
©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists,
or reuse of any copyrighted component of this work in other works.

SDRBench: A Software-Defined Radio Access
Network Controller Benchmark

Arled Papa, Raphael Durner, Fabian Edinger, Wolfgang Kellerer
Chair of Communication Networks

Department of Electrical and Computer Engineering
Technical University of Munich, Germany

Email: {arled.papa, r.durner, f.edinger, wolfgang.kellerer}@tum.de

Abstract—Software-Defined Networking (SDN) has been iden-
tified as a key enabler for 5G networks to enhance the network
capabilities by introducing flexibility and programmability. While
SDN has been widely exploited in the core network side, it
still remains an open research question in the Radio Access
Network (RAN). Initial works highlight the benefits of SDN in
RAN and investigate the idea of separating the control plane
from the data plane of the Base Stations (BS) by means of SDN.
The pioneer Software-Defined RAN (SD-RAN) controllers are
available, nonetheless there exist no tools which can shed light on
their performance and help to understand their limitations. We
introduce SDRBench, a novel SD-RAN controller benchmark tool
to fill this void. In this work, we evaluate FlexRAN, which is the
first open source SD-RAN platform. In our tool, a Python-based
instance of a FlexRAN agent is created and it communicates
messages with the controller according to the FlexRAN protocol.
The benchmark is used to uncover the limits of the SD-RAN
controller.

Index Terms—SD-RAN, RAN Slicing, 5G, Programmability,
Flexibility.

I. INTRODUCTION

Fifth generation (5G) networks are envisioned to cope with
the tremendous growth of traffic demands and heterogeneity
of future applications such as automotive, e-health or virtual
reality. The main solutions rely on flexible and programmable
concepts, which promise cost-efficient and seamlessly adapt-
able networks. To this end, novel techniques such as Software-
Defined Networking (SDN) and Network Function Virtualiza-
tion (NFV) have emerged.

The introduction of SDN/NFV has lead to numerous ben-
efits in terms of cost reduction, flexibility and enhancements
in the network management mainly in data centers and core
networks. Analogously, the Radio Access Network (RAN) can
potentially benefit from the concepts of SDN/NFV. On the one
hand, the separation of the control plane from the data plane
of RAN can result in improvements in spectrum efficiency or
better interference management. On the other hand, there are
challenges in RAN which lie in the tasks of wireless resource
management and the ability to perform strict delay operations
(e.g., MAC scheduling in real time).

From the research perspective, SDN in RAN advocates new
emerging concepts such as Cloud RAN, Mobile Edge Com-
puting (MEC) or Network Slicing. Recently, the aforemen-
tioned techniques have attracted increased attention both in

academia and industry. Network slicing is envisioned as a key
technology for next generation 5G networks for supporting the
deployment of multiple heterogeneous networks with distinct
Quality-of-Service (QoS) requirements in a flexible and cost-
efficient manner [1]. Likewise MEC is another novel concept
of 5G networks which further enhances network capabilities
by enabling computing functionalities on the edge and there-
fore decreasing potential delays [2]. Hence, architectures to
provide the logic of SDN in RAN have been proposed in the
literature [3], [4].

The first open source Software-Defined RAN (SD-RAN)
platform which enforces programmable control logic on the
RAN side is FlexRAN [3]. Thus, enabling applications such
as MEC, which are envisioned to be deployed in a centralized
fashion. Additionally, an Application Programming Interface
(API) is utilized for the interaction between the applications
and the control plane. Leveraging this API, the application of
concepts such as network slicing can be possible. This enables
the deployment of multiple services over the RAN domain,
utilizing available radio resources by means of virtualization
in a flexible manner. Even though SD-RAN platforms have
triggered vast ongoing research in the fields of RAN slicing
and MEC, there exist no in depth evaluation of such platforms
in the literature. Inherently, an accurate investigation on their
performance and limitations has to be conducted.

To the best of our knowledge, we are the first to investigate
the limitations of existing SD-RAN approaches and evaluate
their performance. We present SDRBench, a novel benchmark
tool for our analysis. Based on our tool, in this work we eval-
uate FlexRAN, one of most representative SD-RAN platforms
in the literature. Nonetheless, a complementary analysis can
be performed on other existing concepts. The core contribution
of our work is on the one hand to highlight the importance of
such tools for analyzing the behavior of SD-RAN controllers
and on the other hand identify the main capabilities of SD-
RAN controllers using our tool.

The rest of the paper is organized as follows. Section II
describes the related work on SD-RAN platforms and con-
troller benchmarks. We introduce the architecture of FlexRAN
in Section III and define the main idea and properties of our
benchmark. The main results of our analysis are described in
Section IV. Moreover, section V introduces an extension of

our work towards a fully fledged benchmark. Finally Section
VI concludes this paper and emphasizes the main findings.

II. BACKGROUND

Similar to the fixed networks, SDN is paving the way
towards a programmable and flexible Radio Access Network
(RAN). From the architectural perspective, several approaches
have been proposed in the literature regarding wireless re-
source management [5], [6], [7]. Driven by means of SDN,
these approaches benefit from virtualization concepts and in-
troduce a split between the data and control plane of RAN, by
delegating the control functionalities in a single entity known
as Software-Defined RAN (SD-RAN) controller. Nonetheless,
the aforementioned works only present a conceptual idea of
the SDN-enabled RAN architectures and have not yet been
implemented.

In order to fill this void initial implementations of SD-RAN
platforms have been introduced in the state-of-the-art [3], [4].
Furthermore, to prove their efficiency the aforementioned SD-
RAN platforms have been integrated into existing open source
LTE platforms such as OpenAirInterface [8] and srsLTE [9],
thus introducing an appealing avenue of research in the area.
FlexRAN [3] and EmPower [4] are two of the first open source
implementations of SD-RAN platforms. FlexRAN separates
the data plane from the control plane of RAN according to
the SDN logic and is implemented on top of the existing open
source LTE platform OpenAirInterface [8]. Therefore, it allows
for implementation and demonstration of possible applications
that benefit from this concept. On the other hand, EmPower
was initially designed for WiFi and recently is applied on
srsLTE [9] to support the concept of SD-RAN.

There exist many works in the literature regarding topics
such as network slicing especially in the algorithmic part.
However the design and implementation of SD-RAN platforms
has provided many researchers with a tool to evaluate the
performance of their approaches in a real testbed. For instance,
in [10] the notion of multiplexing gain is introduced for RAN
slicing. The problem is formulated as a knapsack problem,
where the focus is on the QoS performance while maximizing
the unused part of the spectrum. Additionally, the algorithm
is implemented in the current version of FlexRAN. Moreover,
in [11] the problem of RAN slicing is tackled by applying
the Lyapunov optimization technique [12]. In this work, a
dynamic resource allocation is proposed. The MAC scheduling
is envisioned in a hierarchical fashion and the architectural
concept is built upon FlexRAN.

Given the high interest in SD-RAN controllers and plat-
forms, a qualitative study on the behavior and their perfor-
mance has to be initiated. Currently, there exist no bench-
marks for the evaluation of SD-RAN controllers performance.
Nonetheless, the benchmarking of SDN controllers is not an
unfamiliar notion on the core network, where such controllers
have been well investigated. For instance, Cbench [13] and
OFCBenchmark [14] are two of most representative bench-
mark tools for SDN controllers. In our work, we incorporate
the idea implemented from the aforementioned SDN controller

Application Layer

FlexRAN Controller

eNB eNB

FlexRAN Agent FlexRAN Agent

C
on

tro
l

P
lan

e

D
ata

P
lan

e

FlexRAN Protocol

Figure 1. SD-RAN platform architecture.

benchmarks and propose an equivalent benchmarking tool for
FlexRAN SD-RAN controller.

III. BENCHMARK DESIGN

In this section we introduce our SD-RAN controller bench-
mark tool SDRBench. Our benchmark is initially designed
to evaluate the FlexRAN controller. We first present the
architecture of FlexRAN as it is tightly coupled with the
architecture of our benchmark. Moreover, we introduce the
FlexRAN protocol, which enables the communication in the
control plane of the SD-RAN platform. Finally, we describe
the design principles of our approach and shed light on the
important functionalities needed to achieve our goal.

A. FlexRAN Architecture

Similarly to the SDN principles, the control logic of the
RAN is centralized in a entity known as SD-RAN controller.
This introduces a functional split, where the data plane of
RAN is separated from the control plane. FlexRAN [3] is one
of the initial open source SD-RAN platforms which facilitates
this concept. The architecture of FlexRAN is presented in
Fig. 1. As denoted by the architecture, the control plane is
envisioned in a hierarchical fashion. For each eNB, a FlexRAN
agent is initiated. This agent is responsible for the local control
over the eNB. Further, the control of multiple eNBs can be
aggregated to a FlexRAN controller. The connection between
these entities is realized by the FlexRAN protocol. In analogy
with SDN southbound protocols (i.e., OpenFlow [15]), the
FlexRAN agent API is anticipated for the communication
between the control plane and data plane of the FlexRAN
platform. Additionally, a northbound API enables the commu-
nication between the FlexRAN controller and the application
layer. It is this interface that allows for modification of the
underlying physical infrastructure depending on the current
network state and application requirements, thus providing
programmability and flexibility for RAN.

FlexRAN Controller FlexRAN Agent

Initialization Request

Hello Message

eNB Config Request

UE Config Request

LC Config Request

eNB Config Reply

UE Config Reply

LC Config Reply

Stats Report Request

Stats Report Reply

In
itializatio

n

P
h

ase

C
o

n
figu

ratio
n

P

h
ase

R
ep

o
rtin

g
P

h
ase

Figure 2. FlexRAN protocol consisting of three phases, namely initialization
phase, configuration phase and reporting phase. The reporting phase is a
repetition process consisting of stats request and replies.

B. FlexRAN Control Plane

The control plane of FlexRAN consists of the FlexRAN
controller and the FlexRAN agent. On the one hand the con-
troller is unique, whereas on the other hand multiple FlexRAN
agents can be created depending on the number of eNBs
present on the underlying physical network. The communica-
tion between the FlexRAN controller and FlexRAN agent is
bi-directional. The FlexRAN agent reports statistics and events
regarding the respective eNB to the FlexRAN controller,
whereas the controller can define rules and delegate decisions
to the corresponding agent. Considering delay critical tasks
such as MAC scheduling, the communication between the
FlexRAN controller and FlexRAN agent should utilize low-
latency or high-bandwidth paths. However, depending on the
network conditions the FlexRAN platform allows for local
control over the eNB from the FlexRAN agent in order to
account for delay reductions, thus providing flexibility.

C. FlexRAN Protocol

The FlexRAN protocol is an important feature of the
FlexRAN platform since it realizes the communication be-
tween the FlexRAN controller and FlexRAN agent in the
control plane. In order to accurately replicate the FlexRAN
implementation, we put high emphasis on the understanding of
the FlexRAN protocol. In the current version of the FlexRAN
protocol, TCP is used to enable the communication between
the FlexRAN controller and the FlexRAN agent. The mes-
sages of the aforementioned protocol are encoded/decoded by
utilizing Google Protocol Buffers [16]. The detailed protocol
is illustrated in Fig. 2. The FlexRAN protocol consists of three
parts, namely the initialization phase, configuration phase and
reporting phase respectively. Initially, the FlexRAN controller
initiates a FlexRAN agent once the eNB is activated. Further,
the handshake process continues where the corresponding

C
on

tro
l

Plan
e

FlexRAN Protocol

FlexRAN Controller

Message Generator

Communication
Socket

Message Handler

Statistics Collector

Python-based Agent

Figure 3. SD-RAN benchmark architecture. The FlexRAN agent is replaced
by a Python-based implementation.

agent replies with a Hello message to conclude the initial-
ization phase. Once the initialization phase has terminated,
the FlexRAN controller requests statistics from the agent
regarding the eNB, UE and logic channel (LC) configuration.
Accordingly the agent replies with configuration information
and thus terminating the configuration phase. Finally, the re-
porting phase is a repeated operation that consists of statistics
requests from the FlexRAN controller and statistics replies
from the agent. Upon these statistics the FlexRAN controller
might trigger changes on the operation of the FlexRAN agents.

D. Benchmark Implementation

The main design goal of our benchmark is to evaluate
the control plane of FlexRAN. In our approach we do not
modify the FlexRAN controller, however we concentrate on
the FlexRAN agent, which represents each eNB. Inherently,
we focus on the creation of FlexRAN agent replicas and
establishment of the connection with FlexRAN controller in
order to be able to explore its limitations. As illustrated, in our
model the control plane stills remains the same, nonetheless
in contrast to the previous approach the traditional FlexRAN
agent established during the initialization phase of the eNB, is
replaced by a Python-based program. The architecture of our
implemented FlexRAN agent replica is presented in Fig. 3.
Within the Python program, several agent functionalities have
been implemented. Analogous to the current implementation
of the FlexRAN, a communication entity is needed for the
interaction between the FlexRAN controller and the FlexRAN
agent. In our case this is referred to as communication
block, realized in a socket-based manner. Furthermore, a
message handler is envisioned to encode/decode the messages
sent/received by the program towards the controller by using
the FlexRAN protocol. To support the report functionality
of the FlexRAN agent, in our approach we incorporate an
entity, namely message generator, which is responsible for
generating reports with respect to requests coming from the
controller (i.e., hello messages, stats reports). Finally, the

0 50 100 150 200 250
Agents

0

50

100

150

200
C

PU
U

til
iz

at
io

n
%

Cores
1
2

4
8

Figure 4. CPU Utilization for different numbers of CPU cores. The controller
can utilize up to 2 cores, whereas 1 core supports 100 agents and more cores
150 agents.

statistics collector is responsible for gathering all the statistics
from the measurements conducted with the controller (i.e.,
delay for stats reply).

In our Python-based implementation multiple instances of
FlexRAN agents can be initiated and operated simultaneously.
This number can be altered and therefore allows for several
tests with the controller. Once the FlexRAN agent has been
created, it starts the communication with the controller by
sending a Hello message according to the FlexRAN protocol.
The message handler is then used to receive the reply for the
respective Hello message and therefore can record its round
trip time and furthermore update the statistics stored in the
statistics collector.

IV. RESULTS

In this section we elaborate the initial findings from our
benchmark implementation regarding the behavior of the cur-
rent version of the FlexRAN controller. We investigated the
performance of the FlexRAN controller in terms of CPU uti-
lization, memory usage and delay of the initial hello message.

For the measurement we used a Desktop PC equipped with
an AMD Ryzen 7 2700X and 16Gb RAM. This CPU has
8 physical cores and a frequency of 3.7 Ghz. The controller
is running inside a virtual machine that is virtualized with
Virtualbox. The benchmark is running on the host system and
is connected with the controller through a virtual switch. We
used virtualization to ease deployment of the controller on our
test system. Even though the virtualization may cause some
overheads, it has been shown that these overheads are not
significant [17].

A. CPU utilization

When a FlexRAN agent is initiated it connects to the
designated controller and sets up the connection using the
FlexRAN protocol as described in Section III-C. After the
initiation the agent sends stats reply in a repeated manner upon
a request from the controller. Even though the controller does
not reply on these messages, it still has to process the message

1 5 10 25 50 100 150 175 200 250
Agents

0

100

200

300

M
em

or
y

oc
cu

pa
tio

n
[M

B
]

Figure 5. Memory occupation for 2 cores and different number of agents in
MB. Memory leakage increases the utilization for 250 agents significantly.
Results do not depend much on the number of used CPU cores.

and update its internal state. As a result the CPU utilization
is increased if more agents are added.

FlexRAN is implemented using multiple threads and there-
fore scales with the number of CPU cores. Fig. 4 demonstrates
the measurement results of the CPU utilization in percent.
Each experiment is conducted 4 times with a duration of
1000 seconds each and one measurement point per second. We
ploted the mean and the confidence intervals for the respective
scenarios. The utilization of all cores is summed up to show
the total utilization of a process. This explains the increase
beyond 100% if more than one core is used. The results show
that the utilization depends linearly on the number of agents
until a feasible maximum is reached. Afterwards the utilization
flattens out and timeouts can be observed. It can be seen that
one core flattens out after 100 agents, while for more cores
this point is reached after 150 agents. On the other hand we
can observe that the FlexRAN controller does not scale well
with the number of cores. One CPU core supports 100 agents,
whereas with increasing number of cores a maximum of 150
agents is supported. Further, in total no more than 2 cores
can be effectively utilized irrespective of the total number of
assigned cores to the controller.

B. Memory usage

During the same experiment we also measured the memory
occupation of the controller. This metric does not depend much
on the number of CPU cores, consequently we only show
the results with 2 cores in Fig. 5. In general the FlexRAN
controller is not very demanding, consuming only 100 MByte
with 150 agents connected. On the other hand in an overload
situation (>150 agents) we can notice an increase of the load
over time which indicates memory leakages.

C. Hello-message reply delay

The final metric we consider represents the delay of the
controller. We initially connect n − 1 agents and further add
an additional nth agent in order to measure the delay of the first
handshake for the latest added agent. Fig. 6 presents the results
with n agents. The delay for a low number of agents (1-101)
is mostly below 3 ms with a mean of 1.5 ms. As expected

1.0 51.0 101.0 151.0 201.0 251.0
Agents

0

20

40

60

80

100

D
el

ay
[m

s]

Cores
1
2

4
8

Figure 6. Delay of the Hello message for different number of CPU cores and active agents. One core can support up to 100 agents without an increase in
the delays, more cores up to 150. 8 cores is worse than 2 or 4 cores due to context switches.

the delay increases rapidly if the controller is over-utilized,
causing a mean delay of 60 ms using one core and 251 agents.

Additionally the results show that too many cores can even
harm the delay. For example for 101 agents the delay using 8
cores has a mean of 2 ms, while lower core numbers have a
mean of 1 ms. Further also 8 cores shows more outliers with
comparably high delays (e.g. results for 151 agents). This can
be explained by an increased number of context switches of
the CPUs.

V. SD-RAN CONTROL PLANE MODEL

This work is a first step towards a fully fledged benchmark
for SD-RAN controllers. The SD-RAN controller is the heart
of each SD-RAN platform. It facilitates the logic of SDN by
being in charge of the control plane of the RAN and therefore
renders flexibility and programmability. The controller serves
as a connection bridge between the application layer and the
data plane (i.e., physical layer). Thus, for a lot of applications
such as Network Slicing, MEC, Cloud RAN a fully capable
controller is required. Yet, until now it is not clear if the
available controllers can serve all requests coming from the
data plane and the application layer in a timely manner. The
load on the controller depends on a number of influence factors
as depicted in Fig. 7:

1. The number of SD-RAN agents (e.g., FlexRAN agents).
2. The load of the traffic in the data plane.
3. The load of the applications and services on the applica-

tion layer.
4. The type of applications running on the application layer.
In this paper our benchmark emulates the behavior of a

FlexRAN agent in the static case. This includes regular stats
report messages sent to the controller. As an initial step in our
work we vary the number of FlexRAN agents and identify
the behavior of the controller in such a scenario. Nonetheless,
we do not consider any load imposed by the users in the data
plane. However, in a more realistic scenario the traffic load
(i.e., transmission requests) or traffic patterns of users (i.e.,
user arrivals/departures) in the data plane can influence the

SD-RAN Controller

eNB

SD-RAN AgentUser arrivals
and leaves

Transimission
Requests

2

Application Layer
Service

Requests

2

3

Number of
SD-RAN
agents

1

Service Type

4

Figure 7. SD-RAN Control Plane Model. The load on the controller depends
on 1. Static eNB messages, 2. User arrivals and leaves, 3.Slice Requests,
4.Transmission Requests.

performance of the SD-RAN controllers. For instance, a high
traffic load can increase the frequency of the communication
between the agent and the controller. Similarly, a handover
might also trigger reports in order to inform the SD-RAN
controller for these events.

From the application layer perspective, the SD-RAN con-
trollers should be able to sustain a normal behavior in order to
cope with the application requirements. Intuitively the load of
applications or services that operate on top of such controllers
directly affects their performance. Moreover, the nature of
applications or services might also play a huge role on the
traffic imposed on the controller. For instance, if we think of
network slicing, constant slicing requests might be triggered
by the application layer every time a new slice is initiated
or deleted. Furthermore, to account for constant monitoring

of these slices, a considerable amount of messages between
the SD-RAN controller and the application itself might be
required.

Considering the above mentioned factors which can influ-
ence the behavior of SD-RAN controllers, a more realistic and
complete model should be created. To this end, an interesting
avenue of research is modeling the behavior of such controllers
depending on all the parameters shown in Fig. 7. Furthermore,
we believe that obtaining a mathematical framework to model
the behavior of SD-RAN controllers might result in a com-
pelling tool that can be used by many researchers interested
in Software-Defined RAN.

VI. CONCLUSION

Given the high interest in programmable and software-
enabled 5G Radio Access Networks (RANs) platforms, the
evaluation of the performance and limits of such approaches
is crucial both for academia and industry. In order to answer
related questions, in this paper we introduced SDRBench,
a novel benchmark tool for the analysis and evaluation of
Software-Defined RAN (SD-RAN) controllers. We provided
insights regarding FlexRAN, one of the most representative
SD-RAN platforms in the state-of-the-art and shed light on
some limitations with respect to the number of FlexRAN
agents that can be supported. Moreover, we introduced a
methodology towards a fully fledged benchmark. This im-
plies an extension for our tool which takes into account
both northbound and southbound API requests to obtain a
full picture on the behavior of SD-RAN controllers in a
realistic scenario. Therefore, we will further continue with the
development of our SD-RAN controller benchmark to generate
representative results for alternative SD-RAN controllers and
compare their performance. Eventually, upon a consolidation
of our benchmark we plan for a public release, which can serve
as a benchmark for future SD-RAN platforms in the field.

ACKNOWLEDGEMENTS

This work has been partially funded by the Ger-
man Research Foundation (DFG) under the grant number
KE 1863/8-1 and by a research grant from Zodiac Inflight
Innovations (TriaGnoSys GmbH), Germany.

REFERENCES

[1] N. Alliance, “Description of network slicing concept,” NGMN 5G P,
vol. 1, 2016.

[2] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge
computingA key technology towards 5G,” ETSI white paper, vol. 11,
no. 11, 2015.

[3] X. Foukas, N. Nikaein, M. M. Kassem, M. K. Marina, and K. Konto-
vasilis, “FlexRAN: A flexible and programmable platform for software-
defined radio access networks,” in Proceedings of the 12th International
on Conference on emerging Networking EXperiments and Technologies,
2016.

[4] R. Riggio, M. K. Marina, J. Schulz-Zander, S. Kuklinski, T. Rasheed
et al., “Programming abstractions for software-defined wireless net-
works.” IEEE Trans. Network and Service Management, vol. 12, no. 2,
2015.

[5] A. Gudipati, D. Perry, L. E. Li, and S. Katti, “SoftRAN: Software
defined radio access network,” in Proceedings of the second ACM
SIGCOMM workshop on Hot topics in software defined networking,
2013.

[6] M. Y. Arslan, K. Sundaresan, and S. Rangarajan, “Software-defined
networking in cellular radio access networks: potential and challenges,”
IEEE Communications Magazine, vol. 53, no. 1, 2015.

[7] M. Yang, Y. Li, D. Jin, L. Su, S. Ma, and L. Zeng, “OpenRAN: a
software-defined ran architecture via virtualization,” in ACM SIGCOMM
computer communication review, vol. 43, no. 4, 2013.

[8] N. Nikaein, M. K. Marina, S. Manickam, A. Dawson, R. Knopp, and
C. Bonnet, “OpenAirInterface: A flexible platform for 5G research,”
ACM SIGCOMM Computer Communication Review, vol. 44, no. 5,
2014.

[9] I. Gomez-Miguelez, A. Garcia-Saavedra, P. D. Sutton, P. Serrano,
C. Cano, and D. J. Leith, “srsLTE: an open-source platform for LTE
evolution and experimentation,” in Proceedings of the Tenth ACM
International Workshop on Wireless Network Testbeds, Experimental
Evaluation, and Characterization, 2016.

[10] C.-Y. Chang, N. Nikaein, and T. Spyropoulos, “Radio access network
resource slicing for flexible service execution,” in IEEE Conference on
Computer Communications Workshops (INFOCOM), 2018.

[11] A. Papa, M. Klügel, L. Goratti, T. Rasheed, and W. Kellerer, “Optimiz-
ing Dynamic RAN Slicing in Programmable 5G Networks,” in IEEE
International Conference on Communications (ICC), 2019.

[12] M. J. Neely, “Stochastic network optimization with application to
communication and queueing systems,” Synthesis Lectures on Commu-
nication Networks, vol. 3, no. 1, 2010.

[13] R. Sherwood and K.-K. Yap. CBench Controller Benchmarker. [Online].
Available: http://www.openflowswitch.org/wk/index.php/Oflops,2011.

[14] M. Jarschel, F. Lehrieder, Z. Magyari, and R. Pries, “A flexible openflow-
controller benchmark,” in Software Defined Networking (EWSDN), 2012.

[15] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, 2008.

[16] https://developers.google.com/protocol-buffers/.
[17] A. J. Younge, R. Henschel, J. T. Brown, G. Von Laszewski, J. Qiu, and

G. C. Fox, “Analysis of virtualization technologies for high performance
computing environments,” in Cloud Computing (CLOUD), 2011.

