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Abstract

In combinatorial allocation problems, indivisible objects have to be assigned to
selfish agents. A standard assumption for those problems is that agents have
quasilinear utility functions. However, in many environments either money cannot
be exchanged or agents cannot be assumed to maximize payoff. We focus on
two specific non-quasilinear environments. First, we analyze a course allocation
problem where students have preferences over schedules and report on a large-
scale course assignment application at the TU Munich. Second, we study non-
quasilinear utility functions as they have been reported for display ad auctions,
and propose a truthful randomized approximation mechanism.

Zusammenfassung
In kombinatorischen Allokationsproblemen müssen unteilbare Objekte an eigen-
nützige Agenten vergeben werden. Eine Standardannahme für solche Probleme
ist, dass Agenten quasilineare Nutzenfunktionen haben. In vielen Umgebungen
kann jedoch Geld nicht verwendet werden oder Agenten maximieren nicht den
Gewinn. Wir fokussieren uns auf zwei spezielle nicht-quasilineare Umgebungen.
Zunächst analysieren wir ein Kursvergabeproblem, bei dem Studenten Präferen-
zen über Stundenpläne haben und berichten über dessen Anwendung an der TU
München. Außerdem analysieren wir nicht-quasilineare Nutzenfunktionen, wie für
Display-Ad Auktionen und stellen einen anreizkompatiblen randomisierten Ap-
proximationsmechanismus vor.
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1 Introduction

In combinatorial allocation problems indivisible objects have to be distributed
among selfish agents (bidders), while the agents demand several objects or subsets
(bundles) of these objects. That is, there are dependencies between the different
objects that may lead to inefficiencies when allocating them separately.

To allocate the objects we use mechanisms. A mechanism is a function that maps
from the space of possible actions of the agents to a set of possible outcomes.
Agents choose strategies in a mechanism, whereby a strategy is a function from
the valuations (or preferences) to actions. A strategy is dominant if the agent
chooses his actions regardless of the actions played by other agents. We assume
that agents behave rational, i.e., they only participate in mechanisms making them
not worse off (individual rationality).

According to the revelation principle, we focus on direct mechanisms to allocate
the objects. In a direct mechanism, the only action available to the agents is to
report their valuations or preferences. Furthermore, we are interested in (Pareto)
efficient mechanisms, where no agent can get a better outcome without assigning
any other agent to a less preferred outcome. This is necessary to ensure that agents
have no incentives to subvert the mechanism while trading outside. A stronger
desideratum is strategy-proofness (or incentive compatibility), where the reporting
of wrong valuations or preferences never leads to a better outcome for any agent,
i.e., bidding truthful is a dominant strategy.

Mechanism design seeks a way to combine the desiderata of finding an efficient and
fair allocation in a tolerable amount of time, while the agents should be incentivized
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1 Introduction

to submit their true preferences over the (bundles of) objects. More precisely, we
need to address the following difficulties.

• Computational complexity: The problem of finding an optimal allocation
that respects the demand constraints of the agents and the capacities of the
objects is an NP-hard optimization problem.

• Valuation complexity: There are exponentially many different bundles of
objects. The agents need to define valuations for each of these bundles, or
at least a (complete) ordering over these bundles (ordinal preferences).

• Communication complexity: Since the valuations or preferences are private
information of the agents, they also need to submit their valuations or pref-
erences over the exponentially many bundles to the allocation mechanism.

• Strategic complexity: Since there is a huge amount of different possibilities to
rank bundles, agents might think of how they should report their preferences
or valuations to improve their personal outcome.

During the last sixty years, much research was done in addressing these complex-
ities for combinatorial auctions leading to auction formats like the strategy-proof
Vickrey-Clarke-Groves (VCG) mechanism (Vickrey, 1961; Clarke, 1971; Groves,
1973) or core-selecting auctions prohibiting justified envy (Day and Milgrom,
2008). However, these results base on fundamental assumptions on the bidder
model. Usually bidders with a quasilinear utility function and without any budget
constraints are considered, i.e., the utility of an outcome (a bundle) is the bid-
ders valuation minus the price she has to pay for the bundle she got allocated. If
one deviates from these assumptions it is impossible to find incentive-compatible
deterministic mechanisms that are not dictatorial (Gibbard, 1973; Satterthwaite,
1975).

However, there are markets where bidders are not interested in pure payoff-max-
imization. For example, literature on digital advertising auctions suggests that
automated bidders in display ad auctions rather maximize value subject to a bud-
get constraint as in a knapsack problem (Feldman et al., 2008; Berg et al., 2010;
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Zhou et al., 2008; Lee et al., 2013; Chen et al., 2011; Zhang et al., 2014), which
differs from payoff maximization assumed in a quasilinear utility function.

Only a few papers study mechanism design with non-quasilinear utility models.
Kazumura and Serizawa (2016) show for auctions, where different objects are sold,
that there is no strategy-proof and Pareto efficient mechanism if only one bid-
der has multi-unit demands. Similarly, Baisa (2017) shows that if bidders have
multi-dimensional types, there is no mechanism that satisfies individual ratio-
nality, strategy-proofness, Pareto efficiency, and budget balance for homogeneous
goods.

Fadaei and Bichler (2017b) introduce a model of value bidders who maximize the
value of bundles of objects for which they are given financial limits reflecting their
valuation that they must not overbid. The authors show that with a truthful
and deterministic mechanism for value bidders only an n-approximation can be
achieved, where n is the number of bidders. This means, the social welfare of the
computed solution, i.e., the sum of the utilities of all market participants, is not
worse than 1/n times the optimal social welfare ignoring incentives. Furthermore,
Fadaei and Bichler (2017b) show that with randomized mechanisms an O(

√
m)

approximation can be achieved, wherem is the number of objects. These results il-
lustrate that without quasilinearity truthful mechanisms with good approximation
ratios might often not be feasible.

Using more structural information about the bidders valuation in specific markets,
we can further improve the approximation ratios of Fadaei and Bichler (2017b).
Bidders in display ad markets typically have a given overall budget, which they
consider as sunk cost devoted to a campaign. The task is to invest the campaign
budget such that the bidder’s sum of valuations of won objects is maximized and
the total payment is not higher than the budget constraint. We refer to such
bidders as knapsack bidders and propose a truthful in expectation mechanism
that provides a 4-approximation in Chapter 4.

For many applications monetary transfers are not permitted (e.g. course assign-
ment) or because of low margins the agents are not willing to pay for allocations

3



1 Introduction

(e.g. reservation of time-slots at warehouses). Hence, auctions cannot be used
to allocate the objects. However, without the payment rule, one looses a degree
of freedom to adjust the mechanisms to achieve desired properties. That is, for
any mechanism solving the allocation problem all desired properties have to be
ensured via the allocation rule.

Matching with preferences considers the allocation of objects to agents or agents
to agents without payments. However, in contrast to the development in auctions,
in matching theory most research is about single-minded agents, i.e., agents who
are only interested in getting assigned one single object or agent. Only recently
combinatorial markets attract attention of researchers in matching theory.

A first seminal approach to address the combinatorial assignment problem (match-
ing problem with complementarities) was published by Budish (2011). The work
was breaking new ground, but the proposed mechanism is also challenging. Nguyen
et al. (2016) recently provided two randomized mechanisms for one-sided matching
problems with (limited) complementarities, one for agents having cardinal and one
for ordinal preferences over bundles of objects.

We implemented these and further approaches and extended a system for the al-
location of courses to students such that the students can submit preferences for
whole schedules (bundles of courses). We compare the mechanism of Nguyen et al.
(2016) to the standard approach in course allocation, First-Come First-Served
(FCFS), and observe that both approaches are surprisingly similar in various met-
rics.

But even if it is possible to solve the combinatorial assignment problem in an
acceptable amount of time, one still has to overcome the valuation and commu-
nication complexity. We cannot expect, that students submit an ordering over
exponentially many schedules. Therefore, we developed a preference elicitation
tool that generates such preference lists out of only a few intuitive input param-
eters and knowledge about usual preferences of students, like the distribution of
courses during the day and the week, or the length of breaks between courses.
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1.1 Outline

1.1 Outline

Before discussing the combinatorial problem and the extended matching system,
we first consider the single-minded case in Chapter 2. We present the one-sided
and two-sided matching problem, and present truthful mechanisms computing
an allocation. Thereafter, we describe the matching system for the allocation of
single courses implemented at the Computer Science Department at the Technical
University of Munich (TUM) and discuss why the allocation of tutorials to students
is not efficient in its current state.

Motivated by the need of a mechanism that allocates places for tutorials for differ-
ent lectures, while considering prefernces over whole schedules, we present the com-
binatorial assignment problem in Chapter 3. We first introduce design desiderata
for deterministic and randomized assignments before discussing different mecha-
nisms to solve such matching problems. Since one cannot expect that students are
able to submit an ordering over exponentially many different schedules (bundles),
we discuss a new way to elicit preferences. We present a preference elicitation tool
where students are only required to submit a few intuitive parameter, like time
constraints, preferences over weekdays or the need of breaks between courses. We
compare our approach to the method proposed in Budish et al. (2017). Thereafter,
we present the results of three large field experiments at TUM and compare the
mechanism proposed by Nguyen et al. (2016) to the wide-spread FCFS mecha-
nism. Furthermore, we analyze the structure of the lottery from summer term
2017 in more detail and finally present results of a survey among the participants
of the matching from winter term 2017/2018. Afterwards, we present an alter-
native application of matching with complementarities (coordination of time-slots
at warehouses), where the agents are able to express cardinal valuations for the
different bundles. We conclude this chapter with a discussion, how to adapt the
allocation problem if one is not allowed to over-allocate goods not even by a small
amount and the capacities have to be respected.

Chapter 4 studies a model of advertising markets, and analyzes whether truthful
and prior-free approximation mechanisms with good approximation ratios of the
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1 Introduction

maximal welfare are possible. Therefore, we first present our advertising model
and introduce knapsack utility functions. Then, we analyze deterministic approx-
imation mechanisms to solve the advertising model. Finally, we evaluate how
randomized mechanisms can improve the approximation ratios and prove that
there exists a truthful in expectation mechanism with a 4-approximation for this
problem.

Chapter 5 concludes the thesis, summarizes the main findings and discusses open
questions for further research.
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2 Matching with Preferences

The term matching has been used quite differently in different disciplines. How-
ever, all these concepts descend from the graph-theoretic comprehension of a
matching.

A Graph G = (V,E) consists of a set of nodes V and a set of edges E ⊆ V × V .
A matching (or a 1-factor) M ⊆ E is a subset of edges, such that each node is
incident to at most one edge e ∈ M . A matching is maximal, if for any edge
e ∈ E \M the set M ∪ e would not be a matching anymore. That is, a maximal
matching cannot be extended. A matching M is maximum if M is a maximal
matching of maximal size and M is called perfect if all nodes in V are incident to
an edge in M .

We usually consider matchings on bipartite graphs. G is called bipartite if V can
be partitioned into sets V1 and V2, such that for every edge (u, v) ∈ E the node
u ∈ V1 iff v ∈ V2, i.e., there are no edges between nodes of the same partition.

A generalization of those matching problems is the introduction of weight functions
on edges, w : E → R≥0, and capacity functions on nodes, q : V → Z. Thereby, one
is interested in finding a subset of edgesM such that |M(v)| ≤ q(v) for every node
v ∈ V and the sum of weights is maximized. This problem is computationally
equivalent to matrix multiplication and therefore solveable in O

(
|V |3

)
(Gabow,

1974).

Matching with preferences can be understood as finding such a maximal weight
matching. Though, the agents (and objects) can be viewed as nodes, and the
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2 Matching with Preferences

preferences as edges. However, in contrast to pure optimization the objective coef-
ficients, i.e., the edges and weights are private information. Hence, one additionally
has to consider strategic issues to ensure efficient solutions.

Matching with Preferences

Bipartite Problems Non-Bipartite Problems

One-Sided Matching Two-Sided Matching

House Allocation Problem
Housing Market

Stable Marriage Problem
Hospital Residence Problem

Workers Firms Problem
Stable Roommates Problem

Kidney Exchange

Figure 2.1: Overview of matching problems.

Figure 2.1 provides a brief overview of existing problem classes in matching theory.
First, one has to differentiate if the underlying Graph is bipartite or not. That
is, if we can divide the agents and objects into two sets, such that agents of one
set only have preferences over agents/objects of the other set. A second structural
differentiation criterion for bipartite problems is whether only one side of the
market has preferences over the other side (one-sided matching) or both have
preferences over each other (two-sided matching). For non-bipartite problems such
a differentiation is not necessary, since all agents can have preferences over each
other. Aside of these basic criteria, one can differentiate matching problems also
in more detail, e.g. if the preferences have to be strict (i.e., an agent is never
indifferent between two outcomes) or if the preference lists have to be complete
(i.e., agents have to submit a complete ordering over all possible outcomes).

In this thesis we focus on bipartite, one-sided matching problems. However, since
the matching system we build on also solves two-sided problems, we briefly intro-
duce the two-sided matching problem too1.

1We mainly follow the definition of the problems as presented in Manlove (2013). However, we
use the notions and notations of our main application – the Course Allocation problem.
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2.1 Two-Sided Matching Problems

2.1 Two-Sided Matching Problems

An instance I of the Course Allocation problem (also referred to Hospitals-Residents
problem, College/University/Stable Admission/Assignment problem) consists of a
set of n students S and m courses C. Each course c ∈ C has a positive integral
capacity qc. We denote with AccI ⊆ S × C the set of acceptable student-course
pairs. Each student has a set of acceptable courses Accs = {c ∈ C | (s, c) ∈ AccI}
and each course a set of acceptable students Accc = {s ∈ S | (s, c) ∈ AccI}. Both,
students and courses are agents in a Course Allocation problem, i.e. A = S ∪ C.
Each agent a ∈ A ranks the agents in Acca in a strict order, which we call the
preference list (�a) of agent a.

A feasible matching M is a subset of AccI , such that each student gets at most one
course (|Ms| ≤ 1) and the capacity of each course is respected (|Mc| ≤ qc). With
Ma we denote the set of to a assigned agents. If Ma = ∅ we call a unassigned.

An important solution concept for two-sided matching problems is stability, as
emphasized by Roth and his co-authors (Roth, 1984, 1990, 1991; Roth and Xing,
1994).

Definition 2.1: Stability. Given an instance I of a course allocation problem
and a matching M in I, a pair (s, c) ∈ AccI \M is a blocking pair for M , if

i) s is unassigned or c �s Ms, and

ii) |Mc| < qc or s �c s′ for at least one s′ ∈Mc.

M is called stable if no blocking pair exists for M .

The problem of finding a stable matching was first presented by Gale and Shapley
(1962). They also proposed a Deferred Acceptance Algorithm (DAA, see Algo-
rithm 2.1) that computes a stable outcome and is incentive compatible for the
proposing site. The function pop (Acca) returns and deletes the most preferred
agent from Acca, and tail (Ma) returns the least preferred to agent a matched
agent. In the DAA the students propose to their most preferred course. If more
students propose to a course than places are available, the courses reject the least
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2 Matching with Preferences

preferred students such that the capacities are respected. The rejected students
now propose to their next choice. These steps are repeated until all students are
matched, or the students cannot propose to any acceptable course anymore.

Algorithm 2.1: (student proposing) Deferred Acceptance Algorithm (Gale
and Shapley, 1962).
Input : instance I of a (two-sided) Course Allocation problem.
M = ∅
while ∃s ∈ S : Ms = ∅ and Accs 6= ∅ do

c = pop (Accs)
if |Mc| = qc then

s′ = tail (Mc)
if s �c s′ then Mc = (Mc ∪ s) \ s′, Ms = c and Ms′ = ∅

else Mc = Mc ∪ s and Ms = c

Output: stable matching M for I

Algorithm 2.1 computes a stable matching that is the best possible stable matching
for the students and the worst possible for the courses. That means, the courses
prefer every other stable matching over the outcome of the student proposing
DAA. Analogues one can define the course proposing DAA, which is optimal for
courses and returns the worst possible stable matching for the students (Gale and
Shapley, 1962; Gusfield and Irving, 1989).

Even if Algorithm 2.1 is strategy proof for the proposing side, there exists no mech-
anism for the stable matching problem for which truthful reporting is a dominant
strategy for all participating agents (Roth, 1982).

The course optimal and the student optimal stable matchings are two extreme
cases. In general there may be exponentially many other matchings in between.
However, regardless of the differences of these matchings, some structural proper-
ties are the same among all of them.

Theorem 2.2: Rural Hospitals Theorem (Roth, 1984; Gale and So-
tomayor, 1985; Roth, 1986). Given an instance of the Course Allocation prob-
lem, the following properties hold:

10



2.2 One-Sided Matching Problems

i) the same students are assigned in all stable matchings;

ii) each course gets assigned the same number of students in all stable matchings;

iii) any course that has free capacity in one stable matching is assigned exactly
the same set of students in all stable matchings.

For their seminal work on the theory of stable allocations and the practice of market
design E. Roth and Lloyd S. Shapley were awarded with the Nobel Memorial Price
in Economic Science in 2012 (Economic Sciences Prize Committee of the Swedish
Academy of Sciences, 2012).

2.2 One-Sided Matching Problems

An instance of a one-sided matching problem is similar to the two-sided version.
The only structural difference is that the members of the second partition, in our
application the courses C, are (only) objects and have no preferences over the
agents of the first partition, the students S. That is, A = S. The definition of a
(feasible) matching remains unchanged. This problem is also known as (Capaci-
tated) House Allocation problem, first introduced by Shapley and Scarf (1974).

Since the courses have no preferences, stability reduces to envy-freeness in one-
sided matching problems. A matching is called envy-free if no agent prefers the
outcome of an other agent over his own assignment. However, a (meaningful)
deterministic assignment that is envy-free does not necessarily had to exist. Con-
sider a simple example where we have a rock and a diamond, and two agents, each
preferring the diamond over the rock. Equally who gets assigned the diamond, the
agent getting the rock always will envy the other agent2.

Therefore, (Pareto) efficiency became an important design desideratum for one-
sided matching. We formally will introduce Pareto efficiency, envy-freeness and
further design desiderata for one-sided matching problems in Section 3.2.2.

2The only envy-free assignment in this example is the empty matching.
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2 Matching with Preferences

Like for two-sided matching problems, we are interested in efficient mechanisms
that incentivize the students to submit their preferences truthfully. However,
similar to the two-sided problem, the design space for those mechanisms is lim-
ited. Gibbard (1973) and Satterthwaite (1975) showed that with general ordinal
preferences every deterministic mechanism is susceptible to manipulation. Later,
Gibbard (1977) has shown that every strategy-proof mechanism is a lottery over
deterministic mechanisms that are dictatorial. Hence, we are limited to a form of
Random Serial Dictatorship (RSD, see Algorithm 2.2).

Algorithm 2.2: Random Serial Dictatorship
Input : instance I of a (one-sided) Course Allocation problem
order S randomly, M = ∅
forall i ∈ S do

while Accs 6= ∅ do
c = pop (Accs)
if |Mc| < qc then

Mc = Mc ∪ s
Ms = c
break

Output: deterministic matching M

Algorithm 2.2 orders the students randomly and assigns each student to his most
preferred course that is still available. RSD is proven to be (ex post) efficient,
symmetric and strategy-proof. We discuss this mechanism together with further
mechanisms, e.g. Probabilistic Serial (Bogomolnaia and Moulin, 2001) and the
Competetive Equilibrium from Equal Incomes (Hylland and Zeckhauser, 1979) in
more detail in Section 3.2.3.

2.3 Matching at TUM

Since 2014 every term more than 1500 students at the Computer Science Depart-
ment of the TUM get assigned places in practical courses and seminars with a
student optimal DAA. Before introducing a matching system, those course seats
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2.3 Matching at TUM

were allocated with the First-Come First-Served (FCFS) mechanism. In this sys-
tem students usually had to register for multiple courses and after the decision of
the course organizers whom to accept and whom to reject, they withdrew their
application from the less preferred assigned courses. Hence, course organizer had
places left, which they could offer other students who were more interested in this
course. Altogether this system was inefficient, not strategy-proof and unfair.

Semester Practical Courses Seminars Pro-Seminars
SS 17 796 907 330

WS17/18 825 672 131
SS18 962 1248 68

WS18/19 1040 908 -

Table 2.1: Number of participating students in the matching for seminars and
practical courses.

Now, the mechanism is centralized. The students have a one week period to express
their ordinal preferences over different seminars via drag-and-drop in our matching
system (see Figure 2.3). Afterwards, the course organizer see, who is interested in
their course3 and can rank the students too. After this period, a student optimal
stable matching is computed using the DAA (see Algorithm 2.1).

Table 2.2 reports some metrics of the instances in winter term 2018. E.g., there
were 908 students each interested in one of 967 course seats for seminars. Since
students as well as course organizer were allowed to rank participants as unac-
ceptable, 116 students were not assigned, although there were still 175 places left.
This can easily be explained with students, who are only interested in very specific
courses. Furthermore some courses were quite unpopular and got less applicants
than available places (e.g. courses for theoretical computer science). However, it
was possible to assign 525 students to their top choice and more than 700 students
got a place in one of their three most preferred seminars. Diebold et al. (2014)
and Diebold and Bichler (2017) provide a more detailed analysis of the matching
of students to seminars and practical courses at TUM.

3However, the course organizer cannot see how the students ranked the course.
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2 Matching with Preferences

Figure 2.2: Ranking of seminars via drag and drop.

Instance students not assigned capacity places left Rank 1 Rank top 3
Seminars 908 116 967 175 525 706

Practical Courses 1040 190 921 71 603 785

Table 2.2: Number of participating students, number of students that were not
assigned in the first round, the total capacity of the instances, the places
that were not assigned and some rank statistics for the instances in
winter term 2018.
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2.3 Matching at TUM

Because of a constantly rising number of students over the last years, a second
application became more and more important - the assignment of tutor groups.
For some of the large lectures in the first semesters of the computer science studies,
there are more than 50 different tutorial groups available. Each student is inter-
ested in at most one of them. This problem can be seen as a one-sided matching
problem and we use RSD (see Algorithm 2.2) to compute an assignment. Again
the students can rank the different tutorials via drag and drop before we compute
the allocation. In contrast to the matching of seminars and practical courses, the
participation on this matching is not mandatory for the courses. However, the last
years we observed an increasing demand for those instances.

Course IN0002 IN0003 IN0006 IN0007 IN0008 IN0009 IN0022 IN2028 MA0901/02
Participants 1700 900 1200 1000 1500 900 300 400 800

Table 2.3: Average number of participating students for the matching of tutorials
in different courses.

Even if the usage of the matching system improves the quality of the assignments
and circumvents the flaws of FCFS, one problem remains. Usually students have to
visit up to four of those huge lectures in each term. Since each lecture has its own
matching instance, the students have to submit preferences to up to four different
instances, which all can have different deadlines and match the students to tutorials
independent form each other. Now, the students have to decide how to rank the
courses in each instance. If they rank all courses truthfully in each instance, it
can happen that they get assigned overlapping tutorials, which is not feasible for
them. However, if they are aware of this problem and they adjust their ranking,
the outcome can be less efficient. Hence, one needs a system where students can
report preferences not only over single courses, but over whole schedules.
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3 Matching with Complementarities
About Preference Elicitation, Fairness, and

Truthfulness 4

Course assignment is arguably one of the most wide-spread assignment problems
where money cannot be used to allocate scarce resources. Such problems appear at
most educational institutions. Matching with preferences has received significant
attention in the recent years. While simple First-Come First-Served (FCFS) rules
are still wide-spread, many organizations adopted matching mechanisms such as
the deferred acceptance algorithm (Gale and Shapley, 1962; Diebold et al., 2014)
or course bidding (Sönmez and Ünver, 2010; Krishna and Ünver, 2008) to allocate
scarce course seats. Although many course assignment problems are similar to the
widely studied school choice problems with students having private preferences
for one out of many courses, other applications differ significantly. In particular,
students are often interested in schedules of courses across the week. Assigning
schedules of courses has been referred to as the combinatorial assignment problem
(CAP) (Budish, 2011). Similar problems arise when siblings should be assigned to
the same schools in school choice (Abdulkadiroğlu et al., 2006), or couples in the
context of the hospital residency matching (Ashlagi et al., 2014).

4This chapter is mainly based on Bichler et al. (2018) and Merting et al. (2016). Especially
the introduction, the presentation of the matching system and the discussion of the field
experiments are mainly identical to the respective parts of Bichler et al. (2018). For the
section about the Combinatorial Assignment Problems the respective section from Bichler
et al. (2018) is extended by revised results of Merting et al. (2016) and additional proofs.
Bichler et al. (2018) is still a working paper. However, a shortend version is already available
(Bichler et al., 2019).
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3 Matching with Complementarities

The need to assign course schedules rather than courses individually became ap-
parent in an application of matching with preferences at the Technical University
of Munich that we will discuss. The Department of Informatics is using the de-
ferred acceptance algorithm for two-sided matching problems and random serial
dictatorship for one-sided matching problems. These algorithms are used to as-
sign seminars or practical courses, and every semester about 1500 students are
being matched centrally. For seminars and practical courses students need to get
assigned one out of many courses offered per semester.

In the initial three semesters the situation is different. There are large courses
with hundreds of students (e.g. on linear algebra or algorithms). These courses
include a lecture and small tutor groups. Students need to attend one tutor group
for three to four courses in each semester. These tutor groups should not overlap
and they should be adjacent to each other such that students do not have a long
commute for each of the tutor groups individually. For example, students might
want to have two tutorials in the morning and one after lunch on a particular
day to reduce their commute time, and they would have a strong preference for
this schedule over one where the tutorials are scattered across the week. In any
case, students have timely preferences over course schedules, which need to be
considered. This makes it a combinatorial assignment problem.

A first and seminal approach to address this challenging problem, the approximate
competitive equilibrium from equal incomes mechanism (A-CEEI), was published
by Budish (2011). Budish et al. (2017) reports the empirical results at the Wharton
School of Business. In addition, Budish and Kessler (2017) summarize the results
of lab experiments.

The work was breaking new ground, but the A-CEEI mechanism is also chal-
lenging. First, it is not guaranteed that a solution exists that satisfies all capac-
ity constraints. Second, the problem of computing the allocation in A-CEEI is
PPAD-complete and the algorithms proposed might not scale to larger problem
sizes required in the field (Othman et al., 2016). Third, students might not be
able to rank-order an exponential set of bundles, which is a well-known problem
(aka. missing bids problem) in the literature on combinatorial auctions (with
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money) (Milgrom, 2010; Bichler et al., 2011, 2014). The latter is a general prob-
lem in CAP not restricted to A-CEEI, which we will discuss in much more detail
in Section 3.3.

Randomization can be a powerful tool in the design of algorithms, but also in
the design of economic mechanisms. Nguyen et al. (2016) recently provided two
randomized mechanisms for one-sided matching problems, one with cardinal and
one with ordinal preferences for bundles of objects. The mechanism for ordinal
preferences is a generalization of Probabilistic Serial (Bogomolnaia and Moulin,
2001), called Bundled Probabilistic Serial (BPS). Nguyen et al. (2016) show that
this randomized mechanism is ordinally efficient, envy-free, and weakly strategy-
proof. These appealing properties come at the expense of feasibility, but the
constraint violations are limited by the size of the bundles. In course assignment
problems the size of the bundles is typically small (e.g., bundles with three to four
tutor groups) compared to the capacity of the courses or tutor groups (around
30 seats or more). Computationally, the mechanism is still very fast, which is
important for large instances of the course allocation problem that can frequently
be found. This makes BPS a practical approach to many problems that appear in
practice.

3.1 Contributions

We report on a first large-scale field study of BPS and address important problems
in the implementation of mechanisms for the combinatorial assignment problem
that are beyond a purely theoretical treatment. In particular, preference elic-
itation is a central concern in combinatorial mechanisms with a fully expressive
bid language and we provide a practical approach that addresses the combinatorial
explosion of possible bundles for many applications in Section 3.3. Theoretical con-
tributions of assignment mechanisms largely focus on envy-freeness and efficiency
as primary design desiderata. In Section 3.4 we report properties of matchings
such as their size, their average rank, the probability of matching, the profile, and
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3 Matching with Complementarities

the popularity. These properties are of central importance for the choice of mech-
anisms. It is important to understand the trade-offs with other mechanisms, in
particular with the wide-spread FCFS.

Implementing and testing new IS artifacts for coordination in organizations is chal-
lenging and we are grateful for the possibility to run a large-scale field experiment
at the Department of Informatics of the Technical University of Munich (TUM).
This is particularly true for a non-trivial mechanism such as BPS, which involves
advanced optimization and randomization. Yet, we can report on the assignment
of 1415 students in the summer term 2017 to 67 tutor groups for 4 classes, the
assignment of 1736 students in the winter term 2017/2018 to 66 tutor groups for
4 classes, and the assignment of 1683 students in the winter term 2018/2019 to 68
tutor groups for 4 classes using BPS.

For such a large application we could not elicit preferences of students for BPS and
let them participate in FCFS simultaneously. Instead we simulated FCFS via a
version of Random Serial Dictatorship that allows for bundles (BRSD), which is of
independent interest as an assignment mechanism. In our numerical experiments
we simulated FCFS via a large number of random order arrivals in BRSD using
the preferences elicited in BPS and average across all of them. This approach
allows for a comparison between BPS and BRSD (FCFS) on equal footing.

FCFS only collects limited information about the preferences of participants, a
single bundle only. Mechanisms for the combinatorial assignment problem al-
low participants to specify preferences for all possible bundles. However, a fully
enumerative bid language requires participants to submit preferences for an expo-
nential set of bundles which is impractical.

Preference elicitation and user interface design have long been a topic in IS research
(Santos and Bariff, 1988; Lee and Benbasat, 2011). We contribute an approach that
is applicable in a wide array of CAP applications where timely preferences matter.
We elicit a small number of parameters about breaks and preferred times and days
of the week. Together with some prior knowledge about student preferences this
allows us to score and rank-order all possible bundles. Students could iteratively
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3.2 Combinatorial Assignment Problems

adapt the parameters and the ranking, which then served as an input for BPS.
While such ranking algorithms will differ among types of applications, adequate
decision support that aids the ranking of exponentially many bundles is a crucial
prerequisite to actually achieve the benefits of combinatorial assignment in real-
world applications.

In our empirical analysis, we show that BPS has many advantages over BRSD
in all of the properties introduced earlier. While the differences in these criteria
are small, envy-freeness turns out to be the most compelling advantage of BPS.
The level of envy that we find in BRSD is substantial in spite of the limited
complementarities in student preferences, who are only interested in bundles with
at most four tutor groups. This has to be traded off with the simplicity of FCFS.
Overall, we empirically test and illustrate theory that has been developed only
recently.

3.2 Combinatorial Assignment Problems

Let us first define the combinatorial assignment problem in the context of course
assignment applications. We introduce desirable properties for deterministic and
random assignments, and analyze (randomized) mechanisms.

3.2.1 Assignment Problems

Assigning objects to agents with preferences but without money is a fundamental
problem referred to as assignment problem with preferences or one-sided matching
with preferences. In the following, we use the terms assignment and matching in-
terchangeably. In course assignment, students express ordinal preferences, which
need to be considered in the assignment. A one-sided one-to-many course assign-
ment problem consists of a finite set of n students (or agents) S and a finite set of
m courses (or objects) C with the maximum capacities q = (q1, q2, . . . , qm).

21



3 Matching with Complementarities

In the combinatorial assignment problem in the context of course allocation, every
student i ∈ S has a transitive preference relation �i∈ P over subsets (or bundles)
b ∈ B of elements of C. Let Acci ⊆ B be the set of acceptable bundles of student
i and AccS = ⋃

i∈S Acci the overall set of all acceptable bundles. For all bundles
b 6∈ Acci we call b unacceptable and note b =i ∅. A preference profile �= (�1

, . . . ,�n) ∈ P |S| is an n-tuple of preference relations. For most of the thesis we
assume strict preferences, but we also discuss indifferences in the conclusions.

Definition 3.1: Deterministic Matching. A deterministic combinatorial as-
signment (deterministic matching) is a mapping M ⊆ S × B of students S to
bundles B of courses C with:

i) ∀i ∈ S : Mi ∈ Acci ∪ ∅,

ii) ∀c ∈ C : Mc ⊆ S,

iii) ∀i ∈ S ∧ c ∈ C : c ∈Mi ⇔ i ∈Mc.

M is feasible if |Mc| ≤ qc for all c ∈ C. M describes the set of all deterministic
matchings.

We can model feasible assignments also as integer programs (IP). Thereby, bundles
are described with binary vectors b ∈ {0, 1}m, where bj = 1 if course j is included
in bundle b. We define the size of b with size(b) = ∑m

j=1 bj, the number of different
courses included in the bundle. Let xib be a binary variable describing if bundle
b is assigned to student i. Then we can model the demand and supply as linear
constraints. The supply constraints make sure that the capacity of the courses are
not exceeded, and the demand constraints determine that each student can get at
most one bundle.

∑
i∈S,b∈B

xibbj ≤ qj ∀j ∈ C (supply)

∑
b∈B

xib ≤ 1 ∀i ∈ S (demand)

xib ∈ {0, 1} ∀i ∈ S, b ∈ B (binary)
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3.2 Combinatorial Assignment Problems

That is, a deterministic matching is feasible if it corresponds to a feasible integer
solution to the constraints (demand) and (supply). Random combinatorial assign-
ments (random matchings) are related to fractional assignments with 0 ≤ xib ≤ 1.
The fractional solution xib to the (demand) and (supply) constraints is then equal
to the probability that student i obtains bundle b. While random matchings can
be seen as probability distributions over bundles, lotteries are probability distri-
butions over whole matchings.

Definition 3.2: Lottery. A Lottery L is a probability distribution over feasible
deterministic matchings. The set of all lotteries is denoted as L.

Nguyen et al. (2016) show that a lottery of bundles induces probability distribu-
tions over these bundles that satisfy the constraints (demand) and (supply). Thus
a lottery coincides with a random matching. However, a random matching does
not need to be implementable into a lottery over feasible deterministic assignments
in general if the bundle size is greater than one.

For assignment problems with single-unit demands (size(b) = 1) the Birkhoff-von-
Neumann theorem (Birkhoff, 1946; Von Neumann, 1953) says that every fractional
allocation can be written as a unique probability distribution over feasible deter-
ministic assignments. That is, any random assignment can be implemented as a
lottery over feasible deterministic assignments, such that the expected outcome of
this lottery equals the random assignment. One can describe a random assignment
as a bistochastic matrix P , where pic is the probability that student i is assigned to
course c. The Birkhoff-von-Neumann theorem shows that such a bistochastic ma-
trix can be decomposed into a convex combination of permutation matrices, which
describe feasible deterministic assignments. However, the Birkhoff-von-Neumann
theorem fails when bundles b with size(b) > 1 need to be assigned. Nguyen et al.
(2016) generalize the Birkhoff-von-Neumann theorem and show that any fractional
solution respecting the (demand) and (supply) constraints can be implemented as
a lottery over integral allocations that violate the (supply) constraints only by at
most k − 1 course seats, where k = max {size(b) | b ∈ AccS}, i.e. the maximal
size of any acceptable bundle.
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Courses in our application are actually tutor groups and each tutor group belongs
to one of ` classes. Students in our application can only select bundles with at
most one tutor group in each of these classes. For example, a student might select
a bundle with a course seat in a tutor group for mathematics on Monday at 1 pm,
and another tutor group in software engineering two hours later, but no additional
tutor group in mathematics or software engineering in this bundle. As a result,
the possible size of a bundle b is size(b) ≤ `� m.

3.2.2 Design Desiderata

Efficiency, envy-freeness, and strategy-proofness are design desiderata of first-order
importance typically considered in the theoretical literature on assignment prob-
lems. In this section we introduce these and further concepts for deterministic and
random matchings.

Deterministic Matchings

We start with deterministic assignments. An important property for deterministic
matchings is Pareto efficiency.

Definition 3.3: Pareto Efficiency. Given two matchings M ′,M ∈M, M ′ dom-
inates M if

i) ∀ i ∈ S : M ′
i �i Mi, and

ii) ∃ i ∈ S : M ′
i �i Mi.

We denote a matching M ∈M as Pareto optimal or Pareto efficient if there exists
no matching M ′ ∈M that dominates M .

Pareto efficiency means that no student can be better off without making another
student worse off. This is not only an optimality criterion, but also a necessary
fairness condition. Without Pareto efficiency the agents would have incentives to
subvert the matching to receive a more preferred assignment.
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3.2 Combinatorial Assignment Problems

One may also be interested in matchings with maximal size, i.e., matchings that
assign as many students as possible. We call a matching M maximum if it is
Pareto efficient and |M | ≥ |M ′| for all Pareto efficient matchings M ′ ∈M.

We present a characterisation of Pareto efficiency using conflict trees similar to
the result in Sng (2008) for the single-unit demand case. Sng (2008) shows that
a matching is Pareto efficient iff it is maximal, trade-in-free and cyclic-coalition-
free.

A Matching M ∈ M is maximal if there is no unassigned student i ∈ S with
Acci 6= ∅ such that there exists a bundle b ∈ Acci with |Mc| < qc for all c ∈ b. M is
called trade-in-free if there is no student i ∈ S withMi 6= ∅ such that there exists a
bundle b ∈ Acci with b �i Mi and |M−i

c | < qc for all c ∈ b. Thereby, M−I denotes
the resulting matching if we exclude the assignment of all agents i ∈ I ⊆ S from
M (i.e., M−I = M \ {(i,Mi) | i ∈ I})5.

Definition 3.4: Cyclic Coalition (Sng, 2008). A cyclic coalition for a match-
ing M is a sequence of students I = (i0, i1, . . . , ir−1) for r ≥ 2 with Mi(j+1) mod r

�ij
Mij for each ij ∈ I.

That is, each student in I prefers the assignment of his successor in I. Note that
in this setting |Mi| ≤ 1 for all students i. We can rewrite the definition of a cyclic
coalition as follows: A sequence of students I is a cyclic coalition for a matching
M ifM ′ = M−Il+1∪

{(
ij,Mi(j+1) mod r

)
| j ≤ l

}
with Il+1 = {ij mod r | j ≤ l + 1} is

feasible for l = 0, . . . , r−1 andM ′ dominatesM . That means, a cyclic coalition is
a sequence of agents such that we can construct a matchingM ′ Pareto dominating
M by iteratively deleting the current assignment of ij and his successor (ij+1), and
assigning another object to ij such that the new object is at least as good as the
old one (in this special case the former matching of ij+1).

We generalize this idea to bundles. Therefor, we have to define trees and depth of
nodes. A tree T = (V,E) is a connected, directed graph with no cycles. Every tree
has a unique node r ∈ V with no incoming edge, called the root. The depth dT (v)
of a node v ∈ V in T is the number of edges, i.e. the length of the path, between

5If I = {i} we note M−i instead of M−{i} for brevity.
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r and v. If v is not in the tree, dT (v) = ∞. Let M [S ′] describe the matching M
induced by the agents i ∈ S ′ ⊆ S and Si = {j ∈ S | dT (vj) ≤ dT (vi)} be the set
of agents, whose nodes are at most as deep as vi in the tree T .

Definition 3.5: Conflict Tree. Given a set of nodes V , a set of edges E ⊆
V × V ,and two feasible matchings M,N ∈ M, T = (V,E,M,N) describes a
conflict tree if:

i) (V,E) is a tree with vi ∈ V representing agent i ∈ S,

ii) ∀ (vi, vj) ∈ E: N [Si] ∪M [S \ Si] is infeasible, and

iii) ∀ vi ∈ V : N [Si] ∪M−Ij [S \ Si], with Ij = {j ∈ S | (vi, vj) ∈ E} is feasible.

We say, the agents j ∈ Ij are in conflict with agent i.

The second condition says that there exist students i, j ∈ S, for which Ni ∩Mj

includes at least one course c with |Nc [Si]| + |Mc [S \ Si]| > qc. That is, if we
still assign Mj to agent j, we would over-allocate c. We therefore have to assign
an other bundle to j. Algorithm 3.1 generates such a conflict tree. The second
for-loop ensures that edges are only generated if the conditions two and three are
violated, and that no edges to a node i′ are generated that already is in conflict
with an other agent.

Informally, Algorithm 3.1 generates a conflict tree from a matching by iteratively
deleting the assignment of a student and assigning another bundle to him. If the
new matching becomes infeasible, we delete the assignments of conflicting students.
That is, students who are not in the conflict tree yet and whose currently assigned
bundles include over-allocated courses. In the next iteration we reassign these
students to other bundles respecting the capacities of the courses. We repeat
these steps until there are no further conflicts. Here, the node set V represents the
students who might form a coalition, just like the sequence of students in a cyclic
coalition. The edge set E illustrates the dependencies and the conflict potential
of these students in the current matching. N proposes an alternative to M where
all students in the tree are reassigned. However, in a conflict tree N does not have
to dominate M . With help of the conflict tree we can define a tree coalition.
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Algorithm 3.1: Construction of a conflict tree.
Input : preferences (�i)i∈S, matching M ∈M
V0 = V = i for arbitrary i ∈ S; Vj = ∅ for j > 0
E = ∅; k = 0; N = M−i

while Vk 6= ∅ do
forall i ∈ Vk do

N = N ∪ (i, b) for b ∈ Acci ∪ ∅, such that N [V ] feasible
forall i′ ∈ S \ (V ∪ Vk+1) do

if ∃c ∈ Ni′ : |Nc| > qc then
Vk+1 = Vk+1 ∪ i′
E = E ∪ (i, i′)
N = N−i

′

V = V ∪ Vk+1; k++
Output: nodes V , edges E, matching N

Definition 3.6: Tree Coalition.We call T = (V,E,M,N) a tree coalition for
a matching M ∈ M if T is a conflict tree and N [SV ] dominates M [SV ], with
SV = {i ∈ S | vi ∈ V }. A matching M ∈ M is tree-coalition-free if there does
not exist any tree coalition for M .

Note that for checking this definition one needs to generate all possible conflict
trees whereof in general exponentially many exist. Let us first provide an example
to give some intuition for the definitions of conflict trees and tree-coalitions.

Example 3.7: Conflict Trees & Tree Coalitions. Suppose there are 4 students
{1, . . . , 4} and 4 courses {A, . . . , D} with the following capacity vector: (2, 1, 2, 2).
The students have the following preferences; all other bundles are unacceptable for
the respective students:

1 : {A,D} �1 {C,D} �1 {D} 2 : {B,D} �2 {C,D} �2 {B}
3 : {A,D} �3 {A} �3 {C} 4 : {A,C,D} �4 {A,C} �4 {B,D}

This example contains two parts to illustrate the differences between conflict trees
and tree-coalitions.
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2
{B, D}

1 {A, D} 4 {A, C}

2
{C, D}

1 {D}

4 {A, C}

3 {A}

Figure 3.1: Tree coalition (left) & conflict tree (right) for Example 3.7

i) Consider the matching M = {(1, {C,D}) , (2, ∅) , (3, {C}) , (4, {B,D})}. We
construct a conflict tree for M with initial student 2 using Algorithm 3.1 (see
left tree in Figure 3.1). That is,

V0 = {2} and N = M−2 = {(1, {C,D}) , (3, {C}) , (4, {B,D})} .

Now, we choose a new bundle {B,D} for student 2 and receive

N = {(1, {C,D}) , (2, {B,D}) , (3, {C}) , (4, {B,D})} .

Obviously, the matching induced by student 2, N [2] = {(2, {B,D})}, is fea-
sible. However, the whole matching N over-allocates the courses B and D.
We first consider student 1 and delete her assignment. Now, B is still over-
allocated and we delete the assignment of student 4. Hence, student 2 is
in conflict with the students 1 and 4, and we therefore add the edges (2, 1)
and (2, 4) to E. We obtain N = N−{1,4} = {(2, {B,D}) , (3, {C})} and V1 =
{1, 4}. In the next iteration we assign new bundles {A,D} and {A,C} to the
agents in V1. After this iteration the algorithm stops with the left conflict tree
shown in Figure 3.1 and N = {(1, {A,D}) , (2, {B,D}) , (3, {C}) , (4, {A,C})}.
Since N1 �1 M1, N2 �2 M2, and N4 �4 M4, this conflict tree is also a tree
coalition. Additionally we see that a conflict tree not necessarily has to con-
tain all students, i.e. |V | might be smaller than |S|.6

6If one considers in the first iteration agent 4 first, the resulting N would already be feasible
and the conflict tree would change to a path 2→ 4→ 1.
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ii) Consider a second matching

M ′ = {(1, {A,D}) , (2, {B}) , (3, {C}) , (4, {A,C,D})} .

Student 2 is only assigned to his third preference in M ′. Hence, he might be
interested in getting assigned an other bundle. We can construct the right
conflict tree shown in Figure 3.1 by starting with V0 = {2}, deleting (2, {B})
and assigning {C,D} to student 2. We receive

N ′ = M ′−2∪(2, {C,D}) = {(1, {A,D}) , (2, {C,D}) , (3, {C}) , (4, {A,C,D})} .

Courses C and D are now over-allocated. After deleting the assignments
of student 1 and 3 the capacities of both courses are respected again, there-
fore student 2 is in conflict with the students 1 and 3 and we add edges to
E respectively. Student 4 is not considered in this iteration, since N ′−{1,3}

is already feasible. Therefore V1 = {1, 3}. In the next iteration we add
(1, {D}) and (3, {A}) to N ′−{1,3}. The resulting matching induced by the al-
ready considered students N ′ [{1, 2, 3}] = {(1, {D}) , (2, {C,D}) , (3, {A})} is
feasible. However, in N ′ D is over-allocated and student 4 is in conflict with
1, i.e. V2 = {4}. We reassign 4 to {A,C} and receive a feasible matching
N ′ = {(1, {D}) , (2, {C,D}) , (3, {A}) , (4, {A,C})}. Since M ′

4 �4 N
′
4, this

conflict tree cannot be a tree coalition.

Corollary 3.8: A matching is maximal and trade-in-free if it is tree-coalition-free.

Proof. Consider a matching that is not maximal, i.e., there has to be at least one
unassigned student i who can be assigned to an acceptable bundle b. Hence, we
can define a conflict tree T = ({i} , ∅,M,N = M−i ∪ (i, b)). As Ni = b �i ∅ = Mi,
T is a tree coalition. If the matching M is not trade-in-free, we can find an agent
i with b �i Mi 6= ∅ for an acceptable bundle b ∈ Acci such that N = M−i ∪ (i, b)
is feasible. Again, we can define a tree coalition T = ({i} , ∅,M,N).

In a tree coalition T = (V,E,M,N) we only require that N dominates M for
the agents in V . However, it might be the case that N , considered for all agents,
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does not dominate M . With the following corollary we see that we also can find
a matching N ′ that dominates M , by combining M [S \ SV ] and N [SV ].

Corollary 3.9: If there exists any tree coalition T = (V,E,M,N) for M , there
also exists a tree coalition T ′ = (V,E,M,N ′) where N ′ dominates M .

Proof. If N already dominates M , T ′ = T and the claim is true. Assume N
does not dominate M . Since T is a conflict tree, N [Si] ∪ M−Ij [S \ Si] is fea-
sible for every i ∈ S with vi ∈ V and Ij = {j ∈ S | (vi, vj) ∈ E}. Partic-
ularly, this condition has to be fulfilled for the agents represented by leafs in
T too. Since those nodes do not have any outgoing edge, Ij = ∅ for these
nodes. Let vi∗ = argmax {dT (vi) | vi ∈ V } the deepest node in T . For i∗

Si
∗ = {j ∈ S | dT (vj) ≤ dT (vi∗)} = SV and therefore N ′ = N [SV ] ∪M [S \ SV ] a

feasible matching. Hence, N ′ [S \ SV ] = M [S \ SV ] and N ′ [SV ] = N [SV ] domi-
nates M [SV ]. Therefore T ′ = (V,E,M,N ′) is a tree coalition where N ′ dominates
M .

With Corollary 3.9 we immediately see that a matching M cannot be Pareto
efficient if there exists any tree coalition for M . Theorem 3.10 shows that both
directions of this statement are true.

Theorem 3.10: A matchingM ∈M is Pareto efficient iff it is tree-coalition-free.

Proof. Suppose there exists a tree coalition T = (V,E,M,N) for M . Because of
Corollary 3.9 we can find a tree coalition T = (V,E,M,N ′), where N ′ dominates
M . That is, M is not Pareto efficient.

SupposeM is not Pareto efficient. That is, it exists an agent i∗ ∈ S and a matching
M ′ ∈ M with M ′

i∗ �i∗ Mi∗ and M ′
i �i Mi for all i ∈ S. We compare M and M ′

for i∗. Let us consider N = M−i∗ ∪ (i∗,M ′
i∗), V = {vi∗}, and E = ∅.

Case 1: If N is feasible, we can define a conflict tree T = (V,E,M,N) for M ,
where N [SV ] dominates M [SV ], i.e., M cannot be tree-coaltion-free.
Case 2: Let N be infeasible. As we constructed N from M by changing the
assignments of selected agents, and M is feasible, there must be a non empty set
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of agents I ⊆ S \ SV and an agent i′ ∈ SV with |Nc| > qc for at least one object
c ∈ (⋃i∈I Ni)∩Ni′ . Since M ′

i �i Mi for all i ∈ S and M ′ feasible, one can define a
feasible matching N ′ = N−I [SV ]∪{(i,M ′

i) | i ∈ I}, where all agents in SV weakly
prefer the assignment N ′ over M . We set N = N ′, V = V ∪ {vi | i ∈ I}, and
E = E ∪ {(i′, i) | i ∈ I}, and repeat the argumentation in case 1 and 2.
Since every time N is infeasible we add at least one agent to SV , there has to be
a round, where N is feasible (at the latest when N = M ′) and we can define the
respective tree coalition. That is, if M is not Pareto efficient, there exists a tree
coalition for M .

Some design desiderata are not defined for the matchings but for the mechanisms
calculating them. A deterministic assignment mechanism is a function χ : P |S| →
M that returns a deterministic matching M ∈M.

An important property of a (matching) mechanism, is strategy-proofness. This
means, that there is no incentive for any student not to submit her truthful pref-
erences, no matter which preferences the other students report.

Definition 3.11: Strategy-Proofness. Let �∈ P |S| be the (true) preference
profile. A deterministic assignment mechanism χ is strategy-proof if for every
student i ∈ S and �′i∈ P we have χi (�) �i χi (�′i,�−i).

Thereby, �−i denotes the preference profile of all agents i′ ∈ S \ {i}. It has
been shown that participants in strategy-proof mechanisms such as the Vickrey
auction do not necessarily bid truthfully in practice. Therefore, there was a recent
discussion about obvious strategy-proofness of extensive form games (Li, 2017).
Intuitively, a mechanism is obviously strategy-proof iff the optimality of truth-
telling can be deduced without contingent reasoning.

Definition 3.12: Obviously Strategy-Proofness (Li, 2017). A strategy σ is
obviously dominant if, for all other strategies σ′, at any earliest information set
where σ and σ′ diverge, the best possible outcome from σ′ is no better than the
worst possible outcome from σ. A mechanism is obviously strategy-proof if it has
an equilibrium in obviously dominant strategies.
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Random Matchings

For randomized mechanisms one has to adapt these design desiderata. Stochastic
dominance (SD) is the key concept among all of the following definitions as it
provides a natural way to compare random assignments. Let ∆ describe the set
of all possible random matchings. With pi we refer to the assignment of student i
in the random matching p, and denote with pib the probability that student i gets
allocated bundle b. We will omit the subscript i when it is clear which student is
meant.

Given two random assignments p, q ∈ ∆, student i SD-prefers p to q if, for every
bundle b, the probability that p yields a bundle at least as good as b is at least as
large as the probability that q yields a bundle at least as good as b.

Definition 3.13: SD-Preference. A student i ∈ S weakly SD-prefers an as-
signment p ∈ ∆ over q ∈ ∆, p �SDi q, if

∑
b′�ib

pib′ ≥
∑
b′�ib

qib′ ,∀b ∈ B

If there additionally exists a bundle b∗ ∈ B such that ∑b′�ib∗ pib′ >
∑
b′�ib∗ qib′,

student i strongly (or strictly) SD-prefers p over q, i.e. p �SDi q.

In other words, a student i (weakly) prefers the random assignment p to the random
assignment q if pi (second-order) stochastically dominates qi. Note, that �SD is
not a complete relation. That is, there might be assignments p and q, which are
not comparable with this relation. First-order stochastic dominance7 holds for all
increasing utility functions and implies second-order stochastic dominance, which
is defined on increasing concave (risk-averse) utility functions. In other words, risk-
averse expected-utility maximizers prefer a second-order stochastically dominant
gamble to a dominated one (Müller and Stoyan, 2002).

7pi dominates qi if pib ≥ qib for all b ∈ B.
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We first generalize (Pareto) efficiency to random matchings and lotteries:

Definition 3.14: Efficiency. A random assignment p ∈ ∆ is called

i) ex post efficient, if p can be implemented into a lottery over Pareto efficient
deterministic assignments.

ii) ordinally efficient, if there exists no random assignment q stochastically dom-
inating p, i.e. @q ∈ ∆ : ∀i ∈ S : q �SDi p and ∃i ∈ S : q �SDi p.

Ordinal efficiency comes from the Pareto ordering induced by the stochastic dom-
inance relations of individual students. It can be shown that ordinal efficiency
implies ex post efficiency (Bogomolnaia and Moulin, 2001).

Fairness is another important design goal. A basic notion of fairness for random-
ized assignments is the equal treatment of equals. A stronger property is envy-
freeness.

Definition 3.15: Envy-Freeness. A random assignment p ∈ ∆ is called

i) (strongly) SD-envy-free if ∀i, j ∈ S : pi �SDi pj.

ii) weakly SD-envy-free if @i, j ∈ S : pj �SDi pi.

SD-envy-freeness means that student i weakly SD-prefers the random matching
he got assigned to the random assignments offered to any other student, i.e., a
student’s allocation stochastically dominates the outcome of every other student.
For weak SD-envy-freeness it is only demanded that no student’s allocation is
stochastically dominated by the allocation of another student. We illustrate this
difference with the following example:

Example 3.16: Consider two students 1, 2 each preferring course A over B and
a random assignment where p1 = (0.5 0) and p2 = (0.4 0.2). Neither student 1
does prefer the outcome of student 2 nor student 2 does prefer the assignment of
student 1. For student 1 the probability of getting his most preferred course (A)
is higher than the probability for A of student 2. Though, student 2 has a lower
probability for course A, the probability of getting one of the courses A or B is
higher than for student 1. Therefore, the assignment is weakly SD-envy-free.
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However, the assignment is not strongly SD-envy-free. Neither student 1 nor stu-
dent 2 prefer their own outcome over the outcome of the other student, since
0.5 = p1A > p2A = 0.4 and 0.5 = p1A + p1B < p2A + p2B = 0.6. That is, the
outcomes are not comparable with SD-preference. This can happen as this relation
is not complete.

A randomized assignment mechanism is a function ψ : P |S| → ∆ that returns a
random matching p ∈ ∆. The mechanism ψ is ordinally efficient if it produces
ordinally efficient allocations. We call ψ ex post Pareto efficient if p can be decom-
posed as a convex combination of Pareto optimal matchings. ψ is symmetric, if for
every pair of students i and j with �i=�j also pi = pj. This means that students
who have the same preference profile also have the same outcome in expectation.
A randomized mechanism is envy-free if it always selects an envy-free matching.

We now generalize strategy-proofness to randomized mechanisms. As for envy-
freeness there exists a weak and a strong notion of this concept.

Definition 3.17: SD-Strategy-Proofness. Let ψ : P |S| → ∆ be a random
assignment mechanism and �∈ P |S| the (true) preference profile.

i) ψ is called (strongly) SD-strategy-proof if for every student i ∈ S with
�′i∈ P ψ (�) �SDi ψ (�′i,�−i).

ii) ψ is called weakly SD-strategy-proof if there exists no �′i∈ P for some
student i ∈ S such that ψ (�′i,�−i) �SDi ψ (�).

In other words, an ordinal mechanism is strategy-proof if for any agent, the al-
location resulting from misreporting is weakly stochastically dominated by the
allocation from truthful reporting, with respect to an agent’s true preferences.
Weak strategy-proofness means that there may not be any student i, who prefers
ψ (�′i,�−i) over the truthful outcome, but there may be students i who neither
prefer ψ (�′i,�−i) nor ψ (�). We will omit the prefix SD for brevity in the follow-
ing.

Note that there are also weaker notions of strategy-proofness for randomized mech-
anisms developed in the field of probabilistic social choice that we do not consider
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in this thesis. These notions are based on different ways of how to compare lot-
teries. Interested readers are referred to Brandt (2017).

3.2.3 Assignment Mechanisms

A lot is known about assignment problems with single-unit demand. There are
basically two classes of mechanisms – random priority mechanisms and random
assignment mechanisms. The Top-Trading-Cycle mechanism with random endow-
ments (Shapley and Scarf, 1974) as well as the Random Serial Dictatorship (RSD)
(Abdulkadiroğlu and Sönmez, 1998) are examples of the first class. These algo-
rithms compute deterministic matchings (not lotteries), but the underlying mech-
anisms are random. They have typically desired properties like strategy-proofness
and ex post Pareto efficiency, but in general they perform poorly in terms of fair-
ness (Budish and Cantillon, 2012). A popular example for random assignment
mechanisms is the Probabilistic Serial (PS) mechanism presented by Bogomolnaia
and Moulin (2001), which produces an envy-free assignment with respect to the
reported single-unit demand preferences. It is ordinally efficient, but it is only
weakly strategy-proof.

Zhou (1990) showed that no random mechanism for assigning objects to agents
can satisfy strong notions of strategy-proofness, ordinal efficiency, and symmetry
simultaneously with more than three objects and agents. So, we also cannot
achieve these properties in combinatorial assignment problems. In the following
we discuss generalizations to these mechanisms.

Bundled Random Serial Dictatorship

RSD selects a permutation of the agents uniformly at random and then sequen-
tially allows agents to pick their favorite course among the remaining course seats.
Gibbard (1977) showed that random dictatorship is the only anonymous and sym-
metric, (strongly) strategy-proof, and ex post efficient mechanism when preferences
are strict. Pycia and Troyan (2018) prove that RSD is the unique mechanism that
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is obviously strategy-proof, ex post efficient, and symmetric in mechanisms with-
out transfers.

In other words, in our setting with multiple possible bundles we are necessarily
bound to a form of RSD if we want to maintain strategy-proofness, symmetry
and efficiency. Therefore, we present a generalisation of the RSD called Bundled
Random Serial Dictatorship (BRSD) in Algorithm 3.2. BRSD orders the students
randomly and assigns the most preferred bundle that still has free capacities at all
included courses to each student in this order. Although the bundle preferences
take some toll on the runtime it is still very fast (in practice).

Algorithm 3.2: Pseudocode of BRSD.
Input : preferences (�i)i∈S
order S randomly, M = ∅
forall i ∈ S do

b ∈ Acci ∪ ∅ – the bundle with highest preference that satisfies:
∀c ∈ b : |Mc| < qc
M = M ∪ (i, b)

Output: deterministic matching M

Theorem 3.18: BRSD is strategy-proof, symmetric and computes a Pareto
optimal matching in O (|S| · α · k), where α = max {|Acci| | i ∈ S} and k =
max {size(b) | b ∈ AccS}.

Proof. Strategy-proofness carries over from RSD (Gibbard, 1977). Briefly, since
BRSD searches from the top of a student’s preference-list downwards the first
bundle that does not contain any full course, reporting a wrong order or omitting
preferences would not improve the chance to get a higher ranked bundle.
For Pareto efficiency we draw on Theorem 3.10. We have to proof that BRSD pro-
duces a tree-coalition-free matching. Let M be the outcome of BRSD. Obviously,
M is a feasible matching, because BRSD never over-allocates courses. W.l.o.g. let
I = (i1, i2, . . . , in) be the chosen random ordering. Consider the first student ij ∈ I
that is not assigned to his first preference. Let Ij−1 = (i1, i2, . . . , ij−1) the first j−1
students. Because of the choice of j, all agents in Ij−1 got their first preference.
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This set cannot be empty, as at least the first student gets his first preference. Ob-
viously, no agent from Ij−1 can be in any tree coalition (since we cannot assign any
of these agents to a better alternative). We try to construct a tree coalition from
agent ij. However, since BRSD assigned the most preferred bundle to him that
still had enough capacity, we cannot assign ij to a more preferred bundle without
getting a conflict with an agent in Ij−1 or violating any capacity constraint. Hence,
there cannot be any tree coalition with agents in Ij = (i1, i2, . . . , ij). Let ij′ the
next student, who did not get allocated his most preferred alternative. Since all
agents in Ij′−1 are in Ij or they got their first preference, none of them can be in
any tree coalition. Analogous to j we can show that no agent in Ij′ can be in any
tree coalition. We repeat these arguments until Ij′ = I and see, that M has to be
tree-coalition-free and therefore BRSD is ex post Pareto efficient.
Symmetry: Since every permutation of the agents has the same probability, BRSD
is symmetric.
Runtime: For every i ∈ S we have to search the first acceptable bundle b that
is feasible. Since size(b) ≤ k, the algorithm needs to check O (k) capacity con-
straints. As every acceptable set’s size is less than the size α of the largest set of
acceptable bundles, the running time of BRSD is in O (|S| · α · k).

Note that the outcome of BRSD can be arbitrary smaller than a maximum match-
ing and unfair. Consider an example, where each bidder has the highest preference
for the set of all courses, each having a capacity of one. If this was the case, one
bidder would get all courses assigned. While the mechanism is strategy-proof and
ex post Pareto efficient, the outcome can be considered unfair.

First-Come First-Served (FCFS) can be seen as a serial dictatorship. Students
login at a certain registration and then reserve the most preferred bundle of courses
that is still available. Although the arrival process is not uniform at random,
students have little control over who arrives first. While there is a certain time
when the registration starts, hundreds of students log in simultaneously to get
course seats and it is random who arrives first. We will simulate FCFS via BRSD
and run the algorithm repeatedly to get estimates for performance metrics of
FCFS.
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There are further - more specialized - generalizations of RSD in the literature of
matching and auctions. For example, Hashimoto (2018) presents a generalisation
of RSD called General-Random-Priority (GRP) algorithm for multi-unit assign-
ments without money and combinatorial auctions. GRP is shown to be feasible
and strategy-proof. For obtaining feasibility, the algorithm withholds a fraction
of ε objects, whereby ε goes to zero when the number of agents goes to infinity.
Cechlárová et al. (2014) introduce a many-to-many capacitated house allocation
problem, where agents can obtain multiple objects. However, the agents can only
rank the objects, but not different bundles of objects. Every agent has a vir-
tual budget and every object a price. Now, bundles satisfying the budgets of the
agents are computed, lexicographically ranked, and a generalisation of RSD is used
to receive an allocation.

Approximative Competetive Equilibrium from Equal Incomes (A-CEEI)

The randomness in RSD as well as the lack of strong fairness properties might be
an issue for some applications. The theorem by Gibbard (1977) provides a clear
guideline on what is possible in dominant strategies. Therefore, in order to achieve
stronger notions of fairness, such as envy-freeness, one has to give up or relax
strategy-proofness or ordinal efficiency. One popular example for non-strategy-
proof mechanisms is the Competitive Equilibrium with Equal Incomes (CEEI),
presented by Hylland and Zeckhauser (1979). These algorithms have desirable
properties like envy-freeness and ex post Pareto optimality. Kojima et al. (2010)
and Azevedo and Budish (2017) show that CEEI is near strategy-proof if the
instance is large enough.

Budish (2011) proposes a mechanism for matching with complementarities focusing
on different notions of fairness of allocations with ordinal preferences of the agents.
His approach is an approximation to CEEI called A-CEEI that assigns agents
with approximately equal income. Here, income does not mean monetary transfer
or utility but is a virtual currency that helps to assign bundles to agents. The
assignment is calculated by setting prices on objects and selling the bundles to the
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agents. Since incomes are guaranteed to differ slightly, market clearing is ensured.
In general A-CEEI is not strategy-proof, but for large markets it is approximately
strategy-proof. Budish (2011) proposes two new characterisations of fairness and
shows that A-CEEI meets these. E.g. A-CEEI bounds envy by a single good.
This approach is only approximately ex post efficient and the market is cleared
approximately only. The worst-case bound of the clearing error depends neither on
the number of agents nor on the object capacities. A market clearing error denotes
excess demand. That is, A-CEEI approximates feasibility and might allocate more
objects than available.

Bundled Probabilistic Serial

Bundled Probabilistic Serial (BPS) by Nguyen et al. (2016) is a generalization of
PS to the combinatorial assignment problem. BPS computes a fractional solution
via a generalization of the PS mechanism. Informally, in BPS (see Algorithm 3.3)
all agents eat their most preferred bundle in the time interval [0, 1] simultaneously
with the same speed as long as all included objects are available. As soon as one
object is exhausted, every bundle containing this object is deleted and the agents
continue eating the next available bundle in their preference list. The duration with
which every bundle was eaten by an agent specifies the probability for assigning
this bundle to this agent.

Theorem 3.19: (Nguyen et al., 2016). BPS is ordinally efficient, envy-free,
weakly strategy-proof, and computes a fractional solution respecting (demand) and
(supply).

We further analyze the outcome of BPS. Even if the size of Acci for a student i ∈ S
and the assignment matrix of a random assignment p ∈ ∆ might be of exponential
size, the assignment matrix corresponding to the outcome of BPS is sparse.

Corollary 3.20: The outcome of BPS, x∗, has at most |S| · |C| nonzero entries.

Proof. Since students only start eating the next available bundle when the current
bundle is not feasible anymore, that is, if at least one included course reaches its
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Algorithm 3.3: Pseudocode of BPS.
Input : preferences (�i)i∈S
t = 0
xib = 0, ∀i ∈ S, b ∈ B
while t < 1 do

D = ∅
demj = 0, ∀j ∈ C
forall i ∈ S do choose first valid bundle b ∈�i: D ← b
forall b ∈ D do

forall j ∈ b do demj++
δ = min

{
qj

demj
| j ∈ C

}
t+ = δ
δ∗ = δ − (t−min {1, t})
forall i ∈ S do xib+ = δ∗

forall j ∈ C do
qj− = δ∗ · demj

if qj = 0 then ∀b ∈ B : j ∈ b : delete b

Output: allocation x∗ = (xib)i∈S,b∈B
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capacity, a student can at most change a bundle |C| times in the BPS mechanism.
Therefore x∗ cannot contain more than |C| nonzero entries for each student

3.2.4 Implementing Random Assignments

Unfortunately, in contrast to the result of PS, the outcome of BPS is not im-
plementable into a lottery of deterministic matchings in general if the maximal
bundle size ` > 1. To circumvent this, one can either scale the fractional solution
x∗ by a factor α ∈ (0, 1) such that the decomposition becomes possible (Lavi and
Swamy, 2011) or one allows for the relaxation of some constraints. Nguyen et al.
(2016) present a mechanism to decompose the BPS solution into a lottery over de-
terministic matchings that over-allocate each course by at most `−1 seats, i.e. the
(demand) constraints are fulfilled and only the (supply) constraints are relaxed.

Description of the Decomposition Mechanism

In the polynomial time lottery algorithm (see Algorithm 3.5), we find at most
d+ 1 integral points, the convex hull of which is arbitrarily close to the fractional
solution x∗ that we get from BPS. The lottery algorithm then returns a lottery over
these d+1 integral vectors, which is close to x∗ in expectation. Variable d describes
the dimension of the problem. In this lottery algorithm, we use a subroutine to
return an integer point x̄ such that uτ x̄ ≥ uτx∗ for an arbitrary vector u. This
subroutine is called iterative rounding algorithm (IRA) and proceeds as described
in Algorithm 3.4.

In Algorithm 3.4 we first fix variables to 0 or 1 if they already have this value in
step 1a. If one cannot fix any variable but there are still fractional components
left, one can find a (supply) constraint that is always fulfilled if we relax it by `−1,
even if we round up all remaining fractional components (step 1b). We delete those
constraints and reoptimize the reduced problem in step 2. The constraint violation
in step 1b of the IRA is depicted in Figure 3.2. Independent from the rounding
of the remaining fractional components of the current point x, the rounded point
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Algorithm 3.4: Pseudocode of the iterative rounding algorithm.
Input : (fractional) solution x, (demand), (supply), additional constraints C
1a: Delete all xi = 0, xi = 1, update the constraints and go to 1b.
1b:

If there is no xi ∈ {1, 0} one can find at least one (supply)-constraint with∑
i∈S

∑
b∈B

bjdxibe ≤ qj + `− 1, j ∈ C (relaxed supply)

Delete those constraints and go to 2.
2

Solve max {uτx | (demand), (supply),C, x ∈ R≥0}
if all xi ∈ {0, 1} then return x
else go to 1a

Output: integral solution x to (demand), (relaxed supply)

always will stay in the orange circle and therefore wont hurt the relaxed constraints
for the courses j = 2, 3. Hence, we delete the original constraints for j = 2, 3 and
allow for a new (fractional) solution in the next optimization step (step 2) that
has ideally more integral components than the current solution.

Next, we discuss the lottery algorithm (see Algorithm 3.5). Let B (x∗, δ) =
{x | |x∗ − x| ≤ δ} ⊆ {x ∈ R≥0 | (demand)} with δ > 0. The parameter δ in
B (x∗, δ) determines a ball around x∗ such that the demand constraints ∑b∈B xib ≤

x

q 1
+ ` − 1

q2 + ` − 1

q3 +
` − 1q3

q2

q 1

Figure 3.2: Constraint violation in the IRA
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1 are not violated. It is always possible to determine such a δ. If there is no
slack in the demand constraints one has to scale down the fractional solution x∗.
Afterwards one has to adjust the allowed error ε such that after scaling and de-
composition the original ε is still fulfilled. Here, |x− y| describes the Euclidean
distance between two vectors x and y.

Algorithm 3.5: Pseudocode of the lottery algorithm.
Input : fractional solution x∗
1: Set Z = {IRA (x∗)}, i.e., find an integer solution via IRA.
2:
y = argmin {|x∗ − y| | y ∈ conv (Z)}
if |x∗ − y| < ε then END

3: Choose Z ′ ⊆ Z of size |Z ′| ≤ d and y ∈ conv (Z ′) : z = x∗ + δ x∗−y
|x∗−y|

4: z′ = IRA(z, (demand), (supply), (x∗ − y)τ z′ ≥ (x∗ − y)τ z)
5: Z = Z ′ ∪ {z′} and go back to 2.
Output: convex combination of final y

In each iteration the algorithm decreases the distance between y and x∗ by adding
a new integral solution to the solution set Z and terminates when the distance
between y and x∗ is smaller than ε. That is, we consider y as a good approximation
for x∗ and return the support of y. The algorithm tries to get x∗ covered by the
convex hull of Z (conv(Z)). All solutions in Z that are not part of the support of
y, calculated in the quadratic optimization problem (QOP) in step 2, are deleted
(step 3). Thus, although we add a new integral solution to Z in each iteration, the
size of Z never grows above d + 1, since as long as y 6= x∗, y always has to be on
a face of conv(Z). Hence, the support of y consists of at most d solutions. Step 4
ensures that we search in the right direction for new integral solutions. As a side
product the QOP also calculates the coefficients λ(k) for the convex combination
and we have x∗ ≈ y = ∑|Z|

k=1 λ
(k)x(k), for x(k) ∈ Z. Figure 3.3 shows a graphical

representation of one iteration of Algorithm 3.5.
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y
x∗z

z′

Z

conv(Z)

Figure 3.3: Graphical representation of one iteration of the lottery algorithm.

Analysis of the Decomposition Mechanism

We now prove the correctness of Algorithm 3.5. The first critical point is the
assumption that always a ball around x∗ exists, such that the (demand) constraints
are fulfilled. If for x∗ all (demand) constraints have a positive slack the claim
follows directly with δ = min slack. Let us assume, there is at least one (demand)
constraint that is tight. We scale x∗ by a δ ∈ (0, 1), i.e. x∗sc = (1− δ) · x∗, and
decompose x∗sc instead of x∗. To ensure that the found y is in an ε-environment
of x∗, we divide ε into εsc = (a−1)ε/a and εδ = ε/a with a > 1, i.e. ε = εsc + εδ

(see Figure 3.4). The parameter a determines the proportion between scaling and
allowed error for the decomposition. We now can define δ depending on ε and a:

|x∗ − x∗sc| = δ · |x∗| ≤ ε

a
⇒ δ ≤ ε

a |x∗|

Using this δ we calculate a decomposition for y with |y − x∗sc| < εsc. Since
|x∗ − x∗sc| ≤ εδ we have |y − x∗| < ε. Hence, we can summarize:

44



3.2 Combinatorial Assignment Problems

Lemma 3.21: For every solution x∗ respecting (demand) and (supply) it is pos-
sible to find a δ > 0 such that B (x∗, δ) 6= ∅ and Algorithm 3.5 returns a convex
combination for a y with |y − x∗| < ε.

x∗
ε

x∗
sc

εsc
εδ

Figure 3.4: Graphical representation of the change of ε.

Next, we have to ensure, that Algorithm 3.4 always terminates. Lemma 3.22 helps
us proofing this.

Lemma 3.22: If {x ∈ R≥0 | (demand), (supply),C} 6= ∅, Algorithm 3.4 calcu-
lates a solution x that has at most 2 · |C| fractional components.

Proof. Suppose that |C| = γ. The proof of Algorithm 3.4 with γ = 0 in Nguyen
et al. (2016) uses a counting argument of linear programming that says that there
are as many linearly independent and binding constraints as there are non-zero
decision variables. We build on this proof. Assume the current x has still n
non-zero components, and Algorithm 3.4 can neither run step 1a nor step 1b.
That is, all n remaining components have to be fractional and there cannot be
any (supply) constraint in the updated program anymore. This follows directly
from Nguyen et al. (2016). Assume there are still (supply) constraints in the
reduced problem. If we ignore the constraints C, we could delete (some of) these
constraints. Since we have a maximization problem, and the (supply) constraints
are ≤-constraints with non-negative coefficients, adding further constraints would
not increase the left hand side of these constraints. That is, we also could delete
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these (supply) constraints in the problem with C – that would be a contradiction
to the assumption, that we cannot enter step 1b. Hence, the reduced problem only
consists of constraints in C and (demand), and has n linear independent binding
constraints.

We now consider the worst case of this setting. Since (demand) constraints do
not share any variables and have a binary right hand side, constraints of this
type having only one variable cannot exist in the current state. Otherwise, these
variables would have to be binary as well, since the constraints are binding. But
this would be a contradiction to the assumption that we cannot enter step 1a.
Hence we consider the case where all γ constraints from C are binding. Additionally
we have n− γ binding (demand) constraints, which have disjoint sets of variables.
Hence, we have to distribute n variables to n− γ constraints. Therefore, at most
γ constraints can consist of more than one variable. That is, in the worst case we
have to be in a state, where only γ demand constraints and the γ C-constraints
are linear independent and binding. Hence, the current x has at most n = 2γ
fractional components.

We use Algorithm 3.4 with one additionally constraint. Hence, it can happen that
the algorithm runs in a state, where 2 fractional components are left, but neither
step 1a nor step 1b can be used. That is, one demand constraint with 1 on the right
hand side and the additional constraint is left. However, now one can round one
of the two variables to 1 and the other to 0 (or both to 0), such that the additional
constraint is fulfilled, since we use Algorithm 3.4 only to find an integral solution
and this solution does not need to be optimal in any sense.

Using the correctness proof for Algorithm 3.4 and Algorithm 3.5 from Nguyen
et al. (2016) together with Lemma 3.22 and Lemma 3.21 we can conclude:

Theorem 3.23: Near Feasible Decomposition. If x∗ is an envy-free and effi-
cient solution to (demand) and (supply), Algorithm 3.5 returns in polynomial time
a lottery over integral solutions respecting (demand) and (relaxed supply) that is
envy-free and efficient in expectation, and asymptotically strategy-proof.
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Finally, we can prove that we can decompose the BPS-solution with desired prop-
erties in polynomial time.

Theorem 3.24: BPS-Lottery. The solution of BPS can be implemented into a
lottery that is envy-free and ordinal efficient in expectation, asymptotically strategy-
proof, and that over-allocates each object c ∈ C by at most `− 1. This lottery can
be constructed in polynomial time.

Proof. The first part follows with Theorem 3.19 (BPS computes an efficient and
envy-free solution to (demand) and (supply)) directly from Theorem 3.23. BPS
always returns a sparse solution, i.e. a solution with at most |S| · |C| nonzero
entries (Corollary 3.20). Furthermore, no variable x∗ib = 0 can be of value 1 in
any solution included in the lottery, otherwise the probability of allocating b to
i would be nonzero in expectation. However, this cannot be the case, since the
expected outcome of the lottery has to equal the fractional solution. Therefore,
it is sufficient to reduce x∗ to its nonzero components, and useing this reduced
(polynomial size) x∗ as input for Algorithm 3.5. Hence, because of Theorem 3.23,
the solution can be decomposed in polynomial time.

3.3 Preference Elicitation

This section focuses on the preference elicitation, which is important given the
exponential set of possible bundles students might be interested in. We first in-
troduce the environment and the problem for students, before we discuss different
approaches to elicit preferences.

3.3.1 Background on the Application

The Department of Informatics has been using stable matching mechanisms for the
assignment of students to courses since 2014 (Diebold and Bichler, 2017; Diebold
et al., 2014). The system provides a web-based user interface and every semester
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almost 1500 students are being matched to practical courses or seminars via the
deferred acceptance algorithm for two-sided matching or random serial dictatorship
for one-sided matching problems.

In the context of the study reported in this chapter, the web-based software was
extended with BPS, the lottery mechanism for decomposing fractional solutions,
and BRSD. 1439 Students in computer science and information systems in their
second semester participated in the matching during the summer term 2017 and
they could choose tutorial groups from several courses including linear algebra,
algorithms, software engineering, and operations research. A computer science
student could have preferences for up to 5760 (= 10 · 24 · 24) bundles8 and an in-
formation systems student could have preferences for up to 5184 (= 9 · 24 · 24)
bundles.9 During the winter term 2017/2018 and 2018/2019, 1778 (resp. 1683)
computer science and information systems students in their third semester partici-
pated in the matching and could choose bundles of tutor groups out of four classes.
A computer science student could have more than 700,000 different bundles.10

3.3.2 Automated Ranking of Bundles

A naive approach would be to let the students rank bundles on their own by
choosing the time-slots they want to have in their preference list. This would take
a lot of time and lead to a substantial missing bids problem. We developed an
algorithm that allows to rank-order all possible bundles based on a few parameters
that students need to specify. For this, we can leverage prior knowledge about
timely preferences of students for schedules of tutorials and lectures.

Students’ preferences mainly concern their commute and the possibility to free
large contiguous blocks of time (e.g., a day or a half-day) that they can plan
for other activites (e.g., a part-time job). In larger cities such as Munich, the
time that students spend for commuting is significant. Also long waiting times

8Consisting of the courses: linear algebra, algorithms, software engineering.
9Consisting of the courses: operations research, algorithms, software engineering.

10The computer science students need tutorials from all four classes (< 22 · 25 · 26 · 52).
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between courses are perceived as a waste of time as it is often difficult to work
productively in several one- or two-hour breaks without appropriate office facilities
available. For example, if a student had a tutorial on linear algebra in the morning,
a lunch break, and then the tutorials for algorithms and software engineering in
the afternoon of the same day with the minimal time for breaks specified, this
would be considered ideal. The desired length for breaks between tutorials and for
the lunch break are considered parameters with default values in the preference
elicitation.

Figure 3.5: User Interface to Select Courses

Figure 3.5 shows the initial page where students can select the courses of interest.
On this page students choose the lectures and tutorials they are interested in. The
selected lectures will be considered in the bundle generation as constraints, i.e.
if a time-slot of a tutorial overlaps with the time of a selected lecture, it will no
longer be considered in order to allow students to participate in the lecture. In
a second step, the students mark available time ranges in a weekly schedule (see
Figure 3.6). The day is partitioned into weekdays and time blocks of 30 minutes
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from 8:00 AM to 8:30 PM. If a tutorial is selected, all time-slots of this tutorial
will be highlighted with a specific color. Thus, students learn when the tutorials
and lectures of interest take place.

Figure 3.6: The Week Schedule

Students can set a minimal amount of time for a lunch break and a minimal
amount of time in-between two events (default value is 15 minutes). We also allow

50



3.3 Preference Elicitation

students to provide weights {1, . . . , 5} for the different days. That is, the students
can express preferences over the days.

The preferences elicited on this screen are input for an algorithm that uses prior
knowledge about student preferences to rank-order all possible bundles. The al-
gorithm first generates bundles that satisfy all constraints and then ranks them.
Finding the bundles that do not violate constraints of the students (e.g., lectures
to be attended) can be cast as a constraint satisfaction problem. After the feasible
bundles are generated, we rank these bundles. For this we assign a score to each
bundle that considers

• how many days a student needs to come to the university per week in total,

• the preference ordering over the days,

• the total time a student has to stay at the university each day, and

• the length of the lunch breaks between courses.

The score for a bundle b of courses across the week is the sum of the daily score
(score (b, day)) for all weekdays d. The daily score is computed as

score (b, day) =
(
w (b, day)
sp (b, day) · f (sp (b, day)) + br (b, day)

)
· prio (day) (3.3)

This score is scaled between 0 and 27.5 at a maximum and it considers how well
the day is utilized with courses. Ideally, a student would have all his tutorials on a
single day (his most preferred day) with a 1-hour lunch break and a minimal time
for breaks in between courses. This would yield 27.5 points.

The time spent at the university per day sp (b, day) is considered relative to the
time a student attends courses on that day (w (b, day)). These courses include tu-
torials and lectures. The ratio is used to weigh the score for a day (f (sp (b, day))).
Hence, a day where students do not spend more time in breaks than the minimum
number of minutes specified maximizes the score. The function f (·) assigns 1
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point for up to 2 hours spent at the university on a day (sp (b, day) ≤ 2), 2 points
for up to 4 hours, 3 points for up to 6 hours, 4 points for up to 8 hours, but only
2 points for days where a student is between 8 and 10 hours at the university.
Longer schedules are not permitted.

A second component in the daily score (score (b, day)) is the lunch break. A 1-hour
break was considered best. The scoring function br (·) would assign 0 points for
lunch breaks less than 30 minutes, 1 point for 30-45 minutes, 1.5 points for 45-60
minutes, 2 points for 60-75 minutes, and again a low number of points for longer
breaks. Students could also exclude schedules with a break less than a certain
time, say 30 minutes.

The daily scores are then multiplied by the priority of the day [1..5]. If students do
not have to visit the university at day d, they get a fixed score of 30 for this day.
The overall score of a bundle b is the sum of the score (b, d) for all weekdays. As a
result of this scoring rule, the more days the student can stay at home, the higher
is the score of this bundle. As a simplified example, if a student had to come to
the university on three different days to attend one course only, this bundle would
get a score of less than 25, while if he could attend all courses on a single day
with minimal breaks, this will get an overall score of more than 80 (for these three
days).

In other words, the scoring rule will place bundles that use a minimal number of
days (ideally the most preferred days) with only a few breaks but a one hour lunch
break on top of the preference list. This would minimize the commute time and
maximize the contiguous time a student can devote to learning or work. If the
breaks between courses grow larger or courses take place on different or more days,
this decreases the score. Ties are not impossible but almost never occur such that
the algorithm typically generates a strict ranking of the feasible bundles.

Even if it is a fair assumption that students have quite homogeneous preference
structures, there might be some special cases we cannot cover with such a scoring
rule. Therefore we give the students the possibility to adjust the outcome of this
scoring procedure. On the ranking page, we display the 30 top rated pre-ranked
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bundles and the students can adapt this ranking manually, go back to the previous
screen and adapt the input parameters, or just accept the ranking with a single
click (see Figure 3.7). Note that ≈ 90% of the students received one of their top
ten ranked bundles and only a few students received a bundle with a rank less than
30. So, if a student inspects and confirms the ranking of the first 10-30 bundles,
this covers the most important quantile of the overall ranking list. We generated
a ranking over 200 bundles for each student in advance based on the pre-specified
parameters and further preferences only if necessary.11

Figure 3.7: Page with top-ranked bundles

So far, we described the user interface for the winter term 2017/18. The user
interface in the summer term 2017 required students to explicitly drag and drop
11Since the processor load of our server was low with this setting, we increased the number of

generated bundles per student to 400 in WS 2018/2019 and gave the students the opportunity
to rank the top 40 bundles.
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the pre-ranked bundles on a screen. This was considered tedious such that in the
winter term the generated ranking was suggested to students right away without
any drag-and-drop activies required and could be confirmed without much effort.
The main web page and the main steps students have to take are summarized in
Figure 3.8.

Figure 3.8: Process to rank-order bundles
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3.3.3 Challenges of Course-Level Scoring

Ranking an exponential set of bundles is a general issue in combinatorial assign-
ment problems, and one might ask if alternative methods are available. Budish
et al. (2017) describes the preference elicitation used at the Wharton School of
Business. Students could report cardinal item values on a scale of 1 to 100 for any
course they were interested in taking. In addition, they could report adjustments
for pairs of courses, which assigned an additional value to schedules that had both
course sections together. With this information, courses were scored and trans-
formed into an ordinal ranking over feasible schedules. The authors argue that
they felt that “adding more ways to express non-additive preferences would make
the language too complicated.” Wharton also provided a decision support tool list-
ing the 10 most-preferred bundles, which allowed students to inspect top-ranked
schedules and modify the cardinal values.

Two problems make this method challenging to apply. First, the ranking is sensi-
tive to minor changes in the weights, which is a well-known issue in multi-criteria
decision making with additive value functions. Evaluation is characterized by a
substantial degree of random error, and the amount of error tends to increase as
the decision maker attempts to consider an increasing number of attributes (or
courses in our case) (Bowman, 1963; Fischer, 1972). Difficulties in the calibra-
tion of scores for each course can lead to substantial differences in the resulting
ranking.

Second, and more importantly, significant non-linearities arise due to the timely
preferences of students in the assignment of tutorials, making it impossible to
describe the preferences via a course-level utility function as proposed by Budish
et al. (2017). Even if three tutorials get a high number of points, this does not
mean that their combination is preferable by a student as these tutorials might be
on different days or have long breaks inbetween.

To investigate if the method proposed by Budish et al. (2017) is applicable for our
allocation problem, we translate the ranking of bundles into a set of inequalities
with weights (w) as variables. Following revealed preference theory (Mas-Colell
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student 1 student 2 student 3 student 4
min lunch time 45 min 0 min
time ranges 8am to 6pm 10am to 6pm
feasible days (score) Mo(2), Tu(4), We(5), Th(4), Fr(1) Tu(5), We(5), Th(2) Mo(5), Tu(3), We(5), Th(3) Mo(5), Tu(5), We(5), Th(2), Fr(1)
# of bundles 8503 4120 4425 12370
err (ε) ≈ 0.005 ≈ 0.004 ≈ 0.004 ≈ 0.005

Table 3.1: Parameters of the (REV) on the data for the winter term.

et al., 1995), we use these inequalities to understand whether there is any set of
weights that would allow to describe the ranking using a utility function ∑

i∈C
biwi+∑

i,j∈C
j>i

bibjwij. The function r(b) describes the rank of a bundle, while b is a binary

parameter vector with each component bi ∈ {0, 1} showing whether a course i ∈ C
is part of a bundle or not. The objective function minimizes the sum of error
variables ε in (REV). If there is any set of weights that could reflect the ranking
of bundles in our experiments without these error variables, the resulting optimal
objective value would be zero. For every violation of a constraint one has to
increase the respective error variable to a positive value.

Min
s.t.

err (ε) = ∑
b∈B

εb + ∑
i,j∈C
j>i

εij (REV)

∑
i∈C

biwi + ∑
i,j∈C
j>i

bibjwij + εb ≥
∑
i∈C

b′iwi + ∑
i,j∈C
j>i

b′ib
′
jwij ∀b, b′ : r (b′) = r (b) + 1

wi + wj + wij + εij ≥ 0 ∀i, j ∈ C, j > i

wi ∈ [0, 1] ∀i ∈ C
wij ≥ −2 ∀i, j ∈ C, j > i

εb, εij ≥ 0 ∀i, j ∈ C, j > i, b ∈ B

We solved the linear program for a large number of student preferences in our
environment, and none of the problems were feasible. Table 3.1 shows the param-
eters, the number of generated bundles as well as the respective objective function
value of (REV) for the different sample preferences.

We had preferences ranking 4000 to 12000 bundles for the courses of the win-
ter term. None of these settings could be solved with objective value zero, that
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is, the generated preference lists are not representable with a linear model with
adjustment-terms used by Budish et al. (2017). Even if it was possible to find such
a vector of course-level weights, it would probably be very difficult to parametrize
by students. The way Budish et al. (2017) elicit preferences might be sufficient for
settings, where students only are interested in a very small subset of groups of the
courses. However, assuming that students are able to adjust weights for up to 50
groups per course is utopian.

Eliciting preferences for hundreds of bundles is a challenging problem, but the
quality of any mechanism for combinatorial allocation problems depends crucially
on this input. There will be differences in the type of decision support one can
provide in various types of applications. However, it is typically important that
the timely preferences for students are captured.

3.4 Empirical Analysis

In Section 3.2.2 we have summarized first-order design desiderata for assignment
problems: strategy-proofness, fairness, and efficiency. Now we introduce second-
order design goals and respective metrics allowing us to compare the assignments
of BPS and FCFS empirically. Then we provide numeric results and summarize
the outcomes of a survey we conducted after the matching.

3.4.1 Metrics

Apart from efficiency, fairness, and strategy-proofness, popularity was raised as a
design goal. An assignment is called popular if there is no other assignment that
is preferred by a majority of the agents. Popular deterministic assignments might
not always exist, but popular random assignments exist and can be computed
in polynomial time (Kavitha et al., 2011). However, Brandt et al. (2017) prove
that popularity is incompatible with very weak notions of strategy-proofness and
envy-freeness, but it is interesting to understand the popularity of BPS vs. BRSD.
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In our empirical evaluation we analyze whether BPS or FCFS are more popular.
To measure popularity we first define the function φi (b, b′) : B × B → {±1, 0}
associated with the preference relations:

φi (b, b′) =


+1 if b �i b′

−1 if b′ �i b
0 else

(3.4)

Definition 3.25: Popularity. A random assignment p ∈ ∆ is more popular than
an assignment q, denoted p I q, if ρ (p, q) > 0 with

ρ (p, q) =
∑
i∈S

∑
b,b′∈B

pib · qib′ · φi (b, b′) (3.5)

A random assignment p is popular, if @q ∈ ∆ : q I p.

Apart from popularity, the size and the average or median rank are of interest.
The size of a matching describes the number of matched agents. The average rank
is only meaningful in combination with the size of the matching, because a smaller
matching could easily have a smaller average rank. We report the average rank,
because it has been used as a metric to gauge the difference in welfare of matching
algorithms in Budish et al. (2017) and Abdulkadiroğlu et al. (2009), two of the
few experimental papers on matching mechanisms.

The profile contains more information as it compares how many students are (frac-
tionally) assigned to their first rank, how many to their second rank, and so on.
The profile of two matchings is not straightforward to compare. We want to com-
pare multiple profiles based on a single metric, and decided to use a metric similar
to the Area under the Curve of a Receiver Operating Characteristic in signal pro-
cessing (Hanley and McNeil, 1982), which was already used by Diebold and Bichler
(2017). The Area Under the Profile Curve Ratio (AUPCR) is the ratio of the Area
Under the Profile Curve (AUPC) and the total area (TA) and is scaled between
0 and 100%, where the AUPC describes the integral below the profile curve. The
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AUPCR up to a specific rank r is equal to the probability that a matching mech-
anism will match a randomly chosen student at least to his r-th preference.

Definition 3.26: AUPCR (Diebold and Bichler, 2017). Let C be the possible
courses with c ∈ C and Q be the sum of all capacities, regarding the students i ∈ S
the AUPCR is defined as follows:

TA (M) = |C| ·min {|S| , Q}

AUPC (M) =
|C|∑
r=1
|{(i, c) ∈M | rank (i, c) ≤ r}|

AUPCR (M) = AUPC (M)
TA (M)

For the allocation of bundles we have to rewrite the definition of the AUPCR.

Lemma 3.27: AUPCR.With R denoting the number of possible ranks and b ∈
B, the AUPCR can be rewritten as:

AUPCR (M) = 1
R

R∑
r=1

|{(i, b) ∈M | rank (i, b) ≤ r}|
|S|

Proof. Since students are interested in seats for more than one course, the sum
of capacities of all selectable courses (tutor groups) is significantly higher than
the number of participating students, therefore min {Q, |S|} = |S|. For matching
problems with single unit demand, the number of possible ranks equals the number
of courses, i.e. |C| = R. That is, we can rewrite TA (M) = R · |S|. Since the
students do not rank single courses but bundles of courses, we have to replace
c ∈ C by b ∈ B. We use this to get our conclusion:

AUPCR (M) = AUPC (M)
TA (M) =

∑R
r=1 |{(i, b) ∈M | rank (i, b) ≤ r}|

R · |S|

= 1
R

R∑
r=1

|{(i, b) ∈M | rank (i, b) ≤ r}|
|S|
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3.4.2 Empirical Results

The first application from the summer term 2017 comprised 1415 students and 67
courses (see Table 3.3). Overall, we had a list of 5847 different bundles for the
summer term. We simulated FCFS via BRSD on the preferences collected for the
BPS. BPS is weakly strategy-proof and in such a large application it is fair to
assume that students do not have sufficient information about the preferences of
others. In the survey, we will see that a small proportion of the students reported
that they deviated from truthful bidding and did not report some of their preferred
time-slots. However, taking the preferences for bundles of tutor groups elicited
for the BPS allows for a comparison with BRSD. To compare the result of BPS
and BRSD we actually would have to run the BRSD for all permutations of the
students. Note that computing probabilities of alternatives in RSD explicitly is
#P -complete (Aziz et al., 2013). We ran BRSD 1000 to 1,000,000 times with the
same preferences but random permutations of the order of students and derived
estimates for the different metrics. Since these results are very close, one can
assume, that 1Mio runs of BRSD generate a good approximation to the (real)
induced random matching.

Popularity

For the data from the summer and the winter term, BPS is more popular than
BRSD(1000000). 636 students prefer BPS to FCFS, while 96 students prefer FCFS
to BPS. 683 students are indifferent (see Table 3.2). A positive popularity score
as described in Definition 3.25 means that BPS is more popular than the BRSD
outcome and the score for BPS is between 1.78 and 3.41 for the three instances
(compared to BRSD(1000000)). For the data from the winter term 754 students
prefer BPS to FCFS, while 120 students prefer FCFS to BPS. 862 students are
indifferent (see Table 3.2). Table 3.2 summarizes popularity and stochastic domi-
nance for the three experiments. The syntax for the SD-preference is the number
of students preferring (BPS|BRSD(x)). It shows that BPS is preferable to BRSD
according to SD-preference.
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Metric BRSD(1000000)
popularity summer 17 2.73635
popularity winter 17/18 3.41499
popularity winter 18/19 1.78421
SD-prefer summer 17 (636|96)
SD-prefer winter 17/18 (754|120)
SD-prefer winter 18/19 (767|87)

Table 3.2: Popularity and stochastic dominance of BPS vs. BRSD

Rank and Size

Table 3.3 reports that in terms of average rank, average size, and the probability
of being matched to an acceptable bundle, BPS achieves higher scores in the sum-
mer term. Only the AUPCR for BRSD(1000000) is slightly better than for BPS.
The computation times were negligible for BRSD (0.007 seconds per run). BPS
required 0.12 seconds computation time with additional 6 minutes for the lottery
algorithm in the summer term. This shows that BPS is a practical technique even
for large assignment problems.

Metric BPS BRSD(1000) BRSD(1000000)
exp. rank 2.20163 2.20867 2.20835
exp. size 1086.58 1085.84 1085.79

prob. match 0.767901 0.76738 0.767345
AUPCR 0.747419 0.74679 0.750782
weak envy 0 380 381
strong envy 0 981 1064

Table 3.3: Summary statistics for the summer term 2017.

In the BPS outcome 72.7% of the students receive an assignment ranked in their
top ten while in BRSD 72.6% receive such an outcome (see Table 3.4 for BPS and
3.5 for BRSD with 1 mio. permutations of the students). Table 3.4 reports the
probability of being matched to a particular rank and the AUPC in percentage for
BPS, and Table 3.5 shows the rank profile for BRSD.
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Rank 1 2 3 4 5 6 7 8 9 10
Prob match(%) 54.174 5.691 4.542 2.025 1.506 0.935 1.167 0.940 1.141 0.613
AUPC in (%) 54.174 59.865 64.407 66.432 67.938 68.874 70.041 70.981 72.122 72.735

Table 3.4: Rank profiles for BPS in summer term 2017.

Rank 1 2 3 4 5 6 7 8 9 10
Prob match(%) 53.973 5.725 4.538 2.053 1.529 0.931 1.181 0.948 1.150 0.610
AUPC in (%) 53.973 59.697 64.236 66.289 67.818 68.748 69.929 70.877 72.027 72.637

Table 3.5: Rank profile BRSD(1000000) in summer term 2017.

The second application in the winter term 17/18 included 1736 students and 66
courses. Overall, we had a list of 20,845 different bundles for the winter term.
Again, BPS achieved better results than BRSD in all metrics (see Table Table 3.6).
In the BPS outcome 89% of the students receive an assignment ranked in their
top ten while in BRSD 88.9% receive such an outcome (see Table 3.7 for BPS and
Table 3.8 for BRSD with 1 mio. permultations of the students). The computation
times were again very low. BPS required 0.382 seconds, but the lottery algorithm
around 30 minutes due to the higher number of bundles generated in the winter
term.

The third application in the winter 18/19 term included 1683 students and 68
courses. Overall, we had a list of 27,677 different bundles for the winter term.
Again, BPS achieved better results than BRSD in all metrics, apart from AUPCR
(see Table 3.9). In the BPS outcome 87.27% of the students receive an assign-
ment ranked in their top ten while in BRSD 87.21% receive such an outcome (see
Table 3.10 for BPS and Table 3.11 for BRSD with 1 mio. permultations of the
students). The computation times were again very low. BPS required 0.42 seconds
and the lottery algorithm around 30 minutes.

Envy

Our experiments in the summer and the winter term confirm the theoretical result
that BPS is (strongly) envy-free. BRSD is neither weakly nor strongly envy-free.
In the summer term, 1064 students do not fulfill the envy-freeness condition (see
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Metric BPS BRSD(1000) BRSD(1000000)
exp rank 1.97372 1.9784 1.97873
exp size 1603.01 1601.03 1600.84

prob match 0.923394 0.922253 0.922142
AUPCR 0.889512 0.888184 0.888058
weak envy 0 427 451
strong envy 0 1050 1202

Table 3.6: Summary statistics for the winter term 2017/2018.

Rank 1 2 3 4 5 6 7 8 9 10
Prob match(%) 73.596 7.083 3.392 1.660 1.041 0.698 0.465 0.447 0.366 0.299
AUPC in (%) 73.596 80.678 84.070 85.730 86.772 87.470 87.935 88.381 88.747 89.047

Table 3.7: Rank profiles for BPS in winter term 2017/2018.

Rank 1 2 3 4 5 6 7 8 9 10
Prob match(%) 73.452 7.046 3.382 1.673 1.040 0.704 0.486 0.443 0.358 0.307
AUPC in (%) 73.452 80.497 83.879 85.553 86.593 87.297 87.783 88.226 88.584 88.891

Table 3.8: Rank profile BRSD(1000000) in winter term 2017/2018

Metric BPS BRSD(1000) BRSD(1000000)
exp rank 2.55189 2.56632 2.56692
exp size 1549.07 1548.19 1548.67

prob match 0.92042 0.919899 0.920181
AUPCR 0.880628 0.879742 0.895603
weak envy 0 395 491
strong envy 0 1034 1243

Table 3.9: Summary statistics for the winter term 2018/2019.

Rank 1 2 3 4 5 6 7 8 9 10
Prob match(%) 67.837 7.938 4.235 2.279 1.768 0.814 0.757 0.705 0.395 0.546
AUPC in (%) 67.837 75.775 80.010 82.289 84.057 84.871 85.628 86.334 86.728 87.274

Table 3.10: Rank profiles for BPS in winter term 2018/2019.

Rank 1 2 3 4 5 6 7 8 9 10
Prob match(%) 67.723 7.972 4.248 2.280 1.768 0.820 0.755 0.693 0.403 0.546
AUPC in (%) 67.723 75.695 79.944 82.224 83.992 84.812 85.567 86.261 86.664 87.210

Table 3.11: Rank profile BRSD(1000000) in winter term 2018/2019
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Definition 3.15), from which 381 students do not even fulfill the weak envy-freeness
condition (see BRSD(1000000) in Table 3.3). Similarly, for the winter term 17/18
1202 students do not SD-prefer their outcome over the outcomes of every other
student, and 451 of those students even prefer an outcome of another student (see
BRSD(1000000) in Table 3.6). The results for the winter term 18/19 confirm this
observation (see Table 3.9).

3.4.3 The Lottery of the Summer Term Instance

We already have discussed that we still have to decompose the solution of BPS
into a lottery over integral solutions, to choose a deterministic allocation. This
subsection presents exemplary with the Data from summer term 2017, how such
a lottery is structured, and how significant the problem of overallocation is in
practice.

Figure 3.9 shows the lottery resulting from decomposing the BPS solution de-
scribed in Table 3.3 into a lottery over approximative feasible integral solutions
via Algorithm 3.5. We see that most solutions are close to the fractional solution
in terms of number of allocated students (remember: the size of the BPS solution
is 1086.58).

One interesting question is how the solutions with a bigger size differ from the
matchings with a lower number of allocated students. We computed the aver-
age ranks of the deterministic solutions and compared them with the size of the
particular matchings.

Figure 3.10 shows the distribution of the different matchings in the lottery with
respect to size and average rank. In the first fourth of the x-axis (the size of the
matching) the variance is high for the average rank but the pattern gets clearer
for a size higher than 1150 – there is a trade-off between size of the matching and
the average rank of the allocated students.
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Figure 3.9: The lottery: Probabilities (λ) and size of the different deterministic
matchings returned by Algorithm 3.5.

Figure 3.10: Average rank vs. size of the matchings in the lottery.
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In Section 3.2.3 and Section 3.2.4 we discussed that the capacity constraints of the
courses might be violated. In the reported instance, ` = 4. Hence, the worst case
violation of these constraints is 3.

For the computation, we run the lottery with ε = 2.0. Let ex(k),L be the number
of goods that experienced a supply violation by L units in the (integral) solution
x(k), λ(k) the probability of matching x(k) and

EL(Z) =
∑

x(k)∈Z
λ(k) · ex(k),L (3.6)

shows how often an overallocation of exact L seats occurs in the set of the lottery
Z on average. With the settings mentioned above we receive:

E1 (X) = 5.36 E2 (X) = 0.64 E3 (X) = 0.07

We see that an overallocation by 3 seats rarely happens. Even a violation of 2 seats
occurs on average only in 0.64 of the 67 courses. An overallocation of 1 seat occurs
on average in 5.36 courses. In the actual application this overallocation did not
even require special procedures and course organizers could typically accommodate
one or two more students without problems.

The violations also barely change for results with ε = 1.0:

E1 (X) = 5.23 E2 (X) = 0.9 E3 (X) = 0.06

We informed the course organizers before the matching, that small violations of
the capacities are possible and no one had a problem with that. If the capacities
of some courses were tight, one could solve the problem, by defining a smaller
capacity for those courses. Theoretically one had to reduce the capacities by `− 1
(3 in our case). However, our empirical results suggest, that a reduction of one
seat should be sufficient to ensure a feasible allocation with a high probability.
However, the reduction of the capacities comes of cost of a lower efficiency of the
matching in general.
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3.4.4 Survey Results

After the students were assigned to the tutor groups and the courses started, we
conducted a survey among the students using a 5-point Likert scale (1 = strongly
agree, 2 = agree, 5 = strongly disagree). 169 students out of 1736 students
participated in the survey in the winter term and we report their responses in
Table 3.12. Note that the students were exposed to FCFS in other semesters and
now participated in BPS, which allowed them to compare both mechanisms.

Students were not forced to participate and we made clear that the feedback was
used for research purposes only. The responses indicate that the majority of the
students responding found the system easy to use and that they could express their
preferences well. More than 50% agreed (2) or strongly agreed (1) to questions 1 to
6. A majority also considers the system as fair (question 7), but almost 22% of the
respondents also disagreed to this statement. Note that students might have had
an understanding of fairness that is different from envy-freeness or equal treatment
of equals. For example, some students felt that in FCFS they could improve their
assignment by making sure that they are among the first to register. This was
perceived as fair as the additional effort would lead to higher chances of getting
their best allocation, compared to those students who were not as involved.

Question 1 2 3 4 5
1 I had no problems to select my time ranges in the weekly schedule 34.9 34.9 11.8 9.5 8.9
2 The ranking of the generated sets of time-slots was easy 26.6 26.6 18.9 14.8 13.0
3 The instructions on the matching system were sufficient 25.4 37.3 18.3 10.1 8.9
4 The generated sets of tutorial groups met my expectations 37.9 27.8 10.1 9.5 14.8
5 I was able to express my preferences on sets of tutor groups well 42.6 24.9 13.6 7.7 11.2
6 I consider the way bundles are allocated through the matching system as fair 32.5 27.2 18.3 5.9 16.0
7 I am satisfied with the matching outcome 45.0 17.0 9.5 6.5 21.9
8 I felt like I had control over my schedule 29.0 18.9 13.0 17.2 21.9
9 I was expressing my preferences truthfully 72.4 13.4 4.2 3.6 6.5
10 I was strategically hiding some of my most preferred time-slots 5.3 4.7 8.3 13.6 68.0
11 I was strategically hiding some of my least preferred time-slots 16.0 12.4 16.0 12.4 43.2

Table 3.12: Survey results, values in %

62.1% of the respondents were satisfied with the outcome (agreed or strongly
agreed), while 28.4% were not. It is unclear how those students who did not
respond perceived the outcome, but there is a tendency that students who are
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unhappy with the outcome rather respond than students who got a high ranked
bundle. Hence, the sample of students who respond might be slightly biased to-
wards unsatisfaction. The ranking and profile information reported earlier provides
alternative information about satisfaction of students with the outcome.

85.8% of the respondents reported that they were expressing their preferences
truthfully in BPS (agreed or strongly agreed), while around 10.1% did not (dis-
agreed or strongly disagreed). 10% were also indicating that they were hiding some
of their most preferred time-slots, while even 28.4% agreed or strongly agreed to
the statement that they were hiding some of their least preferred time-slots.

Still, the fact that a significant part of the students indicate that they did not
report preferences truthfully is a tangible difference to FCFS. In FCFS, students
only provide their single best bundle at the point in time when they log in. This
is simple, intuitive, and obviously strategy-proof. This property has to be traded
off against the envy-freeness in BPS.

In a final question students were asked whether they prefer FCFS or BPS: 106
students (62,7%) preferred BPS, while 63 (37.3%) preferred FCFS. To understand
the concerns of those students who preferred FCFS, it is useful to look at the
written comments. Some students who provided comments were unhappy with
the outcome, others were unhappy about the effort to rank-order their bundles.

3.4.5 Discussion of Differences

The results from our field experiments and the survey reveal a number of inter-
esting insights. Overall, BPS dominates BRSD on all metrics from our empirical
evaluation in all field studies. It has a better average rank, a higher average size
and a higher probability of matching, and it does not exhibit envy. However, the
differences in average rank, average size, and the profile are small, which is in-
teresting given the fact that only a small number of preferences per student are
considered via BRSD (FCFS).
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There are a number of reasons that help explain the close performance of BPS
and BRSD in these metrics. First, Che and Kojima (2010) find that random serial
dictatorship and probabilistic serial become equivalent when the market becomes
large, i.e. the random assignments in these mechanisms converge to each other
as the number of copies of each object type grows, and the inefficiency of RSD
becomes small. Our empirical results suggest that differences might also be small
in large combinatorial assignment markets with limited complementarities.

Second, ordinal preferences do not allow to express the intensity of preferences.
Suppose there are two students who both prefer course c1 to c2, each having one
course seat only. No matter who gets course c1, the average rank and size of
the matching as well as the profile will be the same even though one student
might desperately want to attend c1, while the second student only has a mild
preference for c1. Without cardinal information about the intensity of a preference
the differences in aggregate metrics can be small.

Third, an earlier comparison of FCFS with a deferred acceptance algorithm by
Diebold et al. (2014) also showed that FCFS yields surprisingly good results. While
the average rank of FCFS was worse, the size of the matching resulting from FCFS
was significantly larger compared to that from the deferred acceptance algorithm.
For the combinatorial assignment problem, BPS actually had a larger average size
than FCFS in all studies. For applications of matching in practice it is important
to understand these trade-offs.

3.5 Combinatorial Assignment Problems with
Cardinal Utilities

In this section we introduce an additional application that can be modeled as
combinatorial assignment problem. However, here the agents are able to express
cardinal utilities over different bundles. We first motivate and model the problem,
and show how the approach of Nguyen et al. (2016) can be applied in this setting.

69



3 Matching with Complementarities

Afterwards we discuss potential efficiency losses if the capacities of the objects are
tight.

3.5.1 Efficient Coordination in Retail Logistics without Money

According to a survey among more than 500 transportation companies in Germany,
18% of them have an average waiting time of more than two hours and 51% have an
average waiting time between one to two hours at each warehouse (Bundesverband
Güterkraftverkehr Logistik und Entsorgung e.V., 2013). Such waiting times are a
significant problem for carriers and warehouse operators. A recent study among
778 truck drivers by the German Federal Office for Transportation reports that
the waiting times even increased in the past 5 years (Bundesamt für Güterverkehr,
2018). In another study, the German Federal Office for Transportation describes
the uncoordinated arrivals of trucks as the main reasons for waiting times (Bun-
desamt für Güterverkehr, 2011). Adding capacity with additional loading docks
at warehouse sites requires substantial investments and can also be infeasible in
urban areas.

Overall, the lack of coordination causes substantial inefficiencies in retail trans-
portation logistics. The carriers decentrally solve vehicle routing problems and
compute optimal routes, but they do this in an uncoordinated manner. The ware-
houses face capacity planning problems for their loading docks because of the
random carrier arrival. If all information about supplier preferences for differ-
ent routes and warehouse capacities was available, then a central clearing house
(potentially organized via a booking platform) could select routes and allocate
time-slots to carriers such that waiting times are minimized.

Some retailers use First-Come First-Served (FCFS) time-slot management systems
and charge a fixed price for each slot. However, the adoption is low as margins
for carriers are low and they are not willing to pay for reservations. Moreover, the
simple FCFS mechanism collects only little information about carrier preferences
(a single bundle of time-slots on a route) such that one cannot expect an efficient
allocation of the available capacities at the warehouses. However, in most cases
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there is not even an FCFS mechanism in place that would alleviate the long waiting
times that arise (Bundesverband Güterkraftverkehr Logistik und Entsorgung e.V.,
2013). Karaenke et al. (2018) analyze auction mechanisms, but the potentially high
payments of carriers for the reservations again constitute a barrier to adoption in
the field. So, the question we ask is, whether efficient coordination can also be
facilitated without payments by the carriers.

We consider a single-period coordination problem with warehouses K, carriers I
(agents), and intra-day time-slots T . The locations of warehouses and carriers
are given within the transportation network with known (average) travel distances
and travel times. The service capacity of warehouses (loading docks) is modeled
as a multidimensional knapsack problem. In each time-slot t ∈ T each warehouse
k ∈ K has a capacity of ck =

(
ck1, . . . , ck|T |

)
. That is, warehouse k can service up

to ckt trucks in time-slot t. We call a pair o = (k, t) of a warehouse and a time-slot
an object with capacity qo, and define O as the set of all objects.

Carriers have to deliver freight to a warehouse, pick it up there, or both. We
assume that each carrier has a truck with sufficient capacity to fulfill the orders.
The truck starts at the depot and returns to the depot again after (un)loading his
freight at the retailers’ warehouses. Within the reserved time-slots a carrier can
(un)load his freight.

The carriers i ∈ I have valuations (cardinal preferences) vib for bundles b ∈ B ⊆
{0, 1}|O| of objects represented as vectors where bo = 1 if object o is in the bundle.
A bundle b encodes the sequence of visited warehouses and the respective time-
slots. Carriers are allowed to submit preferences for as many bundles they want,
i.e., they can express preferences for alternative routes and corresponding time-
slots.
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Similar to Section 3.2 we can model the winner determination problem (WDP) of
the coordinator as an IP. The only difference is that we now have cardinal utilities
and therefore also can formulate a cardinal objective function.

Max
s.t.

∑
i∈I,b∈B

vibxib (WDP)

∑
i∈I,b∈B

boxib ≤ qo ∀o ∈ O (supply)

∑
b∈B

xib ≤ 1 ∀i ∈ I (demand)

xib ∈ {0, 1} ∀i ∈ I, b ∈ B (binary)

The objective is to maximize the sum of valuations of the accepted bundles in
(WDP), i.e., to maximize the social welfare. The (supply) constraint ensures that
the warehouse capacities are not exceeded for allocated bundles for each time-slot.
Constraint (demand) ensures that each carrier wins at most one bundle. Carriers
who won one of their tours have reservations for the respective time-slots at the
loading docks, while losing carriers have to queue for service with lower priority.
This is a weighted set packing problem, which is known to be NP-hard.

According to Theorem 3.23 one only needs to find an envy-free fractional solution
to (WDP) to construct a mechanism with desireable properties. A fractional
solution to (WDP) can easily be found by solving the LP-relaxation of this IP.
However, this solution might not be envy-free in general. Therefore one has to
add additional constraints to ensure envy-freeness. An agent i ∈ I envies another
agent j ∈ I if i prefers the assignment of j over his own assignment. We formalize
this as a linear inequality: agent i envies agent j iff

∑
b∈B

vibxib <
∑
b∈B

vibxjb. (envy)

With this we can introduce the (no envy)-constraint for every pair of agents i, j ∈
I, i 6= j:
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∑
b∈B

vib (xib − xjb) ≥ 0 ∀i, j ∈ I. (no envy)

With these additional constraints, one can define a mechanism to solve the coor-
dination problem with cardinal utilities: The first step is to solve the problem

x∗ = argmax

∑
i,b

vibxib | (supply), (demand), (no envy), xib ∈ R≥0

 .
Because of the (demand)-constraints every variable xib is in [0, 1] and the sum
over all variables referring to the same agent is not greater than 1. Hence, we
can interpret the single variables as probabilities and the fractional solution x∗

as a random matching. Now we can use Algorithm 3.5 to create a lottery over
integral solutions respecting (demand) and the relaxed version of (supply). This
mechanism is referred to MAXCU (maximizing cardinal utilities) introduced by
Nguyen et al. (2016). Let k = max {size(b) | b ∈ AccI} be the size of the biggest
acceptable bundle. With Theorem 3.23 we get directly:

Theorem 3.28: MAXCU.MAXCU returns a lottery that is envy-free and ef-
ficient in expectation, asymptotically strategy-proof, and that over-allocates each
object o ∈ O by at most k − 1.

3.5.2 Capacity Reduction

Even if overallocation of more than one unit rarely happens, there might be appli-
cations where even small violations of the capacity constraints are not permitted.
For those applications Nguyen et al. (2016) propose to reduce the capacities re-
spectively while calculating the fractional solution. That is, we decompose the
smaller x∗ and therefore ensure that even if the worst case violation happens, all
capacities are respected in all integer solutions. However, a capacity reduction af-
fects the efficiency. Therefore we analyze a multiplicative and an additive capacity
adjustment for MAXCU in this section.
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We consider the allocation problem (WDP). Let k = max {size(b) | b ∈ AccI}, the
size of the biggest acceptable bundle, be at most as high as the minimal capacity,
i.e. k ≤ qmin. That is, we consider problems with limited complementarities.

For the additive adjustment we subtract k−1 from each capacity qo. Since k ≤ qmin

the LP-relaxation is still solvable. For the multiplicative adjustment we need to
multiply a factor ko to every qo such that qo ·ko+k−1 ≤ qo for every object. That
is, ko ≤ qo−k+1/qo = 1− k−1/qo for every object o ∈ O. To ease the analysis we use
an uniform factor for the whole IP, i.e.

k = min
{
ko | o ∈ O

}
= 1− k − 1

qmin
. (3.8)

To estimate the potential efficiency loss due to the capacity reduction, we use
duality theory. Let OPTD be the optimal dual objective value without any ad-
justments and OPTWDP the optimal primal objective value. Since changes on the
right hand side of the primal program only affect the coefficients of the dual ob-
jective function, but not the dual feasible space, we can estimate the new optimal
dual objective value:

OPTD ≥ OPTD =
∑
i∈I

yi+
∑
o∈O

qo ·k ·yo ≥ k

(∑
i∈I

yi +
∑
o∈O

qo · yo
)

= k ·OPTD (3.9)

Every feasible solution of the dual describes an upper bound for the primal ob-
jective and because of strong duality the optimal solutions of the dual and primal
are equal. Hence, we can conclude for the objective value with multiplicative
adjustments (OPTWDP ) using (3.9):

k ·OPTD = k ·OPTWDP ≤ OPTWDP ≤ OPTWDP = OPTD (3.10)

Finally we compare the additive and the multiplicative adjustment. Let ÔPTD =∑
i∈I yi +

∑
o∈O (qo − k + 1) · yo be the optimal dual objective value of the problem

with additive adjustments. ÔPTD and OPTD only differ in the coefficients of the
supply-variables.
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ÔPTD =
∑
i∈I

yi +
∑
o∈O

(qo − k + 1) · yo =
∑
i∈I

yi +
∑
o∈O

(qo − (k − 1)) · yo

=
∑
i∈I

yi +
∑
o∈O

(
1− k − 1

qo

)
· qo · yo =

∑
i∈I

yi +
∑
o∈O

ko · qo · yo

≥
∑
i∈I

yi +
∑
o∈O

k · qo · yo = OPTD

(3.11)

That is, the problem with individual multiplicative adjustments ko for every o ∈ O
leads to the same objective value as with additive adjustments. However, the
problem with uniform multiplicative adjustments leads to a lower objective value.
With (3.10) we get:

k ·OPTWDP ≤ OPTWDP ≤ ̂OPTWDP ≤ OPTWDP (3.12)

Hence, if even small capacity violations are not permitted and the minimal ca-
pacities are at least as high as the maximal bundle size, a possible approach is
to subtract the worst case violation, k − 1, from each capacity constraint. We
leave open an empirical analysis of the efficiency loss and how one can improve
the approach by subtracting a smaller amount, such that the capacity constraints
are respected (only) with high probability.
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4 Truthfulness in Advertising?
Approximation Mechanisms for Knapsack

Bidders 12

In auction theory, bidders are traditionally modeled as payoff-maximizing individ-
uals via a quasilinear utility function (Krishna, 2009; Milgrom, 2004). If bidders
have such a quasilinear utility function the Vickrey-Clarke-Groves (VCG) mecha-
nism is the unique mechanism to implement maximum welfare in dominant strate-
gies (Green and Laffont, 1979). This specific assumption on the utility function is
important, because there exist no dominant-strategy incentive-compatible mecha-
nisms for general valuations (Gibbard, 1973; Satterthwaite, 1975). However, there
are markets where pure payoff-maximization is not the right assumption. For
example, a large number of papers on digital advertising auctions suggest that
automated bidders in such auctions rather maximize value subject to a budget
constraint as in a knapsack problem (Feldman et al., 2008; Berg et al., 2010; Zhou
et al., 2008; Lee et al., 2013; Chen et al., 2011; Zhang et al., 2014), which differs
from payoff maximization assumed in a quasilinear utility function.

In such display ad auctions individual user impressions on a website are auctioned
off. Typically, the advertising firm provides an intermediary, a demand-side plat-
form (DSP), with a budget for the overall campaign and a value or willingness-
to-pay for individual impressions. This value might be the profit from selling a
product, and a DSP is not allowed to bid beyond, because it would incur a loss even
12This chapter is based on Bichler and Merting (2018). All sections are mainly identical to the

respective parts of Bichler and Merting (2018).
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if the product got sold. The DSP provides autonomous agents bidding on behalf
of the advertiser. The advertising firm (or client of the DSP) typically considers
the overall budget ci as sunk cost devoted to a campaign. In other words, the task
of the DSP is to invest the campaign budget such that the advertiser i’s sum of
valuations of won items is maximized and the total payment for those items is not
higher than the budget constraint. We refer to such bidders as knapsack bidders
or bidders having a knapsack utility function and we will introduce them more
formally in Definition 4.1. In essence, quasilinear utility is a suitable model when
money continues to retain its value into the future. But if money has no value
after the current time period, then it makes sense to maximize value (rather than
surplus), subject to a budget constraint. Therefore, in business contexts where a
budget is an authorized maximum that a business unit may charge back to the
firm, but the firm has not given that sum of money to the business unit, knapsack
utility is an appropriate model. In this chapter, we focus on this knapsack util-
ity model and ask whether there are truthful mechanisms maximizing welfare if
bidders have such utility functions.

Knapsack utility functions are not only adequate for online markets where supply
or demand arrive dynamically over time, but also for conventional offline markets
where supply and demand are all present at the time when the market is cleared.
For example, bidders (advertisers) on a TV advertising market have similar char-
acteristics, but ad slots in the program of a TV station are typically sold for certain
periods of time such as every week, rather than dynamically whenever a new im-
pression arrives (Goetzendorff et al., 2015; Nisan et al., 2009). Media agencies
bidding in such auctions can also be modeled as knapsack bidders. Maximizing
value subject to a budget constraint is actually wide-spread and also assumed in
classic micro-economic demand theory (Mas-Colell et al., 1995, p. 50). So, our
analysis might be relevant for other domains as well, but we motivate the model
assumptions primarily from the literature on advertising markets.

Mechanism design theory typically imposes incentive-compatibility and individual
rationality as constraints such that the resulting mechanism provides incentives
to bid truthfully and participants do not make a loss (Borgers et al., 2015). To
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implement a social choice function means to define a mechanism where truthful
bidding is an equilibrium. Ideally, the equilibrium solution concept is prior-free,
i.e., an agent does not need assumptions about the type distribution. Dominant
strategy equilibria for deterministic mechanisms, and truthfulness-in-expectation
(TIE) for randomized mechanisms are two such solution concepts used in this
chapter.

Unfortunately, welfare maximization with quasilinear bidders appears to be an
exceptional environment where the social choice function (i.e., welfare maximiza-
tion) can be implemented in dominant strategies via the VCG mechanism. Also,
randomized mechanisms for general quasilinear preferences which are truthful-in-
expectation typically draw on the VCG payment rule (Lavi and Swamy, 2011).
However, the VCG payment rule would not incentivize truthful bidding when bid-
ders have a knapsack utility function as such bidders consider their budget as sunk
cost and do not value the discount.

A few papers study mechanism design with non-quasilinear utility models. Kazu-
mura and Serizawa (2016) shows that there is no multi-object auction mechanism
for heterogenous goods that is dominant strategy incentive compatible and Pareto-
efficient, even if only one bidder has multi-unit demands. Similarly, Baisa (2017)
shows that if bidders have multi-dimensional types, there is no mechanism that
satisfies (1) individual rationality, (2) dominant strategy incentive compatibility,
(3) ex-post Pareto efficiency, and (4) weak budget balance for homogenous goods.
The utility functions studied in this new line of mechanism design literature are
general. For example, Baisa (2017) only assumes that a bidder’s demand for the
good increases as her wealth increases for a constant price level and some level of
risk aversion.

Utility functions with more specific assumptions might allow for more positive re-
sults. Fadaei and Bichler (2017b) introduce a model of value bidders who maximize
the value of packages (bundles) of items J for which they are given financial limits
vi(S) reflecting their valuation that they must not overbid. The utility function of
a value bidder is ui (S) = vi (S) if pi (S) ≤ vi (S), and ui (S) = −∞ otherwise, with
S ⊆ J . The authors maximized the total bidder valuations and show that with a

79



4 Approximation Mechanisms for Knapsack Bidders

truthful and deterministic mechanism for value bidders only an n-approximation
can be achieved, where n is the number of bidders. For randomized mechanisms
they describe a complex mechanism with a O (

√
m) approximation ratio, where m

is the number of items.

Knapsack bidders are an important special case of value bidders where bidders only
have additive valuations up to an overall budget constraint they are given. They
want to maximize the total value for the budget they invest. The main difference
from value bidders to knapsack bidders is that the value for bundles of objects is
additive, and therefore the results from Fadaei and Bichler (2017b) extend. This
assumption allows for more positive results, as we will see later.

Apart from item-level valuations there are a few assumptions where advertising
markets in the field differ from the value bidders described in Fadaei and Bichler
(2017b): (1) bidders can only bid on objects individually, (2) markets are large
with many items and many bidders, and (3) prices are determined by a second-
price rule and considered as exogenous random variables by the bidders. Already
Roberts and Postlewaite (1976) showed that in large markets the ability of an
individual player to influence the market is minimal, so bidders should behave as
price-taking agents. This is well reflected in the literature on bidding in display
ad auctions (see for example Lee et al. (2013); Chen et al. (2011); Zhang et al.
(2014)). Actually, prices for an impression are very volatile across the day and
across different types of impressions and therefore very hard to predict in these
markets (Ghosh et al., 2009; Cui et al., 2011). We will use the term advertising
model to refer to large markets with many knapsack bidders and many objects,
where bidders consider prices as exogenous and behave as price-takers.

Even in a model where bidders cannot influence prices, truthful mechanisms are
difficult to construct as we will show. Bidders have a choice as to which objects they
bid on and which objects they do not. This is actually a key strategic decision
of DSPs in display ad auctions with millions of impressions per day. Targeting
strategies have assumed center stage (Levin and Milgrom, 2010; McAfee, 2011),
and they describe this strategic choice of impressions by a bidder (Bergemann and
Bonatti, 2011). Cream skimming strategies refer to buying up the best impressions
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promising the highest value for a particular advertiser, while lemons avoidance
refers to strategies avoiding the worst impressions (Abraham et al., 2013). In
other words, bidders only bid on high-valued impressions, but they pretend to
have no value for low-valued impressions or items, as they promise a lower return
on investment. If all bidders only revealed their preferences for a small set of high-
valued impressions, this might lead to a few good matches, but would also have a
negative impact on efficiency and seller revenues overall (Levin and Milgrom, 2010).
Many impressions would remain unsold. Our advertising model is motivated by
these real-world observations.

4.1 Contributions

In what follows, we want to study if there are truthful mechanisms with a good ap-
proximation ratio for knapsack bidders in the advertising model. We differentiate
between offline markets and online markets. In offline markets the auctioneer first
collects the bids of all bidders for all items before computing an allocation (and
prices). Indeed, bidders are present all the time in online markets too, however,
the items show up over time and have to be allocated instantly. That is, at the
moment of allocation, the auctioneer has only the information about the bids for
prior and current items, but cannot say anything about items appearing in the
future.

We focus on offline markets, because if there are no truthful mechanisms with
good approximation ratios for this environment, then we also cannot find respective
online mechanisms. Truthful online mechanisms are significantly more challenging,
as we will discuss in the conclusions. In the offline model we actually get a positive
result. We leverage insights from matching theory and use randomization in the
allocation rule to incentivize truthful bidding. Interestingly, for knapsack bidders
there is a randomized 4-approximate mechanism, which is much better than the
n-approximation for the general case of value bidders, who have a budget for each
bundle and cannot overbid.
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4.2 Related Literature

It is well-known that with general valuations, any non-dictatorial mechanism with
at least three possible outcomes is not strategy-proof (Gibbard, 1973; Satterth-
waite, 1975). Gibbard (1977) showed that every strategy-proof mechanism is a
lottery over deterministic mechanisms each of which either has not more than two
alternatives or is dictatorial. Even with more specific assumptions on the utility
functions, truthful mechanisms appear to be restricted to sequential dictatorships.
For example, a number of papers analyze specific assignment problems and bid-
ders with responsive preferences, and show that only sequential dictatorships are
strategy-proof and Pareto-optimal (Svensson, 1999; Papai, 2001; Ehlers and Klaus,
2003; Hatfield, 2009).

Procaccia and Tennenholtz (2009) introduced the technique of welfare approxi-
mation as a means to derive truthful approximation mechanisms without money.
There have been positive results for environments with limited private information.
For example, a few related papers analyze truthful mechanisms without money for
a strategic variant of the generalized assignment problem (Dughmi and Ghosh,
2010; Chen et al., 2013; Fadaei and Bichler, 2017a). The assumptions in these
models are different in a number of details leading to differences in the algorithms,
but they also use approaches from matching and approximation as we do in our
model. Singer (2010) describes the case of procurement auctions in which sellers
have private costs, and the auctioneer aims to maximize a utility function on sub-
sets of items, under the constraint that the sum of the payments provided by the
mechanism does not exceed a given budget. This is also different to our model
where bidders have budget constraints.

There have been a number of recent papers about bidders with quasilinear utility
functions and a private budget constraint, which is different to the knapsack utility
model considered in this chapter, because knapsack bidders do not value residual
budget. For example, Dobzinski et al. (2012) showed that truthful and Pareto-
optimal mechanisms without positive transfers are impossible with private budget
constraints. Other authors have analyzed approximation mechanisms when bid-
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ders have quasilinear utility functions with a budget constraint (see for example
Ashlagi et al. (2010); Dütting et al. (2015); Talman and Yang (2014)). A knap-
sack utility function is different from a quasilinear utility function with a budget
constraint, and this difference has ample consequences for auction design.

4.3 The Model

Let us now introduce knapsack bidders formally. First, we draw connections to
the value bidders as they have been analyzed in the literature and show that the
welfare of truthful approximation mechanisms can be very low in general. Then we
make additional assumptions motivated by advertising markets and show that each
of these assumptions impacts the approximation ratios of truthful mechanisms.
Although these assumptions are adequate for display ad auctions, we show that
only an offline model allows for good approximation ratios.

4.3.1 Knapsack Bidders and Value Bidders

We study a market where one seller 0 has to auction off a set of m heterogeneous
items (or objects) J to n bidders (or agents) I. Each bidder i ∈ I has a cardinal
willingness to pay or value vij ∈ R≥0 for any item j ∈ J . There is one copy of each
item. We describe the vector of valuations vij of a bidder i as vi ∈ Rm

≥0. The values
vij are normalized with 0 for the empty set. We denote V ⊆ Rn×m

≥0 as the set of all
possible valuation matrices. In addition to the willingness to pay or value for one
item, bidders face an overall budget constraint ci. In contrast to mechanism design
with quasilinear utility functions, where utility is defined as valuation minus price
of a bundle, we assume a knapsack utility function.
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Definition 4.1: Knapsack Utility. Given an allocation matrix X ∈ X ⊆
{0, 1}n×m, a price matrix P ∈ P ⊆ Rn×m

≥0 , and a budget vector c ∈ Rn
≥0, the

utility function

ui (X,P ) =

v
τ
i xi if pτi xi ≤ ci ∧ ∀j ∈ J : pijxij ≤ vij

−∞ else

is called knapsack utility function. Bidders with a respective utility function are
called knapsack bidders.

In this definition xi is a binary vector describing the allocation for bidder i where
xij = 1 when bidder i wins item j. If we assume linear and anonymous prices, then
pi is the vector of payments13 pij = pj for all items j ∈ J . Similar to the literature
on quasilinear bidders with budget-constraints (Dobzinski et al., 2008), we assume
the budget ci as exogenously given and focus on the strategies of knapsack bidders.
As in the related literature on display ad auctions, bidder i must not bid beyond
his value vij for an item (the item value can be seen as an item-level budget limit).
Suppose, an advertiser is selling cameras, which yield a profit of 10$. The expected
profit considering the conversion rate of an impression can now be considered as
the value vij of the bidder. An advertiser does not want the DSP to bid more than
vij as this would lead to a loss when selling the product to the end consumer.

Let us now define relevant terms from mechanism design for markets with knapsack
bidders. Based on the revelation principle, we focus only on direct revelation
mechanisms.

Definition 4.2: Direct Revelation Mechanism. A (direct revelation) mech-
anism comprises an allocation function f : V → X and a vector of payment
functions p1, . . . , pn, where pi : V → R≥0 defines the payments of bidder i.

We aim for incentive-compatible and prior-free mechanisms, i.e., truthful bidding
is an equilibrium even without the availability of prior value distributions.
13For now, the payments can be computed by any payment rule, no matter if it is a fixed, first

or second price rule (or something else).
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Definition 4.3: Truthfulness. Given any matrix of true valuations V ∈ V and
any bidder i ∈ I with (not necessary true) valuations v′i ∈ Vi we denote x =
f (vi, V−i) and x′ = f (v′i, V−i) the allocations if i reports vi and v′i respectively with
p and p′ being the payments in the two allocations. A mechanism (f, P ) is called
truthful if ui (x, p) ≥ ui (x′, p′).

We are only interested in mechanisms that satisfy individual rationality, i.e., par-
ticipation in the mechanism never makes the agent worse off. The second-price
rule typically used in display ad auctions satisfies this assumption. We talk about
strategy-proofness if we have a deterministic mechanism and truthful bidding is a
dominant strategy. For randomized mechanisms, we mainly focus on truthfulness-
in-expectation (TIE), which will be defined in Section 4.5.

We study truthful and welfare maximizing mechanisms for knapsack bidders. In
other words, we want to maximize the sum of utilities of all market participants,
i.e., the bidders and the seller. We assume a neutral auctioneer who provides
the exchange and aims for welfare maximization for all participants. The buyers
are the strategic bidders in this exchange, and we assume that the seller has a
value of zero for the items. But the knapsack utility function has a significant
impact on the social welfare function. A utilitarian social welfare function has
the form SW = ∑

i∈I,j∈J uij (Mas-Colell et al., 1995, p. 827). In our model with
knapsack bidders, this translates into SW = ∑

j∈J,i∈I (vij + pj)xij. In contrast,
in the standard quasilinear utility model the prices of the items cancel out.14

Example 4.4 shows the impact of this change.
A B ci

Bidder 1 6 4 4
Bidder 2 4 3 4
Bidder 3 3 0 4

Table 4.1: Bidder values and and budgets.

14With quasilinear utility in case of assignment (xij = 1) we have for bidders uij (X,P ) =
vij − pj and for the seller usj (X,P ) = pj . Welfare is calculated as follows: SW =∑
i∈I,j∈J uij (X,P ) +

∑
j∈J usj (X,P ) =

∑
i∈I,j∈j (vij − pj + pj)xij =

∑
ij vijxij
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Example 4.4: Consider an auction with three bidders having values and budgets
like in Table 4.1. A welfare maximizing mechanism that does ignore the sellers
revenue within the allocation would allocate item A to bidder 1 with price of 4 and
item B to bidder 2 with price 0. This leads to a welfare of 9 for the bidders and a
revenue of 4 for the seller, i.e., an overall welfare of 13. If we consider the sellers
revenue already for the allocation, we would assign item B to bidder 1 and A to
bidder 2, each at a price of 3. Now the bidders have a welfare of 8 and the seller
a revenue of 6, which leads to an overall welfare of 14. Hence, it is important
for the goal of welfare maximization to consider the sellers’ revenue as well as the
bidders’ values.

We can interprete knapsack bidders as a special class of value bidders. Unfortu-
nately, we cannot hope for good approximation ratios if value bidders are allowed
to submit bids on bundles of objects. The extensive proof for the n approximation
for general markets in Fadaei and Bichler (2016) yields that a truthful mechanism
can only elicit a single bundle value from each bidder. To avoid arbitrarily low
approximation ratios, the auctioneer needs to elicit the valuation for the bundle
of all objects from each bidder. The proofs in their model also hold for knapsack
bidders who are allowed to bid on bundles of items and pay-as-bid. To achieve
better results, we have to make further assumptions about the bidder model.

4.3.2 The Advertising Model

Several assumptions from the model with value bidders do not carry over to ad-
vertising auctions in the field, and the results with value bidders might be too
pessimistic. We now introduce the advertising model, which adds three assump-
tions:

i) no bidding on bundles is possible, and

ii) the market is large with many many bidders (n→∞), and

iii) (linear) prices pj for each item are considered exogenous by bidders.
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All three assumptions are met in display ad auctions where bidders cannot bid
on bundles of impressions and the auctioneer uses a second-price payment rule
per impression. The idea that market size ease incentive problems goes back a
long time with some of the earliest contributions being Roberts and Postlewaite
(1976). Jackson and Manelli (1997) show conditions under which, as the size of the
market increases, all the market-clearing prices and allocations based on reported
bids approximate the competitive equilibria of the market with true valuations.
Therefore, assumption 3 follows from the literature on large markets with many
bidders. Also, the literature on bidding strategies referenced in the introduction
considers prices as an exogenous variable (Chen et al., 2011; Zhang et al., 2014).

Let us outline the allocation problem of the auctioneer in an offline auction. This
allocation problem (AP) can be described as a binary program where bidder i with
a budget constraint ci has a value vij for each item j with an anonymous and linear
price pj.

Max
s.t.

∑
i∈I

∑
j∈J

(vij + pj)xij (AP)
∑
i∈I

xij ≤ 1 ∀j ∈ J (Supply)∑
j∈J

pjxij ≤ ci ∀i ∈ I (Budget)

xij ∈ {0, 1} ∀i ∈ I, j ∈ J (Binary)

The optimal solution to AP maximizes welfare in a market if the auctioneer had
access to the true valuations and budget constraints of the bidders. We refer to AP-

LP as the LP relaxation of AP. A feasible assignment may allocate a subset of items
S to bidder i such that ∑j∈S pj ≤ ci (Budget). A feasible assignment may assign
each item at most once (Supply). Note that this is a slightly modified version of
the generalized assignment problem (the parameter pj in the objective function),
which has an integrality gap of 2 (Shmoys and Tardos, 1993). As indicated, we
consider the price as an exogenous variable for our strategic analysis and study
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whether truthful and prior-free mechanisms are possible in this environment. In
an online market the price pj could be determined via a second-price rule as in
display ad auctions. In an offline market, the auctioneer might simply determine
a fixed price per type of object based on the bid distribution.

The key decision of a knapsack bidder in the (offline and online) advertising model
is whether to bid on an item or not at all and to decide what budget he submits to
the auctioneer. Indeed, we consider the budget as exogenous given for the bidder
(e.g. by a client or a superior), however, it is still private information that the
auctioneer does not know in advance.

4.4 Deterministic Approximation Mechanisms

The purpose of this section is to highlight the difficulties in designing deterministic
approximation mechanisms with a good approximation ratio. The discussion is
useful to introduce our main results in Section 4.5.

Example 4.5 is sufficient to show that a truthful and welfare maximizing mecha-
nism is not possible independent of the payment rule that we use in the presence
of knapsack bidders.

Example 4.5: Consider a market with two bidders and two items. Table 4.2 de-
scribes bidder valuations and their budget constraints. The allocation maximizing
value is to assign item B to bidder 1 and item A to bidder 2 with a total bidder
value of 1 + 3ε. However, bidder 1 can increase his utility to 1, by bidding on A

only and pretending that his value for B is zero. This way the auctioneer allocates
A to bidder 1 and B to bidder 2 with a total value of 1 + 2ε. Thus, there cannot
be a deterministic and welfare maximizing mechanism that is also truthful.

Since there exist for deterministic, truthful, and welfare maximizing mechanisms,
we relax the the goal of maximizing welfare and study deterministic approximation
mechanisms. A mechanism returns (at most) an α-approximation of the optimal
if its value is always greater than or equal to 1/α times the optimal value (α ≥ 1).
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Valuations
Items A B ci

Bidder 1 1 4ε 1
Bidder 2 1− ε 2ε 1

Table 4.2: Bidder valuations, where bidder 1 can shade his value for B to win A.

We first give a strategyproof mechanism in Algorithm 4.1 and analyze afterwards
how well it performs in terms of welfare.

This serial dictatorship (SD) mechanism sorts the bidders by decreasing value of
min

{
ci,
∑
j vij

}
. Usually this is a sorting with respect to the submitted budgets

ci, since in general there will be ∑j vij ≥ ci. But if ci >
∑
j vij, the budget

constraint actually is not necessary for this bidder and we therefore consider for
the sorting a scaled down budget c̄i = ∑

j vij instead. Next the algorithm iteratively
chooses bidders with respect to this sorting and computes an assignment out of
the remaining items to this bidder that maximizes his sum of valuations subject to
the budget constraint. Finally the allocated items will be removed and we choose
the next bidder until there is no one left.

Algorithm 4.1: SD algorithm for knapsack bidders
Input : knapsack bidders I with private budgets ci and values V for items

J , prices p
L is a list of bidders sorted by decreasing value of min

{
ci,
∑
j vij

}
.

sj = 1, ∀j ∈ J
forall i ∈ L do

x∗i = argmax
{
vτi xi |

∑
j pjxij ≤ ci, xij ≤ sj, xij ∈ {0, 1}

}
for j with x∗ij = 1 do sj = 0

Output: assignment X

Lemma 4.6: Algorithm 4.1 is a strategy-proof mechanism for knapsack bidders.

Proof. Let us first observe that the only way a knapsack bidder could lie is to sub-
mit a wrong budget or to decide not to bid on some items. Because of assumption
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2 and 3, bidders can neither influence the market with the value of their bid nor
can they know in advance the market price of a special item. That is, submitting
a bid 0 < bij < vij for some item j ∈ J cannot have any positive effect for bidder
i ∈ I. Furthermore a knapsack bidder cannot claim a higher budget ci and he can
also not overbid since this could lead to a utility of −∞. Shading the budget ci or
hiding valuations for items to zero, only decreases their ranking in the algorithm
and cannot improve their allocation. Hence, the mechanism is truthful.

Unfortunatly, Algorithm 4.1 can lead to low welfare in the worst case.

Lemma 4.7: Algorithm 4.1 achieves an approximation ratio not better than m =
|J |.

Proof. Consider a market withm+1 bidders andm items with pj ≤ 1 for all j ∈ J .
Table 4.3 describes bidder valuations and their budget constraints. In this market,
a deterministic and value-maximizing auction would allocate item ji to bidder i.
The welfare is m2−∑m

i=1 εi. However, Algorithm 4.1 assigns first the most valued
feasible set of items to bidder 0, since his sum of valuations as well as his budget is
greater than those of the other bidders. That is, Algorithm 4.1 allocates all items
to bidder 0 with a total utility of m, which implies an approximation ratio ≥ m.

Valuations
Items j1 j2 · · · jm ci

Bidder 0 1 1 · · · 1 m
Bidder 1 m− ε1 0 · · · 0 m− ε1
Bidder 2 0 m− ε2 · · · 0 m− ε2

... ... ... . . . ... ...
Bidder m 0 0 · · · m− εm m− εm

Table 4.3: Bidder valuations.

Theorem 4.8: Algorithm 4.1 is strategy-proof and it achieves an approximation
ratio within Θ (m).
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Proof. Lemma 4.6 shows that Algorithm 4.1 is strategy-proof. Based on Lemma 4.7,
we know that the approximation ratio for Algorithm 4.1 is within Ω (m). We only
have to show that the approximation ratio is within O (m).

We relax the algorithm in the forall-loop to allow for fractional solutions xij ∈ [0, 1]
and construct a feasible dual solution with a value at most (m+ 1) times the value
obtained by the relaxed algorithm. By calling the weak duality theorem together
with the integrality gap of 2 (Shmoys and Tardos, 1993), the claim follows.

Assume X is the outcome of the relaxed Algorithm 4.1. Using X we can construct
a feasible solution to the dual of AP-LP.

Min
s.t.

m∑
j=1

ρj +
n∑
i=1

cidi (AP-LPD)

ρj + pjdi ≥ vij + pj, ∀i ∈ I, j ∈ J
ρ, d ≥ 0

Observe that in Algorithm 4.1 the bidders are sorted in decreasing order of
min

{
ci,
∑
j vij

}
. Wlog. let i1, i2, i3, . . . , in be the order of bidders computed by

Algorithm 4.1. Furthermore, the algorithm assigns the current bidder available
(fractions of) items j in decreasing order of the density vij/pj to maximize his util-
ity. Note, that the price pj for item j is the same for all bidders i ∈ I and therefore
the ordering with respect to this density is the same as (pj+vij)/pj = vij/pj + 1. Ini-
tially, let ρ = ~0 and d = ~0. If item j gets exhausted by assigning j to bidder ik,
set ρj = pj +max {vilj | l ≥ k}, the highest valuation for items j over all bidders
with a lower rank than ik plus the price of item j. Furthermore, for all bidders
i with exhausted budget, set di = 1 + min {vij/pj | ∀j ∈ J : xij > 0}, that is, one
plus the density of the last item assigned to i. This satisfies the dual constraints
in AP-LPD.

In particular, if the budget of bidder i is exhausted, then for each item j (frac-
tionally) assigned to bidder i, either j gets exhausted with this assignment or does
not. If j is exhausted, we have ρj ≥ vij + pj, and therefore the constraint holds.
If j is not exhausted, we have either that j is the last assigned item and therefore
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di = vij/pj + 1, or j is not assigned to i and therefore di ≥ vij/pj + 1; and the con-
straint holds as well. If bidder i has residual budget, every item j that is assigned
to it is exhausted by this assignment. That is, we have ρj ≥ vij + pj and the
constraint thus holds. For every item j that is not assigned to the bidder but for
that the bidder has a positive valuation, we have ρj ≥ vij + pj, since the item is
exhausted due to the assignment to a bidder ik with higher rank than i, and we
have vij ≤ max {vilj | l ≥ k} = ρj − pj. In sum, we have constructed a feasible
dual solution using x, the allocation resulting from the relaxed Algorithm 4.1.

We now bound the value of the dual solution with respect to the primal solution.
First, we observe that

∑
i,j

(vij + pj)xij ≥
∑
i,j

dipjxij =
∑
i

di
∑
j

pjxij,

because di is only non-zero if the budget of bidder i is exhausted,

dipj =
(

1 +min

{
vij′

pj′
| ∀j′ ∈ J : xij′ > 0

})
pj ≤

(
vij
pj

+ 1
)
pj = vij + pj

for items with xij > 0, and (pj + vij)xij = dipjxij = 0 for items j with xij = 0.
Second, we show that m∑

i,j (pj + vij)xij ≥
∑
j ρj

∑
i xij. Now we sum up both

inequalities and obtain

(m+ 1)∑i,j (vij + pj)xij ≥
∑
j ρj

∑
i xij +∑

i di
∑
j pjxij

= ∑
j ρj +∑

i dici

Notice, only for items j that get exhausted (∑i xij = 1) we have ρj > 0 and only
for full bidders

(∑
j pjxij = ci

)
we have di > 0. The final term is the value of the

dual, the desired conclusion.

It remains to show that m∑
i,j (vij + pj)xij ≥

∑
j ρj

∑
i xij. Since vij ≤ ci for all

i ∈ I and j ∈ J , we can observe that (ρj − pj)xikj = max {vilj | l ≥ k}xikj ≤ cik .
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This follows from the ordering of the bidders in Algorithm 4.1. For all bidders il
with a lower rank than bidder ik we have

min

cil ,∑
j

vilj

 ≤ min

cik ,∑
j

vikj

 ≤ cik .

That means either vilj ≤ cil ≤ cik or vilj ≤
∑
j vilj ≤ cik for all items j. That is,

the assignment of one item to bidder ik with dual price ρj − pj is always primal
feasible as well.15 The worst case is that bidder ik gets all m items, but all these
items j have a high (dual) price ρj − pj such that ik can buy at most one of them
without violating his budget constraint. Since for all those items j of bidder i
ρj − pj ≤ ci, we have

∑
i,j vijxij ≥ 1/m

∑
j(ρj − pj)

∑
i xij

= 1/m
∑
j ρj

∑
i xij − 1/m

∑
j pj

∑
i xij

and therefore

∑
i,j (vij + pj)xij ≥

∑
i,j (vij + pj/m)xij

= ∑
i,j vijxij + 1/m

∑
j pj

∑
i xij

≥ 1/m
∑
j ρj

∑
i xij,

the desired conclusion.

Algorithm 4.1 is a deterministic and truthful mechanism that yields low welfare.
It is straightforward to show that the ratio is tight for a market with two knapsack
bidders and two items only.

Proposition 4.9: No strategy-proof and deterministic mechanism for knapsack
bidders exists with an approximation ratio better than 2 of the optimal welfare.
15Since prices pj do not depend on the allocation and are the same for all bidders, a loss in social

welfare can only occur due to a sub-optimal assignment of the items to bidders if all items
are assigned. Hence, the dual prices ρj − pj can be interpreted as opportunity costs for the
bidders.
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Proof. Consider a market with two bidders and two items. Table 4.4 describes
bidder valuations and their budget constraints. In this market, a deterministic
and value-maximizing auction would allocate item 2 to bidder 1 and item 1 to
bidder 2. The welfare is 2 − 2ε. Bidder 1 can shade his bid for item 2 to zero,
such that only item 1 would be allocated to him. That is, any strategy-proof
mechanism has to assign item 1 to bidder 1 before trying to assign item 2, leading
to an approximation ratio of 2. This is true for any price pj ≤ 1− ε.

Valuations
Items 1 2 ci

Bidder 1 1 1− ε 1
Bidder 2 1− ε 0 1− ε

Table 4.4: Bidder valuations.

We leave it for future research to find a more precise lower bound on the approx-
imation ratio for truthful and general markets with arbitrary numbers of bidders
and items. This might be challenging to show as the general result and the analysis
for value bidders suggests (Fadaei and Bichler, 2016). However, a simple example
shows that also large markets with knapsack bidders are susceptible to similar
types of manipulation as in the proof to Proposition 1 and this can lead to signif-
icant welfare losses. Note that the example is a stylized form of cream skimming,
which was described as a wide-spread bidding strategy in display ad auctions in
the introduction.

Example 4.10: Consider bidder 1 who has a value of $1 for 100 impressions
of type A and a value of $0.9 for 100 impressions of type B. His budget is $50.
Bidders 2 and 3 have a value of $0.5 for type A valuations and a budget of $50.
The welfare maximizing allocation would be to allocate A impressions to either
bidder 2 or 3, and the B impressions to bidder 1. Welfare would be $190, the total
of $90 from bidder 1 plus $50 from bidder 2 plus $50 for the auctioneer, which is
the payment of bidder 2 or 3, if we assume a second-price rule. However, if bidder
1 does not bid on B impressions, she will be awarded the A impressions and the
welfare will only be $150, i.e., $100 for bidder 1 and $50 for the auctioneer, which
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is the payment of bidder 1 with a second-price rule. Bidder 1 would increase his
utility from $90 for the B impressions to $100 for the A impressions.

4.5 Randomized Approximation Mechanisms

We now resort to randomization as a means to improve the approximation guar-
antees, but first introduce some definitions. Let A denote a randomized algo-
rithm, which takes instance (V, c) of AP and computes X ∈ X , an assignment
of items to bidders. The assignment is deterministic (each bidder receives a set
of items), but algorithm A is randomized, i.e., A returns a solution that is ran-
domly chosen according to a probability distribution over feasible assignments.
Hence, A (V, c) ⊆ X denotes a set of possible feasible solutions. Truthfulness-in-
expectation is a solution concept for randomized approximation mechanisms.

Definition 4.11: Truthfulness-In-Expectation. A randomized algorithm A is
said to be truthful-in-expectation (TIE) if for X ∈ A(V, c) it holds:

i) (feasibility) ∀j ∈ J : P (∑i∈I xij ≤ 1) = 1 and
∀i ∈ I : P

(∑
j∈J pijxij ≤ ci ∧ ∀j ∈ J : pijxij ≤ vij

)
= 1

ii) (truthfulness) for any i and v′i ∈ Rm
≥0, it is

E
[∑

j∈J vijxij
]
≥ E

[∑
j∈J vijx

′
ij

]
, where X ′ ∈ A (v′i ∪ V−i, c).

Note, the expected value of the bidders in both cases are computed with respect
to their true valuations. Random Serial Dictatorship (RSD) is a well-known ex-
ample of a randomized mechanism, but it is easy to see that the welfare of RSD
can be arbitrary low. For example, RSD might first assign all items to a bidder
with low valuations and sufficient budget, although other bidders have a much
higher valuation. Therefore, our objective is to propose a randomized algorithm
A for AP, which is truthful and always returns a feasible assignment whose value
approximates the optimal total value as well as possible.

Our technique is a relax-and-round approach with oblivious rounding as it has been
used recently in the literature on approximation mechanisms (Lavi and Swamy,
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2011; Dughmi and Ghosh, 2010; Fadaei and Bichler, 2017a). We design a fraction-
ally truthful approximation algorithm that returns a feasible solution to AP-LP. A
fractionally truthful algorithm allocates fractional assignments to bidders i, and
no bidder can improve its fractional value by an untruthful report. In particu-
lar, a fractionally truthful algorithm AF takes (V, c) and returns deterministically
X ∈ X , a feasible solution to AP-LP with the following property. For each bid-
der i, if the bidder reports v′i ∈ Rm

≥0, it holds ∑j∈J vijxij ≥
∑
j∈J vijx

′
ij, where

X ′ = AF (v′i ∪ V−i, c)16. Next, we round the fractional solution using a special
rounding technique, which makes sure that each bidder obtains a fixed fraction
of its fractional value in expectation. The randomized meta-rounding (Carr and
Vempala, 2000) is capable of maintaining this fixed fraction.

To use the randomized meta-rounding, we have to scale down the fractional solu-
tion by factor 2, which is the integrality gap of the AP-LP (Shmoys and Tardos,
1993). Assuming X∗F = AF (V, c), the randomized meta-rounding represents X∗F/2

as a convex combination of polynomially-many feasible integer solutions. Looking
at the provided convex combination as a probability distribution over integer so-
lutions, we sample a randomized solution X ∈ X , which is always feasible, and
its expected value is 1/2 of the fractional value of X∗F . This is confirmed by Theo-
rem 4.12, which has been proved in related work by Dughmi and Ghosh (2010).

Theorem 4.12: (Dughmi and Ghosh, 2010). If there exists a fractionally
truthful α-approximation algorithm for AP, then there exists a TIE (2α)-approxi-
mation solution for AP.

Even though, their model is different, we can draw on this theorem. We propose
Algorithm 4.2, an adaptation of the Deferred Acceptance Algorithm (DAA) by
Gale and Shapley (1962). In Algorithm 4.2 all bidders with a positive budget
submit a bid for the item with the highest density vij/pj from their preference list
(Pref ) and delete this item from this list. Afterwards, all items j ∈ J sort their
list of not rejected bids (Bj) according to the value of the bids, and accept all
(fractional) bids until their supply (sj) of 1 is exhausted. If the current item j

16We can write = here since AF is deterministic and therefore it returns always the same solution
for a fixed instance

(∣∣AF (V, c)
∣∣ = 1

)
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has sufficient residual supply to store the whole amount of the current bid bij, we
assign (temporary) j to i but only that fraction that the bidder is still able to pay
(first if -condition).

If the supply of j is still not zero, but not high enough to store the whole bid, we
assign i only the available fraction of j (xij = sj). If the supply of j is exhausted,
we reject the bid finally (second if -condition), since the threshold for assignment
weakly increases each iteration. If no bidder can submit a new bid, the algorithm
terminates and returns the assignment matrix X.

Algorithm 4.2: Fractional DAA for Knapsack Bidders
Input : knapsack bidders I with private budgets ci and values V for items

J , prices p
xij = 0, ∀i ∈ I, j ∈ J
Prefi = {j | vij > 0, j ∈ J} , ∀i ∈ I
Bj = ∅, ∀j ∈ J
while ∀i ∈ I, ci > 0 : Prefi 6= ∅ do

forall i ∈ I with ci > 0 do
j = argmax {vij/pj | j ∈ Prefi}
bij = vij
Prefi = Prefi \ j, Bj = Bj ∪ bij

forall j ∈ J do
sort Bj according to bij, sj = 1
forall bij ∈ Bj do

ci = ci + pjxij, xij = 0
if (sj −min {1, ci/pj} ≥ 0) then

xij = min {1, ci/pj}
sj = sj −min {1, ci/pj}
ci = ci −min {pj, ci}

else
if (sj = 0) then Bj = Bj \ bij
xij = sj
ci = ci − pjsj, sj = 0

Output: assignment X

Lemma 4.13: Algorithm 4.2 is truthful.
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Proof. As already discussed in the proof of Lemma 4.6, knapsack bidders only bid
zero or their true value. Since bidders propose to items in decreasing order of the
density vij/pj, hiding values can only lead to an assignment to items with a lower
density, and therefore decrease the utility of a bidder. Therefore, knapsack bidders
have no incentives to hide valuations. Next, we discuss the budget ci. A knapsack
bidder must not spend more than ci. If a bidder reports a lower ĉi < ci there
are two possible cases. If ĉi is not exhausted during the process, it does not have
an impact on the allocation computed by the algorithm. If ĉi becomes binding,
it can only restrict the assignment of additional items to a bidder, which would
otherwise have been possible, and therefore decrease the total sum of valuations
of a bidder. That is, Algorithm 4.2 is truthful for knapsack bidders.

Lemma 4.14: Algorithm 4.2 returns a 2-approximation solution to AP-LP.

Proof. Based on the proof of Proposition 4.9, we know that an approximation ratio
better than 2 is impossible. We only have to show that it is not worse than 2. For
this, we construct a feasible dual solution with a value at most twice the value
obtained by the algorithm, then by calling the weak duality theorem, the claim
follows. Assume X is the outcome of Algorithm 4.2. Using X we can construct a
feasible solution to the dual of AP-LP.

Observe that in Algorithm 4.2 a bidder i proposes items in decreasing order of
the density vij/pj, and item j examines bids in decreasing order of vij. Since pj
is the same for all bidders i, the ordering of the bids at item j according to vij/pj

is the same as to vij and vij + pj. Initially, let ρ = ~0 and d = ~0. If item j

gets exhausted, set ρj = vikj + pj, where ik = argmin {vij | ∀i ∈ I : xij > 0}.
Furthermore, for all bidder i with exhausted budget, set di = vijk/pjk

+ 1, where
jk = argmin {vij/pj | ∀j ∈ J : xij > 0} is the last item assigned to bidder i. This
satisfies the dual constraints in AP-LPD.

In particular, if the budget of bidder i is exhausted, then for each j of bidder
i, either j gets exhausted with this assignment or does not. If j is exhausted,
it is ρj = vij + pj, and therefore the constraint holds. If j is not exhausted, it
is di ≥ vij/pj + 1 and thus the constraint holds as well. If bidder i has residual
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budget, every item j which is assigned to it is exhausted by this assignment. Hence,
ρj = vij+pj and the constraint thus holds. For every item j that is not assigned to
the bidder but for that the bidder has a positive valuation, it is ρj ≥ vij +pj, since
the item is exhausted due to another assignment vi′j ≥ vij, which is equivalent to
vi′j + pj ≥ vij + pj. In sum, we have constructed a feasible dual solution using x,
the allocation resulting from Algorithm 4.2.

Now, we bound the value of the dual solution with respect to the primal solution.
First, we observe that

∑
i,j

(vij + pj)xij ≥
∑
j

ρj
∑
i

xij,

since ρj is non-zero only if j is fully assigned. Second,

∑
i,j

(vij + pj)xij ≥
∑
i

di
∑
j

(pjxij) ,

because di is only non-zero if the budget of bidder i is exhausted, and then it holds

dipj ≤
(
vij
pj

+ 1
)
pj = vij + pj

for all j with xij > 0. Now we sum up both inequalities and obtain

2∑i,j (vij + pj)xij ≥
∑
j ρj

∑
i xij +∑

i di
∑
j pjxij

= ∑
j ρj +∑

i dici

Notice, only for items j, which get exhausted (∑i xij = 1) we have ρj > 0 and
only for full bidders (∑j pjxij = ci) we have di > 0. The final term is the value of
the dual, the desired conclusion.

Finally, we use Theorem 4.12 together with Lemma 4.13 and Lemma 4.14 and
obtain our main result.

Theorem 4.15: There exists a TIE 4-approximation mechanism for the AP with
strategic bidders.
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5 Discussion and Conclusion

This thesis studies allocation problems where the standard assumption that bid-
ders have a quasilinear utility function does not hold. Such problems occur when
bidders are budget restricted and they have no benefit from budget not spent (like
e.g. in advertising markets), or the bidders are not willing to pay for an allocation
(like e.g. in reservation systems), or they are not even able do express valuations
for the different objects (e.g. in course assignment). We have analyzed two appli-
cations. First, a course allocation problem, where students are allowed to express
ordinal preferences over whole schedules. Second, an online advertising problem,
where bidders are interested in buying multiple slots for display ads respecting
their budget constraints.

Overall, this thesis highlights how randomization can be used to circumvent prob-
lems and impossibilities when aiming for efficient and incentive compatible mech-
anisms, and it shows how to deal with problems, where standard models usually
used in the literature are not satisfying the requirements.

Next, we summarize the main findings for these two applications and discuss lim-
itations and possibilities for future research in these areas.
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5.1 Course Assignment with Preferences over
Schedules

We modeled the problem of assigning schedules to students as a matching problem
with preferences over bundles. We generalized efficiency criteria and other design
desiderata to the problem with bundles, and presented and analyzed different
randomized mechanisms to solve the matching problem.

We reported of three large field studies and showed that BPS performs well on a
number of additional criteria including average rank, average size, probability of
a matching, and the overall profile of ranks assuming a complete, truthful, and
strict ranking of all bundles. The matching based on BPS is also more popular
than BRSD based on the preferences submitted for BPS. The level of envy in
BRSD is significant, even though the size of the bundles that can be submitted is
limited to the number of classes (three to four groups per bundle).

The assignment of tutor groups is specific as preferences are mainly about times of
the week. The preferred time-slots in a week may differ among students. However,
the way how tutor groups should be ordered within these time-slots (e.g. time
for breaks) can be described with a few parameters such that it was possible
to generate bundles according to a score. The feedback of students was that
this automated ranking met their preferences well and we argue that this is a
good way to address the missing bids problem in similar applications. In other
applications, generating good bundles might not be as straightforward and this
will have an impact on efficiency. Compact and domain-specific bid languages
have been discussed in the auction literature (Bichler et al., 2011), and they could
also be a possibility to allow mechanisms without transfers circumvent the missing
bids problem.

This thesis highlights basic trade-offs in market design without money: FCFS
can be seen as BRSD, which is ex-post efficient, and obviously strategy-proof and
treats students equally. It is also transparent and simple to implement, and to
understand for students. BPS is a randomized mechanism that is only weakly
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strategy-proof, but envy-free and ordinally efficient, which is stronger than ex-
post efficiency assuming strict preferences. Note that these properties hinge on
the availability of strict preferences over all, exponentially many, bundles.

Even if the missing bids problem can be addressed, two important problems re-
main: First, in contrast to FCFS, the BPS mechanism is not obviously strategy-
proof and a part of the students in the survey already indicated that they either
hid their most preferred or least preferred time-slots strategically.17 Second, the
assumption of strict preferences is strong in the presence of exponentially many
bundles. Unfortunately, extending PS or BPS to preferences with ties is not with-
out loss. On the one hand, Katta and Sethuraman (2006) extended PS to prefer-
ences with indifferences and showed that it is not possible for any mechanism to
find an envy-free, ordinally efficient assignment that satisfies even weak strategy-
proofness as in the strict preference domain. On the other hand, with indifferences
and random tie breaking efficiency cannot be guaranteed. Our preference elicita-
tion technique generated a strict and complete ranking of course bundles based on
a few input parameters and is one way to address these issues.

The key difference between BPS and FCFS is the absence of envy. The level
of envy in FCFS is significant. Note that it might be even more pronounced
if students were allowed to pick larger bundles. Envy-freeness or stability has
been raised as one of the arguments why the Gale-Shapley mechanism for simple
assignment problems where agents have unit-demand is so successful in practice
(Roth, 2002). If the market outcome is not guaranteed to be stable, there might
exist agents who have the incentive to circumvent the match. We argue that this
property is also important for the assignment of course schedules. If envy-freeness
matters, the BPS mechanism has a number of attractive economic properties and
is computationally tractable.

17Remember that our empirical comparisons are based on the preferences reported in BPS. A
part of these preferences might not have reflected the true preferences of participants, and
the comparison might be biased towards BPS.
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5.2 Non-Quasilinear Bidder Models in Advertising
Markets

Auctions in advertising markets are often based on the standard assumption of
quasilinear utility functions. However, as the literature about bidding strategies
suggests, quasilinearity does not appear to be an adequate model for bidding
agents in these markets. Rather, agents try to maximize the total sum of valuations
subject to an overall budget that is devoted to a campaign. Mechanism design tries
to devise auctions where truthful bidding is an equilibrium. This is typically hard
to achieve in environments where bidders do not have quasilinear utility functions
and their types are multi-dimensional. We have explored possibilities for truthful
approximation mechanisms with knapsack utility functions in large advertising
markets. This thesis highlights the types of assumptions, which allow for truthful
mechanisms in an offline market and presents a 4-approximate mechanism. The
mechanism is randomized and complex, which suggests that truthfulness is hard
to achieve in practical environments. The results provide motivation to analyze
non-truthful mechanisms for advertising markets.

We focused on welfare maximization, not on revenue maximization. In the field
display ad exchanges are competing and if one seller extracts revenue and the other
aims for welfare maximization, bidders will move to the second one. Most display-
ad auctions use a second-price principle and argue that this would be truthful and
welfare maximizing (if bidders have quasilinear utilities for individual impressions
and no budget constraints). In any case, welfare maximization (efficiency) is an
important first step, but revenue maximization is an interesting avenue to explore
in this environment for the future.

It is important to study the approximation ratios of truthful online mechanisms
as, for example, display ads need to be sold one at a time, and allocation and pric-
ing need to be decided dynamically. Online mechanisms are often analyzed in the
adversarial setting with items arriving in the worst possible order. The approxima-
tion ratios achieved in Section 4.5 for the offline environment can be seen as lower
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bounds on what can be achieved with truthful online mechanisms. Online mech-
anism design is, however, much less well understood even with quasilinear utility
functions, and truthful mechanisms were designed only recently. Typically, the lit-
erature assumes unit-demand bidders and only a few papers deal with multi-unit
demand assuming homogeneous goods and quasilinear utility functions. Devanur
et al. (2018) analyzed online mechanisms for quasilinear bidders who have prefer-
ences for multiple heterogeneous items arriving over time. They show that there
is no deterministic truthful and individually rational mechanism that gets any fi-
nite approximation factor to the optimal social welfare, even if payments can be
computed after all items arrived. We assume that the design of truthful online
mechanisms will be as challenging for knapsack bidders. There are many possible
online environments one can explore and details in the assumptions matter. We
leave the analysis of truthful online mechanisms for knapsack bidders for future
research.
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