
FAKULTÄT FÜR INFORMATIK

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN
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Abstract

ls1-mardyn is a molecular dynamics code specialized in simulations of
very large scale of up to 4.125 × 1012 particles [EHB+13]. Although the
established approach for its force calculation, which is using coloring and
OpenMP loop parallelization, proves to be very efficient, it still leaves potential
for optimization because of its use of barriers. A promising method to replace
these barriers are task-based scheduling concepts due to their higher flexibility
and finer granularity. As such a library, the highly dynamic Quicksched code
[GCS16] has here been used for implementing task-based shared-memory
parallelization approaches for the force calculations in ls1-mardyn. Their
performance has been tested on an Intel Xeon Phi Knights Corner accelerator
and is compared to established approaches that use domain coloring and
OpenMP loop parallelization. When directly comparing the results it is
hard to beat the efficiency of the highly optimized established approaches.
Yet, through an in-depth analysis of the scheduling, possible performance
potentials can be identified and shown to be exploited by the task-based
approaches. However, task-based approaches introduce new challenges of their
own. These are analyzed and discussed and possible solutions are proposed.
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1 Introduction

Molecular Dynamics Simulations are extremely useful tools in for example the fields of
molecular biology [KDFB04], thermodynamics [DES+11], chemistry [vGB90], or material
studies [Bin95] for analyzing and predicting properties and processes on a molecular level.
Since molecular dynamics simulations are N -Body problems, which means that in theory
each particle interacts with every other particle, the majority of their runtime is spent
calculating these interactions, thus rendering them highly computational intensive. Fortu-
nately, these interaction calculations are independent per time step and can therefore be
parallelized. However, in order not to overwrite results, no two calculations involving the
same particle can happen at the same time, which would introduce a race condition. This
is why parallelization schemes or algorithms are needed to ensure maximum parallelism,
while at the same time ruling out any race conditions. For this, two possible approaches
are either classical loop parallelization via OpenMP or task-based approaches, which
describe the program as a set of tasks, possibly with dependencies among them and then
efficiently schedule them over the available computing resources.
Although comparatively easy to implement, the drawback of OpenMP loop parallelization
is that to avoid race conditions, the domain needs to be partitioned into so called colors.
Work within one color can be executed completely in parallel, the colors themselves
however need to be executed sequentially. This introduces barriers at which some threads
will be waiting, rendering this kind of approaches not optimal. A task-based approach
can avoid these idle times by dynamically distributing small tasks with few dependencies
over all available threads and reassigning them when idle threads are detected.
The goal of this paper is to introduce task-based parallelization approaches for the force
calculation in the large systems 1: molecular dynamics (ls1-mardyn) code by using the
Quicksched library. The approaches will be analyzed and compared to the established
approach that uses OpenMP loop parallelization [TWG+15] and another version using
OpenMP 4.5 ’s explicit tasks. We are aiming to determine the potential of such approaches
and their pitfalls to decide on which aspects future work has to focus.

2 Quicksched

2.1 Overview

Quicksched1 is a library for tasks-based parallelism for shared-memory applications.
It was developed by Pedro Gonnet2,3, Aidan B.G. Chalk2, and Matthieu Schaller4.
They also work on SPH With Inter-dependent Fine-grained Tasking (SWIFT)5, which is
an open-source astrophysics simulation by the Institute for Computational Cosmology

1https://gitlab.cosma.dur.ac.uk/swift/quicksched
2School of Engineering and Computing Sciences, Durham University, United Kingdom.
3Google Switzerland GmbH, Zürich, Switzerland.
4Institute for Computational Cosmology, Durham University, United Kingdom.
5http://icc.dur.ac.uk/swift
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(ICC)6 and the Institute of Advanced Research Computing (IARC)7 at the University of
Durham.
The library is written in C and with roughly 3000 lines of code very compact. For the
underlying threading mechanism either OpenMP or POSIX Threads (Pthreads) can be
used. When compiled with support of both of them, this decision can even be made at
runtime. For the experiments in this paper the OpenMP variant was used. Quicksched
also supports tasks being dependent on or mutually exclusive to other tasks and tasks
being dependent on a shared resource. Especially the possibility to create tasks that
must not run concurrently, but whose order of execution is irrelevant, makes this library
more flexible than for example tasks provided by the current OpenMP version 4.58.
Additionally, resources can be organized in a hierarchy to support multilevel locks.
For further details about Quicksched the interested reader can consult [GCS16].

2.2 Components

To establish a better understanding of the inner workings of Quicksched its core compo-
nents, meaning the most important structs and functions, shall be discussed.

2.2.1 Data Structures

Figure 1: Main data structures of Quicksched and their essential informations.

Resources
Resources are used to grant exclusive access to certain objects. Therefore they have a
lock field, indicating whether or not the resource is locked.
Since resources also support a hierarchical structure they also hold information on how
to identify their parent resource.

Tasks
A task holds information on its dependencies. This is realized by every task knowing how
many tasks it is dependent on and other tasks knowing which task they unlock. Similarly,
each task has an array of pointers to resources it intends to lock. The task can only be
executed when all dependencies are resolved and all resource locks could be obtained.
This results in the tasks being able to be represented in a directed acyclic graph.
What a task actually does is determined by an integer type and the runner() function

6http://icc.dur.ac.uk
7https://www.dur.ac.uk/iarc
8http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
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mentioned in paragraph runner in Section 2.2.2.
Furthermore, a task can be assigned a cost. From these costs the weight of a task is
calculated taking dependencies into account:

weighti = costi + max
j∈unlocksi

{weightj} (1)

By adding the weight of the heaviest dependent task, this models the costs along the
application’s critical path of execution. Therefore, these weights are used as further
information for optimizing the scheduling process, so that more critical tasks can be
started earlier.

Task 1
r1,r2,r5,r6

r1 r2 r3 r4

r5 r6 r7 r8

r9 r10 r11 r12

r13 r14 r15 r16

Task 4
r5,r6,r9,r10

Task 5
r6,r7,r10,r11

Task 3
r3,r4,r7,r8

Task 8
r10,r11,r14,r15

Task 2
r2,r3,r6,r7

Task 7
r9,r10,r13,r14

Task 6
r7,r8,r11,r12

Task 9
r11,r12,r15,r16

Queue 1

Queue 2

Queue 3

Figure 2: Left: Domain divided into resources. Colors indicate tasks and which resources
they require.
Right: Tasks distributed over queues.

Queues
Every thread has a queue that is filled with task IDs. Only so called ready tasks are put
into queues. These are tasks whose task dependencies are resolved, but their required
resources are not necessarily available yet. This is depicted in figure 2 where on the
left side, is a set of resources r that are required by tasks, which are represented as
colored squares. The resources touched by the colored square are the required ones, like
for example the red task requiring the resources r2, r3, r6 and r7. These tasks, since
they depend on no other tasks, are then immediately distributed over the queues 1 to 3
depicted on the right side of the figure.
An important aspect is the ordering of tasks inside of a queue. Optimally, they would
be sorted strictly in a descending order according to their weights to primarily follow
the application’s critical path of execution. However, for n tasks this would require at
least O(n) operations for insertion and deletion, which are crucial for maintaining the
structure. For Quicksched it was decided to organize the queue as a max-heap. Thereby,
every k-th element’s costs are larger than the 2k + 1-st and 2k + 2-nd. As a consequence,
the costs for maintaining the structure are reduced to O(log n) at the expense of the
strict ordering, since there is no efficient way of traversing the heap in exactly descending
order. It can only be guaranteed that the k-th task has larger weight than at least bnk c−1
other tasks. This bound is not very good in theory, but according to [GCS16], it ”[...]
turns out to be quite sufficient in practice”.
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Scheduler
Tasks and resources need to be registered to the scheduler. Queues are created upon
the instantiation of the scheduler, which makes it the user’s primary point of interaction
with Quicksched.
The general idea is to describe to the scheduler what to do by filling it with tasks,
resources, and dependencies and then letting it execute everything by invoking a single
function which is described in Section 2.2.2.

2.2.2 Important Functions

qsched run()
qsched_run() is the aforementioned function to invoke the scheduler and let it execute
everything. As can be seen in Figure 3 line 4 it starts an OpenMP region with the given
number of threads. Every thread then goes into a loop fetching tasks until there are none
left. The tasks are executed in line 9 through a runner function, that needs to be passed
as an argument to qsched_run() (see line 3).

1 void qsched run ( qsched ∗ s ,
2 int numThreads ,
3 void (∗ qsched funtype ) ( int , void ∗) runner ) {
4 #pragma omp paral le l num threads ( numThreads )
5 {
6 int qid = omp get thread num ( ) % s−>nr queues ;
7 struct task ∗ t ;
8 while ( ( t = qsched ge t ta sk ( s , q id ) ) != NULL) {
9 runner ( t−>type , t−>data ) ;

10 }
11 }
12 }

Figure 3: Short excerpt of qsched run()

runner()
The runner() function is not part of the library but needs to be implemented by the
user, since it defines which tasks should exist and what they do. For compatibility, the
signature obviously needs to be adhered to. The function takes an integer type used
to indicate the type of the task and a void pointer data to pass arbitrary data. This
second argument can be thought of as a way of passing arbitrary function arguments to
the task itself.
In the runner() function itself typically a switch case statement is used to identify the
current task according to the passed value of type, as can be seen in Figure 4.
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1 void runner ( int type , void ∗data ) {
2 switch ( type )
3 case taskType1 :
4 // do s t u f f
5 case taskType2 :
6 // do other s t u f f
7 }

Figure 4: General form of a typical runner() function

qsched gettask()
The qsched_gettask() function is responsible for fetching tasks from the thread’s queue.
This is done through queue_get() in line 3 of Figure 5, which loops over the max-heap
and tries to find the most expensive task for which all resource locks can be acquired.
If no task could be fetched, a randomly chosen other queue is queried. This process
is called work-stealing. For example in Figure 2 the thread working on queue 2 might
finish first, and then tries to steal a task from the other queues since they could still
have unprocessed tasks. It should be noted that choosing the queue randomly can lead
to very bad performance on unbalanced queues and larger numbers of queues as will be
seen in Section 5.3.
Should there be no task fetched, qsched_gettask() loops in a busy waiting manner
through the while loop in line 2 until either a task is found or there are no waiting tasks
left.

1 struct task ∗ qsched ge t ta sk ( struct qsched ∗ s , int qid ) {
2 while ( s−>wait ing ) {
3 t i d = queue get (&s−>queues [ q id ] , s , 1) ;
4 i f ( t i d < 0)
5 // s t e a l from random other queue
6 else
7 return &s−>ta sk s [ t i d ] ;
8 }
9 return NULL;

10 }

Figure 5: Short excerpt of qsched gettask()

2.3 Benchmark Performance

Bundled with the source code of the library there come two benchmarks, a tiled QR
decomposition and a Barnes-Hut simulation [GCS16]. Since ls1-mardyn is a molecular
dynamics simulation, the Barnes-Hut benchmark fits our scenario best because both
concern n-body interactions.
A Barnes-Hut simulation approximates the solution of a n-body problem, which means
computing all pairwise interactions of n particles in a given domain. This naively
requires O(n2) operations. By recursively subdividing the domain through an octree
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decomposition and only looking at aggregates of distant cells instead of all, the number
of computations can be reduced to be in O(n log n). A more in depth explanation and
details of implementation can be found in [GCS16]. The benchmark was performed on a
Intel Xeon Phi 5110P (Knights Corner) with 60 Cores at 1.05 GHz at the SuperMIC
cluster at the LRZ9. The simulation contained 1.000.000 particles. Every marker in
Figure 6 represents a measurement, the connecting lines are for increased visibility of
trends.
Up until 60 threads a linear speedup can be observed with a parallel efficiency of more
than 90%. As soon as the 60 thread mark is crossed and hyperthreading is used only
marginal performance gains are achieved. This however is expected since all tasks use the
same components of the CPU, namely the floating-point unit (FPU). Since the here used
Knights Corner generation only has one FPU per core there are no further computing
resources available for more than one thread.

1

2

4

8

16

32

64

128

256

1 4 16 64 256

Barnes-Hut

Threads on: Xeon Phi 5110P (60x 1.05GHz)

Speedup

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1 4 16 64 256

Barnes-Hut

Efficiency

5.4e+08

1.1e+09

2.1e+09

4.3e+09

8.6e+09

1.7e+10

3.4e+10

6.9e+10

1 4 16 64 256

Barnes-Hut

Seconds

.

Figure 6: Quicksched Barnes-Hut benchmark with 1.000.000 particles on SuperMIC

3 Molecular Dynamics via ls1-mardyn

3.1 Overview

Large systems 1: molecular dynamics (ls1-mardyn)10 is a molecular simulation specialized
for very large numbers of rigid, multi-centered molecules of up to 4.125× 1012 [EHB+13].
The code is optimized for massively parallel execution on supercomputers, written in
C++, and publicly available as free software under a BSD license [NBB+14]. It is
currently developed by the High Performance Computing Center Stuttgart (HLRS)11 at
the University of Stuttgart, the Laboratory for Engineering Thermodynamics (LTD)12 at

9https://www.lrz.de/services/compute/supermuc/supermic
10http://www.ls1-mardyn.de
11http://www.hlrs.de/home
12http://thermo.mv.uni-kl.de
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the University of Kaiserslautern, the chair for Scientific Computing in Computer Science
(SCCS)13 at Technische Universität München and the chair for Thermodynamics and
Energy Technology (ThEt)14 at the University of Paderborn.

3.2 Linked-Cell Algorithm

3.2.1 Force Calculation

In every time step the interactions between all pairs of particles need to be calculated.
These interactions are modeled by the Lennard-Jones Potential, which can be used to
approximate forces between uncharged atoms or molecules [LJ31]. Particles that are
located close to each other experience a strong repulsive force while further separated
particles experience a weak attractive force. This is illustrated in the force profile depicted
in Figure 7.

Figure 7: Profile of the Lennard-Jones Potential
Source: http://atomsinmotion.com/book/chapter5/md (accessed: 20.03.2017)

Figure 8: Cutoff radius around a molecule
(red circle). Only blue
molecules are considered for
force calculation.
Source: [TWG+15]

Figure 9: Interactions between multi-
centered molecules. Blue discs
represent Lennard-Jones cen-
ters, dashed arrows interac-
tions.

13https://www5.in.tum.de
14http://thet.uni-paderborn.de
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It can also be seen that with increasing distance between the particles the force converges
to zero. Therefore it is reasonable to introduce a cutoff radius beyond which further
particles are ignored as can be seen in Figure 8. As a result the number of computations
is reduced significantly to O(n). This technique is an essential part of the Linked Cell
Algorithm. [GKZ07] [RBM+96]
Furthermore, molecules can possess multiple so called Lennard-Jones centers, which are
the point in the molecule from where the Lennard-Jones potential is calculated. The
interactions between molecules with two centers are depicted in Figure 9. Every center of
the first molecule interacts with all centers of the second. For m Lennard-Jones centers
per molecule this raises the number of calculations to O(nm). Since ls1-mardyn is only
applicable for rigid molecules, the Lennard-Jones centers within one molecule stay in the
same place relative to the molecule and do not interact with each other.
Newton’s third law of motion states that for the sum of all forces between two objects
there exists an equal force in the opposite direction. Thereby, we know that the force
exerted on particle i through particle j is the negative of the force on particle j induced
by particle i:

Fi,j = −Fj,i (2)

This relation can be used to reduce the number of calculations by roughly a factor of
1
2 , and is hence a very important optimization. However, it introduces potential race
conditions as two molecules in neighboring cells can be updated simultaneously.

3.2.2 Segmentation of the Domain

To be able to parallelize a simulation it is necessary to discretize it and spread the different
parts over the available processors. A very straightforward approach is to decompose the
domain in blocks or cells of uniform size.
Cells at the edge of the domain which do not have all eight neighbors are called halo
cells and are depicted blue in Figure 10 and 11. For these cells it is not relevant to
calculate all interactions since they act as boundary of the domain and thereby their
state is determined in a different manner, which is not of interest for this paper. Only
interactions with non-halo cells are relevant.

Figure 10: Dependencies of a single cell
in 2D.

Figure 11: Compact solving incorporat-
ing Newton’s third law of mo-
tion.
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The edge length of cells should be at least as long as the cutoff radius introduced in
Section 3.2.1. Thereby, a particle in one cell can at maximum interact with particles
in all directly surrounding cells like in Figure 10. However, when using this pattern,
the calculation step for each cell would block access to nine cells since overlapping
computations could overwrite each other. Therefore, one can change the pattern for cell
6 to a more compact form as can be seen in Figure 11 and impose it on cells 5, 6, 7, 9,
10, 11 to cover the whole domain. This pattern only blocks four cells, and also covers
interactions in both directions by using the optimization through Newton’s third law of
motion as seen in Equation 2. Through this, the number of computations can be reduced
by a factor of 1

2 .
In a three-dimensional domain, the naive approach blocks 27 while the compact blocks
only eight cells, which is visualized in Figure 12.

Figure 12: Left: dependencies of a single cell (cell 14) in 3D.
Right: compact pattern for cell 14 in 3D.

3.2.3 Established Approach c08

In [TWG+15] an approach was developed exploiting the schemes described in 3.2.2, and
using OpenMP loop parallelization. Here the scheduling kind dynamic15 is used with
a chunk size of one. Since no two calculations on one cell must happen in parallel the
calculations were colored in a checkerboard style manner as can be seen in Figure 13.
Since this approach uses eight colors in 3D it is called c08.

15https://software.intel.com/en-us/articles/openmp-loop-scheduling
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Figure 13: Coloring scheme c08 for
OpenMP loop parallelization.

Figure 14: Scheme qui8 for task-based
parallelization.

4 Task-based Approaches for Force Calculation

4.1 qui8

The first tested scheme is based on the c08 approach. Every closed color region will serve
as one task. This results in tasks like in Figure 14. For a small domain like this six tasks
would be generated. The tasks overlap, for example task number two would cover cells 2,
3, 6 and 7. This means it cannot be executed in parallel to other tasks using any of these
cells. Nevertheless, the order in which the tasks are executed is irrelevant. Therefore, in
Quicksched terms, every cell is a resource that needs to be locked.

4.2 taskc08

For comparison a scheme is used that is not using Quicksched but the explicit task
functionalities of OpenMP 4.5. The grouping of calculations to tasks is realized in the
same manner as qui8. However, since OpenMP 4.5 does not support dynamic ordering
of tasks that cannot be executed at the same time, the same coloring scheme as in c08 is
needed. Therefore this approach is called taskc08.
The tasks are ordered by a system of flag passing and order of generation. Tasks can
be configured to wait to start until they can exclusively pick up predefined flags, or to
hand out flags upon finishing. Here, every cell represents such a flag. Also in contrast to
Quicksched, tasks are immediately executed as soon as they are generated.

4.3 qui1

The most fine-grained approach is to see every arrow from Figure 13 as a single task.
Thereby only two cells per task are locked but 14 times as many tasks as qui8 are
produced in 3D. This approach shall be called qui1.

11



4.4 qui adj n

The last approach presented builds upon the qui8 approach but adds more flexibility. A
task is still a cube of cells but here the edge length, or number of cells per dimension,
which will be called n, is variable. This approach is called quicksched adjustable n (short:
qui adj n). Since tasks need to overlap by one cell to cover all computations of the domain
there needs to be an offset of n− 2 between task k and k + 2. Task k + 1 will stretch
from the last column of task k to the first of k + 2. These offsets are the same for each
dimension. All calculations within a task are executed in serial, so no race conditions
can occur. An example for n = 3 can be observed in Figure 15.

Figure 15: Scheme qui adj n for n = 3. The four areas of the graphic show which tasks
can be executed in parallel.

This approach reduces the number of tasks, increases the computational costs, and
thereby reduces the pressure on the scheduler. It can also be seen that locking becomes
an increasing obstacle to parallelism. While in Figure 15 task 5 is running, no other task
can be allowed to run, and thereby for example the calculations between cells 1, 2, 8 and
9 (circled in red) cannot be executed although they are not affected.
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4.5 Task Weighting

As mentioned in Section 2.2.1, tasks can be weighted to improve their ordering in queues.
It is reasonable to assume that a higher concentration of molecules correlates with higher
computational costs per task.
ls1-mardyn includes a calculator for the number of floating point operations (FLOPs)
needed to compute the Lennard-Jones potential between all particles of two cells. The
number of operations depends on the number of particles in each cell as well as the
number of Lennard-Jones Centers per molecule (= points in a molecule from which the
potential needs to be calculated). The sum of the FLOP counts between all particle is
used as the cost value of the task.
The resulting distribution of costs over the domain is shown in Figure 17 for a molecule
distribution seen in Figure 16. The used tasking scheme here is qui8, which results in
20× 20× 20 = 8000 tasks containing a total of 40.000 particles.

Figure 16: Distribution of molecules in
the lj40000-t300 experiment.
Darker red means more
molecules.

Figure 17: Calculated task costs. Darker
red means higher costs.

It can be observed that the overall patterns between the figures are very similar, with the
cost pattern appearing a little bit fainter. This can be explained by the cells lying on the
outer region of an area of high particle count having reduced computational costs since
they also interact with cells that contain barley any molecules. Since a task consists of
eight cells, the task id and thereby its costs are saved in the frontal lower right cell. This
results in a slight shift in between the two figures.

5 Results

5.1 Experimental Setup

In order to evaluate the performance of the approaches described in Section 4 , two
scenarios are of particular interest.
The first one is a larger domain filled with 1.317.006 equally distributed particles with
four Lennard-Jones centers. It is divided in 42 × 42 × 42 = 74088 cells, including the
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halo area. This scenario will be called Aceton RC3.
The second scenario is the in Section 4.5 shown heterogeneous scenario. Here the domain
is smaller with 21× 21× 21 = 9261 cells including halo filled with 40.000 particles with
one Lennard-Jones center. This scenario will be called LJ40000-T300.
Its size makes the first scenario much more CPU-intensive since it contains almost 33
times as many particles in a domain that has only eight times as many cells. Also, the
heterogeneous distribution in the second scenario introduces huge load imbalances. For
this reason we focus primarily on LJ40000-T300, as it is more difficult to parallelize
efficiently.

5.2 Strong-scaling

For both scenarios described in Section 5.1 strong-scaling experiments from one to 240
threads were conducted on the same 60 core Knights Corner cards that were described
in Section 2.3. The results can be observed in figures 18 and 19, where the established
approach c08 is used as a reference base for the scaling.
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Figure 18: Strongscaling of homogeneous scenario on SuperMIC.
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Figure 19: Strongscaling of heterogeneous scenario on SuperMIC.

When taking a look at the OpenMP explicit task approach taskc08, no speedup beyond 8
cores can be observed in neither scenario, probably due to the rigid structure of OpenMP’s
tasks as explained in Section 4.2. Not only are the Quicksched approaches faster but also
demonstrate significantly better scaling capabilities in both scenarios.
Analyzing the first homogeneous scenario it can be seen that the approach qui8 is only
marginally slower than the almost perfectly scaling c08 approach up to 60 cores. The
very fine grained approach qui1 is significantly slower on all thread counts and also scales
much worse with serious efficiency drops starting already at eight threads. This might be
due to the approach being too fine grained and thereby generating too many tasks to
handle.
When using more threads than cores for both Quicksched approaches, no real performance
gains can be achieved or even losses are measured. This, however, is in agreement
with expectations drawn from the benchmark performance seen in Section 2.3 where
hyperthreading also resulted in only minor performance gains.
Therefore, further analysis is dedicated to the heterogeneous scenario LJ40000-T300 at
60 threads in order to understand where Quicksched loses performance.
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Figure 20: Strongscaling of heterogeneous scenario on SuperMIC with qui adj n.

By applying the approach qui adj n, that was explained in Section 4.4, for different n, the
influence of the size of a task can be evaluated. The measurements for n from two to five
are presented in Figure 20, where n = 2 is equivalent to the qui8 approach. Performance
with n = 3 is slightly better, which seems to indicate that the computational intensity of
tasks previously was too small.
With further growing size of tasks once again the performance drops. This is probably
due to a too coarse granularity where too many cells are blocked resulting in idle processor
cores. For example, for n = 5 only 125 tasks are generated for 60 threads, so there are
only approximately two tasks per core.

5.3 Scheduling Timings

In order to gain more insight into the results of the scheduling process a closer look shall
be taken on how many cycles each core spends on force calculations. The horizontal bars
in Figures 21 to 26 represent the cycles of each processor, with colored bars signifying
cycles spent on force calculations. To increase distinguishability, the colors of succeeding
tasks are alternating horizontally between blue and orange. The colors themselves have no
special meaning. White space signifies anything but force calculation, mainly scheduling
activity or idle time at barriers. Also, in the left graphs between every time step some
cycles in the white space are used for inter-time step activities like for example updates
to positions and speed or thermostats.

16



Ten time steps on Xeon Phi using
different scheduling schemes.
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Figure 21: c08
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Figure 22: qui8
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Figure 23: qui1
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Figure 24: qui adj 3
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Figure 25: qui adj 5
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Figure 26: Taskc08

The left Figures 21 to 26 show the timings for ten time steps of the LJ40000-T300
scenario. In Figure 22 it can be seen that the time steps in the qui8 run are almost three
times further apart than with the reference approach c08, which is shown in Figure 21.
This observation matches the approximately three times slower execution times for 60
threads shown in Figure 19.
The right Figures 21 to 26 are zoomed-in on the third time step marked red in the
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respective Figures to analyze the scheduling activity of both approaches on a more fine
grained scale.
In Figure 21, which visualizes the c08 run, the eight OpenMP barriers of the coloring
algorithm are clearly visible. It can also be observed that larger tasks are not prioritized
and thereby the distribution of smaller tasks leaves room for optimization.
The same can be said for taskc08, seen in Figure 26 however this approach even fails to
actually use all processors at once. This could be due to the reason of how the tasks are
generated or the scheduler using a non-optimal way of finding tasks that are ready to be
executed.
Figure 22 shows that Quicksched’s prioritization of more CPU-intensive tasks works.
However, it appears that the threads 20, 50, and 58 received the majority of very cheap
tasks. These are tasks covering the rather empty parts of the domain. As soon as any
other thread is done with its tasks it starts the process of work-stealing, described in
Section 2.2.2, by hitting the queues of a randomly selected queue. Yet at some point only
the aforementioned three threads still have tasks. This results in a probability of 0.05 for
finding a task, which is obviously too small to be efficient. The red line visualizes the
point of time where the c08 variant finishes. When looking at Figures 24 and 25 it can
be observed that by enlarging the tasks the number of small and cheap tasks is reduced
significantly, which reduces the work stealing problem. However, now the situation arises
that the last tasks are mutually exclusive, since they operate on shared cells. This leads
in the case of qui adj 3 to the sequential execution of roughly 1

3 of the time step, or even
2
3 for qui adj 5. Such behavior indicates that these tasks are too big for this scenario, so
that the parallel granularity is to coarse.
Table 1 shows for each parallelization scheme the number of tasks and how many of them
can be executed in parallel on average due to blocking of shared cells. For all c08 based
approaches this is 1

8 of the total number, analogue to the coloring. With qui1 only 1
27 of

the total task count can run simultaneously because 27 tasks share the same cell, as can
be seen in 12, and thus a coloring would require 27 colors.

Parallelization Scheme Total number of tasks
Avg. number of tasks

that can run in parallel

qui8 8000 1000
qui1 105435 3905

qui adj 3 1000 125
qui adj 4 343 42.875
qui adj 5 125 15.625
taskc08 8000 1000

Table 1: Correlation between schemes and degree of parallelism for LJ40000-T300.

In Table 1 it can also be observed that already for qui adj 3 there are always only roughly
two tasks per thread that can be executed. Since Quicksched implements no dedicated
mechanism to order the tasks with respect to their resource locking, each processor starts
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an exhaustive search, which also adds to the overhead in Figures 22 to 25. Finally it is
shown that the qui adj 5 approach results here in only 125 tasks with only 15 of them
being able to run in parallel, therefore the 60 processors can never all be used at the same
time. This also explains the almost horizontal parts of the graphs for qui adj 3, qui adj 4,
and qui adj 5 in Figure 20 because these are the parts where more processors cannot be
put to use since there are no further tasks that can lock their required resources. For
tasks of this size larger scenarios are needed.

5.4 Function Runtime Cost Distribution

Another way of analysis is to look at the time the code spends in each Quicksched
function by reading the internal timers provided by the library itself. Figure 27 shows
the percentages each Quicksched function takes of one run of qsched_run(), which is
the whole force calculation of one time step again in the LJ40000-T300 scenario on the
Xeon Phi with the qui8 tasking scheme.
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Figure 27: Percentages of Quicksched functions of the force calculation of one time step
using qui8.

Only qsched_gettask() takes a significant share of time. This share however grows
very quickly with the number of cores. At 60 threads about 40% of time is spent
trying to fetch tasks, which is in agreement with the right chart in Figure 22 being
approximately 40% white. This also underpins the explanation that the random selection
of queues to steal from as described in Section 5.3 is a major problem, since this is part
of qsched_gettask() as explained in Section 2.2.2.
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6 Conclusions and Outlook

In the course of this paper, qui1, qui8, and qui adj n as Quicksched -based approaches
of different granularity were presented as well as an approach to the weighting of tasks.
These method’s parallel performance relative to the established approach was analyzed
and discussed.
The established OpenMP -based approach c08 proves to be very efficient, but as can
be seen in Figure 21 still leaves room for optimization. This potential is lost due to
the missing concepts of prioritizing expensive blocks of computations, not following the
critical path of execution, and existing color barriers blocking more dynamic use of
compute resources. These are the points where the Quicksched task-based approaches
gave promising results. The approach using OpenMP 4.5 ’s explicit tasks did not achieve
this due to its rigidness.
The main problem, as shown in 5.3 and 5.4, appears to be that the work-stealing from a
random queue can lead to immensely non-optimal behavior on imbalanced queues. Here,
work on the Quicksched scheduler at how to choose the queue to steal from might be
interesting.
It was demonstrated that a variation in granularity can have a severe impact on the
speed of execution. A very high total number of tasks can be disadvantageous because
it introduces a significant scheduling overhead. On the other hand, very few tasks that
mutually block each other are also detrimental to parallel performance. Therefore, it is
important to invest time in determining an optimal computational sizes of single tasks
and granularity of parallelization over the whole domain. Yet, the LJ40000-T300 scenario
appears to be too small for task blocks of 3× 3× 3 cells. Hence more adaptive task sizes
that not only allow cubes but cuboids might be more helpful.
Furthermore, it is worth mentioning that these approaches made no use of the hierarchical
aspect of Quicksched’s conflict and dependencies model, which offers more generality
than needed here.
Another interesting improvement would be to use tasks not only for the force calculation
but for further procedures of the time step, like updates to speed and position, MPI
communication, or thermostats. This would remove further barriers and allow for better
utilization of idle processors.
Thereby, we conclude that task-based approaches for ls1-mardyn show potential and that
it will prove worthwhile to put further work into improving the structuring of tasks and
their scheduling.
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