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Abstract 

The aerodynamics of passenger cars and light commercial vehicles is vital as 

government entities mandate increasingly stringent exhaust gas emission 

standards and manufacturers release more electric cars into the consumer market. 

Various tools can be employed to study the flow field around the vehicle and 

understand dominant aerodynamic effects. The instationary nature of flows at 

high Reynolds numbers complicates the study of flow structures due to the 

presence of a wide range of temporal and spatial scales. One can gain a better 

understanding of such complex flow fields by using data-driven modal analysis 

tools to separate energetic structures from the randomness. This work builds 

upon modal decomposition methods that are based on Proper Orthogonal 

Decomposition (POD) and Dynamic Mode Decomposition (DMD). It introduces 

respective incremental variants for both methods to prove their applicability for 

analyzing large data sets in an industrial environment with low memory 

requirements. It also identifies additional adjustments and extensions to the 

incremental methods and their respective effects on the resulting modal 

decomposition. In addition, this work publishes two modifications of the 

incremental DMD variant with a feature to rank modes by a new mode-ordering 

criterion and a new way of selectively computing modes in a mode-by-mode 

approach. A simple, two-dimensional cylinder test case is used for studying the 

methods’ central features; namely, the implementation, required computational 

resources and the properties of the results. Both methods provide the means of 

reducing the amount of data of a Full Order Model (FOM), an exact 

representation of the original flow field, to a Reduced Order Model (ROM), which 

can be seen as an approximation or a compressed version of the FOM. This work 

reviews methods for validation of the ROM, data sampling strategies and data 

pre-processing requirements to ensure applicability to different flow 

configurations. The vehicle aerodynamics application presents results of modal 

analysis of the unsteady flow field simulation around the DrivAer reference body. 

The benefit of modal analysis methods is demonstrated by extraction and 

analysis of the most dominant flow structures. Reconstruction in time allows 

observers to track back structures to their respective excitation locations with 

the purpose of gaining additional insight into underlying dynamical flow field 

processes.  
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“Data is the new oil. It’s valuable, but if unrefined it 

cannot really be used. It has to be changed into gas, plastic, 

chemicals, etc. to create a valuable entity that drives 

profitable activity; so must data be broken down, analyzed 

for it to have value.” 

 

Clive Humby in 2006 [1]. 
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1 Introduction 

Ground vehicle aerodynamics has been an integral part of vehicle design since 

the first modern trains and cars were developed in the late 19th century. In early 

1920s, automotive engineers discovered that streamlining vehicle shape reduced 

drag values at high speed [2]. This finding led to farther driving ranges, higher 

maximum velocities, and decreased fuel consumption. Recently, exhaust gas 

emission regulations in the European Union and growing customer awareness of 

the environmental benefits of fuel-efficient cars are pushing manufacturers to 

further improve vehicle aerodynamics.  

Along with improving gas mileage, the essential task of aerodynamics 

engineering in the automotive world is to enhance aeroacoustics, soiling, and ride 

comfort. For some applications, a costly wind tunnel test can be effectively 

replaced with numerical simulations. In the case of unsteady flow field analysis, 

simulation results can offer much more details than any flow field visualization 

technique available for wind tunnel experiments, which are limited to either 

recording data of a small number of probes at the same time or capturing 

snapshots of a plane in the area of interest. Thanks to the availability and depth 

of data from simulations, smart data processing tools enable accessibility of flow 

field features to better evaluate simulation results. The sheer amount of flow field 

data that can be generated requires efficient methods for analysis. Those data 

sets are too large and complex to be handled with traditional data processing 

utilities. Advanced data filtering, reduction, sampling, analysis and visualization 

are required to gain insight from such large data sets and make relevant 

information accessible and understandable. The objective of this research work 

is to stress the importance of new algorithms for data analysis when such 

challenges are met and to propose a new method of evaluation that builds on the 

existing methodology for modal decomposition. This work also shows the 

applicability of this method to typical industrial engineering infrastructures while 

using limited computational resources. The method is then applied to vehicle 

aerodynamics simulation to demonstrate its usability and effectiveness. 

1.1 Motivation 

Computational fluid dynamics simulations provide a useful tool for reducing costs 

in the aerodynamic development cycle of a vehicle. Along with the increase in 

computational resources, there is a continuous shift from steady-state simulations 

employing Reynolds-Averaged Navier-Stokes (RANS) simulations toward scale-

resolving simulations with large eddy simulation (LES) characteristics. Unsteady 

simulations offer more precise approximations of the integrated forces and allow 

for in-depth analysis of the unstable nature of the flow. Unsteady flow field 

analysis, however, is not self-explanatory when investigating flows around 

complex geometries at a large Reynolds number Re. The definition of 
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dimensionless Re (1) uses the free stream velocity U∞, a characteristic length 

scale L, and the fluid properties density ρ and dynamic viscosity μ as 

 Re =
ρU∞L

μ
 . (1) 

The Reynolds number describes the ratio of inertial forces to viscous forces 

and can be used to predict the behavior of a flow. Small Reynolds number flows 

are flows where viscous effects with small velocity gradients dominate the flow. 

Turbulent structures, high-velocity gradients, intensified mixing and momentum 

transport perpendicular to the flow direction govern large Reynolds number 

flows. Typical Reynolds numbers for the flow around vehicles at highway cruising 

speed are in the range of Re=106, covering a wide range of spatial and temporal 

scales. Various vortex identification methods are available to visualize those 

structures. An iso-surfaces of the Q-criterion as defined in equation (101), one of 

the most popular parameters, is depicted in Figure 33 and allows areas of 

detachment to be localized. This way, dominant flow structures can easily be 

visualized for low-Re flows and simple geometries. If geometries are more complex 

and turbulent production happens at different scales, identifying the relevance of 

vortex structures from iso-surfaces of the Q-criterion becomes unfeasible. The 

overlapping nature of flow field fluctuations results in wrinkly Q-criterion iso-

surfaces that can no longer be assigned to a specific excitation mechanism. When 

this occurs, it is not possible to track coherent structures through the flow field; 

they cannot be separated from low-energy flow field fluctuations that otherwise 

can be regarded as noise when studying the most dominant processes. Cars are 

considered to be complex geometries regarding aerodynamics due to the existence 

of a vast amount of vortex detachment processes, involving turbulence 

production at a wide range of spatial scales. The turbulence production initial 

length scale l0 for various geometries is in the same order as the characteristic 

length scale L of a geometry. Example geometries are the width of a wheel or the 

height of the backward-facing step at the interface between the engine hood and 

the front window. Dominant flow structures in the vehicle wake can be of the 

size of the vehicle, while the flow structures detaching from the side view mirror 

support are smaller by several orders of magnitude. Thus, the energy transfer 

from the mean flow into turbulent kinetic energy (i.e., turbulence production) 

happens at various scales. Characteristic scales and associated energies in 

turbulent flows are depicted in Figure 1. See Pope [3] for a detailed reference on 

the properties of the turbulent energy cascade. After formation of initial 

structures, vortices break down into smaller structures, and energetic dissipation 

due to friction starts. On a much smaller length scale, the Kolmogorov length 

scale η, the structures finally dissipate entirely into heat. The length scales L and 

η can be several orders of magnitude apart, depending on the Reynolds number, 

which is also referred to as separation of scales. 

 
L

η
~Re3/4  . (2) 
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Figure 1: Energy cascade in turbulent flow, depicting the turbulent 

kinetic energy E vs. wave number κ. 

Due to the complex nature of the vortex-shedding mechanisms involved, it is 

critical to be able to extract the most dominant flow structures to study their 

respective detachment processes, their convection paths, and their interactions 

with other coherent structures and vehicle parts. A deeper understanding of those 

processes will lead to better engineering results. Modal analysis, which is also 

referred to as modal decomposition or reduced order modeling (ROM), can be 

employed to obtain this knowledge, as will be shown in this work. 

Modal decomposition methods can be applied to vehicle aerodynamics for 

extraction of coherent flow structures, data compression, and exact frequency 

filtering or noise reduction. Identifying the globally most dominant modes that 

induce the most massive oscillations in the flow field is vital for investigating 

structures. Turbulent structures detaching from the trailing edges of a car are 

possibly triggered by small-scale disturbances in the flow field far upstream. 

Changing the behavior of those structures with geometrical modifications or 

employing flow control devices could lead to decreased overall aerodynamic drag. 

If energetic aerodynamic oscillations in the force coefficients are of concern 

(e.g., oscillations of the rear axle lift coefficient), driving stability and passenger 

comfort are influenced. A deeper understanding of their generation mechanism is 

invaluable to modify the aerodynamic processes inducing the force fluctuations 

of interest. For meaningful insight into the temporal evolution of disturbances, 

DMD modes can be reconstructed in time. 

Aeroacoustic phenomena are rarely well understood and lead to massive 

damping measures, increasing vehicle weight. If the underlying processes can be 

simulated, the dominant mechanism for a specific frequency range can be 

extracted and countermeasures can be designed to prevent those acoustic waves. 

For example, an aeroacoustic feedback loop at the side mirror that tends to 

induce a whistling sound. To understand the shedding processes involved, one 

must extract the most dominant flow structures, but the sheer amount of 

unsteady data that can be produced during a single simulation is overwhelming.  
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The generation of a ROM that contains most of the fluctuation energy in a 

set of modes smaller than those in the original data (i.e., the full-order model 

(FOM)) can help to reduce the amount of data. A central target is to maintain 

a majority of unsteady flow field characteristics. Conversion of thousands of time 

steps into just tens of modes, which can reproduce the time-resolved flow field 

up to a small error, is possible in some cases. 

Complex vortex-vortex interactions lead to the problem that some vehicle 

add-on parts introduce low drag deficiencies mounted on one car while leading 

to larger drag increase mounted on another. The side-view mirror installed on 

vehicles with different rear end geometries is a good example. Interactions 

between the structures shed by the mirrors and the rear end might lead to 

unfavorable conditions. The convection paths and temporal evolution could be 

used to understand these interactions. 

Apart from vehicle aerodynamics, there are many application areas of ROM 

in other fields of fluid mechanics. A good overview of such applications is given 

in a 2017 review paper by Rowley & Dawson [4], such as noise generating cavity 

flow and transitional boundary layer flow studies. Other areas of application 

outside the fluid mechanics community include image processing, data 

compression, signal analysis, modeling and control of chemical reaction systems, 

electrical power grid modeling, and financial forecasting for trading strategies. 

1.2 Numerical Simulations 

Various equations and methods for describing fluid motion in CFD are available. 

For unsteady simulations in engineering, smoothed-particle hydrodynamics 

(SPH) approaches, the Boltzmann equation, and the Navier-Stokes equations 

(NSE) are most commonly used to predict fluid flow behavior.  

SPH relies on the representation of fluids by Lagrangian particles in a mesh-

free approach. This method is frequently used for multi-phase simulations, 

especially if free surfaces are involved, which are hard to capture with mesh-

dependent methods. The simulation of oil distribution in a gearbox is an excellent 

example of an engineering application that was predestined for the usage of SPH.  

The Boltzmann equation can be solved using a numerical grid, which is 

referred to as lattice in this context, using the lattice-Boltzmann method (LBM). 

Originating from a microscopic model called lattice gas automata, which is used 

for simulating molecular dynamics (i.e., collisions of single gas particles), the 

LBM was developed to take into account a probability density function of 

particles and their velocities. This way, the lattice spacing can be much larger 

than the order of the mean free path length of an individual gas particle. The 

most crucial benefit of LBM compared to other CFD methods is the local nature 

of operations to be performed in the collision and streaming step that is executed 

in each time step. This characteristic make the approach outperform others 

regarding parallel scaling.  

The NSE describe the conservation of mass and momentum from a 

macroscopic point of view. CFD simulations using the NSE also employ spatial 

discretization methods on a numerical grid. Applicability of the NSE is limited 
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to systems with a sufficiently small Knudsen number Kn<<1 (i.e. if the physical 

length scale of interest is much larger than the mean free path of molecules). 

This condition is met for describing flows around passenger car vehicles so that 

the continuum hypothesis can be applied and macroscopic mean quantities can 

be treated as continuous functions. 

This work is built on the former NSE-based method using the OpenFOAM® 

library. OpenFOAM® is a C++-based open source software library for CFD [5]. 

The following subsections present the NSE, the applied turbulence closure model, 

the discretization schemes and the solver. 

1.2.1 Governing Equations of Navier-Stokes 

The mass conservation equation states that the change in density ρ within a fluid 

element is obtained by the sum of mass flux across its borders through the 

velocity component ui. In differential form, it writes 

 
∂ρ

∂t
+

∂ρui

∂xi
= 0 . (3) 

Passenger car aerodynamics is investigated at free stream flow velocities around 

U∞=140km/h. The dimensionless number to judge if a flow can be considered as 

incompressible is the Mach number Ma, defined with speed of sound a 

 Ma =
U∞

a
 . (4) 

For Ma<0.3, which is the case for passenger car aerodynamics, compressibility 

effects play a minor role, and the total derivative of the density becomes zero 

 
dρ

dt
= 0 . (5) 

Using the incompressibility simplification, the mass conservation equation 

simplifies to 

 
∂ui

∂xi
= 0 . (6) 

The momentum conservation equations (three partial differential equations) 

describe the balance of momentum in a fluid volume and the forces acting on it. 

Momentum can only be added by momentum flux across the borders and stresses 

acting on the surface. For incompressible flows without any active body forces, 

the momentum conservation equations read 

 
∂ui

∂t
+

∂ujui

∂xj
= −

1

ρ

∂p

∂xi
+

∂τij

∂xj
 , (7) 

where the shear-stress tensor τij (due to molecular viscosity) is 

 τij = ν(
∂ui

∂xj
+

∂uj

∂xi
) = 2νDij , (8) 

for which the velocity gradient tensor L=∂ui/∂xj can be decomposed into a rate-

of-rotation tensor 𝛀 and the deviatoric rate-of-strain tensor D 
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∂u1

∂x1

∂u1

∂x2

∂u1

∂x3

∂u2

∂x1

∂u2

∂x2

∂u2

∂x3

∂u3

∂x1

∂u3

∂x2

∂u3

∂x3)

 
 
 
 

 

=
1

2
 𝐋 − 𝐋T +

1

2
  𝐋 + 𝐋T =

1

2
(
∂ui

∂xj
−

∂uj

∂xi
) +

1

2
(
∂ui

∂xj
+

∂uj

∂xi
) 

(9) 

 =        𝛀         +           𝐃       =              𝛀          +              𝐃 .          

Tensor D also is often referred to as deformation rate tensor or strain rate tensor. 

It is symmetric and consists of six independent entries. 𝛀 is an asymmetric 

tensor, contains three independent elements and is known as the rotation velocity 

tensor. 

The most straightforward way to simulate vehicle aerodynamics would be to 

discretize and solve this set of equations directly (i.e., doing direct numerical 

simulation (DNS)). Due to the separation of scales in high Reynolds number 

applications as described in section 1.1, it is not possible to discretize the 

equations properly in space and time due to computational resources. Physical 

flow fields can only be obtained if all turbulent scales can be adequately resolved 

in space and time. In this case, the cells would have to be of the order of the 

Kolmogorov scale, and an exorbitant amount of cells would be required. That is 

prohibitive regarding memory and would lead to incredibly small simulation time 

steps to obtain stable and accurate simulation results with a Courant number 

Co less than or equal to 1. The Courant number, known as the Courant-

Friedrichs-Lewy condition, for a discrete cell of side length ∆x, local flow velocity 

U and time step size ∆t is defined as  

 C =
U · ∆t

∆x
 . (10) 

This law immediately shows the correlation between the spatial resolution and 

the required time step size to keep Co≤1. A mesh refinement by a factor of two 

leads to a reduction of the time step size by a factor of two and an increase in 

the number of cells by eight, for three dimensions. 

1.2.2 Turbulence Modeling 

Turbulence modeling approaches are required for vehicle aerodynamics analysis 

due to the prohibitive computational efforts of DNS for complex 3D geometries 

and high Reynolds numbers. The amount of turbulence modeling needed is 

directly linked to the requirements for depth and precision of the results, as well 

as to available resources (e.g., the maximum time to obtain a result or 

computational power). For internal flow through pipe systems, it might be 

enough to compute a steady-state solution to estimate the temporally averaged 

pressure drop. For vehicle aerodynamics, key results are the temporally averaged 

integrated drag and lift forces. Even though this information can be obtained 
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from steady-state simulation approaches, it has been shown that unsteady 

simulations can improve the results drastically. This is because unsteady flow 

field effects (e.g., detachment processes) can be captured appropriately and 

because the shape and pressure drop in large separation regions are approximated 

better, see Islam et al. [6]. The following section introduces the state-of-the-art 

simulation approaches from the class of detached-eddy simulation (DES) used in 

current vehicle aerodynamics engineering that prevent from using DNS while still 

resolving the large flow structures in time and space. For a more comprehensive 

overview of DES methods, including applications on different geometries, see the 

Ph.D. work of Mocket [7]. 

 DES models turbulence with Unsteady Reynolds-Averaged-Navier-Stokes 

(URANS) in wall proximity and LES in all other regions. The vehicle 

aerodynamics simulation in this work uses the Spalart-Allmaras (SA) turbulence 

model for calculating the turbulent viscosity in the RANS region and a 

Smagorinsky-like turbulence model behavior for the subgrid-scale turbulent 

viscosity in the LES region. This combination of turbulence models leads to 

robust complex geometry simulations. 

A combination of LES and RANS for such complex geometries at high 

Reynolds numbers is going to remain state of the art in the foreseeable future, 

as is explained by Spalart [8]. The complexity of a wall-resolved LES with spatial 

discretization requirements in all three dimensions leads to the need for RANS 

models in this region because only the wall-normal spacing is crucial for a sound 

reproduction of the law of the wall. Additional wall models that can be used in 

RANS models can then be applied to reduce further the amount of wall-normal 

refinement to prevent conflict with the y+<1 requirement and instead allow for 

y+ values of up to 200 (e.g., with the first cell center in the outer log-law region 

of the boundary layer (y+ as defined in equation (18))).  

Solely relying on RANS, however, is also not suggested, since large separation 

regions behind bluff bodies cannot be adequately modeled. Also, some engineering 

tasks rely on knowledge about the unsteady behavior of the flow, so temporally 

resolved data is needed. For the derivations of the URANS and the LES 

equations, the Navier-Stokes equations are either Reynolds-Averaged (for 

URANS) or filtered (for LES). The resulting equations show a structural 

similarity in that they can both be formulated as seen in equation (11), where 

the overline stands for the specific operation performed on the variable in either 

RANS or LES. Both transport equations pose a closure problem of similar nature 

for which a turbulent shear stress tensor, represented by τij
modelled (also referred 

to as Reynolds-stresses in context with RANS simulation) needs to be computed: 

 
∂u̅i

∂t
+

∂u̅i ∂u̅j

∂xj
= −

1

ρ

∂p̅

∂xi
+

∂τ̅ij

∂xj
+

∂τij
modelled

∂xj
 . (11) 

For a detailed derivation of the RANS and LES equations and a possible 

closure method for each approach separately, see Pope [3]. For both approaches, 

several closure options exist that are described by turbulence models. A common 

way of closure is the turbulent-viscosity hypothesis, which claims that the effects 
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of unresolved turbulent flow can be modeled using a turbulent viscosity νT. This 

increases the local fluid viscosity by a certain amount due to turbulence because 

turbulence increases momentum exchange in all directions, as shown here: 

  τij
modelled = −

2

3
kδij + νT (

∂uj

∂xi
+

∂ui

∂xj
) . (12) 

For DES based on the SA turbulence model, a single transport equation that 

must be solved for the evaluation of the modified turbulent viscosity ν̃T=νT/fv1 

is written: 

 

∂ ν̃T

∂t
+

∂uiν̃T

∂xi
= Cb1S̃ν̃T 

+
1

Cσ
[
∂

∂xi
( ν + ν̃T 

∂ν̃T

∂xi
) + Cb2 (

∂ν̃T

∂xi
)
2

] − Cw1fw (
ν̃T

d̃
)
2

 

(13) 

with 

 

fv1 =
χ3

χ3 + Cv1
3 , χ =

ν̃T

ν
, S̃ = fv3√2𝛀ij𝛀ij +

ν̃T

κ2d̃2
fv2  

fw =  (
1 + Cw3

6

 6 + Cw3
6 )

1 6 

,  = r + Cw2 r
6 − r , r =

ν̃T

 S̃κ2d̃2
 

Cσ =
2

3
, Cb1 = 0.1355, Cb2 = 0.622, Cv1 = 7.1 

Cv2 = 5, Cw1 = 3.239, Cw2 = 0.3, Cw3 = 2, κ = 0.41 

(14) 

as defined by Spalart and Allmaras [9]. Furthermore, the implemented model 

includes corrections from Ashford [10] that protect the source term S̃ from 

becoming negative, as shown here: 

 fv2 = (1 +
χ

Cv2
)
 3

, fv3 =
 1 + χ fv1  1 − fv2 

χ
 . (15) 

A significant downside of DES is the gray area (i.e., the region between cells 

modeled by RANS and LES) in which the switching of the modeled turbulent 

viscosity occurs. The original formulation of DES from Spalart et al. [11] proposes 

a grid dependent length scale to determine the switch from RANS to LES. That 

was later found to be problematic because the LES region can be active inside 

thick boundary layers in which turbulent boundary layer structures cannot yet 

be adequately modeled with LES due to the mesh requirements in all three 

dimensions. If LES mode is active inside such a thick boundary layer, the much 

lower LES-like modeled turbulent viscosity cannot be evened out by resolved 

Reynolds stresses due to missing resolution. This effect is also referred to as 

Modeled-Stress Depletion (MSD), which can lead to Grid-Induced Separation 

(GIS), as described by Menter et al. [12]. To overcome the problem of GIS, 

Spalart et al. [13] introduced delayed detached-eddy simulation (DDES), which 

considers the current local flow solution in the RANS-LES switching function. 

This generic shielding function approach takes into account the local eddy 

viscosity, the wall distance, and the velocity gradients. The shielding function is 
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controlled using the turbulent length scale d̃, which needs to be adjusted to fit 

the turbulence model region: 

 

d̃ = d⊥ − fd · max 0, d⊥ − CDES ·△DES  

fd = 1 − tanh [8rd]
3  , rd =

νT + ν

√
∂ui

∂xj

∂ui

∂xj
κ2d⊥

2

 . (16) 

This way, the turbulent length scale returns URANS values (i.e., the wall 

distance d⊥ for computing the SA-based turbulent viscosity) and the LES length 

scale CDES·∆DES for LES-like behavior. In this work, CDES=0.65 and 

∆DES=cellVolume1/3 are chosen. The usage of the cube root volume of the cell as 

filter size works perfectly fine, even though other investigators recommend 

different filter definitions (e.g., the maximum cell dimension). The mesh 

generation in this work is such that prism layers on the surface are extruded and 

in this area the URANS behavior is active. Outside the prism layers, the mesh 

is dominated by cubic hexahedral cells, for which the cube root volume and the 

maximum cell dimension definition are equal. In this study, the LES model region 

is almost exclusively active in this region of the mesh (i.e., there are mostly cubic 

cells in areas of fd=1). 

Compared to the pressure equation, this transport equation can be solved 

quite fast and does not need to be coupled with the other equations to be solved 

for a stable solution. The downside of this model using a single transport equation 

for both the URANS and the LES regions of the flow field is that there is no 

clear border between the regions. Only the amount of turbulent viscosity 

computed indicates whether the model returns RANS values or smaller subgrid-

scale values for LES content. The big advantage over zonal methods, in which 

the boundaries for RANS and LES are defined explicitly, is the missing expense 

for zone definition and the adaption to possibly temporally changing flow field 

states. The zone-free model can potentially resolve turbulent structures using 

LES-like behavior in one time step but automatically switches to RANS if 

required by a change in local flow properties. 

As mentioned above, by employing URANS simulation behavior close to the 

wall, wall models can be used to approximate the turbulent viscosity in the first 

cell on the wall surface for y+<300. The dimensionless wall distance y+ can be 

computed using the wall-normal distance d⊥ measured in meters, the wall friction 

velocity 

 uτ = √
τw

ρ
 (17) 

and the kinematic viscosity ν 

 y+ =
d⊥uτ

ν
 , (18) 

where the wall shear stress is defined as 
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 τw = μ
∂u

∂d⊥
 . (19) 

That allows evaluation of the magnitude of the wall friction velocity following 

equation (17) as 

 uτ = √ νT + ν |
∂ui

∂d⊥
| . (20) 

Equation (20) can then be used to compute the turbulent viscosity in the first 

cell if the usage of a wall function approximates the dimensionless wall distance. 

Similarly to the dimensionless wall distance, the dimensionless velocity u+ can 

be defined with the wall parallel velocity component u∥ as 

 u+ =
u∥

uτ
 . (21) 

In this work, the continuous wall function formulation of Spalding’s publication 

on “[a] single formula for the law of the wall” [14] is used, returning good results 

for the entire range of y+ values. Those results are achieved by employing a 

smooth blending function between the viscous sublayer and the log-law region, 

yielding a smooth transition in the buffer layer. This function is crucial for the 

application of the wall functions to flows around complex geometries with various 

boundary layer thicknesses and automated mesh generation. It uses local velocity 

values and the wall distance to approximate y+ to evaluate the turbulent 

viscosity in the first cell as 

 y+ = u+ +
1

9.8
(e κu+

− 1 − κu+ −
1

2
 κu+ 2 −

1

6
 κu+ 3) . (22) 

For more information about the iterative evaluation of equation (22), the reader 

is referred to the master’s thesis work of Gestrich [15]. 

1.2.3 Discretization and Solving 

Spatial discretization can be obtained by defining a numerical grid of finite 

elements, finite differences or finite volumes. Each of the discretization methods 

comes with its pros and cons. The finite volume method (FVM) is the method 

of choice in this work and is also used in most CFD solver packages. One of the 

most significant benefits of this approach is the local mass conservation property 

on each cell (i.e., the sum of all inflows is automatically equal to the sum of all 

outflows). That leads to excellent global mass conservation. Another advantage 

over other finite elements is the possibility to build unstructured grids that can 

be fitted to complex geometries (e.g., with automated meshing routines). The 

discretization on the FVM mesh is based on the integral form of the underlying 

system of equations. This representation can be obtained from the differential 

form using the Gauss theorem or directly from balancing of momentum change 

and flux across the borders of an infinitesimally small fluid control volume. See 

Ferziger & Peric [16] for a detailed description of discretization schemes and 

properties of different representation of the equations. Gradients, appearing in 
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divergence and Laplacian terms and interpolations to the cell faces (i.e., for 

integration), are approximated using second-order central differencing. Excluded 

from this are the advective transport of turbulent viscosity across faces and the 

non-linear term of the momentum transport equation in cells that have high 

Courant numbers. Gradients for those two exceptions are treated with linear 

upwind differencing, which is also second-order accurate but more diffusive and 

thus introduces more stability. 

Before the first iteration of the resulting set of equations can take place, the 

flow field has to be initialized using an appropriate method. For complex 

geometry cases, computing the potential flow field solution (i.e., rotation- and 

viscosity-free flow) and adding a generic boundary layer profile on no-slip wall 

patches can help to speed up convergence of the instationary simulation 

drastically and decrease total simulation runtime. 

Because the pressure does not appear in the momentum transport equations 

(11), special care needs to be taken to make sure that the pressure field is set in 

a way that the velocity field satisfies both the momentum equations and the 

continuity equation. One way to reach mass conservation is the PISO (pressure-

implicit with splitting of operators) algorithm. In a predictor step, the 

momentum transport equations are solved for the velocity components using 

pressure values of the previous time step. The first corrector step uses a Poisson 

equation for the pressure (linking the momentum equations with the mass 

conservation equation) to make sure the pressure and velocity components satisfy 

the mass conservation equation. In a second corrector step, the velocity fields are 

adjusted using the latest pressure field. The corrector steps are repeated until 

the pressure correction for the time step is negligible. After the pressure and 

velocity fields are computed, the transport equation for the modified turbulent 

kinematic viscosity (13) is solved. This solver works well on low Courant numbers 

because the non-linear coupling between the velocity components is small 

compared to the pressure-velocity coupling. Time advancing is done using 

implicit second-order backward differencing, which is also referred to as the three-

time level method in Ferziger and Peric [16]. Therefore, the overall resulting 

numerical order of accuracy for a majority of cells is of second order. 

1.3 Modal Analysis State of the Art 

Analysis of unsteady flow fields is a broad research area, giving insights into the 

most complex nature of turbulent flows. Applications in the fluid dynamics 

community include, among others, optimization of the fluid dynamics properties 

of a particular product to the calibration of turbulence models. This section 

presents a short survey of the history of modal analysis methods that build the 

basis for the methods used in this work. Furthermore, this section synthesizes 

recent studies on methods for flow field analysis with large data sets and 

applications on bluff body aerodynamics. 

Lumley introduced POD to the fluid mechanics community in 1970 [17]. 

Sirovich later improved the computation of POD modes by introducing the 
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“method of snapshots” for a more memory-efficient analysis of well-conditioned 

data. In this approach, the matrix inner product of the snapshot matrix with its 

transpose is no longer needed, and left singular vectors can be evaluated 

incrementally (i.e., mode by mode). 

Later, Moore [18] introduced the concept of balanced truncation, which 

makes it possible to process modes from a control theory point of view. He 

developed parameters to quantify the controllability and observability of modes 

to balance them for both parameters before truncation of modes.  

Rowley further advanced this concept in 2005 [19] with the introduction of 

balanced POD, which makes it possible to find a good approximation to Moore’s 

truncation but is computationally more tractable for large data sets.  

A highly important development of POD methods in context with this work 

is the incremental POD algorithm proposed by Brand in 2002 [20]. He suggested 

a single-pass snapshot algorithm that can be used to reduce the memory 

requirements of computing POD modes to a predefined maximum rank limit 

(e.g., hardware-given). He then used the algorithm for image processing. For the 

application on simulated flow field data, this advance makes it possible to 

evaluate POD modes in parallel during simulation without the need to store 

data, which streamlines analysis by avoiding excessive hard drive disk accessing 

time. 

Oxberry et al. [21] later used a similar definition for computing incremental 

POD modes and provided useful error analysis for different algorithm control 

parameters. The same research group also published a parallel incremental POD 

code library including documentation [22] that was used for their previous work. 

One of the downsides of POD is the observation of multiple research groups 

in the field that the most energetic POD modes might not be the most 

dynamically relevant ones. Even low-energy POD modes can have a significant 

impact on the global dynamics of a system, as described by Noack et al. [23] in 

2008. Alternative methods that reveal the dynamically relevant flow structures 

need to be considered, such as Koopman operator analysis. 

In 2005, Mezic [24] proposed a method that decomposes the Koopman 

operator for a dynamical system (e.g., time-resolved data) and results in periodic 

to almost periodic components (e.g., modes that oscillate at distinct frequencies) 

and a continuous spectrum. 

The first mention of the term DMD was made in 2008 by Schmid & 

Sesterhenn [25], who were led by the need for data-driven analysis tools that can 

be applied to experimental particle-image velocimetry (PIV) data sets and to 

simulated data. 

In 2009, Rowley et al. [26] showed that the Arnoldi-type algorithm that was 

proposed by Schmid & Sesterhenn can be used to produce an approximation of 

Koopman modes. They further applied the method on a simulated data set from 

direct numerical simulation (DNS) of a jet in crossflow to study the differences 

between DMD and POD modes. They showed that DMD can successfully extract 

globally dominant flow structures at distinct frequencies. Whereas several 

frequencies pollute POD modes that capture the most energetic structures, DMD 



 13 

modes are by construction distinct in frequency and can thus isolate and decouple 

a specific process more effectively for further analysis. 

In 2010, Schmid [27] published the Arnoldi-type algorithm he had proposed 

earlier. The extracted modes were described as a generalization of global stability 

modes that can be used to capture the underlying physics of a highly dynamical 

system using fewer degrees of freedom. He explained that the application of his 

method to linear flow leads to modes equivalent to modes obtained from global 

stability analysis. In case of non-linear flow, the resulting structures are a linear 

tangent approximation to the underlying flow. This method is the basis of a 

Koopman analysis of nonlinear dynamical systems. This work will use the same 

limitation of data analysis to a subdomain of the flow field as done in Schmid’s 

work to reduce the amount of required memory. This data reduction technique 

is also shown to be a principal advantage of both POD and DMD in comparison 

to other global modal analysis techniques, which may require the inclusion of the 

boundary conditions and the underlying equations that have been used to 

compute the flow field.  

This leads to the conclusion that POD and DMD are perfectly fitted data-

driven tools that can be used to generate comparable insights into experimentally 

and numerically obtained data. The first estimation in Schmid’s work pointed 

out that the requirements for the sampling of higher frequency oscillations are 

more demanding than in FFT. Schmid suggested a sampling frequency of three 

times the Nyquist criterion to generate sound DMD results. He also showed 

applications of the method to the simulated flow over a square cavity, the time-

resolved PIV measurement of the flow in the wake of a flexible membrane, and 

the jet between two cylinders. 

Schmid and his coworkers further investigated the application of DMD on 

the Schlieren image video of a helium jet and on the time-resolved PIV data of 

the response of an axisymmetric jet to external forcing [28]. They found that the 

activation of forcing on the jet is well represented in the resulting DMD mode 

spectrum and the spatial distribution. They concluded that acoustic forcing most 

actively changes the flow behavior near the nozzle and that DMD might be an 

exceptionally well-qualified tool to lead to such findings. 

In 2012, Schmid et al. [29] applied DMD to three-dimensional tomographic 

PIV data of a transitional water jet. They suggested the use of transformed 

eigenvalues for the visualization of stability in the mode spectrum, in contrast to 

the eigenvalues on the unit circle. They used 200 snapshots in time for their 

analysis and found that most of the eigenvalues of the DMD operator are close 

to the unit circle. They forecasted that using more time steps would result in a 

continuous approaching of eigenvalues toward the unit circle as the modal basis 

converges toward a linear representation of a saturated nonlinear process. They 

also constructed spatial snapshots, with time being an independent variable and 

the axial coordinate becoming the new sampling variable. Spatial DMD modes 

contain a temporal dependency, and the mode spectrum shows the amplitude 

versus the streamwise wavenumber instead of a temporal frequency. 
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Duke et al. [30] conducted an extensive study on the error analysis of the 

DMD in 2012. Their work is essential for adequately setting the sampling 

frequency to capture damped modes from a flow field. If highly nonlinear 

processes are present and highly damped modes are required for generating an 

ROM using DMD modes, they suggest a minimum of 40 sampling points per one 

period of an oscillation (i.e., 20 times the Nyquist criterion). This is quite 

demanding compared to the requirements of FFT analysis. On the lower 

frequency limit, DMD outperforms FFT by any means. For a linear instability, 

only a quarter of a full period of oscillations needs to be contained in the data to 

be able to compute the correct eigenvalues. For non-linear instabilities with 

growth rates depending on the phase of the waveform, only a single period of 

oscillation is required. 

The need for a physical ordering of modes and the difficulties in obtaining 

good ROMs from DMD led Jovanovic and coworkers to develop sparsity-

promoting algorithms for DMD [31], [32]. Their suggested optimization procedure 

computes DMD mode amplitudes to obtain the best possible ROM 

approximation in an energy-norm sense with a minimal amount of modes. The 

optimization algorithm is computationally inexpensive because it uses the right 

singular vectors and the singular-value matrix from their underlying POD modes 

as an input, instead of the full DMD mode matrix plus the snapshot matrix itself. 

However, it requires the evaluation of the POD. 

Tu, in the research group of Prof. Rowley, developed a comprehensive 

theoretical framework of DMD in his Ph.D. thesis in 2013 [33] and in a journal 

publication in 2014 [34]. He advanced several extensions of DMD, including 

strategies for compressed sensing and construction of snapshots that do not 

necessarily need to be in consecutive order and that can be enhanced to introduce 

more noise robustness to the analysis. 

Hemati from the same research group later encountered problems using DMD 

related to computational resources and noisy data. The sheer size of the matrices 

involved leads to considerable memory requirements for the evaluation of DMD 

modes. He introduced a memory-efficient way to compute DMD modes that 

makes it possible to evaluate DMD online (i.e., during the simulation) without 

the need to store simulated data. A single-pass incremental variant of DMD, 

named streaming DMD (SDMD) [35], uses Gram-Schmidt orthogonalization of 

snapshots to compute an incrementally updating orthonormal basis. After each 

update, the method allows for online compression to limit the amount of memory 

required. Unfortunately, the method does not perform as well as conventional 

DMD on the same data set; spatial distribution of modes is less smooth, and 

eigenvalues show higher damping rates.  

Hemati then tackled the noise sensitivity of DMD methods by publishing the 

concept of augmented snapshots in 2017 [36]. The total DMD (TDMD) method 

makes use of augmented snapshots (i.e., vertically concatenated regular 

snapshots of preceding time steps) and introduces a preceding singular-value 

truncation step after POD evaluation of the augmented snapshot matrix. This 

step is pre-filtering the snapshot matrix for further conventional DMD analysis, 
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removing noise from the data and leading to increased noise robustness. The 

concept of augmented snapshots leads to smoother mode distributions, fewer and 

less-damped modes, and better ROM performance. The method was merged with 

SDMD to create streaming total DMD (STDMD) in 2016 [37], which includes 

the memory efficiency from SDMD and the noise robustness from TDMD in one 

method. 

Because the sparsity-promoting approaches are not applicable for the SDMD- 

and STDMD-based approaches, it is essential to find reliable methods for 

ordering modes other than the conventional ordering by amplitude, which can 

be biased by large damping rates. Kou et al. [38] and Alenius [39] each present 

an approach for considering the temporal evolution of modes during the period 

sampled. A better mode ordering strategy is obtained through the integration of 

the amplitude development, including the respective eigenvalue. This method 

can compete with or even outperform sparsity-promoting DMD in some cases, as 

shown by Kou et al. This DMD mode post-processing approach will be referred 

to as eigenvalue-weighted amplitude ordering. 

The publications presented up to here form the basis for the methods in this 

work. Further methodologically relevant developments have been made recently, 

of which good overviews are given by Rowley & Dawson [4] and Taira et al. [40]. 

Applications of modal analysis of vehicle aerodynamics are limited, but the 

method is increasing in popularity because recently published studies show its 

potential for various purposes. For example, studies on unsteady train 

aerodynamics were conducted by Muld et al. in a series of publications [41], [42], 

[43], [44], [45], [46]. They first developed a suitable DES simulation environment, 

which is validated using a wall-mounted cube case and later a realistic train 

model. They found that modeling of a tripwire for boundary layer transition at 

a specific location is not possible using DES. They extracted modes using POD 

and DMD and found a close resemblance between them. The leading modes are 

associated with the bending of two counter-rotating vortices in the train wake 

and vortex shedding. For the visualization of modes, reconstruction in time is 

found to be most useful. They further investigated differences in flow structures 

between two different high-speed train geometries and concluded that, despite 

the large differences in the mean flow field, the unsteady flow is governed by 

convective vortex shedding. For varying train lengths, it was found that the 

vortex-shedding frequencies in general decrease as train length increases, which 

is most likely a result of the increased boundary layer thickness at the separation 

point. Presumably, a thicker boundary layer increases the characteristic length 

scale of a geometry. With the assumption of a constant leading Strouhal number, 

the frequency must decrease. 

Frank and coworkers used compressible LES simulations with high-order 

discontinuous Galerkin spectral element method to study tonal noise generation 

mechanisms on side-view mirrors [47], [48], [49]. Aeroacoustic flow field effects 

like these are particularly relevant to understand, predict and prevent, because 

tonal noise can be perceived as a disturbing whistling sound, decreasing passenger 

comfort. Frank uses DMD for the extraction of globally dominant modes on the 
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diffusor side of the mirror and in the area close to the trailing edge at the top of 

the mirror. Using 200 temporal snapshots, selected unstable modes are visualized; 

these are the driving modes for an aeroacoustic feedback loop phenomenon that 

triggers aeroacoustic noise generation due to laminar boundary layer separation. 

The separating laminar boundary layer introduces a shear layer in which 

disturbances rapidly grow toward the trailing edge. The structures are then 

scattered at the trailing edge, reinforcing the dominant frequencies in the shear 

layer close to the separation point through receptivity. The understanding of the 

underlying mechanism has led to various possible modifications to prevent side-

view mirror whistling. 

Recent research in the group of vehicle aerodynamics at the Technical 

University of Munich (TUM) includes analysis of temporally resolved flow fields 

from numerical simulation of passenger cars by Peichl, Matsumoto and Kiewat. 

Peichl et al. published their first application of conventional DMD analysis 

on the notchback configuration of the DrivAer geometry [50] in 2014, on which 

this work builds. They found that the mean flow mode is the most dominant of 

all modes and that further dominant processes represent the movement of wake 

structures and vortex shedding from the rear wheels. The application of DMD 

for the case was limited to the near wake of the vehicle due to memory constraints 

of the batch-processed conventional DMD algorithm. To obtain reasonable 

results, they argued that temporal filtering using a Butterworth filter is necessary 

for preprocessing the data, which was sampled on the CFD mesh. To eliminate 

chances for phase shift, the temporal filter was applied forward and backward in 

time. They found that the tremendous amount of memory and hard drive disk 

space limited the applicability of the method in an industrial engineering 

environment and that smarter ways of judging a mode’s significance are needed. 

Matsumoto from the same research group and coworkers were the first to 

apply an on-the-fly type DMD algorithm to vehicle aerodynamics results [51]. 

They revealed the difference of the aerodynamic characteristics caused by 

geometrical modification of the engine bay compartment. As an input for the 

analysis, surface force vector data was used. Matsumoto and Indinger further 

developed an alternative of the on-the-fly DMD algorithm by using incremental 

singular-value decomposition [52]. This approach enables the use of sparsity-

promoting DMD after the on-the-fly DMD computation, which results in a better 

estimation of the DMD amplitudes. They then applied the method to the flow 

field data of a two-dimensional square cylinder case. The group then applied the 

newly developed incremental DMD on simulated surface forces of the DrivAer 

model [53]. This work shows incremental DMD’s usefulness and the close 

resemblance of obtained DMD spectra with FFT spectra. Furthermore they 

investigated the applicability of incremental POD for compression of very large 

transient data sets of 901 snapshots from 645 million observables [54]. They found 

a good reproduction of the original data series by comparing the reconstructed 

time signal in sampling points of the flow field using only 100 incrementally 

computed POD modes. 
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Kiewat et al. concluded from Peichl’s work on modal analysis methods that 

memory-efficient DMD variants are needed to be able to use DMD for 

engineering purposes. We implemented STDMD to validate its applicability on 

complex geometries and applied it to the velocity volume vector field of an 

isolated rotating wheel in comparison to batch-processed DMD [55]. The 

incremental variant was shown to outperform conventional DMD due to the 

augmented snapshot strategy. Further memory savings were obtained by spatial 

cell volume weighted interpolation to a coarser grid. The STDMD method was 

extended to include eigenvalue-weighted amplitude ordering. The advantages of 

the new mode-ordering criterion were shown by direct comparison to 

conventional mode ordering by first-snapshot amplitude, in which the mode 

spectra and leading mode shapes of two wheel geometries were compared. The 

first wheel was a generic closed wheel, and the second wheel had the open rim of 

an Audi Q5 production vehicle, which was simulated using a sliding mesh 

approach. The leading modes of both geometries were at similar frequencies. The 

leading modes were classical von Karman vortex shedding, with the wheel width 

in y-direction being the characteristic length, and horseshoe and shoulder vortex 

shedding processes. In a second publication [56], the STDMD method was then 

applied to a full DrivAer reference body vehicle geometry in notchback 

configuration, including open rims, structured underbody and engine bay flow. 

As in the first publication, large data sets formed of velocity flow field 

components were used. Temporal correlation of snapshots was found to be an 

excellent tool for the determination of the required sampling frequency of an 

existing data set. The most dominant mode was connected to oscillations 

observed in the drag forces. Through reconstruction, it was possible to identify 

the initiation mechanisms of the leading mode. Further modes were attributable 

to the bluff body vortex shedding due to the height of the vehicle, which can be 

connected to oscillations in the rear lift force at the same frequency. 

1.4 Objective 

This dissertation develops a framework of modal decomposition methods for 

vehicle aerodynamics simulations. The goal is to derive a method that is capable 

of offering insights into the transient behavior of the flow around the vehicle that 

is described by large data sets. Central challenges are to overcome the limitations 

of existing algorithms regarding memory requirements, overall processing time 

and noise sensitivity. This work investigates incremental algorithms with the 

possibility for online compression regarding these properties. Furthermore, the 

usefulness of the resulting decompositions needs to be evaluated in the context 

of vehicle aerodynamics engineering. 

A quantitative parameter has to be chosen that can judge the precision of 

the ROM, and the strategy presented here is to minimize the amount of data 

while maintaining most of the energy in the system. For this, mode-ordering 

criteria and their properties have to be discussed to specify a suitable mode 

selection parameter for vehicle aerodynamics results. 
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In addition, the usefulness of the results has to be judged regarding the ability 

to extract dominant flow structures to gain a deeper understanding of unsteady 

flow physics. The major differences between modal analysis methods in this 

respect are the ability to clearly identify a flow field effect by temporal 

reconstruction offering the ability to track a structure back to its excitation 

mechanism. 

Besides the derivation and the fundamental properties of the suggested 

algorithms, guidelines for the application on vehicle aerodynamics simulation 

results have to be defined. The flow field effect under investigation can be 

analyzed only if the data basis that is used to generate an ROM is conditioned 

well and if the spatial and temporal resolution of the incoming data is chosen 

properly. 

1.5 Outline 

Chapter 1 emphasizes the need for modal decomposition methods for vehicle 

aerodynamics applications and contains an introduction to the world of unsteady 

CFD simulations. 

In Chapter 2, after the theoretical framework for conducting such 

simulations, a two-dimensional cylinder simulation is introduced in section 2.2 as 

a test case for the validation of the methods and to demonstrate their properties. 

This study aims to show differences between the capabilities and performance of 

streaming modal analysis tools and related methods. Variants of those basic 

methods are discussed and compared while always keeping the challenges for 

applying this method in an industrial context in mind. Sections 2.3 and 2.4 

present two classes of modal decomposition algorithms and their properties 

concerning the goals described in chapter 1.4. Additionally, both algorithms are 

investigated from a computational cost perspective, which is often the limiting 

factor when it comes to application to large data sets. After the underlying basic 

algorithms are presented, already published incremental versions of the 

algorithms are derived. For the DMD variant chosen in this work, significant 

changes in the computation of modes are developed and presented here for the 

first time. These extensions are built on the basis of existing incremental DMD 

algorithms and lead to further savings in memory and computation time. 

Chapter 3 applies the developed analysis tools to vehicle aerodynamics data. 

Sections 3.1 and 3.2 introduce the DrivAer reference geometry setup and present 

the numerical flow simulation setup using DDES. Results are discussed and 

compared to wind tunnel measurements. Reasons are highlighted for the 

incomparableness of unsteady data from the experiment in the investigated 

frequency range. For the application of modal analysis on simulations of vehicle 

aerodynamics, special care has to be given to data preparation, which is a core 

topic in section 3.3. Spatial and temporal data reduction and filtering for the 

data that will be used as an input for the mode computation are considered. A 

strategy is presented for the selection of the sampling period and the sampling 

frequency. The modal decomposition algorithms are then applied to the 

aerodynamic simulation of the generic DrivAer reference model in fastback 
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configuration in section 3.4. Extraction of various flow field phenomena is 

achieved, their influence on the flow field is investigated, and interactions 

between different vortex-shedding mechanisms are found to play an influential 

role for the temporal evolution of the unsteady flow field. 

Finally, in Chapter 4, a conclusion for the methods obtained and achieved 

results is given, and an outlook for possible further research is provided.  
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2 Modal Decomposition Methods for Fluid 

Mechanics 

Modal decomposition methods provide means of decomposing large sets of data 

into modes. In fluid mechanics, spatio-temporal data is often represented with 

spatial modes comprising information about their temporal evolution in 

additional variables. Dominant large-scale coherent flow structures can be 

extracted, which allows for an in-depth analysis of flow field phenomena. The 

goal is to find a suitable representation of the flow field, which can represent the 

behavior of the flow field well. This also enables condensing all flow field effects 

to the most dominant phenomena, which can then be analyzed independently or 

can describe the flow field well while reducing the amount of data to be stored 

in a ROM. 

The decomposition methods discussed in this work are entirely data-driven 

and do not require any further information about the underlying system being 

analyzed. Thus, the data analysis does not require any knowledge about the 

governing equations of the target field of observables. 

2.1 Idea behind Data-Driven Modal Reduction 

In this work, the data sets are built of snapshots of the velocity field components 

u, v and w, collected from the flow field with a cell count of n0. For a single time 

step j, a snapshot is constructed as 

 𝐱j =

[
 
 
 
 
 
 
 
 
 
u1,j

⋮
un0,j

v1,j

⋮
vn0,j

w1,j

⋮
wn0,j]

 
 
 
 
 
 
 
 
 

 . (23) 

The number of observables for all investigations in this work is thus n=3n0. To 

fully capture the dominant physics of a flow field, a reasonable amount of m 

snapshots is obtained and can then be rearranged into a snapshot matrix  

X ∈ ℝ[nxm] , shown here: 

 𝐗 = [
| |
𝐱1 ⋯ 𝐱m

| |
] . (24) 

The amount of samples required in space and time heavily depends on the 

targeted flow field processes to be investigated or captured in the modal 

decomposition. Focusing on a very narrow, high-frequency band of the flow field 

requires a relatively short sampling time if lower frequency oscillations do not 

modulate the process. Similarly, the spatial sampling can be restricted to a small 

subdomain in the flow field if a specific part is to be investigated in depth. In 
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this work, the primary target is to capture the energetically most dominant flow 

features on a global scale. 

Two principal goals can be targeted using decomposition algorithms. First, 

this class of data processing algorithms can be used to gain more insight into the 

physics of a temporally resolved flow field. Second, the representation of a time 

series in the modes can be used to generate an ROM. While the original data set, 

which is also referred to as an FOM, of the flow field using a snapshot matrix 

with rank rFOM might require massive amounts of data storage, an ROM can 

potentially maintain the most dominant flow features but use a smaller rank 

rROM<rFOM. From this perspective, modal decomposition methods can thus also 

be classified as data-compression algorithms. The two resulting approaches that 

are used in this work are based on previously published methods of POD and 

DMD variants. Both of them are chosen to guarantee limited memory 

consumption and realize incremental processing of flow field data during the 

simulation run. The following sections introduce those methods and suggest 

modifications of the original formulations that make the methods even more 

applicable for industrial usage. These modifications are published in this work 

for the first time. 

As the modal decomposition algorithms can be used for data compression 

and structure extraction purposes, two ways of judging the usefulness of a 

method are discussed. 

First, for data compression, the principal target is to minimize the amount 

of data while maintaining most of the energy in the system. It is found that 

comparing the reconstructed flow field of an ROM 𝐗̃, with the original flow field 

X, which is used to build the ROM, is an excellent indicator for applicability to 

large and complex data sets. This way, the performance of the algorithm applied 

to a specific data set can be boiled down to a single number for one ROM rank. 

The performance loss indicator is defined as 

 Πloss = 100
‖𝐗− 𝐗̃‖

F

‖𝐗‖F
, (25) 

where the Frobenius norm of a matrix A is defined as 

 ‖𝐀‖F = √tr 𝐀𝐀H , (26) 

with AH being the conjugate transpose of A. The performance loss indicator and 

proportional versions have been used in several previous investigations, including 

Jovanovic et al. [31], Oxberry et al. [21] and Kiewat et al. [55]. Due to the 

memory restrictions related to modal decomposition algorithms for large data 

sets, it is worth mentioning that the Frobenius norm is a vector norm and can 

be evaluated incrementally by computing 

 ‖𝐀‖F = √∑∑|aij|
2

m

j=1

n

i=1

. (27) 
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This analysis is computationally much more inefficient but has proven to be a 

valuable workaround for large data sets, for which ‖𝐗 − 𝐗̃‖
F
 in equation (25) 

cannot be computed at once. 

Second, besides the quantitative performance-loss indicator, the 

interpretability of a mode or of combined modes is found to be a crucial factor 

for determining an algorithm’s usefulness for simulations. That target is more 

subjective and can only be decided on a case-by-case basis. 

2.2 Generic Test Case: Two-Dimensional Cylinder 

The two-dimensional flow around a circular cylinder is used to describe properties 

of the methods employed here. Their differences are outlined using the obtained 

results. The flow around circular cylinders is among the most widely studied 

configurations at a wide range of Reynolds numbers and serves well for pointing 

out properties of the developed methods in this work. 

A z=0 slice through the full two-dimensional CFD mesh is shown in Figure 

2. The mesh is built of blocks using the OpenFOAM® blockMesh utility. The 

flow is solved for in x-direction (streamwise) and y-direction (spanwise). Due to 

the symmetry of the mesh to the y=0 plane, an initial disturbance is required to 

seed a fluctuation in the spanwise direction. If the flow would be initialized using 

a symmetric flow field, symmetric steady-state flow is observed until numerical 

errors lead to a small asymmetry and oscillations begin. Such processes can often 

take longer by several orders of magnitude than the characteristic period of 

oscillations in the flow. The asymmetry can be forcefully triggered using an initial 

condition of a uniform internal flow field with the streamwise velocity component 

of Ux=U∞ and spanwise velocity component of Uy=U∞. At the cylinder surface, 

a no-slip boundary condition is imposed for the velocity while the upper and 

lower side walls of the domain are of boundary condition-type symmetry (free 

slip condition). The inlet boundary condition (on the left) is a fixed-value velocity 

boundary with zero-pressure gradient. A fixed-value pressure boundary condition 

represents the outlet (on the right). The same pressure value is also used as a 

uniform initialization for the internal field. 
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Figure 2: Two-dimensional cylinder CFD mesh of hexahedral cells. The 

outer mesh has a cell size of ∆x=D/16, and the 15 cell layer O-grid 
around the cylinder expands with a ratio of 1.6 in the radial direction. 
No free-hanging nodes are present. 

The non-dimensionalized time and velocities for this case are defined as 

and 

 ûk =
uk

U∞
 . (29) 

A fixed time step size of ∆t̂CFD=0.01s∙U∞/D is used for the simulation. For modal 

analysis, every hundredth time step is used, ∆t̂=1s∙U∞/D. Subscript time indexing 

is from here on reserved for modal analysis time step indices (e.g., t̂1000 is snapshot 

number 1,000, which equals the flow field of the hundred-thousandth CFD time 

step). Right after the asymmetric initialization at t̂0=0, the flow quickly becomes 

unstable and reaches a periodic vortex shedding state after a non-dimensionalized 

time of t̂1000≈110, for which velocity field plots are shown in Figure 3. That 

commonly known periodic vortex-shedding phenomenon is also referred to as a 

Karman vortex street. The process occurs in the range between 50<Re<107. 

−U∞ U∞0

u ,1   u ,1   u 1   

 
Figure 3: Snapshot of the velocity field components and the velocity 

magnitude at t̂1000. Von Karman vortex shedding is in a purely periodic 
state. 

 t̂ =
U∞

D
t (28) 
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Starting from t̂1001, around 19 full shedding cycles are simulated until t̂2000 is 

reached at the end of the simulation. The evolution of the velocity field at a 

point in the wake of the cylinder is depicted in Figure 4. 

 
Figure 4: Temporal evolution of the y-component of the velocity field 
probed at position x=2D and y=0. The ramp-up phase toward reaching 
the periodic vortex-shedding state takes around half of the total 
simulation time. 

A total of 2,000 snapshots are recorded for modal analysis. For a detailed 

comparison of modal analysis algorithm performance properties, the simulated 

case is split into two parts. Part one covers the linear growth of the instabilities 

ranging from t̂1 to t̂1000, and part two includes pure oscillatory von Karman 

vortex-shedding phenomena from t̂1001 to t̂2000. 

A commonly used dimensionless parameter for analysis of periodic behavior 

is the Strouhal number St, giving the ratio of oscillation effects and mean flow 

speed, defined as 

 St =
f · D

U
 . (30) 

Applying FFT on the time series in Figure 4 from t̂1000 to t̂2000, the dominating 

Strouhal number around StFFT=0.179 of the von Karman vortex street can be 

extracted, as can be seen in Figure 5. For better frequency resolution and more 

certainty in the extraction of the dominant frequency value, longer simulation 

runtimes would be necessary, as FFT heavily relies on a sufficiently long time 

series. It can only be assumed that the exact dominant frequency lies somewhere 

between the dominant peak in Figure 5 and the adjacent frequency to the left, 

due to the asymmetry of neighboring values around the maximum. Computing 

the frequency by directly counting the number of oscillations in Figure 4 also 

gives a slightly lower value of Stsimple=0.178. Experimental investigations by 

Roshko [57] for a long cylinder in a closed test section wind tunnel resulted in a 

best-fit law for the Reynolds number range 50<Re<150 of 

 St = 0.212(1 −
21.2

Re
) , (31) 
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resulting in Stexp=0.167. A three-dimensional simulation with a better 

approximation of real-world boundary conditions would be necessary to match 

experimental results better. Since the two-dimension cylinder test case is only 

meant to provide flow field data for the description of modal analysis algorithm 

behavior and result properties, the uncertain 8% offset in Strouhal number is 

insignificant for the usefulness of the data. 

 
Figure 5: Power spectral density of the velocity field y-component at 
position x=2D and y=0 vs. Strouhal number. The frequency spectrum 
is computed using the Hanning window function with a minimum of 50% 

overlap in the period of t̂1000 to t̂2000. 

2.3 Low-Memory Proper Orthogonal Decomposition 

POD is also commonly referred to as Karhunen-Loeve decomposition, Hotelling 

transform, principal component analysis (PCA), empirical orthogonal function 

(EOF) analysis or singular value decomposition (SVD). POD offers a way to 

generate a set of spatially orthogonal real-valued modes, which can be used for 

entirely data-driven ROMs.  

2.3.1 Batch-Processed POD 

A snapshot matrix X is decomposed into a real-valued matrix of scaled modes 𝐔̂ 

that are orthogonal in space and into a real-valued orthonormal matrix V 

describing the temporal evolution of the modes, as shown here: 

 𝐗 = 𝐔̂𝐕T . (32) 

That way, X is separated into variables of spatial (𝐔̂) and temporal (V) 

dependency. Furthermore, 𝐔̂ is split into an orthonormal mode matrix U and its 

weighting factors 𝚺, as shown here: 

 𝐗 = 𝐔𝚺𝐕T . (33) 

The matrix U is column orthonormal for n>m, and V is orthonormal in both 

dimensions if it is not truncated, such that their inner product is the identity 

matrix 



 26 

 𝐔T𝐔 = 𝐕T𝐕 = 𝐕𝐕𝐓 = 𝐈. (34) 

In general, taking the SVD of X (equation (33)) results in an orthonormal basis 

of U ∈ ℝ[nxn], singular values 𝚺 ∈ ℝ[nxm] and orthonormal matrix V ∈ ℝ[mxm]. Most 

real-world fluid problems are typically described with numbers of observables 

larger than 106 and n>>m. Such matrices are also referred to as tall and skinny 

matrices. In this case, the computation of a full SVD becomes prohibitively 

expensive even on an up-to-date supercomputer cluster. That is mainly due to 

the large amount of RAM required and the number of necessary flops, which is 

of the order O(n2m+m3) (e.g., when using the “R-SVD” procedure described in 

described by Golub & Loan [58]). That is also the case if only the first r modes 

are required. As a way out of this quadratic dependence on the number of 

observables, Sirovich [59] shows the application of the so-called method of 

snapshots for computing the POD of a system that is represented by discrete 

time steps. The method of snapshots is a valid approach for most applications in 

fluid mechanics, where only the most dominant r modes are to be computed. The 

concept of the method of snapshots is outlined below. The key benefit of the 

method is that it only requires the computation of the matrix product 

 𝐑 = 𝐗T𝐗 , (35) 

with R ∈ ℝ[mxm]. Eigenvalue decomposition of R gives the approximated first m 

eigenvalues and eigenvectors of X, 

 𝐑𝐕 = 𝐕𝚺2 . (36) 

The spatial distribution of POD modes U can then be evaluated by rearranging 

equation (33) to 

 𝐔 = 𝐗𝐕𝚺 1 . (37) 

A considerable advantage of this concept is the possibility of evaluating the POD 

modes incrementally, which reduces the amount of memory required for the 

evaluation of columns of U by a factor of almost two, as shown here: 

 𝐮j = ∑𝐱k𝐯k,j

m

k=1

σj
 1 . (38) 

If all j columns of U are evaluated at the same time using equation (37), the 

additional memory required increases by the size of the snapshot matrix X in 

case of full rank POD. It is worth noting that special care needs to be taken on 

the condition of the data before applying the method of snapshots. If X is ill-

conditioned (i.e., cond2(X)>1) then R is even more ill-conditioned: 

 
c nd2 𝐑 = c nd2 𝐗

T𝐗 = ‖𝐗T𝐗‖
2
‖ 𝐗T𝐗  1‖

2

=  c nd2 𝐗  
2 . 

(39) 

Several ways of implementing the outlined batch-processed methods exist. 

These algorithms are implemented in publicly available libraries, and their 

functionality is widely accepted and well-validated in the fluid mechanics 

community. 
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2.3.2 Singular Value Truncation 

POD modes are sorted by energy content using their respective singular-value 

σj,j. When computed, the orthonormal basis can be used to represent 

multidimensional data in the least-squares-optimal sense. Thus it can be handy 

for obtaining an ROM by truncating the mode matrix using singular value 

truncation. By setting a certain threshold for the amount of energy to be 

conserved in the system, an optimal ROM representation can be obtained. That 

way, POD can also be categorized as a data-compression routine, resulting in a 

low-dimensional approximation with rank rROM of the full state data with rFOM. 

For other applications, singular-value truncation is also used as a filtering 

operation for removing low-energy noise and oscillations from data. The FOM 

with rFOM can be smaller than m in case of linearly dependent snapshots, which 

can appear for periodic flows. The truncated SVD of X into 𝐔̃=𝐔:,1:rROM
, 

𝚺̃=𝚺1:rROM,1:rROM
 and 𝐕̃=𝐕:,1:rROM

 is depicted in equation (40). 

 

rROM

≈   𝐗 𝐔̃
𝐕̃T𝚺̃

rROM

rROM rROM

m m

mm

mm

nn

 

(40) 

Truncation of the modes is based on the descending order of singular values on 

the diagonal of 𝚺. The least-squares-optimal sense mentioned for equation (33) 

also holds for any chosen rROM. That means that any ROM based on SVD 

represents the original data X better than any other possible matrix in the 

Frobenius norm sense (see equations (25) and (26)). So, for any chosen rROM, it 

is guaranteed to get an optimal ROM (see also Chatterjee [60]). In many cases 

of bluff body aerodynamics at Reynolds number of the order of Re≈106, the first 

POD mode corresponds to the mean flow mode if the data has not been mean-

subtracted before applying the POD algorithm. Each following POD mode 

contains a part of the remaining oscillations around the mean value in the flow 

field. The total energy content in a flow field can be calculated by summation of 

squares of the singular values as 

 etotal = ∑σj,j
2

m

j=1

. (41) 
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Several methods for finding reasonable truncation values for specific 

applications exist. One approach is to compare a single mode’s energy content to 

the total energy in the system 

 erel,j =
ej

etotal
=

σj,j
2

∑ σj,j
2m

j=1

. (42) 

By setting a fixed minimum value for erel,j, modes with a contribution to the total 

energy of the system of less than εPOD,trunc can be truncated from the ROM 

representation. The modes to be kept must fulfill the criteria 

 erel,j> εPOD,trunc . (43) 

A good practice value of εPOD,trunc=10-5 has been proven to work well for high-Re 

cases for low-energy filtering applications of POD from parameter studies. 

Another sensible criterion for singular value truncation, especially for ROM-

oriented applications, is the summation of relative energy contributions starting 

from mode one to mode number rROM and comparing that sum to the total energy 

of the model. An ROM preserving a certain percentage of the total energy can 

then be generated 

 epreserved ≥
∑ σj,j

2rROM
j=1

∑ σj,j
2m

j=1

 . (44) 

Depending on the application, values of epreserved≈0.99 are sensible. The choice of 

epreserved heavily depends on the energy contained in the mean flow mode. 

Sometimes, the mean flow mode already makes up over 90% of the total flow 

field energy. It is found that covering 90% of the fluctuation energy creates 

reasonable ROMs that contain most of the dominant unsteady flow structures 

(see also recommendations in Sirovich [59]). Since POD application is usually 

employed to investigate the temporally resolved flow field, mean-subtracted POD 

with epreserved=0.9 is a reasonable practice. For visualization purposes, the mean 

flow can be added to the reconstructed flow field after computing the POD. 

2.3.3 Incremental Data Processing 

Due to the high complexity of turbulent flow fields around vehicles, an 

incremental approach that doesn’t require the full snapshot matrix in memory is 

desirable, since memory limitations are otherwise quickly reached. Brand [20] 

introduces an algorithm to compute an SVD incrementally based on the method 

of snapshots and applies it to the example of video data processing. Later, 

Oxberry et al. [21] adopted his algorithm to apply it to CFD data analysis. This 

section outlines the incremental computation of the POD modes from an 

algorithmic point of view. A flowchart of the entire algorithm is sketched in 

Figure 6.  

The first time step is normalized and used as the first column of the 

orthonormal basis U. The singular value matrix 𝚺 is initialized with the two-

norm of the first snapshot and the right singular vector matrix V is initialized 

with identity. After initialization of the POD decomposition, each new snapshot 
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vector is checked for relevance compared to the existing orthonormal basis. By 

projecting the vector onto the left singular vectors, one can judge the 

orthogonality of the current snapshot vector with respect to previously processed 

data. If the resulting orthogonality vector I shows a small variance (many 

elements are close to zero), and if this variance is small compared to the variance 

of the snapshot itself, then the new snapshot vector contains relevant new data 

that is considered for a full update of the orthonormal basis (large value for p). 

In this case, the POD basis is expanded. If p is smaller than a user-defined 

threshold, p is set to zero, and the orthonormal basis is not extended. A matrix 

similar to an incremental covariance matrix Q is defined by the existing singular 

value matrix, which is expanded by one rank with p on the diagonal and I in the 

last column above the diagonal. The quadratic matrix Q is then diagonalized 

using SVD. In case of a reduced update routine, the resulting Utemp, 𝚺temp and 

Vtemp are then sorted by singular value and truncated by one rank in both 

dimensions. In the case of a full update procedure, the incrementally computed 

left singular vector matrix is expanded using the new snapshot vector, which is 

orthonormalized with respect to the existing left singular vectors. The right 

singular vectors are expanded by a one-rank unity column and row. In any case, 

the left and right singular vector matrices are then updated by matrix product 

with Utemp and Vtemp respectively. 
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if

rank 𝚺 ==0
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𝐱j 2
 ε  D
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𝐱j

𝐱j 2
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 =
𝚺  
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full update
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𝐕temp
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maximum rank reached

𝐔 = 𝐔            
𝚺 = 𝚺                

𝐕 = 𝐕            

𝐱j

j=1

𝚺 =0

 
Figure 6: Flowchart of the incremental POD algorithm. Matrix indexing 

is done using MATLAB® notation. Green arrows denote a positive 
evaluation of an if statement, and red arrows indicate negative. 
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2.3.4 POD Results 

A detailed comparison of conventional batch-processed POD and incremental 

POD for the two-dimensional cylinder in the periodic shedding cycle has been 

conducted by Langer [61] and will, therefore, be omitted from this presentation 

of incrementally computed POD analysis results of the two-dimensional cylinder 

case. The focus of the following section is on the algorithm performance 

concerning memory consumption and execution time.  

The real-value matrix multiplication obtains the reconstruction of the 

snapshot matrix based on an incremental POD ROM following equation (40) 

with 

 
𝐗̃(modeIDs)observableIDs,timeIDs 

=𝐔̃observableIDs,modeIDs𝚺̃modeIDs,modeIDs(𝐕̃timeIDs,modeIDs)T . 
(45) 

The parameters modeIDs, observableIDs and timeIDs can be lists of indices to 

select specific modes, observables (i.e., cell indices if only one flow field quantity 

is used) and time steps for reconstruction. For ROM analysis and performance 

loss computation, modeIDs=1:rROM, observableIDs=1:n and timeIDs=1:m. For 

the analysis of a single physical flow phenomenon, modes can be reconstructed 

in combination with other modes or on their own, which can lead to more insight 

rather than observation of only the ensemble of all modes in an ROM. Because 

the modal basis only contains real values, a single mode can only contain the 

physical flow field phenomena happening in phase. Processes occurring with a 

phase offset will always require modes to be added to the modal basis. That can 

lead to disadvantages for the application on very complex flow fields. The 

reconstructed snapshot matrix generally becomes a better approximation of the 

original data snapshot matrix by increasing rROM if enough care is taken in 

adjusting the incremental POD computation, as will be highlighted in the 

discussion of tuning parameters below. 

The first algorithm-tuning parameter discussed is a truncation criterion, 

which affects the expansion of the memory-wise most problematic orthonormal 

matrix U. Significant memory and execution time savings can be obtained if 

expansion can be prevented without decreasing the quality of the resulting ROM. 

Due to the incremental nature of the algorithm, the expansion of the orthonormal 

basis to a high rank in the order of O(n) (e.g., by using many snapshots and a 

very low threshold) can even lead to larger ROM modeling errors than if an 

increased singular value truncation criterion is used. That is mainly due to the 

propagation and increase of errors due to machine-precision errors in the involved 

matrix operations. The decay in ROM performance with a decreasing number of 

modes used for reconstruction is shown in Figure 7 for several threshold values. 

For each curve, the last data point marks the rank of the resulting ROM (e.g., 

rROM=10 for threshold=10-1 in the ROM of part two of the time series). 
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Figure 7: Performance loss charts for part one (top) and part two 
(bottom) of the two-dimensional cylinder test case for varying thresholds 
in the incremental POD algorithm.  

The threshold criterion limits the number of modes in the orthonormal basis and 

leads to very compressed representations of the full data, even for lower ranks. 

An ROM with a rank of only 35 can reproduce the original thousand-time-step 

data series of part one with only 2.2% error using a threshold of 10-1. Using only 

10 modes for the same threshold in part two leads to an error of just 0.9%. For 

part one, decreasing the threshold to a final value of 10-6 also steadily decreases 

the ROM error. The most accurate approximation of the flow field is reached 

using an ROM with rank 1,000, leading to Πloss=3·10-11% (not shown in Figure 7 

for axis-scaling reasons). The same tendency can also be observed for the ROM 

analysis of part two down to a threshold of εPOD=10-5. For a threshold of  

εPOD=10-6, the purely periodic shedding nature of the flow eventually becomes a 

problem if adding additional time steps beyond t̂1100, when further time steps 

have to be orthogonalized. This is because the time steps still fulfill the threshold 

criterion but cannot be orthogonalized well due to the fact that two full shedding 

periods already have passed. In the process of the complete update routine and 

orthogonalization, numerical double precision errors add up, and a poorly 

orthogonalized basis results. An additional orthogonality check after adding a 

new time step could potentially prevent such errors but would require too much 

computation time. Keeping that in mind, it is legitimate to require a threshold 

criterion of εPOD>0 for all applications with the given formulation of the update 

procedure. A reasonable, well-chosen threshold criterion can then also limit the 

required memory to compute the ROM, which scales with the rank of the 
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resulting orthonormal basis. Using a threshold value of εPOD=10-4 is a good 

tradeoff between ROM precision and memory usage for both time series, with 

errors of only Πloss=2·10-3% in part one and Πloss=6·10-4% in part two. That level 

of accuracy equates to memory savings with a factor of almost three in part one 

and of 13 for part two, compared to a threshold value of εPOD=10-6. Interestingly, 

all ROM executions lead to similar performance losses for small ranks (i.e., the 

error curve of ROM with threshold εPOD=10-a equals the error curve of ROM with 

a threshold εPOD=10-(a+1) when only using rROM≈1/3rmax). Even the threshold 

εPOD=10-1 case with rmax=10 can capture the first three modes perfectly fine and 

can reproduce modes four and five, at least concerning mode distribution. Thus, 

the computational cost can be reduced drastically by extracting only dominant 

modes instead of building a precise ROM of the full state data. Beyond the need 

for significant memory when using current ROM algorithms in engineering 

applications, the requirement for high computational time can also be a limiting 

factor. Figure 8 shows the computational time for the evaluation of the ROM for 

different threshold values. The threshold value of εPOD=10-4 offers a good 

compromise between execution time and ROM performance. 

ε  D  
Figure 8: ROM execution time for incremental POD analysis. The 
computation time increases with the rank of the resulting ROM. 

Besides the above thresholding criterion, which can be set independently of 

the computer system requirements, it is also possible to apply a fixed maximum 

rank for the creation of an ROM by conventional singular value truncation as in 

batch-processed POD; however, this occurs at the end of each full update 

iteration. A fixed maximum rank employed at the beginning of the update 

routine is not advisable (i.e., where the above threshold criterion is used), because 

highly relevant snapshot information could be neglected. If the process 

investigated contains a ramp-up phase or linear growth (e.g., in the two-

dimensional cylinder part one time series), snapshots that are added later might 

be more relevant than snapshots that are already represented in the orthonormal 

basis. A fixed maximum-rank criterion should thus only be implemented in a 

singular value truncation after updating the POD basis, even if it increases 

execution time. That type of criterion can then be tuned to adjust the algorithm 
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to comply with maximum available memory or to limit the execution time of the 

algorithm.  

While the above tuning parameters must be used universally, the definition 

of a fixed maximum rank for the creation of an incremental POD basis should 

be adjusted to account for available computer resources. Due to the large number 

of observables and snapshots for the application to high-Re production vehicle 

aerodynamics, incremental POD offers a good workaround when computer 

system memory limitations are an issue. Due to the problematic 

reorthonormalization of snapshots in part two after only two shedding cycles 

(i.e., around 200 snapshots), only results for part one are presented here, as 

shown in Figure 9. Relatively small deviations are observed for all rank 

limitations compared to the full incremental POD without the application of any 

truncation. The performance loss curve of the full incremental POD with a rank 

of 1,000 is pictured in Figure 7. The first few modes are found well even for 

minimal maximum-rank settings. A limitation of the POD basis to 10% of the 

full rank orthonormal basis size with a maximum rank of 100 leads to, at most, 

a 0.003% performance loss increase compared to an ROM built from the first 100 

modes of the full incremental POD. The full incremental POD comes with a 

number of 1,000 modes in the update routine of the last time step during the 

incremental POD basis computation and thus also requires 10 times the memory. 

The performance loss of an ROM with rank 100 for part one is only 0.0175%, 

computed with a maximum rank setting of 100. Similar ROM performance charts 

can also be obtained for lower ranks of decompositions of time series one. 

 
Figure 9: Incremental POD performance loss behavior for different 
maximum-rank truncation parameters for part one. Maximum-rank 
truncation is conducted using singular value truncation after the full 
update procedure in the algorithm. 

The restriction of the POD basis size does not influence the ROM performance 

much but does come with a downside. Due to the recurring full update procedure, 

even for time steps that would be sorted out by a wisely chosen threshold 

criterion, much computational effort needs to be spent to generate a small-rank 

POD basis that keeps the memory consumption in a certain limit. A maximum-

rank incremental POD with rmax=100 takes approximately twice the execution 
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time as the incremental POD with a threshold criterion of 10-2, leading to an 

ROM with rank 107 and a high performance loss of Πloss=0.201%. If only a 

maximum-rank truncation is used, preallocation of memory leads to a further 

decrease in the execution time for higher ranks. If execution time is not of concern 

but memory limitations play a role, maximum-rank singular value truncation 

should always be chosen over a threshold criterion due to better precision in 

generating ROMs with the same amount of modes. If only the first few leading 

modes are to be investigated, the threshold criterion offers a good way of 

drastically decreasing computation time, compared to the maximum-rank 

criterion. While the resulting ROM can deviate from the FOM representation, 

leading modes are still in good agreement with the full-size incremental POD 

modes. 

 
Figure 10: Incremental POD execution time for part one, using the 
maximum-rank singular value truncation after the update procedure. All 
execution times are in similar orders of magnitude. 

The POD results for a threshold value of 10-4 are shown in the following 

section. The left chart in Figure 11 shows the singular values for both parts of 

the test case. It quickly becomes evident that many more modes are required to 

capture the instability growth process in part one and the decrease in singular 

values is much slower than in part two. That tendency is also reflected in the 

ROM performance curve in the right chart of Figure 11. Because POD modes 

are optimal in a least-squares sense, this is not surprising at all. Addition of POD 

modes to an ROM leads to a better approximation of the FOM. 
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Figure 11: Singular values of incrementally computed POD 
decompositions (left) and ROM performance loss curves (right) for part 
one and part two of the two-dimensional cylinder test case. Mode pairs 
for the first few shedding modes can be identified in the singular values. 

An ROM with Πloss<1% can be obtained for both parts of the simulation with a 

relatively small rank. For part one, Πloss(rROM=18)=0.99%, and for part two, 

Πloss(rROM=7)=0.58%. The mean flow performance loss (computed by using the 

temporally averaged flow field as an approximation) is almost identical to the 

performance loss of the first POD mode (also referred to as mean flow mode) for 

both parts. The increase in oscillation energy in the ramp-up phase of part one 

leads to a slightly bigger contribution of the mean flow to the total energy in the 

system with Πloss,meanFlow=16.14% and Πloss,meanFlow=16.84% in part two. Depending 

on the exact volume that is analyzed and the amount of energy contained in the 

fluctuations around a bluff body, the mean flow mode usually contains the most 

energy of all modes. Confining the investigated fluid volume to the wake or 

recirculation region right behind a bluff body leads to smaller mean flow mode 

contributions. The appearance of clear mode pairs in the singular value spectrum 

is a hint to periodic processes appearing in the flow field. By reconstructing the 

first mode pair in combination with the mean flow mode, the cyclic shedding 

behavior of the cylinder can already be modeled well, with Πloss(rROM=3)=7.3% 

in part one. This can be seen in the time series of a probe and the comparison of 

the y-components of the original and reconstructed velocity fields in Figure 12. 

The reconstructed time series in the cylinder wake shows a large relative offset 

compared to the original data series in the ramp-up phase of part one, but the 

main flow characteristics are captured well. 
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Figure 12: Temporal evolution of the velocity y-component probed at 
position x=2D and y=0 in part one of the simulation. Snapshots 

t̂100=10.91 and t̂800=87.28 of the original data (left) and reconstructed 
data (right) are marked with a blue line in the upper graph. POD modes 
one, two and three are used for the reconstruction (mean flow mode and 
first mode pair). 

Location and shape of the dominating structures in the cylinder wake are slightly 

shifted at t̂100. Additional POD modes are necessary to capture better the 

processes in the ramp-up phase, but the compression performance of the 

algorithm is still outstanding. The fluctuations contain 16.14% of the systems’ 

kinetic energy, of which 8.84% can be represented using just the first mode pair. 

The dominating flow structures of 1,000 time steps in the flow field data set can 

be compressed to three real-valued POD modes that are computed incrementally. 

After the ramp-up phase, the structures of the first three reconstructed POD 

modes capture the location, shape and magnitude of the disturbances in the y-

direction in very close agreement.  

For part two of the simulation, the reconstruction of the first three POD 

modes even leads to Πloss(rROM=3)=3.6%. A probe sampling of the reconstructed 

flow, as shown in Figure 13, reveals a very close agreement of the velocity field 

y-component signal. A slight time delay of the reconstructed signal is observable 

but does not hinder the extraction and tracking of the dominant coherent 

structures in the flow field.  
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Figure 13: Temporal evolution of the velocity y-component probed at 
position x=2D and y=0 in part two of the simulation. Snapshot 

t̂700=185.5 of the original data (left) and reconstructed data (right) is 
marked with a blue line in the upper graph. POD modes one, two and 
three are used for the reconstruction (mean flow mode and first mode 
pair). 

Due to the real-valued nature of POD modes, the entire temporal evolution 

information of a mode is contained in the related right singular vector. Therefore, 

application of FFT on the right singular vector is equal to the same analysis 

applied to all cells of the temporally reconstructed flow field. A comparison 

between the frequency spectra of the original velocity field and the first POD 

mode pair for part two of the simulation shows how the first POD mode matches 

the Strouhal number of the dominant shedding process exactly, as can be seen 

in Figure 14. The modes contain wideband frequency data. 

 
Figure 14: Mean FFT spectra of all cells of the original versus the 
reconstructed velocity field of part two of the simulation. Reconstruction 
is done using incrementally computed POD modes two and three (i.e., 
the first oscillating mode pair). 
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While POD is very robust and inexpensive for generating ROMs with an 

optimally small amount of modes, it can also be used to investigate dominant 

flow features, mode by mode, for simple flow fields. Most of the fluctuation energy 

is contained in one shedding process, so the first POD modes, which are 

computed optimally in the least-squares sense, can accurately represent this 

single flow field process. 

2.4 Low-Memory Dynamic Mode Decomposition 

Similar to POD, DMD is a data-driven modal analysis method that is found to 

work exceptionally well for diagnostic purposes in bluff body aerodynamics. DMD 

modes approximate Koopman modes using a linear model. Upon successful 

computation of the approximated Koopman modes, one can then analyze the 

properties of a linear operator instead of relying on the approximated solution of 

the discretized NSE. In addition to DMD’s strengths for periodic or quasi-periodic 

structure detection and linear growth phenomena, it can represent non-linear 

flow phenomena using combinations of multiple linear modes in some cases. 

Correct approximation of modes relies on a smart choice of a basis function of 

observables. DMD produces useful results in the case of selecting the flow field 

components as observables, without any higher order combinations. This section 

presents the underlying fundamental concepts of DMD and shows the evaluation 

of DMD modes from an algorithmic point of view. That perspective is chosen to 

demonstrate reasoning behind the specific steps in the algorithm concerning 

computational efficiency, which is critical to be able to evaluate DMD modes for 

large data sets in an industrial environment. 

A fundamental idea of this modal decomposition approach is that any time 

step (snapshot) of an instationary flow field can be approximated using a linear 

combination of previous time steps if a sufficient amount of time steps is used, 

as shown here: 

 xm≈a1x1+a2x2+…+am-1xm-1 . (46) 

A snapshot vector xj is formed by the vertical concatenation of the three velocity 

components in a column vector. Given equation (46), a linear operator A can be 

defined that maps many consecutive snapshots to their respective following 

snapshot: 

 𝐀𝐗1
m 1 = 𝐗2

m . (47) 

The temporal dynamics of the flow field can now be analyzed using eigenvalue 

analysis of A. Many different ways of evaluating the properties of A have been 

proposed. In the following, a short summary of the relevant algorithms is 

presented. These algorithms are used to formulate a modified online variant of 

the existing methods, which allows for an incremental processing of snapshots. 

This facilitates the introduction of a new way of computing DMD modes 

incrementally and sorting them by a suitable criterion for bluff body 

aerodynamics applications. 
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2.4.1 Batch-Processed DMD 

One way of computing A and its eigenvalues would be to compute the inverse of 

A𝐗1
m 1=𝐗2

mand obtain 

 𝐀 = 𝐗2
m 𝐗1

m 1 † . (48) 

Since the computation of this inverse is not feasible in the case of high-

dimensional snapshots, the matrix is decomposed using SVD instead: 

 𝐗1
m 1 = 𝐔𝚺𝐕T . (49) 

The SVD returns POD modes, as in equation (33), which represent coherent 

structures that are orthogonal in space. As for the process of computing POD 

modes, using the method of snapshots leads to considerably lower computational 

cost and memory needs. POD modes are columns of U sorted by their respective 

singular value in diagonal matrix 𝚺 accordingly (the right singular vectors V 

express the temporal evolution of the modes). For the application to very high 

dimensional data with low-order discretization errors and local Courant numbers 

larger than one, numerical noise is expected and disturbs the simulated physical 

flow field signal. Because it was found that this erroneous noise occurs in the 

high-frequency range and contains low energy fluctuations, singular value 

truncation of the SVD result shown in equation (49) and as described in equation 

(40) can and should be applied. This step is also required if physical frequencies 

that cannot be captured by DMD are contained in the data. Such situations 

occur if only a selection of time steps are sampled (e.g., every hundredth time 

step) when concentrating on low-frequency oscillations. As Duke et al. mention 

in their work, it is difficult to distinguish between numerical noise and high 

frequency flow field oscillations:  

 𝐗1
m 1 ≈ 𝐔̃𝚺̃𝐕̃T . (50) 

This step is indispensable for successful evaluation of the DMD modes, which 

was also found by Peichl et al. [50]. They describe singular value truncation as 

an essential step in their algorithm as a low-pass filter for removing high-

frequency oscillations, which cannot be captured by DMD. Further description 

of a suitable time step sampling procedure and data pre-processing conditions in 

case of online modal analysis for vehicle aerodynamics will follow in section 3.3. 

Inserting into equation (48) and rearranging, the projected DMD operator Ap 

can be computed as the original DMD operator A mapped onto the POD basis 

of 𝐗1
m 1 as 

 𝐀p = 𝐔T𝐀𝐔 = 𝐔T𝐗2
m𝐕𝚺 1 , (51) 

or 

 𝐀p ≈ 𝐔̃T𝐗2
m𝐕̃𝚺̃ 1 (52) 

respectively for the singular value truncated SVD. The eigenvalues of Ap 

approximate the eigenvalues of A, so the eigenvectors yk are evaluated by solving 

the eigenvalue problem 

 𝐀p𝐲k = λi𝐲k . (53) 

Finally, the DMD modes are evaluated as 
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 𝛗k = 𝐔𝐲k . (54) 

That is the most straightforward way of computing DMD modes, which has been 

applied successfully for a range of applications and is commonly referred to as 

conventional DMD or Schmid DMD. The computationally most expensive step 

in this method is the evaluation of the truncated SVD in equation (50). The 

memory requirement of conventional DMD is in the order of two times the 

snapshot matrix size. 

A modification of this approach is presented in the formulation of a new 

method by Hemati et al. [36]. TDMD makes use of augmented snapshots that 

are composed of two consecutive snapshots: 

 𝐳j = [
𝐱j

𝐱j+1
] . (55) 

The method takes advantage of a noise-removing pre-processing step via an SVD 

of the augmented snapshot matrix 

 𝐙 = [
𝐗1

m 1

𝐗2
m ] = 𝐔Z𝚺Z𝐕Z

T . (56) 

As is the case with conventional DMD, truncating this decomposition by 

removing small energy modes filters noise from the augmented snapshot matrix:  

 𝐙 ≈ 𝐙̃ = 𝐔̃Z𝚺̃Z𝐕̃Z
T . (57) 

The SVD in equation (56) can be evaluated using the method of snapshots as 

described in section 2.4.1 for considerable computation time and memory savings. 

Using the augmented snapshot matrix in this pre-processing step and applying 

singular value truncation, a de-biased snapshot matrix can be computed as 

 𝐗̃1
m 1 = 𝐗1

m 1𝐕̃Z𝐕̃Z
T (58) 

and 

 𝐗̃2
m = 𝐗2

m𝐕̃Z𝐕̃Z
T (59) 

accordingly. The explicit evaluation of 𝐔̃Z is not required in this approach. Only 

𝚺Z is needed for singular value truncation and truncated 𝐕̃Z in equation (58), 

which means a massive saving in memory. After the de-biased snapshot matrix 

is evaluated, the conventional DMD process is executed with 𝐗̃1
m 1 and 𝐗̃2

m 

instead of 𝐗1
m 1 and 𝐗2

m following equations (50) to (54). The de-biasing effect 

of the augmented snapshots procedure and its resulting benefits is demonstrated 

for noisy experimental PIV data in the original paper by Hemati et al. [36]. A 

direct comparison to conventional DMD analysis shows much better structure 

identification and better approximation of eigenvalues, compared to conventional 

DMD in their work. 

2.4.2 Streaming Total Dynamic Mode Decomposition 

As is the case for POD, the application of DMD to high-dimensional data sets is 

limited due to memory constraints. In case of vehicle aerodynamics, hard drive 

disk writing times and storage costs also are of concern for the application. A 

modal analysis tool that can be applied online during the simulation (i.e., making 

use of the data in memory) with minimal sensitivity to numerical noise is desired. 
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The following description of an online variant of DMD that incorporates the 

ideas from TDMD is outlined and extended. This work suggests a new way of 

evaluating the DMD modes in a more time- and memory-efficient way than 

previously published methods. The properties of those extensions compared to 

the existing and already published algorithm are highlighted.  

The STDMD algorithm is based on the methods shown in Hemati et al.’s 

work on TDMD [36], SDMD [35], and STDMD [37]. The core of the algorithm 

consists of the incremental computation of an orthonormal basis, similar to the 

process in computing incremental POD modes but using the classical Gram-

Schmidt iteration (CGSI) process for the generation of an orthonormal basis from 

augmented snapshots zj. Instead of an SVD, STDMD employs a QR-

decomposition of augmented snapshot matrix Z as 

 𝐙 =  Z𝐑Z . (60) 

In this section, matrix 𝐗1
m 1 is used as the first part of the snapshot matrix 

containing the first m-1 snapshots, and 𝐗2
m contains the last m-1 snapshots. The 

upper part of Z can also be represented as 

  𝐗1
m 1 = [𝐈  ] Z𝐑Z (61) 

  𝐗1
m 1 T = 𝐑Z

T Z
T [

𝐈
 
] (62) 

and the lower part as 

  𝐗2
m = [ 𝐈] Z𝐑Z , (63) 

as given in equation (56) above. Because Rz is not explicitly required for the 

evaluation of DMD modes, only 

 𝐆Z = 𝐑Z𝐑Z
T (64) 

is evaluated during the incremental updates. Similar to the derivation of batch-

processed DMD in 2.4.1, the expression for the evaluation of the DMD operator 

from equation (48) is the starting point for the derivation 

 𝐀 = 𝐗2
m 𝐗1

m 1 † . (65) 

Using the identity 

 𝐗† = 𝐗T 𝐗1
m 1 𝐗1

m 1 T  1 , (66) 

equation 

 𝐀 = 𝐗2
m 𝐗1

m 1 T 𝐗1
m 1 𝐗1

m 1 T  1 (67) 

is obtained. To arrive at a valid definition of an STDMD operator, the definition 

of another QR-decomposition 

  X𝐑X = [𝐈  ] Z , (68) 

is needed. QX is a more noise-insensitive representation of the image of the 

snapshot matrix. It is worth noting that the above QR-decomposition should not 

be mistaken for the QR-decomposition of snapshot matrix 𝐗1
m 1. Rearranging 

equation (61) for QZ and inserting into equation (68) leads to  

  X𝐑X = 𝐗1
m 1𝐑Z

 1 . (69) 

After simplification and rearrangement for the snapshot matrix 𝐗1
m 1, 

 𝐗1
m 1 =  X𝐑X𝐑Z (70) 
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  𝐗1
m 1 T = 𝐑Z

T𝐑X
T X

T (71) 

is obtained. 

Finally, the STDMD operator is found by substituting all matrices on the 

right-hand side of equation (67) with expressions (63), (62), (70) and (71) as 

 𝐀 = [ 𝐈] Z𝐑Z𝐑Z
T Z

T [
𝐈
 
]   X𝐑X𝐑Z𝐑Z

T𝐑X
T X

T  1 . (72) 

Another definition is the combination of terms on the right-hand side using 

definition (64) 

 𝐑X𝐑Z𝐑Z
T𝐑X

T = 𝐑X𝐆Z𝐑X
T = 𝐆X . (73) 

After simplification, the projected STDMD operator is then given as its 

projection onto the orthonormal basis Qx with 

 𝐀p =  X
T𝐀 X =  X

T[ 𝐈] Z𝐆Z Z
T [

𝐈
 
] X𝐆X

 1 . (74) 

As is the case with other variants of DMD, projecting the DMD operator onto 

the orthonormal basis representation of the snapshot matrix turns out to be 

computationally more manageable due to the lower dimensionality of the 

orthonormal basis in case of singular value truncation or online orthonormal basis 

compression respectively. The STDMD complex number eigenvectors and 

eigenvalues are again computed using the eigendecomposition of Ap, as in 

equation (53) for batch-processed DMD variants 

 𝐀p𝐲k = λk𝐲k 
(75) 

 𝐀p𝐘 = 𝚲𝐘 . 

For the evaluation of the complex-valued STDMD modes, the eigenvectors of Ap 

are then applied onto the orthonormal basis QX 

 𝛗k =  X𝐲k. (76) 

Equation (76) is known from the Hemati et al. work on STDMD and produces 

excellent results, comparable to batch-processed TDMD.  

To further reduce the amount of memory required for the evaluation of DMD 

modes, this work suggests a new formulation of the projected DMD operator. By 

replacing QX with rearranged equation (68) with 

  X = [𝐈  ] 𝐙𝐑X
 1, (77) 

the following equation for the projected STDMD operator can be obtained 

 𝐀p = ([𝐈  ] 𝐙𝐑X
 1)

T
[ 𝐈] Z𝐆Z Z

T [
𝐈
 
] ([𝐈  ] 𝐙𝐑X

 1)𝐆X
 1. (78) 

Using the same replacement for equation (76), results in 

 𝛗k = [𝐈  ] 𝐙𝐑X
 1𝐲k. (79) 

 𝚽 = [𝐈  ] 𝐙𝐑X
 1𝐘. (80) 

This new formulation reduces the total amount of memory required because QX 

does not need to be computed at all in the QR-decomposition of the upper part 

of QZ (equation (68)) for the computation of Ap and 𝛗k. Because QX is not 

explicitly required, a QR-decomposition implementation that does not evaluate 

and keep all vectors of QX in memory should be used. As will be shown in section 

2.4.4, the new formulations in equation (78) and equation (79) also have 

substantial advantages in the evaluation of amplitudes. 
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2.4.3 Frequencies, Amplification and Damping Rates 

Because the eigenvalues and eigenvectors appear in pairs of negative and positive 

frequency, the negative frequency counterpart for each positive frequency mode 

can be obtained by taking the complex conjugate of the positive frequency mode. 

The frequency of each DMD mode is computed by 

 fk =
Im[   λk]

2π∆t
 . (81) 

The sign of the respective frequency is the same as the sign of the imaginary 

part of the eigenvalue. ∆t represents the fixed time step size between snapshot xj 

and xj+1. It is found that all runs of STDMD produce identical mode distributions 

for all frequency pairs down to numerical precision. Therefore, computation of 

all m-1 STDMD modes is not required, since almost half of the modes appear 

redundant, depending on how many zero Hz mean flow modes are found, even 

for full rank DMD models. The amount of storage space required to save the full 

order representation using a modal basis of DMD modes is thus similar to the 

space needed for a POD. This is because while POD modes are real numbers 

only, DMD modes are complex numbers (i.e., one DMD mode takes as much 

storage as two POD modes). In case of a single mean flow mode at zero Hz, the 

full order STDMD model is represented by (m-1)/2+1 complex number modes, 

if no orthonormal basis compression is applied during STDMD execution. 

Concerning memory consumption, this is in the same order as the original flow 

field data with m real number snapshots. It is assumed here that each, the real 

and imaginary part of the STDMD modes, is stored in the same data type as the 

real number flow field snapshots. From equation (79) it becomes evident that the 

memory required for this step can be limited to the size of [I 0]QZ (i.e., the upper 

half of QZ) if the STDMD modes are evaluated incrementally, because usually 

n>>m, so the complex number vectors yk are of negligible memory concern. 

The magnitude of the complex eigenvalue represents damping and 

amplification rates of DMD modes. Highly damped modes have eigenvalue 

magnitudes smaller than one, and amplified modes have eigenvalues greater than 

one. Stable modes with continuous oscillation behavior come with eigenvalue 

magnitudes of one, as shown in equations (83). The possibility of having modes 

that are amplified or damped gives DMD the possibility to represent unsteady 

flow field effects, like linear growth, exactly with ROMs. 

  |λk| < 1 → damped mode  

  |λk| = 1 → stable mode (82) 

  |λk|   1 → amplified mode  

2.4.4 Reconstruction and Amplitudes 

As in POD, the DMD modes can be used to generate ROMs. Modes can be 

reconstructed using the Vandermonde matrix of complex eigenvalues, describing 

the temporal evolution of modes 
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 𝐓 =

[
 
 
 
 λ1

 λ1
1 ⋯ λ1

m 1

λ2
 λ2

1 ⋯ λ2
m 1

⋮ ⋮ ⋱ ⋮

λr
 λr

1 ⋯ λr
m 1]

 
 
 
 

 . (83) 

For approaches using augmented snapshots, the value of m needs to be adjusted 

to the number of augmented snapshots, which is one snapshot less than 

conventional DMD analysis on the same set of snapshots. Multiplication of the 

Vandermonde matrix with the DMD modes and the diagonal matrix of 

amplitudes Dα leads to the approximated reconstruction of the snapshot matrix 

 𝐗̃ = 𝚽𝐃α𝐓 . (84) 

Evaluation of this expression for the first time step, using only the first column 

of T, leads to λk
0=1 and 

 𝐱1 = 𝚽 𝛂 . (85) 

As for conventional DMD, the STDMD modes’ amplitudes can then be evaluated 

using the method of first snapshot as 

 𝛂 = 𝚽\𝐱1 . (86) 

The complex number amplitudes can be used to scale the unit length STDMD 

modes accordingly. Other advanced amplitude computation methods exist for 

the application of results from batch-processed DMD approaches or for wherever 

the full singular values and right-singular POD vectors of equation (33) are 

available. In case the mode distribution of a specific mode is to be visualized, its 

respective negative frequency counterpart is always to be reconstructed with it 

to obtain the right flow field magnitudes. Due to the redundancy of information, 

only the number of positive frequency modes is accounted for in this work’s 

discussion of mode selection strategies and the creation of an ROM. 

The real part of the reconstructed flow field is expressed in the same units as 

the observables from the snapshot matrix. That means a reconstructed snapshot 

from a dominating DMD mode is likely to be visible in the original flow field 

snapshot if no overlapping modes are present in that specific time step that 

extinguish the disturbance from the observed mode. In case a specific DMD mode 

is to be analyzed individually, a reconstruction of an entire oscillation period of 

the mode of interest can be extremely helpful. For reconstructed flow field 

visualization the Vandermonde matrix does not necessarily require integer 

number exponents for the evolution of the eigenvalues. Integer number exponents 

are crucial only for the comparison to the original snapshot matrix. For 

visualization on the other side, floating point numbers can be used as exponents. 

That technique returns much smoother reconstructions, especially in case of 

modes with frequencies close to the maximum resolvable frequency. Because the 

entire DMD mode matrix 𝚽 inverse needs to be computed for the evaluation of 

the mode amplitudes, this step can be quite computationally intensive. This is 

because the inversion of such a large complex number matrix consumes 

considerable CPU time and because the entire DMD mode matrix needs to be 

evaluated and be present in memory at once, with a RAM contribution in the 
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same order as the orthonormal basis QZ. That is undesirable because not all 

modes are required at once for applications like dominant flow structure 

detection, frequency-band analysis or generation of an ROM. Knowing the mode 

amplitudes and frequencies before computing the modes themselves could avoid 

those problems and make selective and incremental STDMD mode output 

possible. Mode output could occur by writing to HDD or by passing the modes 

to another in-memory post-processing tool for visualization of the modal analysis 

results without the need for expensive and time-consuming HDD writing tasks. 

For this matter, equation (86) can be rewritten as 

 𝛂 =   X𝐘 
 1𝐱1  (87) 

 𝛂 = (𝐘 1 X
 1)𝐱1 . (88) 

Therefore, using the inversion identity for orthonormal matrices 

  X
 1 =  X

T = ([𝐈  ] 𝐙𝐑X
 1)

T
= (𝐑X

 1)
T
 𝐙

T [
𝐈
 
] , (89) 

the mode amplitudes can be computed as 

 𝛂 = 𝐘 1(𝐑X
 1)

T
 𝐙

T [
𝐈
 
] 𝐱1 . (90) 

Through this formulation for the mode amplitudes, it is possible to evaluate the 

amplitudes before computing any of the STDMD modes. Selective mode 

computation based on amplitude-related selection criteria is now possible. 

Ordering modes by their physical dominance is critical to be able to extract 

dominant structures. Considerations about sensible sorting strategies are 

presented in section 2.4.6. 

2.4.5 Algorithmic Perspective on STDMD 

With equation (74), it is possible to evaluate the properties of the projected DMD 

operator based on an incrementally computed orthonormal basis of QZ and GZ. 

In this work, the algorithm for updating the matrices is the CGSI process [62]. 

It proves to construct orthogonal vectors after few iterations using matrix 

multiplications, which can be parallelized. Figure 15 depicts the incremental 

update procedure in a flow chart including the initialization routine and 

compression of the orthonormal basis in case a specific maximum rank is reached. 

As new snapshots become available, augmented snapshots zj are formed. The 

first column of QZ is initialized with the normalized first augmented snapshot 

vector. The first entry of GZ is formed by the square of the Euclidean norm of 

the first snapshot, representing the total kinetic energy contained in case velocity 

components are used as observables. After initialization, each new augmented 

snapshot vector is orthonormalized with respect to the existing orthonormal basis 

using CGSI. Upon reaching a user-defined number of CGSI iterations, the 

algorithm checks for the significance of the orthogonalized vector by computing 

its Euclidean norm and comparing it to a predefined truncation limit, εQR. In 

case this test is passed, QZ is expanded by the normalized and orthogonalized 

augmented snapshot vector, and GZ is zero-padded in both dimensions. Before 

compression of the orthonormal basis, GZ is updated using the orthogonality of 
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the current augmented snapshot with respect to the orthonormal basis, which is 

also referred to as non-orthogonality residual in the first iteration of the CGSI 

process. If the user-specified maximum rank limit rmax is reached, the STDMD 

algorithm allows for an online compression of the orthonormal basis. That step 

is crucial for allowing the application of the method to large data sets because it 

avoids the requirement to store snapshots in memory (i.e., a single-pass 

operation). As the leading driver for computational CPU time cost is the CGSI 

process, orthonormal compression steps can also be used to limit the cost of 

further reorthonormalizations of augmented snapshots with respect to QZ. The 

STDMD algorithm variant proposed here differs from the SDMD algorithm 

outline published in [35] because the compression stage is following the update 

of GZ rather than being applied right after the CGSI process (steps three and 

four in Hemati’s original SDMD publication [35]). Switching these two steps leads 

to much more consistent results concerning the reconstruction of the original 

snapshot matrix from DMD modes; therefore, ROMs reconstructed from the 

computed modes can represent the flow field more precisely (reduced 

performance loss Πloss). Compression is obtained by eigenvalue decomposition of 

GZ, sorting the eigenvectors in its eigenvector matrix YGz and eigenvalues 𝛌Gz in 

descending order, and projecting the oversized rmax+1 orthonormal columns of 

QZ onto the leading rmax eigenvectors. GZ is set equal to the diagonal matrix of 

the leading rmax eigenvalues. At this point, all matrices and vectors involved in 

the STDMD procedure are real-valued numbers. After the potential compression 

procedure is done, the time step index j is incremented, and the next available 

augmented snapshot is constructed for the next orthonormalization. While 

STDMD and conventional DMD can be applied to any snapshot matrix 

constellation of 𝐗1
m 1 and time incremented snapshots 𝐗2

m, snapshots two to m-

1 are contained in both 𝐗1
m 1 and 𝐗2

m, which drastically reduces the amount of 

memory required for batch-processed DMD variants. For the application of 

STDMD, reusing xj+1 for the upper part of the augmented snapshot of the next 

iteration reduces the complexity of the algorithm. 

Due to the need for interpolation of CFD-simulated data to a coarser grid 

before STDMD processing, as will be shown for the application on a vehicle 

aerodynamics case in section 3.3, the reuse of snapshots from a previous time 

step also halves CPU time required for spatial cell volume weighted interpolation 

tasks.  
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Figure 15: STDMD incremental orthonormal basis update. Green arrows 
denote a positive evaluation of an if statement, and red arrows indicate 
negative. 

Upon reaching the last time step m, the very last augmented snapshot zm-1 is 

constructed from xm-1 and xm, and the orthonormal basis is updated one last time. 

The description of the orthonormal basis as a POD basis is omitted here because 
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RZ is not computed explicitly and POD was introduced in this work as another 

means of computing the SVD of a matrix. It is possible to reformulate the 

algorithm for the evaluation of the regular QZRZ representation, but this does 

not allow for POD compression as it is presented here, which is crucial for the 

applicability of the method. Based on QZ and GZ, evaluation of equation (68) can 

return the remaining part of the required matrices for the computation of the 

projected STDMD operator in equation (74). The most considerable memory-

consuming step is found at this stage with a maximum RAM requirement in the 

order of approximately 

 RAM=size(QZ)=(2·n·m) ·8Bytes, (91) 

if no online compression of QZ is employed and double precision values are used. 

For example, a commonly used CFD mesh of 100 million cells with three velocity 

field components (i.e., 300 million observables n and 1,000 snapshots m for an 

adequate representation of the flow field) would require 4.8 terabytes of memory. 

Additional matrices that are being held in memory only require memory of the 

order of m and m2, which is negligible compared to the size of QZ. 

After the update procedure is finished and QZ and GZ are finalized, the 

algorithm follows the set of equations from section 2.4.2, which are visualized in 

the flow chart in Figure 16. The QR-decomposition at the beginning can be a 

memory-consuming equation if QX is evaluated explicitly. A QR-decomposition 

variant that does not compute QX should be employed. A popular example of 

such a method is the highly parallelizable algorithm of Benson et al. [63], which 

avoids communication and is numerically stable and efficient. Sayadi et al. [64] 

further employ this algorithm as the basis for conventional DMD evaluation in 

an application on transition flow with half a billion observables and 101 

snapshots. They show linear scaling for up to 1,024 cores using this algorithm. 

Next, the projected DMD operator is computed, and its complex eigenvalues 

λk and eigenvectors yk are obtained by eigendecomposition. With λk and yk, the 

DMD mode amplitudes and frequencies can be computed. As mentioned before, 

negative frequency modes can be omitted in general as a first mode selection step 

without losing ROM accuracy, due to redundancy.  

Afterward, the frequency band for which the modes are being computed can 

be narrowed with a user-input frequency range. That option for narrowing modes 

can be specifically helpful in case of acoustic flow field effect analysis (i.e., if only 

a specific frequency is targeted in the analysis) or for exact band-pass filtering 

applications. As is shown in section 1.3, resolving unstable modes can require 

high-frequency sampling intervals (i.e., 20 to 40 times higher than the frequency 

to be resolved), according to Duke et al. [30]. Therefore, a wide range of low-

amplitude, high-frequency modes is likely to appear in the mode spectrum, which 

can be truncated before further mode selection steps. Following the frequency 

selection, the modes (respectively αk, λk and yk) are sorted by the modified 

eigenvalue weighted amplitude ordering method, introduced in section 2.4.6. The 

modes can be sorted by their physical relevance using this parameter.  

Finally, a selected number of modes is computed from previously chosen 

mode selection steps using equation (79) (i.e., frequency range selection by fmin 
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and fmax and relevance ordering by Kstable). Upon reaching this point, the rROM 

modes can be visualized by mode distribution, reconstruction in time or saved to 

hard drive as required for further modal post-processing steps. 

obtain  Z and 𝐆Z from update procedure after last time step

𝐀p = 𝐈   Z𝐑X
 1 T

 𝐈  Z𝐆Z Z
T 𝐈
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 1 𝐆X
 1
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clear λk, 𝐲k, αk

with fk < fmin,user

and fk  fma ,user

QR-decomposition

 X𝐑X = 𝐈   Z
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2

m
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∆t.
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Figure 16: STDMD mode evaluation. Flow chart following the last time 
increment j=m from incremental orthonormal basis computation 
depicted in Figure 15. Green arrows denote a positive evaluation of an 
if statement, and red arrows indicate negative. 
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2.4.6 Modified Eigenvalue-Weighted Amplitude Scaling 

For the extraction of dominant flow field processes, strategies are required for 

ordering the modes by dynamic importance. While selection of the most 

dominant POD modes is straightforward, as shown above, ordering DMD modes 

requires application-specific sorting mechanisms. While there is a significant 

number of methods for choosing important modes for conventional DMD 

methods that involve the computation of the POD modes, there is only a small 

number of choices for incrementally computed DMD modes. 

The most conventional mode ordering criterion is ordering by the magnitude 

of the complex mode amplitude |αk|. Amplitude ordering is used by most 

researchers in the field of applied modal analysis and can lead to helpful insights. 

For vehicle aerodynamics investigations, Frank [49] and Peichl et al. [50] have 

employed this method. 

The amplitude ordering approach works well for applications with mostly 

stable modes, but it does not include the influence of the eigenvalue of the 

respective modes. For cases with growing or decaying modes on the other side, 

the temporal evolution of a single mode can change a mode’s dynamic importance 

significantly. While a mode with large amplitude and large damping rate would 

be considered dominant in case of mode ordering by amplitude, its quick decay 

makes its influence vanish in the majority of time steps due to the multiplication 

with higher powers of the eigenvalue. That deficiency is also found by Kou et al. 

[38], who propose the integration of the temporal evolution of each mode 

amplitude over time. The suggested mode ordering criterion Kk for each mode k 

is defined as 

  k = ∑|αk λk 
j 1|‖𝛗k‖F

2

m

j=1

∆t . (92) 

The definition in equation (92) includes the length of the mode vectors 𝛗k, which 

is incorporated here for the sake of completeness but is usually not required, 

because most DMD algorithms return unit length mode vectors by default. The 

definition does not include the temporal evolution of all individual modes because 

the temporal evolution of each cell in a specific mode will always even out due 

to the oscillation around zero, except possibly for very low-frequency modes. 

The appearance of highly damped modes in noisy and complex simulation 

data can lead to very large amplitudes for those modes, making them appear 

physically relevant even if the eigenvalue-weighted amplitude ordering is applied. 

Flow fields that are not well represented by the computed orthonormal basis 

(e.g., by high compression or truncation criteria used for evaluation of DMD 

modes) have also shown modes with large damping values. The bright side is 

that unphysical, high amplitudes appear in combination with large damping 

ratios. Previous investigations have revealed damped modes with amplitudes in 

the order of the mean flow mode, for instance. To overcome this problem, the 

eigenvalue-weighted amplitude ordering is modified by a weighting function wj, 

which is a function of the time step as 
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  stable,k = ∑wj|αk λk 
j 1|‖𝛗k‖F

2

m

j=1

∆t . (93) 

The weighting function chosen in this work is a sine function with the period of 

the investigated time frame indices m-1 and function roots j=1 and j=m, as 

shown here: 

 wj =   n((
2π

m − 1
)( − 1 −

m − 1

4
)) + 1 (94) 

For a data series with m=1,000, the weighting function is depicted in Figure 17. 

 
Figure 17: Weighting function of the modified eigenvalue-weighted 
amplitude ordering criterion Kstable for a data series with m=1,000. The 
sine has a period of m-1=999 and an amplitude of 1. 

The weighting function can be adjusted on a case-by-case basis. The function 

chosen here favors stable modes over damped or amplified modes. The newly 

introduced method outperforms other DMD mode-ordering strategies if the DMD 

spectrum contains unphysical, highly damped modes. That can happen for noisy 

data sets or for DMD executions with either high orthonormal basis compression 

ratios or small rank truncation limits. Sorting the modes by this criterion in 

descending order allows for mode selection by physical relevance. Due to the 

existence of degenerate eigenvalue pairs with modes at similar frequencies, it 

cannot be guaranteed to return the best possible ROM. However, it returns 

better results on average than previously used conventional mode selection 

criteria. Better mode-ordering results for STDMD can only be obtained by 

prohibitively expensive optimization algorithms, which would also require the 

original flow field data to be present after the simulation is done. Such an 

optimization problem can be defined using the definition of the performance loss 

criterion numerator as 

 
‖𝐗 − 𝐗̃‖

F
= 0 

‖𝐗 − 𝚽𝐃α𝐓‖F = 0 , 
(95) 

with optimization variable vectors 𝛂 and possibly 𝛌, which are both complex 

value vectors with rROM elements. Such optimization is rather expensive and 

should be omitted or simplified. Because the full POD is not available in this 

method, smarter and faster algorithms like sparsity-promoting DMD, as 

introduced by Jovanovic et al. [31], [32], are also not applicable in this context. 

2.4.7 DMD Results 

As for the incrementally computed POD results, STDMD is applied to the two-

dimensional cylinder case from section 2.2 for discussing the properties and 
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influence of different algorithm parameters on the results. As opposed to rROM 

model rank in POD, the limiter for restricting maximum memory usage is given 

by the maximum allowable size of the orthonormal basis QZ with rmax. The actual 

ROM rank of DMD modes, on the other hand, is not explicitly restricting the 

memory consumption in the regular workflow because the DMD modes can be 

evaluated incrementally, as discussed in section 2.4.5. Due to the complex 

number nature of DMD modes, the rmax columns in the orthonormal basis reduce 

to a rank of rROM≤1/2·(rmax-1) DMD modes in case of a single mean flow mode, 

while the required storage of a single DMD mode is twice the storage of a POD 

mode. The STDMD executions in the two-dimensional cylinder results employ 

five Gram-Schmidt iterations for orthonormalization of augmented snapshots, 

which is found to be sufficient for other flow field decompositions as well.  

The first STDMD tuning parameter evaluated here is the incremental QR-

decomposition update threshold εQR for the expansion of the orthonormal basis 

QZ. The following graphs in Figure 19 depict the performance losses over ROM 

model ranks rROM for different given thresholds εQR. For a direct comparison to 

POD regarding storage requirement, the complex number nature of DMD modes 

needs to be considered. All settings for the threshold value lead to a decrease in 

performance loss, dropping from a mean flow mode performance loss of 16.28% 

to a value between 10.23% and 12.17% with the addition of the first DMD mode. 

The first DMD mode can, therefore, model around a third of the total oscillation 

energy of the system. While the first mode is usually the only mean flow mode 

in a DMD ROM, the linear growth leads to the appearance of several DMD 

modes at zero Hz. The actual performance loss computed using the temporal 

mean of the snapshot matrix is 16.14%, as observed in section 2.3.4, but the first 

DMD mode at zero Hz (which is also the mode with the overall largest amplitude) 

only mimics a part of the physically present mean flow. Part one of the data 

series includes the first snapshot with minimal flow field disturbances and makes 

the method of first snapshot that is used for STDMD in this work especially 

unsuitable since the mode amplitudes are computed using a reconstruction of the 

first snapshot. If oscillation energies are not present or very small, as it is in this 

case, the exact reconstruction of the first snapshot can be achieved without 

assigning amplitudes to the oscillating modes. Equation (86) has several solutions 

close to the optimal solution with oscillating mode amplitudes that are not 

optimal for the entire data series. Therefore, it can be advised to apply DMD in 

combination with the method of first snapshot for developed flows or flows that 

contain a substantial amount of characteristic oscillations in the first snapshot. 

Amplitude optimization algorithms like the method applied in sparsity-

promoting DMD, on the other hand, can overcome this deficiency but are either 

not applicable to this variant of STDMD or too expensive to use. If the POD 

basis is not evaluated explicitly, an optimization as executed in sparsity-

promoting DMD requires the full snapshot matrix for a very memory- and CPU 

time-intensive optimization procedure.  

The most precise ROM with full mode evaluation can be achieved using a 

threshold value of 10-7 or lower for both parts of the simulation. Using all modes 
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for reconstruction of part one leads to a performance loss of 0.50% and of  

7.70·10-4% in part two of the simulation. The worst threshold of 10-3 produces 

unusable ROM representations of the flow field for part one with a performance 

loss of 10.32% for 84 computed modes and a reasonably good ROM with a 

performance loss of 0.05% for part two with only 13 modes. Another notable 

property of DMD ROM results is visible in the upper graph of Figure 19. While 

the ROM performance loss curves monotonically decrease as more modes are 

added for part two of the simulation, the addition of modes to the ROM does 

not necessarily decrease the modeling error in part one. Reconstructing an ROM 

with the first four modes picked by the modified eigenvalue-weighted amplitude 

mode ordering method leads to a performance loss of 67.69%. An ROM of DMD 

does not only fail to produce a best-possible representation of the original data 

with any given rank but can also produce deteriorated reconstructed flow fields 

that are far from the original flow field, both in amplitude and phase in any time 

step. That does not mean that dominant flow field effects cannot be extracted, 

but special care needs to be taken when analyzing DMD results in this respect 

using the current performance loss definition. Due to the squaring of differences 

in the Frobenius norm, the addition of a DMD mode can worsen the performance 

loss indicator significantly. An illustration of this effect is given in Figure 18 

using a generic example of a DMD decomposition of a data set with one 

observable n=1, 15 time steps of m=15 and with an ROM rank of rROM=3. By 

adding modes ordered by their amplitudes, the best possible ROM approximation 

with a given rank is obtained in this generic example. The ROM with rROM=1 

results in a performance loss of 7.35%. Adding mode two to the ROM increases 

the performance loss significantly to 14.5%. The addition of the third mode yields 

precisely the original data set without error (i.e., the resulting ROM can fully 

capture the temporal evolution of the data series). Other possible mode orders 

lead to worse deterioration of the performance loss indicator in this example. 

Instead of adding modes in the order one, two, three, one could add modes as 

one, three, two. That would lead to a performance loss model error of 17% with 

rROM=2. Any possible combination of two modes out of the three leads to an 

increase in Πloss, compared to mode addition by amplitude, which is used in the 

right column of Figure 18. 
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Figure 18: Left (top to bottom): (1) DMD frequency spectrum with three 

modes. Mean flow mode one at f1=0Hz and |α1|=20, mode two at 

f2=0.11Hz and |α2|=2.5, and mode three at f3=0.10Hz and |α3|=2.1. 

Eigenvalues for all three modes are stable (i.e., |λ|=1). Complex 
conjugate counterparts of the fluctuating modes (negative frequency) are 
not shown. (2) Reconstruction of the mean flow mode. (3) 
Reconstruction of the second mode, including its complex conjugate 
counterpart. (4) Reconstruction of the third mode, including its complex 
conjugate counterpart. Right (top to bottom): (1) Temporal evolution 
of the input data. (2) Reconstruction of an ROM with rROM=1 (i.e., only 
the mean flow mode one). (3) Reconstruction of an ROM with rROM=2 
(i.e., modes one and two). (4) Reconstruction of an ROM with rROM=3 
(i.e., all modes combined). 

The observations above can be generalized. For a good representation of a 

complex flow field, DMD ROM might need all of the modes combined, because 

each mode only consists of a single frequency oscillation governed by a specific 

amplification or decay rate. Complex flow field effects (e.g., linear growth 

followed by decay of the same oscillation frequency) require several overlapping 

DMD modes to be modeled. While this property can be seen as a flaw, it also 

integrates a strength. The simplistic appearance of DMD modes can still be used 

for analyzing dominant flow field effects, and due to their physical simplicity, 

assigning a DMD mode to a specific vortex-shedding phenomenon is much easier 

than for other related modal reduction techniques. Due to the increases in the 

performance loss indicator for small numbers of modes, it is highly advisable to 
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always check the performance loss of the full rank reconstruction of a DMD 

ROM. 

In part two of the two-dimensional cylinder case, the performance loss curves 

fall monotonically, and the ROM error curves are mostly lower for smaller QR-

decomposition thresholds. It is notable that the very first oscillating DMD mode 

can reduce the performance loss to 3.58%, so a single DMD mode can represent 

more than three-fourths of the oscillation energy in the system (the mean flow 

performance loss is 16.14%). While for complex systems, it seems unavoidable to 

construct a sizeable orthonormal basis in any case for generating a good ROM, 

a threshold of 10-3 for limiting the size of the orthonormal basis is sufficient to 

get a 0.05% performance loss resulting from the reconstruction of all 13 computed 

DMD modes. 

ε  

ε  

ε  

ε  

ε  

 
Figure 19: Performance loss charts for part one (top) and part two 
(bottom) of the two-dimensional cylinder test case for varying thresholds 
in the STDMD algorithm. The last point signifies rmax (i.e., the rank of 
orthonormal basis QZ). 

Figure 20 gives insight into the computation time required for the execution 

of the STDMD algorithm using the same QR-decomposition thresholds as 

discussed above, for which the ROM representation results are shown in Figure 

19. While the full evaluation of STDMD without truncation, which can be 

achieved using a threshold value of 10-7, uses computation times in the order of 

103 seconds on a 20-core machine, the higher threshold settings using 10-3 take 

one order of magnitude less time for part one and take two orders of magnitude 

less time for part two. Due to the large ROM error using a threshold value of  

10-3 for part one, it is recommended to use low threshold values, especially for 

very complex flow field phenomena, to allow for a robust expansion of the 
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orthonormal basis. In general, the better the orthonormal basis, the better the 

evaluated DMD modes. The two-dimensional cylinder flow in this work is suited 

well for a threshold value of 10-4, for which a reasonable tradeoff can be achieved 

among ROM accuracy, HDD storage requirements for the modes and STDMD 

execution time. For simple flow fields with many time steps to be analyzed, 

threshold values larger than zero should always be used to avoid adding 

snapshots to the orthonormal basis that are already adequately represented by 

it. 

Part 2: t̂1  1 to t̂2   

Part 1: t̂1 to t̂1   

ε   
Figure 20: ROM execution time for STDMD analysis. The computation 
time increases with the rank of the resulting ROM and the increase in 

the QR-decomposition threshold value εQR. 

There is no exact guideline for setting a threshold value universally, but there 

is always a maximum allowable memory consumption on any computer system. 

The compression step in the STDMD algorithm from Figure 15 is capable of 

reducing the size of the orthonormal basis after a predefined rank is exceeded. 

This way, the total memory consumption of the algorithm can be restricted to 

fit the available computer system resources. Part two of the simulation is not 

sensible to be evaluated using a fixed maximum rank without thresholding, but 

part one is. Figure 21 shows the performance loss behavior of different maximum 

rank compression criteria. No apparent tendency can be observed for increasing 

maximum ranks, but the overall trend leans to better ROMs with more massive 

maximum ranks allowed. All STDMD runs with rmax≥600 can produce ROMs 

with performance losses smaller than 1%. The computation time required for 

STDMD is governed by the number of iterations in the CGSI process, the rank 

of the orthonormal basis and the number of times the orthonormal basis 

compression is executed. The orthonormalization process is less time-consuming 

for smaller orthonormal bases, but the compression procedure needs to be 

executed more often. For this case, the computational benefit of having a small 

orthonormal basis rank evens out with the additional compression executions at 

a maximum rank of 600. By choosing a smaller number of Gram-Schmidt 

iterations for each update execution, this rank shifts to larger values. 
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Figure 21: Left: STDMD performance loss behavior for different 
maximum rank truncation parameters in part one of the two-dimensional 
cylinder test case. Maximum rank truncation is conducted using 
orthonormal basis compression in the update procedure in the algorithm. 
Right: STDMD execution time for the same STDMD runs as depicted 
left. 

As mentioned above, running STDMD with a threshold value of εQR=10-4 

gives a good tradeoff between the ROM rank, ROM performance and STDMD 

execution time for both parts of the two-dimensional cylinder simulation test 

case. The following section presents specific results for the execution of STDMD 

on using this threshold criterion without a maximum rank criterion for both parts 

of the simulation. The left graph in Figure 22 shows the frequency spectra of 

both parts of the simulation. While in the second part of the simulation, only a 

few modes need to be used to approximate the flow field correctly, the first part 

requires a wide band of frequencies to capture the increasing instabilities of the 

flow. For both parts, the most dominant oscillatory modes are at the same 

frequencies, and the relevant flow field effects can be extracted. The right graph 

in Figure 22 shows the performance loss curves. As presented in Figure 18, the 

performance loss increases when adding more modes in case of more complex flow 

field phenomena (i.e., part one in contrast to the ROM convergence of the second 

part). Also, the final ROM model error for the first part of the simulation is more 

significant than for part two by one order of magnitude. While the largest ROM 

model error appears for the reconstruction of only the mean flow mode in part 

one, the performance loss in the second part of the simulation peaks at STDMD 

mode number 11’s addition to the ROM, with a value of Πloss=76.38%. The final 

ROMs have a rank of 144 for the first part and 24 for the second part. The Kstable 

value of the mean flow modes and the most dominant shedding modes are in the 

same range with Kstable,part1,mode1=2858.2 and Kstable,part2,mode1=2857.6 for the mean 

flow, as well as Kstable,part1,mode2=337.4 and Kstable,part2,mode2=313.3. Steady changes 

in the mean flow of part one are captured by additional mean flow modes and 

low-frequency modes with sufficient damping rates, which are not present in part 

two. All other oscillations of part two are ramped up similarly, using multiple 

modes at similar frequencies with different damping rates, resulting in mode 
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addition phenomena as presented in Figure 18. In the case of part one, further 

modes added to the ROM are in antiphase to the dominant oscillating mode (i.e., 

the dominant shedding mode at St=0.2). Those modes surrounding the St=0.2 

mode are slightly damped so that their subtraction effect decays toward zero in 

the reconstruction of later time steps of part one. The data compression 

performance of DMD results deteriorates as soon as more complex flow field 

phenomena are involved, as will be shown later for the vehicle aerodynamics 

application. 

 
Figure 22: Frequency spectra of the STDMD analysis (left) and ROM 
performance loss curves (right) for part one and part two of the two-
dimensional cylinder test case. Negative frequency counterparts in the 
frequency spectra are not shown. 

The reconstruction of DMD ROMs gives insight into the unsteady flow field 

effects. In combination with the mean flow mode, an approximation of the 

temporally resolved flow field is returned. Due to the fixed frequency and fixed 

eigenvalue of single DMD modes, the reconstruction of the y-direction component 

of modes one and two leads to the visualization shown in the right columns of 

Figure 23. The dominant vortex shedding mode at St=0.2 is extracted well. 

There is a larger offset in the first half of part one in comparison to the original 

data than in the POD results compared to the same data and using the same 

amount of information (i.e., a single oscillating DMD mode requires the same 

amount of storage as a POD mode pair, which is used for reconstruction in Figure 

12). The simplicity of DMD modes comes in handy when analyzing many time 

steps, since a single period of reconstruction of a mode’s fluctuation is enough to 

understand its behavior. Information about the mode’s actual appearance in the 

investigated time frame is not retained in a single mode reconstruction and is 

only available when reconstructing using multiple oscillating modes together. 
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Figure 23: Temporal evolution of the velocity y-component probed at 
position x=2D and y=0 in part one of the simulation. Snapshot 

t̂100=10.91 and t̂800=87.28 of the original data (left) and reconstructed 
data (right) is marked with a blue line in the upper graph. DMD modes 
one and two and the complex conjugate mode of mode two are used for 
the reconstruction (mean flow mode and first oscillating mode including 
its negative frequency counterpart). 

The first oscillating mode in part one comes with a slight amplification rate 

(i.e., |λ2|=1.00012), which improves the performance loss in comparison to the 

addition of an entirely stable mode, as it appears in part two, because the 

amplified mode can mimic the increasing instability better. Location, shape and 

energy of the y-component structures are well approximated in the second half 

of part one.  

For part two of the simulation, the reconstruction of the first two DMD 

modes leads to much better results. The ROM with rank two can approximate 

the flow field down to a precision of Πloss(rROM=2)=3.6%, the same as for the rank 

three model of POD modes. Due to the complex-value nature of DMD modes, 

the required data storage is in the same range as a POD ROM. Similar to the 

visualization for part one, Figure 24 depicts the temporal evolution of the y-

component in a probe point and shows the comparison between the original flow 

field and the reconstructed flow field at time step index 700 of part two of the 

two-dimensional cylinder simulation. 
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Figure 24: Temporal evolution of the velocity y-component probed at 
position x=2D and y=0 in part two of the simulation. Snapshot 

t̂700=185.5 of the original data (left) and reconstructed data (right) is 
marked with a blue line in the upper graph. DMD modes one and two 
and the complex conjugate mode of mode two are used for the 
reconstruction (mean flow mode and first oscillating mode including its 
negative frequency counterpart). 

Another exciting feature of DMD is the ability to extract eigenvalues of 

oscillation processes that are only contained in the investigated time frame with 

less than an entire oscillation. While FFT, with its fixed frequency spacing, fails 

to do so, DMD can be used to extract comparably low-frequency structures and 

approximate eigenvalues. For this matter, 10 time steps from t̂1001 to t̂1010 are used 

as a separate data set and analyzed using STDMD (i.e., the first 10 time steps 

of part two). The investigated period contains only a fraction of an entire vortex 

shedding period. A single shedding cycle takes around 52 time steps, so the data 

series contains only around a fifth of a total shedding period. The data series, 

the respective reconstruction using DMD modes one and two in a probe point, 

and the spatial distribution for a single snapshot and reconstructed snapshot are 

shown in Figure 25. The ROM of two DMD modes can follow the given data 

series well, and the STDMD result also gives an excellent approximation for the 

system’s dominant eigenvalue. The extracted shedding frequency for this case of 

StperiodFraction=0.22 is surprisingly close to the effective frequency of the system at 

St=0.178, given the tiny sampling period. For increasingly smaller fractions of 

an entire period of oscillation, DMD modes tend to form an additional mean flow 

mode, as the change is observed as a steady increase in the mean flow instead of 

a flow field fluctuation. By increasing the number of investigated time steps, the 

extracted eigenvalue converges to the actual system eigenvalue. 
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Figure 25: Temporal evolution of the velocity y-component probed at 
position x=2D and y=0 in for STDMD execution on a fraction of part 

two of the simulation. Snapshot t̂5=185.5 of the original data (top) and 
reconstructed data (bottom) is marked with a blue line in the left graph. 
DMD modes one and two and the complex conjugate mode of mode two 
are used for the reconstruction (mean flow mode and first oscillating 
mode including its negative frequency counterpart). 

2.5 DMD vs. POD vs. FFT 

One of the significant disadvantages of applying FFT for modal analysis of flow 

fields can be observed for the one-dimensional time signal evaluated in the PSD 

spectrum in Figure 5. While it is possible to extract a dominant frequency, FFT 

offers poor frequency resolution for short sampling periods. If a time signal is 

covering only one or a minimal amount of oscillations, it is impossible to extract 

the exact frequency of oscillation applying FFT. Due to the fixed frequency 

spacing, the true eigenvalue of the oscillation might be right in the middle of two 

neighboring peaks, and only longer data sampling times, leading to more 

appropriate frequency resolution, can improve the result.  

Additionally, the necessity of applying a windowing function (i.e., a Hanning 

type window) leads to an underweighting of data contained at the start and end 

of a time series. For low-frequency analysis, either very long simulation runs are 

needed to gain further low-frequency range certainty with FFT or only a single 

window can be analyzed, which in turn leads to the underweighting problem. For 

DMD, only small portions of a full oscillation period are necessary to capture the 

frequency precisely. There is no strict lower frequency limit for DMD, but it is 

advised to analyze at least a quarter of a period of a signal for stable modes to 

get a reasonable approximation of eigenvalues. 

Another DMD benefit is that time series length is not constrained to sample 

numbers of an even power of two. Therefore, the sampling period and frequency 

can be chosen based on physical properties of interest. Additionally, weighting 

functions are not required in general, so all data in the sampling period is equally 

represented in the spectral representation. In FFT, the necessity to consider the 

number of samples and the application of window functions usually leads to 
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multiple evaluations of FFT on a single data set using partially overlapping 

windows and then averaging the resulting spectra. The averaging of FFT spectra 

leads to the loss of phase information, which is needed for possible reconstruction 

of modes in time. 

Even though previous investigations use mean-subtracted data sets, DMD 

does not require such manipulation, which makes it possible to apply the 

algorithm during runtime of the simulation before computing an approximation 

of the temporally averaged flow field. If DMD is applied on mean-subtracted 

data sets without the presence of amplified or decaying flow field processes, the 

result equals discrete Fourier transform (DFT) results. If this data manipulation 

is omitted, DMD can represent the original data sets better than a DFT because 

there is no fixed frequency spacing constraint and a smaller amount of modes is 

required to represent the same amount of energy from the original data set. 

A prominent benefit of FFT over DMD is the easy parallelization on high 

performance computing (HPC) systems with many processors since FFT can be 

applied for each cell individually and no communication between processors is 

necessary. This computational advantage is diminished though by the necessity 

to store data in memory or on a hard drive, which can drastically increase 

simulation time and can become prohibitively costly for large data sets. STDMD, 

on the other hand, can process snapshots on the fly and can compress the 

orthogonal basis during the simulation time to keep memory requirements in a 

certain limit. 

While FFT returns a frequency spectrum that represents the average activity 

of specific frequency components in the flow field, DMD results also contain 

information about the temporal evolution of oscillation amplitudes. DMD 

captures linear growth well, for instance, while FFT can only return averaged 

amplitudes over the whole sampling window. This feature of DMD allows for the 

extraction of modes that are highly energetic, despite that energy being shown 

only in a short window during the sampled period, which is not possible using 

FFT due to the temporal averaging effect. The presence of damped modes that 

are physically not relevant from noisy data sets requires a modified mode 

selection criteria like the modified eigenvalue-weighted amplitude scaling 

suggested here. 

POD modes are orthogonal in space, which is an essential property 

concerning the creation of an ROM. When constructing an ROM with a small 

number of modes, each added mode decreases the approximation error of the 

ROM in comparison to the FOM. The mode selection strategy for POD-based 

ROM is quite simple. Their respective singular value selects modes in decreasing 

order. In DMD, however, some dominant oscillations might only be represented 

well by a combination of two modes at a similar or even identical frequency that 

might oscillate in antiphase. If an ROM is generated using only one of the two 

modes, the resulting reconstructed flow field can be further away from the FOM 

than if that single mode was not considered (i.e., increasing performance loss 

while adding more modes to the ROM). Whereas an explicit, energy-related 

ordering and ROM building is not strictly converging with DMD, its strength 
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lies in the creation of modes at a distinct frequency. That offers the possibility 

to extract and analyze comparably simple but still energetic flow field structures 

or to investigate flow field phenomena in a selected frequency band of interest. 

If one was interested in the excitation of a particular acoustic frequency, for 

instance, one could focus on modes around that specific frequency to find possible 

sources of the noise in the flow field by tracking back the spatial structures to 

their excitation mechanism.  

Another benefit of having orthogonality in time is that oscillations of the 

integrated force on the vehicle surface can be investigated using a DMD on the 

force vectors on the vehicle surface. Surface areas of high DMD mode amplitude 

at the investigated frequency can be found and tracked back to vortex generation 

mechanisms in the flow field. That offers a way to identify potential 

improvements to optimize driving stability and comfort. 

In part two of the two-dimensional cylinder simulation, POD modes two and 

three together represent as much oscillation energy as DMD mode two. Due to 

the complex number nature of DMD modes, this results in the same ROM 

performance if the singular values and the right singular vectors are considered 

negligible in size. That is only the case for this specific flow field because only a 

single frequency is dominant and active in this especially suitable case. In general, 

POD always outperforms DMD for ROM generation. 

An essential drawback of all data-driven methods is the strong dependence 

on the choice of observables. In the context of DMD, the choice of observables is 

particularly crucial in case of strong nonlinear flow field effects that need to be 

captured. In this work, the full state representation of a flow field is considered 

to be the velocity components. To find the dominant eigenvalues of a nonlinear 

system, higher order combinations of the basis function (e.g., uw2) could lead to 

a much better approximation of physics (i.e., computing dominant eigenvalues) 

than is contained in the velocity components. This inherent property of DMD as 

a data-driven method was demonstrated on a two-dimensional map system in a 

talk by Rowley [65]. However, including random higher order combinations of 

observables would increase the degree of complexity drastically, so no such 

advanced choices of observables are considered in this work. 

A disadvantage of DMD is the missing correlation between a mode’s 

amplitude and its actual energetic relevance in the flow field. Because the 

structures are not necessarily orthogonal in space by construction, DMD modes 

can overlap entirely and cancel out each other by being in opposite phase. The 

appearance of degenerate eigenvalues is not uncommon [55], and possible 

remedies need to be developed. POD modes, as well as DMD modes, should be 

thought of as oscillations or coherent structures. If the orthonormal basis for 

computing DMD modes is highly compressed, DMD modes can also become 

orthogonal in space but maintain their distinct frequency content.  



 65 

3 Application on a Full Vehicle Aerodynamics 

Simulation 

The following chapter shows the application of the POD and STDMD methods 

to a large data set from a vehicle aerodynamics simulation. The simulated vehicle 

geometry setup is introduced, and a reference is made to wind tunnel 

measurement results. Central difficulties in the comparability of wind tunnel 

measurement results to CFD simulations are outlined. Suitable spatial and 

temporal data coarsening and filtering strategies are then presented in order to 

succeed in evaluating modal analysis results. Finally, modal analysis results are 

compared for the two methods before concluding remarks are given.  

3.1 DrivAer Reference Configuration 

The vehicle geometry used in this work is the DrivAer reference body. The 

mockup configuration was developed by the vehicle aerodynamics group of the 

Chair of Fluid Mechanics and Aerodynamics of the Technical University of 

Munich. The geometry with its three different rear end shapes was first published 

by Heft et al. in 2011 [66]. Further details on the reference body and the wind 

tunnel setup can be found in other papers published by group member Mack in 

2012 (Mack et al. [67]) and with more details about the wheels-on configuration 

by Miao et al. in 2015 [68]. The former reference also shows the design and 

functionality of the suspension system and implications on the measured forces. 

The reference body comprises the geometrical properties of the Audi A4 and the 

BMW 3 series production cars. The merger of those car shapes to a publicly 

available geometry that can be used by anyone makes it possible to use a realistic 

geometry in order to develop new methods that are relevant for production car 

engineering. While previously the most often used reference body was the SAE 

body [69], that option comprises only the most basic vehicle shape features. In 

contrast, the DrivAer resembles the complexity of an actual production vehicle 

(i.e., including realistic A-pillar shape and wheelhouses). Additionally, the 

reference body comes with a variety of optional parts to be added or changed: 

 smooth underbody or structured underbody, including gearbox tunnel 

and asymmetrical exhaust pipe system 

 mockup configuration or engine bay flow with heat exchanger setup 

 with or without side view mirrors 

 realistic or generic closed wheels 

 fastback, station wagon, and sedan rear-end shapes 

The engine bay flow extension was developed in cooperation with the 

Research Institute of Automotive Engineering and Vehicle Engines Stuttgart 

(FKFS), and first results were presented in 2015 [70]. For the purposes in this 

work, the baseline setup is the fastback mockup configuration with closed wheels, 

without side view mirrors and with a smooth underbody. This vehicle 

configuration is among the most straightforward possible configurations that can 
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be used. The simplicity of the geometry reduces the number of error sources for 

a direct comparison of wind tunnel measurement data to simulation data. It also 

eases the assignment of flow structures to specific parts or length scales of the 

geometry. The addition of a structured underbody, for instance, increases the 

number of cells needed for discretization and gives space for numerical errors 

that are transported toward the rear and could alter flow phenomena in the 

vehicle wake. The model support system from the wind tunnel setup is included 

in the simulation setup to allow for better comparability to wind tunnel 

measurements. While most previous publications of the DrivAer reference body 

from TUM feature a setup with wheels decoupled from the vehicle body (i.e., the 

wheels-off configuration), this work employs the wheels-on configuration 

developed by Miao et al. [68]. Usage of the wheels-on setup is intended to 

minimize oscillations in the measured signals originating from the 

eigenfrequencies of the model support system. The wheels being in contact with 

the ground significantly reduces aerodynamically induced movement of the body 

and the wheels. This behavior is desired to reduce separation processes induced 

by geometry oscillation. 

There are two significant differences here compared to the geometrical setup 

of Miao et al. [68]. First is the geometry of the wheels, which are generic open 

wheels in the work of Miao et al. and generic closed wheels in this work. Second, 

the side-view mirrors are not mounted in the configuration of the current work. 

Both measures are taken for geometry simplification purposes and to reduce the 

number of error sources for the simulation setup (e.g., interpolation errors for 

rotating wheels with sliding mesh method are omitted because closed wheel 

rotation can be modeled by rotating wall velocity boundary condition). That 

allows for better reproducibility and decreases total simulation cost. The side-

view mirrors of the DrivAer with a drag increase of 16 counts in the fastback 

configuration [71] hint at a laminar detachment process. Possible laminar 

detachment from the side-view mirrors cannot be captured properly by the 

chosen turbulence model type. 

For the wheels-on setup, a vehicle-mounted suspension system is added to 

the geometry. The suspension system does not add to the frontal area of the 

model but introduces a significant blockage to the wheelhouses. The fastback 

rear-end shape is chosen to minimize the required simulation period for a good 

representation of the flow field. While the sedan rear-end shape would have 

sufficed, the station wagon rear-end shape shows bi-stable wake behavior, for 

which long simulation runtimes are needed to capture the very low-frequency 

wake instabilities. Such low-frequency oscillations are also referred to as bi-stable 

states or asymmetric wake states because they do not appear to be connected to 

any length scale of the bluff body. Previous research by Grandemange et al. on 

the Ahmed body ( [72], [73]) and Pavia et al. on the Windsor body ( [74], [75]) 

investigates such oscillations in the rear wake. They find a connection between 

globally dominant vortex shedding modes and this bi-stable behavior. They also 

find similar vortex structures in the wake between the two reference geometries 

at Strouhal numbers based on the height of the rear-end H of StH=0.07, StH=0.13 
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and StH=0.19. A direct comparison to their results is difficult due to the large 

geometrical differences (e.g. missing wheels and fundamentally different rear-end 

shapes).  

The workflow presented in this work aims at making modal analysis tools 

available for everyday production vehicle aerodynamics engineering, for which 

typical simulation runtimes are too short for resolving those low frequencies. 

Figure 26 shows the DrivAer reference body in the wheels-on configuration with 

the top sting of the model support system of the wind tunnel A (WTA) of TUM. 

The top sting is included in this configuration due to the impact on the force 

coefficients, as previously investigated by Heft [76]. She found the top sting to 

increase the drag by five counts for a fastback configuration of the DrivAer. 
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Figure 26: Dimensions of the DrivAer reference body in 1:2.5 scale. The 
lower part of the top sting is included for a better approximation of the 
wind tunnel measurement results. 

The simulations and measurement are conducted at a Reynolds number of 

Re=3.2·106 with the wheel base as the characteristic length scale. The Reynolds 

number is chosen to allow comparability of the results to previously published 

results from TUM. In the experimental setup, the Reynolds number of 

Re=3.2·106 is reached at a free flow velocity of U∞=42.6m/s and an air 

temperature of T=8.5°C in the wind tunnel measurement during the winter. The 

maximum Reynolds number that can be achieved in the WTA is limited by the 

maximum speed of the moving belt in combination with higher air temperatures 

and thus lower air densities during the summer. The maximum rolling-road 

system belt speed is reached at 50m/s. The wind tunnel is not equipped with a 

heat exchanger, so the temperature of the oncoming flow cannot be adjusted. 

Due to the steel tube wall of the wind tunnel, outside temperatures are quickly 

reached in the test section of the wind tunnel. For long measurements or multiple 

measurements in a series, temperature increases of up to 15°C compared to 
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outside temperatures are to be expected due to turbulent dissipation and fan 

engine heat losses. For a single experiment lasting 50 seconds, temperature 

variations can be neglected and are averaged to calculate a mean Reynolds 

number. 

3.2 Simulation Setup and Results 

The DrivAer simulation is executed using the OpenFOAM® software package. 

Discretization schemes and SA-DDES turbulence modeling are implemented as 

described in sections 1.2.2 and 1.2.3. The 1:2.5 scaled DrivAer model geometry 

as used in the wind tunnel test is placed in the domain with around 40 vehicle 

lengths of size in the x-direction, 32 in the y-direction and 20 in the z-direction. 

These distances are necessary to avoid interferences with the boundaries of the 

domain due to blockage effects. The mesh is constructed using an unstructured 

but hex-dominant grid. To capture geometrical details on the surface of the 

vehicle, the volume mesh near the surface is successively refined to a hexahedron 

edge length of approximately ∆xmin=LwheelBase/1,000.  

Furthermore, prism layers are extruded on the surface for the adequate 

boundary layer representation using the nutUSpalding wall function as described 

in section 1.2.2. The next-coarsest refinement region encloses the entire vehicle 

geometry in a surface-fitted region; see Figure 27 for the opaque, box-shaped 

geometry closest to the vehicle. It captures the small-scale fluctuations close to 

the surface and resolves steep flow field gradients (e.g., the static pressure 

increase close to the stagnation point in the front). A one-level-coarser mesh 

region encloses the vehicle and large parts of the most dominant structures of 

the vehicle wake, which is also depicted as an opaque, box-shaped geometry in 

Figure 27. The same refinement level is used on all no-slip floor patches and 

surroundings. Further, incrementally coarser grid refinement levels toward the 

outer base mesh size are designed as scaled versions of the previous refinement 

levels. 

In addition to the vehicle and the model support system, the solid walls 

surrounding the moving belt system are modeled as steady, solid, no-slip walls. 

The rest of the bottom boundary conditions are implemented as a translating 

wall velocity boundary condition. This way, the removal of the boundary layer 

with the wind tunnel’s passive boundary layer scoop in the experimental setup is 

approximated. The oncoming velocity profile in block shape does not produce a 

boundary layer on the bottom boundary up to the solid wall upstream of the 

moving belt, where a boundary layer is generated. Further downstream, the 

boundary layer is again accelerated by the moving belt and washed out, and 

parts of the momentum deficit are recovered. The velocity increase due to 

displacement thickness becomes smaller before the flow reaches the model. The 

exact modeling of the flow field effects in this region is difficult since the entire 

wind tunnel collector geometry is ignored.  

The explicit modeling of the wind tunnel nozzle and collector geometry is 

omitted here for several reasons. First, the goal of this work is to extract flow 
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field effects and to gain knowledge about dominant instationary detachment 

processes that can be transferred to other vehicles. Second, the correct 

approximation of flow structures of the full wind tunnel nozzle, test section and 

collector geometry would require an incredibly large number of additional cells, 

which would make this investigation prohibitively expensive for the use of the 

SA-DDES turbulence model employed here. Resolving the classic Seiferth wings 

at the nozzle, the formed free jet in the entire test section and the reattachment 

of the free jet in the collector would each result in similar grid cell requirements 

for the vehicle geometry. Last, the developing recirculation regions in the test 

section driven by the free jet take a very long physical time to develop fully. 

Modeling this process in a simulation to the full extension would lead to 

overwhelming computation times. 

 
Figure 27: DrivAer simulation setup including all no-slip wall geometries, 
street boundaries, and second- and third-finest grid level mesh regions. 
Dark patches on the bottom (street) are modeled using translating 
velocity boundary condition walls. Bright gray patches are solid, no-slip, 
steady walls.  

The simulation time step size is chosen as ∆tCFD=0.0016·LwheelBase/U∞, which leads 

to a good compromise between Courant number limitation and simulation 

execution times. The CFL=1 criterion is exceeded in highly refined cells close to 

the surface where the turbulence model operates in RANS mode for the majority 

of cells. 

The initial flow field is computed using a potential flow solution (i.e., inviscid 

flow without friction and irrotational velocity field). Additionally, uniform-

thickness boundary layer profiles are added to all solid walls, which further 

reduces the time for convergence toward a physical flow field in the first 

instationary time steps. After an initiation of two seconds physical flow field 

time, the turbulent flow field in the wake is properly and fully developed. After 

two seconds, the flow field is then averaged in time, and integrated forces are 

recorded for the creation of averaged force coefficients. The drag force coefficient 

acting in the x-direction CD is defined through the surface-integrated drag force 

FD and the projected surface area of the vehicle in an x-plane Ax as 

 CD =
2FD

ρA U∞
2
 . (96) 

 Similarly, the front and rear lift coefficients are defined as 
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 CL,front =
2FL,front

ρA U∞
2  (97) 

and  

 CL,rear =
2FL,rear

ρA U∞
2
 . (98) 

The lift forces FL on the front and the rear are evaluated through momentum 

balancing of all surface-integrated forces around a line parallel to the y-axis 

through the mid-point between the wheel-ground contact patches. Figure 28 

shows the convergence of the force coefficients toward the averaged force 

coefficient. For both the simulation and the experiment, the rear lift quantities 

show the most significant fluctuations. The converging average of the rear lift 

coefficient from the simulation takes 0.5 seconds before it stays within one drag 

count bound from the mean value. In the experiment, it takes almost 19 seconds 

to reach this state. The actively changing coefficients in the experiment are also 

shown later in the frequency spectrum of Figure 31. 

 
Figure 28: Surface-integrated force coefficient convergence over time for 
simulation and experiment. The graphs show the convergence to the 

temporal mean (∆C=C-Cmean) of the respective force coefficient. Dotted 
horizontal lines represent a deviation from the temporally averaged value 
by one count. 

A comparison of the temporally averaged surface-integrated forces from 

simulation and experiment is shown in Table 1. The force coefficients from the 

simulation contain the surface-integrated forces of all cells. The experimental 

coefficients are collected from the internal balance inside the DrivAer model. 

    CD CL,front       CL,rear 

Simulation DDES 0.245 -0.085 0.047 

Experiment WTA 0.231 -0.037 0.050 

    
Table 1: Experimental wind tunnel testing results from the WTA of 
TUM versus simulation results. Experimental drag values are rolling 
resistance corrected. Lift forces are without the lift contributions of the 
wheels but include the drag contributions of the wheels through the 
momentum balance. 

There are multiple uncertainties on the experimental side that need to be 

addressed to judge the comparability between temporally averaged integrated 

forces from simulation and experiment. The topics can be separated into drag- 

and lift force-component related issues and uncertainties related to boundary 

conditions of the experiment. 
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The missing collector in the simulated geometry is the most significant 

contributor to the offset of the drag value. It has been shown by Collin et al. [77] 

that a steep pressure gradient upstream of the collector of the WTA increases 

the base pressure behind the DrivAer body significantly when compared to 

measurements of the same 1:2.5 scale model, measured in the full-scale Audi 

Aeroacoustic Wind Tunnel (AAWK), which has a much longer test section. This 

effect leads to an under-prediction of drag values in WTA measurements. The 

investigations by Collin et al. show a difference in drag values of seven drag 

counts between the wind tunnels and an almost exact match between CFD 

simulations and AAWK measurements. For this study, a DrivAer fastback 

configuration almost identical to the present setup is used. The evaluation of the 

velocity is based on the plenum method. Compared to the nozzle method, which 

is biased by nozzle blockage effects, the plenum method returns force values that 

are approximately 2% lower. It is worth noting that massive volumetric extension 

of the wheel suspension acts like a volumetric blocking of the wheelhouses, 

modifying the flow in the wheelhouse from what is seen in the wheels-off 

configuration. 

The evaluation of rolling resistance in the wind tunnel measurement leads to 

additional uncertainty, which can be quantified and ruled out. The rolling road 

resistance is measured by doing a force measurement with different belt speed 

without any wind. The belt drags air with it and thus induces aerodynamic forces 

at higher speeds with a quadratic increase of the measured force with the belt 

velocity. The ventilation movement is another contributor to the quadratic part 

in the measured forces in the moving belt without wind setting. As shown in 

Figure 29, by least-squares fitting a second order polynomial curve onto the 

rolling road resistance measurement points for different velocities, the quadratic 

term (i.e., aerodynamic forces) can be removed, and the rolling road resistance 

remains. Once the wind tunnel is turned on, the linear and constant part of the 

rolling road resistance measurement can be subtracted from the measured drag 

force, with the assumption that the rolling road resistance is still the same. That 

is not the case, since the wheels themselves observe a lift force, changing the 

loading on the contact patch between wheel and belt. This lift force is 

unfortunately not measureable in the current WTA setup. In the simulation, 

however, the front wheels observe nine lift counts upwards, leading to a vertical 

force of 1.8N. With a pre-loading of the contact patch around 20N (including the 

wheels weight force), this decreases the rolling resistance by 9% because the 

normal force on the contact patch is in linear relation to the resulting rolling 

resistance. The measured drag of 84N is increased by a negligible 0.2N. This 

deficiency in the wheels-on setup is also present in the wheels-off configuration, 

but even more pronounced, because the symmetric wheel arm airfoil add a 

vertical force on the wheels that are also not measured. Changes in the rolling 

resistance and aerodynamic drag on the wheels result in changed lift forces 

through momentum balancing around the midpoint of the wheel base on the 

ground. Horizontal aerodynamic forces acting on the wheels are accounted for in 

the lift balance of the vehicle, but lift forces on the wheels are not. Due to the 
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small relative error introduced by these effects, this uncertainty can also be 

neglected. 

 
Figure 29: Rolling resistance evaluation of the DrivAer in the wheels-on 
configuration in the WTA of TUM. 

Comparison of unsteady fluctuations to the present wind tunnel geometry 

setup is difficult to obtain because the top sting mounting system behaves like a 

free-swinging pendulum, and solid body eigenfrequencies overlay the 

aerodynamically induced forces. The mounting system through the top sting is 

not perfectly stiff. While the boundaries of the vehicle in the simulation stay 

fixed, external forcing leads to an excitation of the entire experimental setup, 

which makes the DrivAer surface move. Without exact values measured, the 

maximum amplitude of displacement in the y-direction of the DrivAer surface 

close to the front end and rear end due to torsion around the z-axis is in the 

range of 4mm for the wheels-off setup and around 2mm for the wheels-on setup. 

Also, the speed control of the rolling road system is not able to hold the belt 

speed constant at all times, especially for higher velocities. Therefore, the belt 

speed fluctuates with up to ±0.1m/s (read from the control display). The ever-

changing belt speed leads to irreproducible time-dependent boundary conditions 

that affect both, unsteady lift and drag values. The belt speed control and 

nonuniformities in the belt (e.g., at the location of the belt joint) introduce 

fluctuations in the x-direction. 

The imbalanced wheels introduce fluctuations in the x-direction as well 

through the suspension system. The frequency of wheels rotation is at 52.56Hz 

and St=1.37 respectively and is observable as the most significant peak in the 

frequency spectrum of the experimentally measured force coefficient. 

Very low-frequency fluctuations in the y-direction occur due to the belt track 

control system, and these forces are also transferred to the internal balance from 

all four wheels. Belt control-induced fluctuations of the RRS are directly 

transmitted through the wheels to the model balance in phase in the wheels-on 

configuration because all four wheels are connected to the body in y-direction 

through the suspension system. 

All previous solid body fluctuations induce oscillations, preferably at the 

vehicle mounting system eigenfrequencies, which are larger than aerodynamic 

forces by several orders of magnitude. While those strong, solid body forces can 

be measured in the internal balance due to the spatial displacement, flow 
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structures might not be able to overcome the inertia of the vehicle to induce 

measureable oscillations at higher frequencies. 

The wheels-on setup is not as prone to spatial displacement because it allows 

for less movement of the DrivAer body relative to the ground in the y-direction. 

The downside of the wheels-on setup is that forces acting on the wheels are not 

recorded separately but are contained in the internal balance of the DrivAer 

body. Overall, the experimental wheels-off configuration produces similar 

magnitudes of oscillation as the wheels-on configuration due to eigenfrequencies 

of the measurement system. The standard deviations of the drag values for the 

wheels-on and wheels-off configurations are both in the same order with a value 

of around 0.07. The drag force coefficient oscillations of two wind tunnel 

measurements are evaluated using FFT in Figure 30. 

 
Figure 30: PSD force spectra from FFT of the drag force coefficient 
during a measurement of the wheels-on configuration with and without 
wind. The rolling road system is running in both cases. Strouhal numbers 
are computed using a free stream velocity of 42.64m/s for both cases. 

Because the current work is not explicitly targeted at the validation of 

unsteady simulation data, a match between experimental and numerical results 

is not aimed for here. Comparing the two spectra, it is apparent right away that 

the experimentally obtained forces are dominated by solid-body vibrations, since 

the peaks are at the same frequencies for the experiment with and without wind. 

The oscillations up to StL,wheelBase=0.2 seem to be supported by aerodynamic 

forces, leading to an increase in the solid-body eigenfrequency oscillations in this 

area. Even though an assignment of aerodynamic forces to peaks is not visible in 

this comparison, Reiß  [78] was able to show a shift in a narrow peak that can be 

assigned to vortices from the wheels when thickening the wheels in the  

y-direction. 

Figure 31 shows the frequency spectra of integrated forces from the 

simulation results. The most considerable oscillations in the PSD spectrum of 

experimental data is larger than in the simulation data by three orders of 

magnitude. The most dominant oscillations occur in the range up to St=4 for 
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the simulated data. The most dominant frequency in the simulation for the drag 

and the front lift occurs around St=0.2. Comparing to the volume FFT from 

Figure 34, it is noticeable that there is no steep decrease in the frequency 

spectrum in the integrated forces after St=1.5. Some aerodynamic processes that 

are relevant for the temporal evolution of the surface-integrated forces are not 

revealed explicitly as peaks in the averaged frequency spectrum of the velocity 

field. 

 
Figure 31: PSD frequency spectra of the DDES simulation. The 
integrated drag, front lift, and rear lift force coefficient spectra are 
generated using FFT with minimum 50% overlap Hanning windowing 
for the time frame from 2.2s to 3s simulated time. The lift and drag 

forces do not contain contributions from the wheels’ lift forces. 

Even though there is no literature reference with the same geometrical 

configuration and the same Reynolds number, Table 2 shows a comparison of 

the statistical values of the integrated force fluctuations with data from other 

publications. Strangfeld et al. use a 25% scale DrivAer model in the wind tunnel 

of Technical University of Berlin for their time-resolved force and pressure 

measurements [79]. Their fastback model is in mockup configuration including 

DrivAer rims, side-view mirrors, steady wheels and fixed ground plate. They do 

not find any dominant frequencies in their force and pressure measurement data, 

which is recorded at a sufficient rate of 2500Hz. They also argue that the inertia 

of the vehicle might be too large to detect flow frequencies. Their measured 

maximum deviation from the mean drag value is below 5%, which is connected 

to the much lower Reynolds number of ReL,wheelBase=1.7·106 compared to the 
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ReL,wheelBase=3.2·106 in the present study. Simmonds et al. [80] obtain slightly 

larger standard deviations in their simulations with an also somewhat more 

complex DrivAer geometry than in the current work (i.e., with DrivAer rims, 

structured underbody and side-view mirrors).Additionally, their cases are run at 

a larger Reynolds number of approximately ReL,wheelBase=4.9·106. These 

complexities in the model and increased Re are expected to add oscillations in 

the force coefficients, so an increased standard deviation is not surprising. The 

maximum difference from the mean drag value is in close agreement to the ones 

obtained from Simmonds et al.. 

 DDES 

Strangfeld et 

al. [79] 

experiment 

Simmonds 

et al. [80] 

simulation 

Ruettgers et 

al. [81] LES 

simulation 

Standard deviation 

√
1

N 1
∑ (CD,i − CD

̅̅̅̅ )
2N

i=1   
0.0058 - 

IDDES: 

0.0064 

LBM: 

0.0071 

0.005 

Maximum absolute 

deviation of CD 

max(
|CD,i CD̅̅ ̅̅ |

CD̅̅ ̅̅ ) 

7.37% <5% 

IDDES: 

5.97% 

LBM: 

7.92% 

- 

     
Table 2: Unsteady force coefficient standard deviation from experiment 
and simulation and maximum absolute deviation. 

Figure 32 shows several mean flow fields of the DDES simulation in 

representative slices. Even though the top sting is a symmetric airfoil profile, the 

momentum loss induced is visible in the y=0m plane and in the shape of the 

vehicle wake in the z=0.15m plane. The dimensionless static pressure coefficient 

for the visualization is evaluated using the pressure at the domain outlet as a 

reference with 

 C =
p − poutlet

1
2 ρUinlet

2
 . (99) 

The total pressure coefficient is defined as the non-dimensionalized sum of the 

same static pressure difference and the dynamic pressure, 

 C ,total =
 p − poutlet +

1
2ρ|𝐮|2

1
2ρUinlet

2
 . (100) 
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|Umean| [m/s]
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Figure 32: Slices through the temporally averaged mean flow field around 
the DrivAer body. Averaging period is one second physical time. Top: 
Slice through y=0m. Middle: slice through z=0.15m. Bottom: Slice 
through z=-0.1m. Left: Magnitude of the velocity field. Middle: Pressure 
coefficient. Right: Total pressure coefficient. 

The complexity of the temporally resolved flow field of the last simulated 

time step at t=3s is visualized using the Q-criterion in Figure 33. The Q-criterion 

is an often-used criterion for the visualization of turbulent structures. The 

criterion is defined as the second invariant of the velocity gradient tensor by 

Hunt et al. [82], 

 Q =
1

2
 𝛀𝛀 − 𝐃𝐃  . (101) 

With this definition, a turbulent structure can be visualized as an iso-surface of 

positive Q (i.e., the cells in which the strain rate is larger than the rotation rate). 

|U| [m/s]

0      0.4U 0.81U 1.11U 

 
Figure 33: Iso-surfaces of the Q-criterion with Q=2·106 colored by the 
instantaneous velocity magnitude depicted on the original CFD mesh. 

For a first glance at the unsteady properties of the flow field, FFT can be 

applied to get an overview of the frequency range. For the volumetric flow field 

data, application of FFT is computationally cheap due to the local type of 

operations performed (i.e., temporal FFT can be executed on each cell 

independently and thus scales well in parallelization). To make results 



 77 

comparable, the x-axis of the frequency spectra is in non-dimensional units of the 

Strouhal number St. Figure 34 shows the connection between the Strouhal 

number, based on the wheel base as the characteristic length scale, and the 

frequencies in Hz obtained from the simulation setup with free stream velocity 

of 45m/s. The experiment, conducted at the same Reynolds number, is done 

using a wind speed of 42.64m/s. The FFT results are obtained from an average 

of spectra by applying three windows of size 512 to each line/observable in the 

snapshot matrix consisting of 801 columns/snapshots. Each column includes one 

window at the start, one with its center at time step number 401 and one at the 

end of the time series. The Hanning windowing function is used in this work. No 

amplitude or energy correction is applied for FFT results. First, the spectra from 

three windows of one observable are averaged, and then the spectra of all 

observables are averaged. A total of 1.6 million cells and three velocity field 

components from an interpolation grid as defined in section 3.3 are used to form 

the snapshot matrix. The PSD spectrum shows a decay in energy from low 

frequencies toward higher frequencies. Oscillations below 150Hz govern the 

average cell in this subdomain. The fact that there are no apparent peaks visible 

in the area of 100 Hz or St=2.5 is somewhat surprising since bluff body vortex 

shedding processes from the front wheels are to be expected in this frequency 

range (i.e., the typical Strouhal number of 0.2 based on the wheel width using 

the free stream velocity leads to a frequency in that range). For the rear wheels, 

which observe a much smaller average velocity due to the wake from the front 

wheels, smaller frequencies in the range of St=1.5 are expected. 

 
Figure 34: Averaged FFT spectrum of the velocity components of the 
flow field from an interpolated sampling box in the vicinity of the 
DrivAer model. FFT is executed using the same parameters as for the 
integrated force coefficient spectra in Figure 31. 

3.3 Guidelines for Modal Analysis for Vehicle Aerodynamics 

This chapter outlines guidelines for the application of modal analysis methods on 

data sets generated by simulation setups as described in section 3.2. Following 

these instructions, modal analysis can be employed sensibly as an add-on tool in 

the aerodynamics engineering process with CFD. The data to be investigated is 



 78 

limited to areas where deviations from the mean flow field occur. For this matter, 

only a subdomain around the vehicle surface, including parts of the vehicle wake, 

is analyzed. The dimensions of the analysis subdomain are defined to contain 

aerodynamically relevant and energetic structures. The subdomain is therefore 

not extended all the way into the far downstream wake regions, where the CFD 

mesh size is increasing, but is instead limited to contain the third-finest grid cells 

and finer. The entire subdomain is fully submerged inside the larger refinement 

box depicted in Figure 27. The interpolation mesh on the subdomain for data 

sampling is shown in Figure 35. 
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Figure 35: coarseMesh interpolation region definition. The data is 
mapped to this second region during the simulation before it is passed 
to the online STDMD algorithm. The lower bound of the interpolation 
mesh is 0.4mm above the rolling road belt patch. 

Spatial interpolation is conducted in parallel during the simulation. After the 

flow field is solved for on the CFD grid and all equations are converged, the 

velocity components are mapped to the equidistant grid using cell-volume-

weighted interpolation. By heavily parallelizing the interpolation and generating 

an interpolation map for each processor with fixed cell-volume weighting factors, 

the interpolation procedure does not add much of an overhead to the actual CFD 

solution time. This simulation requires approximately 20,000 CPU hours for the 

investigated time frame and another 82 CPU hours for the execution of the 

STDMD algorithm. The CPU hours for the simulation include the evaluation of 

multiple function objects. The majority of CPU hours for all function objects is 

used for the interpolation to the equidistant grid and writing to HDD with 2,100 

CPU hours, of which most time is spent waiting for the HDD writing operations 

to be finished. The raw data is written to the hard drive to allow evaluation of 

the performance loss parameter and to visualize the transient flow field data. For 

parallelization, the interpolation grid is decomposed in the same manner as the 

CFD grid so that the interpolation tasks are equally distributed among all 

processors. OpenFOAM® provides the basis for computing these operations 

efficiently in memory with the built-in multi-region environment. The 

interpolation grid is also referred to as region coarseMesh.  

Spatial interpolation is extremely useful for preconditioning data for 

conducting modal analysis for vehicle aerodynamics for two critical reasons. First, 

DMD is very demanding for capturing high-frequency content, especially in the 

case of the appearance of highly damped or amplified modes. To be on the safe 
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side, the sampling rate should be 40 times the frequency of interest if extremely 

unstable processes are involved. Spatial interpolation to an interpolation grid 

coarser than the CFD grid acts as a spatial filtering operation and introduces 

smoothing in the temporal domain by invoking cell center information from 

multiple cells via the cell-volume-weighting method. A simple probing of local 

flow field values using a single cell center information without any spatial 

interpolation (e.g., probing by taking the cell center values of the closest cell 

center) does not suffice for this purpose. To achieve the temporal smoothing 

effect of the spatial interpolation filter, an interpolation grid coarser than the 

CFD grid should be used, since each interpolation cell will surely contain 

information of multiple cells from the CFD grid. The larger the cells are in the 

interpolation grid, the more significant the impact will be on the temporal 

information of the data. If only the most energetic, lower frequency, 

aerodynamically dominant modes are to be investigated and used for ROMs, 

resolving frequencies that are orders of magnitude higher than the modes of 

interest would be prohibitively expensive because every single simulated time 

step would have to be analyzed. This would not be productive. If higher 

frequency oscillations are to be neglected for generating an ROM, the resulting 

model surely cannot represent the original data to the full extent, and validation 

of the ROM is not possible due to the strict sampling conditions. Being able to 

validate an ROM using a single parameter Πloss is desired, so conditioning the 

data for the frequency range that can be captured by an ROM is advisable. As 

the modal analysis only processes data and does not involve the solution of the 

flow field itself, it should be seen as a way of visualizing instationary data. As 

long as the most dominant flow field processes that are to be extracted from the 

simulated data are visible in the interpolated flow field, the respective modes will 

be present in the ROM that is computed. 

For vehicle aerodynamics data, excitation mechanisms of detaching flow 

structures are often of interest. Because those structures are typically excited 

from vehicle parts or areas of the flow field that are at least adjacent to the 

vehicle surface (i.e., the near wake), it is still important to choose a fine enough 

interpolation grid to be able to observe where structures initially form and 

detach. For this reason, the cells that are cut by the surface of the vehicle (i.e., 

wall boundary condition patches) are kept in the interpolation grid, while all 

cells inside the vehicle geometry are removed. The coarseMesh interpolation grid 

and a single interpolated time step for a z=0 slice are shown in Figure 36. 
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Figure 36: Slices through the z=0m plane of the DrivAer simulation. 
Top: Hexahedral equidistant interpolation mesh coarseMesh versus CFD 
mesh. Bottom: Velocity magnitude field. Visualized are the cell center 
values (i.e., not interpolated). The cell size of the coarseMesh 

interpolation grid is around ∆x=10-2·LwheelBase. 

The direct comparison shows that spatial filtering reduces the number of 

small-scale fluctuations while maintaining more massive energy-containing 

structures. Spatial interpolation to a coarser grid results in a low-pass temporal 

frequency filter (i.e., more significant energy-containing structures are 

maintained in the data) because in turbulence, small-scale fluctuations are 

related to low-energy, high-frequency content. Previous investigations show that 

conventional DMD can only be applied to pre-processed data from DES 

simulation if sufficient low-pass temporal frequency filtering is used, removing 

numerical noise and high-frequency content. Because the augmented snapshot-

based approach considered in this work is much less prone to errors from noisy 

data, there is no need for a low-pass temporal cut-off filter as is the case for 

conventional DMD. Furthermore, the mode-ordering technique proposed here 

replaces the traditional mode ordering (i.e., ordering by the amplitude computed 

by the method of the first snapshot), reducing the chance for mistakenly judging 

highly damped modes for being dominant. 

In addition to the spatial and temporal low-pass filtering effect, the 

interpolation provides a useful tool for reducing the amount of data to be 

analyzed and thus overall processing time. For the interpolation grid coarseMesh 

used here, the reduction narrows from 106 million cells to 1.6 million. This data 

reduction allows for fast processing of many time steps and reduces the required 

storage for the modes that are computed. Finally, the visualization of modal 

analysis results can be done much faster and with smoother iso-surfaces. This 
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way, coherent structures are easier to find and follow through reconstruction of 

modes than if original CFD grid flow field data is used. 

If only the most dominant flow structures are to be analyzed using modal 

analysis, only a selection of simulated time steps need to be processed. The 

temporal correlation between time steps can be used to make sure that two 

following time steps are still related to one another and a full state representation 

of the flow field is possible. For finding the required spacing between time steps 

to be used in the modal analysis, the flow field inside the interpolation mesh 

coarseMesh and a set of cells of the CFD mesh that is located inside the outer 

boundaries of coarseMesh, named subDomainMesh, are written to the hard drive 

and investigated by computing the correlation function between snapshots. In 

addition to coarseMesh, a second interpolation grid coarsestMesh is investigated 

with twice the cell size of coarseMesh. All data sets are recorded using the same 

time frame of simulation data. Figure 37 shows the normalized correlation 

function Ci, defined as 

Ci =
𝐱1 · 𝐱i

𝐱1 · 𝐱1
 . 

All data is sampled from the DrivAer simulation starting from t=2.00004s to 

t=2.1s for the CFD mesh data recorded on subDomainMesh (partially) and 

interpolated data on coarseMesh and coarsestMesh. 

 
Figure 37: Top: Temporal correlation function for the first 145 
consecutive time steps recorded in a subdomain and two interpolated 
meshes. Bottom: Temporal correlation function for the first 2,500 
consecutive time steps recorded on the two interpolated meshes.  

Online temporal filtering is another option for preparing data for modal 

decomposition. For conventional DMD, low-pass filtering is an excellent tool to 
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take out oscillations at frequencies that cannot be adequately resolved by DMD. 

The Butterworth filter, for instance, shows good cut-off frequency properties. 

Being able to apply this type of temporal filter relies on the possibility to apply 

the filter forward and backward in time to eliminate phase shifting. In the 

incremental variants, only a single time step (or possibly a small range of time 

steps) is available in memory, and backward filtering with a low-pass filter is not 

possible. Applying an online Butterworth filter operation in only one direction 

leads to phase shifting effects and makes an analysis of structure interaction 

difficult. 

For online modal analysis algorithms, in addition to the spatial interpolation, 

a narrow temporal box filter can be added for preconditioning the data. Temporal 

filtering has low computational costs due to the local nature of the processor 

operations involved, so the temporal filter can be applied using time steps of the 

CFD grid before the temporally filtered field is mapped to the interpolation grid 

after every ∆tDMD. Narrow window temporal box filtering, which is also referred 

to as moving average filtering, only has a minor effect on the resolvable frequency 

spectrum of interest if the window size is small enough. The frequency response 

function H of a moving average filter with window size Tmav can be computed as 

a function of the angular frequency ω, as shown here: 

 H=
1

T  v

1 e−iωT  v

1 e−iω , with ω =[0..π]. (102) 

 
Figure 38: Frequency response of a moving average temporal filter. 
Window sizes are in units of the number of simulated time steps. 

For a window size of 25 CFD time steps, the DMD resolvable frequencies don’t 

change much. In this case, the temporal filter only acts as a smoothing function 

on the flow field data, flattening wrinkles in the resulting mode plot iso-surfaces. 

Smoother mode distributions can help to identify vortex-shedding mechanisms 

and simplify the analysis of interaction processes. In some cases, it also is found 

that applying a moving average filter with window size 25 can reduce the 

performance loss parameter for generating an ROM with a limited number of 

modes. 

However, if strict low-pass filtering is needed (i.e., because of energetic 

oscillations in the higher frequency range that cannot be captured by modeling 

the data basis in a DMD), moving average window filtering is insufficient because 

of the non-zero frequency response for higher frequencies. Gauss and Butterworth 

filters are better approaches for this purpose. Low-pass Butterworth filters offer 



 83 

very steep frequency response curves close to a defined cut-off frequency, 

rejecting higher frequency content while maintaining the amplitude of the 

oscillations in the frequency range to be analyzed almost uniformly. The 

downside of the application of such operations in one direction in time is that 

phase shifting occurs at different levels for different frequencies. For the analysis 

of a wide frequency range, the resulting ensemble of structures becomes distorted 

(i.e., the temporally resolved flow field with vortex-shedding mechanisms at a 

wide range of temporal and spatial scales changes). Afterward, tasks like data 

compression through ROM, structure-structure interaction or even causality 

analysis could become problematic. 

For the higher frequencies, the previous considerations present useful tools 

for fulfilling the requirements of DMD for capturing the full physics of all 

dominant flow field processes adequately. The lower frequency limit 

representable by DMD modes on the other side is set by the total period 

simulated. As demonstrated for the two-dimensional cylinder test case, DMD is 

out-performing conventional tools like FFT for resolving low-frequency 

oscillations. As described in Schmid [27], a representative data basis for the 

complete description of a physical system and sensible evaluation of DMD modes 

is required. Schmid argues that if the number of snapshots is large enough, the 

last time step xm of a snapshot matrix can be approximated using a linear 

combination of previous time steps x1 to xm-1 as 

 xm=a1x1+a2x2+…+am-1xm-1+r . (103) 

As m increases, the 2-norm of the residual vector r decreases (i.e., the snapshot 

xm can be approximated better). For very long periods, the columns in the 

snapshot matrix eventually become linearly dependent, and the residual 

converges. Following the Ph.D. thesis of Alenius [39], the convergence of the 

DMD residual can be visualized as displayed in Figure 39. For a more evident 

convergence behavior, the last time step is held constant for all evaluations of 

the residual. A total period of 0.8 seconds is sampled for modal analysis in this 

work. A particle in the outer free stream of the flow at 45m/s traverses the length 

of the model scale vehicle around 20 times during the sampled period. The lowest 

dominant frequency to be expected from a simple bluff body aerodynamics view 

with St=0.2 for the vehicle’s total length Llength is at 4.9Hz, resulting in a 

recurrence of this possible low-frequency shedding mode of roughly four times. 

Because no bi-stable wake phenomena are expected from this rear end shape, 

lower frequencies are not likely. For station wagon rear end shapes on the other 

side, very low-frequency oscillations with strong amplitudes are possible and 

should be captured, or at least be kept in mind, when analyzing simulation 

results. 
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Figure 39: Convergence of the residual norm divided by the number of 
snapshots used for the DrivAer DDES simulation. 

If the lowest frequencies that are contained in the signal cannot be resolved 

appropriately, DMD results can generally still produce acceptable ROM results 

by introducing multiple zero-frequency modes with different amplification or 

decay rates. Keeping all discussed temporal resolution and period requirements 

in mind, it is then also possible to use DMD as an exact band-pass frequency 

filtering tool. 

3.4 Modal Analysis Results 

3.4.1 Incremental POD Modes 

This section presents the results from incrementally computed POD analysis 

using the algorithm introduced in section 2.3. Figure 40 shows the singular value 

results from incrementally computed POD modes. The POD computation is 

carried out without any online compression of the orthogonal basis. Opposite to 

the two-dimensional cylinder test case, the singular values of all oscillating modes 

are not several orders of magnitude apart. For complex flow field phenomena, 

almost all modes are required for a good approximation of the original flow field 

data. Using all modes, the ROM shows a minimal modeling error of only  

3·10-12%, which is comparable to the results from the two-dimensional cylinder 

case, but a representation of the flow field with a performance loss of Πloss<1% is 

achieved using 775 out of 801 modes. The proximity of singular values leads to 

a slow decrease in performance loss as modes are added for reconstruction. The 

enormous advantage of POD over DMD for generating an ROM with few modes 

for complex data seems to diminish if a large portion of fluctuation energy is to 

be maintained; this is because of the almost linear decrease of performance loss 

over a wide range of modes. If a tool for data compression is wanted, POD is not 

exceptionally useful (i.e., the compression ratio in comparison to merely storing 

the instationary flow field data itself is not considerable). In addition to the mode 

distributions (i.e., the left singular orthonormal vectors), which are the same size 

as the original flow field, the reconstruction of POD modes requires the singular 

values and the right-singular vector matrix, describing the temporal evolution of 
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modes, to be stored. For the most energetic fluctuating POD modes, the singular 

values reveal the appearance of mode pairs, which have singular values in similar 

ranges. 

  

  

Π    

 
Figure 40: Singular values and ROM performance loss convergence over 
the number of modes used for reconstruction for the DrivAer DDES 
simulation. 

The first POD mode is a non-oscillating mode that is almost identical to the 

mean flow field. That is the reason why the first POD mode is commonly referred 

to as the mean flow mode. In this ROM, the mean flow mode includes a slightly 

changing right singular vector, which makes the reconstruction of the mode a 

better approximation of the full flow field compared to the arithmetically 

computed mean flow field. The obvious strategy for the analysis of POD modes 

is to start with the leading oscillating modes sorted by amplitude. The temporal 

evolution of modes can be studied using the right singular vectors. Figure 41 

shows the temporal evolution of the first nine leading POD modes. Mode pairs 

are plotted in the same window to show their spectral similarities.  

Further fluctuating mode pairs (i.e., modes 10 and 11) show increasing 

differences in their spectral content. While modes two and three show almost 

identical frequency spectra, modes eight and nine differ significantly. The 

differences in frequency spectra are partly due to the application of window 

function in FFT, but the diverging behavior can also be seen in the absolute 

values of the right singular vectors over time. The mean flow mode shows 

negligible changes in time that are smaller than the first genuinely oscillating 

modes appearing in pairs by six orders of magnitude. All nine modes shown here 

lie well within the expected active frequency range seen in the FFT analysis in 

Figure 34. Higher-frequency content is not contained in any of the modes and 

low-frequency content close to StwheelBase=0.2 is not dominantly visible. 
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Figure 41: Left: Temporal evolution of the leading right-singular values 
separately for each mode. Right: Respective PSD distribution plotted 
over the frequency range between 0Hz and 80Hz. PSDs are computed 
using three Hanning windows with size 512 and averaging the resulting 
distributions. 

Due to the spatial orthogonality and the real value nature of a single POD 

mode, reconstruction of a single POD mode does usually not lead to knowledge 

about the origin of excitation mechanisms. Single POD mode reconstruction 

results in local oscillations. Convective transport of structures cannot be 

observed. A combination of at least two POD modes is necessary for meaningful 

investigation of detachment processes and extraction of structures that are 

convected downstream. For the analysis of the extracted structures, temporal 

reconstruction can be used to create iso-surfaces or slices of mode component 

flow fields (i.e., reconstructed velocity field components ui, vi and wi for time 

steps i=[1..m]). Figure 42 and Figure 48 show such reconstructions for the first 

time step. The iso-surfaces in this work are chosen to be equal to plus and minus 

two and a half times the standard deviation of the respective field component in 

the first time step. 

The y-component is the most active for the mode pair. Large coherent 

structures in the lower part of the wake fluctuate in y-direction similarly to the 

structures seen in the two-dimensional cylinder case. The x-direction is slightly 
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less active, and the z-direction is much less active, at least in the first time step. 

Even though the y-component suggests a correlation to the vehicle width of the 

excited structure, the excitation mechanism seems to be approximately at the z-

location of the axle. Further inspection of the x-component in the bottom view 

of the vehicle reveals two bluff body-like structures in the distant wake behind 

the wheels. Even though the structures do not seem to be spatially connected to 

the rear wheels, the structures that are formed look much like the two-

dimensional cylinder structures for each rear wheel.  

The most striking finding is that the wheel wake structures seem to be shed 

precisely in phase, which is the very reason why the y-component structures can 

connect nicely and move large air packages in the y-direction. If those structures 

were to shed in anti-phase, the resulting y-component structure would be much 

smaller in size and possibly also in energy. A similar effect is investigated in a 

paper about active flow control on a simplified bluff body by Pastoor et al. [83].  
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Figure 42: First oscillating POD mode pair. Top: slice through the z=-
0.1m plane. Bottom: slice through the y=0 plane. The reconstructed 
first time step of a combination of POD mode two and mode three. 
Left: x-component. Middle: y-component. Right: z-component. 

The critical issue with the reconstruction of POD modes is the ever-changing 

temporal behavior of individual modes and mode pairs (i.e., the contribution of 

modes two and three to the flow field decreases over time, as can be seen in 

Figure 41). If the interest of investigation lies within the evaluation of temporal 

evolution of dominant structures, POD modes do not necessarily decrease 

complexity to a minimum, since their behavior changes over time. The 

reconstruction of mode pairs can result in spatially connected structures that are 

convected downstream, so the identification of source mechanisms for dominant 

shedding processes is possible in some cases. Some mode pair reconstructions, 

though, show structures that cannot be traced through the flow field, and they 

appear disconnected from the vehicle surface in the wake. The disconnection from 

the surface makes it difficult to assign a mode to a specific shedding mechanism, 

as a production type car has many geometrical details that can cause separation. 

Because the reconstruction of mode pairs does not lead to ever-recurring flow 

structures, all snapshots from the original data sets (i.e., 800 snapshots, in this 

case) need to be reconstructed and analyzed. For the present data set, 

reconstruction to a video with five frames per second is useful for the first four 

mode pairs and yields videos 160 seconds long filled with more or less complex 

reconstructions.  
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The complexity of the reconstructions depends on the frequency content and 

temporal evolution of the right singular vectors. If both modes of the mode pair 

oscillate with a single frequency, or at least with a narrow frequency band across 

the entire time frame (e.g., as is in the Re=100 two-dimensional cylinder case 

part two), then the reconstructed flow field can be interpreted quickly, as the 

processes are ever recurring and only one period of oscillation needs to be 

reconstructed. In the DrivAer setup, though, this is not the case. The temporal 

evolution with different time steps for a slice through the z=-0.1m plane is shown 

in Figure 43. The decrease in oscillation amplitudes leads to almost zero 

disturbance of the flow field for this mode in reconstructed snapshot 600. That 

leads to a complete disappearance of iso-surfaces as well. 
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Figure 43: First oscillating POD mode pair. Slice through the z=-0.1m 
plane. Seventeen reconstructed time steps are shown from a combination 
of POD mode two and mode three. 

The second POD mode pair, which consists of oscillating mode three and 

mode four, is visualized in Figure 49. The mode pair shows large structures 

oscillating in the z-direction in the center of the vehicle wake. The structures 

seem to feed on the underbody airflow. An upward detachment lowers the 

pressure in the wheel wake, and the air is transported from the wheel wake 

toward the y=0 plane. On downward movement of the air package, the base 

pressure in the rear wheel wake is increased, and the air is pushed outside. That 

leads to detachments from the rear wheels that are precisely in anti-phase (i.e., 

both wheels shed structures toward the y=0 plane at the same time). 

The third and fourth POD mode pairs show similar behavior to the second 

mode pair. That is not surprising, since their frequency spectra show dominant 

peaks at similar frequencies around St=0.5 and St=1.5. An active region behind 

the front wheel indicates a connection of the front wheel wake and detachments 

from the rear wheels, but a clear identification of the shedding process triggering 

the oscillations in the wake is not possible due to the spatial distance to the 

geometry surface. 

When computational resources do not allow execution of the full rank 

incremental POD, maximum rank settings should be considered. Beyond the 

HDD writing and reading time that can be saved by using online algorithms, the 

maximum rank truncation ability is one of the central benefits of this online-

capable algorithm. Table 3 shows the required execution times and resulting 

performance losses for different memory-saving incremental POD settings. 
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rmax incPOD mesh 

Execution time  

[CPU hours] 
Πloss [%] 

∞ coarseMesh 52 2.9·10-12 

600 coarseMesh 60 3.0 

400 coarseMesh 51 4.7 

200 coarseMesh 29 6.9 

∞ coarsestMesh 7 3.8·10-12 

    
Table 3: Execution times and performance loss parameters for 
computation of incremental POD using different maximum rank settings 
and interpolation grids. 

Due to the large computational effort in the compression step, lowering the 

maximum rank increases the required execution time down to a maximum rank 

of rmax=400. At this point, the benefit of having a smaller orthogonal basis for 

adding new snapshots evens out the additional effort for the online compression. 

Furthermore, coarsening the interpolation grid to an even sparser one named 

coarsestMesh, with a cell size twice that of the coarseMesh data set, is an 

excellent method of reducing memory requirements if the flow field processes to 

be extracted are still visible in the data set. In this case, reducing the number of 

observables by a factor of eight leads to a decrease in computational time by a 

factor of eight. These numbers are only exemplary and heavily depend on the 

extent of parallelization of the algorithm. 

3.4.2 Streaming Total DMD Modes 

This section presents the results from incrementally computed DMD using the 

algorithm introduced in section 2.4. Figure 44 shows the frequency spectrum from 

incrementally computed DMD modes. The STDMD computation is carried out 

without any online compression of the orthogonal basis. Usage of all 800 DMD 

complex modes leads to a successful ROM with a total performance loss of  

10-8%, so the resulting ROM can be used for exact frequency filtering 

applications. As can be seen in Figure 44, the frequency distribution from DMD 

is fundamentally different from the FFT spectrum in Figure 34. While FFT offers 

fixed frequency spacing and a frequency resolution that depends on the window 

size, DMD can make full use of the entire data set, leading to higher frequency 

resolution where needed and resolving lower frequency content than FFT. The 

lack of windowing function usage for DMD gives a much clearer reflection of the 

actual system behavior because all time steps are considered with equal weight 

for the decomposition. This way, a single modal DMD basis can represent the 

entire time window. The resulting frequency spectrum contains two modes with 

zero imaginary parts (i.e., two mean flow modes). Considering that all oscillating 

modes are contained in the modal representation redundantly with an adjacent 

complex conjugate counterpart, the actual modal description boils down to 401 
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modes (i.e., 399 non-zero frequency modes). One of the mean flow modes has 

Kstable,1=4.2·107 and λ1=1 and another mode has Kstable,401=2.9·102 and λ401=0.79. 

The appearance of multiple mean flow modes is typical in cases where the data 

length is not enough for capturing the lowest frequencies. This is usual when the 

total number of time steps is odd, since the augmented snapshot approach leads 

to an even amount of orthonormal vectors if online compression is not employed. 

That leads to the recommendation either to always use an even amount of 

snapshots for augmented snapshot-based DMD algorithms or to compress the 

orthonormal basis to an odd amount of orthonormal modes to prevent the 

appearance of a second zero Hz mode. Even though DMD gives better 

performance than FFT for capturing very low frequencies (e.g., if only a quarter 

of a total period of oscillation is contained in the signal), there are cases when 

low-frequency oscillations are assigned zero Hz frequency with damping or 

amplification. This way, slowly changing mean flow fields can still be represented 

correctly by an ROM from DMD modes. 

 
Figure 44: Frequency spectrum of the STDMD analysis of the DrivAer 
DDES simulation. Modified eigenvalue-weighted amplitude as a function 
of the Strouhal number. Higher frequencies are not shown.  

Another useful visualization of DMD results is the real and complex part of 

the eigenvalues. The eigenvalue distribution is shown in Figure 45. Most modes 

are either stable or slightly damped (i.e., with |λ|<1), but there is a tendency to 

slightly higher damping values in the higher-frequency range.  

Due to the complex-number nature of DMD modes, reconstruction of a single 

mode in time can yield spatially coherent structures that can be interpreted as 

clusters of air moving at the same frequency. Often, these clusters are convected 

downstream with the mean flow and allow the interpretation of a specific DMD 

mode to be related to a vortex shedding process of a specific part, because well-

known von Karman-like vortex streets or shear layer instabilities are formed. 

Vehicle parts that are elongated in the z-direction, for instance, will usually 

induce a vortex street, which can most easily be spotted using the y-component 

of a mode. The same holds for vehicle parts that have a significant extension in 

the y-direction, which introduces dominant large-scale structures in the z-

component of a mode. Figure 50 shows the reconstructed first snapshot of 

STDMD mode two (i.e., the first oscillating mode picked by the modified 
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eigenvalue-weighted amplitude ordering method). A von Karman vortex 

shedding process dominates the mode in the wake of the front wheels. The iso-

surface is again selected as two and a half times the standard deviation of the 

mode distribution in the first time step for each flow field component separately. 

Taking a look at the resulting iso-values, it quickly becomes evident that the y-

component is the most dominant, while the other two components appear in 

similar magnitude. Even though the rotating wheel in ground contact located in 

the complex wheel housing geometry is a much more complex bluff body than 

the two-dimensional cylinder, the dominant detachment process in this reduced 

order flow model looks relatively similar. 

 

 
Figure 45: Eigenvalue distribution of the STDMD modes. The angle of 
the vector in the complex number plane represents the non-
dimensionalized frequency. The vector length represents the damping 
value for each mode. The marker size is linearly proportional to the mode 
ordering value Kstable. Left: full spectrum. Middle and Right: enlarged 
ranges of positive frequency modes, including the unit circle drawn as a 
solid line. 

In addition to vortex shedding of this Strouhal number dominating the flow 

around the front wheels, it also affects the global field around the full vehicle. 

The vortices shed from the front wheels slowly decay toward the rear wheels but 

partially recover by triggering oscillations at the rear wheel with the same 

frequency. This behavior is also underlined by a reconstruction of multiple time 

steps, which shows the front wheel structures passing by the rear wheels, 

intensifying in energy and then reducing in convection speed (i.e., the structures 

appear to be more compact and compressed in their x-direction dimension) as 

the rear wheel wake in the diffusor area slows down the mean flow field. New 

turbulent energy is generated by the transfer of energy from the mean flow field 

at the rear wheels at the same time scales as on the front wheels even though 

the observed mean flow speed around the rear wheels is much lower than in the 

front. The structures then reach the trailing edge of the diffusor, inducing 

additional separations at this frequency. Figure 46 shows six reconstructed time 

steps of the y-component. The possibility to choose non-integer time steps for 

reconstruction enables reconstruction of a smooth period of oscillation because 
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the exponents in the Vandermonde matrix can be freely chosen for visualization 

purposes. 

Probe 

point

locations

=̂2.2s =̂2.2054s

 
Figure 46: Reconstruction of a full period of DMD mode number two y-
component field. Two probe locations in the wake of the wheel/wheel 
housing area show the strong phase connection between the left and right 
front wheels. The reconstructed time steps are located exactly at physical 
times 2.2s, 2.2s+1/(6f2), 2.2s+2/(6f2), 2.2s+3/(6f2), 2.2s+4/(6f2) and 
2.2s+5/(6f2), which do not coincide with simulated time steps. 

While the z-component is naturally not well represented in the underbody, 

except in the wheel housing, the component shows large oscillation emerging 

from the upper part of the front wheel on the outer side. As is the case for the 

y-component, the z-component influences the shedding behavior of the rear 

wheels. Passing by the rear wheels, the structures increase in energy before filling 

the entire vehicle wake region with oscillations at this frequency. A minor part 

of the oscillations of the A-pillar vortex also seems to be amplified by this process 

(i.e., the instabilities that form in the shear layers around the vortex core might 

be preferentially forming at this specific frequency), which contradicts the 

widespread opinion that oscillation frequencies of the A-pillar vortices are 

somewhat erratic. 

The first 20 modes contain additional dominant STDMD modes with both a 

strong influence of von Karman-like y-component vortex structures below the 

underbody in the wake of the front wheels and a strong z-direction vortex street 

downstream of the front wheel housings. STDMD modes four with St4=5.57 and 

f4=184Hz, mode six with St6=4.66 and f6=188Hz, and mode 19 with St19=4.65 

and f19=187Hz all complement mode two with a slightly offset frequency, showing 

very similar shedding processes but at lower amplitudes than found in mode two.  

Modes with much higher frequency content also appear with similar but 

smaller structures. These are mode eight with St8=7.4 and f8=296Hz and mode 
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nine with St9=7.3 and f9=295Hz. The impact on the instabilities in the A-pillar 

vortex increases at higher frequencies. Interestingly, for the very high-frequency 

modes, disturbances do not seem to be convected downstream. Instead, they 

become either almost steady in space or spread upstream. An explanation for 

this lies in the formation of instabilities that are in a frequency range that cannot 

be resolved adequately by DMD modes using the current temporal sampling 

resolution. The structures seem to move upstream, but their convective 

movement upstream is an artifact of the chosen sampling interval. Similar effects 

can occur in videos that are recorded with frame rates lower than the Nyquist 

frequency of the recorded object’s movements (e.g., the passing frequency of 

spokes on a spinning wheel or the flapping frequency of a bird).  

The reconstruction of the first time step of a mode with similar shedding 

characteristics as mode two, but at higher frequencies, is shown in Figure 51 for 

the reconstruction of mode eight. As the frequency of front wheel driven vortex 

shedding modes increases, the structures grow smaller (i.e., the size of the y-

component bands in the bottom view). Additionally, it can be observed that 

there is a tendency to earlier (i.e., further upstream) detachment on the front 

wheel as the frequency increases. 

Reconstruction of the STDMD mode three in iso-surfaces is shown in Figure 

52. The proximity to the Strouhal numbers contained in POD modes four and 

five leads to similar, spatially coherent structures, as described for the second 

POD mode pair above. Large air clusters in the size of the vehicle tail height 

LtailHeight move in the vehicle wake. Some of the initial disturbances seem to be 

sourcing from the front wheel housing area and the upper part of the rear end, 

but the majority of upstream fluctuation energy comes from the rear wheel 

housing areas. The frequency of oscillation of f2=29Hz can be converted to a 

different definition of the Strouhal number based on LtailHeight as the characteristic 

length scale as StL,tailHeight=f2·LtailHeight/U∞=0.2. A Strouhal number of 0.2 in bluff 

body aerodynamics is usually a good indicator that this specific geometry 

dimension is causing a flow field effect at the respective frequency. The large 

amplitude in the FFT spectrum of the integrated rear lift forces in the same 

frequency range indicates that this mode is also to be considered in the context 

of driving stability. Even if rear lift forces are negative, large scale structures 

might lead to lift forces that temporally exceed predefined and required bounds 

for good traction at high velocities. Being able to visualize such structures can 

help to find possible geometrical modifications for those structures to decrease 

their impact on the integrated force oscillations.  

In comparison to the POD modes presented earlier, DMD modes show better 

connections to small-scale perturbations of the flow upstream and make it 

possible to track them as they are convected through the flow field. The 

substantial contribution from the rear wheels hints that synchronized shedding 

from the wheels again plays a vital role in supporting the creation of such large-

scale structures. The y-direction components are patchy, but their overall size is 

of the order of the vehicle width Lwidth. As is the case for mode two, multiple 

modes appear as dominant modes at a similar frequency as mode three. Those 
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are mode five with St5=0.64 and f5=26Hz, mode 10 with St10=0.64 and f10=26Hz, 

mode 12 with St12=0.74 and f12=30Hz, and mode 14 with St14=0.69 and f14=28Hz. 

Such clusters of modes are also found by Schmid for an application of DMD on 

a jet between two cylinders [27] and Schmid et al. for the application on a helium 

jet flow [28]. Reconstructed together the modes form coherent packets. Schmid 

and Schmid et al. find that such mode clusters form arc-like structures in plots 

of the eigenvalues and consist of fluid elements that show similar support but 

have slightly offset wavenumbers. 

An additional cluster of energetic STDMD modes is in the vicinity of mode 

seven with St7=0.99 and f7=40Hz, mode 11 with St11=1.02 and f11=41Hz, and 

mode 18 with St18=0.97 and f18=39Hz. Figure 53 shows a reconstruction of the 

first snapshot of STDMD mode seven in iso-surfaces of the velocity components. 

The modes in this frequency range have some contribution of the x-component 

fluctuations from the front wheels in ground proximity. The rear-wheel shedding 

is not in phase for the y-components, as opposed to the vortex shedding from the 

front wheels contained in mode two. The phase setting and the lower free stream 

velocity seen by the rear wheels is likely to be the driving mechanism for the 

lower amplitude for the dominant modes from the rear wheels. Surely, modes at 

lower frequencies are more likely to be sourced by the rear wheels due to the 

lower surrounding velocity, as can be grasped from Figure 32. 

Another interesting dominant mode, for which an in-phase vortex-shedding 

mechanism from the front wheels plays a vital role, is contained in a cluster 

around mode 15 with St15=2.68 and f15=108Hz. Reconstruction of the first time 

step in iso-surfaces is shown in Figure 54. The dominance of the y-component 

structures in the wheel wakes is striking. Furthermore, similar to STDMD mode 

two, the y-component structures are synchronized and shed in phase, resulting 

in large-scale oscillations in the y-direction in the vehicle wake that stay 

connected and almost stable throughout the sampling box. There is a connection 

to oscillations in the drag and front lift force coefficient. 

STDMD mode 16 is visualized in Figure 55. There is a coincidence of peaks 

with the frequency spectra of the surface-integrated force coefficients for drag 

and rear lift. A strong connection to detachments to the upper upstream part of 

the front and the rear wheel housing is evident for the x-component. Further 

downstream, parts of the fluctuation energy from the wheel housings are 

transferred to the z-component and y-component. The structures are of the same 

size as the vehicle tail height, similar to modes three and five, but they are 

smaller in the z-component, which is again connected to the slightly higher 

frequency of oscillation. 

Considering further memory savings in STDMD, three different maximum 

rank settings and one even coarser sampling grid are evaluated. Upon reducing 

the maximum rank, the resulting ROM can only partially describe the original 

data set and the performance loss increases, as seen in Table 4. For the 

coarsestMesh STDMD computation, the number of cells is reduced by a factor 

of eight, leading to a drastic decay in execution time. The coarseMesh and 

coarsestMesh STDMD ROM have similar performance losses. The highest CPU 
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time usage is for the rmax=600 case, due to the expensive compression stages with 

600 columns of the orthogonal matrix. Somewhere in between, the excessive cost 

for compressing large orthogonal matrices evens out with the decrease in 

computational cost for the CGSI process, where only rmax columns need to be 

considered for orthonormalization of new incoming augmented snapshots. The 

rmax=200 case, which is computationally only half as expensive as the full rank 

run, cannot extract the same flow field structures from the full rank case, and 

the performance loss deteriorates to almost the level of the mean flow 

performance loss. 

rmax DMD mesh 
Execution time  

[CPU hours] 
Πloss [%] 

  coarseMesh 82 1.1·10-8 

600 coarseMesh 87 5.31 

400 coarseMesh 71 7.2 

200 coarseMesh 40 10.6 

  coarsestMesh 9 1.0·10-8 

    
Table 4: Execution times and performance loss parameters for 
computation of STDMD using different maximum rank settings and 
interpolation grids. 

Figure 47 shows the STDMD frequency spectra of the executed STDMD runs. 

Due to the eigenvalue decomposition-based online compression for the maximum 

rank settings, high frequency content is reduced. The maximum rank cases with 

rmax=600 and rmax=400 can still extract the most dominant structures in the 

lower-frequency range. The spatial distribution of the resulting modes is also well 

captured, comparable to the full rank decomposition. The higher-frequency 

content is reduced in amplitude, and peaks disappear as the maximum rank is 

reduced. The coarsestMesh case allows for very fast computation of STDMD 

modes and only slightly reduces high-frequency content. Overall, the magnitude 

of amplitudes is reduced, which is expected from an interpolation to a grid that 

is twice as coarse, but the locations are maintained for all the most dominant 

peaks discussed for the coarseMesh data set. If the flow field structures to be 

analyzed and their detachment positions on the surface are sufficiently visible, it 

is advisable to choose an interpolation grid as coarse as possible. This leads to 

lower STDMD execution times, lower mode storage cost and faster visualizations 

with smoother iso-surfaces. 
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Figure 47: STDMD frequency spectra results using different memory-
saving measures. Maximum rank settings of rmax=600, rmax=400 and 
rmax=200 are compared to the full rank decomposition (top). STDMD 

spectra for data interpolated to an even coarser grid (“coarsestMesh”) 

with a cell size of ∆x=2·10-2·LwheelBase is shown for comparison (bottom). 

The DMD modes presented here show drastically less complex flow 

phenomena, which can be tracked through the flow field, and allow respective 

source mechanisms to be identified and distinguished. Different modes show 

changing convection paths and interactions in the wake. There is a clear tendency 

toward larger structures for lower frequencies. Synchronization of shedding 

mechanisms from the wheels and the wheel house regions appears to affect 

multiple modes. Additional modes can be assigned to dominant vortex-shedding 

phenomena related to the tail height of the vehicle, but none of the first 20 

dominant modes is related to the vehicle length. The possibility to reconstruct 

periods of oscillations instead of the entire sampled period adds to the usefulness 

and seamless comprehensibility of DMD modes. Additionally, DMD mode 

reconstruction can be obtained by reconstruction of interpolated time steps using 

non-decimal powers of the complex eigenvalues so that smooth reconstructions 

can be obtained even for high-frequency modes. 
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4 Conclusion and Outlook 

4.1 Conclusion 

ROM strategies for vehicle aerodynamics simulations are developed and 

implemented in a workflow applicable to large CFD meshes with many time 

steps, which often equates to significant memory and computational resource 

needs. Analyzing properties of the various modeling methods, however, leads to 

the conclusion that incremental algorithms with low memory requirements, such 

as the new STDMD variant described in this work, can produce meaningful 

results. Additionally, the possibility to execute the algorithm during the 

simulation saves HDD writing and reading times because flow field data does not 

need to be stored. The investigated measures for pre-processing the data and 

minimum sampling requirements ensure applicability in an industrial 

environment, in which the cost for such an advanced flow field analysis needs to 

remain lower than for the flow field solver itself. 

While FFT can be used to compute the frequency spectrum in each cell for 

bluff body vortex shedding, the resulting spectrum does not yield results 

comparable to POD or DMD. In contrast to those methods, windowed FFT 

cannot extract spatial structures, retain phase information or reconstruct single 

modes in a direct or simple way. POD, however, extracts energetically dominant 

mode pairs and can be applied to simulated results from vehicle aerodynamics. 

The convergence properties of the incremental variant of POD regarding an 

energy-based norm are proven the most reliable. Also, the data for POD 

processing does not need to be filtered in any way for this method to generate 

an ROM and, therefore, yields robust performance in the presence of noise. For 

the complex flow around a vehicle, creation of a reasonable ROM requires a large 

number of modes, so the data compression factors are not striking compared to 

directly storing the raw data. The broad frequency range content of leading POD 

modes also produces significantly more complex reconstructed flow fields from 

mode pairs that are not as well understood as the modes computed by DMD. 

Reconstruction of a single POD does not lead to any additional insight into its 

temporal evolution since it represents stationary oscillations (i.e., no convective 

transport of structures is observed, and an excitation mechanism source can 

hardly be identified). Due to the single frequency and complex number nature of 

DMD modes, their single mode reconstruction can usually be interpreted as a 

vortex-shedding mechanism. This mechanism can be either assigned to a specific 

part of the vehicle or used to visualize dynamic instabilities in the wake of a 

vehicle that are resulting from shear layer instabilities or other phenomena in the 

recirculation region of the bluff body wake. A highly complex turbulent flow field 

with separation at a wide range of length and time scales can be narrowed down 

to globally dominant DMD modes, which as a result can be analyzed 

independently. Due to its periodic nature, the reconstruction of a mode for one 

period of oscillation is sufficient.  
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The variant of STDMD introduced here does not require inversion of the full 

DMD mode matrix for amplitude evaluation and, as a result, requires less 

computational resources and allows for a priori mode selection by relevance and 

frequency before the actual modes are evaluated. This leads to drastic memory 

savings. Even though the augmented snapshot approach increases the robustness 

of the method in the presence of noise, the new STDMD method requires more 

thoughts on data pre-processing, sampling interval and sampling frequency in 

comparison to POD and FFT. 

The new method uncovers insights into the dominant flow features of vehicle 

aerodynamics and facilitates a better understanding of simulated flow field 

processes. The absence of overlapping structures of different length and time 

scales leads to significant improvement in visibility of the dominant structures. 

Bluff body vortex-shedding processes are identified and can be assigned to 

characteristic length scales of the vehicle geometry. 

The research on globally dominant vortex-shedding processes in the flow field 

around the DrivAer body stimulates the development of geometrical 

modifications that influence structures in specific modes. Those modifications can 

reduce drag and possibly result in less excitation of acoustic phenomena. 

Following these findings, three modifications validated in the TUM WKA and 

CFD simulations were submitted to the German Patent and Trade Mark Office 

(Deutsches Patent- und Markenamt). By close resemblance of the DrivAer model 

with actual production cars, the invented parts can be implemented in real-world 

applications, leading to innovative advances in vehicle aerodynamics. 

4.2 Outlook 

Clear identification of the excitation mechanism is often impossible in very low-

frequency structures. In such cases, one could apply causality analysis methods 

to investigate which modes are inducing other modes (i.e., redistributing energy 

between scales). That shows connection between modes from different frequency 

ranges and helps explain complex structure-structure interactions. Granger 

causality analysis [84] could be employed for such investigations as proposed by 

Tissot et al. [85]. 

The size of structures in the wake of vehicles is heavily dependent on the 

phase of modes that are shed. Using the phase and frequency information from 

DMD modes, one can identify locations and frequencies at which active flow 

control is beneficial for drag reduction. Multiple successful studies on such 

approaches have been conducted by Wieser et al. [86] on the DrivAer body using 

fluidic oscillators. As an extension to active flow control at fixed frequencies, 

closed-loop feedback flow control is a promising approach for reducing drag with 

minimal excitation energies. Nisugi et al. [87] have tested such an approach on 

another generic vehicle geometry observing drastic drag reductions. Pastoor et 

al. [83] further investigated the underlying mechanisms of drag reduction from 

feedback shear layer control on a simplified bluff body. These findings should be 

further researched and investigated with specific modal analysis results to 
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develop suitable active flow control drag reduction tools for realistic vehicle 

geometry. 

Most of the existing research focuses on flow field analysis based on temporal 

snapshots of the flow field. One alternative way of defining snapshots is the 

accumulation of temporal information of single x-plane slices through the flow 

field in the vehicle wake into one snapshot, allowing construction of a full 

snapshot matrix from consecutive slices located downstream. The received modes 

return information about the spatial evolution of the bluff body wake in terms 

of spatial wavelengths instead of temporal DMD frequencies. Due to a strong 

connection between spatial and temporal frequencies in turbulent flow, the 

resulting modes could complement the temporal snapshot matrix-based results. 

Another critical application of modal analysis for vehicle aerodynamics 

engineering is the evaluation of DMD modes for aeroacoustics. Often, little-

understood aeroacoustics phenomena, which emerge from the underbody or the 

side window of a vehicle, are eradicated by passive acoustic damping measures 

to ensure acoustic comfort. Once the main drivers for those oscillations are well 

understood, and geometrical modifications are identified to suppress the 

underlying excitation mechanism, aeroacoustics engineering will shift away from 

acoustic damping concepts and toward acoustic source management. These 

studies could benefit from the exact band-pass frequency filtering property of 

DMD, which permits analysis of structures and their excitation mechanisms for 

specific frequency ranges. 

On the method development side of STDMD-based modal analysis, future 

work could benefit from the treatment of degenerate modes. Performance loss 

convergence could be improved by taking into account the orthogonality of a 

mode with respect to other modes and degradation of degenerate or near to 

degenerate modes in the mode ordering method. Phase information of all highly 

active cells in the respective modes could be taken into account to find 

problematic modes that are in anti-phase, canceling out each other. For treating 

problematic modes, a strategy to reorthogonalize degenerate modes before 

amplitude computation could be implemented. 

For a better ROM approximation of the flow field, DMD ROMs could be 

drastically improved for low-rank ROM using optimization techniques known 

from sparsity-promoting algorithms. That could be achieved with acceptable 

computational effort using sparse in time and space data sampling, which 

requires storing a sparse subset of the snapshot matrix in memory. From this 

sparse data set, one could construct a sparse version of the optimization problem 

(95) and solve for real and imaginary parts of the amplitudes and possibly 

eigenvalues to obtain better ROM approximation with a given ROM rank. As 

starting criteria for the optimization solver, conventionally computed amplitudes 

and eigenvalues could be used. 
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Appendix 
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A. Reconstructions of Incremental POD Modes 

 
Figure 48: First oscillating POD mode pair. Iso-surfaces of the 
reconstructed first time step of a combination of POD mode two and 

mode three. Top: x-component iso-surface ux=±1.1m/s. Middle: 

y-component iso-surface uy=±1.2m/s. Bottom: z-component iso-surface 

uz=±0.8m/s. 
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Figure 49: Second oscillating POD mode pair. Iso-surfaces of the 
reconstructed first time step of a combination of POD mode four and 

mode five. Top: x-component iso-surface ux=±1.4m/s. Middle: 

y-component iso-surface uy=±1.2m/s. Bottom: z-component iso-surface 

uz=±1.2m/s. 
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B. Reconstructions of Streaming Total DMD Modes 

 
Figure 50: Mode two from the STDMD spectrum at St2=4.58 and 
f2=185Hz. Iso-surfaces of the reconstructed first time step. Top: 

x-component iso-surface ux=±12.9m/s. Middle: y-component iso-surface 

uy=±13.8m/s. Bottom: z-component iso-surface uz=±12.6m/s. 
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Figure 51: Mode eight from the STDMD spectrum at St8=7.4 and 
f8=296Hz. Iso-surfaces of the reconstructed first time step. Top: 

x-component iso-surface ux=±10.7m/s. Middle: y-component iso-surface 

uy=±11.5m/s. Bottom: z-component iso-surface uz=±11.2m/s. 
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Figure 52: Mode three from the STDMD spectrum at St3=0.72 and 
f3=29Hz. Iso-surfaces of the reconstructed first time step. Top: 

x-component iso-surface ux=±7.4m/s. Middle: y-component iso-surface 

uy=±4.8m/s. Bottom: z-component iso-surface uz=±5.7m/s. 
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Figure 53: Mode seven from the STDMD spectrum at St7=0.99 and 
f7=40Hz. Iso-surfaces of the reconstructed first time step. Left: 

x-component iso-surface ux=±14.0m/s. Middle: y-component iso-surface 

uy=±11.0m/s. Right: z-component iso-surface uz=±10.5m/s. 
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Figure 54: Mode 15 from the STDMD spectrum at St15=2.68 and 
f15=108Hz. Iso-surfaces of the reconstructed first time step. Left: 

x-component iso-surface ux=±9.5m/s. Middle: y-component iso-surface 

uy=±9.7m/s. Right: z-component iso-surface uz=±8.8m/s. 
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Figure 55: Mode 16 from the STDMD spectrum at St16=1.18 and 
f15=48Hz. Iso-surfaces of the reconstructed first time step. Left: 

x-component iso-surface ux=±4.1m/s. Middle: y-component iso-surface 

uy=±3.9m/s. Right: z-component iso-surface uz=±3.4m/s. 
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