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Abstract

This thesis combines three formal verification techniques — theorem proving, satisfiabil-
ity checking (runtime monitoring), and reachability analysis — for formally analysing
autonomous vehicles.

First, we formalise the required elements which will be the foundation for formally
analysing autonomous vehicles: the notion of safe distance between an ego vehicle and
its front vehicle, the framework for predicting the spatial occupancies of other traffic
participants, the road networks in which autonomous vehicles shall operate, and relevant
primitives required to detect lanes in which an autonomous vehicle currently occupies.
Each of these elements are proved to be correct with respect to their own specification
in the theorem prover 1sABELLE, and refined to functions which are guaranteed to be
correct numerically.

Next, we formalise a collection of selected traffic rules from the German traffic code
(Straflenverkhersordnung) and propose a method to monitor them formally. We translate
the natural language requirements to formulas in linear temporal logic (LTL) without
considering what each atomic proposition means initially. Then, we define the meaning
of those atomic propositions precisely by using the previously formalised elements for
formal analyses of autonomous vehicles. We monitor the satisfaction of a trace with
respect to these formulas by executing the semantics of (finite-time) LTL implemented
in the theorem prover ISABELLE.

Lastly, we demonstrate how to use reachability analysis to formally construct a manoeu-
vre automaton which can be used for motion planning of autonomous vehicles; this
construction involves a careful interaction with uncertified tools other than 1SABELLE.
Then, we propose a variant of LTL which is interpreted over sets instead of single trajec-
tories because traces of manoeuvre automata will be sets (due to reachability analysis).
We formalise a plan with this new specification language and then use satisfiability
checking in conjunction with the previously formalised monitoring framework to search
for a sequence of manoeuvres that is guaranteed to satisfy the plan.







Zusammenfassung

Diese Dissertation kombiniert drei Techniken der formale Verifikation - Theorembewei-
sen, Erfiillbarkeitsanalyse der Aussagenlogik und Erreichbarkeitsanalyse - um autonome
Fahrzeuge formal zu analysieren.

Zuerst werden die notwendigen Elemente formalisiert, die als Grundlage zur formalen
Analyse autonomer Fahrzeuge dienen: der Begriff des Sicherheitsabstands zwischen
einem Ego-Fahrzeug und dem vorderen Fahrzeug, die Vorhersage der Strafsenbelegung
anderer Verkehrsteilnehmer, das Straflennetzwerk in dem autonome Fahrzeuge fahren
sollen und relevante Primitive um Fahrspuren zu erkennen, die ein autonomes Fahrzeug
momentan besetzt. Jedes dieser Elemente ist mit dem Theorembeweiser Isabelle als
korrekt in Bezug zu deren Spezifikation bewiesen worden mit deren Hilfe Funktionen
abgeleitet wurden, die numerische korrekt sind.

Weiterhin wurde eine Menge an ausgewéhlten Verkehrsregeln der StrafSenverkehrs-
ordnung formalisiert und eine Methode vorgeschlagen, die deren Einhaltung formal
iiberwacht. Die natiirlichsprachigen Anforderungen wurden zu Formeln in linearer
temporaler Logik (LTL) tibersetzt ohne die urspriingliche Bedeutung der Aussagenvaria-
blen zu beriicksichtigen. Als ndchstes wurde die Bedeutung dieser Aussagenvariablen
préazisiert, indem die zuvor formalisierten Elemente formaler Analyse autonomer Fahr-
zeuge herangezogen wurden. Die Einhaltung von Verhalten beziiglich dieser Formeln
wird tiberwacht indem die im Theorembeweiser Isabelle implementierte Semantik von
(zeitbeschranktem) LTL ausgefiihrt wird.

Zuletzt wird die Verwendung von Erreichbarkeitsanalyse zur formalen Konstruktion
eines Manover-Automaten demonstriert, der zur Bewegungsplanung autonomer Fahr-
zeuge verwendet werden kann; dieser Ansatz erfordert ein sorgféltiges Zusammenspiel
mit nicht-zertifizierten Werkzeugen neben Isabelle. Danach schlagen wir eine Variante
von LTL vor, die iiber Mengen von Trajektorien interpretiert wird, anstatt tiber einzelne
Trajektorien, da Verhalten von Manover-Automaten sich nur durch Mengen beschrianken
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lassen (aufgrund der Erreichbarkeitsanalyse). Ein Plan wird mit dieser neuen Spe-
zifikationssprache formalisiert und anschliefend wird eine Erfiillbarkeitsanalyse der
Aussagenlogik zusammen mit dem vorher formalisierten Uberwachungsframework
ausgefiihrt, um eine Folge von Manévern zu finden, die den Plan garantiert erfiillt.
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Introduction

1.1 Motivation

Formally proving the correctness of autonomous vehicles is very challenging. Not only
do we have to formally specify the requirements, which are nearly always written in
natural language, but we also need to find a computational structure which is expressive
enough for modelling the discrete and continuous behaviours of autonomous vehicles,
yet simple enough for formal analyses. The challenges do not stop there: how can
we formally prove that a fixed model satisfies a specification? Should we opt for
model-theoretic or proof-theoretic approaches to show this satisfaction? How legible
is the formal language used for specifying the requirements? Would an engineer need
retraining for understanding the semantics?

Which techniques in the literature can we use to formally verify autonomous vehicles? If
we view autonomous vehicles as hybrid systems, there are four categories of technique
we can potentially choose from: model checking [1, 2], reachability analysis [3, 4, 5, 6, 7,
8,9, 10, 11], theorem proving [12, 13, 14], and satisfiability modulo theories [15]. Each
of these techniques differs in terms of the formal language used to specify properties,
the structure used to model (hybrid) systems, and the method employed to prove
that the formal structure satisfies a property (see Tab. 1.1). Among these dimensions
of comparison, we argue in this thesis that the formal language stands out as the
determining factor for choosing a method for formally verifying autonomous vehicles.

Despite the successes achieved by these techniques, we argue that their formal languages
are not expressive enough for formalising system-level requirements. Take as an example
that a vehicle must maintain a safe distance with the vehicle in front to avoid rear-end
collisions. The Vienna Convention on Road Traffic §13(5) [16] specifies this requirement
descriptively as follows:
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Table 1.1: Comparison of techniques for formal verification of hybrid systems

Technique Language Structure Method
Theorem Proving Dynamic Logic Hybrid Program  Proof-theoretic
Model Checking Temporal Logic ~ Hybrid Automata Model-theoretic
Reachability Analysis Set theory Hybrid Automata Model-theoretic

Satisfiability Modulo Theory First-Order Logic Hybrid Automata Model-theoretic

The driver of a vehicle moving behind another vehicle shall keep at a suf-
ficient distance from that other vehicle to avoid a collision if the vehicle in
front should suddenly slow down or stop.

But how large is this “sufficient distance” concretely? Without a concrete number, we
cannot use the specification language associated with each technique in Tab. 1.1 for
formally verifying autonomous vehicles — except for that of theorem proving technique.
Loos et al. [17] could specify an expression for safe distance in KeYmaera and prove
that the cruise controller satisfies this property formally. As another example, take the
overtaking traffic rule from Straflenverkehrsordnung (StVO) §5(4) as follows:

When changing the lane to the left lane during overtaking, no following road
users shall be endangered. During overtaking, a sufficient side clearance
must be provided to other road users, especially pedestrians and cyclist. The
driver who overtakes has to change from the fast lane to the right lane as
soon as possible. The road user being overtaken shall not be obstructed.

The notion of overtaking cannot be generalised by an expression (as in safe distance
expression in KeYmaera) any more; we need to reason geometrically about the occu-
pancies, lane dividers, and road networks in order to define what overtaking means. In
other words, we need a more expressive logic and tools to formalise these system-level
requirements, or we need tools that translate from high-level specifications to simpler
logics.

This thesis opts for the 1SABELLE theorem prover [18] with higher-order logic (HOL)
— hence the term 1SABELLE/HOL — for formalising system level requirements. Being
a generic theorem prover, 1SABELLE' allows us to specify a safe distance expression
symbolically and, instead of taking this safe distance expression for granted, to prove
that this expression is sound.> Proving the soundness of a safe distance expression

1From now on, we shall abbreviate 1SABELLE/HOL with ISABELLE only.

2Larsen et al. [19] for example assume that this safe distance is 5m in their work to formally verify a
controller with uppaAL [20] model checker. However, there is no guarantee that 5m is a safe distance —
it is merely a heuristics.
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requires concepts from real analysis such as continuity, differentiability, and integrability.
ISABELLE provides a rich library of theories about these concepts with which we can
immediately use to prove the soundness. Additionally, ISABELLE also contains formalised
theories on geometry for modelling the environment in which an autonomous vehicle
operates such as occupancies, lane, lane boundaries, lane dividers, etc. Such concepts
are required for formalising the notion of overtaking.

ISABELLE serves as a platform for formal development of theories only; we still have
to figure out how to prove the correct implementation of autonomous vehicles with
respect to formalised properties in higher-order logic. To avoid reinventing the wheel,
we combine model checking — more precisely satisfiability checking — and reachability
analysis (see Tab. 1.1) on top of 1sABELLE. This choice is due to two reasons: 1) automation,
since these two techniques are designed with this in mind, and 2) formalisation of
these two techniques are available in 1SABELLE [14]. In this setting, properties are still
formalised in higher-order logic but are now codified in linear temporal logic (LTL)?.
Reachability analysis is used to construct hybrid automata representing autonomous
vehicles which are amenable to standard model checking verification techniques.

Autonomous vehicles are complex systems which are composed of sensors, actuators,
processors, operating systems, and controllers among many other things (see Fig. 1.1).
Full formal verification of autonomous vehicles thus entails each of these components
is also formally verified — a tall order to accomplish. Instead, this thesis focusses on
formally verifying the motion planner of autonomous vehicles. The motion planner
considered in this thesis does not include the mission planning subsystem which plans
on the map level (routeing), but operates more on a fine-grained abstraction level which
must consider static obstacles, other traffic participants, road surfaces, and traffic rules.
Sensor readings are assumed to be within certain bounds.

Motion planning based on LTL specifications [22] is not the only way to do motion
planning; other techniques are broadly categorised as [23]: 1) variational methods which
employ nonlinear optimisation methods, 2) graph search methods which use search tech-
niques over a discrete abstraction of a vehicle’s environment, and 3) incremental search
techniques which use random sampling to build a search tree incrementally. There is
also a growing interest in using machine learning-based techniques for motion planning.
To make the formalisation in this thesis more applicable to other motion planning tech-
niques, we also present a framework for monitoring plans — checking formally whether
a trace satisfies LTL formulee. To ensure safety and compliance with traffic rules, plans
from these motion planners are executed only if they are certified by the monitors.

Many incidents in safety-critical systems such as the PATRiOT MIssILE failure [24]
and the explosion of the ARIANE 5[25] are due to numerical errors®. Autonomous

3think of LTL as a Domain Specific Language (DSL).
4Vuik maintains this type of incident in http://ta.twi.tudelft.nl/users/vuik/wi211/disasters.
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Figure 1.1: Typical architecture for autonomous vehicles (taken, reproduced, and modi-
fied from Pendleton et al. [21]). We focussed mainly on the motion planning
aspect which considers the effects of control for motion planning.

vehicles are also similar to these two systems in the sense that numerical faults could
result in an erroneous system state and lead to a system failure (known as the fault-
error-failure model or chain [26]) eventually. To avoid similar incidents, this thesis
considers numerical correctness seriously too. One advantage of using a generic theorem
prover such as 1SABELLE is that it allows us to refine theories involving real numbers
into those with floating-point numbers soundly. That is, 1) each real number is first
approximated either by an interval [27] or by its affine form [28]; 2) arithmetic operations
(e.g. division, multiplication) and transcendental functions (e.g. sine, cosine, logarithm)
are over-approximated safely; and then 3) boolean expressions are evaluated soundly,
e.g. inequality [I1; u1]| < [lp; up| is true if and only if 13 < I».

1.2 Contributions

The contributions of this thesis are:

* A sound-and-complete concrete safe distance expression (Ch. 2).
Safe distance is ubiquitous in formalised traffic rules since many other predicates
are defined in terms of it. However, most definitions of safe distance in the

html.
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literature are at best descriptive and hence are very difficult to monitor. Even
when the safe distance is given a concrete number for a specific situation, it is
rarely proved that it is indeed sound. This chapter presents a verified, concrete
safe distance expression. When a vehicle complies with this safe distance, it is
guaranteed to avoid rear-end collisions.

* A formally verified procedure for predicting the occupancies of other vehicles (Ch. 3).

An autonomous vehicle must predict the physical space occupied by other traffic
participants in order to plan a motion which avoids occupying the same space.
The safety of the plan relies on the correctness of this prediction. If the actual
space which can be occupied is under-represented, our autonomous vehicles might
occupy the space which they thought to be safe but actually is not. This chapter
presents a formalised procedure for computing the future occupancies of other
traffic participants; other traffic participants are ensured to be enclosed by these
predicted spaces.

* Formally specified traffic rules and their formally verified monitors (Ch. 4).

Monitoring traffic rules formally is challenging due to two reasons: concepts
in legal texts are often ambiguous, and the trace from planners are generally
time-sampled. By using the concretisation results from the previous chapters, this
chapter formalises a subset of traffic rules in LTL to avoid these ambiguities. To
ensure the faithfulness of our monitoring, time-sampled traces are enclosed safely
by their continuous sets by using reachability analysis techniques. By using this
framework, we can formally guarantee that a trace complies with traffic rules.

* A formally verified motion planner based on manoeuvre automata (Ch. 5).

Monitoring only ensures that a single trace satisfies a formalised property. To
formally verify a motion planner, we have to ensure that all traces from a plan
produced by the motion planner also satisfy the formalised property. We formally
construct manceuvre automata-based motion planners in which each motion
primitive is equipped with its reachable sets. With this formally constructed
manceuvre automata, a verified plan can be found by performing satisfiability
checking — a search over the states of manceuvre automata — and using the
monitoring framework from Ch. 4.

Related work can be found at the end of each chapter.

1.3 Publications

This thesis is based on the following publications:




1 Introduction
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and S. Schneider. Cham: Springer International Publishing, 2017, pp. 50-66.
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Publishing, 2018, pp. 75-90.

1.4 Preliminaries

Types. ISABELLE is a typed specification language. Although a specification language
does not have to be typed (cf. the debate in [29]), a typed language is useful for
eliminating ill-defined expressions. Types in 1SABELLE could be a base type such as
boolean B, natural numbers IN, and real numbers IR, or a type variable «, 8,y and so
on. Classically trained mathematicians and engineers (in set theory) are used to writing
t € R for denoting a real variable ¢. In 1SABELLE, this is more or less translated into
t : R (which reads “t is of type R”). However, types and sets, strictly speaking, are
not the same. Types are constructed via function type constructor a« = B, product type
constructor a x B, list type constructor («)list, or set type constructor («)set — the last
two are written in postfix notation.

Given a term f :: a X B, we write fst(t) :: a and snd(t) :: B to refer to the first and
second element of ¢, respectively. For n > 2, referring to a certain element in the tuple
could involve complex combination of fst and snd, which makes the expression less
readable. In such cases, we can use the keyword record with a proper function to access
each element (field). For example, we can declare the following rectangle type with
record as follows:

record rectangle = centre :: R? 4+ width :: R + length = R + ori :: R ,
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If we use a 4-tuple R?> x R x R x R instead of record, we must use the expression
fst o snd o snd to access the third element in the tuple. With record as in the type
definition above, we can simply use length to obtain the third element of a rectangle.

For a term xs :: («)list, the expression hd(xs) :: a refers to the first element of the list
and tail(xs) :: (a)list is the list xs without the first element. Several important operators
related to lists are: 1.) concatenation of two lists xs and ys is denoted by xs @ys; 2.) length
of a list xs is denoted by |xs|; 3.) repeating an element x for n times is denoted by
replicate(n, x); and 4.) selecting the n-th element of a list xs is denoted by xs ! 1, provided
that n < |xs|. Sometimes, it is also useful to represent lists as sets. This is achieved via
the function set(xs), and it is not the same with the expression on the type level, i.e.,
(a)set; the previous is a function while the latter type constructor. Lastly, we use the
notation {exp | xy ...z. P} as a set builder. Here exp is the expression, variables x,y, ...z
are bound variables, and P is a predicate. For example, the Minkowski addition of two
sets A and B is writtenas {a+b |ab.a € A AN b € B}.

Apart from the predefined type constructors above, users can also define their own
types by using datatype keyword. For instance, in traffic scenarios, we can define the
collection of all obstacles as follows:

datatype obstacle = Left-bound | Right-bound | Car (i :: IN)

This new type obstacle consists of the left and right boundary of the road alongside with
other cars whose identifiers are labelled with natural numbers. Note that the usage
of keyword datatype for constructing a new type is similar to the notation used in
Backus-Naur Form (BNF) to describe the grammar of a syntax. One of most frequently
used, predefined type constructed in this fashion is the («)option type defined as follows:

datatype («)option = None | Some(x :: «) .

This type is useful to handle undefinedness in computation, and we show how we use
this type in the next section.

Terms. ISABELLE can be viewed as a functional programming language and hence its
terms are formed as in functional programming too: they could either be a constant,
a variable, a function application, or a function abstraction (Ax. t). As opposed to the
standard functional programming convention, function application is written not by
juxtaposing the function and its argument — as in f x y — but by classically placing a
pair of enclosing parentheses — as in f(x,y). This decision primarily serves the purpose
of increasing the readership of this thesis; seeing function application without clearly
distinguishing its function and argquments for the uninitiated could be unnatural and
challenging. Moreover, we rarely talk about currying in this thesis, and it does not hurt
to clearly separate a set of arguments with commas and to explicitly enclose them with
a pair of parentheses.




1 Introduction

One of the basic tools for handling complexity is the abstraction through naming (defi-
nition). Instead of writing the expression Aabc. b?> — 4 - a - ¢ everytime we need it, we
could name this expression as discr. In this thesis, definitions are written following the
standard mathematical notation “:=" such as discr(a, b, c) := b> — 4 -a - c. When we define
a function in mathematics, the expression could vary depends on a certain condition.
For example, determining whether the equation a - x> +b - x + ¢ = 0 has roots or not
can be checked via the following function:

True if discr(a,b,c) > 0,

has-root. =
as-roots(a, b, c) { False otherwise .

In this thesis, we simply write has-roots(a, b, c) := if discr(a,b,c) > 0 then True else False
— utilising the familiar and intuitive if-then-else construct found in many programming
languages. Another useful construct for handling complexity used in this thesis is the
let — in construct. For example, measuring the distance between two points py, p
R x R is defined as follows:

dist(p1, p2) = let dx = fst(p1) — fst(p2); dy = snd(p1) — snd(pz) in \/dx? 4+ dy? .

Given a type constructed via datatype, we can use the construct case to perform a
pattern matching. Suppose that we want to define a function to obtain an identifier for
an obstacle. This function has the type signature of traffic-id :: obstacle = (IN)option
and can be defined as follows:

traffic-id(o) := case o of Left-bound = None | Right-bound = None | Car(i) = Some(i).

Note that the expression above has to enumerate all constructors although we are
concerned only with Car; both Left-bound and Right-bound do not have identifiers. To
streamline the expression above, we can use the wildcard pattern ’_’" to denote “don’t
care” as follows:

traffic-id(o) := case o of Car(i) = Some(i) | _ = None .

Theorems. We use the double arrow ‘=’ to denote a deduction in 1SABELLE. Deduc-

tions are traditionally written in logic textbooks as a line separating the expressions

above (antecedents) and below (consequents) the line such as ANB

; this is equivalent
to AAB = A in 1SABELLE. In case there are multiple antecedents, we simply curry
them so that the last expression is the consequent and everything before the last ‘=" is

the antecedent. For example, the rule for introducing a conjunction is typically written
A B

as — 5 but we simply write A = B = A A B in 1sABELLE. Note that there is

another arrow — which is used to denote an implication. The following formalisation
of modus ponens rule in 1SABELLE clarifies the difference between — and —:

P—Q =P=Q0.




1.4 Preliminaries

Proofs. In a system development thesis, it is rarely the case that the detail source code
is provided and discussed; the description and the discussion happen on a higher level
of abstraction, i.e., the pseudocode. Similarly, we refrain from providing 1ISABELLE’s proof
for each proved theorem and only provide a proof sketch instead. The presentation of
the proof sketch most often follows the calculational style [30, 31, 32, 33]. The rough
format of the proof is shown as follows:

A

O { hintofwhy AOB }
B

O { hintofwhy BOC }
C

Typically, the placeholder [J could either be =, <=, or = where A = B if and only if
A = B and A <= B. After performing this calculation, we can deduce that ALJB due
to the transitivity property — provided that each step is valid. When [ is a series of <=
and = in the calculation, we are employing the technique of backward proof; it usually
starts with the formula we want to prove and ends with the constant True. When [ is a
series of = and =, we are utilising the technique of forward proof; it usually starts
with the antecedent of the premise and end with the consequent of the deduction. If
we want to prove by contradiction, we start with the negated formula and end with the
constant False.







Concretising safe distance

The notion of safe distance is very fundamental in formalising and monitoring traffic
rules. Traffic codes such as the Vienna Convention, the UK Highway Code, and the
German Straflenverkehrsordnung explicitly mention that a vehicle has to maintain a
safe distance to vehicles in front of it such that, whenever the vehicle in front brakes
immediately, there will not be any rear-end collision. Additionally, many other predicates
in traffic rules can be defined in terms of safe distance. Consider the first sentence in
StVO §5(4) about overtaking:

When changing the lane to the left lane during overtaking, no following road
users shall be endangered.

According to the legal experts whom we consulted during a legal analysis process, the
predicate ‘endangered” has the interpretation that, when it starts to move to the next
lane, the ego vehicle must leave a safe distance for the vehicle behind in the next lane.
Consider also the last two sentences in the overtaking rules:

The driver who overtakes has to change from the fast lane to the right lane
as soon as possible. The road user being overtaken shall not be obstructed.

The predicate ‘obstructed” is interpreted again — according to the legal experts — as
not giving sufficient (safe) distance to the vehicle being overtaken. Even the predicate
‘as soon as possible’ is interpreted as the earliest time a vehicle has leave a safe distance
to the vehicle being overtaken.

Admittedly, not everybody shall agree with the interpretation of ‘endangered” and
‘obstructed” with leaving safe distance with respective vehicle. The Vienna Convention
§7(4), for example, also mentions that a vehicle shall not cause noise, raise dust or
smoke which could also be the interpretation for ‘endangered” and “obstructed’. The UK
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2 Concretising safe distance

1 1
lane 1 ' '
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ane Vehicle ' e Vehicle oo
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5o

Figure 2.1: Scenario for safe distance problem.

Highway Code also strongly prohibits road users to throw anything out of a vehicle, e.g.
food, food packaging, cans, papers, or carrier bags — which “could endanger [emphasis
mine] other road users, particularly motorcyclists and cyclists”(rule 147). However, as
emphasised in the introduction, this thesis considers only the motion planning aspect
of autonomous vehicles, hence, events such as causing noise, raising smoke, throwing
papers are abstracted away. Therefore, I argue, the only sensible interpretations of
‘endangered” and ‘obstructed” are those which depend on the notion of safe distance.

The main objective of this chapter is to define a sound-and-complete, concrete safe
distance expression. In reality, it is impossible to guarantee with 100% certainty that
a distance is always safe; certain assumptions must hold. This chapter assumes that
vehicles move according to the point-mass model (Sec. 2.1) which allows us to formulate
the stopping distances for the ego vehicle and the vehicle in front. These expressions are
then used as bases for case analysis (Sec. 2.2) to decide whether a collision will happen
in each case or not. This case analysis, in turn, serves as a guide to design a checker
(Sec. 2.3) which is proved to be sound and complete. We also extend the checker safely
to deal with the limited precision in floating-point numbers (Sec. 2.4).

This chapter describes joint work with Fabian Immler and Matthias Althoff [34].

2.1 Modelling the safe distance problem

Figure 2.1 illustrates the safe distance problem considered in this thesis. The scenario
consists of two vehicles: the ego vehicle and the closest vehicle in front of it—which we
term the front vehicle. This scenario is uniquely characterised by six constants: s%, ve, e ::
R from the ego vehicle and s?, vs, a5 : R from the front vehicle. Constants s°,v,a denote
the initial position, initial speed, and maximum deceleration value, respectively, of a
vehicle. Note that sJ denotes the frontmost position of the ego vehicle, while sf denotes

12



2.1 Modelling the safe distance problem

the rearmost position of the front vehicle. Additionally, we also make the following
assumptions:

Assumption 2.1. The values of v, and vs are non-negative: 0 < v, A 0 < vy
Assumption 2.2. The values of a. and a, are negative: a, < 0 N a, < 0.

Assumption 2.3. The front vehicle is indeed located in front of the ego vehicle: s < s}).

The first assumption is assumed so because we are only considering highway scenarios,
in which case driving backwards is prohibited. The second assumption is only a matter
of style; one could also assume that the value of maximum decelerations to be positive,
but it would change the expression % -a-t2in (2.1) into —% -a - t2. We assume the values
to be negative in order to make the signs, i.e. addition, uniform in (2.1). The third
assumption is self-explanatory; it is the mathematically precise way to define a vehicle
being a front vehicle.

The point-mass model specifies the movement of a vehicle p :: R = R with a second-
order Ordinary Differential Equation (ODE) p”(t) = a and initial value conditions
p(0) = % and p’(0) = v. The closed-form solution to this ODE is as follows:

p(t) = so—i—v-t—i—%a-tz, (2.1)
p'(t) = v+a-t. (2.2)

Since (2.1) is a quadratic equation, it has the shape of a parabola when a # 0. This fact
implies that a vehicle would move backward after it stops — which is not the case in
reality. Hence, (2.1) is only valid for the interval [0; tsiop] Where fstop is the stopping
time. The stopping time tsop is the time when the first derivative of p is zero, that is,
i (tstop) = 0. Substituting t with tsp in (2.2) results into the following expression for
tstop:

stop — _9
$stop — (2.3)

Thus, we can extend the movement p of (2.1) by introducing discrete jumps (the decel-
eration makes a jump from a < 0 to a4 = 0) into the overall movement s; for the front
vehicle as follows:

s(f) if t <0,
si(t) = pe(t)  if 0 <t < P, (2.4)
pe(£5P) if (P <t

where py is p in (2.1) with variables s°, v, and 4 are instantiated by s, v5, and a, respec-
tively; the term t?mp is interpreted similarly too (see Fig. 2.2). Hence, after t?tOP the
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2 Concretising safe distance

vehicle will stop at!

2
_—f
2 ag
Two important lemmas for the movement of the front vehicle is about monotonicity and
maximum at stopping times.

Sstop = g (tstop) 0

Lemma 2.1. tH <th = Sf(tl) < Sf(tz) and Sf(t) < Sf(tjsrtop)

Proof. There are three sets to consider: (—oo,0], [0, t?toP], and [t?t(’p, o). We first assume
that both t; and t, belong to one of these sets. If both t; and t, are on either the set
(—00; 0] or [t?mp,oo), it is obvious that t; <t = s¢(t1) < s¢(t2) because s¢(t1) = s¢(f2)

according to (2.4). Next, we show that p; is non-decreasing in [0, t?mp] as follows:

pe(t1) < ps(ta)

<= { unfolding py according to (2.1) }
0tovpty+ioap B < SV tovptatloap

<= { arithmetic }
0<ovp-(ta—t)+3-ag- (13 —13)

<= { assume 0 < t; — ty; divide both sides with t, — t;;

identity a> —b* = (a+Db)- (a—b) }

0<oi+3-a (b +h)

<= { arithmetic; assumption a; < 0 }
o+t < -2

ag
<= { arithmetic; (2.3) }

b <P At <P

<= { assumption both #; and ¢, in [0; t?wp] }

True

If both #; and t; belong to the set [0, tlfmp] and t; < t, we can deduce s¢(t1) < s¢(t2)
because s¢(t1) = ps(t1) < ps(t2) = s¢(t2) according to (2.4) and the result that p¢ is non-
decreasing in [0, t?wp] above. We omit the proof for the case that t; and f, straddle on
adjacent sets as it is obvious that s¢ is non-decreasing in this case. With this monotonicity,
it is easy to see that s¢(t) <'s f(t?mp) in case t < t;’tOp . If this is not the case, then we have

se(t) = sf(t?mp ) <s f(tfmp) according to (2.4). O

One might be tempted to use the same model of movement for the ego vehicle, but
the ego vehicle in reality cannot react instantaneously when the front vehicle performs
an emergency brake. There will be a slight time delay until the ego vehicle — be it an

INote that Assumption 2.2 specifies the value of a; to be negative.
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tsto
04 I ¢
discrete discrete
jump jump
a
maximum
deceleration
P (tstop )

50

Figure 2.2: A typical plot of deceleration and overall movement of the front vehicle over
time.

automatic vehicle or a human driver — perceives the situation and reacts accordingly by
performing an emergency brake. To cater for this phenomenon, the overall movement
of the ego vehicle is extended from the overall movement of the front vehicle by
parameterising (2.4) with a reaction time delay ¢ as follows:

sg ift<o0,
0 P ifo<tE<§,
se(f) ;= (e TO B OSSO, (2.6)
pe(t—206) if 6 <t <5487,
pe ((2F) if 64+ £F <t
After tZtOp, the ego vehicle will be positioned at:
stop stop 0 Ug
Se = = Se(te ©) = Sa+Ve:-0— 2.7)

Z'ae

Similarly to Lemma 2.1, the property of monotonicty and maximum at stopping time
also hold for the movement of the ego vehicle.

Lemma22 tH <t, = s,(t) <se(tr) and s.(t) <se ()

The proof for this lemma is similar to that of Lemma 2.1 and hence we omit it here.
Note that (2.6) is sensible only for non-negative reaction time. One might argue that this
is, of course, a self-evident truth. However, this is part of the modelling of a real world
phenomenon which we cannot proved in 1sABELLE. Thus, we state it as an assumption
as follows:

15



2 Concretising safe distance

Assumption 2.4. Reaction time 0 is positive, that is, 0 < 6.

According to these two movement models, a collision will occur if we can find a future
time f such that s. t = s, t. To generalise this predicate, we define collision over a set of
real numbers T :: (R)set as follows:

collision (T) := (3t € T. se(t) = s0(t)) . (2.8)
Equipped with these definitions and assumptions, the objective of this chapter — finding

a sound and complete safe distance expression — can be formalised as finding a term
safe-distance such that?:

s) —sY > safe-distance =  —collision |0; o) , SOUNDNESS
—collision[0;00) == s —sY > safe-distance . COMPLETENESS

In principle, we can use quantifier elimination techniques for real arithmetic [35, 36,
37] in order to obtain the safe distance expression such as those implemented in
modern computer algebra systems (CASs); there is even a proof-producing procedure
implemented in the HOL-Light theorem prover [38]. However, our eight-variable
formula appears to be too complex for HOL-Light’s quantifier elimination procedure.
Therefore, we have to find this expression manually with an interactive theorem prover
(Sec. 2.2). This makes the results more robust against changes in the formalisation and
more readable compared to those from CASs’.

2.2 Logical analysis of the safe distance problem

A convenient way to find safe-distance is by overlaying two plots of vehicle’s movement
in the same graph (see Fig. 2.3) and deduce graphically, and mathematically, whether
there is a collision, a collision freedom, or neither. For example, if we assume that the
ego’s stopping position lies below the front vehicle’s initial position, we can intuitively
see that there will be no collision. Likewise, if the ego’s stopping position lies above the
front vehicle’s stopping position, there must be a collision. From these two observations,
we can conjecture that certain configurations of stopping positions might cause collision.
We therefore need to analyse all possible configurations and, in case of collision freedom,
hope that the deduction can fit to the pattern in the soundness condition. That is
properly moving terms s? and sY to the LHS and remaining terms to the RHS of the
inequality; whatever remains in the RHS must be the safe distance.

2Note that, for readability purpose, the parentheses surrounding the argument of collision are omitted
when the argument is an interval.
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2.2 Logical analysis of the safe distance problem

Figure 2.3: Overlay of plots between a fixed movement of the front vehicle (black) and
different movements of the ego vehicle (coloured).

We can group all possible configurations of stopping positions into five cases (see
Fig. 2.3). The first (second) case is when ego’s stopping position is below (above) the
initial (stopping) position of the front vehicle. The rest of the cases are when ego’s
stopping position is in between the initial and the stopping position of the front vehicle.
One delineating factor for the remaining three cases is whether at t = § the position of
the ego vehicle has already been on the above of that of the front vehicle; intuitively
this means a collision must have already happened (case three). When this is not the
case, we can ignore what has happened in [0, ) and focus solely on what could happen
in |4, ). Inspired by case one, case four (five) is characterised by the condition the
stopping position of the ego vehicle is lower (higher) than the position of the front
vehicle at t = 6.

Theorem 2.1 (All possible cases for safe distance problem.).

P < s}) (cAsE 1)
V s;mp < szwp (casE 2)
Vs < I < s;mp A sp(6) < s (6) (cASE 3)
Vo8 < TP < s;mp A se(8) <s7(8) A sp ¥ < s¢(0) (CASE 4)
v s}) <57 < s;wp N 8¢ (0) < () A sr(8) < sorer (case 5)

We can see intuitively that there is no collision in casg 1. This is formalised by the
following theorem.

sto

Theorem 2.2 (Case 1). s, < 5]9 = —collision |0, o)
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2 Concretising safe distance

Proof. This is true because se (t) < s¢(t) holds for every time t > 0. That is, s, (t) <
se (£2%F) = s3P < s? = s (0) < s¢(t) due to transitivity, the premise, monotonicity of s;

(se), and the maximum at the stopping time Lemma 2.1 (2.2). O

The Intermediate Value Theorem (IVT) — readily available in the theory of Analysis in
ISABELLE’s library — will be helpful for the next case.

Lemma 2.3 (Intermediate Value Theorem). Suppose that the predicate isCont(f, x) evaluates
to true for function f that is continuous at x, then the following property holds.

fla)<y = y<flb) = a<b = (Wx.a<xAx<b— isCont(f,x) =
Jx.a<xAx<bAf(x)=y

Equipped with this lemma, we can prove the following theorem which asserts the
occurrence of collision in CASE 2.

Theorem 2.3 (CASE 2). s;mp <s¥% — collision|0,0) .

Proof. We first define a time b := max{tzt(’p, t?wp} in which both vehicles are guaranteed

to stop already, and a function f :: R = R where f := A7.s¢(T) — s¢(T) which represents
the difference between the positions of the ego and the front vehicle. Since we have

1. f(0) <0 due to Assumption 2.3;
2. 0 < f(b) due to premise s?tOp < s9°F;
3. 0 < b due to the definition of stopping time in Eq. (2.3), Assumptions 2.1 and 2.2;

4. isCont(f,x) for x € |0, b| because the difference of two continuous functions is also
continuous;

we can deduce collision |0, b] with IVT in Lemma 2.3 by substituting a with 0; hence
collision [0, 00) since [0, b] C [0, c0). O

This theorem confirms our conjecture that, if at some point the position of the ego
vehicle is above that of the front vehicle, there must have been a collision previously. In
CASE 2, this time is either the stopping time of the ego or the front vehicle — depending
on which one stops later. If we look at case 3, we can see that at t = J, this condition
also holds and hence we can deduce collision in this case too.

Theorem 2.4 (CASE 3). S}) <t < S;mp = $f(6) < se(8) = collision |0, c0)
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2.2 Logical analysis of the safe distance problem

Proof. By defining b := ¢ and using the facts that 0 < f(b), due to the premise s¢(d) <
se(d), and 0 < b due to Assumption 2.4, we can deduce collision |0, 00) by using the same
proof template in Theorem 2.3. ]

Figure 2.3 has a horizontal dashed line at s¢(J) to separate case 4 and 5. If we focus
on the time where 6 < t, the behaviour of the ego vehicle in cAsE 4 becomes similar to
that in cask 1. Indeed, we can deduce collision freedom in this case too; the following
lemma will be helpful for proving collision freedom in CASE 4.

Lemma 2.4 (Upward opening quadratic function). Suppose that we have a quadratic func-
tion p :: R = R defined as f = Ax.a-x>+b-x+c. If we can find x,y, and z such that
f(x) > f(y) but f(y) < f(z), then a must be positive.

dxyz.x<yAy<z A f(x)>fy) AN fly) < f(z) = a>0

The proof for this lemma is omitted since it can be proved automatically with SOS
(sum-of-squares) technique available in 1sSABELLE. This is true intuitively because, if p
opens upward, — p(x) > p(y) but p(y) < p(z) for x < y < z — then the first derivative
will change from negative to positive; this requires the second derivative — thatis 2-a
— to be positive.

Theorem 2.5 (CASE 4). 519 < s < s;mp = 5.(0) <sd6) = I < si(6) =
= collision [0, o0)

Proof. Firstly, the time set [0, o0) is divided into three disjoint sets [0, 0], (0,J) and |4, c0).
From Assumption 2.3, we know that there is no collision at 0, i.e. —collision|0,0]. By
using the same proof template as in Theorem 2.2, we have — collision |4, 0). Hence, we
only need to prove —collision (0,5) which we are going to prove by contradiction.

Assume that collision (0,) is true. Then there is a t such that 0 < t At < J A se(t) = s¢(t)
which, after unfolding the movement according to (2.4) and (2.6), becomes f(t) = 0 with
fr=Ax. 3 ag- x>+ (v —ve) - x + (s — s¥). Since £(0) > f(t) — by simple substitution
and Assumption 2.3 — and f(t) < f(6) — from premise s.(J) < s¢(J), deceleration a;
must be positive according to Lemma 2.4, which contradicts with Assumption 2.2. Thus,
we have —collision (0, 9). O

Up until now, we can deduce either collision or collision freedom. case 5 unfortunately
is more challenging because the premises are not strong enough to deduce collision or
collision freedom. Before we prove the theorem for cask 5, it will be easier for now
to ignore the reaction time and reconsider this later. By ignoring reaction time, the
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2 Concretising safe distance

Figure 2.4: Case where the reaction time is ignored and the ego vehicle has stopped
before the front vehicle.

movement of the ego vehicle becomes similar to that of the front vehicle (Eq. (2.4)):

s? ift<o0,

Se(t) = S pe(t) i 0 <t < £P, (2.9)
pe(t2P) if 2P <t .

After £2°P, the ego vehicle will be positioned at

stop stop 0 03

A . A _ e

S = 1= Se(te )_Se_z.a ,
e

and the collision predicate is also slightly modified to
collision-no-react (T) := (It € T. 8e(t) = so(t)) .

One important property in cAsE 5 is that a collision at time ¢ will happen when, and
only when, both vehicles have yet to stop, that is, t < min {tZtOP, t?tOP}. This is convenient
because, in order to find a collision time, the movement of both vehicles s¢ and §. in

collision-no-react can be safely replaced by pf and pe, respectively.

stop

Lemma 2.5. In case sj? <& < s¢ ' is true,a collision will happen before both vehicles stop.

collision-no-react [0, 00) <= collision-no-react <O, min{tzwp, £1F })

Proof. The ‘if’ part of the lemma is true because the predicate collision-no-react is ‘mono-
tonic” with respect to subset relation.

SCT = (collision-no-react (S) — collision-no-react (T))
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2.2 Logical analysis of the safe distance problem

As for the ‘only if” part of the lemma, we first note that if a collision happens at time ¢
while one of the vehicles has already stopped, then it must be the ego vehicle which has
stopped (P < b). Additionally, we have sf(tZtOp) < 5e(£2°P) because 1) sf(tzt()p ) < s¢(t)
due to s¢ being monotonic according to Lemma 2.1; 2) s¢(t) = 3¢(t) due to the definition
of collision; and 3) $c(t) = 5c(t:P) due to the previously deduced fact that the ego

vehicle has already stopped (See Fig. 2.4).

By instantiating f := Ax. 8(x) — s¢(x) with a := 0,y := 0,b := £2°P in the Intermediate

Value Theorem (Lemma 2.3), we are guaranteed to find a witness x where f(x) = 0 and
x € [0, £2°P] since 1.) f(0) <0 due to Assumption 2.3; 2.) 0 < f(thp) due to the fact
se(£e°P) < 8.(£2°P) obtained previously; and 3.) f is continuous in |0, t2°P]. Hence, by
unfolding the definition of f and the facts that there is no collision at 0 and 2 ¥, we can

deduce collision-no-react (0, min {£3°F, t?mp}). O

The following theorem characterises the condition for ensuring a collision in CcASE 5
when the reaction time is ignored.

Theorem 2.6. When the conditions sj? < 3% and s} < s;mp are satisfied, the following
equality holds.

collision-no-react [0,00) <=

(vf — ve)?
2 (ar— a)

ar>a, N v <v A s})—sg<

A B < tjit“” (2.10)

Proof. For the ‘if” part, condition on the RHS of the bi-implication ensures the existence
of a root to ps — pe. That is, after unfolding the definition of p¢ and p. and rearranging
the terms, we have quadratic equation (s{ — s) + (vf — ve) - £ + % - (ag — ae) - t* = 0 whose
discriminant D := (vf — ve)? — 2+ (a5 — ) - (s — s0) is guaranteed to be at least zero,
0 < D (see the first and the third conjunct in RHS). With Lemma 2.5, it is guaranteed
that there must be a solution x which is at most fo°F and t?mp. Hence pe(x) = ps(x)

implies §e x = s¢x in which case x is the witness to collision-no-react |0, o).

For the ‘only if” part, we know that from collision-no-react|0, o), we can obtain a root
t with s¢(t) — 8e(f) = 0. Then, Lemma 2.5 allows us to deduce p¢(t) — pe(t) = 0 and
Lemma 2.4 (for Po — Pe at times 0 < t < min{tzt()p, t?tc’p}) yields a; > a.. This gives —
together with the fact that the discriminant of ps — p. is nonnegative — the remaining

conjuncts after some arithmetic manipulations and reasoning. O

If we compare Fig. 2.3 and Fig. 2.4, we can see that the behaviours of both vehicles
in cAsk 5 after t > ¢ in the former figure is the same with those in the latter figure —
with certain values modified properly. This is the main reason why we analyse CASE 5
without considering the reaction time first; it allows us to separate the analysis into two
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2 Concretising safe distance

time sets: |0,0) and [0, ). The following theorem provides the condition for collision
(freedom) in CASE 5.

Theorem 2.7 (CAsE 5). By defining

58 < B
¢r = s o (2.11)
0 otherwise
and ijwp = —%, 0f 1= s¢(6), and 07 := 57 + v - 5, we have
s}) <si% < s;mp = 8.(6) <sp(0) = sp(d) < 57 =
2
.. 0 0 (¢f — Ve) stop stop
CO”ISIO”[0,00) < (ﬂf>ﬂe/\('bf<vg/\af—(76 Sm/\tg <Fl}-

Proof. For |0,6), we can use the same reasoning as performed in case 4 to deduce
—collision|0,5). Hence collision|0,c0) if and only if collision|d, o). If we assume that
0 < t?wp, then the speed of the front vehicle at t = 6 is ¢y = v¢ 4 a¢ - 6 (obtained from
the first derivative of ps in (2.4)), and the position of the ego and the front vehicle are
09 = 0+ v - 6 (obtained from (2.6)) and UP = s5¢(J) (obtained from (2.4)), respectively.
By using Theorem 2.6, we obtain

2
- -0
collision |5, 00) <= (gf > e A ¢ < e /\ng _ g < M A tztop < Tfstop) ’

and hence the conclusion in this theorem. When t?mp < 4, then the front vehicle has
stopped already in [, c0). By monotonicity in Lemma 2.2, we have for all ¢t € [J, o),

se(t) < $JMOP gStoP S?top (from the premise) and hence —collision |5, c0) if t?mp < 4.

Evaluating ¢¢ in Eq. (2.11) results in Tfs P — (0 and the conjunct tit()p < T;’ P hecomes
false (because stopping time is positive according to Assumption 2.1 and 2.2). Hence,

we have shown the conclusion in this theorem for t?toP < 0. O

2.3 Designing a sound-and-complete checker

Table 2.1 summarises the logical analyses performed for each case specified in Theo-
rem 2.1. As our first objective is to prove the SOUNDNESss of a checker, we will consider
cases where collision freedom can be deduced only; the rest will be useful for proving
the COMPLETENESS.

In CASE 1, we can rearrange the deduction by unfolding the definition of s¢ ¥ in (2.7) as

follows: )
V- > ge-d— 2Uea —  —collision|0; o) . (2.12)
cUe
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2.3 Designing a sound-and-complete checker

Table 2.1: Summary of whether collision (freedom) can be deduced in each case.

Case Deduction Reference
1 collision freedom Theorem 2.2
2 collision Theorem 2.3
3 collision Theorem 2.4
4 collision freedom Theorem 2.5
5 conditional Theorem 2.7

Comparing this with the pattern in (SOUNDNESs), we obtain our first safe distance
expression as follows:
2
Ue
200
Similarly, we can also unify deduction in case 4 with the pattern in (SOUNDNESS).
However, instead of one, we obtain three expressions for safe distance — the first is

unified with premise s3P < s?mp, the second with premise s¢(6) < s¢(J), and the third

safe-distancey = Ve -0 —

with premise sztOP < 5¢(6). Theorem 2.5 can be modified as follows (assuming that
5 < 1P

safe-distance; safe-distance
0 ~ Stop 0_ 0 v vt 0_ 0 1 2
s < Sa ' = Sf—85.> Vel — +—— = 5{—5¢> (Ve —Vf) 06— 050
2-a, 2-a; 2
2
0_ 40 1 2 Ve i )
== sf—se>(ve—vf)-c5—§-af-(5 5. = = collision [0; 00) . (2.13)
e

safe-distances

Although there are three safe distance expressions here, we know that one is bigger than
the other two. We only prove safe-distance; > safe-distance; because the other is obvious.

Lemma 2.6. § < t;mp

— safe-distance; > safe-distance;

Proof. In case 6 = t?mp, we can simply substitute this equality and, after a series

of arithmetic manipulation, we obtain safe-distance; = safe-distance;. The following
calculation proves a stronger condition when § < t?wp holds.

safe-distances > safe-distance;

<= { unfolding the definition; arithmetic }

2
Uf
2~ﬂf

<= { breaking RHS; unfolding t?wp ; arithmetic }

—vf-é—%-af-y >
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2 Concretising safe distance

o6 —Loag- 0% > —vp 7P — Lo 7P

<= { regrouping }
0> v (6—£'P) + 1 -ag- (6 — (E°PP?)

<= { dividing both sides with § — StOP ;fact 6 < tsmp }
0<vp+4-a¢- (5 +£P)

<= { unfolding t‘f P, arithmetic }
o< tsmp

<= { premise }
True

We have proved, in each case, a stronger condition which can be weakened to the
conclusion safe-distances > safe-distance;. O

By using this lemma and the fact that safe-distance; > safe-distance;, Theorem 2.5 can be
simplified further into the following deduction.

N <si® = §<HEP = > safedistance; = collision|0;00) (2.14)

Together with the deduction in (2.12), we obtain the following temporary version of our
checker.

checkery =
let dist = sp, — Spe iN

if dist > safe-distance, orelse (§ < t?mp A dist > safe-distance;) then True

else undefined

Lemma 2.7. checker, is sound.

Proof. This checker is sound because, if it returns True, then it is either dist > safe-distancey
or dist < safe-distanceyg and 6 < t?tOp A dist > safe-distances. For the former case, it is
guaranteed to be sound due to (2.12), and the latter due to (2.14) — dist < safe-distancey
is the same with the first premise. ]

For cask 5, we negate both sides of the conclusion in the deduction as follows:

stop

s) < s < s?tOp = 5¢(0) <5¢(6) = 5¢(0) <se T =

- <af > e A P < Ve A Ufo — (Te < 2<¢éa Lz ] A tStOP < TStOp) <= —collision|0; 00) ,
f — Ue
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2.3 Designing a sound-and-complete checker

and apply De Morgan’s rule resulting in

0 (¢ — Ue)z

s¢ < s < s?wp — 5.(0) < s1(8) = s(0) <P = o —od >
2 (ag—ae)
stop

— (af > e N\ ¢ < Ve A £51P < T ) = —collision|0; o) .

N2
Unfolding the premise 0¥ — 00 > %" anq unifying it with the pattern in SOUNDNESS

2-(ag—ae)
results in the following safe distance expression (assuming § < t?tOp):

2
5 1
safe-distancey := (Uf; ((Z;f i a:))e> + (Ve —vf) - 0 — 5 ag- 6% .

Note that it is also possible to find unification with the term s < s?mp and s.(9) < s¢(9),
but these are safe-distance; and safe-distance,, respectively. By assuming a¢ > a,, it is
very easy to see that safe-distance; > safe-distance, due to the following equality:
(vg+ag-6— ve)z

2 (as — ae)

Lemma 2.8. af > a, = safe-distancey > safe-distance;

safe-distancey = safe-distance; +

Proof.

safe-distance; < safe-distancey
<= { unfolding definitions; multiplying both sides with 2 - (a; — a.) }
2 2
Ve 6-2-(ap— ae) — 2= - (ar — ae) + o= - (ag — 4e) <
(Vg +ag- 8 —ve)? + (Ve —vg) -6 -2 (ag — ae) — ag- 6% - (ag — ae)
<= { arithmetic }

(<525 (o <
(ag- G- 0°>—2 Ve Vg —2-a5-6 Ve +2-ac-0-0f) - (de - ag)
<= { arithmetic }
0 < (—Ve - g+ Vs - Ao + a5 - e - 5)?
< { property 0 < x? }
True O

With these two facts, we can simplify (and weaken) the deduction in caskg 5 into the
following deduction:

t t t .
sf<se? = s(0)<se? = 6<H T = s]—sl> safedistance, =

(af > e A\ P < Ve A tztOP < Tfmp) = —collision|0;0) . (2.16)
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2 Concretising safe distance

Finally, we can design the whole checker as follows:

checker =

let dist = s — 50 in

if dist > safe-distancejorelse (6 < Tfsmp A dist > safe-distance;) then True

elseif af > a. N\ ¢ < ve A tzt()p < TfStOp then

dist > safe-distance, else dist > safe-distance,

We prove the soundness and the completeness of the checker (with its supporting
lemmas) as follow:

Lemma 2.9. If (ar > a. A ¢y < v A £7 < Tfsw” ) is false, then the following deduction
holds.

(5§_5[stop = 47f<ve & 0§<_

U? (Uf—|- as- 5)2>
_.|_
2-4a, 2-af

Proof. We prove this lemma by cases: 1P < TfStOP and £g°P > T ‘P The following
calculation is the proof for the first case.

0< (~gk + tugaes)

2~Elf

<= { arithmetic }

otacof-(-3) < ()

<= { monotonicity of multiplication; Assumption 2.1 and 2.2 }

rtac o <ot A (-4) < (~)

f

t t . . . .
< { case 2P < Tfs P premise ¢ < ve, assumption in this lemma (for the

second conjunct) }
(vg +ag-6)*> <02 A True
<= { square root on both sides of the first conjunct }
(vi4as-0) <ve N 0 < (vs+ag-0)
<= { premise ¢ < v. and unfolding ¢5 }
0 < (vs+ag-9)
<— { dividing both sides with —as, unfolding Tfs tOP, assumption 0 < 4 and
premise 6 < Tfs top }
True
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2.3 Designing a sound-and-complete checker

The following calculation proves the second case.
v2 (vgtagd)?
0< (-5 + gl
<= { arithmetic }

vgt-ag-d 0,
= X (et ag- 0) < — 7 X Ve

<= { monotonicity of multiplication }

—M<—Z—Z A (vs+ag-6) <ve N 0<vs+as-6

=
<= { premise ¢ < v, and last step in previous calculation }

—%?f"s < —% A True A True
e

— { folding £2F and T Py
Tfstop < tztop
<= { condition in this case }
True O

Lemma 2.10. If (ar > a, N ¢y < 0o A £ < I}St(’p ) is false, then the following deduction
holds.

0

5§Tfstop — sf—sg>safe—distance1 = Pr<v. = 5e(J) < sf(9)

Proof.

True
= { arithmetic }

2 5\2
safe-distance; = safe-distance; + (—2”72 %)
e f
= { premise § < Tfs op , case ¢ < Ve, assumption in this lemma, and
Lemma 2.9 }

safe-distance; > safe-distance;

—>  { premise s{ — sQ > safe-distance,; transitivity }

s(f) — s > safe-distance,
=  { folding se and s; with 6 < 77 P}
se(6) < s¢(6) .

Lemma 2.11. If (ar > a. N ¢y < v, A 57 < Tfswp ) is false, then the following deduction

holds.

0

5§Tfst0p = sf—sg > safe-distance; =— v, < ¢y = Se(9) <sf(5)
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2 Concretising safe distance

Proof.

Oe < (Pf
—>  { multiplying both sides with J and 0 < § from Assumption 2.4;
unfolding ¢ }

Ve 0 < vp- 6+ ag- 6%
—>  { adding s to LHS and s? on RHS with s < s? according to
Assumption 2.3 }

S0+ 06 < s+ vp- 6+ ag- 62
= {a-8< % - ag - 6% because a; < 0 A 0 < § according to Assumption 2.2
and 2.4 }

Sg+ve_(5 < S?+0f.(5+%.gf.(52
—  { folding se and s; with 6 < 7/ oP }
se(d) < s¢(9) -

Theorem 2.8. checker is sound.

Proof.

1.

The checker is equal to True only if either of the following three cases is satisfied.

The condition in the if is true.
The soundness argument for this case is the same with that in Lemma 2.7.

. The condition in the elseif is true and dist > safe-distancey.

In this case, the deduction in (2.16) ensures the soundness. Most of the premises
can be seen to be true immediately; we only have to show that the first three
premises hold. The first and the second premise hold because the first is equal
—(dist > safe-distancep) and the second is equal to —(dist > safe-distance3) — the
condition in the elseif is evaluated only if the condition in if is false. The premise
§ < £2°P must be true because otherwise ﬁ(tzt()p < Tfs top).

The condition in the elseif is false and dist > safe-distance;.

The soundness is based on Theorem 2.7. Since the condition in the elseif is false,
there will be no collision provided that the premises in Theorem 2.7 hold. Premise
s? < sZtOp and s¢é < sffOp hold with the same reasoning as in the previous case.
Premise sZtOP < s?tOp is equal to dist > safe-distance; — which is ensured in this case,
while se(6) < s¢(6) is proved by distinguishing two sub-cases: 7, P < §oré < T P
For first sub-case, the goal s¢(6) < s¢(6) is equivalent to s? —sJ > ve -6 + 2%, which
is true because

0.0 vz % U%
s¢ — s, > safe-distance; = Ve -6 — —= —L > 0.0+ 1.
£ e ! ¢ 2-a0 2-a; — ¢ 2 - a¢
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2.4 Sound and executable checker using interval arithmetic

In the second sub-case, the goal s¢(J) < s¢(J) is also true because of Lemma 2.11
and 2.10. O]

Theorem 2.9. checker is complete.

Proof. We prove this theorem with proof-by-contraposition technique. That is, we
assume that the checker is equal to False and deduce collision thereafter. If the condition
in the if is true, it will always be equal to True. Since we assume that the checker returns
False, this cannot be the case:

dist < safe-distancey N (6 < Tfs P s dist < safe-distances) (2.18)
The checker is equal to False only for the following two cases:

1. The condition in the elseif is true and dist < safe-distance,
For the first case, note that § < Tfs top ; otherwise the conjunct tZtOP <
to tZtOp < 0 and this contradicts with Assumptions 2.1 and 2.2. From this, it follows

_ 2
that dist < safe-distance, is equal to the conjunct o — 02 < z((l?affiz)e) in Theorem 2.7.
With the conjuncts in the elseif, we can deduce a collision from Theorem 2.7,

provided that we can show the premises hold. The premise s < seP is equal

stop .
T s equal

to dist < safe-distancey which is true according to 2.18. Premises szt()p < s?tOP and
Se(6) < s¢(d) cannot be deduced in this case. If these are the case, then Theorem 2.7
with second conjunct in (2.18) (for premise s¢(J) < sZtoP) guarantee a collision;
otherwise Theorem 2.3 and 2.4 guarantee a collision.

2. The condition is the elseif is False and dist < safe-distance;; a collision is guaranteed
according to Theorem 2.3 in this case. O

2.4 Sound and executable checker using interval arithmetic

The sound-and-complete checker defined previously operates with real numbers datatype
R and by definition they have infinite precision; the results of arithmetic operations
such as addition, subtraction, multiplication, and division are exact. This means that
the soundness and completeness theorems in Theorem 2.8 and 2.9 have the implicit
assumption that every variables such as position, speed, and acceleration can be rep-
resented and manipulated with infinite precision. Therefore, simply replacing reals
with floating-point numbers IF — the usual way of “representing” reals in computers
— in checker does not have the formal guarantee of the soundness and completeness
conditions anymore.

IsABELLE is equipped with approximation package [27] to deal with the implementation
(approximation) issue of functions which deal with reals datatype. The idea is to
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2 Concretising safe distance

represent each real term with either an interval, F x [F, or an affine form [39] — written
as [F aform — and lift each arithmetic operation accordingly and soundly. For example,
the addition of two reals 4,b :: R is lifted into the addition of two corresponding
intervals |a;; a,|, [b;; by| =2 F X FF as follows:

la;; au] + [br;bu] = |41+ b0, +by] .

This lifted addition is sound; that is, the addition of a € [a;;a,| and b € |b;; b,] is con-
tained in the RHS of the equality above. Not only arithmetic operations but inequalities
(predicates) must also be lifted properly and correctly. For example, the ‘less than’
predicates a < b is lifted as follows:

[[ll;ﬁlu] < [bl;bu] < a; < bl .

ISABELLE’s approximation function approx-form requires two arguments: precision (of
type IN) and function to be approximated. The first argument — as the name suggests —
controls the precision of variable-precision arithmetic operations which will be executed
by code (such as SML). The second argument is the concrete syntax of type form defined
according to the following snippet of formalisation from [27].

datatype floatarith = Add floatarith floatarith
| Minus floatarith
| Mult floatarith floatarith
| Inverse floatarith
| Var nat
| Num float

datatype form = Less floatarith floatarith
| LessEqual floatarith floatarith

The concrete syntax of the function to be approximated can be obtained by using
Chaieb’s generic reification mechanism [40] according to the following interpretation
functions [27].

definition interp_fa :: "floatarith => real list => real" where
"interp_fa (Add a b) vs = interp_fa a vs + interp_fa b vs"
"interp_fa (Minus a b) vs = interp_fa a vs - interp_fa b vs"
"interp_fa (Mult a b) vs = interp_fa a vs * interp_fa b vs"
"interp_fa (Inverse a) vs = inverse (interp_fa a vs)"
"interp_fa (Var n) vs = vs ! n"
"interp_fa (Num f) vs = f"

30



2.4 Sound and executable checker using interval arithmetic

definition interp_ie :: "form => real list => bool" where

"interp_ie (Less a b) vs interp_ie a vs < interp_ie b vs"

"interp_ie (LessEqual a b) vs interp_ie a vs <= interp_ie b vs"

2
For example, reifying sf — s0 > Vo0 — 27.]; in ISABELLE — with se,sf,ve,é and a.
represented by se, sf, ve, d, and ae — will give us the following concrete syntax.

term "(Less (Add (Mult (Var 4) (Var 5))
(Minus (Mult (Mult (Var 4) (Var 4))
(Inverse (Mult (Var 3) (Var 2))))))
(Add (Var 1) (Minus (Var 0))))
[se, sf, ae, 2, ve, d]"

The approximated version of checker can then be defined as
checker-approx (prec) := approx-form (prec) (checker-concrete) ,

where checker-concrete :: form is obtained by reifying checker in Sec. 2.3 with the follow-
ing soundness theorem.

Theorem 2.10. If S, V,, A, S, Vi, Ar, A i IF X TF are the intervals (of floating-point numbers)
in which actual values of position, speed, maximum deceleration (of both the ego and the front
vehicles), and the reaction time are guaranteed to lie, then

checker-approx prec S, V, A, SViArA = —collision [0; o0) .

A direct consequence of using approximation is that, if the checker is equal to False,
it could either mean that it is really unsafe collision |0; o) or the precision is not ad-
equate to deduce collision freedom — hence we cannot guarantee the completeness
of checker-approx. This is generally acceptable from engineering perspective because
ensuring collision freedom (SOUNDNESS) is more important than deducing collision
(COMPLETENESS).

As an example, we use the data from [34] which in turn are obtained from the Next
Generation Simulation (NGSIM) project of the U.S. Department of Transportation Federal
Highway Administration (FHWA) as follows:

definition Se where "Se = float_ivl prec 0" (* in ft *)
definition Ve where "Ve = float_ivl prec 45.00" (¥ in ft / s *)
definition Ae where "Ae = float_ivl prec (-25.72178)" (¥ in ft / s / s *)
definition Sf where "Sf = float_ivl prec 66.97" (* in ft *)
definition Vf where "Vf = float_ivl prec 38.66" (¥ in ft / s *)
definition Af where "Af = float_ivl prec (-22.50656)" (¥ in ft / s / s *)
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2 Concretising safe distance

definition D where "D = float_ivl prec 1" (¥ in s *)

theorem '"checker_approx prec Se Ve Ae Sf VEf Af D" by eval

The function float-ivl above is a function to convert a rational number — ISABELLE can
parse numbers such as 66.97 automatically into 6697 / 1000 — into its corresponding
interval of type IF x IF with respect to a certain precision prec. As can be seen, we prove
in IsABELLE level that the checker is true with the given values, and the proof method
eval indicates that it is proved via code generation [41].

2.5 Related work

In this section, we compare the formalisation with results from the domain of trans-
portation engineering and formal verification. In general, all related works discussed
here except the work by Goodloe et al. [42] are incomplete, and those in the domain of
transportation engineering (discussed here) are not formally proved.

Transportation engineering. Doi et al. [43] and Seiler et al. [44] define the safe distance
as follow:

2 2
v v
safe-distance = et )40 Th+ (vf —ve) - To +do , Do1 ET AL.
2-0ae 2 - ag
2 2
safe-distance = e __F ) 4o.-T+d . SEILER ET AL.
2- e 2- ag

Both equations have been modified so that they matches with the notations and assump-
tions used in this thesis>. Symbols T7, T, and T denote system delay, reaction time, and
its combination, respectively, while dy denotes additional headway distance to make the
safe distance definition more conservative. As can be seen from Eq. (2.13), these two are
very similar to safe-distance;. If we include additional headway distance, safe-distance
is exactly the same with Seiler et al’s.

Qu et al. [45] analyse the safe distance problem by applying a technique from molecular
dynamics. Unlike the case distinction in our work, they have three cases which depend

3Both works assume that the maximum deceleration has positive value while this thesis assumes that it
has negative value.
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on the relationship between v, and v,.

’ve‘5+7(”e‘§f)'“+—%+§—ff+d if ve > vf
Ue“s"‘vzi(a%_a%)‘Fd if ve = vs
safe-distance = { vo - T — Ge (vf + a1 _ ve> +
ag 2
acceleration part
(Ue 0 — UE_ZU_Z'CT'”8> + <v%720.ng'af> +d if ve < vg

\

Their notion of safe distance for case ve > ©vf and ve = vf matches exactly with
safe-distance; in Eq. (2.13), if we ignore the headway distance d and build-up time
T. However, their notion of safe distance when v. < vf does not match with any of the
definitions of safe distance in this thesis due to different assumptions. They assume that,
when v, < v¢ holds, the ego vehicle is assumed to accelerate until v. = v and, only after
that, the ego vehicle performs braking. However, if we do not consider the acceleration
part, their definition of safe distance in the third case matches exactly with safe-distance
provided that, again, we ignore the headway distance d and build-up time T.

A more detailed analysis for the safe distance problem is given by Chen et al.[46]
They structure their analysis based on three questions: (1) whether it is a single lane
or multiple-lane scenario; (2) whether the other vehicle is stationary, decelerating, or
accelerating; and (3) whether the speed of the ego vehicle is greater than or less than the
other vehicle. One key distinction between this thesis and their work is that this thesis
assumes the ego vehicle shall move with constant speed while, in their work, the ego
vehicle can accelerate before performing an emergency brake. After taking into account
this difference, their safe distance expression is as follows:

2 2

Ue &

2-a. 2-a;’

safe-distance = vo - 0 —
which is exactly the same as safe-distance; in Eq. (2.13).

The related work described up until now always assume that the maximum deceleration
for all vehicles is the same — despite they have different names for the ego and the
front vehicle. Therefore, none of the works described previously matches safe-distancey.
Wilson [47] performed case distinction based on the stopping times and graphically
identified the region called “envelope of opportunity” for each case. This envelope of
opportunity divides the plot between the reaction time and the deceleration of the ego
vehicle into safe and unsafe region. The envelope of opportunity for 1P > t?mp and

tztOP < t?mp match safe-distance; and safe-distance, in Eq. (2.13), respectively.

Formal verification. Loos et al. [48] verify ACC formally in KeYmaera where, in their
model of ACC, they axiomatised that a safe distance is formalised as safe-distance;
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2 Concretising safe distance

in Eq. (2.13). This safe distance definition is then modified to take into account all
possible impacts of control decisions for the future of reaction time, and then setting it
as an invariant for the controller. They then use the proof calculus for the quantified
differential dynamic logic (Qd L) [49] to prove that the controller maintains this invariant,
which in turn implies the axiomatised safe distance in safe-distance; by transitivity. Our
work completes theirs by proving that this axiomatised safe distance is indeed safe.
However, their controller is safe on the assumption that all vehicles have the same
braking performance.

Although Goodloe et al. [42] formally verify programs for aerospace applications, namely
airborne conflict detection and resolution (CD&R), their approach is in general very
similar to that which is employed in this thesis. The notion of conflict is equivalent
to the notion of unsafe distance in our case; two aircrafts are in conflict if they violate
a minimum separation requirement. Their objective is to verify whether a checker
correctly determines that two aircraft maintain a minimum separation distance. Similar
to this work, they also define an abstract checker, prove its soundness and completeness
in PVS theorem prover, derive a concrete checker in C, and prove that the refinement
from abstract to concrete checker is correct in Frama-C. This work differs in the step
to convert from abstract to concrete checker. Thanks to the code generation facility in
Isabelle, the concrete checker can be generated automatically in SML.
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Predicting the occupancies of other
vehicles

Occupancy prediction is one of the core components for planning a safe motion and,
hence, it is very crucial to predict the occupancies of other traffic participants correctly.
If we suppose that AVs do not utilise the analyses in the previous chapter and that the
front vehicle brakes, then they must compute — or predict — the spaces occupied by
the front vehicle to plan an emergency manceuvre. This manceuvre is safe only if 1.) the
actual occupancies of the plan do not intersect with the predicted spaces; and 2.) the
predicted spaces enclose the actual spaces which will be occupied by the other traffic
participants. This chapter focusses on the second point.

This chapter predicts the occupancies of other traffic participants with the technique of so-
called physics-based models [50]. There are other techniques such as manceuvre-based and
interaction-aware models which are not used here, because we prefer a lower level (more
detailed) abstraction. Note that each technique contains the word ‘model” which implies
that it carries specific hypotheses and assumptions. These assumptions are either not
provable in the logical system or taken for granted to simplify the engineering process;
this is a standard practice where we use models to approximate natural phenomena
or real-world systems. Techniques such as conformance checking [51], which check
whether the behaviours in the abstract model could transfer to a real system, could be
used to increase the confidence of the formal verification results.

The main contribution of this chapter is to prove formally that the predicted occupancies
over-approximate the actual occupancies, assuming that the other traffic participants
behave according to the physical model used (Sec. 3.1). We achieve this objective by
first finding the analytical functions of the boundaries of the occupancies (Sec. 3.2), and
then over-approximate these functions with their respective secant lines (Sec. 3.3). These
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3 Predicting the occupancies of other vehicles

secant lines are in turned used as the bases for constructing the convex polygon enclosing
the actual occupancies over a certain time interval (Sec. 3.4). Similar to the previous
chapter, we also consider the numerical correctness in computing the occupancies of
other traffic participants (Sec. 3.5).

Occupancy prediction in this chapter is based on the work by Althoff et al. [52] and
Althoff and Magdici [53] which culminate in a tool called SPOT [54]. The presented
work here can be seen as a (partial) formalisation of these works in 1SABELLE. The
rectangle enlargement in Sec. 3.5.1 is based on the joint work with Matthias Althoff [55].

3.1 Modelling acceleration-based occupancy

In modelling the occupancy of the other traffic participants, there are two reasonable
assumptions to be made [53]:

Assumption 3.1. Driving backwards is prohibited.

Assumption 3.2. Maximum absolute acceleration is limited by a constant ap,, :: R where it
is assumed to be positive, i.e., 0 < Aygy.

There are also other assumptions listed in [53] such as the rule about maximum speed,
but we stick with these two assumptions; only these two will be relevant for computing
the acceleration-based occupancies. As Assumption 3.1 suggests, the work in this
chapter applies only to highway scenarios; the equivalent work for urban scenarios is
left as future work.

The movement of other traffic participants is modelled by the point-mass model as in
the previous chapter, but in two-dimensional Euclidean space:

sy(t) = ax, 3.1)
sy(t) = ay, (3.2)

where the acceleration obeys Assumption 3.2 above:
/a2 + a§ < Omax - (3.3)

Given that a traffic participant is located at (s?, sg) :: IR? initially and it has the initial

0

y) :: IR2, then the reachable sets at time ¢ is a circle centred at:

velocity of (v9,v

(s9 +2%-¢, sg—i—vg-t) @ R?, (3.4)
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3.1 Modelling acceleration-based occupancy

with a radius of

1
5+ Gmax 2. (3.5)

We can see this intuitively by first recalling that the reachable sets of a Linear Time-
Invariant (LTI) system with input can be obtained by [8, 56]:

1. finding the homogeneous solution of (3.1) and (3.2) — which is (3.4) exactly;

2. finding the set which accounts for the solutions of (3.1) and (3.2) due to the input
— which is a circle with the radius of % - Amax - 12 due to Assumption 3.2; and finally

3. adding them in the sense of Minkowski sum.
This is valid as long as

0 <t < 1 , where ||of| = /(v9)? + ()% . (3.6)
amax
Otherwise, the centre will turn backwards and hence it violates Assumption 3.1. We
shall refer to this time validity often in this chapter, and it is useful to define this
predicate for ease of reference. Provided with initial velocity (v?, vg) :: R?, the predicate
valid-time is defined as follows:

va/id-time(t) = 0 < tAt < ||UH

(3.7)

amax

For safety verification purposes, we are usually interested with the occupancy over a
time interval — not just at a single time instance. Suppose that we have f}, and t,
where t, < t,, and both time instances are valid, the occupancies over the interval
[tb, tup is defined by the following set:

{c .2 circle

where circle is a concrete data type for circles:

3t € [hp, tup]- centre(c) = (Sg + 02 - £, 53 + Ug t) A

1
radius(c) = 5 “ Amax * tz} , (3.8)

record circle = centre :: R®> + radius :: R .

If we want to check whether the occupancy of the ego vehicle is safe in [ty, typ|, We
could not naively perform collision freedom tests with all circles in the set above; there
are an infinite number of circles even though the interval is of finite duration. To solve
this problem, one could find a set which encloses all of these circles, and use this instead
for the collision checks with the occupancy of the ego vehicle.
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Y,

10 1

5+

—10 +

Figure 3.1: Upper and lower boundaries of occupancy circles.

3.2 Constructing boundaries for occupancy circles

Figure 3.1 provides an illustration where we superimpose three occupancy circles —
shown in blue colour — at three different time points plotted according to (3.4) and
(3.5). From this illustration, we can conjecture that there exists an upper and lower curve
which bound the occupancy circles from above and below, respectively. If these upper
and lower curves are strictly increasing and decreasing, respectively, we can merely
over-approximate the upper and lower boundaries by their secant lines. This desirable
property is the primary motivation for deriving these curves formally, which we shall
do in this section.

How can we define or obtain such curves? To answer this question, we could start by
looking at the last two occupancy circles in Fig. 3.1. Note that these two circles intersect
at two points which are below and above the upper and lower curves, respectively.
As we move the larger circle towards the smaller circle, we can mentally picture that
both intersection points move closer to the points where the smaller circle intersects
with the upper and lower curve. To define such curves therefore requires: 1.) finding
a general solution of the intersection of two circles; 2.) instantiating this solution with
circles defined in (3.4) and (3.5); and lastly 3.) finding the limits as we move the larger
circle closer to the smaller circle.

Circle intersection. Suppose that there are two circles described by the following
equations:

(x—x1)*+y—y)* = 17, (3.9)
(x—x)?+y-—w)? = 1, (3.10)
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3.2 Constructing boundaries for occupancy circles

where (x1,y1) and (x2,12) are their centres and r; and r; their radii, respectively. We can
subtract the second from the first equation, expand the quadratic terms, and rearrange
them into the following equation:

L _pen L BB+ R-B R+
= Y+ (3.11)
X1 — X2 2'(X1 —XQ)
——
= Z:ﬁl

By plugging this equation to (3.9) and expanding their quadratic terms, we obtain the
following equation:

(1+a])-y* + Quipr =203 =2y1)-y + (fr—x)’+yi—r1 =0, (312

=y = Bo =T

which is a quadratic equation in terms of y. By using the general properties of quadratic
equations, we can obtain the following lemma.

Lemma 3.1. Suppose that two circles centred at (x1,y1) and (x2,y2) with x1 # xp and they
have the radii of r1 and ry, respectively, then they intersect at (x,y) if and only if the following
condition is true:

) —Bat /i —4-a2- 72
0<pBr—4a-712 AN y= AN o x=ar-y+p (B13)

2-062

The first and the second conjuncts are the conditions for the discriminant and the
solution of the quadratic equation (3.12), respectively, and the last conjunct is precisely
(3.11).

Occupancy intersection. Because of position and orientation invariance of the system
described in (3.1) and (3.2), we shall assume first that the other traffic participant is
located initially at (0,0). Additionally, we also assume that the y-component of the
velocity is zero, i.e., vg = 0and 0 < Y (see Fig. 3.1 for example). Then, any response of
the system due to these assumptions must be shifted by the initial position (s, s) :: R?
and rotated by the initial orientation, i.e., the angle between v?c and vg. Hence, for any
two valid time! instances t and #' such that t < #/, we can plug in relevant values in (3.9)
and (3.10) with centres and radii defined in (3.4) and (3.5) as follows:

1

xlzvg-t , y1=0, rlzi-amax-tz, (3.14)
1

=020, y=0, rz_é-amax-t’z. (3.15)

lsee (3.7)

39



3 Predicting the occupancies of other vehicles

These deduced facts due to position and rotation invariance help to simplify the follow-
ing variables:

K = 0, 062:1, ,82:0, (316)
002 (12 42y L. g2 (A4
g — (03)7 - ( )0 i Tmax ( ), (3.17)
2'vx'( _t)
g (4 A2 1
—4.yy = max " ( ) St o B () — (@) (F— ) . (3.18)

2

:= discriminant

16 ()2 (t— 1)

Note that B1, 72, and discriminant have the type of R? = R with t and ' as their parame-
ters. We can now obtain a more specific lemma about occupancy circle intersection from
Lemma 3.1 as follows:

Lemma 3.2. Given two time instances t and t' where t # t', the occupancies at time t and '
intersect at (x,y) if and only if the following condition is true:

discriminant(t, ')

1 A x =Bt t) (3.19)

0 < discriminant(t,t') A y= :I:\/

Parameterised boundaries. As conjectured previously, the boundaries can be obtained
by finding the limits as ' gets closer to t. By looking at the solution in (3.19), finding
these limits will result in a parameterised equation of x and y in t. As for 81, we can
find the limit with the help of the following identities:

2 —t? = (t—t) (t+1t) ,
Bttt = (=t (t+t)- (P +1?) .

Hence, we can define the parametric equations b, (t) and b,(t) for the boundaries as
follows:

2 3
. Amax * t
by(t) := }/13} Bi(t, t/) = Z)g -t — r;a.xvg , (3.20)
, discriminant(t, t') 2, -3\ a2t
= lim £+ ’ = £/ == —ma 21
by(t) := lim \/ i \/ ( o)t (3.21)

Figure 3.1 provides an example of plotting these two parametric equations. The positive
sign for b, (denoted by b;r ) corresponds to the upper boundaries while the negative sign
(denoted by by* ) to the lower boundaries. Note that in order for b, to be well-defined,
we have to ensure that the expression inside the square root operator in (3.21) is at least
zero; we prove this in the following lemma.
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3.2 Constructing boundaries for occupancy circles

Lemma 3.3. For any valid-time(t), we have

2
0< — a%nax o + a%nax -t
- 2.9 4 ’

X

Proof. As an initial step, we separate two cases where it is either t = 0 or t # 0. The
proof for the former case is trivial, and we are left with the second case which we prove
as follows:

2
0 < — <a12nax't3> +a1211ax't4

299 4
<= { arithmetic }
4 6 2 4
max t Amax t

<
4. (092 — 4
<= { assumption that amax # 0in 3.2 and t # 0 in this case; dividing both
sides with the term in RHS }

a%nax . <1
COSE
<= { multiplying both sides with % ; taking square root on both sides
afterwards by noting the facts that 0 < v?c and 0 < dmax }
R
o amax

<= { definition of valid-time(t) in (3.7) with ||o|| = v} since v}) = 0;
assumption valid-time(t) in this lemma }
True O

Due to the position and rotation invariance property, the direction of travel for a vehicle
is solely determined by b, and, because of Assumption 3.1, we need to ensure that the
vehicle would not go backwards; this is formalised in the following lemma.

Lemma 3.4. Forall t,t' :: R where both t and t' belong to the interval |0, tyax| With by 1=
\/g. g:l%x and t < t', we have by (t) < by(t').

Proof. We prove for the case that t' € |0, tmax) initially. The first derivative of by is:
3 g T

! 0
bi(t) == vy 220 ,

(3.22)

and it is always positive for T € [0, fmax). This is trivially true for the case T = 0.
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3 Predicting the occupancies of other vehicles

Otherwise,

2 2
0 < 00_3'amax'T
x 2.9

<= { moving the minuend to LHS; multiplying both sides with BZaZ%X

afterwards }

2 0\ 2
2 <. x
T 3 <amax>

<= { taking square roots on both sides; unfolding the definition of fmax;
assumption 0 < v?c and 0 < amax due to Assumption 3.1 and 3.2 }

0<tT AN 7T<tmax

“— { assumption TE [0, fmax) }

True

A sufficient condition for showing by (t) < by(#') is that 0 < b} (x) for all x € [t,#]. Since
both t and #' belongs to the range where U, is positive, then U/, (x) must also be positive.
This completes the proof that by (t) < by(t') for the case t' € |0, tmax). As for the case
when t' = fnax, note that bl (fmax) = 0 which shows that tiay is either a local minimum
or a local maximum. Because we have shown that b, is increasing for [0, tmax), it must
be the case that by(tmax) is a local maximum and hence b (t) < by(t'). O

To summarise, the boundaries defined in (3.20) and (3.21) exist up to a certain time
o)
a

only. Lemma 3.3 stipulates b, is defined for those valid-time(t), i.e., t < - in (3.7), to

ax

ensure that the discriminant in (3.21) is well-defined. In order to ensure that b, always
0
increases (does not go backwards), we still have to limit the time to t < tmax = % g

Amax

(see Lemma 3.4).

Proving boundedness. Figure 3.2 provides an arbitrary example of an occupancy
circle and the corresponding upper boundary; we shall now prove that occupancy
circles are bounded by the boundaries. We first identify the vertical line b, (t) where it
intersects with the upper boundary at b,(t), and ¢t is the time whose occupancy circle
is being considered. To prove the boundedness property, we identify two cases where
for all points (x,y) belong to the occupancy circle at time t are either to the left of the
intersection line, i.e.,, x < by(t) or to the right of the intersection line, i.e., by(t) < x.
We prove the boundedness for the latter case only as the proof for the former can be
obtained similarly.

Lemma 3.5. Suppose that we have t, T € [0, tyux| where t < T and t # 0. Then, for all points
(x,y) in the occupancy circle at time t with x = by(7), i.e.,
L 5

(by(T) =2 1) +1* < Zamx.t‘* , (3.23)
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left of
intersection

right of
intersection

Figure 3.2: Upper and lower boundaries of occupancy circles.

we have

y < bj(r) and y > by (1) .

Proof. First, we identify two cases: either y < 0 or 0 < y. Due to the premise T € [0, tmax|,
it can be easily proved that 0 < b, (1) and we can hence deduce y < by () for the
former case by using transitivity property. The latter case is proved with the following
calculation.

y < by(7)
<= { unfolding the definition of b; according to (3.21) }

a2 -13\% a2 .4
< _ max max
’= \/ ( 200 ) Ty

<= { transitivity with (3.23) and case 0 <y }

2 4 2 3\ 2 2 4
. 0. 4)\2 Amax ° t < _ Amax T max * T
\/ (bx(T) Ux t) + 4 — \/ < 2 . ,Ug + 4

<= { unfolding b, according to (3.20); squaring both sides }
2 3\2 2 4 2 3\2 2 4
0 Omax = T Amax " t Omax T Amax ~ T
— AT —1t) — < —
(UX(T ) 2-vg>+ 4 = <2-vg>+ 4
<= { expanding the quadratic term on the LHS; arithmetic }
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3 Predicting the occupancies of other vehicles

a%nax i (T4 — t4)

— (@ (T ) g T (T h) < e

<= { exchange LHS and RHS properly }

2 (A
_amax (Z ) < (Ug_(T_t))z_afnax,lﬁ.(’(_t)

<= { multiply both sides with u24 }

2
(o < <2'”g> (T—1? — 4B (T

umax

<= { dividing both sides with T — t; case T = t is trivial }

2
—(T?4+2) - (t+1) < <2'U9‘> (t—t) —4-T

amax

< { simplifying LHS and moving —4 - 7° to RHS; arithmetic }

2
3.0 -2 t—1- - < (%> (T—1t)

- Amax

<= { fact LHS equals (3- T2 +2-7-t+t?) - (T — t); dividing both sides with

T—t}
2
2.
3-7242-1-t4+4# < ( x)
amax
0 \2
<= { premises T < fmax, f < tmax, and tIZnax = % . ( a:fix) ; monotonicity of

multiplication }

0\ 2 0 \2 0 \2 0 \2
()G G ()
Amax 3 \max 3 \max Amax

<= { arithmetic }

True

The proof for y > b, (7) can be obtained similarly. O

Note about the formalisation of boundaries in isabelle. We have previously men-
tioned that the formal construction of the boundaries is obtained by first assuming
the position and rotation invariance and then asserting that the actual boundaries are
obtained by translating and rotating with respect to the initial conditions; this is for the
ease of presentation only. The formalisation in ISABELLE is performed the other way
around: the occupancies intersection and the boundaries construction through limits are
performed without assuming sg =0, sg =0, and vg = 0 which result in a much more
complex expression than what are presented in (3.14) — (3.21); then we prove formally
in 1SABELLE that these boundaries are indeed invariant with respect to translation and
rotation.
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3.3 Approximating boundaries with secant lines

3.3 Approximating boundaries with secant lines

Performing a collision check between a geometric object and a curve represented by its
parametric equations as in (3.20) and (3.21) is difficult. It might be much easier if we can
approximate the curve with a line segment, and perform the collision check with this line
segment instead. Of course, we need to ensure that this is done over-approximatively:
the line segments for the upper boundaries are always above the upper boundaries, and
those for the lower boundaries are always below the lower boundaries. This section
shows how we can over-approximate these boundaries with their respective secant lines.

Up until now, boundaries for occupancy circles are always presented with their para-
metric equations. For the reason which will be apparent later in this chapter, it might be
helpful to make these parametric equations implicit as follows:

fof-x" = b;r ob !, (3.24)

fof-x~ := b, o b . (3.25)
Positive superscript signifies that the function f-of-x™ (and also by) is the function
for the upper boundaries (vice versa for the negative superscript), and notation by !
denotes the inverse of function b,. Function f-of-x* is well-defined only for the interval
of [bx(0), bx(tmax)|; this is because Lemma 3.4 shows that by is injective on |0, fmax]-
Additionally, since f-of-x is composed by b, and b; !, we need to ensure that the range of
by ! is in the domain of b, for well-definedness. Since we restrict the domain of f-of-x to
[bx(0), by (tmax)|, we know that the range of by 1 will be [0, tmax|, and all members of this
interval are valid according to (3.7).

We can over-approximate the occupancy circles in [t, '] from above (resp. below) by
finding the secant lines of fof-x" (resp. f-of-x~) between time points f and t'. Intuitively
speaking, secant lines are always above (resp. below) a curve if the curve is opening
upward (resp. downward), and to check this, we need to show that the first derivative is
non-decreasing (resp. non-increasing). However, we cannot find the derivatives naively
as we do with other polynomial functions because we have yet to have an explicit form
of by!; we only know that such inverse does exist. Finding such inverse is theoretically
possible but relatively challenging because it is in cubic form. Instead, we use the
following theorem for finding the derivative of the inverse of a function.

Theorem 3.1. Suppose that (f ' o f)(x) = x for all x € (a,b) and (f' o f~1)(x) # 0. Then,
for all x € (a,b) such that f —1is continuous at x, we have

-1 ! 1
el = e

2We drop the superscript when we refer to both f-of-x" and f-of-x~ (resp. b;‘ and b,).
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The first derivative of by ! is defined and formalised in the following corollary.

Corollary 3.1. For all x € (bx(0), bx(tmax)), we have

-1y _ 1
b7 (x) = —(b; o) (3.26)

Proof. To prove this, we need to show the premises in the theorem above is true.
The condition (by! o by)(x) = x is true because b, is injective for t € [0, fmax] While
(b} 0 by)(x) # 0 is true because we exclude by (tmax) and by (—fmax) in the premise of this
corollary; times tmax and —tmax are the only time points where b/, (7) = 0. The continuity
of b~1(x) is guaranteed due to the continuity and the injectivity of by on [0, tmay]. O

Due to the chain rule for derivative and the expression of f-of-x in (3.24) and (3.25), we
need to know the first derivative of function b, if we want to assert whether the first
derivative of f-of-x is non-decreasing or non-increasing.

Lemma 3.6. For any valid-time(t) such that t # 0, the first derivative of by is

2
t.amax. <]_ — % . (t-lz},é,ax> )
> .
1— (L'?}r‘émx)

by(t) =

(3.27)

Proof.

by, (t)
= { unfolding (3.21) }

[\/ (arznax : t3)2 + Afax - 1 ] /
2.9 4
=  { using differentiation rule { f(x) } - .f ) }
- (1 )
2-by(t)
= { arithmetic manipulation of the denominator }

t3 . ﬂz . (1 _ 6't2'a12nax)

max @)

2 ta 2
t - Amax * 1_( vrg)r:ax)

= { simplifying numerator and denominator; premise t # 0 and
Assumption 3.2 }
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Note that in the premise of the lemma above, we assume that ¢ # 0; otherwise b,(0) = 0
and the denominator in the third line of the calculation above will be zero and hence
the derivative will be undefined. Equipped with this lemma, we are ready to prove that
the first derivative of f-of-x" is non-decreasing.

Lemma 3.7. For all x € (bx(0), bx(tmax)), the first derivative of f-of-x is

(by o by)(x)

f—Of—X/(X) = —(b; R b;l)<x)

, (3.28)

and for all x1 € (bx(0), bx(tmax)) and xa € (bx(0), by(tmax)), condition x1 < x, implies that

[Fofxt] (x1)
[Fof-x"|"(x1)

< [Fof-x"](x2) , (3.29)
> [Fof-x | (x2) . (3.30)

Proof. The derivative in (3.28) is obtained by using the chain rule of differentiation,
ie., (byobyl)(x) = (b, o by (x) - [by'] (x) and (3.26). We shall prove next the non-
decreasing property of fof-x" only; the non-increasing part can be obtained similarly
because f-of-x~ is the mirror of Fof-x" with respect to the x-axis. Let us assume that
and t; are two time points such that b, (t1) = x; and by(t2) = x.
f;Of;X+(X1) S f-of—x*(xz)
<= { unfolding definition in (3.28); facts b,(t1) = x1 and by(t2) = x2 }
by I'(t) _ [by ) (t2)
bi(tr)  —  bi(t2)
<= { unfolding (3.27) and (3.22); arithmetic }

Amax tl Amax

t
) < ) 2
o9 ; I 2
1 _ ( 1'ﬂmax> 1 _ (tZ‘amax)
) 0
x x

<= { Assumption 3.2 and 0 < ¢ }

t <t /\ \/1 _ (fzﬂmax)z < \/1 _ (t]‘llmax)Z
15 h ENE ER

<= { squaring both sides on the second conjunct }

2 2
tl S t2 A ( tl l/z)max > S ( t2 aomax )
Ux Ux

<= { arithmetic; propositional logic property A = A A True }
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secant line Xo+h

«— fofx"

X0 X

Figure 3.3: Approximating the upper boundary (blue) with a secant line.

th <t

Finally, t; < t; must be true or otherwise, we have t, < t; and xp = by(f2) < byx(t1) = x1
due to the property that b, is strictly increasing (Lemma 3.4); this contradicts with the
premise that x; < xo. O

After proving that the derivative for fof-x" is non-decreasing (and f-of-x~ is non-
increasing), we shall now prove formally that the secant lines over-approximate the
boundaries. Given two values of xo and xg + & with 0 < , the slope of the secant line
between (xo, f-of-x(xp)) and (xo + h, f-of-x(xg + h)) and the corresponding line equation
are defined as:

secant-slope(xg, h) = f_Of_X(xO—'—h)h_ Fofx(xo) , (3.31)

secant-line(x) := secant-slope(xo,h) - (x — xg) + f-of-x(xg) . (3.32)

Our main objective is to show that for all x € [xg, xo + /], we have
f-of-x"(x) < secant-line"(x) and fof-x (x) > secant-line (x) . (3.33)

As Fig. 3.3 shows, these are true if we can show that secant-slope’ is non-decreasing and
secant-slope™ is non-increasing with respect to h; we shall prove these as follows.

Recall first the well-known Mean Value Theorem (MVT) which is readily available in
ISABELLE.

Lemma 3.8 (Mean Value Theorem). For all function f :: R = R with derivative f'(x) for
a<x<banda<b, we have

Jz.a<z Az<b A f(b)—fa)=(b—a)*f(z) .

Theorem 3.2. For all xg € (byx(0), bx(tmax)), 0 < h1, 0 < hy such that hy < hy, xo+hy €
(0x(0), by (tmax)) and xo + ha € (bx(0), bx(tmax)), we have the following inequalities:

secant-slopet (xo,h1) < secant-slope* (xo,h3) ,

secant-slope™ (xo,h1) > secant-slope™ (xo,hy) .
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3.4 Occupancies over a time interval

Figure 3.4: First polygon to approximate occupancy circles.

Proof. We shall prove for the non-decreasing part only as the non-increasing part can be
obtained similarly. First, we show that the derivative of secant-slope is non-negative with
respect to the second argument. The derivative of secant-slope" is defined as follows:

[Fofx"] (xo + k) -l — Fofoxt (xg + 1) Fofx (xo)
= 2 T

[secant-slope™ ]’ (xo, h) :

We can see that this definition is indeed the derivative of secant-slope®™ with respect to h
from the quotient rule (é)’ = % and the subtraction rule (f — g)’ = f' — ¢’. Next,
we proceed with the following calculation.
[Fof-x"](xo + h) - h — f-of-x"(xg +h) = fof-x"(xg)
< + .
= 2 12
<= { moving the minuend and the right summand to LHS; multiply both
sides with h }
f-of-xt (xo + h) — fof-x" (xo)
h
<= { instantiating z from Mean Value Theorem (MVT) with xy < z and
z<xp+h}
[Fof-x"(z) < [Fofx](xo+ h)
<= { Lemma 3.7 with the factz < xo+h }

0

< [Fofxt] (xg + h)

True

Lastly, we use the theorem that non-negative derivative of a function implies that the
function is non-decreasing to show that secant-slope” is non-decreasing. O

3.4 Occupancies over a time interval

As mentioned earlier in this chapter, we wish to compute a geometrical object which
encloses all occupancy circles of a time interval |ty,, f,p| which is easier to represent
computationally compared to the definition in (3.8). Figure 3.4 provides the first
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3 Predicting the occupancies of other vehicles

Figure 3.5: Second polygon to approximate occupancy circles.

approximation of such geometrical object. We bound the occupancy circles from left
and right with vertical lines positioned at v{ - t}, — % - Armax * tib and o9 - ty, + % - Amax * tlzb.
Next, we bound the upper and lower sides with a series of straight lines which can be
clearly seen to enclose all occupancy circles; line segments 44> and 4443 are the secant
lines described in the previous section.

Definition 3.1. Given two valid time points ty, t,;, where both time points are at most t,,., and
tiy < t,p, we can define the following five points.

1
g = (vy-tp— E Amax tlzb ’ b;(tlb» ’

(0

(bx(tw) , by (tw))
h = ( x( ) (tub)) ’

(

—

1

g2 = bx( )rzamaxt)/

1 1
3 = (vg)c'tub"f'i'amax't%,b, E'amﬂx‘tftl) .

The next five points qa, qs, 43, 41, e are defined as the mirror of g3, g2, §2, 41, g1, correspondingly,
with respect to the x-axis. Then, the first polygon to approximate the occupancy circles between
t, and t,y is defined by the following polygon:

poly; := g1 041 0420 gr04g3 0440450430 dqso0qes.

Theorem 3.3. Given two valid time points ty,, t,, where both time points are at most t,,,, and
tiy < tup, all occupancy circles between ty, and t,;, defined in (3.8) must be located inside poly;
defined in Def. 3.1.

Proof. All points (x, y) in the occupancy circles defined in (3.8) with by(tp) < x < by(typ)
must be bounded from above and below by b; and b, respectively, according to
Lemma 3.5. Combined with the facts in (3.33) that b;’ and by_ are bounded by their
respective secant lines, which are line segments 414> and 4145, we can deduce that (x,y)
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3.4 Occupancies over a time interval

is inside poly;. Next, we are left with two cases: either vJ - t, — % “ Amay * tlzb < x < by(tp)
or by(ty) < x < vg by + % “ Amax * tﬁb.

For the former case, all points must be located inside the occupancy circle at time ty,.
Otherwise, we can obtain x where x < v?c ctp — % - Amax * tlzb or by(ty,) < x and these two
contradict with the condition in the first case. Since in this case b; is increasing and b,
is decreasing, we have y < b;“ (tb) and b, (f) < y. We can then deduce that (x,y) is
inside poly, for this case due to the fact that line segments 4147 and g¢4s have the values
of b; (tp) and by_ (tip), respectively, in the y-axis.

As for the latter case, (x, y) must be located inside the occupancy circle at t,,,. Otherwise,
we can find the value x where x < by () or 00 - tp + % “ Amay * tib < x which contradict
with the condition in the second case. Then, we can deduce that the absolute value of
y is at most the radius of the occupancy circle, i.e. —% - Amax * tib <y< % - Amax * tib.
Since line segments 423 and g5 have the values of % - Amax - 1%, and —% Clmax - 1y,

respectively, in the y-axis, it is clear that (x, y) is inside poly; by transitivity property. [

The first approximation in Def. 3.1 (Fig. 3.4) is a non-convex polygon, and it is desirable
to make this polygon convex; we make this polygon convex as follows (see Fig. 3.5).

Definition 3.2. Given two valid time points ty,, t,;, where both time points are at most tyq, and
tiy < tup, the second polygon to approximate the occupancy circles between ty, and t,; is defined
by the following polygon:

poly, := g1 © 42 043 © 44 © 45 © g ,
where all of these points are the same with those defined in Def. 3.1.

Theorem 3.4. Given two valid time points ty, t,;, where both time points are at most ty,,, and
tiy < tup, all occupancy circles between ty, and t,;, defined in (3.8) must be located inside poly,
defined in Def. 3.2.

Proof. Due to Theorem 3.3, we only need to show that poly, is a subset of poly, to prove
that all points in the occupancy circles define in (3.8) also belong to poly,. To show
this subset relation, note that the difference between poly; with poly, is that we remove
41, 42,43, and s from poly;. Graphically speaking, this implies that we only need to
show that 1) the polyline g1 o 41 o 4> o g7 is below the line segment g145; and 2) the line
segment geq5 is below the polyline g¢ o 44 o §3 © 5. The first proof obligation is indeed
true because we can see that g, is exactly above ¢, and ¢; is exactly to the left of 4y; the
similar reasoning also applies to showing that the second proof obligation. ]

Considering the physical dimension of a vehicle. Up until now, we have been as-
suming that the other vehicle is a point mass and have yet to consider its physical
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Figure 3.6: Minkowski addition of a vehicle’s occupancy polygon with its physical size.

dimension. We can obtain its occupancy over time by performing Minkowski addition
between its occupancy as a point mass and its geometrical shape (which can be safely
over-approximated with a rectangle). Geometrically speaking, this Minkowski addition
can be obtained by shifting the occupancy as a point mass to the four edges of a rectangle
and then finding its convex hull (see Fig. 3.6).

Definition 3.3. Suppose that the physical size of a vehicle is a rectangle with width w and
length | such that w < I and its occupancy as a point mass for |ty t,p| is the polygon poly, =
41042043 0440450 qe as defined in Def. 3.2. We could then define:

1 1

p1 = 5]1+(—§-l,§-w) ,
1 1

p2 = qz+(—§-l,§-w),
1 1

ps = g3+ (E'Z’E'w)’

P4, ps, and pe is the mirror of p3, p2, and p1, respectively, with respect to the x-axis where each
addition is a vector addition in R2.
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3.5 Sound and executable occupancy prediction

Similar to what we have done in Sec. 2.4, this section discusses how we handle the
numerical correctness in predicting space occupied by other traffic participants: uncer-
tainties are handled by firstly over-approximating entities such as positions, speeds, and
maximum deceleration with intervals, and then lifting all required arithmetic operations
— such as addition, multiplication, and division — soundly to their interval arithmetic
counterparts. The main difference to that in Sec. 2.4 is that predicting occupancies
requires a Minkowski sum with a rectangle (see the previous section) which needs to be
enlarged due to uncertainties in its position and orientation.

3.5.1 Enlarging rectangles due to uncertainties

In this section, we shall assume that position x, position y, and orientation 6 are bounded
by their corresponding interval:

X € [xp, Xw| , YV E Vb Yu) , 0 € [On, 0w, (3.34)

and the actual width and length of the vehicle are w :: R and [ :: IR, respectively.
Alternatively, we could represent these uncertainties by their centres and deviations as
follows:

[xlb/ xub] = [XC — Oy, Xc + (Sx] ’

[Yib, Yubl = [Ye — 0y, yc + 0yl ,
[0, Oup] = [0 — S, 0c + Jp] ,

where
X, = xubzﬂ G Xy — Xe (3.35)
Ye = M ; Oy="Yub — Ve , (3.36)
0, = w , 0g =0 —0 . (3.37)

Rectangles are concretely represented by the following datatype:
record rectangle = centre :: R?> + width :: R + length = R + ori = R ,

and we define the function range :: rectangle = R? set as the function which maps
any rectangle to the set of all points in that rectangle. With these definitions, we can
formalise the objective of the rectangle enlargement is to enlarge Ry,se := (centre =
(xc, Ye), width = w, length = 1, ori = 0.) into Renlarged := Rbase (width := w', length := 1) so
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Rbase

Figure 3.7: Amount of enlargement due to the error in dimension X.

that all rectangles R := Ryase (centre := (x,y), ori := 6) where conditions in (3.34) hold
are contained by Renlarged, i-€.,

range(R) C range(Renlarged) .

In order to find such I’ and w’, we analyse each uncertainty independently and add
them together; this is justified because rotations and translations are linear mappings.

Compensating the position’s uncertainty. Figure 3.7 partially illustrates the required
enlargement due to the uncertainty in x. As can be seen, we need to increase the length
of the rectangle by Al, and the width by Aw, such that rectangle Rentarged could enclose
all rectangles R with x. < x < x, + Jy:

Al = Oy -|cos(6;)| , (3.38)
AZ/UX - 5x . |Sin<9c)| . (3.39)

It is not difficult to see that we also need to enlarge the rectangle by the same amount,
that is Al, and Aw,, for the case of x. — A, < x < x..2 Hence, the total enlargements due
to the uncertainty in x are twice of what are defined in (3.38) and (3.39). The amount of
enlargements due to the uncertainty in the y-dimension can be obtained similarly too:

dy - [cos(B)] . (3.41)

Awy

3Simply switch the interpretation of the two rectangles, i.e., the orange rectangle is Rp,ee and the blue
rectangle Ry.
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Figure 3.8: Enlargement to compensate error from dimension ©.

Compensating the orientation’s uncertainty. Figure 3.8 illustrates the required amount
of enlargements due to uncertainty in the orientation. The width and the length should
be enlarged by the following amounts:

2-Alg = 1-]cos(dp)| + w-|sin(dg)] — I . (3.42)
2-Awg = w-|cos(dg)| + I-|[sin(dp)| — w , (3.43)

As a sanity check, we need to ensure that the enlargements are positive; this is indeed
the case for 2 - Awy.

Theorem 3.5. Given a rectangle with width 0 < w and length | where w < I, we have for
—nT <<,
0 < w-|cos(dp)| + I-][sin(dg)| — w .

Proof. Due to the occurrences of absolute value function in the inequality which we
want to prove, we shall prove the theorem with proof-by-cases technique. It is easy
to see the inequality holds for the simple cases 5y = —7,09 = 0,69 = 7, and g = 7T
by substituting standard trigonometry identities. Hence, we are left with four cases:
1) —m<dp<—5;2)-5<6<0;30<6p < 7F;4) 5 < < . In each of these cases,
we can remove the absolute value function because we can deduce that the functions sin
or cos are either positive or negative. We shall, however, prove for the first case only as
proofs for the other cases can be obtained similarly.

0 < w-|cos(dp)| + I-|sin(dg)| — w
<= { 0<cos(f) and 0 < sin(f) due to assumption 0 < 5 < 7 }
0 < w-cos(dg) + I-sin(dy) — w
<= { arithmetic }
w- (1 —cos(dy)) < I-sin(dy)
<= { divide both sides with w - sin(dy); premise 0 < wand w <[ }
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1 — cos(dp) < l
sin(dg) ~ w

<= { definition of tan(f) = 1;;0(82%')9) }

O l
— < —
tan(z) <

<= { transitivity }

tan<5€> <1 A 1§i
2 w
— {csel<H<Fandw <!}
True ]

This non-negative property, unfortunately, does not hold for 2 - Aly; evaluating (3.42) for
dp = 7 results to negative value due to the premise w < [. To solve this problem it is
necessary to find Jdyp at which the RHS in (3.42) reaches its maximum value, and then we
set the enlargement to this maximum value only if Jy exceeds this maximum value. To
find such maximum, we first find the derivatives of 2 - Al and 2 - Awy with respect to dg,
assuming that 0 < 5y < 7:

[2-Alg] = [-—sin(8p) + w - cos(dg) ,
[2- Awg] = w- —sin(dg) + 1 - cos(dy) .

These derivatives are zero when dy = tan"!(%) and &y = tanfl(%), respectively. Dif-
ferentiating the two functions above and performing second derivative tests show that
0 = tan"1(¥) and &y = tan_l(%) are local maxima.

Theorem 3.6. For 0 < 5y < 7, the maximum enlargements due to uncertainty in the orienta-
tion are:

(2-Aly) < Vwr+12-1, (3.44)
(2-Awg) < Vwr+P-—w. (3.45)

Proof. We have previously asserted that the local maxima are at §y = tan™ (%) and
bp = tanfl(i) for 2 - Alp and 2 - Awy, respectively.
w w
. < 1- -1(Z Qi -1 (%Y\Y _
2-Alg <1 cos(tan <l>)+w 51n<tan (l>) l
— { sin(tan"'(¥)) = —=%— and cos(tan_l(g)) =—2_}

y \/ x2+y? /22112

1 w?
+ —1
,/w2+12 1/wZ_f_lZ
— { arithmetic }

2-Alp < Va2 +12—1]

2-Aly <
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(59—2-‘5&1171(%) 59=2-tan’1(1l7)
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) :tanil(%) do Zﬂ—tanfl(%)

Figure 3.9: Plotting the length enlargement 2 - Alg against Jy.

This concludes the proof for the first proof obligation; the calculation for 2 - Awy can be
obtained similarly. O

The discussion about finding the local maxima for 2 - Awy and 2 - Alg has been limited
for the first quadrant only, i.e.,, 0 < dg < 7. If we perform the similar analyses for
7 < &9 < 7, the local maxima would be at 6y = 7 — tanfl(%) and Ag = T — tanfl(é)
with the same maximum enlargements as in (3.45) and (3.44). As shown by Fig. 3.9, the
length enlargement for 7 < 6y < 7 is just the mirror of the enlargement in 0 < 6y < 7
with respect to the vertical line 6y = 7. As soon as Jy is larger than tan~! (7), we set the
enlargement to the maximum values as in (3.45) and (3.44); this justifies our previous

decision to focus on 0 < Jp < 7 only.

Finally, the total enlargement is the sum of enlargement due to uncertainties in position
and orientations:

Aw = 2-Awy+2-Awy +2-Awy .
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Unfolding the definition of 2 - Aly and 2 - Awy results in the following expression.

Al = if §p <tan™! (%) then
20y - |cos(0c)| 4 2-6y - [sin(6c)| + I-cos(dp) + w-sin(dp) — 1
else
20y - [cos(Bc)| + 2-0y - [sin(f;)] + Vw4121
Aw = if §p < tan™! <l> then
w

20y - |sin(fc)| + 2-6y - |cos(6:)| 4+ w - cos(dp) + I-sin(dp) —w

else

20y - [sin(fc)] + 2-9y - |cos(Oc)] + Vw412 —w

These two functions will be reified (refined) into those involving floating-point numbers
(see Sec. 2.4) during the code generation process. During the evaluation of the guard
5y < tan~1(1),% both & and tan—!(_) will be replaced with (dy,, dy,) @ F x F and
(tw, tap) = F X F, respectively, and Al and Aw evaluate to the then-part only if dy, < typ,.
This guarantees that even in the case that dy has its maximum deviation, i.e., 6y = dy,, it
is still lower than the lower bound of the interval approximation of tan~!(_). In case the
condition dy, < tj does not hold, it could be the case that the guard cannot be deduced
— because the uncertainties are too large and overlap — or Jy is definitely larger than
tan"!(_); in either case, we safely over-approximate the enlargements by their maximum
values.

3.5.2 Interval arithmetic-based occupancy prediction

In summary, there are four steps to accomplish in order to compute the predicted
occupancy of the other traffic participants: 1) over-approximate the actual dimension
of vehicles by intervals; 2) enlarge the actual dimensions to account for uncertainties
in position and orientation; 3) compute the six vertices of the polygon representing
the predicted occupancy; and 4) rotate and translate the polygon by the orientation
and centre of the rectangle, respectively. This section provides a running example and
discusses how to ensure the numerical correctness in each step.

Over-approximating a vehicle’s dimension. We assume that the traffic participant we
want to predict is represented by a rectangle — to represent its physical shape — with
the length of L :: F x [F and width of W :: [F X FF.

4The underscore sign “_" signifies that it can be replaced with either T or %
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(* length and width cannot be represented with finite precision *)
definition "ex_length = 3 / 2 * pi"
definition "ex_width =1/ 2 * pi"

(* precistion *)
definition "p = 20"

(* approxzimating the lower and upper bounds  *)
definition L :: "float * float" where "L = the (ex_length_approx p)"
definition W :: "float * float" where "W = the (ex_width_approx p)"

(* theorem showing approxzimations are correct *)
theorem "fst W <= ex_width" and "ex_width <= snd W" and
"fst L <= ex_length" and "ex_length <= snd L"
unfolding ex_width_def' w_def' ex_length_def' 1_def'
by (simp_all) (approximation 20)+

We also assume that variables X,Y,® :: [F x F are the intervals bounding the exact
centre (x,y) :: R x R and orientation 6 :: R.

(* [4.875; 5.125] *)

definition "X = (Float 39 (- 3), Float 41 (- 3))"
(¥ [0.875; 1.125] *)
definition "Y = (Float 7 (- 3), Float 9 (- 3))"

(¥ pi/4 *)
definition "T = (Float 1647098 (- 21), Float 1647101 (- 21))"

From these variables (intervals), we can then obtain the centre (x.,y.) and orientation 6,
and their corresponding deviations 6y, dy, and dy via (3.35), (3.36), and (3.37) as follows:

theorem
(* 5 %) (¥ 0.125 *)
"xc = Float 5 0" and "dx = Float 1 (-3)" and
(x 1 %) (% 0.125 *)
"yc = Float 1 0" and "dy = Float 1 (-3)" and
"Tc = Float 3294199 (-22)" and "dt = Float 3 (-22)"

unfolding ex_simps by auto

Rectangle enlargements. We reify the rectangle enlargement functions Al and Aw (for-
malised as total_dw_abstract) in Sec. 3.5.1 into the corresponding functions involving
intervals of floating-point numbers with the technique explained in Sec. 2.4. If we name
the approximated version of Aw as total_dw, then we have the following correctness
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condition®:

theorem complete_checker_correctness':
(* assuming dz, 1, dt, w, theta, dy are bounded by their intervals *)

assumes "dx1 <= dx" and "dx <= dxu"
assumes "11 <= 1" and "1 <= 1u"
assumes "dtl <= dt" and "dt <= dtu"
assumes "wl <= w" and "w <= wu"
assumes "thetal <= theta" and "theta <= thetau"
assumes "dyl <= dy" and "dy <= dyu"

(* upper and lower bound of the total enlargement (approximated ver.) *)

assumes "Some (lo, up) =
total_dw p (dx1l, dxu) (dyl, dyu) (dtl, dtu) (wl, wu) (11, 1lu)
(thetal, thetau)"

assumes "O < w" and "O < 1" and "O <= 4t"
shows "total_dw_abstract dx dy dt w 1 theta <= up"

With this executable rectangle enlargement functions, we can obtain the over-approximated
width @’ :: F and length I’ :: IF which accounts for uncertainties in position and ori-
entation (and possibly the case that the actual width and length cannot be represented
with finite precision) as follows:

definition
"' = snd L + (snd o the) (total_dl p (dx, dx) (dy, dy) (dt, dt) WL T)"
definition
"w' = snd W + (snd o the) (total_dw p (dx, dx) (dy, dy) (dt, dt) WL T)"

The numerical results for the enlarged width and length are defined in the following
theorem.

theorem
"1' = Float 21248259 (- 22)" (* approzimately 5.066 *) and
"w' = Float 8071455 (- 22)" (* approzimately 1.924 *)
by eval+

Computing the six vertices of poly,. The vertices of poly, can be computed by finding
the approximated version of each point defined in Def. 3.3 first. Reifying the function
for computing p; into pointl_size (as explained in Sec. 2.4) ensures the following
correctness condition®:

SWe only show the correctness condition for total_dw; the similar condition can also be obtained for Al
6Similar theorems for py, p3, p4, ps, and pe also exist.
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theorem correctness_pointl_approx:
assumes "tmin <= t" and "t <= max"
assumes "pointl_approx p (tmin, tmax) = (Some (11,ul), Some (12,u2))"
shows "(11, 12) <= pointl_size t t'" and "pointl_size t t' <= (ul, u2)"

In this example, we assume that the maximum acceleration and the initial speed are
defined as follows:

abbreviation a_max_ex :: "real" where "a_max_ex = 10" (* m / s°2 *)
30" (* m / s *)

abbreviation vx_ex :: "real" where "vx_ex

Admittedly, it is rarely the case that the maximum acceleration and the initial speed
can be conveniently represented by integers. In case we cannot represent these values
exactly, we can find their lower and upper bounds and use these intervals instead (as
what we did for W and L in the beginning of this section). By using these values, the
vertices of the polygon representing the predicted occupancy between t = 0.125s and
' = 0.25s are defined as follows:

theorem
(* ¢ = 1.138 *)(¥ y = 1.040 *)
"pointl_approx p (t, t) =
((Float 597103 (- 19), Float 597104 (- 19)),
(Float 1090851 (- 20), Float 1090852 (- 20)))"
(x* ¢ = 4.941 *)(¥y = 1.274 *)
"point2_approx p (t', t') =
((Float 1295244 (- 18), Float 1295246 (- 18)),
(Float 1336611 (- 20), Float 1336612 (- 20)))"
(¥ ¢ = 10.345 #¥)(*x y = 1.274 #)
"point3_approx p (t', t') =
((Float 1356004 (- 17), Float 1356005 (- 17)),
(Float 1336611 (- 20), Float 1336612 (- 20)))"
(¥ ¢ = 10.345 %) (¥ y = -1.274 *)
"point4_approx p (t', t') =
((Float 1356004 (- 17), Float 1356005 (- 17)),
(Float (-1336612) (- 20), Float (-1336611) (- 20)))"
(x ¢ = 4.941 #)(x y = -1.274 *)
"pointb5_approx p (t', t') =
((Float 1295244 (- 18), Float 1295246 (- 18)),
(Float (-1336612) (- 20), Float (-1336611) (- 20)))"
(* x = 1.138 #)(* y = -1.040 *)
"point6_approx p (t, t) =
((Float 597103 (- 19), Float 597104 (- 19)),
(Float (-1090852) (- 20), Float (-1090851) (- 20)))"
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by eval+

Numerical results for py, ps, and pe can be obtained by mirroring p3, p2, and py, corre-
spondingly, with respect to the y-axis (same x values with y values inverted).

Rotating and translating. The main challenge for rotating and translating rectangles
is that each vertex in the polygon is not known exactly but bounded by a box (see the
numerical results above). To rotate each of these boxes over-approximatively, we rotate
all four vertices in each box which will produce another four boxes, and then bound
all of these boxes by finding the smallest and largest values in each dimension; this is
called Axis Aligned Bounding Box (AABB) in the literature.

theorem

(¥ = =0.069;, y =1.541 %)

"rotate_box pl_zono = ((Float 1169159 (- 24), Float 1169529 (- 24)),
Float 1615769 (- 20), Float 1615791 (- 20))"

(x ¢ =2.592; vy =4.395 %)

"rotate_box p2_zono = ((Float 1359173 (- 19), Float 1359205 (- 19)),
Float 1152147 (- 18), Float 1152167 (- 18))"

(x =z =6.413; vy =8.216 %)

"rotate_box p3_zono = ((Float 1681384 (- 18), Float 1681412 (- 18)),
Float 1076971 (- 17), Float 1076989 (- 17))"

(x =z =8.216; vy =6.413 %)

"rotate_box p4_zono = ((Float 1076972 (- 17), Float 1076988 (- 17)),
Float 1681379 (- 18), Float 1681415 (- 18))"

(¥ =z =4.395; vy =2.592 %)

"rotate_box p5_zono = ((Float 1152150 (- 18), Float 1152166 (- 18)),
Float 1359169 (- 19), Float 1359207 (- 19))"

(x o =1.5/1; vy =0.069 *)

"rotate_box p6_zono = ((Float 1615769 (- 20), Float 1615791 (- 20)),
Float 1169134 (- 24), Float 1169506 (- 24))"

by eval+

As a sanity check, note that p3 is the mirror of ps with respect to y-axis. Since the
rectangle in this example has the orientation of 45°, then the mirror relation with respect
to y-axis changes into that with respect to the line y = x after the rotation. This means
the values of x and y for p3 and p4 should be swapped and, as the numerical results
show, it is indeed the case. The same sanity check applies to the other pairs of vertices

too, i.e., (p2, p5) and (p1, pe)-

The translation can be achieved by adding x. to both the lower and upper bounds of
x-values and y. to both upper and lower bounds of y-values. The numerical results after
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translations are shown as follows:

theorem

(x ¢ =05.069; y=2.5/1 *)
"pl_translated = ((Float 85055239 (- 24), Float 85055609 (- 24)),
Float 2664345 (- 20), Float 2664367 (- 20))"

(¥ z = 7.592; y = 5.395 %)
"p2_translated = ((Float 3980613 (- 19), Float 3980645 (- 19)),
Float 1414291 (- 18), Float 1414311 (- 18))"

(x = =11.413; y = 9.216 *)
((Float 2992104 (- 18), Float 2992132 (- 18)),
Float 1208043 (- 17), Float 1208061 (- 17))"

(* x = 13.216; y = 7.413 *)
((Float 1732332 (- 17), Float 1732348 (- 17)),
Float 1943523 (- 18), Float 1943559 (- 18))"

(* x = 9.395; y = 3.592 %)
"p5_translated = ((Float 2462870 (- 18), Float 2462886 (- 18)),
Float 1883457 (- 19), Float 1883495 (- 19))"

(* x = 6.541; y = 1.069 %)
"p6_translated = ((Float 6858649 (- 20), Float 6858671 (- 20)),
Float 17946350 (- 24), Float 17946722 (- 24))"

"p3_translated

"p4_translated

by eval+

3.6 Related work

To the best of my knowledge, this chapter is the first work on the formalisation of occu-
pancy prediction in a theorem prover. This chapter only formalises the acceleration-based
occupancy [52] and neglects other abstractions such as lane-following occupancy [53]
and safe distance occupancy [54]. However, this does not mean that the occupancy
prediction formalised in this chapter is not sound. The occupancy prediction formalised
here over-approximates the actual reachable set of a vehicle, and further abstractions
mentioned above are meant to improve the accuracy of the occupancy prediction so
that the resulting set is as close as possible to the actual reachable sets. Compared
to the works mentioned above, this chapter provides a formal proof in Isabelle/HOL
of how the computed set (polygon) over-approximates the actual occupancy soundly
(Theorem 3.4).

This chapter also presents the first formalisation — to the best of my knowledge — of
rectangle enlargements due to the uncertainties in vehicle’s orientation and position; the
formalisation is heavily based on the works by Althoff et al. [57] and Rizaldi et al. [55].
The key difference is that the length enlargement in Sec. 3.5.1 is valid for 0 < Ay < 7
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3 Predicting the occupancies of other vehicles

while those in the previous work are only valid for 0 < Ay < tan_l(%). To see this, we
first note that the length enlargements in [57] and [55] due to uncertain orientation are
the absolute value of the enlargement in (3.42), i.e., AI}"™" := |Alg|. If we define A} as

the value at which 2 - Aly is exactly the negative of the maximum length enlargement, i.e.
2-Alp = — (\/ w?+12—1 ) , then 2 - AIY™ is less than the maximum length enlargement

for tan~! (%) < Ag < A} (see Fig. 3.9). This is unsound because it does not cover the case
of local maximum, i.e. § = tan~!(¥), which requires the maximum length enlargement.
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Monitoring overtaking traffic rules
with LTL

Formal monitoring of autonomous vehicles is the first formal analysis which we shall
explore in this thesis — the other being formal verification. Why would one be interested
in monitoring? Monitoring is a compromise between formal verification and testing: it
gives a more formal guarantee than testing but requires less effort than formal verifica-
tion. Additionally, monitoring conforms with the traditional development process in
which development and post-hoc verification are performed independently. In black-box
testing, for example, verification engineers deliberately ignore the system’s inner work-
ings to avoid inadvertently introduced biases in development. In monitoring, similarly,
they only need the traces of the system for verification without understanding how the
system works in detail. Thus, practitioners prefer monitoring to formal verification.

Consider again the following traffic rules about overtaking taken from the German
traffic code StVO §5(4):

When changing the lane to the left lane during overtaking, no following road
users shall be endangered. During overtaking, a sufficient side clearance
must be provided to other road users, especially pedestrians and cyclist. The
driver who overtakes has to change from the fast lane to the right lane as
soon as possible. The road user being overtaken shall not be obstructed.

If we wish to monitor these traffic rules, it is necessary to define all necessary concepts
concretely. From a motion planner’s perspective — as it only knows about the position,
speed, and orientation — the most sensible way to interpret the concepts of endangered or
obstructed is in terms of safe distance (see Ch. 2): a vehicle is endangered or obstructed if
the ego vehicle leaves no sufficient safe distance to that vehicle. The concept of overtaking,
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4 Monitoring overtaking traffic rules with LTL

on the other hand, is relatively more challenging to concretise. This chapter concretises
the concept of overtaking in terms of occupancy (see Ch. 3) and the geometrical shape
of the road in which the vehicles operate.

Traces provided for monitoring cyber-physical systems are usually time-sampled due to
the continuous dynamics of the system. Monitoring these traces raises the question of
robustness: how likely does the monitoring procedure change the satisfaction result of a
property if we know the behaviour in between these time points? Maler and Nickovi¢
[58] provided an example where shifting the sampling points changes the satisfaction of
an STL (Signal Temporal Logic) property — the property is false before shifting but true
afterwards. This chapter provides a novel way to address this issue by using reachability
analysis to enclose the behaviours in between these time points with sets.

The main contribution of this chapter is to define a framework for monitoring traffic
rules. This objective is first achieved by codifying the overtaking traffic rules in linear
temporal logic (Sec. 4.1). To concretise the concept of overtaking, we need to define
first the physical environment in which an autonomous vehicle operates (Sec. 4.2) and
the function to determine the lane an autonomous vehicle currently occupies (Sec. 4.3).
Only then can we valuate the truth value of the atomic propositions (Sec. 4.4) elicited in
the codification step. Section 4.5 discusses the numerical soundness of this monitoring
framework.

This chapter is based on the joint work with Jonas Keinholz, Monika Huber, Jochen
Feldle, Fabian Immler, Matthias Althoff, and Tobias Nipkow [59]. The related work in
this chapter is partly based on the collaboration work with Matthias Althoff [60].

4.1 Codifying overtaking traffic rules in LTL

Prior to concretising the concept of overtaking, it is helpful to start with the codification
— the process of identifying relevant atomic propositions and then use them to represent
the natural language requirements in a logical language. In codification, we assume
that we know how to valuate each atomic proposition. Taking this valuation for granted
helps us to understand the overall picture of how the monitoring process will look like.
As for the logical language, we choose Linear Temporal Logic (LTL) here because it
makes the formalisation more concise than first-order logic.

Figure 4.1 illustrates the typical process of overtaking, annotated with four important
time points to help us defining overtaking. We define time #; as the first time where the
occupancy of the ego vehicle — the tip of the rectangle — touches the lane divider. Time
t, meanwhile is the first time since t; where the ego vehicle is completely located in the
next lane — all points in the rectangle are located inside the next lane. Time #3 and #4
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e e
vehicle
J I \

vehicle

Figure 4.1: Illustration of overtaking. The curve represents the overtaking trajectory. We
show the positions of the ego vehicle (filled rectangle) at four different time
points 1, tp, t3, and t4. The positions of the other vehicle (empty rectangle)
are shown only for ¢; and t4.

Table 4.1: Atomic propositions and their intended interpretations

atomic proposition intended interpretation

overtaking performing an overtaking manoeuvre, i.e., [t1,t4)
begin-overtaking overtaking and starting to move to the next lane, i.e., [t1,t2)
merging starting to merge to the original lane, i.e., t3
finish-overtaking overtaking and returning to the original lane, i.e., [t3,t4)
sd-rear maintaining a safe distance to the rear vehicle on all lanes
safe-to-return leave large enough distance for merging to the original lane

are defined similarly to ¢; and t; except that the left lane and right lane are inverted
in their definitions. That is, 3 is the first time since t, where the occupancy of the ego
vehicle touches the lane divider. Time t4 meanwhile is the time when the ego vehicle is
completely located inside the original lane.

The first sentence in StVO §5(4) can be interpreted as ensuring a safe distance for the
following vehicle during [t;,t;). As for the second sentence, the ego vehicle needs to
maintain some side clearance to the vehicle being overtaken when their position in
x-axis overlaps; it does not need to maintain such side clearance when the ego vehicle is
still behind the front vehicle. Legal experts conclude that this side clearance is 1 m. The
third sentence meanwhile enforces the ego vehicle to merge (time f3) as soon as possible.
The word “as soon as possible here” is interpreted as the time when ego vehicle has
provided enough safe distance to the vehicle being overtaken. The safe distance not only
needs to be maintained at ¢3, but also during the time interval [f3, t4).
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4 Monitoring overtaking traffic rules with LTL

To support this interpretation of StVO §5(4), we define six atomic propositions with
their intended interpretations in Tab. 4.1. The traffic rules are codified as follows:

1. When changing the lane to the left lane during overtaking, no following road user
shall be endangered.

®; := G(begin-overtaking — sd-rear)

2. During overtaking, the driver has to change from the fast lane to the right lane as
soon as possible.

®, := G (merging <— safe-to-return)

3. The road user being overtaken shall not be obstructed.

®; := G(finish-overtaking — sd-rear)

With the traffic rules codified, we now need to define interpretation functions for each
atomic proposition. That is, we need a way to translate a run (the evolution of continuous
values such as position, orientation, speed, and acceleration) into a trace (the word over
the set of all atomic propositions). The interpretation functions for atomic propositions
such as sd-rear and safe-to-return can be easily obtained by using the safe distance
checker in Ch. 2. The more challenging part is to define the interpretation functions for
atomic propositions related to the overtaking qualifiers, such as begin-overtaking and
merging, because they are defined with respect to the road model.

Just as the safe distance checker is paramount for atomic propositions sd-rear and
safe-to-return, so is a lane detection function for atomic propositions merging and
begin-overtaking. Suppose that we label the right lane and left lane (the direction of
the travel is to the right) in Fig. 4.1 with 0 and 1, respectively. Additionally, we define
that the lane detection primitive returns both 0 and 1 if the ego vehicle touches the
lane divider. Time t; is thus the time where the lane detection returns both 0 and 1.
Also, the atomic proposition begin-overtaking should be true at this time until the
lane detection returns 1, which signifies that the vehicle is completely located at the left
lane (time #;). Time points t3 and ¢4 can be defined similarly from the lane detection
function, and consequently, atomic propositions merging and finish-overtaking can
be valuated appropriately.

4.2 Modelling lanelets and lanes for lane detection

To detect the lanes a vehicle currently occupies, one needs a computational (formal)
model of the road in which it operates. This section formalises two models of lanes: a
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Def. 4.1 Curve 152 Lanelet Def. 4.6
Thm. 4.3 curve
¢ Simple is-a Lanelet ¢
Det. 4.2 boundary Thm. 4.4 boundary Det. 4.7
Def. 4.3 Simple isa Lanelet Def. 4.8
T lane Thm. 4.5 o

Figure 4.2: Locales relationship between several definitions related to lanes and lanelets.

generalised lane and lanelets [61] (see Fig. 4.2); the former is closer to a mathematical
definition (more abstract) while the latter to the implementation level (more concrete).
We formalise on two different abstraction levels because it is easier to prove theorems
for abstract models while it is more convenient to generate code for concrete models.
If we show that the concrete model refines the abstract model, then any theorem in
the abstract model is also a theorem in the concrete model. In most cases, proving
refinement is easier than proving a theorem directly in concrete models.

4.2.1 Generalised lanes

A simple lane is uniquely characterised by its left and right boundaries, and we define a
boundary as a curve which has no common point (not self-intersecting).

Definition 4.1 (Curves). A function curve-eq :: R = R? is a curve if it is continuous on a
convex and compact set domain :: (IR)set.

Parametric function curve-eq defines a curve on two-dimensional Euclidean space only.
This restriction is because we are focussing on traffic road scenarios in which we do not
gain much by generalising it to n-dimensional Euclidean space. The conditions of being
compact and convex ensure that the domain is an interval.

Definition 4.2 (Simple boundaries). A curve is a simple boundary if both of its parametric
function curve-eq and its projection to the x-axis, i.e. curve-eq-x := fsto curve-eq, are injective
on the set domain.

Forcing curve-eq to be injective ensures that the corresponding curve is not self-intersecting
while demanding curve-eg-x to be injective guarantees that curve-eqg-x has an inverse;
we need this to define f-of-x in Theorem 4.1. Similar to the function curve-eq-x, the
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4 Monitoring overtaking traffic rules with LTL

function curve-eq-y is defined as the projection of curve-eq to the y-axis, i.e., curve-eq-y :=
snd o curve-eq.

Theorem 4.1. By defining setX and setY as the image of curve-eq-x and curve-eq-y on the set
domain, respectively, we have
f-of-x € setX — setY

where f-of-x 1= curve-eq-y o curve-eg-x_ .

Note that the arrow “—" in setX — setY denotes the set of all functions with domain
setX and codomain setY.
Definition 4.3 (Simple lanes). A simple lane is characterised by two continuous functions
f-of-x; € (setX; — setY]) and fof-x, € (setX, — setY;)

representing its left and right boundaries which satisfy the following two conditions:

1. setX; N setX, # @ ,and

2. Vx € setX;NsetX,. fof-x(x) # fof-x(x)
These conditions imply that there is a set along the x-axis where both boundaries overlap,
and in this set, both boundaries do not intersect.

Definition 4.4. For any x € setX) N setX,, function between-setY returns the set of real
numbers between the left and right boundaries (an interval):

between-setY(x) := [min(fof-x(x), Fof-x.(x)); max(f-of-x(x), F-of-x(x)] .

Definition 4.5 (Drivable area). The drivable-area of a simple lane is the set of points between
left and right boundaries:

drivable-area := {(x,y) ‘ xy = R. x € setX; NsetX, A y € between-setY(x)} .
One important theorem we can prove from these definitions is that the drivable area is

path connected (any two points in the area can always be connected with a path whose
image does not leave that area).

Theorem 4.2. The drivable-area is path connected.
Proof. The trick to prove this theorem is to define a mid curve which is always halfway

between the left and right boundaries. By doing so, we can always ensure that the points
in this mid curve are always located in the drivable area; this is because real numbers
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between-sety(x)

Py Ps

B P2 T clockwise test
boundary 2 %W | .
| \‘) +— counter-clockwise test
lanelet 1 | P4 }75; lane-detection
boundary 1 «——¢ Pzi ps . = Lane(0)
.Po P1 ! ‘
|
lanelet 0 | o« | lane-detection
boundary 0 «—— I = Boundaries [0]

— encicpoints

Figure 4.3: An example of two lanelets with the direction to the right. The
upper and lower polygonal chains for lanelet 1 is points-le =
[(po, P1). (P1 P2), -, (P4 p5)] and points-ri = [(po, p1), (1, p2), -- -, (P, ps)l,
respectively. One restriction used in this formalisation is that the end-
points have the same value in x-dimension, i.e., fst(pyg) = fst(p;) and
fst(ps) = fst(p). The grey area is the drivable area for lanelet 1. Both
the rightmost lanelet and the rightmost boundary are identified with 0, and
they increase as we move to the leftmost lanelet and boundary.

are dense. Then, for any two points (x1,y1) and (x2,y2) in the drivable area, we first
connect a vertical line from (x1,y1) to the mid curve, then follow through this mid curve
until we can connect a vertical line to (x2,,). Hence, we can always find a path between
any two points in the drivable area whose image is a subset of the drivable area. O

4.2.2 Lanelets

A lanelet [61] consists of two monotone lanelet curves (left and right). We define lanelet
curves and their monotonicity as follows.

Definition 4.6 (Lanelet curves). A lanelet curve is a nonempty polygonal chain; an xs ::
(R? x R?) list is a polygonal chain if

Vi.i+1<|xs| — snd(xs!i)=fst(xs!(i+1)) .
A line segment x :: R? x R? in a polygonal chain xs can be easily transformed into a
line path of type R = R? with the domain of [0; 1] as follows:

linepath(a,b) == (Ax. (1—x)-a+x-b) .
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4 Monitoring overtaking traffic rules with LTL

Two line paths can be joined into a single path with the domain [0; 1] as follows:

Jjoinpaths(fi, f2) = (/\x. if x < % then f1(2- x) else f(2 - x — 1))

We define lanelet-curve-eq as a series of joinpaths of line segment in a lanelet curve as
follows:

lanelet-curve-eq |x| = linepath(x) 4.1)
lanelet-curve-eq (x#xs) = joinpaths(linepath(x), lanelet-curve-eq(xs)) (4.2)

Theorem 4.3. A lanelet curve is a curve.

Proof. Associated with a lanelet curve is the function /anelet-curve-eq with the domain of
[0,1] defined in (4.1) and (4.2). This theorem is true due to the facts that [0, 1] is both
compact and convex, a line path is a continuous function on [0, 1], and joining a series of
line paths preserves continuity on [0, 1]. O

Note that in order for a curve to be a simple boundary in Def. 4.2, we need to ensure
that the curve equation is injective on its domain. This property can be ensured if the
polygonal chain is monotone.

Definition 4.7 (Lanelet boundaries). A lanelet boundary is a monotone polygonal chain w.r.t
x-axis, i.e., a polygonal chain whose x-element always increases:

Vi < |xs|. (fsto fst)(xs!i) < (fstosnd)(xs!i) .

The property of being monotone for a polygonal chain ensures that for each x, we
have a unique y such that (x,y) is in the polygonal chain. Therefore, given a polygonal
chain points, we can always create a function f-of-x from the set of all real numbers in
x-dimension to the set of real numbers in y-dimension.

Theorem 4.4. A lanelet boundary is a simple boundary (cf. Def. 4.2).

Proof. Associated with a lanelet curve is the function /anelet-curve-eq with the domain of
[0,1] defined in (4.1) and (4.2). To show that this function is a simple boundary we have
to show that the x-element of the parametric function is injective. This fact is a direct
consequence of the condition for a polygonal chain being monotone in Def. 4.7. O

Definition 4.8 (Lanelets). A lanelet is characterised by two lanelet boundaries points-le and
points-ri which do not intersect and have the same endpoints in x-dimension. That is,
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1. For any two chains, cin € set(points-le) and c,ign; € set(points-ri), and any two points
Pleft and prigns such that

Jty, t2 € [0,1]. /inepath(cleft/ t) = Plefe /\ Iinepath(cright/ ta) = Pright »
we have Pleft 7é Pright-

2. fst (points-le.lanelet-curve-eq 0) = fst (points-ri.lanelet-curve-eq 0)

3. fst (points-le.lanelet-curve-eq 1) = fst (points-ri.lanelet-curve-eq 1)

Similar to what is defined in [61], there is no requirement of the relative placement
between the two polygonal chains; points-le could be positioned above points-ri (from a
bird’s-eye view) or vice-versa. If it is the former then the lanelet has the direction to the
right, and the left if it is the latter. Two polygonal chains points; and points, are called
non-intersecting if there does not exist any two intersecting chains c¢; € set(points;),
2 € set(points,).

Theorem 4.5. A lanelet is a simple lane (cf. Def. 4.3).

Proof. Suppose that the left and right lanelet boundaries are points-le and points-ri.
Because both polygonal chains are nonempty (due to the definition of lanelet boundaries),
the corresponding setX for both polygonal chains are nonempty too. In fact, both are
the same set because we assume that they are monotone and have the same endpoints
in x-dimension (cf. Def. 4.8). Hence setXpoints-te N S€tXpoints-ri 7= ©. Because these two
polygonal chains are non-intersecting too, we have the second condition in Def. 4.3. []

Note that, with this definition, we could not model a lane which has a 90° turn. This
condition is because our definition of a monotone polygonal chain is fixed w.r.t. x-
dimension. Lanelets in [61] do not have this restriction, but we can circumvent this
problem by using a more general definition of monotone polygonal chains w.r.t to line [
and split a polygonal chain into a minimal number of monotone polygonal chains [62];
each with its own coordinate system.

Theorem 4.6 (Drivable area). By using the functional representation of the left and right
boundaries f-of-x; and f-of-x, (Theorem 4.1), and defining

first-point := (fsto hd) points-le
last-point := (snd o last) points-le ,
the following equalities hold.
setX = {x ‘ x. fst(first-point) < x < fst (last-point) } ,
between-setY(x) = [min(f-of-x(x), f-of-x(x)), max(fof-x(x), Fof-x.(x))] ,
drivable-area = {(x,y) | xy. x € setX A\ y € between-setY(x)}
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Proof. This theorem is true due to Theorem 4.5 and the definition of between-setY and
drivable area for a simple lane in Def. 4.4 and 4.5, respectively. O

By using the path connectedness in Theorem 4.2, we also have the property that the
drivable area of a lanelet is also path connected.

Definition 4.9 (Lane). A lane bs is a list of at least two lanelet boundaries where any two
adjacent lanelet boundaries form a lanelet:

Vi.i+1 < |bs| — is-lanelet (bs!i) (bs!(i+1)) ,
and all lanelets have the same direction:

Vi.i+1 < |bs| —> direction-left (bs!i) (bs!(i+1))
V. Vi.i4 1< |bs| — direction-right (bs!i) (bs!(i+1)) .

4.3 Designing and verifying a lane detection function

Given a rectangle representing the occupancy of a vehicle and a lane defined in Def. 4.9,
the purpose of this section is to define a verified function to determine which lanelet
the vehicle currently occupies. There are three possibilities of the result of this lane
detection:

datatype detection-opt = Outside | Lanelet (n :: IN) | Boundaries (ns :: IN list)

If the lane detection is equal to Lanelet(n), it has the interpretation that the vehicle is
completely located inside a lanelet bounded by lanelet boundaries n and n + 1. If it is
equal to Boundaries ns, it means that the vehicle intersects with all lanelet boundaries
identified in ns. If the physical size of the vehicle is relatively small, it usually intersects
only with one lanelet boundary. However, if the size is relatively big (e.g. lorries), then
the vehicle could intersect with at least two lanelet boundaries when it moves to the
next lanelet.

Since we can view both a rectangle and a lanelet boundary as a list of chains (segments),
we can check whether a rectangle intersects with a lanelet boundary by performing
segment intersection tests. Of course, we only need to test relevant segments in the
lanelet boundary; those segments whose x-values are located to the left or the right of
the rectangle can be omitted. If we want to ensure further that the rectangle is located
inside Lanelet(n), we also need to check whether all four vertices of the rectangle are
located inside lane n. If none of these tests is true, then the vehicle must be located
outside of the lane. To summarise, the lane detection function needs segment intersection
test and point-in-lanelet test for lane detection.
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4.3.1 Segments intersection test

A segment is concretely represented by a pair of points (p,q) :: R? x R? and the set of
all points in the segment is formalised as follows:

closed-segment (p,q) = {(1—u)-p+u-qlu =R 0<u<1} . (4.3)
Given a segment ((x1,11), (x2,Y2)), we can obtain three coefficients a, b, and c as follows:
a:=y—y; b=x1—x5 ci=x1-y2—x2-Y1 . (4.4)

The set of all points in a line formed by a segment (p, q) is formalised as follows:
points-in-lines(p,q) = {(x,y). a-x+b-y=c} (4.5)

where coefficients 4, b, ¢ are defined according to (4.4); we denote the equation a - x +
b -y = c as the characteristic equation for the line formed by the segment (p,q). The
following theorem formalised the relationship between a segment and its corresponding
line.

Theorem 4.7. closed-segment (p1, p2) C points-in-line (p1, p2)

Proof. Suppose that p € closed-segment (p1, p2). Then, we can obtain # where 0 < u <1
and

fst(p) = (1 —u)-fst(p1) +u-fst(p2) (4.6)
snd(p) = (1 —u)-snd(p1)+ u - snd(pz) 4.7)
according to the definition of segments in (4.3). Multiplying the first equation with

snd(p2) — snd(p1), the second with fst(p;) — fst(p2) and adding them together result in
the following equality:

(snd(p2) — snd(p1)) - fst(p) + (fst(p1) — fst(pz2)) - snd(p) = fst(p1) - snd(p2) — fst(p2) - snd(p1)

which implies that p € points-in-line(p1, p2) according to the definition in (4.5). O

To check whether two segments intersect, we could first view segments as lines and
try to find their intersection as follows: represent the two lines with their respective
characteristic equations, a1 - x + by -y = c1 and a2 - x + by - y = ¢, and combine these
two equations in the matrix form:

o 0] 1] - 0] s
an bz y Co ' ’
N—— N~

A P b
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Figure 4.4: Two out of three possible segment intersection cases. The left figure denotes
the case where both segments are not aligned and not parallel and the right
parallel and aligned.

If the inverse A~! does exist then the intersection point is uniquely defined as p = A~ !b.

The fundamental theorem in linear algebra about a system of equations states that
there are three possible cases regarding the number of solutions: 1) there is no solution,
2) there is a unique solution, or 3) there are infinitely many solutions. The first two cases
happen when both lines are not aligned. More specifically, it has no solution when both
lines are parallel, and a unique solution when both lines are not parallel (left of Fig. 4.4);
the third case happens when both lines are aligned (right of Fig. 4.4). However, since
we are dealing with segments instead of lines, we need to check the intersection — if it
does exist — is indeed located on both segments.

In order to identify these three cases, we define the following functions:

parallel-and-not-aligned (I1,1;) := a1-bp—ay-by =0 A by-ca—by-c1#0, (49)
not—a/igned(ll, 12) = a1-bh—a b 7& 0OV by-co—br cq 75 0, (4.10)

where 4,b, and c are obtained according to (4.4).
Theorem 4.8 (No solution). If the function parallel-and-not-aligned(1y, 1) is true, then

—3p. p € closed-segment(l1) A p € closed-segment(l) . (4.11)

Proof. We first show that the system of equations in (4.8) has no solution:
—dp = RxR. p € points-in-line(ly) N\ p € points-in-line(ly) . (4.12)
Suppose that we can find such p. Then, according to Def. 4.5, we have

ay - fst(p) + by - snd(p) = c1 A ay - fst(p) + bz - snd(p) = c2 .
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Multiplying the first equality with b, and the second equality with b; and then subtract-
ing the latter from the former results in the following equation:

(Ll1 : fSt(p) + by - snd(p)) by — (az : fst(p) + by - snd(p)) by =c1-bp—cy-by .
After several arithmetic manipulations, we can deduce the following equality:
(Lll'bQ—{lz'bl)'fSt(p) =c1-bp—cr-by .

However, the premise in this theorem and Def. 4.9 imply a> - by —a; - b, = 0 and
by - co — by - c1 # 0 which contradicts with the equality above; hence we have proved
(4.12). The condition in (4.11) is then a direct consequence of (4.12) and Theorem 4.7. [

Theorem 4.9 (Unique solution). If the function parallel-and-not-aligned(ly, 1) is false but the
function not-aligned(ly, 1) is true, then the point p := find-intersection(l,l,) belongs to both
lines 11 and I»:

p € points-in-line(ly) N\ p € points-in-line(l,) . (4.13)

Proof. By unfolding the definitions in (4.9) and (4.10) and using the resolution proof
rule, we can deduce that the determinant in (4.8) is non-zero. This implies that point
p is well-defined and it is equal to A~'b. Basic results in linear algebra show that this
point satisfies equations a; - x + by -y = ¢ and az - x + by - y = ¢ which in turns implies
(4.13) according to (4.5). O

Theorem 4.10 (Infinitely many solutions). If the function not-aligned(l;, 1) is false, then

dp :: RxR. p € points-in-line(ly) A p € points-in-line(ly) . (4.14)

Proof. From the premise that —not-aligned(l;,I), we know that a; - by —ay - b = 0 and
by -c2 —by-c1 = 0. These imply that a; = Z—; -y, by = Z—; -by,and ¢ = z—; - Cp, 1.e., the

corresponding lines of segment [; and [, are the same; hence the condition in (4.14). O

By using these two functions and these three theorems, we can structure the temporary
function segment-intersect (I1,1,) as follows:

segment-intersect(ly,lp) =
let p = find-intersection(ly, 1) in
if parallel-and-not-aligned(l, 1) then False

elseif not-aligned(ly,1,) then undefined else undefined

The reason why the second then and else parts of the function are still undefined is
because we only know that the corresponding lines intersect but not the segments (cf.
Theorem 4.9 and 4.10). If the two segments are not parallel and not aligned (left of
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Fig. 4.4), we need to check whether the intersection point p is in-x-interval(ly, fst(p)) A
in-y-interval(ly, snd(p)) and in-x-interval(l,, fst(p)) A in-y-interval(l2, snd(p)). These two pred-
icates have the following properties.

in-x-interval(l :: R*> x R?,x) <= x € closed-segment ((fsto fst) (1), (fsto snd) (1)),
(4.15)

in-y-interval(l :: R*> x R?%,y) <= y € closed-segment ((snd o fst) (1), (snd o snd) (1))
(4.16)

Theorem 4.11. If the function parallel-and-not-aligned(ly, Iy) is false but not-aligned(ly,1>) is
true, then

in-x-interval(ly, fst p) == p € closed-segments(ly) ,

where p := find-intersection(ly, ;) and assuming (fsto fst)(ly) # (fsto snd)(l7).
p g

Proof. For ease of reference, we label the x and y elements of /; and p as follows:

X1 = (fsto fst)(ll), Xy = (fsto snd)(l1), Y1 = (sndo fst)(l1), Yy = (sndo snd)(l1),
(4.17)

x = fst(p), y=snd(p) . (4.18)

From Theorem 4.9 we know that p is located on the line of segment /; and so are both
endpoints fst(l;) and snd(l;). With (4.5), we can deduce the following equalities:

a-x+b-yy =a-x1+b-y7 AN a-x+b-y=a-x1+b-y;,
where a, b, c are the coefficients obtained from (4.4) for /1, and hence

) (4.19)

S

yz—y1=<x1—Xz)-% A y-n=(n-x):

after some arithmetic manipulations. Note that b cannot be zero due to the premises
that the endpoints are not the same.

in-x-interval(ly, x)
= { (4.15) }

X € closed-segment (x1, x2)
= { @3}

>0 t<1Ax=(1—-t)-x1+t-x
—>  { arithmetic }

>0 t<1At-(xp—x1)=x—1x1
= { multiply both sides with { }
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>0 t<1At-(xp—x1)-—=(x—2x1)"

S
S

—>  { using equalities in (4.19) }

d>0. t<1IAt-(y2—v1)=vy—1n
=  { arithmetic }

Jd#>0. t<1Ay=0—-t)-y1+t-y
— {3}

y € closed-segment (y1,>)

—>  { with fact x € closed-segment (x1, x2) in step 2 of this calculation and fact
p = find-intersection(l1,12) }
p € closed-segment (1) O

Theorem 4.12. If the function parallel-and-not-aligned(ly, 1) is false but not-aligned(l;,1>) is
true and (fsto fst) Iy = (fsto snd) Iy (segment I, stands vertical), then

in-x-interval(ly, fst(p)) A in-y-interval(l, snd(p)) == p € closed-segment(l;) ,

where p := find-intersection(ly, I).

Proof. For ease of reference, we reuse the definitions in (4.17) and (4.18). Due to the
premises (fsto fst)(l;) = (fsto snd)(l1) and in-x-interval(l;, x), we can deduce x = x; and
X = Xo.

in-y-interval(ly, y)
—  {@416)}
y € closed-segment (y1,2)
= {43}
Jd#>0. t<1Ay=0—-t)-y1+t-y
—>  { arithmetic }
d>0. t<1Ay=yi+t-(y2—11)
— {factsx=xyand x=x; }
d#>0. t<1Ay=m+t-(y2—y1) N x=x1+1t-(x2—1x1)
— {3}
p € closed-segments(l;) O

These two theorems show that testing both in-x-interval(ly, fst(p)) and in-y-interval(ly, snd(p))
are required to ensure p € closed-segment(l;). Similarly, we can adapt Theorem 4.11 and
Theorem 4.12 by replacing I; with I, to guarantee p € closed-segment(l,). With these four
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theorems, we can then update segment-intersect as follows:

segment-intersect(ly, ;) =
let p = find-intersection(ly,12); px = fst(p); py = snd(p) in
if parallel-and-not-aligned(l, 1) then False
elseif not-aligned(l, 1) then
in-x-interval(ly, px) N in-x-interval(lp, px) A

in-y-interval(l, py) N in-y-interval(ly, py)

else undefined

If two segments are aligned (right figure of Fig. 4.4), we only need to check whether
their x-interval and y-interval overlaps — overlaps-x(l1,12) and overlaps-y(l1,15). Given
two intervals [l1, 1] and [, up] where I; < 17 and I, < up, we can check whether these
two overlap by testing I, < u; A I1 < uy. Functions overlaps-x(11, ;) and overlaps-y(l1,12)
have the following correctness conditions:

overlaps-x(l1,1;) <= 3dp. p € closed-segment ((fsto fst)(l1), (fsto snd)(l1)) A

p € closed-segment ((fst o fst)(l2), (fst o snd)(l2)) (4.20)
overlaps-y(l1,13) <= 3p. p € closed-segment ((snd o fst)(l1), (sndo snd)(l1)) A

p € closed-segment ((snd o fst)(l2), (snd o snd)(l)) (4.21)

Theorem 4.13. If both functions parallel-and-not-aligned(ly, 1) and not-aligned(ly, I>) are false,
then overlaps-x(I1, 1) and overlaps-y(l1, ly) imply

dp. p € closed-segment (1) N p € closed-segment (I,) ,

assuming (fsto fst)(ly) < (fsto fst)(lp), fst(ly) # snd(ly), and fst(ly) # snd(l2).

Proof. Suppose that ay,b1,c1 and ay, by, ¢, are the coefficients (obtained from (4.4)) of
the corresponding line equations for segments /1 and I, respectively. Two cases are
considered here: by - by # 0 or by - b, = 0. In the former case, we can deduce b; # 0
and by # 0 and we define a constant k := Z—; when a; # 0 or else k := % when a, = 0;
it cannot be the case that both 4, = 0 and b, = 0 as this would mean fst [, = snd I,.
Choosing p := fst(l) ensures that p € closed-segment (I) and a; - fst(p) + by - snd(p) = c».
Multiplying both sides of this equality with k results in a; - fst(p) + by - snd(p) = c1
because not-aligned(ly, 1) is false (see the proof of Theorem 4.10). This equality and
the assumption overlaps-x(l1,l;) (and the correctness condition in (4.20)) entail p €
closed-segment (1y).

In the latter case, both b; and b, must be equal to zero. This is because not-aligned (11, 1>)
is false implies a; - b, = a, - by and hence by =0 — bp =0and b, =0 — b; = 0 (a4
and by cannot be zero at the same time and so do a; and b,). This means both /; and
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I, stand vertical, i.e., (fsto fst) Iy = (fsto snd) Iy = (fsto fst) I, = (fsto snd) ;. Premise
overlaps-y(l1, 1) ensures that we can obtain y which are located on both segments (cf.
the correctness condition in (4.21)). Then, choosing p := ((fsto fst) [}, y) ensures that
p € closed-segment (I1) and p € closed-segment (I). O

Theorem similar to Theorem 4.13 with the premise (fsto fst)(Iy) < (fsto fst)(l;) instead
of (fsto fst)(l1) < (fsto fst)(l) also exists; choose p := fst(l;) instead of p := fst(ly) for
the witness of the first case. The complete form of the segment intersection function can
now be defined as follows:

segment-intersect(l1,ly) =
let p = find-intersection(ly,3); px = fstp;, py,=sndp in
if parallel-and-not-aligned(l1,1,) then False
elseif not-aligned(ly,1;) then
in-x-interval(ly, px) N in-x-interval(ly, px) A
in-y-interval(ly, py) A in-y-interval(lz, py)
else

overlaps-x(l1,12) N overlaps-y(l1, 1)

Theorem 4.14. For any two segments Iy, 1, :: (R? x R?) where fst(l1) # snd(ly) and fst(lp) #
snd(ly), we have

segment-intersect(ly,ly) <= Ip. p € closed-segment(ly) N\ p € closed-segment(ly) .

Proof. We shall prove the soundness (=) part only since we cannot guarantee complete-
ness (<=) any longer when we reify this function to that with intervals of floating-point
numbers. The soundness of this function is a direct consequence of Theorem 4.11, 4.12,
and 4.13. O

4.3.2 Point-in-lanelet test

Consider a lanelet which has the direction to the right and parametrised by points-le
and points-ri as its left and its right boundary, respectively, as shown in Fig. 4.3. Firstly,
we need a function to filter irrelevant segments in points-le and points-ri; this is achieved
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with the function find-segment with the following correctness condition:

find-segment(points :: (R* x R?) list,x :: R) = Somec —>
c € set(points) A in-x-interval(c, x) (4.22)
find-segment(points :: (R? x R?) list,x :: R) = None —>

—3c € set(points). in-x-interval(c, x)
(4.23)

Theorem 4.15. For any lanelet boundary points :: (R? x R?) list, we have
dc. find-segment(points, x) = Some ¢ <= fst(first-point) < x < fst(last-point) ,

where first-point := (fst o hd)(points) and last-point := (snd o last)(points).

Proof. We shall only prove the ‘=" part as the ‘<=’ part is trivial due to (4.23). From
the correctness condition in (4.22), we know that the list points is not empty and hence
hd(points) and last(points) are well-defined. Additionally, we can deduce also that c is
one of the chains in points where (fsto fst)(c) < x < (fstosnd)(c); this inequality
is due to the property of lanelet boundaries being monotone (see Def. 4.7) and (4.15).
Monotonicity in lanelet boundaries also ensures that fst(first-point) < (fsto fst)(c)
and (fstosnd)(c) < fst(last-point) which in turn ensures that fst(first-point) < x <
fst(last-point) by transitivity. O

Secondly, after we know that the x-value of the point is in between first-point and
last-point, we need to ascertain whether the y-value is inside the interval between-setY(x)
(see Fig. 4.3). This is achieved by performing a clockwise test to the segment above and
a counter-clockwise test to the segment below. Clockwise test (cw) for a triple (p1, p2, p3)
checks whether the sequence of points in the triple has a clockwise orientation; the
counter-clockwise (counter-cw) test does the opposite (see Fig. 4.3). Both functions are
defined as follows [63]:

counter-cw(p1, p2, p3) = |pip2p3| >0, (4.24)
cw(p1, p2,p3) == |p1paps| <O, (4.25)

pic P? px'py+py,px+px.py_
lppaps| = |p3 py 1| = LT3 LTS T2 (4.26)

oo PPt i)

Theorem 4.16. Provided that fst(ey) < fst(ex) and the corresponding line equation for the

segment (e1,ep) is f(x) :=m - (x — fst(e1)) + snd ey with m := %, we have

counter-cw(p,e1,e2) <= f(fst(p)) < sndp , (4.27)
cw(p,e1,e2) <= sndp < f(fst(p)) . (4.28)
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Proof.

counter-cw(p, e1, €2)
<= { Definition of counter-cw }
|perea] >0
<=  { property |abc| = |0(b—a)(c—a)| }
0(e1 — p)(e2 —p)| >0
<= { Definition in (4.26); arithmetic }
fst(ex — p) - snd(e; — p) + fst(p —e1) - snd (e — p) <0
<= { arithmetic }
snd(ey —eq) - fst(p —e1) + snd(e; — p) - fst(ep —e1) <0
<= { divide both sides with fst(e; — e;); premise fst(e;) < fst(ez) }
snd (e, —e1)
fst(ep —e1)
<= { Definition of the line equation f }
f(fst(p)) < snd p

The proof for (4.28) can be obtained similarly. O

- fst(p —e1) +sndey < sndp

The point-in-lanelet test for a right direction lanelet is formalised by the following
function.

point-in-lanelet(p) := let ¢; = find-segment(points-le, p);
c2 = find-segment(points-ri, p)
in if ¢y = None V ¢; = None then False
else cw(p, (fsto the) ¢, (snd o the) c1) A

counter-cw(p, (fst o the) ca, (snd o the) c3)

Theorem 4.17. For a right-direction lanelet defined in Def. 4.8 with points-le and points-ri as
its left and its right boundary, respectively, we have

point-in-lanelet(p) <= p € drivable-area .
Proof. When the function point-in-lanelet(p) is true, Theorem 4.15 ensures that fst(p) €
setX. Because we assume that the lanelet has a direction to the right, we have
between-setY(x) = |[fof-x(x), f-of-x(x)] .

Correctness condition in (4.22) also ensures that in-x-interval(c1, x) and in-x-interval(cz, x)
which in turn allows us to replace f-of-x;(x) and f-of-x,(x) with the line equations
corresponding to chain c; and ¢y, respectively. Theorem 4.16 then ensures that snd p €
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between-setY(fst(p)). Together with the fact fst(p) € setX obtained previously, we can
deduce p € drivable-area by unfolding the definition of drivable area in Theorem 4.6.

From the definition of point-in-lanelet, if this function is false then it could be the case that
either both ¢ and ¢, are None or the conjunction in the else part is false. If it is the former,
Theorem 4.15 ensures that fst(p) ¢ setX and, if it is the latter Theorem 4.16 ensures
that snd p ¢ between-setY(fst(p)). In either case, we can deduce that p ¢ drivable-area by
using Theorem 4.6. O

4.3.3 Lane detection function

Detecting whether a rectangle intersects with a lanelet boundaries can be checked with
the following function.

rectangle-intersect (r,bs :: (R? x R?) list) :=
let Is = get-segments (r); is = map (segment-intersect-boundary bs) Is
in ((s!0) VvV (is!'1) VvV (is!'2) vV (is!3))
segment-intersect-boundary (cs :: (IR2 X le) list)) (s :: R>x R?) :=

if is-empty cs then False else if segment-intersect (hd cs) s then True

else segment-intersect-boundary (tl cs) s

The function get-segments, as its name implies, is the function which returns the list of
four edges of a rectangle. Similarly, we also have the function get-vertices which returns
the list of four extreme points of a rectangle.

Theorem 4.18. The predicate rectangle-intersect (r, boundary) is true if and only if

dcp. c € set(boundary) N p € closed-segment(c) A in-perimeter(p,r) ,

where in-perimeter is defined as follows:

in-perimeter(p,r) := 3l. | € set(()get-segments(r)) A p € closed-segment (l) .

The proof for this theorem can be obtained by using the standard technique of induction
over the boundary and the correctness of segment-intersect in Theorem 4.14. Detecting
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whether a rectangle is inside a lanelet meanwhile is formalised by the following function:

rectangle-inside (v) := vertices-inside (r) N\ segments-no-touch (r) ,
vertices-inside (r) := let vs = get-vertices (r); is = map point-in-lanelet vs
in(is!0) A (is!1) A (is!2) A (is!3),
segments-no-touch (r) := let Is = get-segments (r); is = map intersect-boundaries Is
in—((is!'0) v (is!l) v (is!2) VvV (is!3)) ,
intersect-boundaries := Ax. segment-intersect-boundary (points-ri) (x)
V' segment-intersect-boundary (points-le) (x) .

Lemma 4.1. If there are two points p1, po € drivable-area of a lanelet, then

in-x-interval((p1, p2),x) = x € setX .

Proof. Without the loss of generality, we can assume further that fst(p;) < x < fst(p,)
from the premise in-x-interval((p1, p2), x) and (4.15). The proofs for cases where x =
fst(p1) or x = fst(p2) are trivial, and the proof for the case where fst(py) < fst(p1) can
be obtained similarly. Since we know that py, p» € drivable-area, Theorem 4.6 guarantees
that fst(first-point) < fst(p1) and fst(py) < fst(last-point). With the assumption in
the beginning of this proof, we can deduce that x € setX by using the transitivity
property. O

Lemma 4.2. If there are two points p1, p2 € drivable-area of a lanelet and the segment (p1, p2)
does not intersect with either the left or right boundary, i.e., ~intersect-boundaries (p1, p2),
then

p € closed-segment (p1,p2) == snd p € between-setY(fst(p)) .

Proof. Without the loss of generality, we shall prove this lemma for lanelets with the
direction to the right; the proof for the lanelets with the direction to the left can be
obtained similarly. Assume that the consequence of the deduction above is false. Then, it
is either the case that p is located above the left boundary, snd p > f-of-x; (fst(p)) or below
the right boundary, snd p < f-of-x, (fst(p)). In either case, we can use the Intermediate
Value Theorem (IVT) in Lem. 2.3 to deduce that there is a point p € closed-segment (p1, p)
that intersects the respective boundary; this contradicts with the assumption that there
is no intersection with both boundaries. Note that the continuities of both Fof-x; and
f-of-x, are guaranteed since both are curves (via Theorem 4.3 and Def. 4.1). O

Theorem 4.19. If rectangle-inside(r) is true in a lanelet and seg :: R? x R? is one of the four
edges of rectangle r, then

p € closed-segment(seg) == p € drivable-area .
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Proof. The premise rectangle-inside(r) implies the segment seg does not intersect with ei-
ther the left or the right boundary and both predicates point-in-lanelet (fst(seg)) and
point-in-lanelet (snd seg) are true. With Theorem 4.17, we can deduce further that
both fst(seg) and snd seg are in the drivable area and, together with premise p €
closed-segment (seg), Lemma 4.1 and 4.2, we can deduce that p € drivable-area by unfold-
ing the definition of drivable area in Theorem 4.6. O

Theorem 4.20. If rectangle-inside(r) is true in a lanelet, then the interior of rectangle r is a
subset of the drivable area.

Proof. Assume that p is located at the interior of rectangle r. This condition im-
plies that there are two different edges of rectangle r — seg; and seg, — where
in-x-interval(segy, fst(p)), in-x-interval(seg,, fst(p)), and seg; is located above of seg,. Since
the premise rectangle-inside(r) guarantees that both endpoints of seg; are inside the
drivable area, we can deduce further that fst(p) € setX from Lem. 4.1. A vertical line
x = fst(p) will intersect two segments seg; and seg, at p; and p, respectively, and snd p €
closed-segment (snd py, snd p1). Theorem 4.19 stipulates that both p; € drivable-area and
p2 € drivable-area and, together with the facts that fst(p;) = fst(p) = fst(p2) and seg; is
above seg,, we can deduce that snd p € between-setY (fst(p)) and hence p € drivable-area
according to the definition of drivable area in Theorem 4.6. O

Detecting whether a rectangle is located outside of a lanelet can be formalised as follows:

rectangle-outside (r) := vertices-outside (r) A segments-no-touch (r) ,
vertices-outside (r) := let vs = get-vertices (r); is = map point-in-lanelet vs
in—((is!0) v (is!'l) Vv (is!t2) v (is!3)) .

Theorem 4.21. If rectangle-outside(r) is true in a lanelet, then p ¢ drivable-area for all points
p located at either at the perimeter or in the interior of rectangle r.

We omit the proof for this theorem because the proof sketch is very much similar
to the proofs of Theorem 4.19 and 4.20. Equipped with these primitives,
and their associated lemmas and theorems, function /ane-detection :: rectangle =
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(R? x IR?) list list = detection-opt can be defined as follows:

lane-detection (rect, bss) :=

if rectangle-outside (hd bss) (last bss) rect then Outside

else if check-inside bss rect 0 = Some (n) then Lanelet (n)

else Boundaries (check-boundaries bss rect 0)
check-inside (r# I# bss) rect n :=

if rectangle-inside r | rect then Some (n)

else if — (is-empty bss) then check-inside (I# bss) rect (n + 1) else None
check-boundaries (bs# bss) rect n :=

if rectangle-intersect (rect, bs) then n # check-boundaries bss rect (n + 1)

else check-boundaries bss rect (n + 1)

The lane detection function starts by checking whether the rectangle is located outside
the whole lane. We utilise the previously defined rectangle-outside function for checking
whether a rectangle is located outside of a specific lanelet. Due to the way a lane is
defined (Def. 4.9), we check whether a rectangle is outside by using the rightmost
and leftmost lane of a lane (hd bss and /ast bss in the definition above) as points-ri and
points-le. Theoretically speaking, the result of a lane detection must be either Lanelet (1),
Boundaries (ns), or Outside, where ns is not an empty list. However, due to limited
numerical precision, it might be the case that none of these cases is returned by this
function; this happens when the argument for the constructor Boundaries is an empty
list.

4.4 Interpretation with lane detection and safe distance checker

Provided with a trace (a sequence of values such as position, orientation, and speed) and
a lane (a list of lanelet boundaries) how can we determine time points t1, f>, t3 and ¢4 with
lane-detection? Remember that we need these time points to define atomic propositions
such as begin-overtaking and merging. Since the function /ane-detection requires a list of
rectangles as its second argument (see the last part of Sec. 4.3.3), we must first convert
the trace into a list of rectangles®. Taking the values of position and orientation from
the trace, we translate a rectangle with fixed length and width by this position and then
rotate the resulting rectangle with the orientation.

Provided with a list of rectangles rects and lane, we can approximate t1, 1>, t3, and t4
by using linear search. Time t; is the first time a vehicle touches the lane boundary

INote that the lane detection check is only done for discrete time
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which can be found by the following function (the base case where the list is empty is
straightforward):

Definition 4.10.

start-inc-lane (rect# rects) I idx =
case lane-detection (rect, lane) of
Boundaries |l + 1] = Some(idx, rects)
| Lanelet ] = start-inc-lane rects | (idx+ 1)
| _ = None

Theorem 4.22. If start-inc-lane(rects, ori-lane, start-idx) = Some(idxy, r) then the smallest n
to satisfy the following conditions is idx;.

start-idx < n
A lane-detection(rects ! (n — start-idx)) = Boundaries |ori-lane + 1]
A Vm. 0 < (m— start-idx) < (n — start-idx) —

lane-detection (rects ! (m — start-idx)) = Lane(ori-lane)

Proof. We first show that idx; satisfies the condition above. The definition of start-inc-lane
clearly shows that start-idx < idx; as successive evaluations of this function either
increases the time parameter (the third argument) or leave it unchanged. Lane detec-
tion at rects! (idx; — start-idx) is Boundaries |ori-lane 4 1| because the guard condition for
Some(idxy, rects) in the case distinction is Boundary [l + 1| and, according to the premise,
I = ori-lane; the third condition is true by using induction over rects.

Next, we show that for all n which satisfies the condition above, we can deduce idx; < n.
Suppose that n satisfies those three conditions and n < idx; and we subtract both sides
with start-idx into n — start-idx < idx; — start-idx (start-idx < n according to the first
condition). Then, by using the third condition (the universal quantification), we can
deduce that the lane detection at n — start-idx is Lane(ori-lane) which contradicts with
the second condition in the assumption. Hence, it must be the case that idx; < n. With
the first sub-proof, we can deduce that idx; is the smallest index to satisfy the three
conditions in the theorem. O

Apart from returning the index pointing to ¢, the function start-inc-lane also returns the
rest of the list where it has yet to process; we feed this list to the next function to find #,.
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Definition 4.11.

finish-inc-lane (rect# rects) bt :=
case lane-detection (rect, lane) of
Boundaries |b| = finish-inc-lane rects b (t + 1)
] Lanelet b = Some(t, rects)
| _ = None

Theorem 4.23. If finish-inc-lane(rects, bound-id, start-idx) = Some(idxy, r) then the smallest n
to satisfy the following conditions is idxo.
start-idx < n
A lane-detection(rects ! (n — start-idx)) = Lane (bound-id)
A Vm. 0 < (m— start-idx) < (n — start-idx) —

lane-detection (rects ! (m — start-idx)) = Boundaries [bound-id|

Since times f3 and t; are similar to #; and f,, respectively, we can define functions
start-dec-lane and finish-dec-lane to detect t3 and t4, correspondingly, as follows:

Definition 4.12.

start-dec-lane (rect# rects) | t :==
case lane-detection (rect, lane) of
Boundaries || = Some(t, rects)
| Lanelet] = start-dec-lane rects ] (t + 1)
| _ = None

Theorem 4.24. If start-dec-lane(rects, next-lane, start-idx) = Some(idxs, r) then the smallest n
to satisfy the following conditions is idxs.
start-idx < n
A lane-detection(rects ! (n — start-idx)) = Boundaries |next-lane|
A Vm. 0 < (m— start-idx) < (n — start-idx) —

lane-detection (rects ! (m — start-idx)) = Lane(next-lane)

Definition 4.13.

finish-dec-lane (rect# rects) bt :=
case lane-detection (rect, lane) of
Boundaries |b| = finish-dec-lane rects b (t + 1)
| Lanelet (b —1) = Some(t, rects)

| _ = None
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Theorem 4.25. If finish-dec-lane(rects, bound-id, start-idx) = Some(idxy, ) and 0 < bound-id,
then the smallest n to satisfy the following conditions is idxs.
start-idx < n
A lane-detection(rects ! (n — start-idx)) = Lane (bound-id — 1)
A Vm. 0 < (m— start-idx) < (n — start-idx) —

lane-detection (rects ! (m — start-idx)) = Boundaries |bound-id|

The difference between start-inc-lane and start-dec-lane is that the relationship between
the origin and the destination lane are inverted. In case the constructor Boundary is
matched during a pattern matching, the former stops searching when the argument
to this constructor is [ + 1 while the latter I; similar argument also applies when we
compare finish-inc-lane and finish-dec-lane. Assuming that the initial lanelet is 1, we can
combine these four functions to detect t1, f», t3, and f4 as follows:

Definition 4.14.

overtaking rectsy := do{ (idxy, rects;) < start-inc-lane (rectsp, n, 0);
(idxy, rectsy) <— finish-inc-lane  (rects;, n+1, idxg+1);
(idxs, rectss) <— start-dec-lane  (rects;, n+1, idx+1);
(idxy, rectsy) <— finish-dec-lane  (rectss, n, idxs+1);
Some (idxq, idxy, idxs, idxa, rectsy) }

So what are f1,t,t3, and t; exactly? If we have Some(idx;, idxy, idxs, idxy, rectsy) as the
result of overtaking rects, then we can deduce the following condition with Thm. 4.22:

0<idx A (Ym>0. m<idq — lane-detection(rects! m) = Lane(n))
A lane-detection(rects ! idx;) = Boundaries [n + 1] .
Mentally replacing idx; with t; — even though these two identifiers are of different
types — provides a rough approximation of translating the definition of ¢; (the time at

which the ego vehicle touches the lane boundary for the first time) in a logical formula.
Similarly, Thm. 4.23 allows us to deduce the following condition:

idxy < idxp A (Ym > idx;. m < idxp — lane-detection (rects | m) = Boundaries [n + 1])
A lane-detection(rects ! idxy) = Lane(n+1) ,
which is the formal translation of time t, (the first time since ¢; the ego vehicle is

completely located at the next lane). As for t3, we can use Thm. 4.24 to translate its
informal definition (the earliest time since t, to touch the lanelet boundary) as follows:

idxy < idxs A (Ym > idxo. m < idxs — lane-detection (rects! m) = Lane(n + 1))

A lane-detection(rects ! idxs) = Boundaries [n + 1] .
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Finally, Thm. 4.25 allows us to translate time 4 (the earliest time since t3 to be completely
located inside the original lane) as follows:

idxs <idxg A (Ym > idxs. m < idxy — lane-detection (rects! m) = Boundaries|n + 1|)

A lane-detection(rects ! idxs) = Lane(n) .

Labelling. After we have obtained these time indices, it is easy to construct a run
which is suitable for LTL monitoring. For example, the run for overtaking is

replicate(idx, @) @ replicate(idxy — idxy, {overtaking}) @ replicate(|rects| — idxs, D) ,
and the run for begin-overtaking is
replicate(idx;, @) @ replicate(idx, — idx;, {begin-overtaking}) @ replicate(|rects| — idxp, D) .

It is not difficult to translate these constructions to those corresponding to atomic
propositions finish-overtaking and merging. Finally, to obtain a complete run with
respect to these four atomic propositions, we could use a pointwise union between all
of these four runs.

In addition to these four atomic propositions, we have also identified atomic propositions
sd-rear and safe-to-return in our codification (cf. Sec. 4.1). For sd-rear, we need
a function to identify traffic participants that are behind the ego vehicle and occupy
relevant lanes and boundaries, i.e., vehicles which might be endangered if it performs
an overtaking manoeuvre. The former can be done by comparing the location of other
traffic participants with respect to the location of the ego vehicle, i.e., checking whether
(fst o centre)(recty,)) < (fsto centre)(recteg,) (see Sec. 3.5.1 for the concrete data type of
rectangle). The latter can be achieved by using the following function:

fun is-relevant :: detection-opt = detection-opt = bool where

is-relevant Outside _ <— False
| is-relevant _ Outside <— False
| is-relevant (Lanelet x) (Lanelet y) «— (x =y)
| is-relevant (Lanelet x) (Boundaries ys) <— (x € set((relevant-lanelets ys)))
| is-relevant (Boundaries xs) (Lanelet y) <— (y € set((relevant-lanelets xs)))
| is-relevant (Boundaries xs) (Boundaries ys) <—

set((relevant-lanelets xs)) N set((relevant-lanelets ys)) # @

The first and the second argument to the function is-relevant is the location of the ego and
the other vehicle, respectively. This function makes use of function relevant-lanelets(xs)
which finds lanelets whose boundaries are listed in the list of boundary identifiers xs.
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e When either of the vehicles are located outside of the lane, then the other vehicle
is not relevant for checking sd-rear any more.

* When the ego vehicle is located at Lanelet(x), then other vehicles which are located
at the same lanelet or touches one of the boundaries of Lanelet(x) are relevant.

* When the ego and the other vehicle are occupying Boundaries(xs) and Boundaries(ys),
respectively, then the other vehicle is relevant for sd-rear if and only if their sets
of affected lanelets overlap.

After relevant traffic participants are identified with these two functions, the atomic
proposition sd-rear is asserted at the current time only if the ego vehicle maintains
safe distances to all of these traffic participants. For atomic proposition safe-to-return,
we need to keep track of the other vehicle being overtaken. This vehicle can be easily
identified as the closest vehicle in front of the ego vehicle occupying the original lane at
time f1. The atomic proposition safe-to-return is asserted when the ego vehicle has
left a safe distance for the vehicle being overtaken.

The safe distance checker in Ch. 2 is parameterised by the position, speed, and maximum
deceleration of the ego vehicle and the front vehicle. For asserting atomic proposition
safe-to-return, parameters for the ego vehicle in the safe distance checker are actually
replaced by the position, speed, and maximum deceleration of the vehicle being over-
taken and, vice versa, parameters for the front vehicle by those values of the ego vehicle.
Therefore, Assumption 2.3 in Sec. 2.1 are not satisfied before time t; and we circumvent
this situation by returning False to the situations where Assumption 2.3 are not met; this
tits naturally with our interpretation of safe-to-return.

4.5 Sound and executable LTL monitoring of traffic rules

In this section, we shall provide a numerical example of how to use the monitoring
framework explained in previous sections. The purpose of this example is to show
that what we have formalised is not a mere intellectual exercise, but one can use it to
evaluate real scenarios. Similar to what we have done in previous chapters, the primary
challenge in this section is to handle real numbers soundly. However, unlike what
we have previously done, this chapter uses a slightly different approach: instead of
representing each variable with a pair of floating-point numbers enclosing the real value,
we assume that each real variable is a floating-point number.

Figure 4.5 illustrates the scenario used in this section. The solid curve in the figure is the
trajectory of the ego vehicle we want to monitor (obtained from an off-the-shelf motion
planner), and all vehicles drive in the right direction. Ego vehicle (solid rectangle) is
positioned at (0,0) and the first vehicle (double rectangle) at (—25,4.5) initially. Both
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Figure 4.5: An example of concrete overtaking scenario.

vehicles have a constant speed of 16.7ms~!. The second vehicle (dashed rectangle) is
located at (19,0) with an initial speed of 11.1ms~!. All vehicles have the length I of
5m, width w of 2m, maximum deceleration of —8 ms~2, and reaction time of 1s. For
each vehicle we show the position at time t; = 0.8s, t, = 1.8s, t3 = 7.3s, and t; = 8.4s,
which are the time points detected by the lane detection function.

Obtaining over-approximative rectangles. The previous section assumes that the trace
is an ideal trace. In practice, the trace contains only data at certain sampled time points
only. This situation is problematic because we do not know how the vehicle behaves
in between these time points. For example, suppose that the lane detection return
Lane(0) at both sampled times ¢ and ' and it records nothing in between these time
points. If a definition requires a vehicle to stay in lane 0 during [, #'], its validity could
be jeopardised because it is possible that the vehicle touches Boundaries|0] in between
these time points. Of course, the smaller the sampling interval is, the less likely this will
happen. However, only reducing the likelihood of these unsound behaviours is still not
acceptable in any formal analysis.

Chapter 3 safely approximates the behaviours in between these sampled time points. By
feeding the function with two time points t and ' alongside with other pertinent data
such as position, speed, and maximum acceleration, it computes the polygon which is
formally guaranteed to contain all possible behaviours of the vehicle in between time ¢
and #'. Some people would argue that the dynamics used to guarantee this claim is too
simplistic for such a claim. However, note that variables used in this computation of
occupancy are essentially intervals which account for uncertainties; simple dynamics
models which account for uncertainties could be as valid as high fidelity models [64].
The polygon computed by the occupancy prediction can be over-approximated further
by a rectangle to fit the first argument of /ane-detection.

Another threat to the validity of this numerical example is the choice of using single
floating-point numbers to represent the values of variables of type R. There are four
measured variables of type R in this numerical example: position, orientation, speed,
and maximum deceleration. For the first two variables, we mitigate this threat by
enlarging the corresponding rectangle soundly as what we have done in Sec. 3.5.1.
Hence, the vehicle’s dimension of 5m x 2 m is actually the enlarged version of the actual
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vehicle’s dimension due to uncertain position and orientation. As for the variables of
speed and maximum deceleration, we argue that it is not that difficult to extend to that
of the interval version since the checker in Ch. 2 can handle intervals already.

Handling rotations soundly. Note that the trace consists of the positions and orien-
tations of each traffic participant over time. The lane detection, however, operates
on rectangles instead of positions and orientations. To bridge the gap between these
representations, we first create a template rectangle with the length and width specified
above, position at (0, 0) (its centre), and orientation of zero. Therefore, given a position
and an orientation, we translate this template rectangle to this position and rotate it by
this orientation. Translations can be done exactly for floating-point numbers without
any rounding operations, but rotations are more involved due to the occurrences of
transcendental function sine and cosine in the rotation matrix. As Ch. 3.5.2 shows,
we can over-approximate these transcendental functions, but we shall have four boxes
instead of four vertices in the rotated version due to the uncertainties.

The root cause of this rotation problem is that rectangles are not closed under the
approximated rotation function. In order to rectify this problem, we resolve to Affine
Arithmetic which has been formalised in 1SABELLE by Immler [28]. Immler’s formalisa-
tion ensures that an affine form is closed under the transcendental functions sine and
cosine. Since we can view the template rectangle in its affine form, i.e. its centre at (0,0)
and its two generators g1 = (%,O) and g = (0, 5), we can utilise this formalisation to
provide us with an over-approximated version of the rotated rectangle. However, there
is no guarantee that the affine form obtained from this rotation is of order two: the
number of vertices and edges could be more than those of rectangles. This situation
poses no difficulties for lane detection because the underlying principles for checking
either a rectangle or a convex object is inside a lanelet is the same: 1) check whether all
of their vertices are inside the lanelet, and 2) ensure none of their edges intersects with
any segment of the lanelet boundaries.

Up to now, we can always over-approximate the values of variables of type R with
floating-point numbers so that the function is executable and its soundness is still
guaranteed by sacrificing the completeness property. This is not the case for detecting
overtaking: when we want to determine t;, which is the first time a vehicle touches the
lane divider at the beginning of overtaking phase, over-approximating rectangles causes
the actual time a vehicle touches the lane divider to be slightly later than t;. This is
acceptable in practice because touching the lane divider entails an obligation to maintain
a safe distance to the closest vehicle behind in the fast lane. Hence, if we detect t; earlier
than it supposed to be (as in our case here), one obtains a larger distance at the actual
time, which leads to a safer situation. Had we under-approximated the rectangle, ¢;
would be detected later, and the distance would be shorter at the actual time, which
leads to a more dangerous situation.
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Executable semantics of LTL. We have previously codified the traffic rules in LTL
without discussing the semantics of LTL. Standard LTL [65] is interpreted over infinite
length word, and the monitoring process usually requires the construction of monitoring
automata [66]. However, because the traces we wish to monitor usually have a finite
duration, we use the finite-length semantics of LTL [67] as the basis for monitoring:

Definition 4.15 (Semantics of LTL over finite-duration traces). Given a list of a set of
atomic proposition ¢, an LTL formula ¢ from the grammar

¢ u= True|q|[=p|¢Ap|Xp[oUg,

where q is an atomic proposition, a function drop(i,xs) which drops i elements from the begin-
ning of the list xs, we define ¢ |= ¢ as follows:

¢ True <~ true,

Clq = q€('0),

CE—p = mtil9¢,

CEINY = CkE¢mdilE=y,

¢ E X¢ < ifdrop(1,¢) is defined then drop(1,8) = ¢ ,

CEoUY < (Ji<[g] drop(i,) =y A (V] <i. drop(j,§) = ¢))

We can also define other operators False, vV, —, <—,F, G as follows:

False := —True, ¢V ¢ == —~(=p N ), ¢ — 19 := =PV,
p— ¢ = ¢ —9PYN¢p — ¢, F¢ = FalseU¢p, and G¢ := —F(—¢) .

Since the semantics above is defined recursively and traces ¢ are represented by lists,
ISABELLE can generate codes easily (to Standard ML) for this definition, and we use
them to monitor our numerical example. Thus, we only have to trust ISABELLE’s code
generator for the correctness of the code. The result of the simulation shows that
all overtaking traffic rules except the merging rule (®,) are satisfied. Particularly,
rule @, is not satisfied due to the ’if’ (<—) fragment. If we weaken rule @, into
P/, := G(merging —> safe-to-return), the trace will satisfy ).

4.6 Related Work

The monitoring part of our work belongs to the research area called runtime verification;
Kiister [68] provides a complete overview of this research area. Specifically, our work
can be categorised as runtime monitoring. Our work does not construct a monitor
automaton as in most monitoring techniques [69, 70, 66] but simply executes the
semantics of LTL over finite-length traces; our approach belongs to the category of
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rewriting-based technique [67]. Of course, it is possible to use the monitor automata
approach mentioned above for monitoring traffic rules formalised in LTL. This thesis
however opts for the rewriting-based technique because we want to fully utilise the
code generation technology in ISABELLE. Rewriting-basd technique is sufficient because
we wish to verify traces produced by autonomous vehicles” planners whose duration
are usually not very long. The other intended application of our work is to perform
automated offline checking of a recorded trace for compliance with traffic rules.

In terms of the logic used for specifying properties, there is signal temporal logic
(STL) [71] which is expressive enough to specify real-time properties. This is particularly
useful for relaxing the requirement to satisfy a rule within a certain duration of time
such as in the “if” part of ®,. Another expressive logic for runtime monitoring is metric
tirst-order temporal logic (MFOTL) [72] which is capable of handling relations that
change over time such as safe distance. However, we stick to logic without first-order
fragment because we do not need to reason about first-order structure for formalising
the presented subset of traffic rules.

We could also argue that this work belongs to the category of computational law.
Buchanan and Headrick [73] could be considered as the first to propose a serious effort
in formalising law. Historically speaking, this is the period when expert systems were
popular in the domain of Artificial Intelligence (cf. the history of Al in [74]). Therefore, it
is not surprising that they suggested to formalise law with the technique used in expert
systems, that is, with rules. Additionally, there are also other works which use other
computational structures such as algorithm, flow chart, and decision nets to formalise
law; interested readers should consult the work of Sergot [75] for further details.

Two major milestones for formalising law are the works of Sergot et al. [76] and
Bench-Capon et al. [77] in which they formalised the British Nationality Act and the
Supplementary Benefit Act, respectively, with Horn fragments of First-Order Logic
(Horn clauses) in PROLOG [78]. Compared to our approach, Horn clauses have limited
expressiveness for defining a primitive concept [79]. For example, using Horn clauses
to formalise the legal sentence “Driving should be on the rightmost lane if possible,
except for overtaking” with Horn clauses, forces us to assume that the primitive concepts
rightmost lane and overtaking can always be determined. Unfortunately, for monitoring
purpose, we have to base our formalisation with primitive concepts such as positions, ori-
entations, speeds, and accelerations; not only the high-level concepts such as ‘overtaking’
and ‘rightmost lane’ directly.

Apart from propositional and first-order logic, there is also deontic logic [80] for formal-
ising law which can express the notions of permission and obligation explicitly. These two
notions can be easily recognised in legal documents by identifying the keywords ‘may’
and ‘must’, respectively. In relation to the formalisation of traffic rules, this logic was
extended by Royakkers [81], and he showed how that the extended logic can address
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the issue of conflicting speed limits in Dutch Traffic Regulation 1990. Compared to our
approach, deontic logic is more suitable to prove the consistency of a legal text than
to monitor the compliance of an autonomous vehicle. This observation is in-line with
the study from Jones and Sergot [82] in which they discuss when to use and not to use
deontic logic for formalising law.
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Formal verification of motion
planners based on manceuvre
automata

Autonomous vehicles” planning and control are hard. Not only are they required to
consider complex vehicle dynamics, but they must also deal with possibly unknown
and dynamically changing environments. To tackle these complexities, most symbolic
motion planners abstract continuous systems by discrete representations in either an
environment-driven [83, 84] or a controller-driven manner [85, 86]. The former partitions
the environment into cells, such as triangles or squares, while the latter partitions the
controller into several primitives, such as turn-left or turn-right. Which discretisation
is preferred for autonomous vehicles?

Environment-driven discretisation is preferred when 1) we have static, a priori known,
and geometrically complex environments; or 2) we have to handle expressive specifica-
tions, such as those expressed in Linear Temporal Logic (LTL). However, environment-
driven discretisation usually works only for systems with simple dynamics [87]. On the
contrary, controller-driven discretisation is preferred when we have dynamic, possibly
unknown, and geometrically simple environments. Controllers designed with this
discretisation can handle complex dynamics and navigate the environment by chaining
a series of well-tested motion primitives [86]. However, specification languages for this
discretisation, such as in [88], are very close to the implementation level; often, we want
to specify what to achieve rather than how to achieve it.

Most vehicle models for autonomous vehicles are complex, making controller-driven
discretisation a natural choice. In this chapter, we shall use manoeuvre automata-based
motion planners [89] (Sec. 5.2), where each motion primitive is encoded as a state in our
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manoeuvre automaton. However, autonomous vehicles operate in dynamic and possibly
unknown environments, where they could benefit from specification languages such as
LTL (Sec. 5.3) which is usually associated with environment-driven discretisation. This
chapter aims to combine the advantages of both discretisation strategies by interpreting
LTL over manoeuvre automata. To the best of our knowledge, this is the first work to
tackle this challenge.

This chapter is based on joint work with Fabian Immler, Bastian Schiirmann, and
Matthias Althoff [90].

5.1 Affine forms and zonotopes for representing sets

This chapter deals with the formal verification of manceuvre-automata-based motion
planners for autonomous vehicles using reachability analysis. Given a particular system
represented by its Ordinary Differential Equations (ODE), one can use reachability
analysis to compute the sets of states reachable from a particular set of initial states.
Since we shall frequently refer to the concrete data structure used to represent these sets,
i.e., affine forms and their geometrical shape zonotopes, we introduce them briefly.

An affine form A is defined by a sequence (A;);cn with only finitely many nonzero
elements. We write A; to refer to the i-th element of the affine form A; Ay is its centre
and the remaining A; are its generators. An affine form is interpreted for a valuation
e IN—[-1,1] as:
[Ale:= Ao+ ) &i- A; .
1

One calls the terms ¢; noise symbols which are usually unknown and they represent
independent components of uncertainties. Noise symbols could be shared between
affine forms and they are treated symbolically: the sum of two affine forms is given by
the pointwise sum of their generators, and multiplication with a constant factor is also
done componentwise:

[(A+B)]e := (Ao+ By) + Zei -(A; +B)) , (5.1)

[(k-A)]e = k-A0+Zsi-(k-A,-) : (5.2)

To illustrate this symbolic treatment, compare the result of subtracting variable A by
itself when it has intervals and affine forms as its concrete data structure. Subtracting
A = [A}, A, by itself, according to the subtraction rule in interval arithmetic, results
in [A; — Ay, Ay — Aj] which has the measure! twice as large as its original measure.
This result does not conform to our intuition that subtracting a variable by itself should

IThe measure of an interval is obtained by subtracting the lower bound from the upper bound.
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Figure 5.1: Three zonotopes with Ag = (0,0), A; = (1,1), A2 = (1,—1), and Az = (1,0).
Black circles represent the extreme points of each zonotope.

be zero. Subtracting [A]. = Ao + ;& - A; by itself meanwhile equals to zero for any
valuation € due to identities A — B = A+ (—1) - B, (5.1), and (5.2). Intuitively, this is
the result of tracking the dependencies between variables through noise symbols &; and
hence subtracting a variable by itself is zero.

For Ay, A; :: R", the affine form A has the geometric shape of a zonotope Z :: (IR")set
— a special class of polytopes. By defining a function range as the set of all possible
valuations of an affine form, the relationship between an affine form A and a zonotope
Z is formalised as range(A) = Z. Figure 5.1 provides a graphical illustration of the set
of all points belonging to a zonotope with one, two, and three generators. For affine
form with one generator, the range is the set of all points in the line connecting the two
solid black circles. For affine forms with two and three generators, the range is the set
of all points on the edges and all interior points (grey coloured area including the centre
Ap).

Zonotopes are convex sets. To prove this, according to the definition of convex sets, we
have to show that any element in between p;, p» € Z must also be an element of the
zonotope Z. The set of all elements in between p; and p; is exactly closed-segment (p1, p2)
defined in (4.3). Any p € closed-segment (p1, p2) has a parameter t where 0 < t < 1 and
p=t-p1+ (1 —t)- ps. Since p; and p, are located inside the zonotope Z, there must
be ¢ and ¢’ such that p; = Ag+ Y& - Aj and pp = Ag+ L ; €, - A;. Substituting these
equations to the definition of p, we have p = Ag+ Y ;(t-&; + (1 —t) - €}) - A; by using
identities (5.1) and (5.2). Since the term ¢ - ¢; + (1 — t) - €, must also be in the range of
[—1,1], we can deduce that p is also inside Z.

Zonotopes have extreme points which are shown as solid black circles in Fig 5.1. A
point p is an extreme point of zonotope Z if there are no two points p1, p» € Z such
that p € closed-segment (p1, p2). Immler [63] provides a more detailed discussion about
the algorithm to obtain all extreme points of a zonotope. Zonotopes can be defined
alternatively as the convex hull — the set of all convex combinations — of all of its extreme
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points. That is, suppose that pi, po, ... p, are all the extreme points of zonotope Z, then
for every point p € Z there exist noise symbols ¢; where p =3 ;¢; - p;, 0 < ¢; <1, and
Y.;i¢; = 1. The notion of extreme points is central to the construction of manoeuvre
automata which we shall discuss in Sec. 5.2.

An important operation for sets considered in this chapter is the Minkowski sum which
is defined as msum(A,A") = {a+da'|ac€ A Na’ € A’ }. When both A and A’ are
zonotopes, the conditions @ € A and 4’ € A’ are true if and only if there exist two
sequences of noise symbols € and ¢ such thata = Ag+ ) ;¢;- A;jand 2’ = Aj+ Y€ -
Al and the expression a + a’ becomes Ay + Aj+ Y& - Aj + Y€, - Al. The last two
summations can be grouped together by concatenating the two sequences A; and A’
into A; such that the nonzero elements of A; and A’ does not share the same noise
symbols in A. Concretely speaking, if we represent an affine form (a zonotope) by a pair
of its centre c and a list of its generators gs, then the Minkowski sum of two affine forms
A =(cgs)and A’ = (¢, gd) is defined as:

msum (A, A") = (c+ ¢, msum-gens(A, A")) ,
msum-gens(A,A') = gs@gd ,

where function @ denotes list concatenation. Figure 5.1 provides graphical illustrations
of the Minkowski sum: Z, = msum(Z;, Z}), Z3 = msum (Z,, Z}) where Z, = 0 + A, and
Zé =0+ A;.

5.2 Constructing Manoeuvre Automata

A manoeuvre automaton (MA) [86] is an automaton whose states represent manoeuvres
(motion primitives) which an autonomous system could execute. For helicopters,
these could be standard manoeuvres such as hover and land, or more aggressive
movements such as hammerhead and loop. For autonomous vehicles, these could be
basic manoeuvres such as turn-left and turn-right, or more ambitious manoeuvres
such as hard-left and hard-right. A transition between two states in an MA indicates
that the system which the MA represents can execute those two manoeuvres successively.
Formally, they are defined as follows:

Definition 5.1. A manoeuvre automaton is a tuple MA = (M, jump, ode) where
* M is a predefined type for manoeuvre labels;
e jump = (M x M))set is the transition relation between manoeuvre labels; and

* ode(m) :: R x R" = IR" is the corresponding ordinary differential equation (ODE) for
manoeuvre .
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If we assume that the ode (m) has the general form of

X = f(x, um) , (5.3)

then the ode(m) represents a fixed system model f — such as a point-mass or as
a kinematic single-track model for autonomous vehicles [91] — with a fixed input
trajectory u,, for manoeuvre m. For an initial state xin;t and a final state xgp,), @ controller
must choose a trajectory u,, € U, which steers Xinit to Xfina). Depending on whether f
represents a closed-loop or open-loop, u,, is either a reference or a control output.

For safety verification purposes, it is paramount to formally compute the reachable set
of a manoeuvre m — denoted by reach (m). This set represents the set of all states x
which could be reached by the system f in (5.3) from an initial set denoted by init (m)
with any trajectory u,, from U,,. A manoeuvre m is considered to be safe with respect
to a given unsafe set D if and only if reach (m) does not intersect with the unsafe set:
reach (m) N'D = @ (see Fig. 5.2). This unsafe set could either be composed of obstacles
that a vehicle has to avoid or a range of speeds at which a vehicle must not drive.
Due to its important role in safety verification, reach (m) is computed with the aid of a
formally verified implementation of reachable sets computation in the theorem prover
ISABELLE [14].

Algorithm 1: Computing reachable sets of a manoeuvre in MA

(X, Uc) < centre-optimal-control (centre(init (m)), Xgnal, Steps)
Sreach,l < init (m)
fork=1,...,stepsdo
Py < approx-with-parallelotope (S each)
Zy < corner-control-linear-approx (P, x¢, uc)
Srteach k+1 < compute-reachable (Py, Zy)
end
reach (m) A Uzt:ellas Sreach,k

In what way do reachable sets reach (m) play an important role for safety verification of
a path from a manoeuvre automaton? A safe path from an MA is defined as a series
of manoeuvres m = mq,my, ..., m, which: a) respects the transition relation jump in
Def. 5.1, i.e., (m;, m;1) € jump for 0 < i < n; b) ensures that the reachable set of each
manoeuvre does not intersect with an unsafe set; and c) for every chain (m;, m;;1) in the
series, the final set of m; — denoted by final (m;) — must be contained by the initial set
of mjyq, i.e., final (m;) C init (m;y1) (see [89]). The first two requirements are obvious but
the last one might not be: Fig. 5.2 illustrates these requirements of ensuring the safety of
a path from an MA. If the last requirement does not hold, there might be a trajectory
enclosed initially by the first manoeuvre x,, € reach (my), ending outside of the initial set
init (my), and visits the unsafe set eventually (we make no guarantees about trajectories
which start from the outside of the specified initial sets).
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D

’ final (mO) ‘ Xfinal

Figure 5.2: Ensuring the safety of a path from an MA.

Intertwining controller design and reachable sets computation. It might seem that
designing a controller and computing its reachable sets for a manoeuvre automaton are
two separate processes. Schiirmann et al. [89] provide an approach to combine these
two processes whose algorithm is shown in Alg. 1, illustrated in Fig. 5.3, and briefly
explained as follows.

1. Computing the centre reference trajectory (line 1).

From the initial set init (m), we find an optimal reference trajectory Xcentre Which
starts from the centre of init (m) to a final state xg,,;. The qualifier ‘optimal” here
means that the reference trajectory will be as close as possible to the designated
final set xfn,; other optimality measures include control effort. This reference
trajectory serves as a subgoal for the optimisation solver at each time step. Rather
than finding an optimal solution over the whole duration to reach xgy,), we solve an
optimisation problem to reach Xcentre(k) at each time step k. We could use solvers
such as the Acapo toolkit [92] or MATLAB’s function fmincon for this purpose.
Note that the optimisation also has parameter steps as an argument; this denotes
how many times reachability analysis must be performed for each manoeuvre.

. Approximating reachable sets with parallelotope (line 4).

The set representation used to represent reachable sets in this work is the affine
form whose set of valuations forms a zonotope (cf. Sec. 5.1). However, the zonotope
representing the current reachable set is over-approximated by a parallelotope
before it proceeds to the next iteration. This is because there exists a closed-form
expression to represent each element in the parallelotope as convex combinations
of its extreme points [93]. This fact is very convenient for the construction process
because the optimal controller for each point (state) in the parallelotope is also a
convex combination of the extreme points” optimal controller (see the next step).
Another reason for choosing parallelotopes is that the number of extreme points
for parallelotopes is at most 2" (n is as in Def. 5.1) while that of zonotopes could
be more than 2"; this fact reduces the complexity of constructing the optimal
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controller.

3. Finding optimal controllers for extreme points and computing reachable sets (line 5 and
6).
For each extreme point identified in the previous step, we find an optimal controller
which steers the extreme point as close as possible to the centre trajectory. Suppose
that 1) for each state x € Syeacn; We have coefficients 1, 72,... 720 (cf. [93]) and
extreme points p1,pa,...pn suchthat x =Y, 7;-p;, 0 <y <1, and } ;7 = 1;
and 2) function u; for 0 < i < 2" is the optimal controller for extreme point p;,
then the optimal controller for x is u = ) ; y; - u;. This is approximated further by
a zonotope Z; (in the input space) — that is u; is a constant value instead of a
function — to reduce the non-linearity and computation errors in the reachability
analysis performed next. By setting this optimal controller as u in (5.3), we can
then obtain an explicit expression of the ode (1) and use the formalised reachability
analysis in [14] to obtain the reachable set.

Formal construction of manoeuvre automata. How do we formally construct a ma-
noeuvre automaton for formal verification purposes? Given the algorithm for construct-
ing manoeuvre automata in Alg. 1, one might be tempted to formalise each step in the
ISABELLE theorem prover. This is a tall order since the algorithm in Alg. 1 frequently
uses an optimisation solver which does not exist yet in the 1SABELLE theorem prover —
formalising an optimisation solver in a theorem prover is worth another PhD project as
shown in [94]. However, since the focus of this thesis is on the safety verification aspect,
it does not hurt if we obtain a non-optimal controller, while the reachable set is certified.
Hence, the qualifier ‘formal” here refers only to the reachability analysis part of the
construction.

With this design decision, we are left with the challenge of interfacing the reachability
analysis in 1SABELLE [14] with the rest of the algorithm in maTLAB [89]. Figure 5.4
illustrates how we interface 1SABELLE and MATLAB by using the C programming language
as a lingua franca. Functions programmed in MATLAB are callable from C by using the
MATLAB API. 1SABELLE, on the other hand, can call functions in Standard ML (SML)
directly, but not those in C. Fortunately, there is a Foreign Function Interface (FFI)
between SML and C which enables us to call functions in C and, hence, MATLAB
indirectly. Therefore, we need to provide the corresponding wrapper for each MATLAB
function required by 1sABELLE at the SML and C level.

From isabelle’s to IEEE-754’s floating-point representation. In ISABELLE, a floating
point is represented by two arbitrary-precision integers: mantissa (or significand) man
and exponent exp; together they represent the real number man - 2. However, since
we need to interface with MATLAB, we need to convert ISABELLE’s representation of
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S reach,1

(a) centre-optimal-control (¢, xginal, Steps)

P1
(b) approx-with-parallelotope (Syeach ),
corner-control-linear-approx (P, xc, ic)

(c) compute-reachable (Py, Z;)

S reach,4
S reach,3

(d) Repeat until k = steps

Figure 5.3: Graphical illustration of computing reachable sets for MA
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arbitrary precision Isabelle

i T Code generation setup
finite precision SML

i T PolyML/C FF Interface
finite precision

L1 MATLAB API for C

finite precision MATLAB

Figure 5.4: Block diagram for interfacing 1ISABELLE and MATLAB.

floating-points to that of IEEE-754%> — the representation used by MATLAB. Unlike in
ISABELLE, a floating-point number in IEEE-754 has fixed numbers of bits for its mantissa
and exponent. In case of double-precision floating-point numbers, the length of the
mantissa and exponent is 52 and 11 bits, respectively, and the remaining bit is reserved
for the sign bit.

To understand better the conversion we need to do, it is necessary to discuss the three
different modes IEEE-754 has: 1.) denormalised mode to represent numbers which are
very close to zero; 2.) special mode to represent numbers such as infinity and NaN; and
3.) normalised mode to represent the numbers in between. Each mode has different
semantics for computing the corresponding real numbers and, therefore, we cannot
simply just “map” the mantissa and exponent in ISABELLE’s format to those of IEEE-754;
we have to identify firstly in which mode an 1SABELLE’s floating point number resides.
The set of floating-point numbers in denormalised, normalised, and special modes have
linear orders. Therefore, we can identify the mode by checking whether it is larger
or smaller than the smallest and the largest normalised floating-point numbers. If we
assume that the exponent field takes up k bits and the mantissa has the precision of
prec®, then the smallest and the largest normalised values are

smallest-normalised = 2Prec=1 x pexp-min, (5.4)
largest-normalised = (2P™¢ — 1) x 28P-Max, (5.5)
where exp-min := 1 — bias — (prec — 1) and exp-max := bias — (prec — 1) and bias =

2k=1 — 1. Note that the exp-min and exp-max are defined differently from the literature.
For example, in [95] exp-min and exp-max are defined as 1 — bias and bias, respectively,
but here we have subtracted prec — 1 from these values. This is because the mantissa m
in [95] is implicitly multiplied by Z,J,lﬁ so that the mantissa m actually represents the

2Bryant and O’Hallaron [95] provide a comprehensive introduction to IEEE-754 representation.

3Note the difference between precision and the number of bits required to represent the mantissa. IEEE-
754 has the leading-one assumption which means that although it uses 52 bits for the mantissa, it has
the precision of 53 bits.
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value of 5,z—. We make this multiplication explicit by carrying over the value of Fiﬁ

to the 21-bs and 2@ and hence the subexpression prec — 1 in exp-min and exp-max.

In order to test the order relation with respect to these boundary values, we use the
following two functions:

in-denormalised (m,e) = m =0 V (e — (prec— bitlen(m)) < exp-min) ,

in-normalised (m,e) := m =0 V (e — (prec— bitlen(m)) < exp-max) ,

where bitlen (m) is a function to find the number of bits required to represent the number
m. We prove in 1SABELLE that these two functions detect the range of denormalised and
normalised mode correctly.

Theorem 5.1. For any mantissa m and exponent e, we have

in-denormalised (m,e) = |m|-2° < smallest-normalised, and

in-normalised (m,e) = |m|-2° < largest-normalised .

Proof. Case m = 0 is trivial; we only prove the case m # 0.

|m| -2¢ < smallest-normalised
<= { unfolding the definition of smallest-normalised according to (5.4) }
|1’I/l’ N L oprec=1 . nexp-min
<= { arithmetic }
|m| . zefexp-min % zexp-min < 2precfl X 2exp-min
<= { dividing both sides with 2&,-min }
‘m’ . De—exp-min < oprec—1
= { fact |m| < 2bitlen(m) }
2bitlen(m) . pe—exp-min < oprec—1
<= { taking log on both sides }
bitlen (m) 4+ e — exp-min < prec—1
<= { definition of in-denormalised (m, e); arithmetic }

in-denormalised (m, e)

The proof for in-normalised (m,e) = |m|-2° < largest-normalised is similar. O

After we know in which mode the 1SABELLE’s floating-point number resides, we need to
adjust the mantissa and exponent correctly according to the specification in IEEE-754.
For those in the denormalised mode, the exponent exp has to be set to exp-min, whereas
for those in the normalised mode, the mantissa man has to be set into man’ so that
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2prec=l < |man’|. The former is obtained with the following function:

denormalise (m,e) := let s = exp-min — e in
if s < 0 then (bitshift-left (m, —s),e + s)
else if 0 < m then (bitshift-right (m,s),e + s)
else(—bitshift-right (—m,s),e +s)) ,
where bitshift-left (x,b) and bitshift-right (x,b) are the operations for performing b-bit

shift to the left and right, respectively. The correctness theorem for this function is as
follows:

Theorem 5.2. For any two mantissas m, m’ and two exponents e, ', the denormalise function
has the following invariant property:

denormalise (m,e) = (m',e') = ¢ = exp-min A m-2°=m'-2° .

Proof. We only prove for the normative case where 0 < s and 0 < m as the proofs for
other cases can be obtained similarly.

m' . 2¢

<= { case 0 <sand 0 < m in denormalise (m,e) }
bitshift-right (m, s) - 265

<= { definition of bitshift-right (m,s) }

2] 2

<= { property of floor function; 2°"* is multiple of 2° }

M se+r
72"
<= { arithmetic }

m-2°¢

The condition ¢’ = exp-min is obvious from the definition s := exp-min — e and equality
/
e =e+s. O

For the normalised mode, we use the following function:
normalise (m,e) := if bitlen (|m|) < prec then
(m - 2prec=bitlen(im)) o _ (prec — bitlen (|m)|))) else (m, e)

with the following correctness theorem:

Theorem 5.3. For any two mantissas m, m' and two exponents e, e’, the normalise function
has the following invariant property:

normalise (m,e) = (m',e') = 2P < |m/| A m-2°=m'-2° |
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Proof. For the case where bitlen (|m|) < prec, we have m’ = m - 2prec=bitlen(jm)) By yiging
the identity bitlen(b-2°) = bitlen (b) + ¢, we have bitlen (|m’|) = bitlen (|m|) + prec —
bitlen (|m|) = prec. Since we now know that |m| has prec-bit precision, we can deduce
that 2P~ < |p/|. This a basic inequality involving bitlen (_) operation; we also use this
inequality to prove 2P¢~1 < |m| when prec < bitlen (m). To prove the second conjunct,
we simply replace the definition of m’ and e’ such that m’ - 2¢ = g . 2prec=bitlen(|ml) .
¢ (prec=bitlen(jm))) — y1 . 2¢ when bitlen (|m|) < prec; case prec < bitlen (m) is trivial. [

If we know that (m, e) is in the normalised range, then we can guarantee that the new
mantissa m’ after being normalised, i.e. normalise (m,e) = (m’,e’), will have exactly prec
bits.

Theorem 5.4.

in-normalised (m,e) == normalise(m,e) = (m',e') = bitlen(|m’|) = prec .

Proof. Following the proof of Thm. 5.3, we know that bitlen (|m'|) = prec when bitlen (m) <
prec. When prec < bitlen (|m|), we have m" = m and, from Thm. 5.1 and assumption in-
normalised (m,e), the mantissa m is at most 2P — 1. Hence bitlen (|m'|) = bitlen (|m|) <
bitlen (2P — 1) = prec. For the case prec < bitlen (|m|), we have bitlen (|m’|) = prec. 0

After we have obtained the proper mantissa man’ and exponent exp’ from the either
denormalise or normalise function, we are left with only a few things to do. Since we
have the leading one assumption for the normalised mode, an amount of 2prec=1 has to be
subtracted from man’. Then, we have to add either bias — 1 (denormalised mode) or bias
(normalised mode) to the exponent exp’ because IEEE-754 use a biased representation
for negative numbers. Note that since 1SABELLE’s floating-point implementation can have
arbitrary precision, we have to ensure that the floating-point numbers used in ISABELLE’s
theories are guaranteed to have 53-bit precision before being passed down to SML, C,
and MATLAB. Lastly, it is worth to mention that the verified function works one way only
— from 1SABELLE’s to IEEE-754’s representation. We implement the translation for the
other direction in MATLAB, but not verify it formally. However, this translation is very
straightforward and is very easy to inspect.

5.3 Motion Planning with Manoeuvre Automata

Motion planning with MA falls into the category of temporal-logic motion planning
techniques. Fainekos et al. [96], for example, show how to use temporal logic for motion
planning by first discretising the environment and labelling them with meaningful
atomic propositions. From these atomic propositions, we can formalise the plan such as
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sequencing (visit 711 and then 71;), reach-avoid (eventually reach 717 and simultaneously
avoid 72), and coverage (reach 71, 712, and 713 in any order). An LTL formula in this
setting is always interpreted over a continuous trajectory ¢ :: R = RR? where an atomic
proposition 7t is true if and only if ¢ is located initially inside the area labelled by 7, i.e.,
[7r]. If we can utilise a model checker — with this physical interpretation — to falsify
the negated plan, we can then obtain a discrete plan to satisfy the original plan. Lastly,
we are left with the task of finding a continuous controller for the discrete plan.

The previously explained approach works if we consider a single trajectory only and fails
miserably when we consider a set of trajectories. Consider the formalisation of reach-
avoid plans in standard LTL which Fainekos et al. [96] formalised as —obstacle U goal.
Supposed that we naively lift the denotation for atomic propositions used by Fainekos
etal. [96] into o = Ag, Ay,... A, =1 << Ay C [rr] , where A, is the sequence of
reachable sets of manoeuvre m (see [97]). This denotation implies that avoiding obstacles
which is syntactically formalised as ¢ |= —obstacle is true if and only if Ay Z [obstacle].
However, Ay Z [obstacle] does not mean that Ay does not intersect with [obstacle] at
all, which is formalised more aptly with Ay N [obstacle] = @. Hence, naively lifting the
existing semantics into that for reachable sets to determine o |= —obstacle U goal means
that there could be a trajectory which visits the obstacle before reaching the goal, i.e.,
this decision procedure is unsound; the following section explains how to solve this
problem.

5.3.1 Interpreting LTL over manoeuvre automata

Definition 5.2 (Linear Temporal Logic for MA). If AP is the type for all atomic propositions,
then we can create a new compound data type

datatype atom = AP' | AP~ ,

where we label an atomic proposition with either a positive or negative sign. The syntax of LTL
for manoeuvre automata is defined by the following grammar:

¢ u= true| T g AG| ¢ [ X[ U, (5.6)

where 7t :: atom. Constant false, logical operators disjunction and implication, and temporal
operators F and G are defined as usual [96].

Atomic propositions in path planning with LTL are used to represent objects of interest.
For example, atomic propositions in this chapter could be defined as follows:

datatype AP = left-boundary | right-boundary | obstacle | goal .

These atomic propositions have geometrical interpretations, but atomic propositions in
this chapter generally could also be interpreted non-geometrically, such as speed-range,
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which has the interpretation of the sets of allowable speeds, or safe-distance which can
be interpreted with the safe distance function formally verified in Ch. 2, or any atomic
propositions related to overtaking explained in Ch. 4.

Definition 5.3 (Semantics of LTL for MA over finite-length traces). Suppose that the state
space for the model ode (m) in Def. 5.1 is of type R", and there is an interpretation function
L] = AP = (R")set. Additionally, for a finite sequence of sets o = Ay, Aq,..., Ay, we
denote the j-th suffix of o by olj..] :== Aj,..., Ax for 0 < j < k. We can define a semantics
of LTL for MA over a finite sequence of sets ¢ = Ao, A, ..., Ax, where A; :: (R")set for
0 <i <k, as follows:

o |= true

cE" — Ay C[n]

cE T — AN[rn] =2

o= < notol=¢

CEpANp <= ocE=pando =P

cEX¢ < if o|l.is defined then o[l1..| |= ¢

cEpUp — JjojlEp ANVio<i<j—oli]=¢1 .

The syntax and semantics in Defs. 5.2 and 5.3 provide a solution to the problem explained
earlier. Each atomic proposition is now labelled with either a positive or negative sign,
and the root cause of the unsafety in the previous argument is because Ay Z [obstacle]
does not imply Ay N [obstacle] = @; the semantics in 5.3 enforces all negatively labelled
atomic propositions have the denotation that all trajectories in Ay cannot be located
at [rr], i.e., Ag N [r] = @. Positively labelled atomic propositions, meanwhile, have
the obvious denotation that all trajectories in the initial set Ay must also be located
inside [77], i.e., Ao C [7t]. Note that it is possible to have a case where Ay Z [7] and
Ao N [rt] # @ — we could deduce neither ¢ = t* nor o |= 7.

Checking zonotope inclusion and intersection freedom. The semantics in Def. 5.3
does not stipulate any concrete type of sets. Since the reachable sets computation
explained in the previous section use affine forms whose sets of valuations are zonotopes
as their concrete data type, we shall also use them to check ¢ |= 7t* (using an inclusion
check) and ¢ |= 71~ (checking for intersection freedom) in IR? since higher dimensions
are not required in this work. We define the function zono-contain2D (Z,Z’) to check
whether the zonotope range (Z) is a subset of zonotope range (Z'). This is performed* by
first enumerating all extreme points of zonotope range (Z) and then checking whether
each of these extreme points belongs to the zonotope range (Z).

4For high-dimensional zonotopes, please consult the technique described in CORA [98].
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Enumerating extreme points is achieved indirectly via the function segments-of-zonotopes
which outputs a polygonal chain (cf. Def. 4.6) whose first elements are sorted in a
counter-clockwise manner; this function is formalised by Immler [63] which we directly
use here. This function is implemented such that the result is always a polygon:

segments-of-zonotope(A) = ¢s = ¢s # [| —> fst(hd(cs)) = snd(last(cs)) .

As such, it is impossible for the function to return a list of a single element only due to
the definition of polygonal chains in Def. 4.6 which forces both endpoints of the chain
to be different. Then, the function for enumerating all extreme points can be defined as
follows:

extreme-pts(A) := map fst (segments-of-zonotope (A)) .

Checking whether a point belongs to a zonotope is achieved via the following function:

P €zono A = case segments-of-zonotope(A) of
(] = p=A4A
| [x,y] = p € points-in-line(x) A in-x-interval(x, fst(p))
| cs = Vc € set(cs) — counter-cw(p, fst(c), snd(c)) .

Theorem 5.5. p €,000 A = p € range(A).

Proof. In case that the returned list of segments is empty, we know that the zonotope
does not have any generator and hence the zonotope consists of one element only, i.e.,
range(A) = {Ap}. Hence p €,0n0o A if and only if p = Ap which in turn true if and
only if p € range(A). If it returns two chains [x, y|, then chain x and y are actually the
same except that their endpoints are reversed because [, y| is a polygon. Hence, the
zonotope range(A) is a closed segment of either x or y, i.e., range(A) = closed-segment(x).
In this case, p €,0n0 A is equal to p € points-in-line(x) and in-x-interval(x, fst(p)). By
unfolding the definitions in (4.5) and (4.15), we can deduce that p € closed-segment(x)
and subsequently p € range(A). In case there are at least three chains, we check whether
the point p has a counter-clockwise relation with each chain. The fact that this equals
p € range(A) is the correctness property of segments-of-zonotope proved in [28]. O

Checking whether zonotope range(Z) is a subset of zonotope range(Z') is formalised by
the following function:

zono-contain2D (Z,7') := case extreme-pts(Z) of
[] = ZO € zono ZI
|ps = Vp.p € set(ps) — P €zono Z' .

Theorem 5.6. For any two zonotopes Z, Z' of type R?, we have

zono-contain2D (Z,7') = range(Z) C range(Z') .
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Proof. In case that the list of the extreme points of Z is an empty list, zono-contain2D (Z,Z’)
is equal to Zy €,on0 Z' and Thm. 5.5 allows us to deduce Zy, € range(Z’). With
the equality range(Z) = {Zy} in this case, we can deduce that range(Z) C range(Z').
In case that the list of the extreme points of Z is not an empty list, we can obtain
m extreme points [po, p1,--.,Pm—1] such that Vi. 0 < i < m — p; €,0n0 Z' from
the definition of zono-contain2D(Z,Z'). From this fact, we can deduce further that
Vi.0 <i < m — p; € range(Z') by using Thm. 5.5. With the definition of zonotope,
there exists a noise symbol ¢; such that p; = Zy + )¢ ; - Z]/- where ¢;; € [—1,1] for every
0 <i < m. Then,

p € range(Z)

= { definition of membership via extreme points }
de. p=Yici-pi N ici=1
—>  { unfolding p; }
c. p:Zici-(Zf,—i—Zjei,j-Z]’-) ANY,ci=1
—>  { arithmetic involving summation }
de. p=Yici-Zy + LiXciceijZi A Yici=1
—>  { using the right conjunct and switching the summation }

de. p=2Zy + L (Lici-ei) "ZiN Lici=1.

From the right conjunct ), c; = 1, we also have ), ¢; - ¢;; < Y, ¢i - |e;j| < Y;ci-1=1and
Yici-ej>Yici-—leij| > ¥ici- —1 = —1. With these bounds and the calculation above,
we can deduce that p € range(Z') and hence range(Z) C range(Z'). O

Checking whether zonotope range (Z) does not intersect with range (Z') is performed via
the following function:

collision-freedom2D (Z,Z") := = (Zy— Zy €zono (0, msum-gens(Z,Z")))
Theorem 5.7. For any two zonotopes Z, Z' of type R?, we have

collision-freedom2D (Z,Z') = range(Z)Nrange(Z') =@ .

Proof. From Thm. 5.5, we can deduce that Z) — Zy ¢ range((0, msum-gens(Z,Z2'))).
Hence,

—Jee. Zi—Zo=Y,& - Zi+ Y -7l

<= { renaming ¢ into & such that & = —¢/ }
—deé. Z(/) — Zo = Zigi . Zi _Ziéi . Zz,

<= { arithmetic }
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~Ted. ZL4 Y47l =Zo+ Y€ Zi
<= { definition of zonotope }
—dp. p € range(Z) N p € range(Z')
<= { settheory }
range(Z) Nrange(Z') =@ . O

5.3.2 Satisfiability checking of LTL over manoeuvre automata

Given a formally verified manoeuvre automaton and a formally defined LTL interpreted
over a sequence of reachable sets, how can we use these to plan a motion for autonomous
vehicles? Planning a motion, as in any typical temporal logic motion planning, starts with
encoding the plan we wish to achieve — such as sequencing, reach-avoid, or coverage —
in LTL (Def. 5.2), and proceeds with searching a valid path in the manoeuvre automaton
according to the semantics defined in Def. 5.3. The problem of finding a path in MA
which satisfies a plan formalised in LTL can be stated formally as satisfiability checking:

Definition 5.4 (Satisfiability checking). An LTL formula ¢ is satisfiable with respect to a
manoeuvre automaton MA = (M, jump, ode) if there is a path T = mg, my, ... m,_1 such that
m; :: M forall 0 <i < nand

reach (my), reach (my), ..., reach (m,_1) = ¢ .

Satisfiability checking is a search problem and since 1.) time efficiency is paramount,
and 2.) a path satisfying a plan usually has a finite duration, we use a depth-limited
search strategy for satisfiability checking. Since each manoeuvre lasts for 1s and a
sensible duration for a plan is supposed to be less than 10s, the maximum depth is set
to be 10. Note that the search strategy can be improved further by using an informed
search strategy. However, since our main focus is on correctness, we choose a simpler,
yet sufficient depth-limited search strategy for satisfiability checking.

As an example, we construct an intentionally simple, formally verified manoeuvre
automaton with three motion primitives which last for 1s each:

datatype M = go-straight | turn-left | turn-right , (5.7)

where any two manoeuvres can be composed, i.e., jump := UNIV :: M x M. Note that
the duration for each motion primitive does not need to be the same; some primitives
could last for, e.g., 0.1s and others could last for 5s. We use the following kinematic
model of autonomous vehicles:

v=a;, ¥Y=0b, x=v-cos(¥); y=o-sin(¥) . (5.8)
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0 20 40 60 80 100

Figure 5.5: Example of a reach-avoid scenario. The vehicle is represented as the solid
black rectangle. Red-coloured rectangles are the objects the vehicle has to
avoid. The blue-coloured rectangle is the area which the vehicle has to reach
eventually.

State variables v and Y are speed and orientation, respectively, while x and y are the
positions in Cartesian coordinates. Inputs to the system are a and b, which denote
acceleration and normalised steering angle, respectively. The initial set init (m) is set to
be the same for all manoeuvres:

[19.8;20.2 ms ™! x [—0.02;0.02] rad x [~0.2;0.2] m x [—0.2;0.2] m .

Meanwhile, the final states are (20, 0, 20, 0) for go-straight, (20.2, 0.2, 19.87, 0.2) for
turn-left, and (20.2, —0.2, 19.87, —0.2) for turn-right. We use the controller design in [89]
to obtain a set of trajectories for each manoeuvre and use the verified implementation
in [14] to compute the reachable sets for each time.

According to the third requirement to ensure the safety of a path from an MA in
Sect. 5.2, we must ensure the enclosure property final(my) C init(my) holds for any
two manoeuvres (my,my) € jump. However, the concrete numbers above show that
final (go-straight)  init(go-straight); this does not mean that we cannot compose two
go-straight primitives. This is because the system modelled in (5.8) is invariant with
respect to position and orientation. Hence, the second go-straight manoeuvre can be
shifted so that the centre position of the first final set is the same as the centre position
of the second initial set. Additionally, each reachable set in the second go-straight
manoeuvre is also rotated by the centre orientation of the first final set. Hence, in this
specific example, we can think of each primitive identified in (5.7) as a kind of template
which can be translated and rotated accordingly.

Example scenario. We consider the reach-avoid scenario for autonomous vehicles
(Fig. 5.5) for motion planning which is identical to the numerical example used in
Sec. 4.5. Unlike the requirement to maintain a safe distance in Sec. 4.5, here we consider
a static obstacle which has to be avoided. The road in this example is divided into two
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four-meter-wide lanes and bounded by left and right boundaries; both boundaries are
specified as 104 m x 4 m-rectangles. The obstacle is a 16 m x 4 m-rectangle located at
(50,0) and the vehicle has the length and width of 5m and 1.75m, respectively. It is
located initially at (0,0) and must reach the goal represented by a 16 m x 4 m rectangle
located at (80,0).

The reach-avoid plan is formalised with the following LTL formula:
¢ := (left-boundary” A right-boundary~ A obstacle™) U goal® ,

and after performing satisfiability checking, the search returned the following plan as
shown in Fig. 5.5:

T := turn-left , turn-right , go-straight , turn-right , go-straight .

Regarding the search strategy for satisfiability checking, there are two properties we
proved: termination and soundness. The former is proved with the aid of the function
package in ISABELLE [99] by specifying a measure function which decreases after each
recursive call. Meanwhile, the latter is ensured due to the following two facts: 1) we use
the formalised LTL monitoring function from our previous work [59] to check whether
current nodes satisfy the LTL formula, and 2) we interpret each atomic proposition
over-approximatively either due to inherent uncertainty or numerical round-offs.

Two remarks are worth mentioning here. Firstly, note that the main scientific dimension
considered in this work is the correctness of a motion planner achieved with the aid of a
theorem prover. Hence, we prioritise correctness over other dimensions such as coverage,
efficiency, and scalability. The example provided in this section should be perceived as
an evidence that the formalisation in Isabelle is implementable (code generation); this
section by no means is an evaluation of the coverage of our framework which we plan
to do in future with other scenarios in [91]. Secondly, readers might question the fidelity
of the model in (5.8). However, Schiirmann et al. [64] have provided a framework such
that a relatively simple model like ours with added uncertainties to incorporate the
behaviour a higher fidelty model or a real vehicle could adequately ensure the safety of
a plan in a real vehicle.

5.4 Related work

Fainekos et al. [84] and Plaku et al. [100] use satisfiability checking (or falsification)
of temporal logic for finding a path which satisfies a plan formalised in (a fragment
of) LTL. Fainekos et al. [84] expand and contract objects which must be avoided and
reached, respectively, in order to have a robust interpretation of LTL. Plaku et al. [100]
ignore the issue of numerical soundness when checking whether a path satisfies an LTL
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formula. Our approach, meanwhile, uses sets (zonotopes) as the main data structure
which means we can handle robustness and numerical soundness simultaneously.

Interpreting LTL formulae over a set of trajectories has also been studied by Roehm
et al. [97]. The difference between our semantics is in the way we treat the negation
operator. In their work, the negation operator is allowed for formulae without any
temporal operators only. Our approach, however, does not have this restriction — hence
ours is more expressive — but it comes with an additional requirement of labelling each
atomic proposition with a positive or negative sign.

Mitsch et al. [101] use the theorem prover KeYmaera X [13] to prove safety properties
of autonomous vehicles. The main difference to our work is the approach to formal
reasoning. Theirs is proof-theoretic: a) they specify the physical model of autonomous
vehicles with hybrid programs and the property with differential dynamic logic [12];
then b) they use the proof system’s inference rules to deduce that the hybrid program
indeed satisfies the specified property. As pointed out by Anand and Knepper [102],
KeYmaera X does not consider the possibility of round-off errors in floating-point
numbers. This issue has been addressed by Bohrer et al. [103] where they introduce a
framework called VeriPhy.

Our approach is model-theoretic: 1) we model autonomous vehicles with manoeuvre
automata in which each state (manoeuvre) is assigned with reachable sets of the physical
behaviour; 2) we specify the property in a modified LTL which takes the reachable
sets into account; and 3) we enumerate all possible paths in the manoeuvre automaton
and find a path which satisfies the property according to the predefined semantics of
the modified LTL. The role of the Isabelle theorem prover in our work is to prove that
each step is implemented correctly. Compared to VeriPhy, we use affine arithmetic
and VeriPhy uses interval arithmetic — a special case of affine arithmetic. However,
our approach needs to trust the code generation setup provided by Isabelle, whereas
VeriPhy uses a sound compilation technique to generate code in cAKEML [104].

Anand and Knepper [102] use the coq theorem prover to implement a framework to
specify the physical model and controller of robots for the Robot Operating System
(ROS). Compared to our formalisation, theirs is closer to the implementation level; ours
assumes that the optimal controller can be implemented correctly in the hardware.
However, their implementation assumes that the high-level plan is given, whereas we
derive a high-level plan and a low-level controller. Both works guarantee numerical
soundness, but with a different technique; theirs uses constructive reals, whereas we
use floating-point numbers.

Belta et al. [87] have outlined that the challenge for symbolic motion planning and control
is to tie the top-down approaches, which use temporal logic on rather abstract models,
and bottom-up approaches, whose aim is to construct manoeuvre automata effectively
for formal analysis. We solve this challenge by adapting the syntax and semantics
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of LTL for manoeuvre automata. The main finding for this work is that reachability
analysis is the key ingredient to solve this problem. It allows us to compute the reachable
sets of each motion primitive and subsequently to define the satisfaction relation of
motion primitives with formulae in LTL. We also address the challenge of formal
verification of cyber-physical systems, where numerical soundness is largely ignored. By
using a generic theorem prover such as ISABELLE, we can guarantee both mathematical
correctness and numerical soundness.
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Conclusion

We revisit again the main message of this thesis: modern proof assistants, such as
ISABELLE 1.) could be used to clarify and specify system-level requirements for au-
tonomous vehicles faithfully and systematically; 2.) could combine different automated
reasoning techniques for hybrid systems such as satisfiability checking and reachability
analysis without sacrificing the soundness of each technique; and 3.) could be used to
perform formal analyses such as runtime monitoring and formal verification without
compromising numerical correctness.

Chapter 2 shows how we can use proof assistants such as ISABELLE to clarify vague
requirements such as maintaining a safe distance. We take the descriptive definition
of safe distance, model it mathematically, devise a safe distance expression, and prove
mathematically that it is sound. This notion of safe distance apparently is a versatile one
too: we use it to concretise the notions such as endangered and obstructed for formalising
overtaking traffic rules in Ch. 4. This versatility is due to the abstraction level considered
in this thesis: in the level where we record only variables such as position, speed, and
orientation, interpreting safety-related notions with safe distance is arguably the most
sensible way.

Chapter 4 demonstrates the faithful codification of overtaking traffic rules in linear
temporal logic (LTL) where concepts such as overtaking and safe distance are modelled
as atomic propositions. This idea of representing vague concepts such as overtaking
as atomic propositions is an important one: doing so allows us to figure out first the
structure of the sentences in terms of conjunctions, disjunction, implication, universal or
existential quantification over time, without being stifled with the exact definitions of
those concepts. This initial codification (analysis) proves useful to make the monitoring
more tractable as evidenced by replacing a bi-implication with an implication in the
requirement to return to the original lane as soon as possible. Only after we are satisfied
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with the codification in this level should we concern with the definition of each atomic
proposition.

There are many attempts to formalise system-level requirements for autonomous vehicles
in LTL, but the approach in this thesis does not clutter the LTL specifications with
function and predicate symbols from real analysis. For example, Wongpiromsarn
et al. [105] formalise the requirement of safe distance as' G(dist(x,Obs) > Xgps A
dist(x, Loc(Veh)) > Xgps). Although it is understandable what this codification means,
the standard syntax of LTL does not recognise function symbols, such as dist and Loc,
and predicate symbols, such as >; that would be the realm of first-order LTL. This thesis
meanwhile formalises the safe distance rule simply with G(sd-front) in which case
sd-front is an atomic proposition with the interpretation of the safe distance function
between the ego vehicle and the front vehicle expressed in Ch. 2; such separation of
concerns between codification and concretisation is helpful for formalising traffic rules
systematically.

The monitoring in Ch. 4 is particularly challenging to ensure its numerical correctness
because traces provided by motion planners will be time-sampled, and we do not know
the behaviours in between these time points. This is where the prediction framework in
Ch. 3 plays a pivotal role in this thesis: we use the prediction to over-approximate the
behaviours in between these time points soundly. Admittedly, the prediction framework
in Ch. 3 applies to spatial behaviours only — positions and orientations — but we can
use reachability analysis to over-approximate the speed and acceleration in between
these time points. The interpretation functions for atomic propositions also present
the risk of numerical errors too. We address this risk by correctly transforming each
interpretation function (of each atomic proposition) to handle intervals rather than single
values (using interval analysis).

Formally verified manoeuvre automata in Ch. 5 could bring the allusion that all paths
in those automata will always be correct. This is not the case in this thesis, and it could
only be true if we want the manoeuvre automaton to satisfy a fixed property only —
just as a specific finite automaton is designed to recognise a specific pattern in compilers.
A manoeuvre automaton is a template only: its motion primitives represent predefined
actions an autonomous vehicle could take, and its transitions represent two primitives
that can be executed successively. The motion planner is actually a search function in
the space generated by unfolding the manoeuvre automaton, and a formally verified
motion planner based on manoeuvre automata means a search function proved to be
sound: it always returns a sequence of motion primitives that satisfies a given property,

L1.) dist(x = R2,Y :: (R?)set) := inf,cy [[x — y|| is the function returning the closest distance between a
point and a set of points; 2.) x :: R? is the current centre position of the ego vehicle; 3.) Obs :: (R?)set
is the set of all points belong to any obstacle; 4.) X, :: R is a parameterised safe distance, e.g., 1m;
5.) Loc :: Veh = R? is a function which returns the (centre) position of the other vehicle; and 6.) Veh is
universally quantified implicitly.
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provided that the search function can find such sequence.

Future work

Here are some potential directions for future work:

¢ Formalising traffic rules relevant to traffic codes of other countries.

Even though the number of formalised traffic rules in this thesis is limited, it has
already opened a new research direction in autonomous vehicles research. The
next research objective to tackle is to continue formalising traffic codes specific to
countries such as US, UK, Australia, and Singapore. From an academic perspective,
this serves the purpose of evaluating the scalability of the previous concretisations.
From a practical standpoint, this helps to clarify those traffic codes and provide
feedbacks for accommodating autonomous vehicles operating on those countries
legally legally.

¢ Formal monitoring machine learning-based motion planners.

Machine learning can solve many problems efficiently, but it still cannot explain
why it does what it does. This is problematic for finding a plan which must obey
traffic rules because it cannot provide the reasoning behind the chosen plan. If it is
involved in an accident, we cannot justify in front of the court that the reasoning
behind the plan is embedded in the coefficients of the neural networks. To solve
this, we can ensure that plans from machine learning-based motion planners
will be executed only if they are certified by the formal monitoring framework
presented in this thesis. In doing so, we can obtain motion planners that are both
efficient and explainable.

¢ Formal verification of motion planner’s code.

Current state-of-the-art of formal verification for autonomous vehicles is done at
modelling level only. If we want to have a higher degree of dependability, we
still need to formally verify the codes used for controlling autonomous vehicles.
We can generate codes automatically from the 1sSABELLE theorem prover, but the
translation is not formally verified. There is an ongoing effort for certifying this
translation, but it is for a variant of ML programming language called CAKEML.
Hence, an interesting research direction is to see how to program robots with
CAKEML code generated from ISABELLE. Another interesting direction is to integrate
the code with a formally verified operating system such as seL4 — providing both
safety and security.
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