBM
Invention Achievement Award in 2009, Japan Society for the Promotion of
Science (JSPS) Faculty Invitation Fellowship, Humboldt Research Fellowship
for Experienced Researchers, IEEE St. Louis Section Outstanding Educator
Award, Academy of Science (St. Louis) Innovation Award, Missouri S&T
Faculty Excellence Award, National Science Foundation CAREER Award,
IEEE Region 5 Outstanding Individual Achievement Award, and the Air Force
Summer Faculty Fellowship.

Jiang Hu (F’16) received the B.S. degree in optical engineering from Zhejiang
University (China) in 1990, the M.S. degree in physics in 1997 and the Ph.D.
degree in electrical engineering from the University of Minnesota in 2001.
He worked with IBM Microelectronics from January 2001 to June 2002. In
2002, he joined the electrical engineering faculty at Texas A&M University.
His research interest is in optimization for large scale computing systems,
especially VLSI circuit optimization, adaptive design, hardware security,
resource allocation and power management in computing systems.

Dr. Hu received the Best Paper Award at the ACM/IEEE Design Automa-
tion Conference in 2001, an IBM Invention Achievement Award in 2003,
and the Best Paper Award from the IEEE/ACM International Conference
on Computer-Aided Design in 2011. He has served as a technical program
committee member for DAC, ICCAD, ISPD, ISQED, ICCD, DATE, ISCAS,
ASP-DAC and ISLPED. He is general chair for the 2012 ACM International
Symposium on Physical Design, and an associate editor of IEEE transactions
on CAD 2011-2016. Currently he is an associate editor for the ACM
transactions on Design Automation of Electronic Systems. He received a
Humboldt research fellowship in 2012.

Ulf Schlichtmann (S’88–M’90) received the Dipl.-Ing. and Dr.-Ing. degrees
in electrical engineering and information technology from Technical Univer-
sity of Munich (TUM), Munich, Germany, in 1990 and 1995, respectively. He
was with Siemens AG, Munich, and Infineon Technologies AG, Munich, from
1994 to 2003, where he held various technical and management positions in
design automation, design libraries, IP reuse, and product development. He has
been a Professor and the Head of the Chair of Electronic Design Automation
with TUM, since 2003. He served as the Dean of the Department of Electrical
and Computer Engineering, TUM, from 2008 to 2011. His current research
interests include computer-aided design of electronic circuits and systems,
with an emphasis on designing reliable and robust systems.

5 Efficient Delay Test and Prediction for Post-Silicon Clock Skew Configuration under

Process Variations

68

6 Timing beyond the Traditional

Paradigm

In natural science, the development of a new field becomes stable generally after

a fundamental theory or model prevails from the early exploration. For example,

the concept of digital circuits is built upon Boolean algebra. To reduce design com-

plexity, clocked circuits have been adopted and timing analysis has become one of

the primary supporting pillars of sequential design. Together with the continuous

advances in semiconductor manufacturing, a flourishing IC industry has been estab-

lished successfully.

Based on Boolean algebra and clocked digital circuits, design methods and flows for

integrated circuits have been evolving rapidly in the past several decades. Mean-

while, another industry, electronic design automation, has taken a phenomenal role

in the advance of the IC industry. Above the concept of clocked digital circuits, tech-

niques such as static timing analysis, pipelining and retiming for circuit optimiza-

tion, and clock networks for delivering the clock signal to sequential components

have been introduced and widely used in the industry. Some of these techniques

and their relation to the basic concept of Boolean logic and clocked circuit are illus-

trated in Figure 6.1.

At the root of this tree structure, Boolean algebra enables a simplification from ana-

log values to digital values, which are the only two extreme ends of a signal switch-

ing range, so that the exact values of a signal between these two ends become rela-

tively irrelevant, thus allowing the IC industry to focus on the integration of more

devices into a chip instead of tuning each device meticulously. A digital circuit

only processes Boolean values, and its structure can be synthesized from high-level

69

6 Timing beyond the Traditional Paradigm

false paths

pipelining

retiming

Boolean
algebra

combinational
logic

clocked digital
circuits

static timing
analysis

hierarchical
timing

statistical timing
analysis

clock
networks

latch-based
circuits

self-timed
circuits

Traditional
Timing

Paradigm

sizing

Figure 6.1: Structure of Timing Concepts.

70

descriptions, truth tables, or Karnaugh maps into connected logic gates to form a

netlist. To coordinate the operations of combinational function blocks, a clock signal

is used to align all the computation. The minimum period of this clock signal is

determined by the largest combinational delay, calculated using static timing analy-

sis. Since a circuit cannot time itself, a regularly repeating clock signal needs to be

generated and distributed through a clock network to sequential components such

as flip-flops and latches. With the clock signal and the sequential components, it

is then possible to allow different function blocks of the circuit to work simulta-

neously, naturally leading to the concept of pipelining. While sizing trades more

performance of logic gates with chip area, retiming and false path identification

are two other ways to improve performance at the circuit level, although the for-

mer shifts sequential components along combinational paths, while the latter just

excludes combinational paths that are timing-critical but never triggered when the

circuit operates. To improve the efficiency of timing analysis, timing models can be

generated for submodules and the overall performance of a circuit can be evaluated

using hierarchical timing analysis. When the semiconductor industry entered the

nanometer realm, process variations could not be hidden from designers by corner-

based design anymore. Accordingly, statistical timing analysis has been introduced

as a further expansion of static timing analysis, by modeling process variations as

random variables and incorporating them into timing analysis directly, but with the

cost of more analysis time.

At the root, the concept of digital circuits has been serving the industry for several

decades. But at the top, the concepts are much newer, and many of them are still the

objects of active research. For example, statistical timing analysis and optimization

thrived after 2000 for several years. At the top of this concept tree, the number of leaf

nodes is much larger, meaning more detailed problems are addressed by academia

and industry. However, the number of leaf nodes cannot increase infinitely, since the

complexity of designing a circuit may become unmanageable.

The techniques in the traditional timing paradigm are generally confined by the tim-

ing constraints (2.1)–(2.2), where a logic computation usually needs to be finished

within one clock period. As factors such as power consumption and process vari-

71

6 Timing beyond the Traditional Paradigm

ations become more pronounced in recent years, it has becomes very difficult to

improve the performance of a single computation unit. Accordingly, the IC industry

has switched to incorporate more cores inside a chip to provide more parallel com-

puting power, while leaving the task of performance improvement of applications to

software implementation. In highly parallelized scenarios such as data centers, this

new design paradigm is valid; but for user scenarios demanding a prompt response

from a system, the improvement of computation performance of a single core is still

an unmet requirement.

In the development of the timing concepts, additional techniques such as latch-based

design and self-timed circuits have also been explored. These methods go beyond

the flip-flop-bound single-period constraints (2.1)–(2.2) to allow a flexible timing, but

it is still challenging to integrate these techniques into existing IC design flows.

To meet the demand for high-performance circuit design and to cope with the ever-

increasing uncertainty in manufacturing, new timing paradigms beyond the tradi-

tional single-period clocking scheme need to be examined to redefine timing in the

nanometer era. In the following discussion, a new timing design and optimization

concept will be introduced. This concept allows timing flexibility across sequential

stages while being compatible with the traditional timing paradigm at the inter-

face of computation units. In addition, it can be applied to increase netlist security

against counterfeiting by reverse engineering. This new timing concept has been

published in [ZLY+18, ZLHS18].

6.1 VirtualSync: Delay-based Timing Synchronization

In digital circuit designs, clock frequency determines the timing performance of

circuits. In the traditional timing paradigm, sequential components, e.g., edge-

triggered flip-flops, synchronize signal propagations between pairs of flip-flops.

Consequently, these propagations are blocked at flip-flops until a clock edge arrives.

At an active clock edge, the data at the inputs of flip-flops are transferred to their

outputs to drive the logic at the next stage. Therefore, combinational logic blocks are

72

6.1 VirtualSync: Delay-based Timing Synchronization

isolated by flip-flop stages. This fully synchronous style can reduce design efforts

significantly, since only timing constraints local to pairs of flip-flops need to be met.

Within the traditional timing paradigm, many methods have been proposed to im-

prove circuit performance. A widely adopted method is sizing, in which gates are

sized to improve objectives such as clock frequency and area efficiency, while timing

constraints between flip-flops are satisfied. For example, [CCW98] introduces a fast

and exact algorithm for simultaneous gate and wire sizing to minimize total area and

propagation delay inside a circuit. In [OBH11], a Lagrangian Relaxation (LR) based

formulation together with a graph model is proposed to optimize timing slacks

and power consumption simultaneously. In [HKK+12], a metaheuristic approach is

developed to size logic gates that have the greatest impact on power-performance

tradeoffs. This method guarantees slack, capacitance and slew constraints through-

out the optimization process.

The second method to improve circuit performance in the traditional paradigm is

retiming, which moves sequential components, e.g., flip-flops, but still preserves

the correct functional behavior of circuits. In [LZ06], an efficient algorithm is pro-

posed to retime sequential circuits under both setup and hold constraints. The work

in [HMB08] demonstrates a maximum-flow-based approach to minimize the number

of flip-flops. In [WZB17], a new retiming method with a network-simplex algorithm

is introduced for two-phase latch-based resilient circuits to reduce the overhead

of normal and error detecting latches. Retiming for FPGA has been investigated

in [SMB05] to meet architecture constraints such as avoiding flip-flops through carry

chains to guarantee a correct circuit function. A retimed circuit can be further im-

proved by introducing intentional clock skews or latches to balance the delays of

sequential stages with a finer granularity [LPF99].

Wave-pipelining is the third method to improve circuit performance, where logic

waves are allowed to propagate through combinational paths without intermedi-

ate sequential components. This method provides a mechanism to make the clock

frequency of a circuit independent of the largest path delay, which limits circuit

performance in traditional circuit designs [BCKL98]. As early as in [JC93], a linear

method to minimize the clock period using wave pipelining is proposed. Recently,

73

6 Timing beyond the Traditional Paradigm

this method is also explored for majority-based beyond-CMOS technologies to im-

prove the throughput of majority inverter graph (MIG) designs in [ZMT+17].

The first two methods above can be used separately or jointly to improve circuit per-

formance. However, sequential components are assumed to synchronize signal prop-

agations in these methods, where no signal propagation is allowed to pass through

sequential components except at the clock edges. This synchronization with sequen-

tial components achieves many benefits such as reducing design efforts. However, it

limits circuit performance in two regards. Firstly, sequential components have inher-

ent clock-to-q delays and impose setup time constraints. The former becomes a part

of combinational paths driven by the corresponding flip-flops and the latter deprives

a further part of the timing budget for the critical paths. Secondly, delay imbalances

between flip-flop stages cannot be exploited since signal propagations are blocked at

flip-flops instead of being allowed to propagate through flip-flops. Although clock

skew scheduling can relieve this problem to some degree, it still suffers the inherent

clock-to-q delays and setup time constraints of flip-flops. The third method above,

wave-pipelining, allows signals to pass through sequential stages without flip-flops,

however, this technique is not compatible with the traditional timing paradigm.

In the following, a new timing model, VirtualSync, which breaks the confines of the

traditional timing paradigm, will be discussed. In this timing model, both sequential

components and combinational logic gates are considered as delay units. Signal

propagations in the combinational circuits after removing flip-flops are examined

and fast signals are delayed so that they do not catch a slow signal from the previous

clock cycle. To delay fast signals, combinational logic gates add linear delays of the

same amount to short and long paths, while sequential components provide non-

linear delay effects, leading to different delays appended to fast and slow signals.

Since a sequential delay unit, flip-flop or latch, is able to delay a fast signal up to

about one clock cycle, their appearance in a circuit can effectively reduce the number

of delay buffers required for signal synchronization, so that chip area can also be

reduced.

The VirtualSync timing model views the circuit structure from a different perspec-

tive. In the traditional timing model, flip-flops are allocated in advance, and timing

74

6.1 VirtualSync: Delay-based Timing Synchronization

constraints (2.1)–(2.2) between flip-flops are verified afterwards. In the VirtualSync

model, all flip-flops in a given digital circuit are removed at first. Consequently,

data waves from different clock cycles may mix, because the essential function of

flip-flops in the original circuit is to block the propagation of fast signals. In other

words, flip-flops in a traditional digital circuit are used to make a circuit slow in-

stead of making it fast. In the second step of the VirtualSync model, flip-flops are

inserted back only at necessary locations in the circuit to block fast signals. There-

fore, the circuit can be optimized by delaying it with the minimum amount of real

delays introduced by combinational gates or virtual delays introduced by sequential

components. In this formulation, the original logic gates in a circuit are also sized to

increase delays, leading to even a potential area reduction. Within the VirtualSync

model, the absence of flip-flops at some sequential stages allows a virtual synchro-

nization to provide identical functionality as in the original circuit. Since the critical

paths usually do not require any additional delays, no clock-to-q delays or setup

requirements of flip-flops are involved on the critical paths, so that a better circuit

performance even beyond the limit of traditional sequential design can be achieved.

In Section 6.1.1, the motivation and the basic idea of the VirtualSync model are

explained. The corresponding timing optimization problem is formulated in Sec-

tion 6.1.2. The VirtualSync model is explained in detail in Sections 6.1.3–6.1.5. Con-

clusions are drawn in Section 6.1.6.

6.1.1 Background and Motivation of VirtualSync

In traditional digital circuits, sequential components such as flip-flops synchronize

signal propagations between pairs of flip-flops using a global clock signal, as shown

in Figure 6.2(a). The combinational path between F2 and F3 is critical with a path

delay equal to 17. Assume that the clock-to-q delay, the setup time and the hold time

of a flip-flop are 3, 1, and 1, respectively. The minimum clock period of this circuit

is thus equal to 21.

To reduce the clock period, logic gates with smaller delays can be selected from the

library to accelerate signal propagations on the critical paths of the circuit, at the cost

75

6 Timing beyond the Traditional Paradigm

(c)

3

F1

F2

F3 F4

(a)

(b)

F1
F3 F4

F2

F1

F6

F4

F2

F5

F3

5

6

4

4

4

3

4

4

(d)

F1

F4

F2

F3

43

4

2

F5

2

2

2

1

1

1

1

Figure 6.2: Timing optimization methods. Delays of logic gates are shown on the

gates. The clock-to-q delay (tcq), setup time (tsu) and hold time (th) of a

flip-flop are 3, 1 and 1, respectively. (a) Original circuit. (b) Sized circuit.

(c) Circuit after retiming. (d) Circuit after optimization using VirtualSync.

76

6.1 VirtualSync: Delay-based Timing Synchronization

of additional area overhead, leading to the circuit shown in Figure 6.2(b), where the

logic gates that are not on the critical path still have their original delays for the sake

of saving area. After sizing, the minimum clock period of this circuit is reduced to

16 units. To reduce the clock period further, retiming can be deployed to move F3

to the left of the XOR gate as shown in Figure 6.2(c), leading to a minimum clock

period equal to 11.

The circuit in Figure 6.2(c) has reached the limit of timing performance in the tra-

ditional timing model, and no other method except a logic redesign can reduce the

clock period further. However, this strict timing constraint can still be relaxed by

removing F6 from the circuit, leading to the circuit in Figure 6.2(d). If the signal

from from F2 can reach the sink flip-flops F3 and F4 after the next rising clock edge

and before the rising edge two periods later, data can still be latched by F3 and F4

correctly. Since the inverter before F4 can also be sized further, the largest path de-

lay is 16, which imposes a lower bound for the clock period as (16+1)/2=8.5, 22.7%

lower than retiming.

Since F6 can be removed from the circuit without affecting its function in fact, it

makes no contribution to the logic function or timing performance in Figure 6.2(c).

However, the flip-flop F5 in Figure 6.2(c) cannot be removed, because the signal

from F1 should also arrive at F4 later than one clock period. Without F5, the signal

from F1 arrives at F4 even before the next rising clock edge, a loss of logic syn-

chronization compared with the circuit in Figure 6.2(a). Comparing Figure 6.2(b)

and Figure 6.2(d), it can be seen that F3 in Figure 6.2(b) simply blocks the fast path

from F1 to F4 to avoid loss of logic synchronization or timing violations at F4, but it

degrades the circuit performance by delaying the signal from F2 to F4 too.

The concept to allow logic signals to span several sequential stages without a flip-

flop separating them is called wave-pipelining [BCKL98]. Previously, this technique

has only been explored in the context of circuit design, where the numbers of waves

on logic paths should be defined and their synchronization should be maintained

by designers during the design phase. Since logic design and timing cannot be

handled separately as in traditional synchronous designs, wave-pipelining becomes

incompatible with the traditional fully synchronous design paradigm and prevents

77

6 Timing beyond the Traditional Paradigm

its adoption in practical designs. In VirtualSync, a new timing model that allows

multiple waves on logic paths is introduced as a technique of timing optimization

for circuits in the traditional design style. The resulting circuits still provide correct

timing interfaces to sequential components, e.g., flip-flops, at the boundary of the

optimized circuits to maintain timing compatibility.

6.1.2 Problem Formulation of VirtualSync

In digital circuits, the essential function of sequential components is to delay signals

along fast paths in a circuit. For example, in Figure 6.2(d), F5 must be kept in

the circuit to delay the signal propagation from F1 to F4. The sequential components

that only sit on the critical path can thus be removed to improve circuit performance,

such as F6 in Figure 6.2(d).

In the VirtualSync framework, all flip-flops are first removed and then the necessary

locations to block fast signals using combinational gates and sequential components,

e.g., buffers, flip-flops, and latches, are identified. The advantage of this formulation

is that it is possible to insert the minimum number of delay units into the circuit to

achieve the theoretical minimum clock period.

The problem formulation of VirtualSync is described as follows:

Given: the netlist of a digital circuit; the delay information of the circuit; the target

clock period T.

Output: a circuit with adjusted number and locations of sequential components;

logic gates with new sizes; inserted delay units, e.g., buffers.

Objectives: the circuit should maintain the same function viewed from the sequential

components at the boundary of the optimized circuit; the target timing specification

should be met; the area of the optimized circuit should be reduced.

78

6.1 VirtualSync: Delay-based Timing Synchronization

6.1.3 Delay Units

In the VirtualSync framework, all sequential components, flip-flops, are removed

from the circuit under optimization. Consequently, logic synchronization may be

lost because signals across fast paths may arrive at flip-flops in incorrect clock cy-

cles, e.g., earlier than specified, or timing violations may be incurred. In addition,

signals along combinational loops should also be blocked to avoid the loss of logic

synchronization. For example, in Figure 6.2(d), the combinational loop across the

XOR gate must have a sequential component; otherwise a signal loses synchroniza-

tion after traveling across it many times.

To slow down a signal, three different components can be used as delay units,

namely, combinational gates such as buffers, flip-flops, and latches, which exhibit

different delay characteristics, as shown in Figure 6.3, where the term input gap

refers to the difference of arrival times of two signals at a delay unit, and the

term output gap represents the difference between their arrival times after they pass

through the unit.

In Figure 6.3(a), a combinational delay unit adds the same amount of delay to any

input signal. Consequently, the arrival time sv at the output of the combinational

delay unit is linear to the arrival time su at the input of the delay unit. Therefore, the

absolute gap between arrival times of signals through short and long paths does not

change when a combinational delay unit is passed through.

In delaying input signals, a flip-flop, as a sequential delay unit, behaves completely

differently from a combinational delay unit, as shown in Figure 6.3(b). If the arrival

time of a signal falls into the time window [th, T− tsu], where th is the hold time and

tsu is the setup time, the output signal always leaves at the time T + tcq, with tcq as the

clock-to-q delay of the flip-flop. Therefore, the gap between the arrival times of two

signals reaching at the input of a flip-flop is always reduced to zero at the output

of the flip-flop. This is a very useful property because the delays of short paths

and long paths in a circuit may differ significantly after all sequential components

are removed from the circuit under optimization. For many short paths, it is not

possible to increase their delays by adding combinational delay units such as buffers

79

6 Timing beyond the Traditional Paradigm

sususu sv

td
F

sv
L

sv

T/2+tcq

T+tcq

su

sv

T TD ∗ T
(a) (b) (c)

tsu

su

sv

su

sv

td

tsu

input gap

output
gap

th th

output
gap

input
gap

Figure 6.3: Properties of delay units. (a) Linear delaying effect of a combinational de-

lay unit. (b) Constant delaying effect of a flip-flop. (c) Piecewise delaying

effect of a latch.

to them, because the combinational delay units on the short paths may also appear

on other long paths. The increased delays along long paths might affect circuit

performance negatively. Flip-flops are thus of great use in this scenario, because

short paths receive more delay padding than long paths to align logic waves in the

circuit.

As the second type of sequential delay units, level-sensitive latches, have a delay

property combining those of combinational delay units and flip-flops, as shown in

Figure 6.3(c), where 0 < D < 1 is the duty cycle of the clock signal. Assume

that a latch is non-transparent in the first part of clock period and transparent in

the second part of the clock period. If two input signals arrive at a latch when it

is non-transparent, the output gap is reduced to zero. If both signals arrive at a

latch when it is transparent, the gap remains unchanged. However, if the fast signal

reaches the latch when it is non-transparent while the slow signal reaches it when

it is transparent, the output gap of the two signals is neither zero nor unchanged.

Instead, it takes a value between the two extreme cases as illustrated in Figure 6.3(c).

This property gives us more flexibility to modulate signals with different arrival

times, specifically those along critical paths where fast signals require more delay

padding and slow signals should be not affected.

80

6.1 VirtualSync: Delay-based Timing Synchronization

F2F1 F3

u v w t

F4
11 3 2

-10 -10

su=14 sv=4 sw=7 st=3

zo

sz=5so=3

boundary boundary

Figure 6.4: Concept of relative timing references. Clock period T=10. Clock-to-q

delay tcq=3. Both setup time tsu and hold time th are equal to 1. F3 is

kept in the optimized circuit and F2 is not included.

6.1.4 Relative Timing References

In Figure 6.2(a), if all the logic gates and flip-flop F3 are considered as the the circuit

under optimization, F1, F2 and F4 are thus the boundary flip-flops. No matter

how signals inside the circuit propagate, the function of the whole circuit is still

maintained if it can be guaranteed that for any input pattern at flip-flops F1 and

F2 the circuit produces the same result at F4 at the same clock cycle as the original

circuit.

Consider a general case in Figure 6.4, where F1 and F4 are the boundary flip-flops

and F2 and F3 are removed in the initial circuit for optimization. At F4, the arrival

times are required to meet the setup and hold time constraints, written as

sz + tsu ≤ T (6.1)

s′z ≥ th (6.2)

where sz and s′z are the latest and earliest arrival times at z. These two constraints in

fact are defined with respect to the rising clock edge at F3, since the clock period T

in (6.1) shows that the signal should arrive at F4 within one clock period. Although

F2 and F3 are removed from the circuit, the constraints at F4 should still be the same

as (6.1)-(6.2) to maintain the compatibility of the timing interface at the boundary

flip-flops.

In the general case in Figure 6.4, it can also be observed that the timing constraint

at F3 in the original circuit is also defined with respect to the rising clock edge at

F2. This definition can be chained further back until the source flip-flop F1 at the

81

6 Timing beyond the Traditional Paradigm

boundary is be reached. The locations of these removed flip-flops such as F2 and F3

are called anchor points. After all sequential components are removed from the cir-

cuit under optimization, these anchor points still allow to relate timing information

to boundary flip-flops. Every time when a signal passes an anchor point, its arrival

time is converted by subtracting T in VirtualSync. When a signal finally arrives at a

boundary flip-flop along a combinational path, its arrival time must be converted so

many times as the number of flip-flops on the path, so that (6.1)-(6.2) is still valid.

In Figure 6.4, assume that F2 is removed but F3 is inserted back in the optimized

circuit. The arrival time su is subtracted by the clock period T=10 to convert it with

respect to the time at F1, leading to sv=4. The arrival time sw is defined with respect

to the previous flip-flop before F3, so that the timing constraints can be checked

using (6.1)-(6.2). Since the arrival time before F4 should meet its timing constraints,

F3 thus cannot be removed. Otherwise, the arrival time st would be equal to 7-10=-3.

Accordingly, the arrival time sz becomes -3+2=-1, definitely violating the hold time

constraint in (6.2).

Since F3 is kept in the optimized circuit, it introduces the delay with the property

shown in Figure 6.3(b). The arrival time after this sequential delay unit thus becomes

T + tcq=13. This signal at t in Figure 6.4 also passes an anchor point. Therefore, the

arrival time st is equal to 3, leading to no timing violation at F4. This example

demonstrates that the timing constraints at the boundary flip-flops force the usage

of the internal sequential delay units. The model to insert these delay units auto-

matically will be explained in the next section.

6.1.5 Synchronizing Logic Waves by Delay Units

With all flip-flops removed from the circuit under optimization, only signals that are

so fast that they reach boundary flip-flops too early need to be delayed; signals that

propagate slowly are already on the critical paths, thus requiring no additional delay.

Since it is not straightforward to determine the locations for inserting additional

delays, this task is formulated as an ILP problem and solve it later with introduced

82

6.1 VirtualSync: Delay-based Timing Synchronization

heuristic steps. The values of variables in the following sections are determined by

the solver, unless they are declared as constants explicitly.

The scenario of delay insertion at a circuit node, i.e., a logic gate, is illustrated in

Figure 6.5, where a combinational delay unit ξuv may be inserted, the original delay

of the logic gate may be sized, and a sequential delay unit may be inserted to block

fast and slow signals with different delays. Furthermore, the number of flip-flops

between w and t in the original circuit is represented by an integer constant λtz.

When λtz≥1, an anchor point is found at the location. λtz is used to convert arrival

times.

Combinational delay unit and gate sizing

In Figure 6.5, the delay at the circuit node can be changed by sizing the delay of

the logic gate, e.g., the XOR gate in Figure 6.5. For the case that the required gate

delay exceeds the largest permissible value, a combinational delay unit is inserted

at the corresponding input. For convenience, it is assumed that the combinational

delay unit inserted at the input is implemented with buffers. The relation between

the arrival times u and w is thus expressed as

sw ≥ su + ξuv ∗ ru + dvw ∗ ru (6.3)

s′w ≤ s′u + ξuv ∗ rl + dvw ∗ rl (6.4)

where su, s′u, sw and s′w are the latest and earliest arrival times of node u and w

, respectively. ξuv is the extra delay introduced by an inserted buffer and dvw is

the pin-to-pin delay of the logic gate. If ξuv is reduced to 0 after optimization, no

buffer is required in the optimized circuit. The ≤ and ≥ relaxations of the relation

between arrival times guarantee that only the latest and the earliest arrival times

from multiple inputs are propagated further. ru and rl are two constants to reserve

a guard band for process variations, so that ru > 1 and rl < 1.

83

6 Timing beyond the Traditional Paradigm

u
dvw

comb. delay?

seq. unit?
anchor?

λtz

ξuv

sizing?

w t zv

Figure 6.5: Delay insertion model in VirtualSync.

Insertion of sequential delay units

Since arrival times through long and short paths reaching w may have a large dif-

ference, it might be required to insert sequential delay units to delay the fast signal

more than the slow signal. This can be implemented with the sequential units shown

in Figure 6.3, where the gap between the arrival times is reduced after passing a se-

quential delay unit, either a flip-flop or a latch. To insert a sequential delay unit,

three cases need to be examined.

Case 1: No sequential delay unit is inserted between w and t in Figure 6.5, so that

st ≥ sw (6.5)

s′t ≤ s′w. (6.6)

Case2: A flip-flop is inserted between w and t. Assume the flip-flop works at a rising

clock edge. As shown in Figure 6.3(b), a flip-flop only works properly in a region th

after the rising clock edge and tsu before the next rising clock edge. Therefore, the

arrival times sw and s′w need to be bound into such a region by

sw, s′w ≥ Nwt ∗ T + φwt + th ∗ ru (6.7)

sw, s′w ≤ (Nwt + 1) ∗ T + φwt − tsu ∗ ru (6.8)

where Nwt is an integer variable determined by the solver. T is the given clock

period. φwt is phase shift of the clock signal. The available values of φwt can be set

by designers. If only one clock signal is available, φwt can be set to 0 and T/2 to

emulate flip-flops working at rising and falling clock edges.

84

6.1 VirtualSync: Delay-based Timing Synchronization

When the input arrival times fall into the valid region of a flip-flop as constrained

by (6.7)–(6.8), the signal always starts to propagate from the next active clock edge,

so that constraints can be written as

st ≥ (Nwt + 1)T + φwt + tcq ∗ ru (6.9)

s′t ≤ (Nwt + 1)T + φwt + tcq ∗ rl. (6.10)

Case3: A level-sensitive latch is inserted between w and t. To be consistent with the

active region of flip-flops, it is assumed that the latches are transparent when the

clock signal is equal to 0. The arrival times at w can then be bound in the same way

as (6.7)–(6.8).

As illustrated in Figure 6.3(c), the latch is non-transparent in the first part of the

region and transparent in the second region. Accordingly, the latest time a signal

leaves the latch can be expressed as

st ≥ Nwt ∗ T + φwt + D ∗ T + tcq ∗ ru (6.11)

st ≥ sw + tdq ∗ ru (6.12)

where (6.11) corresponds to the case that the latch is non-transparent, so that the

signal leaves the latch at the moment the clock switches to 1. D is the duty cycle

of the clock signal with 0 < D < 1. (6.12) corresponds to the case that the latch is

transparent, so that only the delay of the latch is added to sw. tdq is the data-to-q

delay of the latch.

The earliest time a signal leaves the latch is, however, imposed by a constraint in the

less-than-max form as in [SMO90],

s′t ≤ max{Nwt ∗ T + φwt + D ∗ T + tcq ∗ rl, s′w + tdq ∗ rl} (6.13)

which cannot be linearized easily. In the VirtualSync framework, the purpose of

introducing the sequential delay unit is to delay the short path as much as possible.

This effect happens when a signal arrives at a non-transparent latch. Therefore, the

arrival times of fast signals can be imposed to be positioned in the non-transparent

region, expressed as

Nwt ∗ T + φwt + th ∗ ru ≤ s′w ≤ Nwt ∗ T + φwt + D ∗ T (6.14)

85

6 Timing beyond the Traditional Paradigm

while relaxing (6.13) as

s′t ≤ Nwt ∗ T + φwt + D ∗ T + tcq ∗ rl. (6.15)

When inserting the sequential delay unit, each of the three cases above can happen

in the optimized circuit. An integer variable is used to represent the selection and

let the solver determine which case happens during the optimization.

Reference shifting with respect to anchor points

The arrival times in the model need to be converted each time when an anchor point

is passed. The constant λtz represents the number of flip-flops at such a point in the

original circuit. In Figure 6.5, the arrival time at z is shifted as

sz = st − λtzT. (6.16)

Wave non-interference condition

Since multiple waves are allowed to propagate along a combinational path, it needs

to be guaranteed that the signal of the next wave starting from a boundary flip-

flop never catches the signal of the previous wave starting from the same flip-flop

[BCKL98]. This constraint should be imposed to every node in the circuit. For

example, the constraint for node u is written as

su + tstable ≤ s′u + T (6.17)

where tstable is the minimum gap between two consecutive signals.

Overall formulation

The introduction of the relative timing references, or the anchor points, in Sec-

tion 6.1.4 guarantees that the number of clock cycles along any path does not change

after optimization. With the timing constraints (6.1)-(6.2) at boundary flip-flops, the

86

6.2 Timing Camouflage for Netlist Security

correct function of the optimized circuit is always maintained, without requiring any

change in other function blocks.

The constraints (6.1)–(6.17) excluding (6.13) needs to be established at each node in

the circuit after flip-flops are removed. The appearance of the combinational and se-

quential delay units needs to be determined by the solver. The delays of logic gates

should also be sized. The objective of the optimization is to find a solution to make

the circuit work at a given clock period T, while reducing the area cost. Taken all

these factors into account, the straightforward ILP formulation may become insolv-

able practically. Therefore, conservative approximation and relaxation techniques

need to be developed.

6.1.6 Summary

The VirtualSync model views the timing optimization problem from a perspective

different from the traditional flip-flop-based design flow. Its advantage is that only

the minimum amount of delays need to be introduced into a combinational network

generated by removing all sequential components from a given design. To find the

proper locations to insert the delay units is, however, computation-intensive. Tech-

niques such as circuit partition and iterative refinement with Lagrangian Relaxation

may be applied, but to achieve a good tradeoff between quality of the results and

runtime of this optimization process is still a demanding task.

6.2 Timing Camouflage for Netlist Security

Today’s semiconductor business model involves many global vendors from vari-

ous countries and regions. This distributed supply chain makes integrated circuits

vulnerable to attacks and counterfeiting in nearly all phases from design to post-

fabrication. Consequently, the research community has invested a great effort to

deal with security challenges [GHD+14].

87

6 Timing beyond the Traditional Paradigm

A major IC counterfeiting threat is the production of illegal chips by a third party

with a netlist reverse engineered from authentic chips. In reverse engineering, au-

thentic chips are delayered and imaged to identify logic gates, flip-flops, and their

connections. Afterwards, the recognized netlist can be processed by a standard IC

design flow and manufactured in a foundry, even with a different technology. This

reverse engineering flow gives counterfeiters much freedom in reproducing authen-

tic chips, because the recognized netlist carries all necessary design information and

counterfeiters can revise and optimize it freely.

Several techniques have been proposed to thwart reverse engineering attacks on au-

thentic chips. Firstly, IC camouflage tries to prevent the netlist from being recognized

easily. In [BRPB14] transistors are manipulated with a stealthy doping technique

during manufacturing so that they function differently than they appear. The work

in [MBPB15,RSSK13,RSK13] mixes real and dummy contacts to camouflage standard

cells. The method in [LT15] explores netlist obfuscation by iterative logic fanin cone

analysis at circuit level. Moreover, the method in [LSM+16] introduces a quantitative

security criterion and proposes camouflaging techniques with a low-overhead cell li-

brary and an AND-tree structure. In addition, logic locking inserts additional logic

gates, e.g., XOR/XNOR in [RPSK12, RKM08], AND/OR in [DBN+14] and MUX

in [PM15], into the netlist to disable its function if the correct key is not applied.

This method is expanded in [XS17] to incorporate delay information into the locking

mechanism.

The methods discussed above all focus on either making the netlist more difficult

to be recognized, or making the correct behavior of the circuit dependent on addi-

tional input information even after the netlist is recognized. In the following, a new

perspective to counter counterfeiting based on reverse engineering is proposed. By

integrating unconventional timing information, a netlist, even if recognized exactly

through reverse engineering, does not function correctly anymore when a conven-

tional timing scheme is assumed.

The advantages of the introduced method include: 1) The camouflaged netlist only

works with a given set of timing information, which, however, is difficult to be

recognized exactly by reverse engineering even with much additional effort and cost.

88

6.2 Timing Camouflage for Netlist Security

2) The camouflaged netlist only contains normal logic gates, so that it is challenging

for attackers to isolate and then identify the timing encryption locations. 3) The

introduced wave-pipelining false paths obstruct test-based counterfeiting methods

further by camouflaging originally testable paths as false paths. 4) The proposed

method is fully compatible with other security techniques introduced previously, so

that they can be combined seamlessly.

In the following, the concept of timing camouflage will be discussed in detail. In Sec-

tion 6.2.1, the motivation and the basic idea of the proposed method are explained.

In Section 6.2.2, a detailed description of the wave-pipelining technique is provided.

In Section 6.2.3, potential attack techniques are analyzed and counter measures to

thwart them are proposed. Conclusions are stated in Section 6.2.4.

6.2.1 Motivation and Basic Concept of Timing Camouflage

Digital circuits rely on their structures to define their functions. A netlist is usually

sufficient to reproduce a correctly working circuit. To prevent a netlist from being

recognized by reverse engineering, techniques from physical level to netlist level can

be applied to camouflage the logic. These methods, however, are still restricted to

the conventional single-period clocking timing model so that attackers only need to

recognize the netlist correctly.

In the conventional single-period clocking timing model, all the paths in a com-

binational block operate within one clock period. Figure 6.6(a) shows a part of a

sequential circuit with three flip-flops F1, F2 and F3. At each sampling clock edge,

assumed as the rising clock edge henceforth, the data at the inputs of the flip-flops

are latched. To guarantee the correct operation of the flip-flops, the data at the input

of a flip-flop must become stable tsu time before the rising clock edge, and the data

must stay stable th time after the rising clock edge.

With the single-period clocking model, designers only need to guarantee that the

logic functions of combinational blocks are correct without having to worry about

the interaction between different clock stages. Consequently, the netlist carries all

89

6 Timing beyond the Traditional Paradigm

F1
F2 F3

F1 F3

(a)

(b)

wave 2
wave 1

Figure 6.6: Conventional timing and wave-pipelining: (a) Single-period clocking; (b)

Pipelining with two data waves.

logic information and this simplification allows attackers to counterfeit chips rela-

tively easily because they only need to recognize the logic types of gates, flip-flops,

and interconnect connections during reverse engineering.

To thwart the attack attempt on a design, it is proposed to invalidate the conventional

timing model in some parts of the circuit. For example, the flip-flop in the middle

of Figure 6.6(a) can be removed to construct the circuit in Figure 6.6(b). On the

combinational path from F1 to F3, there are now two data waves without a flip-

flop separating them. If the second wave does not catch the first one before it

is latched by F3, the correct function of the circuit is still maintained. This tech-

nique is called wave-pipelining (WP) and has been investigated for circuit optimiza-

tion [HLCG95,BCKL98,SV09]. When attackers recognize a netlist as in Figure 6.6(b),

they face the challenge to determine whether there should be one or two logic waves.

If they assume the former and process the netlist using a standard EDA flow, the cir-

cuit loses synchronization because the data at the input of F3 is latched one clock

period earlier. If they want to determine whether it is the latter case, additional

effort is required to extract the timing information for the combinational path.

In the circuit in Figure 6.6(b), at each rising clock edge, a new data is injected into

the combinational path by flip-flop F1, so that the two waves are always separated

by one clock period initially. To guarantee that the second data wave does not flush

the first data wave when it is waiting for the next rising clock edge to be latched

90

6.2 Timing Camouflage for Netlist Security

by F3, the path delay between F1 and F3 should be larger than one clock period.

This path delay is, however, not contained in the extracted netlist from conventional

reverse engineering. Consequently, the function of the circuit depends on both its

structure and the timing of combinational paths.

Though attackers may have access to the standard cell library, e.g., through a third-

party IP vendor, it is still very hard to obtain accurate interconnect/RC parasitics

by delayering authentic chips, due to unknown process parameters, challenges in

3D RC extraction, and switching-window-dependent crosstalk-induced delay vari-

ations, etc. In any case, the more accurate the original timing information should

be recognized from delayered chips, the harder and more expensive it becomes. In

combination with other obfuscation methods, such as, dopant-level camouflage gate

delay [BRPB14, VCPK17] and dummy contact insertion [MBPB15, RSSK13, RSK13],

the unconventional timing concept has a potential to open up a new dimension of

netlist security.

Although wave-pipelining paths look similar to multiple-cycle paths in digital de-

sign, the essential difference is that there is only one wave on a multiple-cycle path

at a moment and the circuit still works if a multiple-cycle path is optimized to finish

its calculation in one clock period, or if the clock frequency is lowered to make it

work in one clock period. Therefore, multiple-cycle paths cannot be used to replace

wave-pipelining paths to increase netlist security.

6.2.2 Wave-Pipelining

A wave-pipelining path such as the one in Figure 6.6(b) allows two data waves

propagating on the path at the same time. Since the second data wave should not

catch the first one, special timing constraints should be specified for this path. The

scenario of data wave propagation is illustrated in Figure 6.7. At first, wave 1 is

injected into the path by F1. This data wave propagates along the path continuously

and should reach F3 after the first rising clock edge at T and before the second

rising clock edge at 2T. At time 2T, the first data is latched by F3. The second wave

is injected by F1 at the rising clock edge at time T and it starts to propagate along

91

6 Timing beyond the Traditional Paradigm

0 T 2T 3T

wave 1 wave 2

time

logic
delay

maximum
logic delay

data waves reach F3

data latching at F3

Figure 6.7: Temporal/spatial diagram for wave propagation on a combinational

path.

the same path. Since this wave arrives at F3 with a delay larger than T, it does not

catch the first wave at any time during the propagation, shown as the vertical gap

between the two data waves in Figure 6.7. Consequently, the two data waves on the

path never interfere and F3 always latches the same value as in the original circuit

shown in Figure 6.6(a).

In forming wave-pipelining paths, a flip-flop is removed from the circuit as in the

example from Figure 6.6(a) to 6.6(b). In practice, this operation may lead to many

paths with wave pipelining, because any combinational path reaching F2 together

with any path starting from F2 forms a new wave-pipelining path. All these wave-

pipelining paths should meet two constraints. First, the delay of a path should be

larger than the clock period T; otherwise, the data wave is latched at the first rising

clock edge instead of the second by F3. Second, the delay of the path should be no

larger than 2T to guarantee that the data is latched by F3 in time. Assume the set of

all these paths is P and the delay of a path p ∈ P is dp. The timing constraints for all

these paths can be written as

dp ≥ T + th, ∀p ∈ P ⇐⇒ min
p∈P
{dp − th} ≥ T (6.18)

dp ≤ 2T − tsu, ∀p ∈ P ⇐⇒ max
p∈P
{dp + tsu} ≤ 2T. (6.19)

After removing a flip-flop from the circuit, if all the wave-pipelining paths meet

the two constraints (6.18) and (6.19), the wave-pipelining version of the circuit is

functionally equivalent to the original circuit.

92

6.2 Timing Camouflage for Netlist Security

Capture gate delays in

Limitations:

Test all suspicious paths

Limitation:

Counter measure:

Limitations:

Size all false paths as

Limitations:

1

3

2

4

reverse engineering

high cost
insufficient delay accuracy;

large number of test vectors

wave-pipelining false paths

Simulate all possible
wave-pipelining cases

large simulation number;
long runtime

wave pipelining

Limitations:
unsolvable problem;
design risk

Calculate gate delays
from tested path delays

large test number;
inaccurate delays

5

Figure 6.8: Attack techniques to identify or circumvent wave pipelining, where the

last three techniques may be combined to reduce the problem space of

attack.

6.2.3 Attack Techniques and Counter Measures

In attacking a design with wave-pipelining, if attackers have no knowledge that this

technique has been applied, the recognized netlist by reverse engineering does not

function correctly. Once attackers become aware of this technique, various methods

may be deployed to identify where the wave-pipelining paths are or to circumvent

them simply. In the assumed attack model, the available information includes a netlist rec-

ognized by reverse engineering and estimated delays of logic gates as well as interconnects

with an inaccuracy factor τ. The objective of the attack is to identify on which combina-

tional paths in the netlist wave-pipelining is applied. The potential attack techniques are

summarized in Figure 6.8.

The first attack technique is to measure all gate and interconnect delays while the

93

6 Timing beyond the Traditional Paradigm

netlist is recognized by reverse engineering. With all gate and interconnect delays

known, path delays can be calculated from the netlist easily. Since the delays of

wave-pipelining paths are between T and 2T as defined in (6.18) and (6.19), these

paths can therefore be identified. The challenge of this attack technique is that it is

difficult to extract accurate gate and interconnect delays just from reverse engineer-

ing. Assume that the real delay of a path is d and the delay recognition technique

suffers an inaccuracy factor τ (0 < τ < 1). Consequently, this path delay can be any

value in the range [(1− τ)d, (1+ τ)d] when recognized. If the upper bound of a path

delay is smaller than T, this path is definitely a single-period clocking path. If the

lower bound of a path delay is larger than T, the path is definitely a wave-pipelining

path. However, if a path delay covers the clock period T, namely,

(1− τ)d ≤ T ≤ (1 + τ)d. (6.20)

This path can only be considered as suspicious of wave-pipelining but without a

clear differentiation. In the following, the range [(1− τ)d, (1+ τ)d] is called the gray

region for a path with delay d. In reality, a well-optimized design contains many

critical paths with delays close to the clock period T so that their gray regions cover

T easily. When constructing wave-pipelining paths in the proposed method, it is

also guaranteed that their delays are in the gray region.

With the estimated delays, attackers can actually narrow down the number of po-

tential wave-pipelining paths, because paths with delays definitely smaller or larger

than T considering the inaccuracy in delay estimation can be screened out. The

second attack technique is to test the delays of the remaining paths using authentic

chips from the market. With the netlist recognized, it is not difficult to determine

test vectors to trigger the suspicious paths. Since the only information of interest is

whether a path delay is larger than T, only one delay test for each path is sufficient.

Without considering the cost to test many paths, this test strategy is in fact able to

differentiate wave-pipelining paths from other paths eventually.

To prevent all suspicious paths from being tested, a counter measure is introduced

to create unsensitizable paths with wave-pipelining. When wave-pipelining paths

are constructed by removing flip-flops, the paths that, viewed directly with the con-

94

6.2 Timing Camouflage for Netlist Security

false path after wave-pipelining

controlling signal

removed flip-flop

v1
v2

Figure 6.9: Two true paths form a wave-pipelining false path.

ventional single-period clocking, are false paths and cannot be sensitized by any test

vectors are preferred.

Definition 1 False Path: A combinational path which cannot be activated in functional

mode or test due to controlling signals from other paths [YX10, DYG89]. On the contrary,

true paths can be activated in functional mode or test.

Definition 2 Wave-Pipelining False Path (WP False Paths): A combinational path with

wave pipelining that is a false path when viewed with the conventional single-period clocking.

Wave-pipelining false paths are true paths with data waves propagating along them

when the circuit is running, but they are false paths when the netlist is examined

only. An example of wave-pipelining false paths is shown in Figure 6.9, which is a

snippet of the s298 circuit from the ISCAS89 benchmark set. When the flip-flop in

the middle is removed, the dashed path becomes a wave-pipelining path and also a

false path, if it is considered as working within a single clock period. In this case,

a signal switching at the beginning of the dashed path never reaches the final flip-

flop. If the signal v2 has a value ‘1’, which is the controlling signal to an OR gate, it

blocks the dashed path at the last OR gate; if the signal v2 has a value ‘0’, it blocks

the dashed path at the AND gate right away. Consequently, the dashed path cannot

be triggered for delay test and attackers have no way to differentiate it from all the

other false paths in the original circuit, which may contribute up to 75% of all the

combinational paths in real circuits [HPA97].

95

6 Timing beyond the Traditional Paradigm

Since the delays of false paths cannot be tested, the third attack technique, brute-force

logic simulation, could be considered to differentiate the camouflaged false paths

from real false paths. In this method, each false path that cannot be excluded by

delay screening in the first step is assumed to be a real false path once and a wave-

pipelining false path once. Assuming the number of such paths is n, then 2n simu-

lations of the complete circuit should be performed to check which combination is

correct. In theory, this method can eventually find the correct combination of real

false paths and wave-pipelining false paths. However, it is still impractical because

of the unaffordable simulation time due to the large number of false paths in the

original design [HPA97,YX10] and the very long runtime for a full simulation of the

complete circuit.

The fourth technique to attack wave-pipelining false paths is to consider all false paths

in the circuit as wave-pipelining paths and size logic gates so that delays of all these

paths meet the constraints (6.18) and (6.19). The concept behind this technique is

that false paths are not triggered anyway so that they do not affect the logic of the

circuit if their delays are larger than the clock period T. This assumption, however, is

too optimistic because false paths sized to have delays larger than T may still affect

the normal circuit operation [DYG89]. Another challenge of this attack technique is

that it is very difficult to find a solution to size so many false paths without affecting

the normal true paths whose delays should be smaller than T.

The fifth technique to identify wave-pipelining paths is to calculate all gate delays in a

circuit from path delays measured by at-speed test, such as applied in [VDP14]. Since

path delays are linear combinations of gate delays, the measured path delays can be

used to calculate gate delays by linear algebra. The challenges of this method are: 1)

a large number of combinational paths should be tested in a commercial design; 2)

all logic gates should appear on testable paths in a way that the coefficient matrix of

linear equations has a rank equal to the number of gate/interconnect delays, even

in view of a large percentage of false paths [HPA97,YX10]; 3) inaccuracy in at-speed

test of path delays due to environmental factors such as noise and temperature as

well as the nature of binary-search of at-speed delay test. Detailed analysis of attack

and counter measures based on this technique is still an open question requiring

96

6.2 Timing Camouflage for Netlist Security

further exploration. Potential methods such as machine learning might be applied

to facilitate the attack, but further counter measures, e.g., logic and delay camouflage

at gate level, may be combined with wave-pipelining paths.

6.2.4 Summary

The new timing camouflage technique above focuses on securing circuit netlists

against counterfeiting by invalidating the assumption that the netlist represents the

function of a circuit completely [ZLY+18]. Consequently, the difficulty of attack is in-

creased significantly due to additional test cost and the introduced wave-pipelining

false paths. This technique potentially opens up a new dimension of circuit security

and it is fully compatible with all previous anti-counterfeiting methods.

When constructing wave-pipelining paths into a circuit while maintaining its orig-

inal function, it should be guaranteed that the constructed paths meet the timing

constraints (6.18) and (6.19). To counter potential attack techniques discussed above,

the constructed paths should not be screened out easily by delay test and estima-

tion. Furthermore, the constructed wave-pipelining paths should contain false paths

when considered as single-period clocking paths.

Future work in this direction includes incorporating gate delay camouflage by dop-

ing modification [BRPB14, VCPK17] to decouple gate delays from layout further. In

addition, clock skew scheduling in [LS15, ZLS16c, ZLS16a, ZLL+18] would also be

explored in the same timing dimension to enhance the security of netlists.

97

6 Timing beyond the Traditional Paradigm

98

7 Sequential Design and Timing for

Flow-based Microfluidic Biochips

Microfluidic biochips are revolutionizing the traditional biochemical experiment flow

with their high execution efficiency and miniaturized fluid manipulation [Per08,

VR03, MQ07]. Devices are built in such a chip to execute specific operations, such

as mixing and detection. Fluid samples are transported through microchannels be-

tween devices to carry out the protocol of a bioassay. All these functions are per-

formed at the nanoliter level and controlled by a microcontroller without human

intervention. The efficiency and reliability of such miniaturized and automated

chips endow them with a great potential to improve human life significantly, and

the research to bridge them with real-world applications is key to their success.

7.1 Background of Flow-based Biochips

A flow-based microfluidic biochip is constructed from basic components such as

microchannels and microvalves, henceforth named as channels and valves for sim-

plicity. Flow channels are used to transport reaction samples and reagents between

different locations. Above flow channels, control channels are built to conduct air

pressure to intersections of flow channels and control channels to form valves, as

illustrated in Figure 7.1(a), where three valves are constructed at the intersections.

These channels are built from elastic materials, so that air pressure in a control chan-

nel can block the movement of fluid sample by squeezing the flow channel down-

wards. Conversely, if the pressure in the control channel is released, the fluid sample

99

7 Sequential Design and Timing for Flow-based Microfluidic Biochips

Control channels

Flow channel

(b)

(c)

(a)

Figure 7.1: Components and structure of flow-based biochips. (a) Valves constructed

at intersections of flow/control channels [MQ07]. (b) Mixer [MQ07]. (c)

A part of a biochip containing a mixer surrounded by a transportation

channel network [EiSWd13].

100

7.1 Background of Flow-based Biochips

can resume its movement. Since the channel width has been miniaturized down to

50 um [SHP+04] thanks to the advance of manufacturing technology, a huge num-

ber of channels and valves can already be integrated into a single biochip to perform

large-scale experiments and diagnoses.

With valves as basic controlling components, complex devices can be constructed.

For example, mixers can be built using channels and valves to execute mixing op-

erations, which are very common in biochemical applications. The structure of a

mixer is shown in Figure 7.1(b), where the three valves at the bottom are actuated

alternately by applying and releasing air pressure in the control channels to mix

fluid samples and reagents by peristalsis. After the mixing operation is completed,

the resulting fluid sample can be stored in a dedicated storage unit temporarily.

In a biochip, devices executing specific operations, e.g., mixing and heating, are con-

nected by channels so that intermediate reaction results can be transported between

devices for processing. All these operations and transportation are controlled by a

microcontroller, which issues instructions in a given order to actuate valves to move

fluid samples and execute operations. Figure 7.1(c) shows a mixer (reaction loop)

surrounded by flow channels (green), control channels (yellow and red) and valves

(yellow and red blocks). These channels and valves together form a network similar

to the road transportation system. If fluid channels should cross, valves are built

to form a switch, as shown in Figure 7.1(c). At any moment, only two out of the

four valves should be opened to direct fluid transportation; the other two valves

must be closed to avoid fluid contamination. Consequently, the role of the valves

at the intersection of flow channels is similar to that of the traffic lights in the road

transportation system, while the open/closed states of the valves are controlled by a

microcontroller according to the protocol of the application. The mixer and the chan-

nel network in Figure 7.1(c) are implemented into a biochip of the size comparable

to that of a coin as shown at the upper left corner, demonstrating the miniaturized

integration of microfluidic biochips.

In a biochip, the open/closed states of valves and the transportation of fluid samples

are determined according to the biochemical application executed by the biochip. A

biochemical application, or bioassay henceforth, is usually described with a sequencing

101

7 Sequential Design and Timing for Flow-based Microfluidic Biochips

O5

O9

O8O7

O6

O4O3O1 O2

O10

O11

Mix Mix Mix Mix

Mix

Mix

Filter

Detect

Heat

Heat

Mix

Figure 7.2: Sequencing graph of a bioassay.

graph G = (O, E), such as in Figure 7.2, where O is the set of nodes and E is the set

of edges. A node Oi ∈ O in the sequencing graph represents an operation, whose

type τi and duration ui are specified by the user. An edge eij ∈ E from Oi to Oj in

the sequencing graph specifies that Oi must be executed before Oj and the result of

Oi is the input of Oj. If Oi and Oj are executed by different devices, the required

fluid transportation must be performed by the channel network between devices.

Biochips have a huge advantage over the traditional manual experiment flow, where

operations performed by humans are error-prone and inaccurate. Any inadvertent

mistake in this manual process might ruin a complex experiment that may last for

several days. In a biochip, the volumes of fluid samples and reagents are controlled

accurately and fluid samples are moved to target devices reliably, all of which are

managed by a microcontroller exactly following a given protocol. In addition, the

miniaturized size of biochips makes them extremely portable, so that a complex lab

can be integrated into a single chip and carried conveniently to perform on-the-spot

tests to counter acute disease outbreaks, such as the devastating Ebola virus dis-

ease a few years ago. Furthermore, reactions with fluid samples and reagents of

102

7.1 Background of Flow-based Biochips

tiny volumes take less time to complete than those with large volumes in tubes and

droppers in the traditional experiment flow, so that biochips are also more respon-

sive in dealing with urgent situations. Moreover, biochips save precious reagents by

performing operations at nanoliter level. Such reagents may be exorbitantly expen-

sive. For example, RNase inhibitor, a polyclonal antibody commonly used in reverse

transcription polymerase chain reaction (RT-PCR), cost 600 euros per milliliter in

December 2014 [Qia14].

Owing to their efficiency and cost-effectiveness, microfluidic biochips are reshap-

ing many fields such as pharmacy, biotechnology and health care. In recent years,

genomic bioassay protocols, such as nucleic-acid isolation, DNA purification and

DNA sequencing, have been successfully demonstrated with microfluidic biochips.

In addition, this technology has attracted a lot of commercial attention, e.g., from

Illumina [Ill], a market leader in DNA sequencing. Accordingly, the International

Technology Roadmap for Semiconductors (ITRS) 2015 [Int] has recognized the im-

portance of microfluidic devices as having a rapid growth in the next several years.

Synthesis of microfluidic biochips with applications

In a biochip, operations are executed by a given number of devices with time mul-

tiplexing, described as a schedule. For example, an execution of the bioassay illus-

trated in Figure 7.2 is shown in Figure 7.3(a), where two mixers, one heater, one filter,

and one detector are available. According to the schedule, the layout of a biochip,

including the locations of devices and the transportation channels between them,

can be determined to generate a physical design, as shown in Figure 7.3(b), where

the devices are connected by a channel network controlled by valves.

The synthesis process above demonstrates that the schedule of operations of a bioas-

say determines the overall execution time. In addition, the fluid transportation be-

tween devices affects the structure of the channel network. Consequently, a holistic

design automation flow is required to bridge the low-level components introduced

by the microfluidics community with high-level real-world applications. In each

step of this design automation flow, various design objectives should be optimized

103

7 Sequential Design and Timing for Flow-based Microfluidic Biochips

Filter

Detector

Heater

Mixer1

Mixer2

(b)

(a) Time

O1 O4 O6Mixer1

O5 O8Heater

O9Filter

O11Detector

O2 O3 O7Mixer2 O10

Figure 7.3: Synthesis of microfluidic biochips. (a) Scheduling. (b) Physical design.

to achieve an efficient architecture for the biochip.

The synthesis flow of biochips is similar to the synthesis flow for integrated cir-

cuits [Mic94]. Therefore, researchers in the electronic design automation community

have started to expand into this area in recent years [CFZ10, PAC15]. However,

these research efforts are still in an early stage and many unique characteristics of

microfluidic biochips have still not been considered.

104

7.1 Background of Flow-based Biochips

Flow-based microfluidic biochips: the electronic view

In the microfluidics community, researchers are focusing on developing new tech-

nologies and new structures to build fundamental components and devices, such

as valves and pumps [UCT+00, MGJ10]. Prototype microfluidic biochips are also

built very often to demonstrate the function and performance of new components

and new devices. Another major focus of the microfluidics community is to increase

the integration density of basic components. With the advance in MEMS technol-

ogy, a large number of components such as valves can now be built in a single

biochip [AQ12]. Unfortunately, the abundant available resources have mostly been

left unexplored, because end users cannot use them without a system layer that

presents an interface for user applications, similar to the scenario that an operating

system is missing for computer users. On the other hand, the effort of the microflu-

idics research community has been spread out in exploring even more technologies

for microfluidic biochips, leading to a flourishing but fragmented panorama in the

research on microfluidics.

The status quo of the microfluidics community is similar to the early period of the

semiconductor industry. At that time, researchers were exploring different materials

and device structures to build smaller but faster transistors. Thereafter, CMOS-based

technology became dominant in this industry, while other technologies are employed

only for specific applications. CMOS technology obtained its dominance because of,

first of all, its performance. However, a very important factor which assisted this

dominance is that the semiconductor industry and the electronic design automation

community have found a way to carry out mass production of these devices and

shrink the feature size continuously. In the meantime, the computer community has

developed a successful computing model to present the available resources to end

users and facilitate the development of high-level applications.

Observing the state of the art of microfluidic biochips, researchers from computer

science and electrical engineering have started to bring their own computing models

into microfluidic biochips. For example, the architecture of a microfluidic biochip

from [ATA09] is shown in Figure 7.4. In this architecture, the mixer functions as the

computing unit and intermediate results from the mixer are stored in the dedicated

105

7 Sequential Design and Timing for Flow-based Microfluidic Biochips

Figure 7.4: Computing-based biochip architecture containing a mixer and a dedi-

cated storage unit with eight cells [ATA09].

storage unit. The cells in the storage unit are built from normal channels. At the

ports of this storage unit, valves form multiplexers to direct fluid samples to enter

into or leave from specific cells. This architecture emulates the classical von Neu-

mann computer architecture to build a biochemical computing system from basic

components. However, this simple emulation forsakes many unique characteristics

of flow-based biochips, leading to inefficient execution of bioassays.

Similar to the semiconductor industry, design automation tool chains are also needed

to support the development of microfluidic biochips. In recent years, the electronic

design automation community has tried to migrate the existing design methodolo-

gies for integrated circuits to microfluidic biochip design, covering the phases from

high-level synthesis down to physical design. Although this top-down flow has

served the semiconductor industry in the past 50 years very successfully, fundamen-

tal changes should still be made to deal with specific requirements of biochips and

take advantage of their unique features.

106

7.1 Background of Flow-based Biochips

Flow-based microfluidic biochips: the unique characteristics

In microfluidic biochips, the inputs to an operation are fluid samples. Unlike elec-

trical signals in integrated circuits, these fluid samples have a physical mass. In

executing operations of a bioassay, fluid samples are processed with various oper-

ations, such as mixing, heating and detecting in different devices. The results of

these operations are often fluid samples of different properties, so that inadvertent

contamination between them should be avoided. The intermediate results of these

operations should be stored in the chip temporarily in case they are not used im-

mediately. Consequently, the physical mass and the variety of fluid samples become

the major differences between biochips and integrated circuits, leading to several

unique characteristics in biochip design.

Volume Management: In executing a bioassay, the volumes of fluid samples should be

managed. Assume all the devices executing the bioassay in Figure 7.2 have a capacity

ν. Each of the resulting samples of O1 and O2 thus has a volume ν. When these

two fluid samples reach the device executing O7, half of their volumes should be

disposed of because the device only accepts a volume ν. This volume management

is not stated explicitly in the sequencing graph, but must be dealt with implicitly

according to the volumes of intermediate fluid samples and the capacities of devices.

Storage management: In the schedule in Figure 7.3(a), O2 completes before O5 does.

The intermediate result of O2 should be moved out of Mixer2 and stored somewhere

temporarily so that the mixer can execute O3. In the biochip shown in Figure 7.4,

this storage function is fulfilled by moving the result of O2 to the dedicated storage

unit through a channel. In synthesizing biochips, if operations are not scheduled

properly, many storage requirements may appear, leading to many transportation

channels and a large storage unit. In contrast to a dedicated storage unit as shown

in Figure 7.4, the storage function can actually be implemented using distributed

transportation channels. In fact, a fluid sample can stay anywhere in a channel

in the biochip until it is used by the next operation. This is a significant difference

between biochips and electronic systems, where intermediate data can only be stored

in special memory units, either flip-flops or RAM components. This observation

can be confirmed by the storage cells in the dedicated storage unit in Figure 7.4.

107

7 Sequential Design and Timing for Flow-based Microfluidic Biochips

These cells are built of normal channels but with valves at each end of a channel

to control the store/fetch operations. Instead of forming a monolithic storage unit,

these channels and valves can actually be distributed in the chip so that they can

be used for storage when required, and for transportation otherwise. Consequently,

the efficiency of channels and valves can be improved significantly.

Washing: Unlike electrical signals, fluid samples leave residue in channels after they

travel through them. Before such a channel is reused by another fluid sample, it

should be washed by neutral fluids such as silicon oil. Washing contaminated chan-

nels can be very flexible because several channel segments can be washed simulta-

neously if they form a connected graph while being isolated from the rest of the

biochip that is executing other operations.

Flow-layer and control-layer codesign: In a flow-based biochip, valves are controlled

by air pressure through control channels, e.g., the red channels in Figure 7.4. If all

the valves are controlled independently, the routing of control channels in a com-

plex design becomes very complicated. To solve this problem, control channels of

some valves can be shared if operations can still be executed correctly. This sharing

requires a codesign of the flow layer and the control layer to match the actuation

patterns of valves.

State-of-the-art research on design automation for flow-based biochips

In recent years, design and optimization methods for flow-based microfluidic biochips

have started to appear. For high-level synthesis, the top-down flow in [MPMB12]

generates a biochip architecture and minimizes the execution time of the bioassay,

while the method in [TYLH13] minimizes valve switching activities during archi-

tectural synthesis. For scheduling and binding, the method in [DYHHA13] uses a

maximum clique finding formulation to reduce assay execution time. In addition,

the concept of general modeling of devices is introduced in [LTL+17] to improve

the efficiency of the synthesis process, and special devices such as sieve valves are

considered in [LTL+16]. Furthermore, fault-tolerance is considered during synthesis

in [HGR+17] using a progressive optimization procedure.

108

7.1 Background of Flow-based Biochips

For physical design of biochips, the method in [LLC+14] considers obstacles during

routing and solves the problem using a rectilinear Steiner minimum tree, while both

routability and assay completion time are considered to achieve an efficient flow-

layer design in [SHL16]. The placement of devices and routing of channels in flow-

based biochips are dealt with simultaneously in [WRY+16] using a sequence-pair

representation, and they are formulated as a SAT problem in [GWY+17] to achieve

a close-to-optimal result.

Control logic synthesis is investigated in [MPMH13] to reduce the number of con-

trol pins. The method in [HDHC17] minimizes pressure propagation delay in the

control layer to reduce the response time of valves and synchronize their actua-

tions. Switching patterns of valves are examined in [WZY+17, WXZ+17] to re-

duce the largest number of switching activities in the control logic to avoid po-

tential reliability problems. Furthermore, codesign of flow layer and control layer

is investigated in [YWR+15] to achieve valid routing results on both layers itera-

tively, and length-matching is incorporated in routing control channels in [YHC15]

as well. Moreover, flow-layer, control-layer and valve switching are considered to-

gether in [TLL+16b, TLF+18] to simplify overall valve actuations.

To avoid contamination, washing is implemented in [HHC14b, HHC16] to clean

devices and channel segments after they are used. This method still traces path

sets and block-based partial washing has not been explored. The latter requires a

co-optimization between operation scheduling and washing activities. The volume

management problem in biochips has been explored in [ATV+08] and [MRB+14] for

the specific bioassay sample preparation, but the optimization of volume manage-

ment for general bioassays and the interaction of this task with fluid transportation

for normal operations have not been taken into account.

To deal with manufacturing defects, fault models and an ATPG-based test strategy

for flow-based biochips are proposed in [HHC13, HYHC14]. Design-for-testability

and defect diagnosis are further addressed in [HHC14a, HBC15].

On system level, the concept of distributed channel storage in flow-based biochips is

explored in [TLSH15,LLY+17]. A more general architecture of biochips from [FM11],

where valves instead of dedicated devices are built regularly and connected with

109

7 Sequential Design and Timing for Flow-based Microfluidic Biochips

short channels to implement Programmable Microfluidic Devices (PMDs) or Fully

Programmable Valve Arrays (FPVAs), has been explored in [TLHS15, TLL+16a] to

provide better reliability and flexibility in executing bioassays. Though dynamic

flow connections can be constructed on these chips relatively easily, channel cross-

ing needs to be avoided [LLH18] and valve control sequences need to be arranged

carefully [GKHW18]. A test generation for this new architecture is also proposed

in [LLB+17].

7.2 Design Automation for Flow-based Biochips of Large

Integration

Similar to the industry of integrated circuits, the research in the microfluidics field

has also led to a rapid increase of the integration of devices in a biochip. Already

in 2008, a biochip array with 25K valves was accomplished [Per08], and recent ad-

vances in manufacturing technologies have achieved a valve density of 1 million per

cm2 [AQ12]. An integration of this scale can potentially enable the long-aspired

exhaustive diagnoses in identifying the illness of a patient by testing pathological

samples with thousands of reagents simultaneously. This breakthrough would not

only reduce the inaccuracy in medical diagnoses, where individual expertise and

experience of doctors play an important role, but also change the current guess-

then-test model of medical treatment. In addition, such exhaustive diagnoses can be

performed in small health-care centers routinely, due to the tremendously miniatur-

ized chip size and lowered cost. With this exhaustive diagnosis model, illnesses can

be detected at a very early stage and treatment cost can be reduced significantly as

well.

7.2.1 Sequential Design for Flow-based Biochips

The state-of-the-art research on flow-based biochips exhibits some characteristics

inherited from the research field electronic design automation for integrated circuits.

110

7.2 Design Automation for Flow-based Biochips of Large Integration

Operations in a bioassay are assigned to devices. These devices are distributed inside

a given area and connected with channels. The overall objectives of optimization

usually include the minimization of the completion time of the bioassay and the

reduction of resource usage to achieve a smaller chip area or simpler peripheral

circuits.

When dealing with biochips with a large integration, the scalability of existing prob-

lem formulations needs to be reexamined. For example, many existing methods use

the completion time of a bioassay as one of the major optimization objectives. The

durations of operations executed by devices are modeled individually and the over-

all performance of a biochip in executing a bioassay is determined by the longest

chain of operations after scheduling and binding. When the numbers of operations,

available devices and channels become very large, existing methods may not be able

to reach the expected optimal solution and thus need to return non-optimal results

instead. These results may deviate far from the ideal solution. As the scale of the

whole system grows further, existing monolithic formulations might face the chal-

lenge that even no valid solution could be found.

To deal with the scalability problem, the operations in a sequencing graph can be

partitioned into subgroups according to the relation between operations. For exam-

ple, operations between which much fluid transportation exists should be grouped

together. Thereafter, the subgroups are considered as basic modules and mapped to

the biochip as a floorplan. After this mapping, each subgroup is optimized individ-

ually to improve the execution efficiency of the operations. The basic concept of this

partitioning and synthesis is illustrated in Figure 7.5.

The objectives of this partitioning include: 1) operations in the sequencing graph

should be partitioned in a way to reduce the communication between function sub-

groups; 2) the size of each subgroup should be kept moderate to reduce the com-

plexity of synthesis; 3) the floorplan of the biochip should guarantee that subgroups

requiring fluid transportation are located in close proximity; 4) the floorplan should

consider special devices such as sensors and heaters.

During partitioning, the reliability of the biochip should also be considered. For

example, during mixing the three valves in a mixer switch much more often to

111

7 Sequential Design and Timing for Flow-based Microfluidic Biochips

O5

O9

O8O7

O6

O4O3O1 O2

O10

O11

Mix Mix Mix Mix

Mix

Mix

Filter

Detect

Heat

Heat

Mix

group 1 group 2

group 3

group 1 group 2

group 3

Figure 7.5: Hierarchical/Sequential design of flow-based biochips.

112

7.2 Design Automation for Flow-based Biochips of Large Integration

drive the circular flow inside the mixer than the other valves that only control fluid

transportation. Consequently, these valves wear out more quickly than the others. To

maintain a reliable function of the biochip, operations should be distributed evenly

among devices of the same type to lower the worst-case wearout. This reliability

issue should be taken into account as early as during partitioning to balance the

mixing operations in the subgroups so that the overall reliability of the biochip can

be improved.

The partitioning strategy described above is similar to sequential design in digital

circuits, where combinational gates are the components that implement the func-

tions, while flip-flops are majorly used as storage components to cache interme-

diate results. By splitting the whole combinational network of a design with flip-

flops, design automation tools can thus optimize submodules individually. These

submodules correspond to the subgroups of operations in a bioassay after parti-

tioning. In a biochip, the caching function can be easily implemented by chan-

nels [TLSH15, LLY+17]. To allow these submodules to be optimized independently,

the function of a submodule should not depend on the order of fluid samples ar-

riving at its input. If some intermediate results arrive earlier, they must stay in the

caching channels and wait for the starting time of the submodule.

With this concept, a biochip essentially becomes a sequential system, emulating se-

quential design of digital circuits. For each submodule in a biochip, existing design

and optimization methods can still be applied. The objective of the overall design

and optimization thus becomes to guarantee that the results reach the input of sub-

modules in time. In fact, it is not beneficial to produce a part of the intermediate

results as early as possible. Instead, the optimal case happens when all the interme-

diate results arrive at the interface between submodules simultaneously. Therefore,

the time of executing operation paths in a subgroup after partitioning should not

vary much, similar to the critical path wall in a digital design. With this synchro-

nization at the interface between submodules, the executions of submodules are thus

decoupled.

The sequential design style is also flexible when facing process variations, which

have become one of the major challenges of digital design in the nanometer era.

113

7 Sequential Design and Timing for Flow-based Microfluidic Biochips

As the manufacturing technology for biochips advances, process variations may

also come into play potentially, leading to deviation of execution time in different

biochips after manufacturing. In addition, the stochastic nature of many biochemical

operations also leads to variations in their finishing times. With the caching chan-

nels between modules, the execution of submodules can be aligned each time when

intermediate results pass the interface between them, so that the correct function of

the biochip can still be maintained.

When a biochip is viewed as a sequential design, its throughput can be also be

optimized. Besides reducing its completion time, which corresponds to latency for

a digital circuit, the volume of valid output produced in a given time unit can also

be incorporated into the formulation of synthesis and optimized accordingly. This

performance is important for applications such as sample preparation or in special

scenarios, e.g., in large biochemical labs or medical centers.

7.2.2 Biochip Architectures for Sequential Design

When a bioassay is partitioned into submodules, each subgroup of operations needs

to be optimized individually. In each subgroup, the number of operations and their

types may differ. The operations in a subgroup are executed by devices built inside

an area on the biochip. These devices are manufactured directly, like a full-custom

design in the IC industry. This style, however, sacrifices design flexibility, since a

subgroup of operations after partitioning are assigned to a given area in the biochip

strictly. To reduce area cost, it may still be desirable to reuse some area of the biochip

to execute different subgroups of operations, essentially creating a mixture of styles

of hard-wired circuits and reconfigurable logic like FPGAs.

In order to allow devices built in an area of a biochip to process different oper-

ation groups, these devices need to be reconfigurable. This reconfiguration can

partially be implemented by Programmable Microfluidic Devices (PMDs) or Fully

Programmable Valve Arrays (FPVAs) [MQ07, FM11].

A part of the large valve array in [FM11] is shown in Figure 7.6(a) to demonstrate

the architecture of FPVA. In this architecture, valves (solid blocks) are arranged in

114

7.2 Design Automation for Flow-based Biochips of Large Integration

(a) valves

control
channelchannel

flow

(c)(b)

valves channel

: closed valve/wall

: pump valve

(d)

Figure 7.6: Fully programmable valve array (FPVA). (a) Architecture [FM11]. (b)/(c)

A 4×2/2×4 dynamic mixer. (d) Dynamic mixers of different orientations

sharing the same area.

115

7 Sequential Design and Timing for Flow-based Microfluidic Biochips

a regular structure along horizontal and vertical flow channels (light color). These

valves are controlled by air pressure sources through control channels (narrow chan-

nels). Transportation paths can be formed by opening and closing specific valves on

the array, respectively. These channels also function as temporary storage caches.

Besides transportation channels, mixers can also be constructed on the valve array

directly, taking advantage of the flexibility and reconfigurability of this architecture.

For example, a 4×2 mixer and a 2×4 mixer can be constructed as in Figure 7.6(b)

and 7.6(c), respectively. In such a dynamic mixer, the eight valves along the enclosed

channel function as peristalsis valves, which switch in a given pattern to drive the

fluid samples and reagents inside the channel for mixing, similar to the three valves

in Figure 7.1(b). Compared with the traditional mixer in Figure 7.1(b), these dynamic

mixers have a different shape and more peristalsis valves, eight in each case, to form

a strong circular mixing flow. Moreover, the two mixers in Figure 7.6(b) and 7.6(c)

can share the same area on the biochip as shown in Figure 7.6(d), provided that they

are not used at the same time.

In short, a given area of the valve array can execute various functions such as mix-

ing and flow transportation, as well as detection if the corresponding sensors are

included in the area. This flexibility enables an independency of the partitioned

submodules to low-level detail of chip realization, analogous to the case that all

logic gates are built from an array of transistors in an integrated circuit.

7.2.3 Timing and Flow-based Biochips

Due to the advance of manufacturing technology, more resources are being inte-

grated into a biochip rapidly. Accordingly, the working efficiency of individual

devices may not be the first priority of design and optimization anymore. Instead,

to use up the available resources to implement a highly efficient system with a large

throughput is becoming another objective, similar to the trend manifested clearly in

the IC industry.

To achieve this goal, it is already affordable to trade resources for design simplic-

ity, and sequential design above a general architecture such as valve array may be a

116

7.2 Design Automation for Flow-based Biochips of Large Integration

direction worth exploration. In this design style, operations in a sequencing graph

can be treated as logic blocks. Since their functions, except for special devices such

as heaters and filters, need not to be considered, the synthesis process thus becomes

timing-driven, in which the original large-scale sequential graph is partitioned so

that the finishing times of submodules, determined by the longest paths in the sub-

groups of operations, are well-balanced.

This timing interpretation allows more techniques from the circuit design domain to

be migrated onto biochips. Since the channels at the interface between submodules

function as flip-flops and the virtual devices between them can be considered as

combinational logic blocks, the concepts such as aging analysis, monitoring and

online-tuning can be applied similarly. Process variations can also be dealt with at

path level instead logic gate level so that the pessimism in the worst-case design can

be reduced.

In summary, the ever-increasing integration of biochips provides a potential to switch

from a semi-analog design flow into a digital design flow. To exploit extreme perfor-

mance from all devices in a biochip may be impractical anymore, and to trade the

available abundant resources for throughput, robustness and design simplicity may

be a potential way to deal with this ever-increasing integration. To pursue this direc-

tion or not still depends on the future development in the microfluidics field and its

collaboration with the research field of electronic design automation for integrated

circuits.

117

7 Sequential Design and Timing for Flow-based Microfluidic Biochips

118

8 Conclusion

Already for several decades, it has been taken for granted that combinational logic

blocks in a circuit perform computation, and sequential components, latches and

flip-flops, are used to synchronize intermediate computation results. When pro-

cess variations became prominent around 2000, this traditional timing model was

extended by modeling the delays of logic gates, sequential components and inter-

connects as random variables. The essential definition of timing was, however, not

modified. In timing analysis with process variations, only the statistical arrival times

are propagated inside combinational blocks to calculate the latest and the earliest ar-

rival times at flip-flops to verify setup time and hold time constraints. Since the

delays and arrival times are random variables, timing constraints can only be met

with a given probability. Accordingly, yield optimization of digital circuits has also

become a popular research topic. With the advance of manufacturing technology,

devices are becoming ever smaller. Consequently, aging effects make circuits slower

after being stressed. These effects can also be modeled and incorporated into timing

analysis and optimization to improve circuit reliability.

Statistical timing analysis and aging analysis, however, still play within the tradi-

tional framework of timing analysis. In static timing analysis, delays of logic gates

and interconnects are constants representing the worst-/best-case corners. When

process variations and aging are considered, these delays become correlated ran-

dom variables. The original framework of static timing analysis, however, is still

reserved, where statistical versions of sum, maximum and minimum computations

are performed during timing propagation.

In the traditional timing framework, the performance of a circuit is normally con-

strained by the critical paths between flip-flops. Statistical timing optimization con-

119

8 Conclusion

sidering process variations and aging still respects the boundary of flip-flops gen-

erally and does not revise the fundamental single-period clocking scheme. After

manufacturing, process variations may lead to chips in which the critical paths are

neighbors of combinational paths with small delays. Since these paths are sepa-

rated by flip-flops, the extra timing budget of the shorter paths cannot be used by

the critical paths. Enlightened by this observation, post-silicon clock skew tuning

moves clock edges according to the delays of paths after process variations or aging

is experienced. This tuning technique essentially allows a better timing balance be-

tween neighboring sequential stages, but its effect is limited by the available tuning

range of clock skews, the area taken by the tuning components and the cost of post-

silicon test for tuning configuration. In addition, flip-flops still separate consecutive

combinational paths even after post-silicon tuning. Consequently, their clock-to-q

delays still contribute to the delays of critical paths and their setup times reduce

clock frequency as well.

Considering the interdependency between setup time, hold time and clock-to-q de-

lay of flip-flops is an interesting approach to relax the clear-cut separation between

combinational logic blocks by flip-flops, since the timing budgets between sequen-

tial stages are balanced automatically without any cost of tuning. The potential of

this technique is, unfortunately, limited, since the overall delay introduced into the

circuit by flip-flops becomes even larger when this interdependency takes effect.

As the manufacturing technology advances into 10 nm node or below, variations in

manufacturing and fragility of devices call for a new definition of timing. One of the

possible expansions of the traditional timing framework is to reexamine the function

of sequential components such as flip-flops. Since a flip-flop can only delay a sig-

nal instead of accelerating it, its function in the traditional digital design is actually

to delay fast signals. Unfortunately, it also slows those signals traveling through

critical paths. According to this observation, it might be possible to develop a new

framework to delay fast signals at locations that are not on the critical paths. Since

flip-flops on the original critical paths could be removed, forming wave-pipelining

essentially, the corresponding clock-to-q delays and setup time requirements are

also not needed anymore, leading to a further improvement of circuit performance

120

beyond the limit of the traditional timing definition. Since there are no flip-flops

between sequential stages of critical paths, this design style also tolerates process

variations and aging automatically by allowing a delay compensation between se-

quential stages after manufacturing.

New timing schemes may also have the potential to benefit non-traditional fields

such as hardware security. When flip-flops are removed from some paths in a digital

design, the netlist of a circuit does not contain all the design information anymore.

Even if an attacker recovers the netlist of a design by reverse-engineering, the lo-

cations of wave-pipelining still need to be identified. Without this information the

traditional toolchains of digital design can only treat these paths as clocked by a

single clock period. Consequently, the synchronization between sequential stages is

lost and the counterfeit circuits cannot work correctly.

The IC industry has established a successful model in the past 40 years, where the

down-scaling of transistors provides a huge amount of resources to build high-

performance computing systems. As the huge number of transistors available to

designers become nearly unmanageable, the focus of design methodologies has

shifted from exploiting the potential performance of transistors to the extreme limit

to trading the performance of individual transistors for design manageability. Con-

sequently, the design style has evolved quickly from the early semi-analog design

to digital design. This evolution may be followed by other fields such as microflu-

idic biochips, where the basic components are becoming smaller and the integration

level is increasing rapidly. Gradually, biochips of large integration may also face the

challenge of managing a huge amount of resources, and the sequential computing

model of digital circuits may indicate a potential direction.

Viewed generally, timing is only one of the many ways to manage computing re-

sources to keep design complexity under control. Essentially, it is similar to design

abstraction from transistors to designing with Boolean logic and further up to hi-

erarchical design. In each layer of this abstraction, only the necessary information

from the lower level is kept. The overall design, however, may not be strictly op-

timal due to this information separation and abstraction. In the traditional timing

definition, design information is split into different spheres. Since logic functions

121

8 Conclusion

are not considered in the traditional timing model, analysis and optimization effort

can be reduced significantly. As expected, this split sacrifices circuit performance

potentially, since critical paths might not always be actuated during computing, but

the clock period is still computed with respect to them. With this perspective, more

flexible timing schemes might be introduced, where the barriers of sequential com-

ponents can be managed with more freedom to achieve efficient and robust designs.

122

Bibliography

[ABZ+02] A. Agarwal, D. Blaauw, V. Zolotov, S. Sundareswaran, M. Zhao,

K. Gala, and R. Panda. Path-based statistical timing analysis consid-

ering inter- and intra-die correlations. In ACM/IEEE Int. Workshop on

Timing Issues in the Specification and Synthesis of Digital Systems (TAU),

pages 16–21, 2002.

[ABZ03a] A. Agarwal, D. Blaauw, and V. Zolotov. Statistical timing analysis for

intra-die process variations with spatial correlations. In Proc. Int. Conf.

Comput.-Aided Des. (ICCAD), pages 900–907, 2003.

[ABZ+03b] A. Agarwal, D. Blaauw, V. Zolotov, S. Sundareswaran, M. Zhao,

K. Gala, and R. Panda. Statistical delay computation considering spa-

tial correlation. In Proc. Asia and South Pacific Des. Autom. Conf. (ASP-

DAC), pages 271–276, 2003.

[AKGH16] H. Amrouch, B. Khaleghi, A. Gerstlauer, and J. Henkel. Reliability-

aware design to suppress aging. In Proc. Design Autom. Conf. (DAC),

pages 12:1–12:6, 2016.

[And05] Y. Ando. Integrated circuits having post-silicon adjustment control. In

US Patent 6,957,163, 2005.

[App] Apple A10. https://en.wikipedia.org/wiki/Apple_A10.

[AQ12] I. E. Araci and S. R. Quake. Microfluidic very large scale integration

(mVLSI) with integrated micromechanical valves. Lab Chip, 12:2803–

2806, 2012.

123

Bibliography

[ATA09] N. Amin, W. Thies, and S. P. Amarasinghe. Computer-aided design for

microfluidic chips based on multilayer soft lithography. In Proc. Int.

Conf. Comput. Des. (ICCD), pages 2–9, 2009.

[ATV+08] A. M. Amin, M. Thottethodi, T. N. Vijaykumar, S. Wereley, and S. C.

Jacobson. Automatic volume management for programmable microflu-

idics. In Proc. Conf. Programming Language Design and Implementation,

pages 56–67, 2008.

[BBK89] F. Brglez, D. Bryan, and K. Kozminski. Combinational profiles of se-

quential benchmark circuits. In Proc. Int. Symp. Circuits and Syst. (IS-

CAS), pages 1929–1934, 1989.

[BCH+15] A. Benhassain, F. Cacho, V. Huard, M. Saliva, L. Anghel,

C. Parthasarathy, A. Jain, and F. Giner. Timing in-situ monitors: Im-

plementation strategy and applications results. In Proc. Custom Integr.

Circuits Conf. (CICC), pages 1–4, 2015.

[BCKL98] W. P. Burleson, M. Ciesielski, F. Klass, and W. Liu. Wave-pipelining: A

tutorial and research survey. IEEE Trans. VLSI Syst., 6(3):464–474, 1998.

[BCSS08] D. Blaauw, K. Chopra, A. Srivastava, and L. Scheffer. Statistical timing

analysis: From basic principles to state of the art. IEEE Trans. Comput.-

Aided Design Integr. Circuits Syst., 27(4):589–607, 2008.

[BM09] A. H. Baba and S. Mitra. Testing for transistor aging. In Proc. VLSI Test

Symp. (VTS), pages 215–220, 2009.

[BRPB14] G. T. Becker, F. Regazzoni, C. Paar, and W. P. Burleson. Stealthy dopant-

level hardware trojans: Extended version. J. Cryptographic Engineering,

4(1):19–31, 2014.

[CCW98] C.-P. Chen, C. C. Chu, and D. Wong. Fast and exact simultaneous gate

and wire sizing by lagrangian relaxation. In Proc. Design Autom. Conf.

(DAC), pages 617–624, 1998.

[CFZ10] K. Chakrabarty, R. B. Fair, and J. Zeng. Design tools for digital

microfluidic biochips: Toward functional diversification and more

124

Bibliography

than moore. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,

29(7):1001–1017, 2010.

[CLS12] N. Chen, B. Li, and U. Schlichtmann. Iterative timing analysis based on

nonlinear and interdependent flipflop modelling. IET Circuits, Devices

& Systems, 6(5):330–337, 2012.

[CS03] H. Chang and S. S. Sapatnekar. Statistical timing analysis considering

spatial correlations using a single PERT-like traversal. In Proc. Int. Conf.

Comput.-Aided Des. (ICCAD), pages 621–625, 2003.

[CWT11] J. Chen, S. Wang, and N. B. M. Tehranipoor. A framework for fast and

accurate critical-reliability paths identification. In IEEE North Atlantic

test workshop (NATW), 2011.

[CZNV05] H. Chang, V. Zolotov, S. Narayan, and C. Visweswariah. Parameterized

block-based statistical timing analysis with non-Gaussian parameters,

nonlinear delay functions. In Proc. Design Autom. Conf. (DAC), pages

71–76, 2005.

[CZV+08] R. Chen, L. Zhang, C. Visweswariah, J. Xiong, and V. Zolotov. Static

timing: Back to our roots. In Proc. Asia and South Pacific Des. Autom.

Conf. (ASP-DAC), pages 310–315, 2008.

[DBN+14] S. Dupuis, P.-S. Ba, G. D. Natale, M.-L. Flottes, and B. Rouzeyre. A

novel hardware logic encryption technique for thwarting illegal over-

production and hardware trojans. In Int. On-Line Testing Symp. (IOLTS),

pages 49–54, 2014.

[DGY+74] R. H. Dennard, F. H. Gaensslen, H.-N. Yu, V. L. Rideout, E. Bassous,

and A. R. Leblanc. Design of ion-implanted mosfets with very small

physical dimensions. IEEE J. Solid-State Circuits, 9(5):256–268, 1974.

[DMS+02] A. Daga, L. Mize, S. Sripada, C. Wolff, and Q. Wu. Automated timing

model generation. In Proc. Design Autom. Conf. (DAC), pages 146–151,

2002.

125

Bibliography

[DRS+06] S. Das, D. Roberts, L. Seokwoo, S. Pant, D. Blaauw, T. Austin, K. Flaut-

ner, and T. Mudge. A self-tuning DVS processor using delay-error de-

tection and correction. IEEE J. Solid-State Circuits, 41(4):792–804, 2006.

[DYG89] D. H.-C. Du, S. H. Yen, and S. Ghanta. On the general false path

problem in timing analysis. In Proc. Design Autom. Conf. (DAC), pages

555–560, 1989.

[DYHHA13] T. A. Dinh, S. Yamashita, T.-Y. Ho, and Y. Hara-Azumi. A clique-

based approach to find binding and scheduling result in flow-based

microfluidic biochips. In Proc. Asia and South Pacific Des. Autom. Conf.

(ASP-DAC), pages 199–204, 2013.

[EiSWd13] K. S. Elvira, X. C. i Solvas, R. C. R. Wootton, and A. J. deMello. The

past, present and potential for microfluidic reactor technology in chem-

ical synthesis. Nature Chemistry, (5):905–915, 2013.

[ENH09] T. Enami, S. Ninomiya, and M. Hashimoto. Statistical timing analysis

considering spatially and temporally correlated dynamic power supply

noise. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., 28(4):541–

553, 2009.

[ESN+10] T. Enami, K. Shinkai, S. Ninomiya, S. Abe, and M. Hashimoto. Sta-

tistical timing analysis considering clock jitter and skew due to power

supply noise and process variation. IEICE Trans. on Fundamentals, E93-

A(12):2399–2408, 2010.

[FHMO12] H. Fuketa, M. Hashimoto, Y. Mitsuyama, and T. Onoye. Adaptive per-

formance compensation with in-situ timing error predictive sensors for

subthreshold circuits. IEEE Trans. VLSI Syst., 20(2):333–343, 2012.

[FLZ07] Z. Feng, P. Li, and Y. Zhan. Fast second-order statistical static timing

analysis using parameter dimension reduction. In Proc. Design Autom.

Conf. (DAC), pages 244–249, 2007.

[FM11] L. M. Fidalgo and S. J. Maerkl. A software-programmable microfluidic

device for automated biology. Lab Chip, 11:1612–1619, 2011.

126

Bibliography

[GHD+14] U. Guin, K. Huang, D. DiMase, J. M. Carulli, M. Tehranipoor, and

Y. Makris. Counterfeit integrated circuits: A rising threat in the global

semiconductor supply chain. Proc. IEEE, 102(8):1207–1228, 2014.

[GKHW18] A. Grimmer, B. Klepic, T.-Y. Ho, and R. Wille. Sound valve-control for

programmable microfluidic devices. In Proc. Asia and South Pacific Des.

Autom. Conf. (ASP-DAC), 2018.

[GLL+15] H. Geng, J. Liu, P.-W. Luo, L.-C. Cheng, S. L. Grant, and Y. Shi. Selec-

tive body biasing for post-silicon tuning of sub-threshold designs: An

adaptive filtering approach. IEEE Trans. Comput.-Aided Design Integr.

Circuits Syst., 34(5):713–725, 2015.

[GVTG08] A. Goel, S. Vrudhula, F. Taraporevala, and P. Ghanta. A methodology

for characterization of large macro cells and IP blocks considering pro-

cess variations. In Proc. Int. Symp. Quality Electron. Des. (ISQED), pages

200–206, 2008.

[GVTG09] A. Goel, S. Vrudhula, F. Taraporevala, and P. Ghanta. Statistical timing

models for large macro cells and IP blocks considering process varia-

tions. IEEE Trans. on Semiconductor Manufacturing, 22(1):3–11, 2009.

[GWY+17] A. Grimmer, Q. Wang, H. Yao, T.-Y. Ho, and R. Wille. Close-to-optimal

placement and routing for continuous-flow microfluidic biochips. In

Proc. Asia and South Pacific Des. Autom. Conf. (ASP-DAC), pages 530–

535, 2017.

[HAP08] S. Hatami, H. Abrishami, and M. Pedram. Statistical timing analysis

of flip-flops considering codependent setup and hold times. In Proc.

Great Lakes Symp. VLSI (GLSVLSI), pages 101–106, 2008.

[HBC15] K. Hu, B. B. Bhattacharya, and K. Chakrabarty. Fault diagnosis for

flow-based microfluidic biochips. In Proc. VLSI Test Symp. (VTS), pages

1–6, 2015.

[HDHC17] K. Hu, T. A. Dinh, T.-Y. Ho, and K. Chakrabarty. Control-layer rout-

ing and control-pin minimization for flow-based microfluidic biochips.

IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., 36(1):55–68, 2017.

127

Bibliography

[HGR+17] W.-L. Huang, A. Gupta, S. Roy, T.-Y. Ho, and P. Pop. Fast architecture-

level synthesis of fault-tolerant flow-based microfluidic biochips. In

Proc. Design, Autom., and Test Europe Conf. (DATE), pages 1671–1676,

2017.

[HHC13] K. Hu, T.-Y. Ho, and K. Chakrabarty. Testing of flow-based microfluidic

biochips. In Proc. VLSI Test Symp. (VTS), pages 1–6, 2013.

[HHC14a] K. Hu, T.-Y. Ho, and K. Chakrabarty. Test generation and design-for-

testability for flow-based mVLSI microfluidic biochips. In Proc. VLSI

Test Symp. (VTS), pages 97–102, 2014.

[HHC14b] K. Hu, T.-Y. Ho, and K. Chakrabarty. Wash optimization for cross-

contamination removal in flow-based microfluidic biochips. In Proc.

Asia and South Pacific Des. Autom. Conf. (ASP-DAC), pages 244–249,

2014.

[HHC16] K. Hu, T.-Y. Ho, and K. Chakrabarty. Wash optimization and analysis

for cross-contamination removal under physical constraints in flow-

based microfluidic biochips. IEEE Trans. on CAD of Integrated Circuits

and Systems, 35(4):559–572, 2016.

[HKK+12] J. Hu, A. B. Kahng, S. Kang, M.-C. Kim, and I. L. Markov. Sensitivity-

guided metaheuristics for accurate discrete gate sizing. In Proc. Int.

Conf. Comput.-Aided Des. (ICCAD), pages 233–239, 2012.

[HKO01] A. Hyvärinen, J. Karhunen, and E. Oja. Independent component analysis.

Wiley & Sons, 2001.

[HLCG95] H.-Y. Hsieh, W. Liu, R. K. Cavin, and C. T. Gray. Concurrent timing

optimization of latch-based digital systems. In Proc. Int. Conf. Comput.

Des. (ICCD), pages 680–685, 1995.

[HMB08] A. P. Hurst, A. Mishchenko, and R. K. Brayton. Scalable min-register

retiming under timing and initializability constraints. In Proc. Design

Autom. Conf. (DAC), pages 534–539, 2008.

128

Bibliography

[HPA97] K. Heragu, J. H. Patel, and V. D. Agrawal. Fast identification of

untestable delay faults using implications. In Proc. Int. Conf. Comput.-

Aided Des. (ICCAD), pages 642–647, 1997.

[HYHC14] K. Hu, F. Yu, T.-Y. Ho, and K. Chakrabarty. Testing of flow-based mi-

crofluidic biochips: Fault modeling, test generation, and experimental

demonstration. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,

33(10):1463–1475, 2014.

[Ill] Illumina. http://www.illumina.com/.

[IMHO15] S. Iizuka, Y. Masuda, M. Hashimoto, and T. Onoye. Stochastic timing

error rate estimation under process and temporal variations. In Proc.

Int. Test Conf. (ITC), pages 1–10, 2015.

[IMK+13] S. Iizuka, M. Mizuno, D. Kuroda, M. Hashimoto, and T. Onoye.

Stochastic error rate estimation for adaptive speed control with field

delay testing. In Proc. Int. Conf. Comput.-Aided Des. (ICCAD), pages

1–10, 2013.

[Int] International Technology Roadmap for Semiconductors.

http://www.itrs2.net/.

[JB05] A. Jain and D. Blaauw. Slack borrowing in flip-flop based sequential

circuits. In Proc. Great Lakes Symp. VLSI (GLSVLSI), pages 96–101, 2005.

[JC93] D. A. Joy and M. J. Ciesielski. Clock period minimization with wave

pipelining. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,

12(4):461–472, 1993.

[Jol02] I. Jolliffe. Principal Component Analysis. Springer, 2002.

[KBW+14] V. B. Kleeberger, M. Barke, C. Werner, D. Schmitt-Landsiedel, and

U. Schlichtmann. A compact model for NBTI degradation and recov-

ery under use-profile variations and its application to aging analysis

of digital integrated circuits. Microelectronics Reliability, 54(6–7):1083–

1089, 2014.

129

Bibliography

[KCL+17] J. Kao, C. Chao, C. Lin, N. Katta, K. Yang, and C. Wang. Post-silicon

tuning in voltage control of semiconductor integrated circuits. In US

Patent 9,564,896, 2017.

[KK17] J. Kim and T. Kim. Adjustable delay buffer allocation under useful

clock skew scheduling. IEEE Trans. Comput.-Aided Design Integr. Circuits

Syst., 36(4):641–654, 2017.

[KKS06] S. V. Kumar, C. H. Kim, and S. S. Sapatnekar. An analytical model for

negative bias temperature instability. In Proc. Int. Conf. Comput.-Aided

Des. (ICCAD), pages 493–496, 2006.

[KKS07] S. V. Kumar, C. H. Kim, and S. S. Sapatnekar. NBTI-aware synthesis

of digital circuits. In Proc. Design Autom. Conf. (DAC), pages 370–375,

2007.

[KL14] A. B. Kahng and H. Lee. Timing margin recovery with flexible flip-flop

timing model. In Proc. Int. Symp. Quality Electron. Des. (ISQED), pages

496–503, 2014.

[KLS+15] R. Kumar, B. Li, Y. Shen, U. Schlichtmann, and J. Hu. Timing verifica-

tion for adaptive integrated circuits. In Proc. Design, Autom., and Test

Europe Conf. (DATE), pages 1587–1590, 2015.

[KM97] N. Kobayashi and S. Malik. Delay abstraction in combinational

logic circuits. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,

16(10):1205–1212, 1997.

[KME+16] N. Koppaetzky, M. Metzdorf, R. Eilers, D. Helms, and W. Nebel. RT

level timing modeling for aging prediction. In Proc. Design, Autom., and

Test Europe Conf. (DATE), pages 297–300, 2016.

[KS07] V. Khandelwal and A. Srivastava. Variability-driven formulation for

simultaneous gate sizing and post-silicon tunability allocation. In Proc.

Int. Symp. Phys. Des. (ISPD), pages 11–18, 2007.

[KS15] S. Karapetyan and U. Schlichtmann. Integrating aging aware timing

130

Bibliography

analysis into a commercial STA tool. In Int. Symp. on VLSI Des., Aut.

and Test (VLSI-DAT), pages 1–4, 2015.

[KSB06] S. H. Kulkarni, D. Sylvester, and D. Blaauw. A statistical framework

for post-silicon tuning through body bias clustering. In Proc. Int. Conf.

Comput.-Aided Des. (ICCAD), pages 39–46, 2006.

[LBS10] D. Lorenz, M. Barke, and U. Schlichtmann. Aging analysis at gate and

macro cell level. In Proc. Int. Conf. Comput.-Aided Des. (ICCAD), pages

77–84, 2010.

[LBS12] D. Lorenz, M. Barke, and U. Schlichtmann. Efficiently analyzing the

impact of aging effects on large integrated circuits. Microelectronics

Reliability, 52(8):1546–1552, 2012.

[LBS14] D. Lorenz, M. Barke, and Schlichtmann. Monitoring of aging in in-

tegrated circuits by identifying possible critical paths. Microelectronics

Reliability, 54(6-7):1075–1082, 2014.

[LCS09a] B. Li, N. Chen, and U. Schlichtmann. Timing model extraction for

sequential circuits considering process variations. In Proc. Int. Conf.

Comput.-Aided Des. (ICCAD), pages 336–343, 2009.

[LCS+09b] B. Li, N. Chen, M. Schmidt, W. Schneider, and U. Schlichtmann. On

hierarchical statistical static timing analysis. In Proc. Design, Autom.,

and Test Europe Conf. (DATE), pages 1320–1325, 2009.

[LCS10] B. Li, N. Chen, and U. Schlichtmann. Fast statistical timing analysis of

latch-controlled circuits for arbitrary clock periods. In Proc. Int. Conf.

Comput.-Aided Des. (ICCAD), pages 524–531, 2010.

[LCS11] B. Li, N. Chen, and U. Schlichtmann. Fast statistical timing analysis

for circuits with post-silicon tunable clock buffers. In Proc. Int. Conf.

Comput.-Aided Des. (ICCAD), pages 111–117, 2011.

[LCS12] B. Li, N. Chen, and U. Schlichtmann. Statistical timing analysis

for latch-controlled circuits with reduced iterations and graph trans-

131

Bibliography

formations. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,

31(11):1670–1683, 2012.

[LCXS13] B. Li, N. Chen, Y. Xu, and U. Schlichtmann. On timing model extraction

and hierarchical statistical timing analysis. IEEE Trans. Comput.-Aided

Design Integr. Circuits Syst., 32(3):367–380, 2013.

[LGS09] D. Lorenz, G. Georgakos, and U. Schlichtmann. Aging analysis of

circuit timing considering NBTI and HCI. In Int. On-Line Testing Symp.

(IOLTS), pages 3–8, 2009.

[LKS+08] B. Li, C. Knoth, W. Schneider, M. Schmidt, and U. Schlichtmann. Static

timing model extraction for combinational circuits. In Int. Workshop

on Power and Timing Modeling, Optimization and Simulation (PATMOS),

pages 156–166, 2008.

[LLB+17] C. Liu, B. Li, B. B. Bhattacharya, K. Chakrabarty, T.-Y. Ho, and

U. Schlichtmann. Testing microfluidic fully programmable valve ar-

rays (FPVAs). In Proc. Design, Autom., and Test Europe Conf. (DATE),

pages 91–96, 2017.

[LLC+14] C.-X. Lin, C.-H. Liu, I.-C. Chen, D. T. Lee, and T.-Y. Ho. An efficient

bi-criteria flow channel routing algorithm for flow-based microfluidic

biochips. In Proc. Design Autom. Conf. (DAC), pages 141:1–141:6, 2014.

[LLCP08] X. Li, J. Le, M. Celik, and L. T. Pileggi. Defining statistical timing

sensitivity for logic circuits with large-scale process and environmen-

tal variations. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,

27(6):1041–1054, 2008.

[LLH18] G.-R. Lai, C.-Y. Lin, and T.-Y. Ho. Pump-aware flow routing algorithm

for programmable microfluidic devices. In Proc. Design, Autom., and

Test Europe Conf. (DATE), 2018.

[LLY+17] C. Liu, B. Li, H. Yao, P. Pop, T.-Y. Ho, and U. Schlichtmann. Trans-

port or store? Synthesizing flow-based microfluidic biochips using

distributed channel storage. In Proc. Design Autom. Conf. (DAC), pages

49:1–49:6, 2017.

132

Bibliography

[LN12] Z. Lak and N. Nicolici. On using on-chip clock tuning elements to

address delay degradation due to circuit aging. IEEE Trans. Comput.-

Aided Design Integr. Circuits Syst., 31(12):1845–1856, 2012.

[LN14] Z. Lak and N. Nicolici. A novel algorithmic approach to aid post-

silicon delay measurement and clock tuning. IEEE Trans. Comput.,

63(5):1074–1084, 2014.

[LPF99] X. Liu, M. C. Papaefthymiou, and E. G. Friedman. Maximizing perfor-

mance by retiming and clock skew scheduling. In Proc. Design Autom.

Conf. (DAC), pages 231–236, 1999.

[LS15] B. Li and U. Schlichtmann. Statistical timing analysis and critical-

ity computation for circuits with post-silicon clock tuning elements.

IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., 34(11):1784–1797,

2015.

[LSM+16] M. Li, K. Shamsi, T. Meade, Z. Zhao, B. Yu, Y. Jin, and D. Z. Pan.

Provably secure camouflaging strategy for IC protection. In Proc. Int.

Conf. Comput.-Aided Des. (ICCAD), pages 28–35, 2016.

[LT15] Y.-W. Lee and N. A. Touba. Improving logic obfuscation via logic cone

analysis. In Latin-American Test Symp., pages 1–6, 2015.

[LTL+16] M. Li, T.-M. Tseng, B. Li, T.-Y. Ho, and U. Schlichtmann. Sieve-valve-

aware synthesis of flow-based microfluidic biochips considering spe-

cific biological execution limitations. In Proc. Design, Autom., and Test

Europe Conf. (DATE), pages 624–629, 2016.

[LTL+17] M. Li, T.-M. Tseng, B. Li, T.-Y. Ho, and U. Schlichtmann. Component-

oriented high-level synthesis for continuous-flow microfluidics consid-

ering hybrid-scheduling. In Proc. Design Autom. Conf. (DAC), pages

51:1–51:6, 2017.

[LZ06] C. Lin and H. Zhou. An efficient retiming algorithm under setup and

hold constraints. In Proc. Design Autom. Conf. (DAC), pages 945–950,

2006.

133

Bibliography

[MBPB15] S. Malik, G. T. Becker, C. Paar, and W. P. Burleson. Development of a

layout-level hardware obfuscation tool. In Comput. Society Ann. Symp.

on VLSI, pages 204–209, 2015.

[MFDN05] P. Mahoney, E. Fetzer, B. Doyle, and S. Naffziger. Clock distribution on

a dual-core, multi-threaded Itanium R©-family processor. In Proc. Int.

Solid-State Circuits Conf. (ISSCC), pages 292–293, 2005.

[MGJ10] R. Mathies, W. Grover, and E. Jensen. Multiplexed latching valves for

microfluidic devices and processors. In US Patent 7,766,033, 2010.

[Mic94] G. D. Micheli. Synthesis and Optimization of Digital Circuits. McGraw-

Hill Higher Education, 1994.

[MKB02] C. W. Moon, H. Kriplani, and K. P. Belkhale. Timing model extraction

of hierarchical blocks by graph reduction. In Proc. Design Autom. Conf.

(DAC), pages 152–157, 2002.

[MPMB12] W. H. Minhass, P. Pop, J. Madsen, and F. S. Blaga. Architectural syn-

thesis of flow-based microfluidic large-scale integration biochips. In

Proc. Int. Conf. on Compilers, Architecture, and Synthesis for Embed. Sys.,

pages 181–190, 2012.

[MPMH13] W. H. Minhass, P. Pop, J. Madsen, and T.-Y. Ho. Control synthesis for

the flow-based microfluidic large-scale integration biochips. In Proc.

Asia and South Pacific Des. Autom. Conf. (ASP-DAC), pages 205–212,

2013.

[MQ07] J. Melin and S. Quake. Microfluidic large-scale integration: the evo-

lution of design rules for biological automation. Annu. Rev. Biophys.

Biomol. Struct., 36:213–231, 2007.

[MRB+14] D. Mitra, S. Roy, S. Bhattacharjee, K. Chakrabarty, and B. B. Bhat-

tacharya. On-chip sample preparation for multiple targets using digi-

tal microfluidics. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,

33(8):1131–1144, 2014.

134

Bibliography

[Nas01] S. R. Nassif. Modeling and analysis of manufacturing variations. In

Proc. Custom Integr. Circuits Conf. (CICC), pages 223–228, 2001.

[NK08] K. Nagaraj and S. Kundu. An automatic post silicon clock tuning sys-

tem for improving system performance based on tester measurements.

In Proc. Int. Test Conf. (ITC), pages 1–8, 2008.

[NK09] K. Nagaraj and S. Kundu. A study on placement of post silicon clock

tuning buffers for mitigating impact of process variation. In Proc. De-

sign, Autom., and Test Europe Conf. (DATE), pages 292–295, 2009.

[NSG+06] S. Naffziger, B. Stackhouse, T. Grutkowski, D. Josephson, J. De-

sai, E. Alon, and M. Horowitz. The implementation of a 2-core,

multi-threaded Itanium family processor. IEEE J. Solid-State Circuits,

41(1):197–209, 2006.

[OB04] M. Orshansky and A. Bandyopadhyay. Fast statistical timing analy-

sis handling arbitrary delay correlations. In Proc. Design Autom. Conf.

(DAC), pages 337–342, 2004.

[OBH11] M. M. Ozdal, S. Burns, and J. Hu. Gate sizing and device technology

selection algorithms for high-performance industrial designs. In Proc.

Int. Conf. Comput.-Aided Des. (ICCAD), pages 724–731, 2011.

[PAC15] P. Pop, I. E. Araci, and K. Chakrabarty. Continuous-flow biochips:

Technology, physical-design methods, and testing. IEEE Design & Test,

32(6):8–19, 2015.

[Per08] J. M. Perkel. Microfluidics: Bringing new things to life science. Science,

322(5903):975–977, 2008.

[PKK+06] B. Paul, K. Kang, H. Kufluoglu, M. Alam, and K. Roy. Temporal perfor-

mance degradation under NBTI: Estimation and design for improved

reliability of nanoscale circuits. In Proc. Design, Autom., and Test Europe

Conf. (DATE), pages 780–785, 2006.

[PM15] S. M. Plaza and I. L. Markov. Solving the third-shift problem in IC

135

Bibliography

piracy with test-aware logic locking. IEEE Trans. Comput.-Aided Design

Integr. Circuits Syst., 34(6):961–971, 2015.

[Qia14] Qiagen, Inc. QIAGEN RNase Inhibitor, 2014.

[RKM08] J. A. Roy, F. Koushanfar, and I. L. Markov. EPIC: Ending piracy of in-

tegrated circuits. In Proc. Design, Autom., and Test Europe Conf. (DATE),

pages 1069–1074, 2008.

[RPSK12] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri. Security analysis

of logic obfuscation. In Proc. Design Autom. Conf. (DAC), pages 83–89,

2012.

[RSK13] J. Rajendran, O. Sinanoglu, and R. Karri. VLSI testing based security

metric for IC camouflaging. In Proc. Int. Test Conf. (ITC), pages 1–4,

2013.

[RSSK13] J. Rajendran, M. Sam, O. Sinanoglu, and R. Karri. Security analysis of

integrated circuit camouflaging. In Proc. Conf. on Comput. & Commun.

Security, pages 709–720, 2013.

[SBC97] B. E. Stine, D. S. Boning, and J. E. Chung. Analysis and decomposition

of spatial variation in integrated circuit processes and devices. IEEE

Trans. Semiconductor Manufacturing, 10(1):24–41, 1997.

[SDT+07] E. Salman, A. Dasdan, F. Taraporevala, K. Küçükçakar, and E. G. Fried-

man. Exploiting setup-hold-time interdependence in static timing anal-

ysis. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., 26(6):1114–

1125, 2007.

[SFD+06] E. Salman, E. G. Friedman, A. Dasdan, F. Taraporevala, and

K. Küçükçakar. Pessimism reduction in static timing analysis using

interdependent setup and hold times. In Proc. Int. Symp. Quality Elec-

tron. Des. (ISQED), pages 159–164, 2006.

[SHL16] Y.-S. Su, T.-Y. Ho, and D.-T. Lee. A routability-driven flow routing

algorithm for programmable microfluidic devices. In Proc. Asia and

South Pacific Des. Autom. Conf. (ASP-DAC), pages 605–610, 2016.

136

Bibliography

[SHP+04] V. Studer, G. Hang, A. Pandolfi, M. Ortiz, W. F. Anderson, and S. R.

Quake. Scaling properties of a low-actuation pressure microfluidic

valve. J. Appl. Phys., 95(1):393–398, 2004.

[SK07] T. Sato and Y. Kunitake. A simple flip-flop circuit for typical-case de-

signs for DFM. In Proc. Int. Symp. Quality Electron. Des. (ISQED), pages

539–544, 2007.

[SMB05] D. R. Singh, V. Manohararajah, and S. D. Brown. Incremental retiming

for FPGA physical synthesis. In Proc. Design Autom. Conf. (DAC), pages

433–438, 2005.

[SMO90] K. Sakallah, T. Mudge, and O. Olukotun. checkTc and minTc: Timing

verification and optimal clocking of synchronous digital circuits. In

Proc. Int. Conf. Comput.-Aided Des. (ICCAD), pages 552–555, 1990.

[SR07] S. Srivastava and J. S. Roychowdhury. Interdependent latch setup/hold

time characterization via Euler-Newton curve tracing on state-

transition equations. In Proc. Design Autom. Conf. (DAC), pages 136–

141, 2007.

[SR08] S. Srivastava and J. Roychowdhury. Independent and interdependent

latch setup/hold time characterization via Newton-Raphson solution

and Euler curve tracking of state-transition equations. IEEE Trans.

Comput.-Aided Design Integr. Circuits Syst., 27(5):817–830, 2008.

[SS06] J. Singh and S. Sapatnekar. Statistical timing analysis with correlated

non-Gaussian parameters using independent component analysis. In

Proc. Design Autom. Conf. (DAC), pages 155–160, 2006.

[SS08] J. Singh and S. S. Sapatnekar. A scalable statistical static timing an-

alyzer incorporating correlated non-Gaussian and Gaussian parame-

ter variations. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,

27(1):160–173, 2008.

[SV09] G. Seetharaman and B. Venkataramani. Automation schemes for FPGA

implementation of wave-pipelined circuits. ACM Trans. Reconf. Tech.

Sys., 2(2):11:1–11:19, 2009.

137

Bibliography

[TBCS04] J. Tsai, D. Baik, C. C.-P. Chen, and K. K. Saluja. A yield improvement

methodology using pre- and post-silicon statistical clock scheduling.

In Proc. Int. Conf. Comput.-Aided Des. (ICCAD), pages 611–618, 2004.

[TGB09] D. Tadesse, J. Grodstein, and R. I. Bahar. AutoRex: An automated

post-silicon clock tuning tool. In Proc. Int. Test Conf. (ITC), pages 1–10,

2009.

[TKMH04] E. Takahashi, Y. Kasai, M. Murakawa, and T. Higuchi. Post-fabrication

clock-timing adjustment using genetic algorithms. IEEE J. Solid-State

Circuits, 39(4):643–650, 2004.

[TLF+18] T.-M. Tseng, M. Li, D. N. Freitas, T. McAuley, B. Li, T.-Y. Ho, I. E.

Araci, and U. Schlichtmann. Columba 2.0: A co-layout synthesis tool

for continuous-flow microfluidic biochips. IEEE Trans. Comput.-Aided

Design Integr. Circuits Syst., 2018.

[TLHS15] T.-M. Tseng, B. Li, T.-Y. Ho, and U. Schlichtmann. Reliability-aware

synthesis for flow-based microfluidic biochips by dynamic-device

mapping. In Proc. Design Autom. Conf. (DAC), pages 141:1–141:6, 2015.

[TLL+16a] T.-M. Tseng, B. Li, M. Li, T.-Y. Ho, and U. Schlichtmann. Reliability-

aware synthesis with dynamic device mapping and fluid routing for

flow-based microfluidic biochips. IEEE Trans. Comput.-Aided Design In-

tegr. Circuits Syst., 35(12):1981–1994, 2016.

[TLL+16b] T.-M. Tseng, M. Li, B. Li, T.-Y. Ho, and U. Schlichtmann. Columba:

Co-layout synthesis for continuous-flow microfluidic biochips. In Proc.

Design Autom. Conf. (DAC), pages 147:1–147:6, 2016.

[TLSH15] T.-M. Tseng, B. Li, U. Schlichtmann, and T.-Y. Ho. Storage and caching:

Synthesis of flow-based microfluidic biochips. IEEE Design & Test,

32(6):69–75, 2015.

[TRND+00] S. Tam, S. Rusu, U. Nagarji Desai, R. Kim, J. Zhang, and I. Young.

Clock generation and distribution for the first IA-64 microprocessor.

IEEE J. Solid-State Circuits, 35(11):1545–1552, 2000.

138

Bibliography

[TYLH13] K.-H. Tseng, S.-C. You, J.-Y. Liou, and T.-Y. Ho. A top-down synthesis

methodology for flow-based microfluidic biochips considering valve-

switching minimization. In Proc. Int. Symp. Phys. Des. (ISPD), pages

123–129, 2013.

[TZC05] J. Tsai, L. Zhang, and C. C.-P. Chen. Statistical timing analysis driven

post-silicon-tunable clock-tree synthesis. In Proc. Int. Conf. Comput.-

Aided Des. (ICCAD), pages 575–581, 2005.

[UCT+00] M. A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, and S. R. Quake.

Monolithic microfabricated valves and pumps by multilayer soft

lithography. Science, 288(5463):113–116, 2000.

[VCPK17] A. V. Vinay C. Patil and S. Kundu. Manufacturer turned attacker: Dan-

gers of stealthy trojans via threshold voltage manipulation. In Proc.

North Atlantic Test Workshop (NATW), pages 1–6, 2017.

[VDP14] K. Vaidyanathan, B. P. Das, and L. T. Pileggi. Detecting reliability at-

tacks during split fabrication using test-only BEOL stack. In Proc. De-

sign Autom. Conf. (DAC), pages 156:1–156:6, 2014.

[Vis07] C. Visweswariah. Within-die variations in timing: From derating to

CPPR to statistical methods. In Proc. Int. Conf. Comput.-Aided Des. (IC-

CAD), 2007. Tutorial.

[VPMS97] S. Venkatesh, R. Palermo, M. Mortazavi, and K. A. Sakallah. Timing ab-

straction of intellectual property blocks. In Proc. Custom Integr. Circuits

Conf. (CICC), pages 99–102, 1997.

[VR03] E. Verpoorte and N. F. D. Rooij. Microfluidics meets MEMS. Proc. IEEE,

91(6):930–953, 2003.

[VRK+04] C. Visweswariah, K. Ravindran, K. Kalafala, S. Walker, and S. Narayan.

First-order incremental block-based statistical timing analysis. In Proc.

Design Autom. Conf. (DAC), pages 331–336, 2004.

[WRY+16] Q. Wang, Y. Ru, H. Yao, T.-Y. Ho, and Y. Cai. Sequence-pair-based

placement and routing for flow-based microfluidic biochips. In Proc.

139

Bibliography

Asia and South Pacific Des. Autom. Conf. (ASP-DAC), pages 587–592,

2016.

[WXZ+17] Q. Wang, Y. Xu, S. Zuo, H. Yao, T.-Y. Ho, B. Li, U. Schlichtmann, and

Y. Cai. Pressure-aware control layer optimization for flow-based mi-

crofluidic biochips. IEEE Trans. Biomed. Circuits and Systems, 11(6):1488–

1499, 2017.

[WZB17] H.-L. Wang, M. Zhang, and P. A. Beerel. Retiming of two-phase latch-

based resilient circuits. In Proc. Design Autom. Conf. (DAC), pages 1–6,

2017.

[WZY+17] Q. Wang, S. Zuo, H. Yao, T.-Y. Ho, B. Li, U. Schlichtmann, and

Y. Cai. Hamming-distance-based valve-switching optimization for

control-layer multiplexing in flow-based microfluidic biochips. In Proc.

Asia and South Pacific Des. Autom. Conf. (ASP-DAC), pages 524–529,

2017.

[XS17] Y. Xie and A. Srivastava. Delay locking: Security enhancement of logic

locking against IC counterfeiting and overproduction. In Proc. Design

Autom. Conf. (DAC), 2017.

[YCS05] J. Yang, L. Capodieci, and D. Sylvester. Advanced timing analysis

based on post-OPC extraction of critical dimensions. In Proc. Design

Autom. Conf. (DAC), pages 359–364, 2005.

[YHC15] H. Yao, T.-Y. Ho, and Y. Cai. PACOR: practical control-layer rout-

ing flow with length-matching constraint for flow-based microfluidic

biochips. In Proc. Design Autom. Conf. (DAC), pages 142:1–142:6, 2015.

[YTJ15] Y.-M. Yang, K. H. Tam, and I. H.-R. Jiang. Criticality-dependency-

aware timing characterization and analysis. In Proc. Design Autom.

Conf. (DAC), pages 167:1–167:6, 2015.

[YWR+15] H. Yao, Q. Wang, Y. Ru, Y. Cai, and T.-Y. Ho. Integrated flow-control

codesign methodology for flow-based microfluidic biochips. IEEE De-

sign & Test, 32(6):60–68, 2015.

140

Bibliography

[YX10] F. Yuan and Q. Xu. On timing-independent false path identification. In

Proc. Int. Conf. Comput.-Aided Des. (ICCAD), pages 532–535, 2010.

[YYX11] R. Ye, F. Yuan, and Q. Xu. Online clock skew tuning for timing spec-

ulation. In Proc. Int. Conf. Comput.-Aided Des. (ICCAD), pages 442–447,

2011.

[YZLS17] B. Yigit, G. L. Zhang, B. Li, and U. Schlichtmann. Application of ma-

chine learning methods in post-silicon yield improvement. In Proc. Int.

System-on-Chip Conf. (SOCC), pages 243–248, 2017.

[ZCH+05] L. Zhang, W. Chen, Y. Hu, J. A. Gubner, and C. C.-P. Chen. Correlation-

preserved non-Gaussian statistical timing analysis with quadratic tim-

ing model. In Proc. Design Autom. Conf. (DAC), pages 83–88, 2005.

[ZF02] J. Zejda and P. Frain. General framework for removal of clock network

pessimism. In Proc. Int. Conf. Comput.-Aided Des. (ICCAD), pages 632–

639, 2002.

[ZLHS18] G. L. Zhang, B. Li, M. Hashimoto, and U. Schlichtmann. VirtualSync:

Timing optimization by synchronizing logic waves with sequential and

combinational components as delay units. In Proc. Design Autom. Conf.

(DAC), 2018.

[ZLL+18] G. L. Zhang, B. Li, J. Liu, Y. Shi, and U. Schlichtmann. Design-phase

buffer allocation for post-silicon clock binning by iterative learning.

IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., 37(2):392–405,

2018.

[ZLS+] G. L. Zhang, B. Li, Y. Shi, J. Hu, and U. Schlichtmann. Effitest2: Ef-

ficient delay test and prediction for post-silicon clock skew configura-

tion under process variations. IEEE Trans. Comput.-Aided Design Integr.

Circuits Syst. doi: 10.1109/TCAD.2018.2818713.

[ZLS16a] G. L. Zhang, B. Li, and U. Schlichtmann. EffiTest: Efficient delay test

and statistical prediction for configuring post-silicon tunable buffers.

In Proc. Design Autom. Conf. (DAC), pages 60:1–60:6, 2016.

141

Bibliography

[ZLS16b] G. L. Zhang, B. Li, and U. Schlichtmann. Piecetimer: A holistic timing

analysis framework considering setup/hold time interdependency us-

ing a piecewise model. In Proc. Int. Conf. Comput.-Aided Des. (ICCAD),

pages 100:1–100:8, 2016.

[ZLS16c] G. L. Zhang, B. Li, and U. Schlichtmann. Sampling-based buffer inser-

tion for post-silicon yield improvement under process variability. In

Proc. Design, Autom., and Test Europe Conf. (DATE), pages 1457–1460,

2016.

[ZLY+18] G. L. Zhang, B. Li, B. Yu, D. Z. Pan, and U. Schlichtmann. TimingCam-

ouflage: Improving circuit security against counterfeiting by uncon-

ventional timing. In Proc. Design, Autom., and Test Europe Conf. (DATE),

2018.

[ZMT+17] O. Zografos, A. D. Meester, E. Testa, M. Soeken, P. E. Gaillardon, G. D.

Micheli, L. Amarù, P. Raghavan, F. Catthoor, and R. Lauwereins. Wave

pipelining for majority-based beyond-CMOS technologies. In Proc. De-

sign, Autom., and Test Europe Conf. (DATE), pages 1306–1311, 2017.

[ZSL+05] Y. Zhan, A. J. Strojwas, X. Li, L. T. Pileggi, D. Newmark, and

M. Sharma. Correlation-aware statistical timing analysis with non-

Gaussian delay distributions. In Proc. Design Autom. Conf. (DAC), pages

77–82, 2005.

[ZZH+06] S. Zhou, Y. Zhu, Y. Hu, R. Graham, M. Hutton, and C.-K. Cheng. Tim-

ing model reduction for hierarchical timing analysis. In IEEE Trans.

Comput.-Aided Design Integr. Circuits Syst., pages 415–422, 2006.

142

Publications of the author during the Habilitation period

Journal papers:

1. Grace Li Zhang, Bing Li, Yiyu Shi, Jiang Hu, Ulf Schlichtmann, “EffiTest2:

Efficient Delay Test and Prediction for Post‐Silicon Clock Skew Configuration

under Process Variations”, IEEE Transactions on Computer‐Aided Design of

Integrated Circuits and Systems (TCAD), accepted

2. Tsun‐Ming Tseng, Mengchu Li, Daniel Nestor Freitas, Travis McAuley, Bing Li,

Tsung‐Yi Ho, Ismail Emre Araci, Ulf Schlichtmann, “Columba 2.0: A Co‐Layout

Synthesis Tool for Continuous‐Flow Microfluidic Biochips”, IEEE Transactions

on Computer‐Aided Design of Integrated Circuits and Systems (TCAD),

accepted

3. Grace Li Zhang, Bing Li, Jinglan Liu, Yiyu Shi, Ulf Schlichtmann, “Design‐Phase

Buffer Allocation for Post‐Silicon Clock Binning by Iterative Learning”, IEEE

Transactions on Computer‐Aided Design of Integrated Circuits and Systems

(TCAD), 37(2), pp. 392‐405, February 2018

4. Bing Li, Masanori Hashimoto, Ulf Schlichtmann, “From Process Variations to

Reliability: A Survey of Timing of Digital Circuits in the Nanometer Era”, IPSJ

Transactions on System LSI Design Methodology (T‐SLDM), February 2018

(invited)

5. Qin Wang, Yue Xu, Shiliang Zuo, Hailong Yao, Tsung‐Yi Ho, Bing Li, Ulf

Schlichtmann, Yici Cai, “Pressure‐Aware Control Layer Optimization for Flow‐

Based Microfluidic Biochips”, IEEE Transactions on Biomedical Circuits and

Systems (TBioCAS), 11(6), pp. 1488‐1499 December 2017

6. Tsun‐Ming Tseng, Bing Li, Ching‐Feng Yeh, Hsiang‐Chieh Jhan, Zuo‐Min Tsai,

Mark Po‐Hung Lin, Ulf Schlichtmann, “An Efficient Two‐Phase ILP‐Based

Algorithm for Precise CMOS RFIC Layout Generation”, IEEE Transactions on

Computer‐Aided Design of Integrated Circuits and Systems (TCAD), 36(8), pp.

1313‐1326, August 2017

7. Tsun‐Ming Tseng, Bing Li, Mengchu Li, Tsung‐Yi Ho, Ulf Schlichtmann,

“Reliability‐aware Synthesis with Dynamic Device Mapping and Fluid Routing

for Flow‐based Microfluidic Biochips”, IEEE Transactions on Computer‐Aided

Design of Integrated Circuits and Systems (TCAD), 35(12), pp. 1981‐1994,

December 2016

8. Bing Li, Ulf Schlichtmann, “Statistical Timing Analysis and Criticality

Computation for Circuits With Post‐Silicon Clock Tuning Elements“, IEEE

Transactions on Computer‐Aided Design of Integrated Circuits and Systems

(TCAD), vol. 34(11), pp. 1784‐1797, November 2015

9. Tsun‐Ming Tseng, Bing Li, Tsung‐Yi Ho, Ulf Schlichtmann, “Storage and

Caching: Synthesis of Flow‐based Microfluidic Biochips”, IEEE Design & Test

(D&T), 32(6), pp. 69‐75, December 2015

10. Tsun‐Ming Tseng, Bing Li, Tsung‐Yi Ho, Ulf Schlichtmann, “ILP‐based

Alleviation of Dense Meander Segments with Prioritized Shifting and

Progressive Fixing in PCB Routing”, IEEE Transactions on Computer‐Aided

Design of Integrated Circuits and Systems (TCAD), 34(6), pp. 1000‐1013, June

2015

Papers in proceedings of conferences and workshops:

11. Grace Li Zhang, Bing Li, Ulf Schlichtmann, “Timing with Virtual Signal

Synchronization for Circuit Performance and Netlist Security”, IEEE Computer

Society Annual Symposium on VLSI (ISVLSI), July 2018 (special session)

12. Chunfeng Liu, Bing Li, Bhargab B. Bhattacharya, Krishnendu Chakrabarty,

Tsung‐Yi Ho, Ulf Schlichtmann, “Test Generation for Microfluidic Fully

Programmable Valve Arrays (FPVAs) with Heuristic Acceleration”,

International Conference on IC Design and Technology (ICICDT), June 2018

(invited)

13. Chunfeng Liu, Bing Li, Tsung‐Yi Ho, Krishnendu Chakrabarty, Ulf

Schlichtmann, “Design‐for‐Testability for Continuous‐Flow Microfluidic

Biochips”, ACM/IEEE Design Automation Conference (DAC), June 2018

14. Yu‐Kai Chuang, Kuan‐Jung Chen, Kun‐Lin Lin, Shao‐Yun Fang, Bing Li, Ulf

Schlichtmann, “PlanarONoC: Concurrent Placement and Routing Considering

Crossing Minimization for Optical Networks‐on‐Chip”, ACM/IEEE Design

Automation Conference (DAC), June 2018

15. Grace Li Zhang, Bing Li, Masanori Hashimoto, Ulf Schlichtmann, “VirtualSync:

Timing Optimization by Synchronizing Logic Waves with Sequential and

Combinational Components as Delay Units”, ACM/IEEE Design Automation

Conference (DAC), June 2018

16. Fengxian Jiao, Sheqin Dong, Bei Yu, Bing Li, Ulf Schlichtmann, “Thermal‐

Aware Placement and Routing for 3D Optical Networks‐on‐Chips”, IEEE

International Symposium on Circuits and Systems (ISCAS), May 2018

17. Grace Li Zhang, Bing Li, Bei Yu, David Z. Pan, Ulf Schlichtmann,

“TimingCamouflage: Improving Circuit Security against Counterfeiting by

Unconventional Timing”, Design, Automation and Test in Europe (DATE),

March 2018

18. Bing Li and Ulf Schlichtmann, “Reliability‐aware Synthesis and Fault Test of

Fully Programmable Valve Arrays (FPVAs)”, IEEE International Symposium

on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT),

October 2017 (special session)

19. Baris Yigit, Grace Li Zhang, Bing Li, Yiyu Shi, Ulf Schlichtmann, “Application

of Machine Learning Methods in Post‐Silicon Yield Improvement”, IEEE

International System on Chip Conference (SOCC), September 2017

20. Mengchu Li, Tsun‐Ming Tseng, Bing Li, Tsung‐Yi Ho, Ulf Schlichtmann,

“Component‐Oriented High‐Level Synthesis for Continuous‐Flow

Microfluidics Considering Hybrid‐Scheduling”, ACM/IEEE Design

Automation Conference (DAC), June 2017

21. Chunfeng Liu, Bing Li, Hailong Yao, Paul Pop, Tsung‐Yi Ho, Ulf Schlichtmann,

“Transport or Store? Synthesizing Flow‐based Microfluidic Biochips using

Distributed Channel Storage”, ACM/IEEE Design Automation Conference

(DAC), June 2017

22. Chunfeng Liu, Bing Li, Bhargab B. Bhattacharya, Krishnendu Chakrabarty,

Tsung‐Yi Ho, Ulf Schlichtmann, “Testing Microfluidic Fully Programmable

Valve Arrays (FPVAs)”, Design, Automation and Test in Europe (DATE),

March 2017

23. Qin Wang, Shiliang Zuo, Hailong Yao, Tsung‐Yi Ho, Bing Li, Ulf Schlichtmann,

Yici Cai, “Hamming‐Distance‐Based Valve‐Switching Optimization for

Control‐Layer Multiplexing in Flow‐Based Microfluidic Biochips”, IEEE/ACM

Asia and South Pacific Design Automation Conference (ASP‐DAC), January

2017

24. Grace Li Zhang, Bing Li, Ulf Schlichtmann, “PieceTimer: A Holistic Timing

Analysis Framework Considering Setup/Hold Time Interdependency Using A

Piecewise Model”, IEEE/ACM International Conference on Computer‐Aided

Design (ICCAD), November 2016

25. Qin Wang, Zeyan Li, Haena Cheong, Oh‐Sun Kwon, Hailong Yao, Tsung‐Yi

Ho, Kwanwoo Shin, Bing Li, Ulf Schlichtmann, Yici Cai, “Control‐Fluidic

CoDesign for Paper‐Based Digital Microfluidic Biochips”, IEEE/ACM

International Conference on Computer‐Aided Design (ICCAD), November

2016

26. Robert Wille, Bing Li, Ulf Schlichtmann, Rolf Drechsler, “From Biochips to

Quantum Circuits: Computer‐Aided Design for Emerging Technologies”,

IEEE/ACM International Conference on Computer‐Aided Design (ICCAD),

November 2016 (special session)

27. Grace Li Zhang, Bing Li, Ulf Schlichtmann, “EffiTest: Efficient delay test and

statistical prediction for configuring post‐silicon tunable buffers”, ACM/IEEE

Design Automation Conference (DAC), June 2016 (nominated for Best Paper

Award)

28. Tsun‐Ming Tseng, Bing Li, Ching‐Feng Yeh, Hsiang‐Chieh Jhan, Zuo‐Min Tsai,

Mark Po‐Hung Lin, Ulf Schlichtmann, “Novel CMOS RFIC Layout Generation

with Concurrent Device Placement and Fixed‐Length Microstrip Routing”,

ACM/IEEE Design Automation Conference (DAC), June 2016

29. Tsun‐Ming Tseng, Mengchu Li, Bing Li, Tsung‐Yi Ho, Ulf Schlichtmann,

“Columba: Co‐Layout Synthesis for Continuous‐Flow Microfluidic Biochips”,

ACM/IEEE Design Automation Conference (DAC), June 2016

30. Grace Li Zhang, Bing Li, Ulf Schlichtmann, “Sampling‐based Buffer Insertion

for Post‐Silicon Yield Improvement under Process Variability”, Design,

Automation and Test in Europe (DATE), March 2016

31. Mengchu Li, Tsun‐Ming Tseng, Bing Li, Tsung‐Yi Ho, and Ulf Schlichtmann,

“Sieve‐valve‐aware Synthesis of Flow‐based Microfluidic Biochips Considering

Specific Biological Execution Limitations”, Design, Automation and Test in

Europe (DATE), March 2016

32. Ulf Schlichtmann, Masanori Hashimoto, Iris Hui‐Ru Jiang, Bing Li, “Reliability,

Adaptability and Flexibility in Timing: Buy a Life Insurance for Your Circuits”,

IEEE/ACM Asia and South Pacific Design Automation Conference (ASP‐DAC),

January 2016 (special session)

33. Tsun‐Ming Tseng, Bing Li, Tsung‐Yi Ho, Ulf Schlichtmann, “Reliability‐aware

Synthesis for Flow‐based Microfluidic Biochips by Dynamic‐device Mapping”,

ACM/IEEE Design Automation Conference (DAC), June 2015

34. Rohit Kumar, Bing Li, Yiren Shen, Ulf Schlichtmann, Jiang Hu, “Timing

Verification for Adaptive Integrated Circuits”, Design, Automation and Test in

Europe (DATE), March 2015

