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Anomaly Detection for Advanced Driver Assistance Systems
Using Online Feature Selection

Christoph Segler1, Stefan Kugele2, Philipp Obergfell1, Mohd Hafeez Osman2, Sina Shafaei2,
Eric Sax3, and Alois Knoll2

Abstract— Context: As we move towards higher levels of
automation in autonomous driving, we see an increase in
functionality that either assists or takes over in both normal
and emergency scenarios. These new functionalities can be
intentionally switched off by the user, but can also be deactivat-
ed unintentionally by (i) accident, (ii) a software malfunction,
(iii) a hardware defect, or (iv) an intrusion. Aim: In addition
to already applied methods at design time, we aim to recognise
mistimed and/or unintended deactivation of vehicle functions,
in particular, driver assistance functions (ADAS), at run-time.
Upon recognition of the occurrence, we propose to inform
the user and the original equipment manufacturer (OEM)
in order to improve both the future and the current system
behaviour, to support development processes, and to support
already conducted safety measures. Method: Based on a feature
subset, selected by streaming feature selection, we learn the
nominal behaviour of the driver in the interaction with ADAS
functions in order to find deviations. The approach considers
the technical challenges of automotive E/E architectures and
is optimised to reduce communication and computational com-
plexity. We evaluate this approach with recorded real car data
from customers participating in a field study. Results: Based
on eight datasets, we traced a total of 17 state-of-the-art ADAS
functions per participant, yielding to a total of 136 runs. We
observed that during 24 among them, the user deactivated the
functions at least once for more than a few seconds. For 13
of these 24 runs, we were able to detect and flag possible
non-nominal behaviour. Conclusion: As at least one participant
configured a convincingly large number of ADAS functions,
we need a dynamic system to monitor the configuration of
these functions actively. Our approach was capable of detecting
potential non-nominal behaviour in up to 52% (13/24) out of
these reconfigurations. This result is promising and will receive
further attention in future work.

I. INTRODUCTION

Today, E/E (electric/electronic) architectures are best
characterised as historically grown, mostly federated, partly
integrated architectures with often pragmatic, cost-efficient,
and ad-hoc solutions. Current trends in the automotive
industry are introducing new, increasingly complex software
functions into vehicles [1]. The ever-growing availability
of computing resources, memory, and newest technologies
allows for new levels of automated driving (i. e., levels 3 to
5 according to SAE J3016 [2]) and intelligent systems.
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TABLE I: Anomaly Model

Actions
Possible reasons

Vehicle Driver OEM

Vehicle SW/HW fault depend. pattern,
CC message

safe state analyse fault

Driver intentionally,
maloperation

CC message,
safe state

— Improve UI

Environment IT attack CC message,
containment

safe state analyse security
threat

The structure follows the generic concept of endangerment scenarios and
mitigation strategies introduced by Gleirscher and Kugele [4].

Automated driving poses the highest functional safety
requirements (i. e., ASIL D according to ISO 26262 [3]),
ranging from partial automation, which is available already
today, to the highest level of full automation (i. e. robot
vehicle at level 5). To cater to these needs, a multitude of
new customer functions and hardware devices will be added.

Intelligent systems come along with connectivity (e. g.
car-to-car and car-to-infrastructure) that increases the attack
surface. Currently, connectivity is mostly used for customer
convenience functions such as calendar and e-mail synchro-
nisation or real-time traffic information; However, with the
introduction of higher levels of automation, it will also be
used as part of automation functions, e.g. highly precise and
accurate real-time map data are needed.

In this work we consider the deactivation of driver
assistance functions such as side impact warning, lane-change
warning, and cross traffic alert. A driver can deactivate such
functions manually (personalisation). A deactivation per se is
not a problem if intended by the driver: for instance, a driver
might deactivate traction control when being stuck in an iced
parking lot; However, if such functions have been deactivated
due to a software or hardware fault, or even after an IT attack
by an intruder, this is a severe problem that we try to identify
and to mitigate. In addition to already applied methods at
design time, we need to learn a personalised driver model
that contains information about the situations (aka context or
operational situation) in which drivers intentionally deactivate
functions. We refer to this as nominal behaviour. We evaluate
the approach with recorded traces (cf. Section III) of real
customer vehicles.

Based on nominal behaviour, we consider several reasons
for anomalies or deviations from this behaviour. Table I
depicts an overview of the considered reasons of a function
deactivation and possible actions as countermeasures taken by
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the involved parties vehicle, driver, and the OEM (Original
Equipment Manufacturer, i. e., the car maker). For all areas
of deactivation, i. e., the vehicle itself (e. g. software and
hardware faults), the driver (e. g. intentionally or by malop-
eration), or the environment (e. g. IT attack, intruder) the
driver is informed about the potential anomaly by showing
a Check Control message (CC message). Thus, the driver is
informed about the anomalous behaviour and can confirm
it as intended or as not intended, yielding a more precise
personalised driver model. By receiving this notification, the
driver can then mitigate the potentially hazardous driving
situation by stopping the car and bringing it into a safe state.

Technical Challenges: Today, ECU- (electronic control
unit) and signal-based development approaches are the
predominant ones in systems engineering and have reached
their limits of mastering complexity. Data maintenance of
signal and message databases requires a big effort. However,
as long as we have not reached a fully service-oriented
architecture (SOA) (cf. e. g. [5]) on system level allowing
to analyse and understand complex feature interactions in
functional networks, we have to rely on messages and signals.

The presented approach heavily relies on data collected at
run-time which raises multiple challenges since current E/E
architectures are not designed for data analytics: (i) Due to
their federated architecture, data is distributed over multiple
ECUs and cannot be retrieved at a central point. (ii) Sensors,
functions, and ECUs generate a huge amount of data which
currently ranges from 2-3 GiB of pre-processed bus data per
hour (video and radar data not included). Considering such
amounts, it is not feasible and cost-efficient to store all the
data locally in the car or transfer it to a backend infrastructure.
(iii) Current vehicles generate around 4000 signals that are
useful for data analytics or machine learning use cases. This
high amount leads to the “curse of dimensionality” [6] in data
analytics and machine learning. The “curse” describes the
problem of having a too large amount of data that may contain
irrelevant, redundant, or not suitable data yielding a reduced
accuracy and training efficiency. This effect can be minimised
by applying feature selection algorithms (cf. Section III-
B). (iv) Moreover, also the heterogeneous structure of the
collected data itself is challenging. In vehicle networks, data
is being sent asynchronously with a variety of sampling rates,
leading to the challenge of synchronising the data or evaluate
each signal independently. (v) Moreover, the variety of data
types that car signals are mapped to, is challenging. Signals
can be discrete, continuous, or even both at the same time.
This reduces the number of possible algorithms and raises
the need for a high amount of pre-processing on the data.

Research Questions: For this work, we pose the follow-
ing research questions:

RQ1 How to provide proactive safety management for
customer functions in automotive systems at run-time?

RQ2 How to detect safety violations for functions, which
are allowed to be disabled by the user?

RQ3 How to gather run-time data for an improved software
engineering process?

Contributions: This paper provides the following scien-
tific contributions, but also contributes to the state of practice:

(i) Feature selection for a run-time monitoring concept of
customer vehicle functions;

(ii) Accessing anomalous system states with learned user
behaviour;

(iii) Feedback loop from user to systems engineering.
Outline: The remainder of this paper is structured as

follows. Section II summarises related work followed by the
primary approach of this work in Section III. Section IV
presents the evaluation with the conducted experiments and
gained results followed by their discussion in Section V.
Finally, we conclude the paper in Section VI.

II. RELATED WORK

Although researchers were concerned about the security
of automotive networks since their implementation, Miller
and Valasek [7] were the first to raise attention about critical
vulnerabilities inside the car. In their work they presented
exploits causing severe safety problems, e. g. they were able
to engage the breaks or control the lights of cars. Hence, they
emphasise the need for additional security measures.

Müter et al. [8] presented an attack recognition scheme for
in-vehicle networks. The scheme is composed concerning typ-
ical characteristics of automotive networks such as Controller
Area Network (CAN) which includes eight attack detection
sensors. These pre-defined sensors serve as recognition criteria
for automotive threats. Then, Müter and Asaj [9] proposed an
entropy-based anomaly detection approach. From our point of
view, using pre-defined sensors for recognition will limit the
capability of attack detection. On the contrary, we learn the
users’ nominal behaviour to detect anomalies of safety and
security-related issues resulting in a more generic approach.

In the aviation domain, Das et al. [10] proposed multiple
kernels learning to detect potential safety anomalies in
a dataset gathered from operations of commercial fleets.
They focused on four types of (human interaction) faults
or anomalies that are mostly related to missing switches in a
sequence, wrong sequence of switches, and several (known)
faults. They showed that their approach is better compared to
two earlier approaches: Orca [11] and SequenceMiner [12].
Das et al. [13] extended this work by investigating the system
level anomaly of the same system domain. We focus on single
control sequences such as turning off safety functions (e. g.,
traction control) that are arguably easier to be accessed and
attacked by the user and the environment.

Baldoni et al. [14] utilised the network traffic data from
the monitored systems to construct a failure prediction mech-
anism. They introduced failure prediction architecture (called
CASPER) purposely to identify the abnormal behaviour of
defined performance metrics. CASPER investigates the failure
symptoms by using the combination of Hidden Markov
models and Complex Event Processing. While CASPER
focused on the black box and non-intrusive failure detection,
our solution is more focused on the state of a vehicle function
which may provide more information about safety violation.
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Calculate
Stats (III-A)

Feature
Selection (III-B)

Check Data
(III-C)

Found Anomaly
(III-D)

Valid?

Send to OEMAnalysis
at OEM

Develop
Mitigation

yes

no

Fig. 1: Process: ↺-steps are repeatedly done at run-time.

The approach by Taylor et al. [15] is explicitly designed to
detect anomalies on CAN buses. The authors present the limits
of their first approach—measuring inter-packet timings over
a sliding window—and report on the successful use of one-
class support vector machines. In contrast, our approach is far
more technology-agnostic by abstracting from communication
protocols and does not only detect intruded CAN messages.

All previously discussed approaches only focus on the
low-level anomalies directly visible inside the car. However,
with the high level of interconnection, this is not sufficient
for detecting all types of attacks. For example, the exploit
found by Hunt [16] allowed adversaries to remotely set
the climate control due to a missing authentication in the
manufacture’s Web API used by its smartphone app. From
the car’s perspective, the malicious requests looked perfectly
valid, although the driver would never set the temperature to
a level, where s/he is freezing or sweating. Luckily, the safety
impact of that vulnerability was minimal, but we expect more
and more features to be remotely available in the future.

III. APPROACH

This work is a continuation and significant refinement and
extension of the previous work [17] in which we showed
that it is possible to learn the context of a car function when
being used. We used this information for a simple anomaly
detection approach; However, this proof-of-concept has only
been evaluated for one test vehicle. Fig. 1 depicts the general
process of the refined approach. Each of the process steps is
described in the following Sections III-A to III-D.

A. Calculation of Statistics

In the first step of our approach, the statistical distribution
of all car signals is calculated. Let si with 1 ≤ i ≤m, m ∈ N+
be a signal and m the number of signals. Moreover, let
j, 1 ≤ j ≤ n, n ∈ N+ be a class and n be the number of
possible classes. A class j represents the function’s state
which can have n possible states (e. g. the traction control
can be switched on or off). With si we denote the current
value of signal si. The fundamental idea of Algorithm 1 is to
continuously update (as long as new signal observations are
received, i. e., si ≠ �) two m × n matrices µ = (µij) ∈ Rm×n
(for the mean) and S = (Sij) ∈ Rm×n (interim value for
the standard deviation) (cf. Fig. 2). Hence, we are able to
assess each signal si in each class j. With oij we denote
the number of observations of signal si in class j. The

⋰
⋰

Update stats
of signal s1

Label GeneratorCar signals produced
by distributed

(i) sensors,
(ii) ECUs, and
(iii) function states



required
signals

signal si

signal s1

s1 . . . siStats of signals

Fig. 2: Statistic calculation of each signal.

calculation is based on the semi-numerical calculation of
Knuth [18] and Welford [19]. With (1) we are able to
calculate the mean of signal si independent of the class j and
with (2) the standard deviation for each signal si in class j.

µi =
∑nj=1 µijoij
∑nj=1 oij

(1) σij =
√
Sij/(oij − 1) (2)

As a first step, the label for the corresponding function is
generated. In this case, the label holds the information of the
current status of the function for which we want to detect
anomalies (class j) and is generated based on status signals
from the function itself. For all m signals that are accessible
in the vehicle’s architecture, we use the current value of the
signal si and the generated class j as input for the algorithm.

Since the calculation is independent for each signal, we
do not have to consider the synchronisation of all signals
and there is no overhead in sending the data to a central
place. This can lead to a suboptimal feature subset because
we do not consider the relationship of signals to each other.
However, we accept this drawback due to the posed challenges
(cf. Section I). Furthermore, in the calculation itself, there is
only a single dependency to the last state of µij , Sij , and oij
and no additional data of previous states have to be stored.

B. Feature Selection

To resolve the “curse of dimensionality” [6] (see Section I)
our model selects a subset of signals showing the best
correlations to the label (here: state of the driver assistance
function). This is achieved by using the supervised feature

Algorithm 1: Statistics calculation for each signal si.
Data: Value of signal si denoted by si and label j
Result: Statistics matrices µ and S
oij ← 0; ∀1 ≤ i ≤m and ∀1 ≤ j ≤ n;
while (si ≠ �) do

if (oij = 0) then
µij ← si; Sij ← 0; oij ← 1;

else
µij ← µij ⊕ (si ⊖ µij) ⊘ oij ;
Sij ← Sij(si ⊖ µij) ⊗ (si ⊖ µij);
oij ← oij + 1;
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selection algorithm Fisher score [20]:

fisherscore(si) =
∑nj=1 oij(µij − µi)2

∑nj=1 oijσ2
ij

(3)

This algorithm calculates a score for each feature1 si. This
calculation is based on the mean µi and standard deviation σi
of each signal si, and the mean µij , standard deviation σij ,
and number observations oij of each signal sij in class j. All
these values have already been calculated in the previous step
(cf. Section III-A) and can be directly used to calculate the
score. This score is then collected in a central place to rank
the features according to their correlation to the label. This is
the only step which is conducted in a non distributed manner
but will only lead to a minimal amount of communication
due to the small number of parameters. It is also conceivable
to do this ranking distributed in the architecture by comparing
feature by feature. Only the highest correlating (i. e., ranked)
features are used for anomaly detection in the next step.

The advantage of this scoring method is that it (i) uses data
that was calculated from data streams and (ii) can be applied
for discrete and continuous data (cf. Section I). Another
advantage—which can also be considered a drawback—is
the evaluation of each feature/signal individually. While
performing feature selection and evaluating each feature on
its own, the correlation between features cannot be considered
in the collection, leading to a suboptimal feature subset.
Referring to the challenges stated in Section I, this drawback
is accepted in favour of resolving the issues of the highly
distributed architecture and highly heterogeneous data. Hence,
all features can be evaluated in a distributed manner and a
minimal overhead in communication is achieved.

We use the top k features out of all ranked m signals as the
basis for the next steps. For each use case, the threshold k has
to be set as a trade-off between accuracy and computational
complexity. The higher the k, the more possible features can
describe the context for a particular state, but could also
lead to the before mentioned “curse of dimensionality” and
increased calculation time in the next step.

C. Checking New Data for Anomalies

For detecting anomalies, our approach is based on finding
outliers for each of the previously selected top k features. An
outlier is defined as “patterns in data that do not conform to a
well-defined notion of normal behaviour” [21]. Anomaly
detection is a process to find these outliers in data by
comparing with some predefined patterns or rules.

Our approach is based on the Grubbs’ test [22] (4). In this
test, the current value si of each signal si in the currently
observed class j is compared to the previously calculated
mean µij and standard deviation σij . The current observation
is considered as anomalous if the value zi exceeds a threshold.
This threshold is calculated using the number of observations
oij of the signal si and the value of the t-distribution with

1In data analytics or machine learning, information that can be used as
input for an algorithm is referred to as a feature. In this work, we consider
the pre-processed vehicle signals as features.

a significance level of α/(2oij) and a degree of freedom of
oij −2 referred to as tα/(2oij),oij−2. The value of α indirectly
influences the sensitivity of this anomaly detection and has
to be chosen function-specific.

∣si − µij ∣
σij

= zi >
oij√
oij

¿
ÁÁÁÀ

t2
α/(2oij),oij−2

oij − 2 + t2
α/(2oij),oij−2

(4)

For every feature in the selected subset, the calculation is done
for each new observation of the signal. Since this anomaly
detection is signal-independent, it can be distributed in the
architecture and calculated directly at the source of the signal.

D. Anomaly Feedback-Loop

After detecting an anomaly for some signals out of the
feature set, which is above a specific threshold, the correctness
of the detection must be validated by the driver. The finding
is presented as CC message on the head-unit with a warning
explaining the target function and its possible abnormal
behaviour. The driver is expected to confirm whether the
detection of the anomalous function was correct or the driver
changed the state of the function by her/himself. If the
detected anomaly gets validated by the driver, then it will be
sent to the OEM for further analysis and investigation.

IV. EVALUATION AND RESULTS

We used already collected data from a field study conducted
at the BMW Group to evaluate our approach. This has the
advantage of being able to re-run our approach on the same
data and evaluate the results for each run. The implementation
does not differ from an implementation in a real car.

A. Data Collection

TABLE II: Datasets

Dataset Samples Features Size [GiB]

1 169507 3836 4.9
2 863143 3931 25.0
3 720489 3772 19.9
4 850606 3906 24.3
5 287115 3832 8.1
6 208141 3780 5.8
7 671113 3820 18.7
8 226818 3910 6.6

The car data has been col-
lected from eight current
generation BMW 7 Series
(G11), which have been
equipped with hardware log-
gers, collecting all messages
which are sent over FlexRay,
CAN, and Ethernet buses
(so-called traces). Messages

appear in the same order as they were sent.
Car signals were extracted with a sampling rate of one

second from these messages. Except for the sampling rate,
this data is identical to the data which would be used, when
running our approach directly in the car. Each dataset contains
≈3.800 car signals.2 Based on the time the car was driven, the
total number of samples varies from ≈170.000 to ≈850.000
samples. An overview is given in Table II.

As an evaluation platform, we used an NVIDIA Digits
DevBox (Core i7-5930K, 64GB RAM). By using a single
core of the CPU, the calculation took ≈450s per function and
hour of trace.3

2Depending on the car’s options and usage, the number of signals varies.
3We also ran our approach directly in a test vehicle on a dedicated car-pc

(Intel Xeon E3-1268, 32GB RAM) at run-time. However, we did not use
this method due to missing data that can be evaluated.
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TABLE III: Selected driver assistance functions and number
of datasets with a certain time-ratio in function reconfiguration

Functions Possible States Reconf. Reconf.
< 1% ≥ 1%

Front-end Collision Warning {on, off} 8 -
Active PDC Emergency Intervention {on, off} 1 7
Cross-Traffic Alert {on, off} 8 -
Lane Departure Warning (LDW) {on, off} 7 1
LDW Steering Intervention {on, off} 7 1
LDW Sensitivity {always, reduced} 7 1
Lane Change Warning (LCW) {on, off} 7 1
LCW Steering Intervention {on, off} 7 1
LCW Sensitivity {early, med., late} 6 2
Side Collision Warning {on, off} 8 -
Dynamic Marker Light {on, off} 8 -
Speed Limit Assist {on, off} 8 -
Speed Limit Assist Offset [-15;15] [km/h] 7 1
Steering Wheel Vibration Strength {light, med., strong} 6 2
Drive Mode Sport {on, off} 1 7
Driving Stability Control DSC {on, off} 8 -
Dynamic Traction Control DTC {on, off} 8 -

Total 112 24

Table III lists all driver assistance functions which we use
in this evaluation with their names and possible states.

B. Results

1) Inclusion/Exclusion Criteria: The experimental setting
requires a function that changed its state at least once in
a run in order to have at least two classes for the feature
selection. Moreover, we exclude runs in which the function is
in the same state for over 99% of the run and vice versa less
than 1% in different states. The reason is, that we observed,
that the feature selection algorithm is not accurate enough in
this case and will not provide reasonable results. In total, we
evaluated our approach with 24 test runs (cf. Table III).

2) Parameters: For this first evaluation of our approach
we set the parameters as follows: For anomaly detection,
we consider the top k = 30 features and set a threshold
of α = 0.1 for the t-distribution in the Grubbs’ test. For
further investigation, different parameters can be evaluated
and depending on the criticality of the observed function
the parameters should be set accordingly. As depicted in
Table III, driver assistance functions are deactivated very
rarely, but for almost all functions there is at least one dataset,
in which the functions were deactivated/reconfigured at least
once for more than 1% of the time. Only the function Active
PDC Emergency Intervention and the Drive Mode Sport were
changed in almost every dataset.

3) Metrics: We use two different metrics to evaluate the
runs: For the evaluation of the feature selection, we use the
Jaccard distance [23] of the top k = 30 features between
consecutive time steps of 300s. This allows visualising the
difference in the feature sets between two observed time
steps. The k-sized feature sets are fundamental for the
anomaly detection approach. The optimal curve for this metric
should be a high Jaccard distance for the initialisation at the
beginning and it should subside—meaning no more changes
in the feature subset.

For the evaluation of the anomaly detection, we consider
all recorded actions in the trace as nominal behaviour of the

user. To describe the anomaly detection, we use the ratio of
features for which an anomaly is detected. In this ratio, we
only consider features within the k-sized feature set. This
ratio is calculated for two classes: (1) Once for the currently
active class of the function in the trace. This ratio corresponds
to the false positives of the anomaly detection and represents
a detected anomaly in the recorded trace, which we consider
as nominal behaviour. This ratio should always be as low as
possible. (2) The second ratio considers the opposite state of
the function recorded in the trace. This state was not recorded
in the trace and we consider this hypothetical change in the
function’s state as not intended by the user and we refer to
this as an anomaly, due to not being present in the real trace.
This ratio corresponds to the true positive rate in the anomaly
detection and should always be as high as possible. The true
negative and false negative ration can be calculated with the
other two values and is not mentioned, due to simplicity.

4) Results: For the analysis of our results, we classify the
performance of the anomaly detection into six patterns:
P1 For the first changes in the state of the function, no

false positives are detected. After these changes, the true
positive rate increases and, a not by the user triggered
change in the function’s state, will lead to detected
anomalies. (4/24 runs, cf. Fig. 3a);

P2 With the first changes in the function’s state, a false
positive is detected. This false positive will subside and
we observe a high true positive rate. In this case, the user
is informed at the first change of the setting. Afterwards, a
change which is not triggered by the user will be detected
as an anomaly. (3/24 runs, cf. Fig. 3b);

P3 With a change in the function’s state, a false positive is
detected. It will subside and no false positives or true
positives will be detected any more. In this case, the user
is informed at the first change and no anomalies will be
detected afterwards. (6/24 runs, cf. Fig. 3c);

P4 In this pattern, the function is in a specific state for a
longer duration than in the other states and each time
the function is in the less observed state, we observe a
high false positive rate and a low true positive rate. Vice
versa in the more observed state, a low false positive rate
and a high true positive rate are observed. This leads to
a message for the user, each time s/he is changing to the
less used state of the function. (6/24 runs, cf. Fig. 3d);

P5 No true positives or false negatives were observed. In
this case, the user will not receive any message and no
anomalies can be detected. (4/24 runs, cf. Fig. 3e);

P6 True positives and false negatives were observed almost at
all times. In this case, the user will receive a notification;
regardless if intended or not. (1/24 runs, cf. Fig. 3f).

A summary of all runs and the assignment to the patterns is
given in Table IV. An excerpt of six runs is depicted in Fig. 3.

In Fig. 3a an exemplary result for P1 is shown. As depicted
in the upper plot the Lane Departure Warning Sensitivity is
changed by the user in the second half of the trace. Right
after this change, the feature subset initialises, due to the first
observation of another state. With the initialisation of the
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Fig. 3: (a) Lane Departure Warning Sensitivity for Dataset 8 in pattern P1, (b) Lane Departure Warning Dataset 8 in pattern
P2, (c) Active PDC for Dataset 4 in pattern P3, (d) Drive Mode Sport for Dataset 4 in pattern P4, (e) Drive Mode Sport for
Dataset 1 in pattern P5, and (f) Drive Mode Sport for Dataset 2 in pattern P6.

feature subset, true positives are detected for ≈20% of the
features. Within the full trace, no false positives are detected.
An example of P2 is depicted in Fig. 3b. After the first change
in the configuration, the feature subset initialises. This leads
to a detected anomaly for this trace and to a message to
the user (false positive rate). After a short time, the user
reconfigures the function. The false positive rate drops to
0%. The true positive rate increases and anomalous changes
in the configuration would trigger anomalies. Fig. 3c show
an example for P3. In this case, the function Active PDC is
configured multiple times between on and off. In this case,
the first change leads to a detected anomaly. After switching

back to off, potential anomalies would be detected. Right
after switching back to on, another anomaly is triggered
and no more anomalies (true & false positives) are detected
within the rest of the trace. In Fig. 3d an example for P4
is shown. In this case, every change to the less observed
state (in this case sport) triggers anomalies and a message
to the user. An example for P5 can be found in Fig. 3e.
In this case, no potential anomalies are detected. We can
observe a frequent change in the feature subset each time
the configuration changes. The only trace in P6 is shown
in Fig. 3f. In this case, the true positive and false positive
rates almost never change throughout the trace.
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For the analysis of the feature subset, we have analysed
the subsets at the end of each run. To classify the features in
the subset, we use the following categorisation:
Fire ( t ) Features with a functional dependency on the

class. For instance in the case of the function Drive Mode
Sport, a change of the drive mode will “fire” features
for the configuration of the drive train or engine;

Safety-config ( z ) Features that contain parameters of
other driver assistance functions (cf. Table III). For
instance if the state of the Steering Intervention Setting
correlates to the setting for the sensitivity of another
driver assistance functions.

Personalisation ( g ) Features for the personalisation of
comfort functions. E. g. temperature setting for the cli-
mate control, the fragrance of the ambient air perfuming
as part of the car’s climate function or seat position;

Context ( È ) Features which correlate to a specific driving
context. E. g. the current road type, the speed limit, child
safety lock for windows, or outside temperature;

Time ( / ) Features that change over time, but do not have
any reasonable relationship to the driver assistance
functions. E. g. the fuel level;

Non-related ( å ) Features where we cannot find any rea-
sonable relationship to the driver assistance functions.

An overview of the result can be found in table IV. We
observed the following similarities in the feature sets over
all runs: (i) In all traces, we can observe a peak in the
change of the feature sets when a new state of the function
is observed for the first time (initialisation of feature set);
(ii) In all traces, the feature subset has a high variance after
the first observation of a new class and stabilises over time;
(iii) In almost all traces a peak in the Jaccard distance can
be observed shortly after a change in the function’s state.

Comparing the feature subsets and the patterns found in
the anomaly detection, we could not find any relationships
(see table IV). Moreover, when looking at the features itself,
they highly vary between each car and each function. One
exception is the feature subset for the function Drive Mode
Sport. Over all cars, the subset contains a large number of
fire features.

To sum up, function changes that were not triggered by
users lead to a detected anomaly in 13/24 runs (P1, P2, and
P4). In 16/24 runs, the user was notified at least once when
s/he changed the setting of the function (P2, P3, P4, and
P6), and in 11 runs no anomalies were detected if the change
would have not been triggered by the user (P3, P5, and P6).

V. DISCUSSION

We conclude from the first results of the presented case
study that the described approach works well—at least in
the described setting. It is rare that drivers configure driver
assistance functions, but this happens, hence personalisation
of them is needed and we expect more functions of that type
to be introduced in future highly and fully autonomous cars.

Drivers are and behave diverse, i. e., the selected feature
subsets vary from driver to driver, meaning that a one-fits-all
solution does not work in modelling the drivers’ behaviour.

TABLE IV: Features in feature subset at the end of each run.

Function Name Dataset t z g È / å

P1

Lane Departure Warning Sens. Dataset 8 3 4 5 7 7 4
Lane Departure Warning St. Interv. Dataset 8 3 15 8 2 1 1
Steering Wheel Vibration Strength Dataset 2 3 2 12 4 7 2
Steering Wheel Vibration Strength Dataset 8 3 6 4 4 8 5

P2

Active PDC Dataset 7 2 - 7 13 6 2
Lane Change Warning Dataset 8 4 15 1 5 - 5
Lane Departure Warning Dataset 8 4 16 7 - - 3

P3

Active PDC Dataset 4 6 5 14 2 - 3
Active PDC Dataset 6 2 1 18 2 3 4
Drive Mode Sport Dataset 6 16 - 4 2 1 7
Lane Change Warning Sens. Dataset 4 3 6 14 2 1 4
Lane Change Warning Sens. Dataset 8 3 12 5 6 3 1
Speed Limit Assist Offset Dataset 8 3 13 5 4 4 1

P4

Active PDC Dataset 8 2 7 14 - 5 2
Drive Mode Sport Dataset 4 16 - 7 4 1 2
Drive Mode Sport Dataset 5 15 - 5 5 - 5
Drive Mode Sport Dataset 7 14 - 7 5 2 2
Drive Mode Sport Dataset 8 19 - 5 5 - 1
Lane Change Warning St. Interv. Dataset 8 3 9 6 3 7 2

P5

Active PDC Dataset 1 1 - - 26 - 3
Active PDC Dataset 3 2 - 9 8 3 8
Active PDC Dataset 5 3 1 - 22 - 4
Drive Mode Sport Dataset 1 16 1 1 11 - 1

P6 Drive Mode Sport Dataset 2 16 - 3 8 2 1

This demands a learning approach and feature selection at run-
time. Moreover, we learned that feature sets tend to stabilise
quite quickly and therefore long traces are not needed and
will not improve the feature set.

Our proposed approach did not work well for all runs
in the evaluation. We have identified three possible reasons
for this result: (1) As mentioned in the introduction, the
purely signal-based approach has limitations. We consider
that the user’s behaviour can be modelled by already existing
car signals. Depending on the complexity of the behaviour
this will not always be the case. Future vehicle generations
tend to have more and more sensors build in, which could
be a better basis for the modelling of the user’s behaviour
and a solution to this issue. (2) During feature selection, a
suboptimal feature set could be selected, which is not able to
fully describe the user’s behaviour. More complex algorithms
which also include the correlations between features can be
a solution, but come at the cost of adding communication
overhead to the architecture and might not be able to run
on streaming data (cf. Section I). (3) Based on this subset
we model the user’s behaviour for each feature on its own.
Linking multiple features could improve accuracy. Due to the
aforementioned restrictions, this might not be a reasonable
solution (cf. Section I).

Another observation is that different features are highly
ranked during the feature selection process by causal function-
al interactions (e. g. the function Drive Mode Sport triggers
changes of other functions) rather than by human-based
correlations. Hence, this “signal noise” might superimpose
the “real” signals reflecting the drivers’ actions. With new
functions interacting with multiple actuators and sensors, this
superimposition will affect more functions in the future and
should be considered for vehicle data analytics.
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Another point of future investigation is the question how
and when a driver shall be notified about a possible anomaly
and how to handle users who never configure the function?
Possible solutions are based on the automotive safety integrity
level of a function including its severity, controllability, and
exposure. One could study the optimal values for the number
of ranked features and α.

Threats to the Validity: A major threat to validity
concerns the selection of vehicles. There is a huge amount of
in-house test vehicles data, but in our case, the approach has
to be evaluated on real customer data, due to the behaviour we
want to learn from the user. As a premium car manufacturer,
we highly consider the privacy of the customers. Hence, it
is very difficult—even as an OEM—to get a high number
of full real customer car traces. We tried to prevent this
by using traces at least from different regions of the world.
We are aware of this issue and try to gather more data for
the evaluation as future work. Another threat is the missing
anomalous traces. We decided to evaluate our approach on
nominal traces and perform a hypothetical switch to the
different state, to not damage a car or even endanger yourself
or someone else by creating anomalous traces with a real car.

VI. CONCLUSION

In this paper, we presented the first results of a study
on anomaly detection and reported on a conducted real
industrial case study. We proposed a novel approach for
providing proactive safety management for customer function
in automotive systems at runtime (cf. RQ1), which can detect
safety violations for personalisable functions (cf. RQ2). This
approach helps the software engineering process by gathering
runtime data from the vehicles already runnings in the field
(cf. RQ3). This approach was evaluated on real customer
vehicle data.

In order to resolve the “curse of dimensionality”, we
applied the Fisher score feature selection algorithm and
performed on the reduced data the statistical Grubbs outliers
detection test pointing to anomalous system behaviour. All
steps in our approach considered technical challenges of auto-
motive E/E architectures in data analytics and were optimised
on saving communication and computing performance.

Based on eight datasets, we traced a total of 17 state-of-
the-art driver assistance functions per participants, yielding to
a total of 136 runs. We observed that during 18% (24/136) of
these runs, the user deactivated the driver assistance functions
at least once for more than a few seconds. For over 50%
(13/24) of these runs, we were able to detect and flag possible
anomalies.

As at least one participant configured a convincingly large
number of driver assistance functions, we need a dynamic
system to monitor the configuration of these functions actively.
Our approach was able to detect potential anomalies in up
to 52% out of these reconfigurations. Initial results of the
presented work have been presented as poster in [24]. These
results are promising and will receive further attention in
future work.
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