
Capability-based semantic interoperability
of manufacturing resources:
A BaSys 4.0 perspective

Alexander Perzylo ∗ Julian Grothoff ∗∗ Levi Lucio ∗

Michael Weser ∗∗∗ Somayeh Malakuti ∗∗∗∗ Pierre Venet ∗∗∗

Vincent Aravantinos ∗ Torben Deppe ∗∗

∗ fortiss - An-Institut Technische Universität München, Munich,
Germany (e-mail: perzylo@fortiss.org)

∗∗ RWTH Aachen University, Chair of Process Control Engineering,
Aachen, Germany (e-mail: {j.grothoff,t.deppe}@plt.rwth-aachen.de)

∗∗∗ KUKA Deutschland GmbH, Augsburg, Germany (e-mail:
{michael.weser, pierre.venet}@kuka.com)

∗∗∗∗ ABB Corporate Research Center, Ladenburg, Germany (e-mail:
somayeh.malakuti@de.abb.com)

Abstract:
In distributed manufacturing systems, the level of interoperability of hardware and software
components depends on the quality and flexibility of their information models. Syntactic
descriptions of input and output parameters, e.g., using interface description languages (IDL),
are not sufficient when it comes to evaluating whether a manufacturing resource provides
the capabilities that are required for performing a particular process step on a product. The
semantics of capabilities needs to be explicitly modelled and must be provided together with
manufacturing resources. In this paper, we introduce concepts developed by the German BaSys
4.0 initiative dealing with semantically describing manufacturing skills, orchestrating higher-
level skills from basic skills, and using them in a cognitive manufacturing framework.

Keywords: Intelligent manufacturing systems, modeling of assembly units, device integration
technologies, knowledge modelling and knowledge based systems, ontology-based models
interoperability

1. INTRODUCTION

Many manufacturing industries currently experience a
shift in production paradigms. Instead of producing high
quantities of the same or rather similar products over
a long period of time, they have to satisfy the market
demand for customized or even individualized products.
As a result, their lines of products may have a multitude
of different variants, which may only be produced in small
lot sizes.

Traditional manufacturing automation solutions cannot
cope well with the changed requirements. According to
Kinkel and Weißfloch (2009), the total cost of ownership
for an industrial robot is mainly driven by operational
costs, which are around two thirds of the overall balance
compared to a little less than a quarter for the initial
investment of buying the robot. They are dominated by
labor costs for setting up, reconfiguring, and programming
the robot. As a consequence, financial viability cannot be
achieved for small batch production.

An emerging approach to tackle this issue in agile pro-
duction environments is based on modular production
resources that can be efficiently (re-)used when designing
and adapting manufacturing systems. In this paradigm,

production resources offer so-called skills, i.e., parametriz-
able, executable function blocks that provide predefined
functionalities described by associated capability models.

They can be matched with the requirements of a manu-
facturing process, in order to assign process steps to com-
patible resources. Such distributed systems need a formal
specification of the capabilities of their resources, so that
the matchmaking process can be carried out automatically.
This additional layer of abstraction allows to seamlessly
exchange components in a workcell from different manu-
facturers, if they provide the same type of skill.

In this paper, we introduce the approaches taken by the
German BaSys 4.0 initiative 1 to formally describe and
interpret manufacturing skills and their capabilities. First,
we discuss how the information that needs to be repre-
sented in a skill description can be encoded. Secondly, we
introduce a concept that uses semantic annotations of ex-
isting information models (e.g., based on the OPC UA for
Devices standard) to enrich device models with additional
information on their provided skills. Thirdly, we introduce
an approach for the automatic orchestration of higher-level
skills from a given set of basic skills using our own domain
specific language.

1 https://www.basys40.de/

Fourthly, an ontology-based approach to integrate the
capability paradigm in a cognitive manufacturing system
is explained. In this approach, semantic descriptions of
manufacturing processes, interaction objects, and manu-
facturing workcells provide a semantically rich layer of in-
formation that can be interpreted in order to map process
steps to available resources in a given workcell.

2. RELATED WORK

Epple et al. (2017) show that properties may be used to
facilitate a semantic base for the description of skills. The
expression semantics of the corresponding property-value
statements can be used for capability matching based on
offered and required skills. An implementation of property-
based capability models can be found in the work of the
openAAS project 2 , which aims to embed properties in
the Industrie 4.0 context (Plattform Industrie 4.0, 2018).
Further standardization efforts led to the current DIN
SPEC on Data Exchange on the Base of Property Value
Statements (DIN SPEC 92000).

Malakuti et al. (2018a) describe the main challenges of ca-
pability modeling and compare multiple description meth-
ods. The authors present a classification scheme based
on various dimensions. This emphazises the complexity of
clustering different skills and highlights the need for skill
matching across different hierarchies. Based on Pfrommer
et al. (2014), an engineering model is proposed consisting
of product, process, and resource properties. In this con-
text, a capability can be fully classified, if it is known which
process is carried out on which product and by which
resources. Thus, the capability match in the engineering
context is based on the description of a requested capa-
bility, derived from the process, and offered capabilities
that are provided by manufacturing resources. Moreover,
the executable skills of an automation system offer their
capabilities through a service-oriented architecture. The
contribution also compares different description methods
based on property models and ontologies.

The semi-automatic tool SFIT is supposed to support pro-
duction planning engineers in managing product variabil-
ity. Bayha et al. (2016) have developed a meta-model for
describing processes and manufacturing resources with a
particular focus on product variants. By continuously eval-
uating resource capabilities and production constraints,
the tool can inform its user about occurring incompatibil-
ities between a particular product variant and the current
configuration of the production line.

Perzylo et al. (2016) developed semantic description lan-
guages based on the Web Ontology Lanugage (OWL) for
creating models of manufacturing processes, objects, and
production environments. The semantic process models
consist of sequences of tasks that are applied to referenced
interaction objects. The environment models define the
available manufacturing resources and their physical ar-
rangements, in which the tasks are supposed to be carried
out. Geometric information of the product and its parts
is also semantically encoded through a boundary repre-
sentation (BREP) ontology, as described by Perzylo et al.
(2015).

2 https://github.com/acplt/openAAS

A concept that combines OWL ontologies for the semantic
description of web services (OWL-S) and OPC UA meth-
ods was introduced by Katti et al. (2018). The authors
demonstrate the generation of orchestration plans based
on loosely coupled production systems that can be inter-
preted by cloud-located manufacturing execution systems.
An overview of various approaches to web service match-
making, including OWL-S, is given by Klusch (2012).

3. PROPERTY-BASED CAPABILITY DESCRIPTION

In general, a skill provides the (executable) capability of
something to cause an effect on something. The effect
may be described by the change of property values of
the object, i.e., the product. The subject that may cause
the effect, also known as resource, may be described by
related properties as well. In order to describe the skill
itself, more than just an aggregation of these properties
is needed. Moreover, the effects have to be classified and
possible derived effects should be expressible as well. As a
consequence, a dedicated semantic capability description
for skills is needed. Semantic capability models have to rely
on global standards to provide a common understanding
of their concepts and to support interoperability between
different devices. Following this approach, three assump-
tions can be established in order to utilize properties in
the context of skill-based engineering.

First, a skill may be described by a set of properties.
Thus, a skill can be considered a property carrier. The
semantics of each property is only valid in the context of
its specific skill. For example, the property recess depth
has to be defined in the context of each carrier, e.g.,
drill, laser, hone. If a skill classification hierarchy can be
provided, properties may be automatically derived from
parent concepts. Otherwise they are unique for a skill.

Secondly, a skill can be characterized by its input, output,
and transient conditions. Therefore, the skill’s input, out-
put, and transition elements are carriers of properties. In
a technical environment, the relevant characteristics of a
skill may be described by a corresponding process in the
sense of the definition in control technology: ”Complete
set of interacting operations in a system by which mat-
ter, energy or information is transformed, transported or
stored” (IEV 60050-351). Consequently, the input, output,
and transient elements may be classified also with respect
to matter, energy, and information. Changes in these prop-
erties may be described by statements to the values of their
properties.

Thirdly, a skill may be seen as a property itself, so that
it may represent the presence or absence of a skill for a
carrier. As a result, other relevant entities in the context
of engineering, like processes, products, and resources
(Pfrommer et al., 2014), may be described by listing their
required or offered skills.

One important goal during the engineering process is the
selection of resources or resource types that are suitable
to perform a specific process or process step. Depending
on the scenario, this selection task can be extended to
the challenge of finding a process that transforms one
(intermediate) product state into another. Often this chal-
lenge is complicated by the lack of machine understandable

knowledge and still has to be done manually. The matching
of needed and offered skills can be supported by property-
based skill descriptions. Following assumption three, prod-
ucts, roles, or resources are matched based on their skills.
Two comparison objects have to carry the same skill type
for being recognized to be potentially compatible. Not
only the skill identifiers themselves have to be compared,
but their properties and the properties of their process
elements. A majority of comparisons may be completed via
statements dealing with scalar property values. They can
be automated, if the properties provide machine readable
and standardized semantics, which is the goal of the DIN
SPEC 92000. As a consequence, full or partial capability
checks are possible.

In summary, properties can be utilized in skill descriptions,
if they adhere to agreed-upon semantics. For performing
a capability check, the carriers as well as their properties
have to be classified. The correct and deterministic evalua-
tion of single property comparisons is ensured by linking to
standardized property specifications via global identifiers.

4. SEMANTIC ANNOTATIONS OF
DEVICE DESCRIPTIONS

A way of providing the capability descriptions introduced
in the previous section is to use and extend already existing
device descriptions.

Semantic annotations or tags are means to augment an
existing piece of information with extra information. This
approach can be used, for instance, to describe the seman-
tics of proprietary information based on specific standards;
a typical example is to augment a proprietary parameter
description with the corresponding parameters defined in
eCl@ss or the IEC Common Data Dictionary (CDD).

In our approach, each device has a list of properties, and
offers a list of services. The capabilities of the device to
perform specific actions are called device skills. Each skill
is defined using a set of properties and corresponding
services that are a subset of the entire device’s properties
and services. In order to describe skills in a machine-
readable form, we need to define a skill name as well as a
set of relevant parameters and services. Given a standard-
ized definition of a skill and its parameters/services, the
existing device parameters must be augmented accordingly
to specify their correspondence with the standard.

Fig. 1 depicts a generic example of a device description
that has been augmented with skill descriptions through
semantic annotations. Here, a device description defines a
set of device parameters and services. Each skill definition
groups a subset of these services and parameters that
are relevant to the skill. It is defined by a name and
the references to the corresponding device parameters and
services, as indicated by the annotates relation. If a skill
implementation adheres to a particular skill standard, the
corresponding skill specification can be linked through the
refers relation using its uniform resource identifier (URI).

Most of the current device descriptions lack skill descrip-
tions. To flexibly extend the existing device descriptions
with skill descriptions, we may consider various options.
For instance, a) including the skill descriptions in the asset
administration shell (Plattform Industrie 4.0, 2018) of de-

Fig. 1. Skill definition based on semantic annotations of a
device description

vices as submodels; b) defining skills using semantic anno-
tations offered by the OPC UA for Devices standard 3 ; and
c) adopting XML mechanisms to extend existing XML-
based device descriptions using semantic information, as
described in Malakuti et al. (2018b).

5. SKILL COMPOSITION USING A
DOMAIN SPECIFIC LANGUAGE

Based on a set of device-level capabilities that are provided
in a particular workcell, composite capabilities can be
orchestrated from basic capabilities in order to match a
requested behaviour of the system. For this purpose, we
designed an appropriate Domain-Specific Language (DSL)
to declare those skills on the basis of how they interact
with their environment, while abstracting away from the
operational implementation details. Synthesis algorithms
can then be used for generating the logic that will search
for and orchestrate existing skills, in order to achieve the
desired operational behaviour.

Domain specific languages promote rapid prototyping of
systems by concentrating on defining the syntax and
semantics of computer languages, whose terms embody the
domain for which a system is being built.

In order to illustrate how the DSL paradigm can be applied
to the problem of describing and operationalizing skills, let
us introduce a simple example. Assume we wish to describe
a robotic arm that is able to extend to its full limit under a
certain time threshold and report when the movement has
been completed. Assume additionally that we also have a
description of the skills of a linear actuator and a sensor
to provide the high-level skill of extending the arm until
its limit. In this example, the linear actuator may not by
itself report whether it has reached its extension limit,

3 https://github.com/OPCFoundation/UA-Nodeset

Ski l l Extend Arm

Physical State Variables

timeToExtend : time

maxLength : distance

po s i t i o n : distance

Actuators

extend () : (no precondition) −> po s i t i o n = maxLength

Sensors

done extend () : Reached(p o s i t i o n = maxLength) &

! (Elapsed (InstantOfCall (extend) + timeToExtend))

f a i l e x t e n d () : ! (Reached(p o s i t i o n = maxLength)) &

Elapsed (InstantOfCall (extend) + timeToExtend)

Fig. 2. Declaration of the Extend Arm skill

Ski l l Sensor

Physical State Variables

ob j e c tPre s ent : boolean

Actuators

Sensors

ob j e c t d e t e c t ed () : Reached(ob j e c tPre s ent = true)

o b j e c t l e f t () : Reached(ob j e c tPre s ent = f a l s e)

Fig. 3. Declaration of the Sensor skill

but composing it with a sensor that has the skill to detect
objects would potentially provide the desired behaviour.

In Fig. 2, the extend arm skill is described using a
purposefully built DSL. The DSL includes three main
blocks:

• Physical State Variables, describing the physical di-
mensions the skill operates on.
• Actuators, describing the physical effects on the world

as a function of the physical state variables.
• Sensors, describing the constraints that the system is

supposed to respect when operating in the physical
world.

Note that the constraints provided in the Sensors block of
the specification define in a domain-specific and human-
readable manner, how the arm should operate. For ex-
ample, they state that in order for the arm extension
to be successful, the maxLength (maximum length of the
extension) should be achieved (and reported) and the time-
ToExtend (time threshold for the arm extension) should
not be exceeded.

While the extend arm skill is described in Fig. 2 in a
declarative manner, we have designed an algorithm that
allows building an orchestrator for it, which can assume
the role of an operational controller. The inputs for our
algorithm are:

• A set of other skills (which hereon we call slave skills),
described using the same skill DSL as presented
above, that will potentially provide services that can
be orchestrated by the extend arm skill (which hereon
we call the master skill). In Fig. 3, we depict the
declaration of the sensor skill.

Orchestrator

Hydraulic Linear Actuator

Off the Shelf Sensor

Observer State Machine

extend

T0

retract

done_extend

pressurisedepressurisedonePressurisedoneDepressurise

position = 0

objectDetected

position = maxLength

objectLeft

P0P2

T1

T2

P4

T3

P1

T4

P5

T5

P3

T6

Fig. 4. An automatically synthesized orchestrator

• Information about the semantic mapping between the
meaning of certain events in the master and in the
slaves. An exemplary input of such information would
be a human answering the question:
“Does the sensor detecting an object imply
that the arm has been fully extended?”
This question has to be answered by a human as there
are no means to compute the answer automatically
without having a much deeper understanding of the
composition of skills, which is exactly the thing we are
attempting to build. Nonetheless, the formulation of
the questions itself can and has been automated in
our tool.

Taking the information above as input, our algorithm
performs the matching between the master and slave
skills and generates an orchestrator containing the logic
that synchronizes the slaves to achieve the skill of the
master. Fig. 4 shows a graphical visualization of such an
orchestrator. The orchestrator contains the following types
of elements:

• The outside border of the main square represents the
orchestrator itself and contains actuator and sensor
ports.

• Inside of the main orchestrator, the slave skills are
represented as black boxes (where the operational
behaviour is abstracted from) again with actuator
and sensor ports.

• A state machine that provides an observer to the
environment, in which the skill operates (given in this

case by the observation of the sensors of the slave
skills).
• A set of Petri nets that orchestrate the operation of

the master skill. Each Petri net corresponds to the
operationalization of a behaviour of the master skill
(e.g., done or fail). It is responsible for coordinating
the messages coming from and to the environment
of the master skill, from and to the slave skills and
synchronizing with the observer state machine.

The complete description of the syntax and semantics of
the skill DSL is beyond the scope of this paper. Also, while
several publicly available and competent DSL workbenches
exist, we have experimented with our skill expression and
interpretation ideas using the popular EMF framework,
which is distributed with the Eclipse software development
environment.

6. ONTOLOGY-BASED INTEGRATION LAYER FOR
COGNITIVE MANUFACTURING SYSTEMS

In order to make use of semantic capability models, they
must be integrated in a semantic manufacturing frame-
work that can process and interpret models of manufactur-
ing processes and their requirements, as well as workcells
and their offered capabilities.

We use the Web Ontology Language 4 (OWL) as a formal
language to specify our own semantic description lan-
guages for encoding the required models. The effort of
explicitly representing such knowledge helps to separate
knowledge from code, and as a result the created models
can be easily understood, maintained, shared, and reused.

Semantic description languages specify a common vocab-
ulary for specific domains, defining concepts and relations
between instances of these concepts. Hence, they match
the requirements to model the concept of capabilities and
associated relationships. The advantage of a capability
ontology is its generic symbolic representation. It is based
on a logical formalism that allows to integrate and combine
knowledge, and to perform automatic reasoning through
logical inference. This enables the system to combine capa-
bilities with other concepts, e.g., processes and their indi-
vidual steps, or interaction objects. Implicit dependencies
to capabilities can be automatically inferred for a given
situation by the underlying logic of a capability ontology.

6.1 Inferring capabilities from component taxonomies

Related to section 5, the orchestration of capabilities can
be part of a cognitive manufacturing system. The follow-
ing example was developed for the domain of industrial
grippers. A capability ontology was combined with com-
ponent and geometry models in order to infer higher-order
capabilities based on component hierarchies.

A pinch gripper can grasp something, if one of its sub-
components can execute a ParallelMotion and two of its
subcomponents offer the capability HandleInterface. This
assumption was modeled in an OWL ontology. Fig. 5 shows
the corresponding axioms for a generic PinchGripper class
in the Protégé ontology editor. A class defining a particular
gripper comprised of a gripper body and two gripper
4 http://www.w3.org/TR/owl2-primer/

Fig. 5. View of the Protégé editor showing axioms that
specify an abstract PinchGripper based on the pres-
ence of the capabilities ParallelMotion and HandleIn-
terface in its subcomponents

Fig. 6. View of the Protégé editor showing the sub compo-
nent axioms of a particular pinch gripper class called
CRWeissGripper

Fig. 7. View of the Protégé editor showing the inferred
object property assertions for a particular instance
of the CRWeissGripper class called WeissGripperInd.
The capability PinchGripping was automatically in-
ferred.

fingers is modeled in Fig. 6. The gripper body and fingers
further have the mentioned capabilities asserted through
the hasCapability object properties.

In conjunction with the capability model, component hi-
erarchy, and relations between these concepts, an OWL
reasoner is able to infer the higher-order capability of
PinchGripping for the given instance of the CRWeissGrip-
per class, as indicated by the yellow background of the
listed property assertion in Fig. 7.

6.2 Matching task requirements with workcell capabilities

The process of picking an object contains the sub task of
grasping the object. First, let us assume that a human is
supposed to grasp a screw. The intuitive answer to the
question if the human can grasp a screw would be yes.
However, to answer the same question for a particular
robot is not that intuitive anymore. Humans have access to
a variety of models about their environment gained from
years of experience in interacting with it. They also excel
in deriving new models from their accumulated knowledge.

Despite the multitude of available screws and different
ways of performing a grasping action, humans share a

TransportOn
ConveyerBelt

TransportOn
MobileRobot

Task Taxonomy Layer

Hierarchical Task Sequence Layer

Contextual Action Layer

Fig. 8. Visualization of an excerpt of a semantic description of a pick and place task with annotated required capabilities
and parameters. All tasks are described in a taxonomy and are further specified through a sequence of subtasks.
The black arrows denote a precedes relation for defining a pairwise partial ordering between the subtasks. The
actions that are eventually performed might depend on the task’s context, e.g., when a pipe can be grasped from
the inside and the outside.

PickSkill PlaceSkillGraspPlannerComauSmart6RobotWSG50ParallelGripper

Fig. 9. Visualization of an excerpt of a component taxonomy that can be used in semantic workcell models. It features
a Comau Smart6 robot arm, a WSG50 parallel gripper, as well as related software skills with their provided
capabilities.

common understanding of screws and the implications of
grasping them. When humans evaluate whether or not
they would be able to grasp an object they have never
touched before, they try to relate all relevant aspects of the
task to known concepts. The evaluation of their grasping
capabilities will be based on individual assessments of, e.g.,
the material of the object, its dimensions, assumed weight,
and surface properties, as well as their strength, reach,
and hand span. In our approach, we endow manufacturing
systems with means to evaluate their capabilities in a
similar way.

The task of planning an action is getting more complicated
if a process step requires a robot to pick up a particular
M6 cap head socket screw with a length of 20 mm. Now,
an instance of a screw and the environment in which the
action shall be performed have to be considered. In order
to perform such a task, additional models related to the
environment, perception, planning, analytical algorithms,
and optimizations are required.

Fig. 8 shows a visualization of a semantic process model for
a hierarchically defined pick and place process. The process
consists of two sub tasks (pick, place) that are partially
ordered through a precedes relation. The pick task is
further refined as a sequence of basic actions that are again
annotated with a pairwise partial ordering. Each of the
basic actions requires specific capabilities to be present
on manufacturing resources that are to be considered for
performing the actions.

An excerpt of a component taxonomy is visualized in
Fig. 9. The modelled components are used as manufactur-
ing resources in semantic workcell models. The contained
resources are instances of concepts that have been defined
in the taxonomy. They provide capabilities that have been
modelled in a capability ontology and can be matched with
the requirements of the pick and place process from Fig. 8.

A logical examination of these capabilities can never guar-
antee that a specific task will be successfully performed

by a manufacturing resource’s skill. It merely is an in-
dicator for guaranteed incompatibility in case of logi-
cal inconsistency. Due to the logical interpretation, rea-
soning components can identify the reasons for such an
incompatibility, which can be used to generate human-
understandable feedback to the operator of the manufac-
turing system. For instance, an incompatibility of a pick
and place process and a robot workcell could be resolved
by adding a more suitable gripper to the workcell. Whether
a given grasp pose can be used to successfully grasp the
object might not be decided on a symbolic level alone
and require sub-symbolic evaluations, e.g., using a physics
simulator. In this case, the sub-symbolic evaluation can
be used to increase the manufacturing system’s level of
confidence that an action will succeed, while the symbolic
pre-evaluation can be used to reduce the search space.
In order to emphasize the separation of concepts, we use
the term capability for symbolic/logical and feasibility for
mathematical/analytical compatibility matching.

7. CONCLUSION

Cognitive manufacturing systems can leverage semantic
capability descriptions of manufacturing resources to flex-
ibly and efficiently design and (re-)configure production
processes, thus saving time and money. The additional
layer of abstraction enables process engineers to focus on
developing and describing manufacturing processes inde-
pendent from actual machines or software components.
The mapping of abstract specifications of process steps
(and their requirements) to executable code eventually
happens when a process model is deployed to a workcell
or production line and can be computed automatically.

The real-world applicability of this approach strongly de-
pends on the depth of the capability models. Modeling all
relevant aspects of complex process steps and related man-
ufacturing skills is far from a trivial task. Even seemingly
simple tasks such as robot motions require a substantial
modeling effort, when velocities, accelerations, forces, or
deviations from trajectories must be considered, e.g., when
being used for robot-based grinding or polishing.

The benefits of capability-based systems engineering can
be increased by the development of standardized sets of
skills. The standards must define a common understanding
of the skills of a particular domain that can be shared
by resource providers and their customers’ manufacturing
execution systems. The German Mechanical Engineering
Industry Association 5 (VDMA) works towards closing
this gap through their OPC UA companion specifications,
which have already been released in first versions for
domains such as robotics or integrated assembly solutions.

ACKNOWLEDGEMENTS

The research leading to these results has been partially
funded by the German Federal Ministry of Education and
Research (BMBF) under grant agreement no. 01IS16022
through the project BaSys 4.0 (Basissystem Industrie 4.0).

5 https://www.vdma.org/en/

REFERENCES

Bayha, A., Lúcio, L., Aravantinos, V., Miyamoto, K.,
and Igna, G. (2016). Factory product lines: Tackling
the compatibility problem. In International Workshop
on Variability Modelling of Software-intensive Systems
(VaMoS), 57–64. Salvador, Brazil.

DIN SPEC 92000 (2018). Data exchange on the base of
property value statements.

Epple, U., Mertens, M., Palm, F., and Azarmipour, M.
(2017). Using properties as a semantic base for interop-
erability. IEEE Transactions on Industrial Informatics,
13(6), 3411–3419.

IEV 60050-351 (2009). International electrotechnical vo-
cabulary - Part 351: Control technology.

Katti, B., Plociennik, C., and Schweitzer, M. (2018).
SemOPC-UA: Introducing semantics to OPC-UA appli-
cation specific methods. IFAC-PapersOnLine, 51, 1230–
1236.

Kinkel, S. and Weißfloch, U. (2009). Estimation of the
future user potential of innovative robot technologies in
SMEs – Promising prospects. In World Robotics 2009
Industrial Robots: Statistics, Market Analysis, Fore-
casts, Case Studies and Profitability of Robot Invest-
ment, 376–381. VDMA.

Klusch, M. (2012). Overview of the S3 contest: Perfor-
mance evaluation of semantic service matchmakers. In
Semantic Web Services, Advancement through Evalua-
tion, 17–34.

Malakuti, S., Bock, J., Weser, M., Venet, P., Zimmermann,
P., Wiegand, M., Grothoff, J., Wagner, C., and Bayha,
A. (2018a). Challenges in skill-based engineering of
industrial automation systems. In IEEE International
Conference on Emerging Technologies and Factory Au-
tomation (ETFA), 67–74. Torino, Italy.

Malakuti, S., Schmitt, J., and Gamer, T. (2018b). From
Heterogeneity to Uniformity in Building Automation
Systems via Semantic-based Engineering. In IEEE
International Conference on Emerging Technologies and
Factory Automation (ETFA), 115–122. Torino, Italy.

Perzylo, A., Somani, N., Profanter, S., Kessler, I., Rickert,
M., and Knoll, A. (2016). Intuitive instruction of in-
dustrial robots: Semantic process descriptions for small
lot production. In IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2293–2300.
Daejeon, Republic of Korea.

Perzylo, A., Somani, N., Rickert, M., and Knoll, A. (2015).
An ontology for CAD data and geometric constraints as
a link between product models and semantic robot task
descriptions. In IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 4197–4203.
Hamburg, Germany.

Pfrommer, J., Stogl, D., Aleksandrov, K., Schubert, V.,
and Hein, B. (2014). Modelling and orchestration of
service-based manufacturing systems via skills. In IEEE
International Conference on Emerging Technologies and
Factory Automation (ETFA), 1–4. Barcelona, Spain.

Plattform Industrie 4.0 (2018). Details of the Asset Ad-
ministration Shell, Part1 - The exchange of information
between partners in the value chain of Industrie 4.0. Fed-
eral Ministry for Economic Affairs and Energy. Berlin,
Germany. URL https://www.plattform-i40.de.

