Fakultat fir Informatik m
Technische Universitat Miinchen

Modeling Epistemic and Aleatoric Uncertainty
with Bayesian Neural Networks and Latent Variables

Stefan Depeweg

Vollstéandiger Abdruck der von der Fakultét fiir Informatik der Technischen Universitét
Miinchen zur Erlangung des akademischen Grades eines

Doktor der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender:
Prof. Dr. Nils Thuerey

Priifende der Dissertation:
1. Hon.-Prof. Dr. Thomas A. Runkler
2. Assistant Prof. Dr. Laura Leal-Taixé
3. Prof. José Miguel Hernandez-Lobato, Ph.D.,
University of Cambridge

Die Dissertation wurde am 10.04.2019 bei der Technischen Universitat Miinchen
eingereicht und durch die Fakultdt fir Informatik am 25.07.2019 angenommen.

Zusammenfassung

Maschinelle Lernverfahren, insbesondere neuronale Netze, sind Teil vieler datengetriebener
Losungen fiir reale Probleme. Wahrend diese Methoden in vielen Féllen eine hohe
Vorhersagequalitat erreichen, ist dies nicht das einzig wichtige Qualitatsmerkmal. Im
Anwendungsfall ist es auch notwendig die Unsicherheit tiber die Vorhersage des Modells
zu schéitzen. Hier ist zwischen epistemischer und aleatorischer Prognoseunsicherheit zu
unterscheiden. Der epistemische Teil entsteht aus mangelndem Wissen iiber die wahre
datengenerierende Funktion und ergibt sich aus dem Umfang der gegebenen Daten.
Der aleatorische Teil ist nicht reduzierbar, er ist das Ergebnis von intrinsischen Zu-
fall oder begrenzter Beobachtungsfahigkeit des datengenerierenden Prozesses. Moderne
Bayes’sche Methoden, wie z.B. Bayes’sche neuronale Netze, sind skalierbare Black Box
Algorithmen, die die Universalitiat neuronaler Netze mit dem prinzipiellen probabilistis-
chen Ansatz der Bayes’schen Inferenz kombinieren. Diese Methoden modellieren jedoch
nur den epistemischen Teil der Prognoseunsicherheit.

In dieser Arbeit entwickeln wir ein neues probabilistisches Modell, genannt Bayes’sche
neuronale Netze mit latenten Variablen (BNN+LV). Mithilfe von latenten Variablen
kann dieses Modell stochastische Muster in den Daten beschreiben und gleichzeitig
die epistemische Unsicherheit mittels einer Wahrscheinlichkeitsverteilung der Netzw-
erkgewichte modellieren. Wir zeigen wie diese beiden Formen der Unsicherheit aus
der Prognoseverteilung des Modells extrahiert werden konnen und entwickeln neuartige
Inspektionsverfahren, um die beobachtete Unsicherheit basierend auf den Eingangsvari-
ablen zu erklaren.

Empirisch zeigen wir, dass BNN+LV in vielen Regressionsproblemen iiber eine hohe
Prognosequalitdt und Unsicherheitsgiite verfiigen. Ferner zeigen wir, dass die Zer-
legung der Unsicherheit in epistemische und aleatorisch Kompenenten aussagekraftige
Ergebnisse liefert und den generativen Prozess modellieren kann. Fir die Anwendung
in Entscheidungsproblemen untersuchen wir aktive Lernszenarien und zeigen, dass die
Nutzung einer Zerlegung der Unsicherheit in BNN+LV zu einer effizienteren Akquises-
trategie fiihrt. Im Gebiet des modellbasierten Verstdrkungslernen (RL) untersuchen
wir, wie BNN+LV als Modelle fiir stochastische dynamische Systeme verwendet wer-
den koénnen. Hier zeigen wir, dass BNN+LV die Systemdynamiken akkurat modellieren
konnen. Aus dem Modell kénnen Kontrollstrategien abgeleitet werden, die eine bessere
Performance vorweisen als Vergleichsmethoden. Auch hier entwickeln wir unter Aus-
nutzung der Zerlegung der Unsicherheit ein neuartiges Kriterium fiir risikosensitives RL,
das es in der Anwendung ermoglicht eine Risikoabwégung zu spezifizieren, die zwischen
Minimierung von Kosten, Vermeidung von Stochastizitdt und das Risiko eines Mod-
ellfehlers abwagt.

iii

Abstract

Supervised learning methods, especially neural networks, are part of many data-driven
solutions to real-world problems. While these methods can provide high prediction
quality, simply making predictions is often not enough. For decision making, it is also
necessary to estimate the confidence, or uncertainty, in the prediction of the model.
Here, we can distinguish between epistemic and aleatoric predictive uncertainty. The
epistemic part originates from lack of knowledge about the true data-generating function
and will reduce the more data we collect. The aleatoric part is irreducible; it is the result
of intrinsic randomness, or partial observability, of the data-generating process. Modern
Bayesian methods, such as Bayesian neural networks, are scalable black-box tools that
combine the universality of neural networks with the principled probabilistic reasoning of
Bayesian inference. These methods, however, only model the epistemic part of predictive
uncertainty.

In this thesis, we develop a novel probabilistic model, called Bayesian neural networks
with latent variables (BNN+LV). This model class can describe complex stochastic pat-
terns in the data via a distribution over latent input variables (aleatoric uncertainty),
while, at the same time, account for model uncertainty via a distribution over weights
(epistemic uncertainty). We show how these two forms of uncertainty can be extracted
from the predictive distribution of the model and develop novel model inspection tech-
niques to explain the observed uncertainty based on the input features.

Empirically, we show that BNN+LV provide high uncertainty quality over a wide
range of regression tasks. In a series of model inspection studies, we show that the
decomposition of uncertainty provides meaningful results and models the data gener-
ating process accurately. For decision making, we study active learning scenarios and
show that utilizing a decomposition of uncertainty in BNN+LV leads to a more efficient
data acquisition strategy. In model-based reinforcement learning (RL) we study how
BNN+LV can be used as approximate models for stochastic dynamic systems. Here, we
show that BNN+LV serve as powerful models, that give rise to policies that produce
lower costs than baseline methods. Again, utilizing the decomposition of uncertainty
we develop a novel risk-sensitive criterion for risk-sensitive RL, that enables a practi-
tioner to specify its preference for policies that minimize costs, avoid stochasticity and
minimize the risk for model-bias.

Acknowledgements

I am very grateful to my supervisor Thomas Runkler for his guidance over the years. I
appreciate the freedom he has given me to shape my research direction and his support
to structure this endeavor. I would like to thank José Miguel Hernédndez-Lobato for the
close cooperation and supervision. He became a supervisor of my PhD very early in
the process and provided intensive support and guidance ever since. I would also like
to thank Laura Leal-Taixé for joining my PhD project as a supervisor and her feedback
about the thesis.

I express my gratitude to Finale Doshi-Velez for her feedback and the successful col-
laboration that resulted in several publications. For helpful discussions during my time
at the Harvard university, I also want to thank David Duvenaud and Matthew Johnson.

At Siemens, I want to thank all my coworkers. Steffen Udluft’s expertise in reinforce-
ment learning and industrial problems was a great help for which I am very grateful. I
thank Hans-Georg Zimmermann for his guidance and inspiring discussions about neural
networks, and what modeling time-series has to do with Salvador Dali. I want to thank
Volkmar Sterzing, the head of the research group I worked in, for his support and en-
abling me to experience both research and industry over the course of my PhD. I want
to thank Daniel Hein and Markus Kaiser for the countless discussions about science and
life in general.

Lastly, I want to thank Esmeralda Ramié¢ and Esther Gabrovsek for the friendship and
support in Munich. Your support made me feel home and inspired me when progress
stalled.

vii

Contents

Abstract

Acknowledgements

List of Abbreviations

1 Introduction

2 Modeling Uncertainty in Supervised Learning

2.1
2.2

2.3
2.4

Bayesian Modeling
Variational Inference
2.2.1 Variational Bayes

2.2.2 a-divergence Minimization L.
2.2.3 Comparison between VI and Sampling Methods

Gaussian Processes

Modeling Uncertainty in Neural Networks

2.4.1 Neural Networks

2.4.2 Ensembling/Bootstrapping Neural Networks
2.4.3 Bayesian Neural Networks

3 Modeling Epistemic and Aleatoric Uncertainty
3.1 Bayesian Neural Networks with Latent Variables

3.2

3.1.1 Model Assumption . . .

3.1.2 Variational Approximation
3.1.3 Algorithmic Design Decisions

3.1.4 Amortized Inference . .
Uncertainty Decomposition . .

3.3 Sensitivity Analysis of Epistemic and Aleatoric Uncertainty

4 Data Sets and Benchmarks
Standard Regression Benchmarks

4.1
4.2
4.3

4.4

Artificial Benchmark Problems
Dynamics Systems
4.3.1 Wet-chicken Benchmark
4.3.2 Industrial Benchmark .
4.3.3 Gas Turbine Data . . .
4.3.4 Wind Turbine Simulator
MNIST Handwritten Digit Data

vii

xi

10
12
15
17
19
20
24
25

29
31
31
33
35
36
37
39

43
43
44
45
45
46
47
47
48

X

Contents

5 Accuracy and Uncertainty Calibration in Regression

Problem Descriptiono
Model & Baseline Specification
Experiments . . .
Discussion

5.1
0.2
5.3
5.4

6 Model Inspection & Uncertainty Analysis for BNN+-LV

6.1 Analysis of Predictive Uncertainty
6.1.1 Problem Description oL
6.1.2 Model Specification
6.1.3 Experiments o
6.1.4 Discussion

6.2 Predictive Uncertainty and Test Error

6.3 Sensitivity Analysis Lo
6.3.1 Problem Description 0oL
6.3.2 Model Specification oo
6.3.3 Experiments L o o
6.3.4 Discussiono

6.4 Active Learning
6.4.1 Problem Description oL
6.4.2 Uncertainty Decomposition for Active Learning
6.4.3 Model & Baseline Specification
6.4.4 Experiments
6.4.5 Discussion e

7 Reinforcement Learning

7.1 Model-based Reinforcement Learning
7.1.1 Problem Description L.
7.1.2 Model-based Policy Search with BNN+LV
7.1.3 Model & Baseline Specification
7.1.4 Experimentso
7.1.5 Discussion e

7.2 Risk-sensitive Reinforcement Learning
7.2.1 Problem Description L.
7.2.2 Uncertainty Decomposition for Risk-sensitive RL
7.2.3 Model & Baseline Specification
7.24 Experiments L e
7.2.5 Discussion

8 Conclusions & Outlook

Bibliography

Index

49
49
o1
52
54

57
58
58
99
59
66
68
70
70
71
71
71
72
73
73
74
75
76

77
80
80
83
86
87
92
93
93
94
97
97
100

101
105

115

List of Abbreviations

BNN
BNN+LV
CDF
CNN

EP

GP
HMC

1B
MC-VB
MCMC
MDP
MLP
POMDP
RL
RMSE
RNN
ROC

VB

VI

Bayesian neural network

Bayesian neural network with latent variables
Cumulative distribution function
Convolutional neural network

Expectation propagation

Gaussian process

Hamiltonian Monte Carlo

Industrial benchmark

Monte Carlo variational Bayes

Markov chain Monte Carlo

Markov decision process

Multilayer perceptron

Partially-observable Markov decision process
Reinforcement learning

Root mean squared error

Recurrent neural network

Receiver operating characteristic

Variational Bayes

Variational inference

xi

1 Introduction

Supervised learning is one major area of machine learning. Here we are interested in
learning the relationship between input (X) and output (Y) variables based on data. In
almost all areas of science, we can encounter supervised learning problems. For instance,
in medical science we may be interested in detecting cancer cells based on medical images,
in natural language processing we may want to translate a sentence from one language
into another. Advancements in computational power, as well as data storage capabilities,
have greatly increased the applicability of modern supervised learning techniques.

Neural networks form one popular class of algorithms that see widespread practical
use, such as in computer vision, natural language processing or reinforcement learning
(Krizhevsky et al., 2012; Sutskever et al., 2014; Mnih et al., 2015). Two factors that
make neural networks attractive are their scalability and universality: these methods
can handle large amounts of data and show competitive performance over a wide area
of tasks.

While methods such as neural networks can provide high prediction quality, to achieve
this, they are dependent on a sufficient amount of data. If data, however, is limited, per-
haps due to limited observations or poor feature quality, we cannot expect an accurate
prediction, irrespective of the algorithm used. In this case, there is not enough informa-
tion in the data set D that would allow modeling the function of interest accurately. The
result of limited information is uncertainty over what the correct relationship between
inputs and outputs may be.

Ideally, we want a method that can express such uncertainty over its prediction. For
instance, when detecting cancer cells the degree of uncertainty in a prediction can play a
large part in diagnosis as a misclassification can be potentially harmful. Another example
is active learning, where the task is to iteratively select data such that the agent learns
the most about the problem at hand. Choosing these data by utilizing uncertainty is a
successful and principled strategy (MacKay, 1992).

Bayesian inference provides the calculus to formally reason about and to quantify
uncertainty. Specifically, using the methodology from probability theory, we can reason
about how likely each model instance is, given data. Such a distribution over model
instances can then be used to make predictions and provide uncertainty estimates. While
traditionally Bayesian approaches to supervised learning were limited to models with
low complexity, modern approximation techniques, such as variational inference, enable
scalable inference in complex models. Two prominent examples of this are Gaussian
processes (GP) and Bayesian neural networks (BNN). A GP is a non-parametric method
that can express multivariate Gaussian uncertainty whereas a BNN is a parametric model
that places the flexibility of neural networks in a Bayesian framework (Blundell et al.,
2015; Gal, 2016).

1 Introduction

These methods, however, are not without limitations. Omne limitation is that they
assume a deterministic relationship between the inputs and the outputs. In many super-
vised learning problems, this assumption does not hold. The feature set may be limited
and thereby insufficient to accurately predict the output y based on x, irrespective of
how much training examples are available. The effect of this are noise patterns in y:
for similar inputs, we get varying outputs which can form complex patterns of noise,
such as bimodality or heteroscedasticity. The existence of such noise patterns is in lit-
erature referred to as aleatoric uncertainty: variations in the outcome of the process
that occur every time we acquire data (Matthies, 2007; Der Kiureghian and Ditlevsen,
2009). By contrast, uncertainty in Bayesian modeling reasons about the likelihood of
each model instance. This form of uncertainty is referred to as epistemic uncertainty
and is reducible, the more data we collect, the more certainty we acquire about what
model instance is the right one.

Preferably, we would like to have a machine learning algorithm that can express both
epistemic and aleatoric uncertainty with a high level of generality. For decision-making
knowing where a method is uncertain because the data is limited, and knowing where
a method is uncertain because of randomness (or partial observability) in the data can
be highly beneficial. Following the example given in Senge et al. (2014) (Section 1),
” A medical doctor, for example, who knows that his uncertainty about the illness of a
patient is caused by a lack of knowledge about the disease in question, may decide to
consult the literature or ask a colleague before making a decision.” By contrast, if the
uncertainty in the diagnosis would be due to partial observability, the doctor may decide
to do additional diagnostic tests.

The existing methods can only model one, that is the epistemic form of uncertainty.
Both BNNs as well as GPs assume that the underlying ground truth function is deter-
ministic; they are merely uncertain about the form or the parameters of said function. In
short, we can identify three desirable properties a supervised learning technique should
have: a scalable black-box approach for function approximation, uncertainty-awareness
in a Bayesian framework and lastly modeling stochastic effects of the data.

Contributions The centerpiece of this thesis is to extend BNNs with a latent variable
model (BNN+LV). The latent variables allow this method to model the noise patterns of
the data, while still maintaining uncertainty over its parameters. By that, this method
can express both epistemic and aleatoric uncertainty and shares the scalability and
universality of standard BNNs. Using this novel method, we then investigate how useful
the awareness to these two forms of uncertainty is for decision-making in supervised
learning. We further develop methods for model inspection and analysis, to address
how to extract and interpret the results of such decomposition of uncertainty. Below we
provide a list of the published articles until completion of this thesis:

e Stefan Depeweg, José Miguel Herndndez-Lobato, Finale Doshi-Velez, and Steffen
Udluft. Learning and policy search in stochastic dynamical systems with Bayesian
neural networks. International Conference on Learning Representations (ICLR),
2017a

o Stefan Depeweg, José Miguel Hernandez-Lobato, Finale Doshi-Velez, and Steffen
Udluft. Uncertainty decomposition in Bayesian neural networks with latent vari-
ables. Workshop on Reliable Machine Learning in the Wild, ICML, 2017b

e Stefan Depeweg, José Miguel Hernandez-Lobato, Steffen Udluft, and Thomas Run-
kler. Sensitivity analysis for predictive uncertainty in Bayesian neural networks.
European Symposium on Artificial Neural Networks, (ESANN), 2017c

e Daniel Hein, Stefan Depeweg, Michel Tokic, Steffen Udluft, Alexander Hentschel,
Thomas Runkler, and Volkmar Sterzing. A benchmark environment motivated

by industrial control problems. In IEEE Symposium Series on Computational
Intelligence (SSCI), 2017a

e Stefan Depeweg, Jose Miguel Hernandez-Lobato, Finale Doshi-Velez, and Steffen
Udluft. Decomposition of uncertainty in Bayesian deep learning for efficient and
risk-sensitive learning. In International Conference on Machine Learning (ICML),
pages 1192-1201, 2018

Thesis Outline We introduce the concept of Bayesian modeling for supervised learning
in Chapter 2. We highlight methods for approximate inference and introduce GPs and
BNNs, two prominent methods for supervised learning. In Chapter 3 we introduce
BNN+LV, a novel Bayesian method that is able to both model the noise in the data and
express uncertainty over its parameters. We explain key properties of this model and
show how epistemic and aleatoric uncertainties can be decomposed from its predictions
(Section 3.2). Here we also present a novel model inspection method to explain the
quantities of uncertainties based on the input features (Section 3.3). We introduce data
sets and benchmarks in Chapter 4. These include standard regression problems and
both toy- and real-world stochastic dynamic systems. We perform a set of regression
experiments in Chapter 5 using a broad set of benchmarks and data sets. Here we
compare BNN+LV to a set of baselines and investigate both the uncertainty quality and
accuracy. In Chapter 6 we perform model inspection studies to better understand what
kind of epistemic and aleatoric uncertainties we observe in different kinds of problems
and study how reasonable the results of the decomposition of uncertainty are. Here, we
also apply the aforementioned method of sensitivity analysis to a broad set of problems
(Section 6.3) and consider active learning problems to study temporal decision making
(Section 6.4). Chapter 7 studies the applicability of BNN+LV for reinforcement learning.
In particular in Section 7.1 we investigate how BNN+LV can be used to approximate
dynamic systems for model-based RL. Building on this in Section 7.2 we develop a novel
risk criterion for risk-sensitive RL, that is obtained by decomposing risk into epistemic
and aleatoric uncertainty.

2 Modeling Uncertainty in Supervised
Learning

In this chapter, we introduce the fundamentals of modeling uncertainty in the context
of supervised learning. Here, we focus on a Bayesian perspective of uncertainty. We
will start with the basics of supervised learning and Bayesian Modeling. Building on
this we will discuss the core concepts of variational inference as one form of approximate
Bayesian modeling. At the end of this chapter, we will introduce Gaussian processes and
Bayesian neural networks, which are two supervised learning methods from the Bayesian
modeling framework.

In supervised learning we are given a data set D = {x,,yn}—; = (X,Y) formed by
feature vectors x, € R” and targets y,. Y may be real-valued or categorical. The
former is referred to as regression and the latter as a classification problem. We assume
there exists an unknown function y = f(x) that generated the data set.

An algorithm for supervised learning uses the data set D to make an estimate f of the
true function. This estimation process based on data is called training, and consequently
we refer to D as the training set. At test time we use f to make prediction for test data
points x, € Diest- Depending on the kind of supervised learning problem different error
metrics can be used to assess the quality of the estimation. Ideally, the algorithm should
generalize, that means it can accurately predict new data points that differ from those
that were used during training.

Because the ground-truth function is unknown, the central question of supervised
learning is: given the data set D, what estimate f is plausible? In many cases, different
estimates may seem equally likely. Some which model the data very closely can be
complex, while other solutions are simple, but may have lower accuracy. Following
Jaynes (2003), Bayesian modeling allows us to express the degree of plausibility over
the estimated functions f using the framework of probability theory. We can express
the plausibility in the form of uncertainty over f which we will discuss in the following
section.

2.1 Bayesian Modeling

To introduce the concepts of Bayesian modeling we will start with parametric functions of
the form y = f(x;0), where 0 is the set of parameters. At the beginning of the inference
process in parametric functions, we need to choose a particular family of functions f,
which are parameterized by 6, for instance polynomials, periodic functions, or, as we
will see in Section 2.4.3, neural networks. We will study a non-parametric modeling

2 Modeling Uncertainty in Supervised Learning

approach, the Gaussian process (GP), in more detail in Section 2.3. We assume that the
data set is independent and identically distributed (i.i.d.).

The central question in Bayesian modeling is: What parameters 0 likely have generated
the outputs y given the inputs x? In Bayesian modeling the two ingredients that answer
this question are the prior and the likelithood. Their combination will result in the
well-known Bayes theorem.

Without taking data into account, we may have a belief that some parameter values
are more likely than others. For instance, in the case of polynomials, we may prefer
coefficients that are close to zero, which will typically induce smoothness in the resulting
function. We can formulate this as the prior po(@). More complex priors are possible;
in fact the process of incorporating prior knowledge in the inference process is one core
concept in Bayesian modeling (Jaynes, 2003).

The second ingredient in Bayesian modeling is how well a certain parameter set
explains the observed data (X,Y). We call this the likelihood function p(Y|X,8) =
Hfz\[:l P(Yn|Xn, @), which is a product of individual terms because of the i.i.d assumption
of the data set. This function measures how likely the outputs Y are given the inputs
X and a particular set of parameters 6. Note that the likelihood is a function over 6
and not a distribution because we consider the data set D to be fixed beforehand.

The likelihood and the prior together form the posterior over the parameter given the
data, which is Bayes theorem:

p(Y|X,8)po(6)
p(Y|X)

p(01X,Y) = (2.1)
The denominator in Eq. (2.1) is called the marginal likelihood or evidence. Formally, it
is a scalar because D is fixed and ensures that the posterior is normalized and by that a
proper distribution. The evidence is obtained by integrating, or marginalizing, over all
parameter configurations 6:

p(Y[X) = / p(Y[X, 0)p0(8)d6 . (2.2)

We see that the evidence is an integral over the likelihood and prior for all possible
parameter configurations of 8. The evidence plays a central part in model selection. In
the beginning we stated that in parametric models we have to decide about a particular
function class of f. We can use the evidence to compare different classes of functions:
using the so-called Bayes factor which is

Y|X, M
o _ POYIX, M)

~ PYIX. D) 23

where by M; and Ms we denote the respective model classes we wish to compare.

Given the posterior, we can make predictions by integrating over all possible parameter
sets, weighted by their posterior probability. This is called the predictive distribution:

Py lx X, Y) = / Py %0, 0)p(6]X, Y)d6 . (2.4)

2.2 Variational Inference

Eq. (2.4) provides a distribution over output values y, given input features x,. In stan-
dard supervised learning problems we can take the expected value, that is Fg|y«|Xx, 6],
to do predictions on the test set. Importantly however, a Bayesian modeling approach
provides us with a full distribution over possible output values which enables us to model
predictive uncertainty in the context of supervised learning.

Depending on the application context we can quantify the predictive uncertainty using
a variety of metrics. For instance, for safety-critical systems, having minimum and max-
imum values of possible outputs may be highly useful for worst-case error estimations.

Two metrics that summarize the overall uncertainty in the prediction are the entropy
and variance. The differential entropy of a random variable with density p(x) is given
by:

H(X)= —/Xp(x) log p(z) dz. (2.5)

The entropy is maximal for a uniform distribution, which means that all outcomes are
equally likely, and minimal for a delta distribution, where all mass is centered on one
particular point. Let H(:) compute the differential entropy of a probability distribution.
The total uncertainty present in Eq. (2.4) can then be quantified as H(y.|x.). While
we usually cannot compute the entropy analytically for complicated distributions, the
entropy can be approximated using standard estimators based on numerical sampling,
such nearest-neighbor methods (Kozachenko and Leonenko, 1987; Kraskov et al., 2004),
histograms or kernel density estimators (Beirlant et al., 1997). The variance of a random
variable z is given by:

Var(X) = 0% = /(x —) f(z)da . (2.6)

The variance measures the average ’spread’ of a distribution. If analytical solutions are
not available, it can be estimated by numerical sampling using the empirical variance of
the samples. Both the variance and the entropy are intimately related, for instance in
a Gaussian distribution we have that H(X) = 3 log(2mes?) and in general both behave
very similarly for unimodal distributions. However, for more complex distributions, espe-
cially in the presence of multi-modalities the variance will fail to capture such structural
information, as it is not sensitive to multiple modes, whereas the entropy is.

We have described the fundamentals of Bayesian modeling in the context of supervised
learning. The concepts lay the groundwork for the methods that follow in this thesis.

The next sections will introduce approximate techniques for Bayesian modeling.

2.2 Variational Inference

The fundamental drawback in Bayesian modeling is that there are in general no closed-
form solutions to the distributions of interests. This is because the process of integration
is often not solvable analytically. For instance, integration appears in the the marginal
likelihood that we show in Eq. (2.2) over all possible parameter values @ and in the
predictive distribution in Eq. (2.4). Historically this implied that Bayesian modeling

2 Modeling Uncertainty in Supervised Learning

was restricted to modeling less complex models which resulted in limited practical use.
This however changed with recent advancements in approximate inference together with
increased computational capabilities. Later in this chapter, we will introduce Bayesian
neural networks, a class of complex probabilistic models. There we will see how VI
provides computationally feasible approximations for complex models.

Approximate inference can be grouped into two subfields: variational inference (VI)
and sampling methods (Bishop, 2007). In this thesis we focus on VI; we will explain the
fundamentals and highlight relevant literature in this section. To justify this choice, we
will introduce sampling methods in Section 2.2.3 and discuss advantages and disadvan-
tages of both approximate inference techniques.

In VI we want to approximate the potentially intractable posterior p(6|X,Y) by a
simpler distribution ¢(€) which we call the variational distribution. We can define the
variational distribution such that it has some desirable properties, such as obtaining
analytical solutions to the main integrals in Bayesian modeling, or to easily obtain
samples to form an empirical distribution. This approximation process can be formulated
as an optimization problem:

¢"(0) = argmin D[q(0)||p(0|X, Y)] , (2.7)
q
where D measures the discrepancy between ¢ and p. When working with probability
densities a discrepancy between two densities is measured by a divergence.

Definition 2.2.1. (Divergence) For any two probability density functions p,q € P of
random variable 6, a divergence D is a function P x P — R such that D[p||q] = 0 if and
only if p = ¢ and D[p||g] > 0 everywhere else.

The most prominent divergence measure is the Kullback-Leibler (KL) divergence,
which is widely used in machine learning and statistics. It is given by the following
formula:

KLipld] = [p(6)1ox g ab (2.8)

The KL divergence is not symmetric, we have that KL[g||p] # KLI[p||q]. The former
divergence, that is KL[g||p], is referred to as exclusive, whereas the later, that is KL[p||q],
is referred to as inclusive KL divergence. Consider we minimize KL[p||q] by adjusting
the parameters of distribution ¢. Inside the integral the KL divergence in Eq. (2.8)
will increase if p(@) is high, but ¢(@) is small, because it appears in the denominator.
This would mean that ¢ does not place probability mass in areas where there exists
mass in the true density p. Because of this the approximation ¢ tends to cover all
the area where p(6) > 0, even at the cost of putting mass in areas where p(8) = 0,
thereby being inclusive. In contrast, when we minimize KL[q||p] the quantity inside
the integral increases if ¢(@) is large and p(0) is small. This happens if ¢ places mass
on areas when there is no mass in the true posterior p. Therefore under KL[g||p] the
variational distribution ¢ will tend to cover only the area, where there is also mass in
the true posterior, even at the cost of putting no mass in areas where p(6) > 0, thus
being ezclusive.

2.2 Variational Inference

(0%
q tends to fit a mode of p q tends to fit p globally
T T T
0 0.5 1
q
P P P p
o= —00 a=0 a=0.5 a=1 a = 00
Variational
Bayes

Figure 2.1: Solution for the minimization of the a-divergence between the posterior p (in blue)
and the Gaussian approximation ¢ (in red and unnormalized). Figure source Minka
(2005).

The a-divergence generalizes over both KL divergences. It has a free parameter «
where the two KL divergences are special cases. The a-divergence is given by:

Dbl = oy (1- [00 a0)a0) (2.9)

Here we used the definition given by Tsallis (Tsallis, 1988), there exist alternative formu-
lation of a-divergences, such as Rényi’s and Amari’s a-divergence (Amari, 1982; Rényi,
1961; Li, 2018). We identify three special cases in the a-divergence:

Di[pllg] = lim Da[pllg] = KL[pllq], (2.10)
Dolpllg] = lim Dalpllg] = KL{g||p], (2.11)

D, pllal =2 [(V5(6) - V/a(8))"do = aHeP). (212)

We see that when « approaches 1 the inclusive and when « approaches 0 the exclusive
KL divergence is obtained. In Eq. (2.12) Hel?[p||q] is the Hellinger distance between
two distributions, it is the only a-divergence that is symmetrical in p and gq.

Figure 2.1 illustrates the properties of the three special cases of a-divergences for the
one-dimensional case. This figure shows an approximation of a Gaussian mixture with a
Gaussian distribution. When a > 1, ¢ tends to cover the whole posterior distribution p.
When o < 0, ¢ tends to fit a local mode in p. The value a = 0.5 is expected to achieve
a balance between these two tendencies.

Depending on the divergence measure used, different approximation schemes exist.
The most general is arguably one that can minimize arbitrary a-divergences which will
be the subject of Section 2.2.2. In the next section we will derive the variational mini-
mization of the exclusive KL divergence. This particular divergence is most commonly
used in the field of VI, because of certain mathematical properties that simplify the
derivation.

2 Modeling Uncertainty in Supervised Learning

2.2.1 Variational Bayes

Variational Bayes (VB) is a technique of VI that uses the exclusive KL divergence as
divergence measure. The technique was proposed at the beginning of the new century
(Attias, 1999; Ghahramani and Beal, 2000) and has seen increasing interest in the recent
literature for complex models in supervised and unsupervised learning (Kingma and
Welling, 2013; Blundell et al., 2015; Blei et al., 2017).

Let Z be the short-hand of the normalization constant p(Y|X) and p(€) be the un-
normalized posterior distribution, such that p(0) = p(Y|X, 0)po(0). We can rewrite the
minimization problem when using the exclusive KL divergence as:

q'(0) = arg min KL[q(0)[|p(6]X,Y)] (2.13)
= argqmin (KL[q(0)||p(0|X,Y)] —log Z) (2.14)
= arg min 0 a(6)
= gq /q(B)l gﬁ(a)de (2.15)
= arg max o p(o)
= gq /q(H)l gq(e)de (2.16)
— ang ma o) log 5(6)] + H(4(6) (2.17)
= arg max Ey6)[log p(Y X, 0)] — KL[q(6)]|po(8)] - (2.18)

Lvs

In Eq. (2.14) we added log Z to the right-hand side of the equation, this is valid, because
the normalization constant is independent of the variational distribution g and therefore
the addition of this term will not affect the minimization problem. In literature Eq.
(2.16) is referred to as variational free energy , and the result of our derivation given by
Eq. (2.18) is called the wvariational lower bound. The variational lower bound gets its
name from the fact that is is a lower bound to the logarithm of the evidence. We can
derive it alternatively starting with the evidence of the posterior we wish to approximate:

log Z = log/p(Y|X,0)po(9)d0 (2.19)
= log/ﬁ(e)dG (2.20)
_ p(9)
= log/q(@)q(e)de (2.21)
p(9)
> /q(e) log q(e)da, (2.22)

where in the last step we used Jensens’s inequality for concave functions.

Theorem 2.2.1 (Jensen’s inequality). For any concave function f:

E[f(X)] < f(E[X]).

10

2.2 Variational Inference

The relationship between Lyg and the evidence is relevant for two reasons. As we
pointed out in Section 2.1, the evidence integrates over the likelihood and prior for
all configurations of parameter 8. The evidence, therefore, depends on the hyper-
parameters, the assumptions we make about the model at hand, which can be used
for model selection. Secondly, if we can include the hyper-parameters of our model in
the maximization process of Lyp itself, we can potentially increase the evidence of the
model. This is because an increase in the lower bound can only increase, but never
decrease the evidence. This process is called type II maximum likelihood (or empiri-
cal Bayes): whereas in classical maximum likelihood we want to find the parameters
0 for which p(Y|X,) is maximal, in type II maximum likelihood we want to find the
hyper-parameters for which the evidence Z is maximal.

The derivations leading to Eq. (2.18) have simplified the problem greatly. Earlier
we pointed out that the main problem in Bayesian modeling is solving the integrals,
specifically integrating over the posterior p(@|X,Y) that appears both in the evidence,
as well as in the predictive distribution. In contrast the lower bound in Eq. (2.18) only
contains an expectation and entropy term with respect to the variational distribution
q(0). We recall that the main idea in VI is to choose a variational distribution ¢ with
desirable properties: for instance, if we choose a Gaussian distribution, the entropy can
be calculated in closed form.

For practical applications, two issues are remaining. First,the expectation over ¢ may
not be solvable analytically. Here, we can approximate it via Monte Carlo by taking
K samples 01,...,0k ~ q(0). We can then substitute the expectation by an empirical
estimation. Second, assume that we cannot solve the maximization step analytically,
but require an iterative optimization process, such as gradient ascent with respect to the
parameters of the variational distribution. The log-likelihood log p(Y|X, €) that appears
in Eq. (2.18) is a sum over all available data. This would require us to re-evaluate the
current estimate of the parameters of ¢(8) over the full data set, which can be expensive.
Instead, we can use mini-batches, a standard technique in optimization, where we do
not use the full data set, but instead only consider a small subset S in each iteration.
This subset is chosen randomly at each iteration step. These adjustments give rise to the
so-called Monte Carlo variational Bayes (MC-VB) approach (Ranganath et al., 2014),
the Monte Carlo estimator is given by:

|5|Z Zlogpyn|xn,ek> L{(8)lpo(6)] (2.23)

In principle any optimization method can be used to maximize Eq. (2.23). One
approach is to perform gradient ascent with respect to the parameters ¢ of the variational

11

2 Modeling Uncertainty in Supervised Learning

distribution ¢(@). We can estimate the gradient in the following way:

VoLys = VoEye)logp(Y[X, 0)] = V4 K L[q(0)||po(6)] (2.24)
= Eqy0)[log p(Y|X, 0)V log q(0]¢)] — VK L[q(8)][po(6)] (2.25)

K
53 g S log p(yl%n, 01 Vs log g(0410)] — VoK Lig(8)[lpo(8)] , (2.26)
k=1

= nes
where first step leading to Eq. (2.25) can be obtained with a few steps of algebra (see
Eq. (5) in Paisley et al. (2012)). These are the same steps of algebra that give rise to
the policy gradient theorem in reinforcement learning (see Section 7.1.2 for more details
on this). However, this approach leads to very high variance and difficult optimiza-
tion, because each gradient is obtained by a random sample from ¢g. A lower variance
estimator can be obtained using the so-called local reparameterization trick (Kingma
and Welling, 2013). For certain distributions we can decompose the sampling process
01,...,0k ~ q(0) into a deterministic and stochastic part. For instance, let us assume
q is a multivariate Gaussian with diagonal covariance matrix ¢(@) = N(u, o) such that

¢ = (p,0?), then

akNN(,lL,O'2):€OO'+[.l/, (227)
(:9)
g€7

where € ~ AN(0,1). We can then rewrite

VoEqyo)f(0)] = Eye[Vsf(g(e, 8))] (2.28)
K

~ %Zv¢f(g(6ka¢))y (2.29)
k=1

where we used f(-) as a shorthand for the terms inside the expectation of Eq. (2.25).
With this reparameterization we have achieved that each gradient Vg f(g(€x, ¢)) depends
on the variational parameters ¢ in a deterministic way, whereas the randomness induced
by the estimation of E,) is unrelated to the parameters ¢ of interest. This can result in
a gradient estimator with significantly lower variance than the one shown in Eq. (2.26)
(Kingma and Welling, 2013).

2.2.2 «-divergence Minimization

In the last section we showed that when using the exclusive KL divergence, we obtain
a solution were efficient approximation techniques exist. Unfortunately, when using a-
divergences the derivation are not as straightforward. To get there, we will start with
an alternative method for variational inference, called power expectation propagation
(power EP) (Minka, 2004), where, with certain simplifying assumptions, we can derive
energy function for a-divergence minimization that shares some similarities with the
MC-VB in Eq. (2.23).

12

2.2 Variational Inference

Power EP is a generalization of expectation propagation (EP) and very similar in its
structure: Classical EP will minimize the inclusive KL divergence K L(p||q), whereas
power EP extend this towards general a-divergences. This also implies that the exclu-
sive KL-divergence seems to be a special case, where approximate inference simplifies,
whereas for general a-divergences, including the inclusive KL divergence, this does not
seem to be the case.

For much of the derivations in this section, we will follow Hernandez-Lobato et al.
(2016). As stated above we assume that the true posterior is given by a product of
likelihood terms p(Y|X,0) = HnNzl P(¥n|Xn, @) (which originated from the i.i.d assump-
tion) in addition to a prior. Note that power EP is applicable to more complicated
factorization of p: we are given some factorization of p in a composition of functions.

Let us further assume that the prior po(8) = exp{s(8)7 Ao —log Z(Xo)} belongs to the
family of exponential distributions, where Ag and s(@) are vectors of natural parameters
and sufficient statistics and by Z(Ao) we denote the normalization constant, or partition
function, of the prior, ensuring it is a probability distribution. A large set of basic
probability distributions, including the Bernoulli, Poisson or Gaussian distribution can
be expressed as members of the exponential family. For instance, in a one dimensional
Gaussian distribution we have that A = (u/0?, —1/20?) are the natural parameters and
s(0) = (6,6?) are the sufficient statistics.

In power EP we start by forming a variational distribution. In contrast to variational
Bayes we approximate each of the n-th likelihood factors p(y,|x,, @) by having an explicit
counterpart f, in the variational distribution q. We define the variational distribution
as a set of site approximations from the same exponential family as the prior po(0):

fnu(0) = exp{s(8)T A} (2.30)

The variational distribution is then the product of all site approximations with the prior

N

q(0) < [exp{s(8)" X} exp{s(6)" Ao} (2.31)
n=1

= exp{s(0)"(D_An+A0)}. (2.32)

We have a set of N site approximations and a set of N likelihood factors of the
distribution we wish to approximate. One straightforward approach would be to optimize
each site approximation independently and in parallel. This process however would result
in a poor approximation of the full posterior p(W|X,Y) (Bishop, 2007). While power
EP updates each site approximation sequentially, it does so by taking into account the
current state of the full approximation.

As a shorthand we will use A, for the natural parameters of ¢(@). To approximate
the target distribution p with the variational distribution ¢ power EP uses a message
passing algorithm. Message passing (or belief propagation) is a class of algorithms from
the field of graphical models that work by iteratively updating nodes in a local way,
based on incoming information. The algorithm repeatedly applies the following four
steps for every site approximation f,:

13

2 Modeling Uncertainty in Supervised Learning

1 Compute the cavity distribution: ¢\™(0) o q(8)/f,(8)%, in terms of natural pa-
rameters: A\ <— Ay — adp;

2 Compute the “tilted” distribution by inserting the exact likelihood factor raised
to the power a: §,(8) o< ¢\ (8)p(ynlxn, 0)%;

3 Adjust ¢ by matching moments: E;[s(0)] < Ej, [s(0)];

4 Recover the site approximation f,(0) by setting A, <= Ay — A\, and compute the
final update for ¢(@) by Ay < >, An + Ao.

The cavity distribution in step 1 is the original variational distribution with a frac-
tion of av of one site approximation removed (an alternative description is leave-one-out
distribution). In step 2 we insert the corresponding likelihood factor p(y,|x,,0) of the
original distribution into the cavity distribution, where the parameter o again deter-
mines the fraction of the factor. In result the first two steps replaced a fraction of one
site approximation with the original likelihood factor, giving the tilted distribution. In
step 3 we then project the variational distribution ¢ on the tilted distribution by match-
ing moments. In the final step we recover the adjusted site approximation f, from the
projected ¢, giving us the update for the site approximation f,.

The moment matching in step 3 can be shown to minimize the a-divergence from
every tilted distribution to the variational distribution, by zeroing the gradient of the
a-divergence with respect to the natural parameters (Minka, 2004; Bishop, 2007). In
contrast to variational Bayes (Eq. (2.18)) however only a local a-divergence is minimized,
because in each step only one factor is included.

Power EP has a corresponding energy function, which was derived in Minka (2004);
Seeger (2005):

E(Xo, {An}) = log Z(Ao) + <Z — 1) log Z(A)
1 N (2.33)
—- > log /p(ynlxn, 0)" exp{s(8)" (A, — aX,)}d0 .
n=1

The energy function however, is not yet suitable for scalable approximation. This is
because we need to store the natural parameters for each site approximation, to calcu-
late the respective cavity distributions. In large data settings, this leads to prohibitive
memory requirements.

To obtain a scalable energy function like the variational bound from Eq. (2.18) an
approach to use is factor tying constraint as proposed by Li et al. (2015); Dehaene and
Barthelmé (2018). The main idea is that instead of having one set of natural parameters
A, for each site approximation f,,, the parameters are shared (tied) across all f,,. This

14

2.2 Variational Inference

leads to a great simplification of the relevant terms:

An=X Vne{l,.N}, (constrain natural parameters)

AV = (N —a)A+ Ao, (cavity distribution)

Ay =NA+ X (parameters of approximate posterior)

fn(8) = £(6) = exp{s(@)TA} . (average site approximation)

Factor tying can be seen as performing power EP but instead of having N site approx-
imation, we only have a single one for all likelihood factors to approximate. Under the
factor tying constraint the energy function now simplifies to:

«
E(Xo, A) = log Z(Ao) — log Z(Ag) — — ZlogE [(y;’(’;g))] . (2.34)
Eq. (2.34) has now similar desirable properties as the variational lower bound we have
shown in Eq. (2.18). We can now apply the same two optimization steps we have outlined
in the previous section: enabling mini-batch training and allowing gradient descent by
approximating the expectation by Monte Carlo and using the reparameterization trick.

This leads to the stochastic estimate of the energy function, which is referred to as
black-box a:

E(xo, Ag) = log Z(Xo) — log Z(A ’S‘Z Z(y”’X”’e’“)> . (2.35)

However, we note that the approximation in Eq. (2.35) will be biased. This is because
the expectation in Eq. (2.34) is inside of the logarithm, and because the logarithm is a
nonlinear function, the Monte Carlo estimate will underestimate the true energy. This
bias will decrease, the more samples K we use in the approximation. Similar as with
the lower bound, this objective licenses optimization by gradient descent. In Hernandez-
Lobato et al. (2016) a study was performed to investigate the bias in the gradient of
this estimator. The main finding is that when using 15 samples or more, the bias in the
gradient becomes neglectable.

More recently, the work in Li and Gal (2017) derived a further simplification of Eq.
(2.35). The result is a new lower bound of the form:

Lot = \5|Zogf2pyn|xn,ek CKLG@m@)] . (236)

2.2.3 Comparison between VI and Sampling Methods

In the previous sections, we introduced in greater detail VI as a technique for approx-
imate inference. An alternative approach to VI is to use sampling methods. We will
now introduce its fundamentals and then discuss advantages and disadvantages of both
approximation techniques.

15

2 Modeling Uncertainty in Supervised Learning

One way to address the problem of integration in Bayesian modeling is by numerical
sampling. Assume that we are unable to derive the posterior in Eq. (2.1) in analytical
form, however if we can draw samples 6 ~ p(0|X,Y) from the posterior, we can utilize
the resulting empirical distribution to estimate all quantities of interest, such as the
expected value of the predictive distribution:

K
1
Eoly|x.. 6] ~ 7= > Y%, 0 (2.37)
k=1

Sampling methods are a class of methods to obtain the aforementioned empirical distri-
bution. While computing the posterior of a particular value of @ is typically infeasible
due to the normalization constant in Eq. (2.1), the unnormalized posterior

p(0) = p(Y[X, 0)po(0) (2.38)

usually can be evaluated for a particular value of 6.

Numerous methods exist that utilize this property, such as rejection sampling and
Markov chain Monte Carlo (MCMC) methods. In rejection sampling we define a proposal
distribution ¢(0) from which we can draw a sample 6, in an iterative process. We accept

this sample if
p(6k)

u < M0y (2.39)
where u ~ U(0,1) and otherwise reject it. M is a hyper-parameter of this method and
it must hold that p(@) < Mq(0) for all values of 8. On average it will take M iterations
until a sample is accepted.

Methods such as rejection sampling however are severely limited when 6 is high-
dimensional, which is often the case in supervised learning (Bishop, 2007). This is
because M ¢q(6) must be an upper bound to the target distribution and ¢(€) > 0 whenever
p(0) > 0. To satisfy this M will increase leading to more and more rejections as the
dimensionality increases.

MCMC is an additional class of sampling methods that is able to work in high-
dimensional problems. The main idea is to again utilize the unnormalized posterior
p(0) but use a Markov chain ¢(6;|6;—1) as a proposal distribution. This chain can be
designed in such a way that its stationary distribution converges to the desired posterior
distribution p(8|X,Y). Because of this MCMC methods are random walks, where the
next proposed sample 6;,1 depends on the current sample 8;. Examples of MCMC meth-
ods are Metropolis-(Hastings), Gibbs sampling and Hamiltonian Monte Carlo (HMC).
HMC in particular has seen widespread use, the main advantage of this method is that
it utilizes gradient information in the proposal distribution (Brooks et al., 2011).

What approximate inference technique should we use? The following list compares a
set of properties in VI and sampling methods.

1. Bias: Sampling methods are asymptotically unbiased and can therefore produce
more accurate posterior approximations than variational approaches providing

16

2.3 Gaussian Processes

enough computation time is available. Variational methods are by contrast bi-
ased: the more the variational distribution ¢(@) and the true posterior p(8|X,Y)
differ, the higher this bias will be. Often times, when working with complicated
models, ¢(0) will need to have a greatly simplified structure compared to p(8|X,Y)
with potentially large bias.

2. Computational cost: There is a higher computational cost when working with
sampling methods. This is because of the random walk process: for each sample the
likelihood and prior needs to be evaluated to estimate the unnormalized posterior
probability. Furthermore, each region in parameter space 8 has to be visited
numerous times before and after convergence of the chain to approximate the
density.

3. Parameter sensitivity: Sampling methods usually include many hyper-parameters
that are highly data and model dependent and that require fine-tuning. For in-
stance, which proposal distribution to use for the random walk process or how
long the burn-in process should be until it is assured that the chain converged.
Each algorithm again has its own hyper-parameters and the convergence process
is highly sensitive for this.

4. Convergence: In sampling methods it is very difficult to determine when it has
converged and is drawing samples from the correct stationary distribution. By
contrast, it is easy to determine when a variational approach has converged. For
example, when the energy function in blackbox-a in Eq. (2.34) does not improve
any more beyond a specific threshold.

5. Adaptability: In variational methods the posterior approximation is compactly
represented by a collection of parameters. These parameters can be easily up-
dated when new data are available. Updating the samples generated by sampling
methods is by contrast very challenging.

2.3 Gaussian Processes

In Section 2.1 we have introduced the concept of Bayesian modeling in the context of
parametric models. One drawback of parameterized models is that we have to define
prior knowledge in parameter space @ as opposed to function space f. For instance,
let us assume we want to use a prior that prefers functions that are smooth and slow-
changing. Depending on the parametric model used, it is not obvious how to formulate
such a prior belief in the space of 6.

Gaussian processes belong to the family of non-parametric models. The central idea
is that given a sequence of inputs {x1,...,xy} we are interested in the joint distribution
of output values {f(x1),..., f(xn)}, without reasoning about any parameterization of
f- Considering distributions over arbitrary functions f is infeasible in practice, however
evaluating such a distribution on a finite set of points what makes this process feasible.

17

2 Modeling Uncertainty in Supervised Learning

A multivariate Gaussian distribution x ~ A (u,X) is defined over a d dimensional
space, the dimensionality of x. The main idea of GPs is to generalize this to infinitely
many dimensions. For this we define a stochastic process, a function that maps from an
index t to a random variable X;. For a Gaussian process, a particular stochastic process,
it holds that for every subset 7' of indexes, the resulting random variables {X¢cr} are
jointly Gaussian distributed.

In one-dimensional regression, we are interested in learning a function y = f(x). The
aforementioned indeces are now a set of x; and in a GP we assume that all subsets of
outputs { f(x1),..., f(xn)} are jointly Gaussian distributed. A multivariate Gaussian is
completely described by the second-order statistics, the mean vector g and a covariance
matrix 3. In order to define these statistics for arbitrary subsets in input space we define
amean function ps(x) and a kernel, or covariance function, K(x;,x;) = cov[f(x;), f(x;)].
For any particular set of of x applying the mean function and the covariance function
for every element of the covariance matrix will define the full multivariate Gaussian.

In a GP a standard approach is to assume a mean function of constant zero. Defining
the kernel then defines the behavior of the GP completely. For a kernel to be valid it has
to hold that for any finite set of random variables their covariance matrix, which can be
obtained by applying the kernel function, is positive definite. Positive definiteness of a
matrix M means that for every vector x it holds that x” Mx > 0.

By choosing a kernel we can implement the assumptions we make about f. This is
because the kernel defines the metric to measure similarity between two data points
(x4,%;). For instance, when we have data that appears to be periodic with varying
frequency, we may want to use a different measure of similarity than in structured data
in the form of trees. As we will see, the kernel plays a central role for making predictions
on test data x,. In a GP the predictions of x, are influenced by the similarity (defined
by the kernel) to the known training data. One important property of kernels is if they
are stationary or non-stationary: in a stationary kernel we have that K(x,y) = K(x—y).
Therefore stationary kernels are translation invariant, the closeness between two points
is given solely by their relative, and not absolute, position to another. For instance,
the most classical and widely-used kernel, the radial-basis function kernel (RBF) is a
stationary kernel of the form:

X; — X 2
krpr(xi,x;) = U%BF exp <—(2£2j)> , (2.40)

where O‘%{BF and ¢? are hyper-parameters of this kernel. By specifying a mean and
kernel function, we have defined our model, a Gaussian process prior f ~ GP(0,). By
specifying a set of points {x1,...,Xy} we can obtain predictions from the GP prior by
sampling from N(0,Ky) where Ky is the covariance matrix obtained by applying the
kernel function for all pairs of (x;,x;).

In regression we are given a data set D = {x,,yn}—; = {X,y} formed by feature
vectors x, € RP and targets 1,,. We assume that the data was generated by a function
Un = firue(Xn) + N(0,0?), where firue is an (unknown) sample from the GP prior. We
further assume that our observations are corrupted by independent Gaussian noise with

18

2.4 Modeling Uncertainty in Neural Networks

unknown noise level o2, which is a hyper-parameter in our inference process. Using the
GP prior we want to incorporate the data set to obtain a posterior GP. This posterior
has a closed form solution, for a derivation we refer to Rasmussen (2004). The GP
posterior is given by:

fpost(X) = K(x, X)(Ky + 0?I) "y (2.41)
Kpost (%i, %) = K(x4,%;) — K(xi, X)(Ky + o’ 1) 7 'K(X, x5) , (2.42)

where K(x,X) is a 1 x N vector of applying the kernel function of x with all elements
of the training data in D and similarly Ky is a N x N matrix of applying the kernel
function for all pairs of the training set.

We note that (Ky + o?I)~!y only needs to be computed once, it is constant w.r.t.
making a prediction for x. Nevertheless, we need a pass through all training data
to compute the mean which is O(n) in time complexity and O(n?) to compute the
predictive variance. On the other hand, the basic GP as in the above equation does
not need any ”training” like other machine learning methods, because predictions and
uncertainty estimates can be obtained in closed form. Having said that the model does
have hyper-parameters that one may want to optimize. First, the observation noise o2
that appears in the predictive posterior and secondly, possible hyper-parameters in of
the kernel function. The standard way to do this is type II maximum likelihood using
the model evidence, a process we already discussed in Section 2.2 in the context of
variational inference.

Because of the aforementioned time complexity it can be computationally prohibitive
to apply GPs to large data sets, in practice GPs work with hundreds, but not thousands
of data points. A recent method to overcome this is to use sparse pseudo input GPs
(SPGP) (Snelson and Ghahramani, 2006). Here, instead of working on the original
data set D the method builds a pseudo data set D of size n, where n are the number
of inducing points. These positions of pseudo data points are then additional hyper-
parameters which can be optimized using type II maximum likelihood.

Improving and extending GPs is an active area of research with many different sub-
fields. Applications include computer vision domains (He and Siu, 2011), reinforcement
learning (Deisenroth and Rasmussen, 2011), or, with the recent interest in composite
(deep) architectures, deep GPs (Hensman and Lawrence, 2014; Kaiser et al., 2017).
While GPs work well in practice with default settings, such as using a radial-basis kernel
and standard optimization techniques, the two key advantages this method has is that it
is a principled method for Bayesian modeling and it is much easier to incorporate prior
knowledge into the inference process than in parametric models.

2.4 Modeling Uncertainty in Neural Networks
In this section, we review existing approaches on how to model uncertainty in neural

networks for supervised learning. In particular we investigate three approaches: How to
estimate predictive uncertainty in standard neural networks, how to utilize ensembles of

19

2 Modeling Uncertainty in Supervised Learning

neural networks to model predictive uncertainty and how to use neural networks in a
Bayesian framework approach that we introduced in Section 2.1.

2.4.1 Neural Networks

Neural Networks are popular parametric models for machine learning. Influenced by
early research in neuroscience, a neural network consists of connected processing units,
called neurons in analogy and inspired by the type of cells in the brain (Rosenblatt,
1958; Hebb, 1949). The neurons together form a network: input neurons are excited
by some input signal and this signal gets propagated through weighted connections to
subsequent network layers where the last set of neurons together form an output signal.

Nowadays neural networks see widespread use and provide impressive practical results.
Examples include computer vision applications (e.g. Krizhevsky et al. (2012)), natural
language processing (e.g. Sutskever et al. (2014)) or reinforcement learning (e.g. Mnih
et al. (2015)). For a full history and overview, we refer to Schmidhuber (2015).

Depending on the application numerous types of neural networks exist. The three
most basic families are feed-forward neural networks (often referred to as multi-layer
perceptrons (MLP)), recurrent neural networks (RNN) and convolutional neural net-
works (CNN). Recurrent neural networks model the temporal structure of the data and
are therefore often used when working with time-series. For instance, Sundermeyer et al.
(2012) use a special type of RNN, the long short-term memory unit (LSTM) (Hochre-
iter and Schmidhuber, 1997), for language modeling applications. Convolutional neural
networks model spatial relationship in the data, their most prominent application is
computer vision; for instance in Krizhevsky et al. (2012) use this class of models to
classify real-world images.

The classical type of neural network is the MLP. Throughout this thesis we will only
use this type of network, in the following we will start by defining its key properties. Let
us assume we are given a data set D = {x,,yn}.;, formed by feature vectors x,, € RP
and targets which can be continuous y, € R¥ or, in the case of classification, dis-
crete y, € {1,...,K}. We try to approximate a function that maps from the input
x to the outputs y.

A MLP with L = 1 hidden layer of size H specifies a parametric function of the form:

f(X; W) = ngp(Wlx + bl) + b2 . (2.43)

The parameters of the MLP are: the H x D weight matrix W, the H dimensional
bias vector by, the K x H weight matrix Wy and the D dimensional bias vector bs.
We summarize these parameters to the collection of weights W = {Wl,bl}le. o(.) is
a nonlinear function, called the activation function. Popular choices are the hyperbolic
tangent ¢(z) = tanh(z) or the linear rectified unit ¢(x) = max(z,0). Using multiple
hidden layers (L > 1) is what is referred to as deep neural networks: the formula given
by Eq. (2.43) can easily be extended by adding further compositions.

The parameters W are optimized by minimizing an error function LOV|X,Y) with
respect to the weight set W. A popular choice for regression is the Euclidean loss, which

20

2.4 Modeling Uncertainty in Neural Networks

measures the quadratic distance between the output of the network, that is f(x,; W),
and the corresponding target vector y,. Averaging over the full training set results in
N
E(W|X7Y) = N Z(f(xna W) - YH)Q . (2'44)

n=1

There exist many different error functions, often used in specific use cases. For instance,
in classification a standard approach is to predict a K dimensional output vector p
representing probabilities for each class, which is implemented via the softmax activation
function:

R egn,i
Pni = m . (2.45)
In this case optimization is performed using the cross entropy error function:
1 N
LOVIXY) = -+ Zl 108 .y, - (2.46)
n=

where p,, 4, will provide the probability of the true class y, under the model. The cross
entropy H|p, ¢q| is related to the KL divergence:

Hlp, q] = H[p] + KL[p||q] , (2.47)

and since H[p|, the entropy of the true distribution, is fixed, minimizing the cross entropy
is equal to minimizing the KL divergence. One may wonder why, unlike in regression,
the prediction of the network is a probability vector p and not a hard class assignment.
This step is necessary, to make the loss £(W|X,Y) differentiable w.r.t. the network
parameters W, a property that enables using gradient information for training which we
will discuss next.

Neural networks are nonlinear models with respect to their parameters: looking at the
basic form of a one layer MLP in Eq. (2.43), we see that W1 and by appear inside the
non-linearity. While the parameters of linear models can be optimized in closed form,
using the Moore-Penrose pseudo-inverse (Bishop, 2007), for these models no closed form
solution exists. For this reason, minimization is standardly performed using gradient
descent: because both the error function £ and the network are differentiable, we can
calculate the gradient % given input data (X,Y). A neural network is a composite
function: the output of one layer is propagated as input to the next layer. Consequently,
for the gradient a similar relationship holds: a gradient is obtained by first performing a
forward pass to estimate the current error with respect to the loss function £, and then,
starting from the error the gradient signal is propagated back through the individual
layers in a sequential manner. This process is called back-propagation, and it follows as
a direct application of the chain rule.

Gradient descent updates the weights W by taking a step in the direction of greatest
descent w.r.t. the error function:

oL
Wnew =W - ﬁm y (248)

21

2 Modeling Uncertainty in Supervised Learning

where 7 is the learning rate. When the dataset is large, instead of using the full data set
for each gradient update, we can use mini-batches by only evaluating the gradient on
a small subset S of the training data, which is chosen randomly for each gradient step.
This method is called stochastic gradient descent. There exist more sophisticated learn-
ing schemes that extend standard stochastic gradient descent such as using momentum
(Nesterov, 1983), or using adaptive learning rates (Kingma and Ba, 2014).

Neural networks are universal functional approximators (Hornik et al., 1989) in the
sense that, under mild assumptions, for any continuous function f and any error thresh-
old ¢, there exists a MLP with a specific set of parameters with an approximation error
smaller than e. This universality theorem suggests that neural networks can represent
large classes of functions, in the beginning of this section we highlighted different areas
of science where neural networks have successfully been applied.

Having said that one major challenge in training neural networks is their tendency to
overfit on data: when the data set is limited and the network has many parameters, we
observe that the error on the training dataset D continuously decreases during training
whereas the performance on test data Dyt deteriorates. Different techniques exist
that try to mitigate this issue of overfitting (or over-training), we will discuss now two
approaches: early stopping and weight decay.

In early stopping we split from the training data set D a validation set D, and use
only the remaining examples for training, while continuously monitoring the performance
of the network on Dy, during training. After training, we use the weight configuration
that resulted in the lowest validation error as the final weight set. On the one hand, this
method is promising in keeping the performance similar between training and testing,
on the other hand, we use fewer data during training because we do not train on the
validation set.

An alternative method, called weight decay, instead adds a penalty to the loss function
based on the size of the weights. The reasoning is that for most activation functions
small weight values imply a smooth and slow changing function to be preferred. One
cause of overfitting is that the network memorizes, instead of generalizes, the training
data, which gives rise to very complicated but inaccurate functions (see e.g. Zhang et al.
(2016)). By adjusting the error function to prefer network weights of small value, we
can expect that the function the network has learned after training is more smooth and
less prone to memorization. A standard way to achieve this is to use the L2-norm, for
instance in classification the loss function may be:

N L
1 .
LOVIXY) =+ > 108(Pny,) + A IIWIP + [[b]]?) (2.49)
n=1 =1

where A is the free parameter setting the strength of the weight decay.

Neural networks by default do not model uncertainty over their parameters. This
is because we only train a single set of weights to estimate a function. In the frame-
work of Bayesian Modeling that we introduced in Section 2.1 we perform maximum
likelihood over the parameters W. A loss function can alternatively be interpreted as a

22

2.4 Modeling Uncertainty in Neural Networks

log-likelihood function (LeCun et al., 2006; Gal, 2016):
P(Yn|Xn, W) x exp[—LWV|Xpn, ¥n)] - (2.50)

When using the Euclidean loss exp[—L(W)|xp,yn)] is proportional to a Gaussian like-
lihood function. Minimizing the loss then corresponds to maximizing the equivalent
likelihood and when using weight decay we obtain a maximum posterior (MAP) esti-
mate with a Gaussian prior on the weights.

In classification, the softmax output function, given by Eq. (2.45), will provide a
probability for every class, which can be used to model predictive uncertainty. This
uncertainty, however, is not w.r.t. to the parameters of the model, but only to the
insecurity about which class K an input x belongs to under a single model. In regres-
sion, a similar way to estimate uncertainty is to use the average squared error on the
training data to obtain a constant (homoscedastic) estimate of uncertainty. However, as
we discussed earlier, neural networks tend to overfit, therefore the training error often
severely underestimates the test error. If we use early stopping, we can instead use the
error on the validation set as an estimate of uncertainty. The predictive distribution of
the neural network is then

P(Yx | X, D) = N(yul f (X5 an1),0\2,al)) (2.51)
1 Nval

U\QIal = N. | Z(f(xnv anl) - yn)2 . (252)
va. n:1

There exist many alternative ways to make a single neural network capable to ex-
press uncertainty in regression. For instance, Nix and Weigend (1994) suggest to have
a network with two outputs, one for the mean pu(x;W) and another output for the
variance o2(x; W). This approach enables a neural network to model state-dependent
(heteroscedastic) Gaussian uncertainty. In this case the network is trained by minimizing
the the negative log-likelihood

log(o?(xp;s W) | (yn — u(xa;W))?

2 202(xp; W))
We note that both approaches however, do not model uncertainty in the same way
as Bayesian modeling, because these approaches do not consider uncertainty over the
parameters. We will discuss the difference between these forms of uncertainty in more
detail in Chapter 3.

Lakshminarayanan et al. (2017) extend the approach to heteroscedastic Gaussian out-
put nodes using ensembles and adversarial learning. Another technique is dropout (Sri-
vastava et al., 2014), where hidden activations are multiplied by Bernoulli random noise,
or Gaussian in the case of Gaussian dropout. The work in Gal and Ghahramani (2016)
shows that using Monte Carlo dropout (MC-dropout) is a particular form of Bayesian
modeling. This insight enables using the Monte Carlo samples of the output variables,
which are generated by different dropout masks, to estimate estimate predictive uncer-
tainty.

In the next section we will discuss ensembling as an additional way to model predictive
uncertainty in neural networks.

—log p(ynlxn) = (2.53)

23

2 Modeling Uncertainty in Supervised Learning

2.4.2 Ensembling/Bootstrapping Neural Networks

The goal of ensembling is to use a collection of base learners to obtain better predictive
performance than would be given by individual base learners alone. Traditionally, the
most popular form ensembles are formed using decision trees as base learners, however
in principle any learning algorithm, or combinations of these, can be used. Here we
discuss ensembles of neural networks.

We can cluster existing ensembling methods in two categories (Lakshminarayanan
et al., 2017): in randomization-based approaches (such as random forests) we optimize
each base learner in isolation, potentially in parallel without any information exchange
between each of them. The other category is formed by boosting-based approaches.
In boosting, we fit the base learner in a stage-wise fashion. For instance, in gradient
boosting each base learner is trained on the residual of the base learner in the previous
stage. By this we can expect the function approximation to be gradually more accurate
in each iteration (Friedman, 2001).

Here we focus on the randomization-based approach in neural networks, because of the
capability of parallelization. Randomization can happen at multiple steps in the training
process. The most basic step is to initialize the parameters of each base learner W, at
random. Because training neural networks is a nonlinear and typically stochastic process,
heterogeneity over the resulting models can be expected due to the varying starting
states. An additional strategy is bootstrapping, also referred to as bagging, where each
base learner is trained on different bootstrap samples from the original training data set.

If we use base learners of neural networks trained by early stopping and running K
instance of it in parallel, we have achieved both randomization and bootstrapping. The
former is achieved by initializing all parameters W at random, whereas the latter is
achieved by using a different validation set (chosen at random) for each base learner.
This way every base learner will have a slightly different training set to learn. Following
the constant uncertainty estimate from the previous section in regression, each base
learner has its own constant uncertainty estimate. In addition we now have a spread in
the predictions in the ensemble. The predictive distribution of the ensemble is now a
mixture of Gaussians with equal weights 1/K:

K

1
(¥« | %x, D) = K ZN(Y*’f(X*§ Weal k) szzal,k)) (2.54)
k=1
1 Nval
Tealk = N Z(f(xn;wval,k) —yn)?. (2.55)

! n=1

There exist many alternative ways of utilizing ensembling to model predictive uncer-
tainty. For instance, Chua et al. (2018) use ensembles of neural networks, where each
network is trained using Eq. (2.53).

In the previous section we have connected the process of training neural networks
to Bayesian modeling. When using ensembling, the relationship to Bayesian modeling
is not as clear. Formally, we conduct multiple MAP estimates under the equivalence

24

2.4 Modeling Uncertainty in Neural Networks

described in Eq. (2.50). At first glance, there is no justification to consider the result-
ing sets of weights {W),..., Wk} as samples from the true posterior p(WW|D). One
approach described in Zimmermann et al. (2012) suggests training an ensemble of over-
parameterized neural networks so that each member has a training error of zero. The
authors then suggest using the ensemble spread as predictive uncertainty. In this case,
a connection to Bayesian modeling can be made: under a delta function as likelihood
function p(yn,|x,, W) and a flat prior p(W), repeated MAP estimates only need to find
the different peaks of the posterior p(WW | D), which can be achieved by different weight
initialization.

2.4.3 Bayesian Neural Networks

In Section 2.1 we have introduced the concepts of Bayesian modeling and in Section 2.2
the fundamentals of variational inference. We will now apply these concepts to neural
networks giving rise to Bayesian neural networks (BNN).

We will begin by defining the model in the context of regression. We have i.i.d.
data D = {x,,yn}Y_,, formed by feature vectors x, € RP and targets y, € RX. We
assume that y,, = f(x,; W) + €,, where f(-,-;V) is the output of a neural network with
weights W and €, ~ N(0,X) is additive Gaussian noise with a diagonal covariance
matrix 3.

We further assume a fixed network topology. The network is a MLP with L layers,
with V; hidden units in layer [, and W = {Wl}lel is the collection of V; x (Vj_1 + 1)
weight matrices. The +1 is introduced here to account for the additional per-layer
biases. In principle, we can maintain uncertainty over the network topology by defining
a hyper-prior over the topology components. For the rest of this thesis, however, we will
assume that the data was generated by a network with a fixed topology.

The first step in Bayesian modeling is to define a prior over the parameters of the
model. For instance, we can specify a Gaussian prior distribution for each entry in each
of the weight matrices in W:

L Vv, Vili+1
V) =TTTI T Nwsalon). (256)
I=1i=1 j=1
This means that before seeing any data, we assume weights that are close to 0 are more
likely. This prior is similar to weight-decay, one technique we introduced in the previous
section to regularize neural networks. More complex prior distributions are possible:
Blundell et al. (2015) show how to use Gaussian mixture priors for more flexibility,
Ghosh et al. (2018) develop so-called horseshoe priors on the weights to induce sparsity
for better model selection and Flam-Shepherd et al. (2017) show how to map GP priors
to BNN priors.
Because we assume Gaussian output noise the likelihood of the data given weights VW
is:

N N K
p(Y W, X) = [o W) =] TIN @] £ W), 5. (2.57)
n=1 n=1k=1

25

2 Modeling Uncertainty in Supervised Learning

With the prior and the likelihood defined, we can now formulate the posterior of the
BNN, that is

p(Y ‘ W7 X)pO(W)

PV =T X)

(2.58)

Given a new input vector x,, we can then make predictions for y, using the predictive
distribution

p(¥+ | %0, D) = / N (3| (W), S)p(W | D) dW . (2.59)

In classification we would instead use a softmax activation of the outputs given by
Eq. (2.45) an a corresponding likelihood function of p(Y | W, X) = HnN:1ﬁn,yn | W, x,,
where, as discussed in Section 2.4.1 , py 4, is the probability of the true label y, under
the model, for a particular set of weights W. The predictive distribution in this case is
the expected probability vector integrated over all weight configuration according to the
posterior p(W | D).

Unfortunately, the exact computation of (2.59) is intractable and we have to use
approximations. Early work used sampling methods to obtain an empirical distribution
over weight samples (Neal, 1996). More recent work showed that augmenting standard
gradient descent with Gaussian noise can also be interpreted as a particular form of
MCMC (Welling and Teh, 2011; Balan et al., 2015; Mandt et al., 2017). Furthermore,
we already identified in the previous section that using dropout has a corresponding
interpretation in Bayesian modeling (Gal and Ghahramani, 2016).

Recently, variational inference has seen increasing interest and here we want to out-
line this particular approach towards BNNs (Blundell et al., 2015; Herndndez-Lobato
and Adams, 2015; Herndandez-Lobato et al., 2016). We approximate the exact poste-
rior distribution p(W | D) with a simpler distribution, typically a factorized Gaussian
distribution:

L V, Vit

aov) = [TTIT TT Nwigalmi o0 | (2.60)
I

=1i=1 j=1

where mé‘il and U%,l are respectively the means and variance of each weight. This ap-
proach of approximating a complex distribution into independent factors is called mean-
field approach, in this case the graph is fully-factored. A recent extension to this method
is given by Louizos and Welling (2016), that uses a matrix variate Gaussian distribution
(Gupta and Nagar, 1999).

The parameters m;"jl, fu;;’ ; are determined by minimizing a divergence between p(WW | D)
and the approximation q.

We can directly apply the Monte Carlo variational Bayes bound in Eq. (2.23) or the a-
divergence minimization given by Eq. (2.35) for optimization. For instance the MC-VB

26

2.4 Modeling Uncertainty in Neural Networks

when using BNNs in regression would be

K
== Z 57 2 logp(alxa W) — KOV llm()] (2.61)
nes
= 72 Zlog/\f Yol f(x0; Wi), B) = K LlgOV)|[po(W)] - (2.62)
k= 1 nES

where the entropy term can be computed in closed form, because both the prior and the
variational distribution is Gaussian. For instance for A = 1 we have:

1 L V, Vit
K LlgW)|[po(W 2—52 > (1 +log(v) — (mif)? = vi,) (2.63)
I=1 i=1 j=1

which was derived in Kingma and Welling (2013). The work in Blundell et al. (2015) (Eq.
(2)) further derives an approximation to the entropy term in Eq. (2.62) that enables
modeling more complex prior distributions such as Gaussian mixtures.

Minimization of this bound is performed with respect to both the variational param-
eters ng I Z]l and the parameters of the Gaussian observation noise 3, which can be
performed by gradient descent and, because the variational distribution is Gaussian,
utilizing the reparameterization trick.

For black-box o minimization we obtain the following formula:

N Yn|xn70k)
E(Xo,A\) = —log Z(A ‘S| Z Z(> (2.64)

yn‘f Xn;Wk)) “
—log Z(A ‘S|Z KZ(W) > . (2.65)

(2.66)

where we dropped the normalization constant of the prior because it does not affect the
minimization and we have:

LV, Vit (mwjl)z
log Z, ZZ Z flog (2mvf’;) + v“: : (2.67)
I=11=1 j=1 4,7,
L V; Vit Y w L
Jl >, Mgl [(J(W)} N
) =exp 2w+ W i1 X | ——=| . (2.68)
(2.69)

BNNs gained a lot of attention in research in the recent years. While much of the work
is focused on theory and improving the inference techniques there is also exciting research
focusing on practical applications. For instance Kendall and Gal (2017) used this class

27

2 Modeling Uncertainty in Supervised Learning

of models for semantic segmentation in computer vision domains. In Houthooft et al.
(2016) the authors utilize the uncertainty over dynamics models to improve exploration
in reinforcement learning. In McAllister et al. (2017) the authors discuss the possible
advantage of using Bayesian neural network for autonomous vehicle safety.

28

3 Modeling Epistemic and Aleatoric
Uncertainty

In this chapter we introduce the concepts of epistemic and aleatoric uncertainty as two
forms of uncertainty in the context of supervised learning. As the centerpiece of this
chapter we present Bayesian neural networks with latent variables (BNN+LV) in Section
3.1, a novel probabilistic model that, unlike standard methods from Bayesian modeling,
can model both of the aforementioned forms of uncertainty. Section 3.2 will show how
to extract and decompose predictive uncertainty into epistemic and aleatoric parts; later
in this thesis, we will show application scenarios where we use this decomposition for
decision-making. Lastly in Section 3.3 we will present a novel model inspection method,
the sensitivity analysis of epistemic and aleatoric uncertainty, to relate the quantities of
uncertainties we see in the predictions to the input features. The methods we develop
in this chapter were previously published in Depeweg et al. (2017a,b,c, 2018).

In the previous chapter, we have introduced the fundamentals of Bayesian modeling
to reason about uncertainty in parametric and non-parametric models in supervised
learning. In particular, we highlighted Gaussian processes and Bayesian neural networks
as two modern methods that see widespread practical use. The premise these methods
share is that an unknown function y = f(x) + € generated the data and we can reason
about this function in a parametric (such as in BNNs) or non-parametric (such as in
GPs) way. This assumption implies a deterministic (functional) relationship between
the inputs and outputs, with the addition of some constant Gaussian observation noise.

There are many situations where this assumption will not hold. Take for example the
problem of predicting the amount of traffic at some intersection (y) based on the current
day of the week (x). While we certainly expect some relationship between the input and
the output—Mondays are expected to be busier than Sundays—, there are many excep-
tions such as public holidays. These phenomena give rise to a multimodal distribution
of traffic intensity on this day of the week. Would we use one of the aforementioned
models for such a task they will however assume that a deterministic function exists and
model a coarse relationship with a high constant noise level e. Many of the patterns in
the data, such as the multimodal distribution in this example, will not be modeled and
expressed by constant noise. Because of this little information would be gained by such
a model.

In many supervised learning problems there exists no fully functional relationship
between the features and the outputs. As in the example above, the feature set may
be limited and thereby insufficient to predict output y based on input features x. We
define this situation as partial observability: there exist additional features that would
enable us to predict y but that are unobserved. We call these unobserved features latent

29

3 Modeling Epistemic and Aleatoric Uncertainty

Training Data Training Data

(a) (b)

Figure 3.1: Example data with heteroscedastic (Fig. 3.1a) and bimodal (Fig. 3.1b) noise.

variables z. In unsupervised learning, the term ”latent variables” is used in the meaning
of ”underlying” variables that generate the observations x in a hierarchical process.
In contrast in our line of reasoning ”latent variables” are characterized as additional,
"hidden” variables that are not part of the feature set x.

The effect of z are noise patterns in the output variables such as multimodality or
heteroscedasticity. Latent variables may also be purely random: in Fig. 3.1 we show
data from two examples with heteroscedastic and bimodal noise. While the data here
was generated using random numbers, we can alternatively say that for instance, in Fig.
3.1b there exists an unobserved feature, a latent variable, that decides where the output
y falls into the upper or lower mode.

Partial-observability or randomness will introduce uncertainty in the prediction prob-
lem: Given only x we will not be able to predict y perfectly and ideally, a model should
express this uncertainty in its prediction. This uncertainty is irreducible: irrespective
of how much training data we have available, it will remain because it is an intrinsic
property of the data. By contrast, in Bayesian modeling we consider uncertainty about
the model, either in parametric or non-parametric form. For instance, in parametric
models we expect the posterior p(@|D) to shrink, that is to become more certain, the
more data we collect. Therefore, this form of uncertainty is reducible uncertainty. In
literature these two forms of uncertainty are referred to as epistemic and aleatoric un-
certainty (e.g Matthies (2007); Der Kiureghian and Ditlevsen (2009)), where epistemic
is the reducible and aleatoric the irreducible part of uncertainty.

Ideally, we would like to have a machine learning algorithm that can express both
epistemic and aleatoric uncertainty with a high level of generality. For decision making,
knowing where a method is uncertain because data are limited, and knowing where a
method is uncertain because of randomness (or partial observability) in the data can
be highly beneficial. Following the example given in Senge et al. (2014) (Section 1),
” A medical doctor, for example, who knows that his uncertainty about the illness of a
patient is caused by a lack of knowledge about the disease in question, may decide to
consult the literature or ask a colleague before making a decision.” By contrast, if the
uncertainty in the diagnosis would be due to partial observability, the doctor may decide

30

3.1 Bayesian Neural Networks with Latent Variables

to do additional diagnostic tests. In the chapters to follow, we will show these advantage
in a set of empirical studies.

Supervised learning methods that utilize Bayesian modeling, such as GPs or BNNs,
only model the epistemic form of uncertainty. While some recent extensions exist, for
instance modeling heteroscedastic Gaussian noise (Lazaro-Gredilla and Titsias, 2011;
Chua et al., 2018), to our knowledge there is no method that both models epistemic
uncertainty via a Bayesian modeling approach and can model complex noise patterns
with a high level of generality. The next section will introduce a novel probabilistic
method that addresses this issue; we will extend the Bayesian neural networks with a
latent variable model.

3.1 Bayesian Neural Networks with Latent Variables

3.1.1 Model Assumption

We want to approximate a parametric function that can express arbitrary noise patterns,
such as multimodality or heteroscedasticity. Similar to Section 2.4.3 we will focus our
derivations on regression and provide the formulas for classification afterward. Let us
assume the unknown function that generated an i.i.d. data set D = {X,Y} formed by
feature vectors x, € RP and targets y, € RX is of the form:

Yn = f(Xm Zn) + €n , (31)

where z, is some unobserved (latent) random variable from an unknown distribution
p(z) and €, ~ N(0,X) is independent Gaussian noise. We assume here that all z;, z;
are conditionally independent given x,. This definition follows Bertsekas (2002) (Eq.
(1)) where it is used to model general stochastic time-discrete systems. Note that the
definition used in Bertsekas (2002) allows a state dependency in z, where z,, ~ p(z|xy),
however, because x,, is already an input of f these two formulations can be transfered
into another: the function f in Eq. (3.1) can transform z, by first applying the cumu-
lative distribution function (CDF) of p(z) and then use the quantile function of p(z|xy,)
to obtain samples from this distribution. This process is called inversion sampling.
While we consider z, as a one-dimensional variable here, the following derivations and
discussions can easily extended towards multi-dimensional latent variables.

The modeling assumption in Eq. (3.1) is very general, we can model arbitrary func-
tions in f and the effect of z on the output y can include any form of stochastic pattern,
such as heteroscedastic or multimodal noise. For instance, y = 10sin(x)z+ 10 cos(x)z+e€
with z ~ Bern(0.5) and € ~ N (0, 1) models the bimodal data we have seen in Fig. 3.1b.

In Section 2.4.1 we introduced neural networks as parametric models. Let us assume
that we can express f, which is deterministic given x and z, via such a neural network.
We can then rewrite:

Yo = f(Xn, 2n) + €
= f(xna Zn; W/) + €n,

31

3 Modeling Epistemic and Aleatoric Uncertainty

where f(-, ;W) is the output of a neural network with weights WW. The network receives
as input the feature vector x,, and the random noise z,. We assume the network has
a feed-forward topology as we described in Section 2.4.1, for instance the activation
functions for the hidden layers could be rectifiers: ¢(x) = max(x,0) and for the output
layers we have the identity function: ¢(z) = x. The network has L layers, with V; hidden
units in layer [, and W = {W,}£_| is the collection of V; x (V;_; + 1) weight matrices.
The +1 is introduced here to account for the additional per-layer biases.

So far the density p(z) could be any probability distribution, which makes modeling
difficult. We can again apply the concept of inversion sampling: arbitrary probability
distributions can be obtained by transforming samples from a Gaussian distribution
through non-linearities, e.g. by applying the Gaussian CDF and then the inverse CDF
of any desired distribution. We can therefore rewrite:

Yn = f(Xm Zny W/) + €, (3.4)
= f(Xmg(Zn)a W,) + €n, Zn N(Oﬁ) (3'5)
= f(Xn, 20; W) + €n, Zp N(O,’Y) , (3.6)

where g computes the Gaussian CDF and then the inverse CDF of the distribution p(z,),
which we assume can be modeled as part of W, and ~ is an optional hyper-parameter.
For this we define, without loss of generality, v = d, where d is the dimensionality of
x. This reasoning behind this is to make the effect of z not vanish for high-dimensional
problems.

We have now introduced the model architecture: given a data set D we assume the
data was generated by an unknown function given by Eq. (3.6). In the data set we only
observe the features X = {xi,...,xy} and targets Y = {y1,...,yn}, while the the
set of weights VW and the latent variables z = {z1,..., 25}, that were used to generate
the training data, are unknown. Using the methodology of Bayesian modeling we can
reason about, that means we can infer a posterior, over both sets of variables W, z. For
the weights, this task is similar to that of ordinary BNNs (see Sec. 2.4.3): the function
in Eq. (3.6) is deterministic, given x and z. Inferring a posterior over zi, ..., zxy means
to reason about the values of the latent variables for every individual training data
point (x,,yn). If we once again consider the bimodal data shown in Fig. 3.1b, the
model should infer that for all those data that fall in the upper mode a different value
for the latent variable is inferred than for those in the lower mode. In this case, the
deterministic part of the architecture, which is modeled by W, only needs to express
the sine and cosine function, while the inferred latent variables act as a discriminator
between both modes.

We note that in principle the constant output noise €, is not needed at all in Eq.
(3.6) because we are already using the more flexible stochastic model based on z,. We
still use it as part of the model, because in practice we make predictions with the above
model by averaging over a finite number of samples of z, and W. By using €,, we
obtain a predictive distribution whose density is well defined and given by a mixture
of Gaussians. If we eliminate €,, the predictive density is degenerate and given by a
mixture of delta functions.

32

3.1 Bayesian Neural Networks with Latent Variables

We will now describe the Bayesian modeling approach which gives rise to Bayesian
neural network with latent variables (BNN+LV).

Let Y be a N x K matrix with the targets y, and X be a N x D matrix of feature
vectors x,. We denote by z the N-dimensional vector with the values of the latent
variables z1,..., 2y that were used to generate the data. The likelihood function is

N N K
p(Y ‘ W, z, X) = H p(Yn ’ W, Zan) = H HN(yn,k | f(xna Zn; W)7 2) . (3'7)
n=1

n=1k=1

The prior for each entry in z is N'(0,7). As in BNN we specify a Gaussian prior distri-
bution for each entry in each of the weight matrices in W. That is,

N

p(z) = [N(zal0,7), (3.8)
n=1
L VvV, Vi.i+l

pOV) =TI TI N(wiil0,X), (3.9)
I=1i=1 j=1

where w;;; is the entry in the i-th row and j-th column of W; and v and A are a prior

variances. The posterior distribution for the weights W and the latent variables z is

given by Bayes’ rule:

p(Y [W,z, X)p(W)p(z)
p(Y | X) ’

Given a new input vector x4, we can then make predictions for y, using the predictive

distribution

p(yx | X4, D) = /{/N(y* | f(Xx, 263 W),)N (24]0,7) dzi | p(OWV, 2| D) dW dz . (3.11)

pW,z|D) =

(3.10)

We want to highlight that in the predictive distribution we use f(Xu,z2; W) with z,
sampled from the prior N'(z4]0,7v). While part of the posterior p(W,z|D) is to infer
for every training data point (x,,y,) a posterior N (z,|un,c2), at test time the y,
associated with x, is unknown and consequently, there is no other evidence on z, than
the one coming from p(z,), because we assume independence between all pairs of (z;, z;).

Unfortunately, the exact computation of (2.4) is intractable and we have to use approx-
imations. In the following we present a variational approximation based on a-divergences
(see Section 2.2.2 for an introduction). We use the a-divergence here, to keep the ap-
proximation general over a whole family of divergences.

3.1.2 Variational Approximation

We approximate the exact posterior distribution p(W, z| D) with the factorized Gaussian
distribution

L V, Vit N
aW,z) = [T TT N (wijalms,, o) [H N(zn\mg,v;)] . (3.12)
I=li=1 j=1 n=1

33

3 Modeling Epistemic and Aleatoric Uncertainty

w W s s : L .
The parameters Mt Ui and m7, v> are determined by minimizing a divergence

between p(W,z|D) ‘and the approximation ¢. After fitting ¢, we make predictions
by replacing p(W, z| D) with ¢ in Eq. (3.11) and approximating the integrals in with
empirical averages over samples of W ~ gq.

We aim to adjust the parameters of (3.12) by minimizing the a-divergence between
p(W,z| D) and qOWV, z):

Do[p(W,z| D)|lqOW, 2)] = 04(061_1) (1 - / pW,z| D)%q(W, z)<1—a>> dWdz, (3.13)

which includes a parameter a € R that controls the properties of the optimal q.

The direct minimization of (3.13) is infeasible in practice for arbitrary a. Following
the methodology we introduced in Section 2.2.2, we optimize an energy function whose
minimizer corresponds to a local minimization of a-divergences, with one a-divergence
for each of the N likelihood factors in (3.7). Since ¢ is Gaussian and the priors p(W)
and p(z) are also Gaussian, we represent g as

[Hf) fr zn] pW)p(z) , (3.14)

where f(WW) is a Gaussian factor that approximates the geometric mean of the N like-
lihood factors in (3.7) as a function of W. Each f,(zy) is also a Gaussian factor that
approximates the n-th likelihood factor in (3.7) as a function of z,. We adjust f(W)
and the f,,(2,) by minimizing local a-divergences. In particular, we minimize the energy
function

P | W, X0, 20, E)Y} , (3.15)

1 N
Ealq) = —log Zg = — D10 Ew.cing [(FOW) fa(zn)

n=1

where f(W) and fy(z) are in exponential Gaussian form and parameterized in terms
of the parameters of ¢ and the priors p(W) and p(z,), that is,

L V Vl—1+1)\ mw 1
2 l 2 7l Q(W) N
—exp ZZ Z < 2;\ w 2,jl + . wi,j,l) X |:p(VV):| s (316)

I=1i=1 j=1 J,l
U, =Y 2 My Q(Zn)
In(zn) :exp{ S’Wﬁ zi+ ngn} x o) (3.17)

and log Z, is the logarithm of the normalization constant of the exponential Gaussian
form of ¢:

L Vi Viatl (m JZ)Q N (m2)?
002, =373 3 [Sismty) + |3 | gami + 2]
I=1i=1 j=1 0,51 n=1 n

34

3.1 Bayesian Neural Networks with Latent Variables

The scalable optimization of (3.15) is done in practice by using stochastic gradient
descent. For this, we subsample the sums for n = 1,..., N in (3.15) and (3.18) using
mini-batches and approximate the expectations over ¢ in (3.15) with an average over K
samples drawn from gq. We can then use the reparametrization trick, first proposed by
Kingma et al. (2015), to obtain gradients from the resulting stochastic approximation
to (3.15). The hyper-parameters 3, A and « can also be tuned by minimizing (3.15),
a process called type-II maximum likelihood we discussed in the previous chapter. In
practice we only tune X and keep A = 1 and v = v/d. The latter means that the prior
scale of each z, grows with the data dimensionality. This guarantees that, a priori, the
effect of each z, in the neural network’s output does not diminish when more and more
features are available.

The predictive distribution of a BNN+LV for the target variable y, associated with
the test data point x, is

p(yalxs) = / P, %, 2)p(2)a (W) dzy AW, (3.19)

where p(y W, Xy, 2+) = N (Y| f (X, 243 W), X) is the likelihood function, p(zx) = N (2|0, 7)
is the prior on the latent variables and ¢(WV) is the approximate posterior for W given
D.

3.1.3 Algorithmic Design Decisions

In this section we want to list a set of hyper-parameter and design choices that we
observed as relevant for training BNN+LV. Some of these carry over from training
ordinary BNN via a-divergence minimization (Hernédndez-Lobato et al., 2016).

Optimizer The energy function given by Eq. (3.15) can be minimized using standard
gradient-based techniques that are also used in training neural networks. Having said
that, in applications we notice that the right choice of the learning algorithm and the
mini-batch size can improve the minimization process: Firstly, using an optimization al-
gorithm such as Adam (Kingma and Ba, 2014) that is adaptive, in the sense that it learns
an individual learning rate for each parameter. In BNN+LV we have a heterogeneous
set of parameters, where each set models something qualitatively different:

e the weight means m" are responsible for function approximation.
e the weight variances v model the uncertainty over the function approximation.

e the parameters of the latent variables m?, v? model the effect of randomness in
the training data. Each data point (x,,y,) has an associated pair of parameter

(mg, v7)-

e Hyper-parameters such as 3 which estimates the constant noise level. Optionally,
the parameters of the prior of the weights and latent variables A,y can be included
in the optimization process.

35

3 Modeling Epistemic and Aleatoric Uncertainty

Because each parameter set is qualitatively different, an algorithm with merely a global
learning rate may only focus on a small subset of parameters that is most volatile. This
can lead to suboptimal convergence.

The second adjustment is to prefer a large mini-batch size. While the algorithm
is defined to also work with small batch sizes, to estimate the noise parameter m? a
form of self-organization over the parameters m? has to take place. For instance, in
a bimodal problem one solution would be to have all data that lie in the first mode
to have a positive associated latent variable, whereas for data that lies in the second
mode the latent variable then should be negative. Because every data point has an
independent pair of parameters a large mini-batch size can help facilitate this form of
self-organization.

Initialization We use the following starting values: the weight parameters m*, v" and
the output noise 3 are set close to zero, for the weight means m* we add Gaussian
noise with standard deviation of 0.1. The parameters of the latent variables, these are
m?, v? are set close to the prior N'(z,]0,7).

With the initialization of these variables we aim to induce a stage-wise behavior in
the learning process. Because the weight and latent variable variances are close to zero,
as well as the output noise, in the first iterations the BNN+LV is expected to behave
similarly to a standard neural network. This is because all sources of uncertainty are
removed bar some non-structured input noise coming from z. Therefore in the beginning
the training process will focus on learning the functional relationship between the inputs
X and outputs Y. Only then it will start modeling the uncertainty over the weights, via
v, and model the stochastic effects in the data, via m?, v©.

Parameter Representation The variance parameter v and v? by definition have to
be positive. Furthermore, looking at Eq. (3.15), the gradients may be unstable if the
variational parameters are the same as the prior parameters or if a large gradient step
will make the variances go negative. Because of this we represent these two parameters
in logit space, optimizing logit_v*, logit_v* such that

v = sigmoid(logit_v*)\ . (3.20)

By this the variance of each weight can only reach the prior asymptotically and never
exactly. Furthermore, the optimization of logit_v" is unconstrained, whereas v would
be restricted to R*.

3.1.4 Amortized Inference

In Eq. (3.12) we approximate a posterior over latent variables for every training data
point (x;,y;). This can be problematic for two reasons:

1. The memory requirement of this algorithm grows linearly with the size of V.

2. In optimization we have a mix of global and local parameters.

36

3.2 Uncertainty Decomposition

The second reason requires an explanation: During training we optimize the parameters
of the variational distribution of the weights and the variational distribution over the
latent variables, as shown in Eq. (3.14). Any particular data point or mini-batch will
potentially influence ¢(W), but only a single data point will influence each ¢(z;). This
means if we optimize the energy, given by Eq. (3.15) by stochastic gradient descent,
the gradient w.r.t. the parameters of ¢(W) will be dense, whereas w.r.t. ¢(z;) it will
be sparse. This can make convergence of the algorithm slow. An additional problem
lies in the application to computer vision domains. Here, numerous preprocessing steps
are utilized that improve performance in practice. Some of them will generate novel
(not part of the original data set) images by applying transformations such as shifting
or perturbing pixels. This potentially leads to very large (theoretically infinitely-large)
effective data sets.

A solution to this problem is given by amortized inference. The main idea is ”to solve
many similar inference problems, and [..] thus offload part of the computational work
to shared precomputation and adaptation over time” (Stuhlmdiiller et al., 2013). Such a
process can be performed by an inference network (Kingma and Welling, 2013). In the
context of BNN+LV this means, instead of learning the parameters of the posterior ¢(z;)
of each latent variable, we learn a joint set of parameters W, of a function, that given
the context (x,,y,) outputs the values of the two, formerly free, parameter (m?,v?).

n» -n
By that we have ”amortized” the process of inferring the latent variables. In particular:

N
q(z) = [[N(zn | mi, ;) (3.21)
n=1
N
~ [N(znlmi, vf = (%0, yns W2)) - (3.22)
n=1

Consequently, we now only optimize the weights W, and the parameters of ¢(W) in
the inference process. This solves the aforementioned problems in the optimization
process. However, using amortization introduces an additional source of bias in the
variational approximation in addition to the already existing bias originating from mean-
field approximation of the posterior distribution. We refer to Cremer et al. (2018) for a
more detailed discussion and study of these two biases.

3.2 Uncertainty Decomposition

We have introduced a new probabilistic model by augmenting a Bayesian neural network
with latent variables. The model is designed to not only maintain uncertainty over its
parameters but also to model the noise in the data. In the predictive distribution of
BNN+LV given by Eq. (3.19), the randomness or uncertainty on y, has its origin in
W ~ q(W), z, ~ p(z) and € ~ N (0, X).

The role of the latent variables is to model the noise in the data, whereas the uncer-
tainty in the weights given by ¢(W) represents the uncertainty about the function f.
At the beginning of this chapter we introduced the two forms of uncertainty, epistemic,

37

3 Modeling Epistemic and Aleatoric Uncertainty

which is reducible and aleatoric, which is irreducible uncertainty. In the predictions of
vy, the aleatoric uncertainty originates from the randomness of z, and € and cannot be
reduced by collecting more data. By contrast, the epistemic uncertainty originates from
the randomness of W and can be reduced by collecting more data, which will typically
shrink the approximate posterior g(W).

Eq. (3.19) is the tool to use when making predictions for y,. However, there are many
settings in whic for decision-making purposes, we may be interested in separating the
two forms of uncertainty present in this distribution. In later chapters of this thesis, we
will show a set of tasks where this is the case. The main motivation of this section is:
How can we disentangle these different forms of uncertainty?

In Chapter 2 we discussed different metrics to quantify predictive uncertainty. We
can extend the metrics to disentangle the epistemic and aleatoric components. Let H(-)
compute the differential entropy of a probability distribution. The total uncertainty
present in Eq. (3.19) can then be quantified as H(y,|x,). Let us assume that we do not
integrate WV out in Eq. (3.19) and, instead, we just condition on a specific value of this
variable. The result is then

P(y«W,x,) = /p(y*\W, X, 2)P(24) A2y (3.23)

with corresponding uncertainty H(y,|W,x,). The expectation of this quantity under
q(W), that is, Eqoy)[H(y«|W, x,)], can then be used to quantify the overall uncertainty in
Eq. (3.19) coming from z, and e. Therefore, E;y)[H(y+|W, x,)], measures the aleatoric
uncertainty. We can then quantify the epistemic part of the uncertainty in Eq. (3.19)
by computing the difference between total and aleatoric uncertainties:

Hly.[x.] = Eqom) [H(y« W, x:)] = I(ys, W), (3.24)

which, as indicated, is the mutual information between y, and W.

The decomposition can best be understood visually; we show this in the information
diagram in Figure 3.2. The entropy of the predictive distribution of y, is the circle on
the right side, composed of the blue, cyan, grey and pink areas. The blue area represents
H(y,|W, z,) which is a constant for all inputs x,. When both W and z are given, the
entropy of y is given by the entropy of the additive Gaussian noise € ~ N (0, X). H(y|W)
is given by the light and dark blue areas. This is the aleatoric part of the uncertainty of
¥ because it is unaffected by the (reducible) uncertainty over the network parameters
W. On the other hand, the pink and grey area forms the epistemic uncertainty because
it is affected by the uncertainty over the network parameters. These two, together form
the mutual information between W and y,.

Instead of the entropy, we can use the variance as a measure of uncertainty. Let o2(-)
compute the variance of a probability distribution. The total uncertainty present in
Eq. (3.19) is then o2(y.|x.). This quantity can then be decomposed using the law of
total variance:

02 (y41%.) = 0%y (Blys W, x.]) + By 02 (v W, x,)] (3.25)

38

3.3 Sensitivity Analysis of Epistemic and Aleatoric Uncertainty

H(z[W,y)

IA\
I(W; 2ly) o NI(y; 2(W)
4 p

! AY

AY
1

I
l,"f Wiy 2) »

Figure 3.2: Information diagram illustrating quantities of entropy with three variables. The
area surrounded by a dashed line indicates the mutual information between y, and
W. A conditioning to x, is omitted for readability.

where E[y,|W,x,] and o2[y.|W,x,] are, respectively, the mean and variance of y, ac-
cording to p(y,|W,x,). In the expression above, ag(w)(E[y*\W,x*]) is the variance of
Ely.W,x,] when W ~ ¢(W). This term ignores any contribution to the variance of y,
from z, and € and only considers the effect of YW. Therefore, it corresponds to the epis-
temic uncertainty in Eq. (3.19). By contrast, the term Eyyy)[0?(y.|W, x,)] represents
the average value of o(y|W,x,) when W ~ ¢(W). This term ignores any contribution
to the variance of y, from W and, therefore, it represents the aleatoric uncertainty in
Eq. (3.19).

In some cases, working with variances can be undesirable because they have square
units. To avoid this problem, we can work with the square root of the previous terms.
For example, we can represent the total uncertainty using

1
2

o(y+lx0) = {020m) (Bly W, x.]) + By [0 (v W,)] | (3.26)

We have introduced two approaches to decompose predictive uncertainty into epis-
temic and aleatoric components. In the chapters that follow we will utilize these de-
compositions for a set of machine learning applications, such as active learning and
risk-sensitive reinforcement learning.

3.3 Sensitivity Analysis of Epistemic and Aleatoric Uncertainty

Extracting human-understandable knowledge out of black-box machine learning methods
is an important topic of research. One aspect of this is to figure out how sensitive the

39

3 Modeling Epistemic and Aleatoric Uncertainty

model response is to which input variables. This can be useful both as a sanity check,
if the approximated function is reasonable, but also to gain new insights about the
problem at hand. For neural networks this kind of model inspection can be performed
by a sensitivity analysis, a simple method that works by considering the gradient of the
network output with respect to the input variables (Fu and Chen, 1993; Montavon et al.,
2018).

Here, we want to transfer this idea towards predictive uncertainty: What features
impact the uncertainty in the predictions of our model? Using the uncertainty decom-
position, that we have outlined in the previous Section, we can further specify this
question to: How sensitive is each feature towards epistemic and aleatoric uncertainty?

Answers to this question can provide useful insights about a model at hand. For
instance, a feature with high aleatoric sensitivity indicates a strong interaction with
other unobserved/latent features. If a practitioner can expand the set of features by
taking more refined measurements, it may be advisable to look into variables which may
exhibit dependence with that feature and which may explain the stochasticity in the
data. Furthermore, a feature with high epistemic sensitivity, suggests careful monitoring
or extended safety mechanisms are required to keep this feature values in regions where
the model is confident.

We start by briefly reviewing the technique of sensitivity analysis (Fu and Chen, 1993;
Montavon et al., 2018), a simple method that can provides insight into how changes in
the input affect the network’s prediction. Let y = f(x; W) be a neural network fitted on
a training set D = {x,, yn}gzl, formed by feature vectors x,, € RP and targets y, € R¥.
We want to understand how each feature ¢ influences the output dimension k. Given
some test data Diest = {x7%, %}t we use the partial derivate of the output dimension

n=1 >
k w.r.t. feature i:

1 Ntcst

of (X3,)k
N ;]7&% . (3.27)

I =

In Section 3.2 we have shown how to decompose the variance of the predictive dis-
tribution of a BNN+LV into its epistemic and aleatoric components. Our goal is to
obtain sensitivities of these components with respect to the input variables. For this
we use a sampling based approach to approximate the two uncertainty components and
then calculate the partial derivative of these w.r.t. to the input variables. For each test
data point x7, we perform N, x N, forward passes through the BNN. We first sample
w ~ q(W) a total of N, times and then, for each of these samples of ¢(W), perform-
ing N, forward passes in which w is fixed and we only sample the latent variable z.

Then we can do an empirical estimation of the expected predictive value and of the two

40

3.3 Sensitivity Analysis of Epistemic and Aleatoric Uncertainty

components on the right-hand-side of Eq. (3.25):

1 ’LU Z
E[ynk’ n ~ Nii Z Z ynw,nz n (328)
nw=1n,=1
1 &
qow) (Ep(e) [y Vs X0]) = v, (- D Y (50K (3.29)
z n,=1
1 1 ll 1
E, o) [Uz(z*)(yr*z,k|W7X2)]§ ~ (Ni Z o, W, (X0)K)) 2 - (3.30)
w nw=1

where yr . (x3)k = f(x}, 2" W), and 63, (6%,) is an empirical estimate of
the variance over N, (N,,) samples of z (W). We have used the square root of each
component so all terms share the same unit of y; - Now we can calculate the sensitivities:

Niest 8E ynk|x)

= 3.31
zk Ntest nz: ‘ ‘ ()
Lt 9o [y kW, x3)])

Ieplstemlc o Q(W) (Z n,k 3.32
ik Ntest 7; ‘ :n ‘ ()

Nies 5
J2leatoric _ 1 . 8EQ(W) [UP(Z*)(y:L,k|W’ X;)] 2 } (3 33)

N, ox¥ ’ ’
test n—1 in

where Eq. (3.31) is the standard sensitivity term. We also note that the general draw-
backs of the sensitivity analysis, such as considering every variable in isolation, arise due
to its simplicity (Montavon et al., 2018). These will also apply when focusing on the
uncertainty components.

41

4 Data Sets and Benchmarks

In the upcoming chapters we will shift the focus from a purely methodological base
towards specific application scenarios in machine learning. A part of this is to evaluate
the performance of different methods on data sets and benchmarks. In this chapter
we want to provide an overview about these and shortly describe their properties and
domains associated with each task.

In Section 4.3.2 we introduce the industrial benchmark (IB), which was previously
published in Hein et al. (2017a).

4.1 Standard Regression Benchmarks

Dataset N d
Boston Housing 506 13
Combined Power Plant 9568 4
Concrete Strength 1,030 8
Energy Efficiency 768 8
Kin8nm 8,192 8
Naval Propulsion 11,934 16
Wine Quality Red 1,599 11

Table 4.1: Description of the 7 selected data sets. IV is is the number of examples and d is the
dimensionality of input features.

We obtain a set of standard regression benchmarks from the UCI machine learning
repository (Lichman, 2013), a platform that provides a rich pool of data sets. From this
set we choose 6 data sets for regression with real-valued inputs and outputs and add
another one, the "Kin8nm” data set, from the Delve data set repository (Group, 2019).
In Table 4.1 we list these and provide summary statistics for each problem at hand.
From the table we can see that the data sets have varying sizes and number of features.
We now provide a short description of each, which we obtained from Lichman (2013):

e Boston Housing: predict housing values in suburbs of Boston, based on features
such as the pupil-teacher ratio in the area or the accessibility to radial highways.

e Combined Power Plant: predict the hourly electrical energy output if a power
plant based on features based on ambient sensors such as temperature or relative
humidity.

43

4 Data Sets and Benchmarks

Training Data Training Data

(a) (b)

Figure 4.1: Example data with heteroscedastic (Fig. 3.1a) and bimodal (Fig. 3.1b) noise.

e Concrete Strength: predict the compressive strength of concrete based on physical
measurements such as the amount of cement or the age of the concrete.

e Energy Efficiency: predict the heating load requirement of buildings based on
building parameters such as the surface or wall area.

e Kin8nm: Given data from a simulation of 8 link robot arm the task is to predict
the distance of the end-effector from a target, based on sensors such as the joint
positions and twist angles.

e Naval Propulsion: Given data from a simulated gas turbine operated on a naval
vessel the task is to predict the decay state coefficient of the turbine based on
features such as the ship speed or temperature measurements of the turbine.

e Wine Quality Red: predict the quality of red wine based on features such as the
acidity or pH score of the wine.

4.2 Artificial Benchmark Problems

We consider two artificial benchmark problems with heteroscedastic and bimodal noise
patterns. In the heteroscedastic toy problem we sample from

y = Tsin(x) + 3| cos(z/2)le , (4.1)

where € ~ N(0,1) and = € [—4,4]. In Fig. 4.1a we show example data that is sampled
from this function uniformly in input space, the plot shows how the noise level varies as
a function of x.

In the bimodal toy problem we define

y = z10cos(z) + (1 — 2)10sin(z) + €, (4.2)

where € ~ N (0,1), z ~ Bern(0.5) and x € [—0.5,2]. 4.1b we show example data that is
sampled from this function uniformly in input space, the plot shows how the function
varies between a bi- and unimodal noise pattern as a function of x.

44

4.3 Dynamics Systems

4.3 Dynamics Systems

Here we introduce a set of 4 different dynamics systems. These are benchmarks where an
agent can potentially interact with by executing actions. These make these benchmarks
suitable to study reinforcement learning problems, which we will discuss in more detail
in Chapter 7.

These benchmarks were chosen based on two criteria. First, we want to have a set
of easily reproducible, artificial benchmarks and a set of real-world scenarios. Secondly,
these benchmarks should be expected to have some form of stochasticity as part of their
dynamics.

4.3.1 Wet-chicken Benchmark

Waterfall
]
A 1~ Q
@

\
A

S 2

\ N

Figure 4.2: Illustration of the wet-chicken problem.

The wet-chicken benchmark (Tresp, 1994) is a stochastic system used for reinforcement
learning that presents both bi-modal and heteroscedastic transition dynamics. We use
the two-dimensional version of the problem (Hans and Udluft, 2009) and extend it to
the continuous case.

In this problem, a canoeist is paddling on a two-dimensional river. The canoeist’s
position at time ¢ is (x¢,y;). The river has width w = 5 and length [= 5 with a
waterfall at the end, that is, at y; = [. The canoeist wants to move as close to the
waterfall as possible because at time ¢ he gets reward r; = —(I — y;). However, going
beyond the waterfall boundary makes the canoeist fall down, having to start back again
at the origin (0,0). At time ¢ the canoeist can choose an action (asz,at,) € [—1,1]?
that represents the direction and magnitude of his paddling. The river dynamics have
stochastic turbulences s; and drift v; that depend on the canoeist’s position on the x
axis. The larger ¢, the larger the drift and the smaller x;, the larger the turbulences.
The underlying dynamics are given by the following system of equations. The drift and
the turbulence magnitude are given by v; = 3zyw™' and s; = 3.5 — vy, respectively.
The new location (441, y1+1) is given by the current location (x¢,v;) and current action

45

4 Data Sets and Benchmarks

(@t .z, aty) using

0 if xitap: <0
CooTrT e 0 if §u1<0
0 if g1 >1 e
Tyl = . R Yy1 =< 0 if Yt+1 > [, (4.3)
w it z4ar, >w

) Jt+1 otherwise
x¢ +a; otherwise

where gr11 = y¢ + (ary — 1) + v + 547 and 7w ~ Unif([—1,1]) is a random variable
that represents the current turbulence. In Fig. 4.2 we provide an illustration of the
benchmark and show visually how turbulence and drift change according to the position
of the canoeist.

The wet-chicken dynamics result in complex transition distributions depending on the
position. As the canoeist moves closer to the waterfall, the distribution for the next state
becomes increasingly bimodal, because when he is close to the waterfall, the change in
the current location can be large if the canoeist falls down the waterfall and starts again
at (0,0). The distribution may also be truncated uniform for states close to the borders,
because the canoeist may never leave the boundaries [0, 1]2. Furthermore the system has
heteroscedastic noise, the smaller the value of x; the higher the noise variance. Because
of these properties, the wet-chicken benchmark is especially difficult to approximate
using supervised learning techniques.

4.3.2 Industrial Benchmark

The industrial benchmark (IB) is a recently introduced benchmark that includes a va-
riety of aspects found to be vital in industrial applications (Hein et al., 2017a). An
implementation of this benchmark is publicly available'. While this benchmark is not a
direct approximation of any real system, it was designed to pose the same hardness and
complexity. Furthermore, the process of searching for an optimal action policy on the
IB is supposed to resemble the task of finding optimal valve settings for gas turbines or
optimal pitch angles and rotor speeds for wind turbines. The state and action spaces of
the IB are continuous and high-dimensional, with a large part of the state being latent
to the observer. Formally this makes the IB an instance of a partially observable MDP
(POMDP). The dynamical behavior includes heteroscedastic noise and a delayed reward
signal that is composed of multiple objectives. The IB is designed such that the optimal
policy will not approach a fixed operation point in the three steerings. All of these design
choices were driven by experience with industrial challenges.

In this benchmark the hidden Markov state space s; consists of 27 variables, whereas
the observable state o; is only 6 dimensional. This observable state consists of 3 ad-
justable steering variables A;: the velocity v(t), the gain g(¢) and the shift s(t). We
also observe the fatigue f(t) and consumption c(¢) that together form the (known) re-
ward function r(¢) = —(3f(t) 4+ ¢(t)). The final observable variable of the IB, setpoint
p, influences the dynamical behavior of the environment but can never be changed by

"http://github.com/siemens/industrialbenchmark

46

 http://github.com/siemens/industrialbenchmark

4.3 Dynamics Systems

actions. An analogy to such a setpoint is, for example, the demanded load in a power
plant or the wind speed actuating a wind turbine. Different values of setpoint p will
induce significant changes to the dynamics and stochasticity of the benchmark.

An action a; € [0,1]® consists of proposed changes to each of the three steerings
variables. Each steering is limited to [0, 100] as follows:

ay = (A'Ut, Agt7 Aht)a (44)
vy = max(0, min(100,v; + d¥Awvy)), (4.5)
gir1 = max(0,min(100, g; + d®Agy)),
hyp1 = max(0, min(100, hy + d"As,)),

with scaling factors d¥ = 1, d® = 10, and d® = 5.75. The step size for changing shift is
calculated as d® = 20sin(15°)/0.9 ~ 5.75.

After applying action a;, the environment transitions to the next time step ¢ 4+ 1 in
which it enters internal state sy41. State s; and successor state sy41 are the Markovian
states of the environment that are only partially observable to the agent.

4.3.3 Gas Turbine Data

We have a set of 40,000 observations of a 30-dimensional time-series of sensor recordings
from a real gas turbine and a cost function that evaluates the performance of the current
state of the turbine. The features in the time-series are grouped into three different sets:
a set of environmental variables E; (e.g. temperature and measurements from sensors
in the turbine) that cannot be influenced by an agent, a set of variables relevant for the
cost function Ny (such as the turbines current pollutant emission) and a set of steering
variables A; that can be manipulated to control the turbine. In particular the steering
variables manipulate the combustion valves of the turbine where the air and gas mix is
lead into the chamber.

4.3.4 Wind Turbine Simulator

We have a modified version of the HAWC2 wind turbine simulator (Larsen and Hansen,
2007), which is widely used for the study of wind turbine dynamics (Larsen et al., 2015).

In this problem we observe the turbine state s(t), with features such as direction and
speed of the wind, temperatures, electric currents and voltages, as well as vibrations
produced by major components such as the generator and the rotor blades. The system
can be influenced via actions a(t) that adjust the turbine’s behavior, with known upper
and lower bounds. The goal is to maximize energy output over a one-step horizon.

The system is expected to be highly stochastic due to the unpredictability of future
wind dynamics. Furthermore the dimensionality of state observation is much higher
than the action dimensionality.

47

4 Data Sets and Benchmarks

4.4 MNIST Handwritten Digit Data

(a) (b) (c) (d)

Figure 4.3: Four Example images of MNIST handwritten digit data.

The MNIST benchmark is a data set of handwritten digits (LeCun et al., 1998). The
data set consists of 60,000 training examples, and a separate test set of 10,000 examples,
of grayscale 28 x 28 images. Each image has an associated label, which are digits from
0to 9.

In Fig. 4.3 we show 4 example images. We see that for a human observer the correct
class of the image is immediately obvious. However, because each image is handwritten,
we can expect significant deviations in the images in each class in shape, size, rotation
or minor mistakes in the drawing process such as the small white dot in Fig. 4.3a.

48

5 Accuracy and Uncertainty Calibration in
Regression

In this chapter we investigate the predictive performance of BNN+LV in regression.
For this we will consider a wide range of tasks, including a set of standard regression
benchmarks (see Section 4.1), artificial benchmark problems (see Section 4.2) and data
from dynamics systems (see Section 4.3). We will compare the performance of BNN+LV
against several baselines, such as neural networks and Gaussian processes. Moreover,
we further study the effect of the divergence method used for optimizing BNN+LV,
on predictive performance. As a metric we will evaluate both the quality of function
approximation using the standard squared error and the quality of uncertainty estimates
via the log-likelihood.

This chapter is structured as follows: We start by defining the regression problem and
evaluation criteria. We will then specify the model and baselines we consider in this
study including hyper-parameters. We then will report the results of our studies and
summarize our main findings.

5.1 Problem Description

In regression we are interested in estimating a function from data. We are given
data D = {xn,yn}ﬁf:l, formed by feature vectors x, € R and targets y, € RX. The
problems we consider here have scalar output, that is K = 1.

We split the data set randomly into a training and test set, where we use 90% for
training and the remaining 10% of data for testing. For training only the training data
set is visible to each learning algorithm and at evaluation we use the test data to mea-
sure performance. We repeat this process five times to obtain summary statistics. These
statistics are the average performance under a particular metric and the standard error,
which is the standard deviation divided by the square root of the number of repeti-
tions. As preprocessing we perform the standard normalization, that is transforming
the training data to have unit variance and zero mean. Reported evaluation criteria are
computed in unnormalized space.

In Chapter 4 we provided an overview about all data sets and benchmarks we use in
this thesis. For this study we will now provide the specific configuration.

1. Standard Regression Benchmarks: We use the full data sets that are publicly
available!.

"https://archive.ics.uci.edu

49

https://archive.ics.uci.edu

5 Accuracy and Uncertainty Calibration in Regression

2. Artificial Benchmark Problems: We sample uniformly in input space n = 1000
data points for the heteroscedastic and n = 2500 data points for the bimodal
problem, respectively.

3. Wet-chicken: We generate n = 2500 state transitions using random actions and
predict from the current state s(¢) and action a(t) the y-dimension of successor
state s(t + 1).

4. Industrial Benchmark: For each setpoint p € {10,20,...,100} we generate 5
trajectories of length 1000, with random exploration. This totals a data set of size
n = 50000. We predict the reward from a history of observable states, that is:

r(t) = f(p(t —14),...,0(t), (5.1)
gt —14),...,9(¢t), (5.2)
h(t —14),...,h(t),, (5.3)
r(t—15),...,r(t—1)), (5.4)

where v, g, h are the three steering variables, the velocity v(t), gain g(¢) and shift
h(t). This time-embedding of input features is done to lower the effect of temporal
dependencies in this benchmark (see e.g. Bush and Pineau (2009) for a discussion
on this). By that the total input dimension is d = 61.

5. Wind Turbine: We have a data set available of n = 10000 observations with
random exploration. We predict the reward signal from the current state s(¢) and
current action a(t).

6. Gas Turbine: We have a data set available of n = 38000 observations, the visible
state has d = 135 features. We predict the reward signal from the current state
s(t) and current action a(t).

Evaluation Criteria

The models we consider in this study provide a distribution over output variables
P(yx|xx). To assess the quality of this distribution we will use two metrics: the root
mean squared error (RMSE) between the true target y, and the expected value of the
model predictive distribution and the log-likelihood (LL) of the data under the model.

Root mean squared error The root mean squared error (RMSE) for a one dimensional
target variable y is defined as:

Ntest
1
E = o — Elp(in|x.])2 . 5.5
N n§:1 (y [P(Un|%n]) (5.5)

This metric measures how close the expected value of the predictive distribution of the
model is to the data of the test set. We note that for multivariate regression problems

50

5.2 Model & Baseline Specification

this can be problematic because the output variables can have different scales. In this
study this does not pose a problem, because we only consider one-dimensional output
variables.

Log-likelihood In the previous chapters we discussed different methods how to model
uncertainty in supervised learning. For some of these methods the predictive distribution
is a Gaussian. The log-likelihood of a test data point (x,,y.) under the model therefore

(5 — p1(x,))?

) (5.6)

1

log p(y«|x«) =) log(27‘r02(x*)) -
where p(x,),02(x,) are, respectively, the expected value and variance given by the
model. We see in Eq. (5.6) that the squared error also appears in this quantity, the
data point becomes more likely if the prediction and the target value are close, weighted
by the how certain or uncertain the model is in its prediction. In other methods the
predictive distribution is a Gaussian mixture. In this case the log-likelihood is:
(Y« — mc(x*))2)

N (5.7)

K
1 1
In p(y«|x4) = In 74 Z exp (5 log(2mos (%)) —
k=1

where K is the number of samples. For every test data point (x,,y,) we will compute
the log-likelihood and then average over the test set. This gives us the average test
log-likelihood of the test set under the model.

The predictive log-likelihood measures the calibration of uncertainty estimates, and
is widely used in standard literature as the primary metric for uncertainty quality. Its
main advantage is that this metric does not make assumptions about the shape of the
target distribution. By contrast, the RMSE will give non-meaningful results if the test
data is highly stochastic, for instance in bimodal cases.

5.2 Model & Baseline Specification

The main method we investigate in this experiment is a BNN+LV trained via a-
divergence minimization with default o = 1. Here, we will compare this method to a
set of baselines. We will first describe the individual baseline methods and then specify
hyper-parameters we use for training. The list of baselines are:

1. Standard neural networks (MILP): As outlined in Section 2.4.1 we train a MLP
using early stopping. We form the predictive distribution using the validation error
as we described in the aforementioned section. By that the predictive distribution
of the MLP is a homoscedastic Gaussian given by Eq. (5.6).

2. MLP Ensemble (MLP Ens.): The ensemble consists of 25 neural networks by
running the training process of the MLP 25 times in parallel. The predictive
distribution of the MLP ensemble is then a mixture of Gaussians (see Eq. (2.55))
and we obtain the log-likelihood via Eq. (5.7), with K = 25.

o1

5 Accuracy and Uncertainty Calibration in Regression

3. Gaussian processes (GP): We use GPs with a standard RBF kernel. We refer to
Section 2.3 for more details on GPs. For large data sets (these are: Industrial
Benchmark, Kin8nm and Naval Propulsion) standard GPs will not work, due to
their limited scalability. We then use sparse GPs as described, where we set the
number of inducing points to 100.

4. Bayesian neural networks (BNN): BNN is trained with o = 1 but does not have
a latent variable model, it is trained via the mechanism described in Section 2.4.3,
in particular using Eq. (2.65).

In a second study we will also investigate different choices of divergences in training
BNN+LV. In particular we will compare choices for o € {1076,0.5,1.0}. The most
prominent approach in training modern BNNs is to optimize the variational lower bound
as described in Section 2.4.3, in particular by MC-VB given by Eq. (2.62). In practice we
can approximate this using a-divergence minimization when o« — 0 (Herndndez-Lobato
et al., 2016). In our experiments we use BNN+LV with a = 1075 and call this method
variational Bayes (VB). We further consider v = 0.5 because is a special case in the a-
divergence: it is the only metric that is symmetric and is expected to achieve a balance
between the exclusive (VB) and inclusive KL-divergence.

For all architectures based on neural networks, that is the MLP, the ensemble of
MLPs, BNNs and BNN+LV we use two hidden layers with linear rectifier as activation
function. We use 20 hidden units per layer for the artificial benchmark problems and
the wet-chicken benchmark and 50 hidden units everywhere else. For these methods we
train for 5000 epochs with a learning rate 0.001 for BNN(+LV) and 0.0001 for the MLP
and MLP ensemble. As an optimizer we use Adam (Kingma and Ba, 2014). For the GP
we use the standard implementation provided by GPy?.

5.3 Experiments

We show the results for test log-likelihood and RMSE in Table 5.1. Overall we see that
BNN+LV perform best in terms of log-likelihood whereas ensembles of neural networks
perform best in terms of RMSE.

Looking into test log-likelihood first, we find the advantage of BNN+LV is most promi-
nent in dynamic systems and artificial benchmark problems, where there is a clear im-
provement over all baselines. In the standard regression benchmarks, the MLP ensem-
ble, BNN and BNN+LV all seem perform equally on average (in fact their average rank,
would we only consider this set of benchmarks has the same value of 2.43). We believe
that most of these problems are largely deterministic, except for the ”Wine Quality
Red” data set. Presumably, the features in this problem that describe a given wine are
not sufficient to predict the quality, resulting in stochasticity in the data. On the other
hand in the artificial benchmark problems and dynamic systems, there is a high degree
of stochasticity involved, and consequently, BNN+LV outperform all baselines, and in
particular the BNN, which has the same properties bar the latent variables.

2https://github.com/SheffieldML/GPy

52

https://github.com/SheffieldML/ GPy

5.3 Experiments

Training Data MLP Ensemble BNN+LV

Training Data BNN+LV

MLP Ensemble

—15[°

-15 0.0 15 0.0 5
(d) (e) (f)
Figure 5.1: Predictive Distribution of MLP ensemble and BNN+LV on artificial benchmark

problems.

Considering the test RMSE in Table 5.1, we find that the MLP ensemble is performing
best throughout most of the tasks. The improvement over the standard MLP confirms
an insight into the advantage of ensembling in supervised which is known since decades
(e.g Hansen and Salamon (1990)). Under this metric, also BNN and BNN+LV out-
perform the standard MLP, albeit not by a wide margin. We note, however, that for
problems with strong stochasticity, the RMSE alone is not a good metric quantify to
assess predictive performance. For instance, in the heteroscedastic problem the ensemble
of MLPs outperforms the BNN+LV in terms of test error. However, when looking at
their predictive distributions, shown in Figure 5.1, we see that the BNN+LV has learned
both the heteroscedastic (Fig. 5.1c) and the bimodal (Fig. 5.1f) structure of the noise.
By contrast, the ensemble in both problems did not capture heteroscedasticity (Fig.
5.1b) or bimodality (Fig. 5.1e).

As a second study we investigate the effect of the divergence measure used in a-
divergence minimization for BNN—+LV, which is parameterized by the hyper-parameter
a. The results are summarized in Table 5.2, where we included the results for the MLP
ensemble for better comparison. Overall we see that the divergence affects the results
on both RMSE and log-likelihood. In particular, it seems that for lower a (such as VB)
the RMSE decreases, whereas the log-likelihood decreases as well. Similarly, for « = 1.0
we obtain a higher RMSE but better log-likelihood values. a = 0.5 seems to obtain
a favorable trade-off is achieved that performs quite well in both scenarios. Overall,
the relationship of BNN+LV towards ensembles of neural networks with respect to the
test metrics is relatively constant for all values of a. MLP ensembles still outperform

93

5 Accuracy and Uncertainty Calibration in Regression

BNN+LV under the RMSE metric, while for log-likelihood BNN+LV perform better
(except for VB).

5.4 Discussion

Overall, we found that BNN+LV showed a significant increase in predictive performance
in the presence of noise. The improvement in real-world dynamic systems suggests that
these systems have stochastic state transitions, making BNN+LV promising candidates
as a model for these systems. In terms of approximation quality in terms of RMSE,
BNN-+LV are similar to GPs and BNNs, whereas ensembles of neural networks perform
better. We believe ensembles outperform BNN(4LV) in terms of approximation due
to higher diversity. The variational distribution of BNN(+LV) consists of only a pair
parameters, namely the means and variances for each weight w; ;;, whereas for the
ensemble we have a total of K = 25 parameters for each weight. This means in weight
space, more diverse solutions can be modeled and higher diversity in ensembles is linked
to better generalization (Brown, 2004).

Comparing different a-divergences we found that the choice of o seems to act as a
trade-off between the quality of function approximation, measured by RMSE, and uncer-
tainty calibration, measured by the log-likelihood. This finding has also been reported in
recent publications, such as Herndndez-Lobato et al. (2016) or Li and Gal (2017). Set-
ting a = 0.5 appears to be a promising candidate as default setting for the divergence
to minimize in variational inference for supervised learning.

o4

5.4 Discussion

Method
Dataset MLP MLP Ens. GP BNN BNN-+LV
RMSE
Boston Housing 2.90+0.30 2.50+0.34 2.68+0.34 3.144+0.33 3.33£0.35
Combined Power Plant 3.91+0.07 3.78+0.07 4.05+£0.07 4.06£0.10 3.97+0.07
Standard Concrete Strength 4.98+0.35 4.58+0.32 5.56+£0.23 4.94+0.18 5.1840.21
Regression Energy Efficiency 0.5740.02 0.5040.02 0.48+0.02 0.5240.02 0.52+0.03
Benchmarks Kingnm 0.07£0.00 0.07+0.00 0.0840.00 0.07£0.00 0.07+0.00
Naval Propulsion 0.01£0.00 0.01£0.00 0.00£0.00 0.0840.01 0.2540.11
Wine Quality Red 0.64+0.02 0.61+0.02 0.62+0.02 0.67+£0.02 0.660.02
" Artificial Heteroscedastic =~ 1.834£0.10 1.82+0.11 1.82+0.11 1.834+0.12 1.83+0.11
Problems Bimodal 5.20+0.07 5.1940.06 5.18+0.06 5.20+0.06 5.18-+0.06
o b’y;a’m’m’ "~ Wet-chicken ~ 1.40£0.02 1.39+0.02 1.40+0.02 1.4340.02 1.40+0.02
Systems ~ Imdustrial Benchmark 1.87+£0.02 1774002 1.86+£0.01 1.77+£0.02 1.71:£0.01
Wind Turbine 0.104£0.00 0.06+0.00 1.01+£0.00 0.07£0.00 0.0740.00
Gas Turbine 0.26+£0.00 0.23+0.00 0.30+£0.00 0.26£0.00 0.2740.00
T Avg. Rank 3.3840.15 1.75+0.14 3.462+0.18 3.234+0.14 3.17+0.17
Log-Likelihood
Boston Housing -2.5240.10 -2.39+0.06 -2.45+0.14 -2.474+0.04 -2.54+0.04
Combined Power Plant -2.78+0.02 -2.74+0.02 -2.82+0.02 -2.72+0.02 -2.68+0.02
Standard Concrete Strength -3.09+£0.10 -2.92+0.04 -3.12+0.03 -2.95+0.04 -2.954+0.03
Regression Energy Efficiency -0.88+0.05 -0.76+£0.02 -0.71£0.05 -0.60%0.05 -0.6020.05
Benchmarks Kingnm 1.2040.01 1.274£0.01 1.0240.01 1.314+0.01 1.31+0.01
Naval Propulsion 7.5840.08 7.73£0.01 9.44+0.01 5.8740.14 5.46+0.39
Wine Quality Red -0.98+0.03 -0.92+0.03 -0.94+0.04 -0.57+0.09 2.2240.09
" Artificial Heteroscedastic =~ - -2.05£0.04 -2.02+0.05 -2.03+£0.05 -1.69+0.05 -1.67+0.06
Problems Bimodal -3.07£0.01 -3.07+£0.01 -3.07+£0.01 -2.39+0.17 -2.0740.02
o b;;a’m’ic’ "~ Wet-chicken - -1.754£0.01 -1.75+£0.01 -1.76+£0.01 -0.89+0.02 -0.62+0.02
Systems Industrial Benchmark -4.35£0.01 -4.26:£0.01 -4.33+£0.01 -3.66+0.00 -3.59:£0.01
Wind Turbine 0.90+£0.01 1.08+0.00 -1.43+0.00 1.36+0.04 1.40+0.04
Gas Turbine -0.05£0.01 0.04+0.00 -0.21+£0.00 0.0840.01 0.1740.01
T Avg. Rank 4144011 291£0.10 3.92+0.16 2.2540.12 1.7840.16

Table 5.1: Test RMSE and log-likelihood in regression tasks. Reported are average values over
5 independent runs with standard errors. For the naval propulsion task the RMSE
is multiplied by a factor of 100 and for the industrial benchmark by a factor of 0.1
to improve readability. All values are rounded to two positions behind the decimal
point.

95

5 Accuracy and Uncertainty Calibration in Regression

Method
Dataset VB a=0.5 a=1.0 MLP Ens.
RMSE
Boston Housing 3.34+0.34 3.51+0.48 3.33+0.35 2.50+0.34
Combined Cycle Power Plant 3.98+0.07 4.00+0.07 3.97+0.07 3.78+0.07
Standard Concrete Compression Strength 5.52+0.09 5.4040.13 5.1840.21 4.58+0.32
Regression Energy Efficiency 0.51£0.03 0.52£0.04 0.52£0.03 0.50+0.02
Benchmarks Kingnm 0.07+£0.00 0.07+0.00 0.074£0.00 | 0.07+0.00
Naval Propulsion 0.04+0.01 0.0540.01 0.254+0.11 0.01+0.00
Wine Quality Red 0.65+0.02 0.68+0.02 0.66+0.02 0.61+0.02
" Artificial ~ Heteroscedastic =~ 1.8440.11 1.83+£0.10 1.83+0.11 | 1.82+0.11
Problems Bimodal 5.1940.05 5.184+0.05 5.1840.06 | 5.1940.06
i b;;alr;g ~ Wet-chicken ~ 1.4140.02 1.39+£0.02 1.40+£0.02 | 1.39+0.02
Systems Industrial Benchmark 1.69+0.01 1.70+0.02 1.714+0.01 1.77+0.02
Wind Turbine 0.084+0.00 0.07£0.00 0.07£0.00 0.06+0.00
Gas Turbine 0.26+0.00 0.26+0.00 0.2740.00 0.23+0.00
7777777777 Avg. Rank 280+0.12 2.62+0.11 2.89+0.12 | 1.69+0.15
Log-Likelihood
Boston Housing -2.714£0.05 -2.63+0.02 -2.54+0.04 | -2.394+0.06
Combined Cycle Power Plant -2.72+0.02 -2.70+0.02 -2.68+0.02 -2.74+0.02
Standard Concrete Compression Strength -3.104+0.01 -3.074+0.02 -2.954+0.03 | -2.92+0.04
Regression Energy Efficiency -0.754+0.03 -0.64+0.09 -0.60+0.05 | -0.76+0.02
Benchmarks Kingnm 1.30+0.01 1.324+0.01 1.31+0.01 | 1.27+0.01
Naval Propulsion 6.31+0.24 6.09+0.32 5.46+0.39 7.73+£0.01
Wine Quality Red -0.98+0.03 2.33+0.10 2.2240.09 -0.92+0.03
" Artificial ~ Heteroscedastic -1.714£0.06 -1.68+0.05 -1.67+0.06 | -2.02+0.05
Problems Bimodal -2.1240.01 -2.07+0.01 -2.07+0.02 | -3.07+0.01
i b;r;a;r;g ~ Wet-chicken = -0.56£0.11 -0.09+0.04 -0.62+0.02 | -1.75+0.01
Systems Industrial Benchmark -3.72+0.03 -3.62+0.01 -3.59+0.01 -4.26+0.01
’ Wind Turbine 1.1840.01 1.31+0.01 1.40+0.04 1.084+0.00
Gas Turbine -0.03£0.00 0.03£0.00 0.1740.01 0.0440.00
T Avg. Rank 311+0.10 2.06+0.10 1.784+0.11 | 3.05+0.15
Table 5.2: Test RMSE and log-likelihood in regression tasks for BNN+LV with different values

56

of a. Reported are average values over 5 independent runs with standard errors.
For the naval propulsion task the RMSE is multiplied by a factor of 100 and for
the industrial benchmark by a factor of 0.1 to improve readability. All values are
rounded to two positions behind the decimal point.

6 Model Inspection & Uncertainty Analysis
for BNN+LV

In the previous chapter we have tested the predictive performance of BNN+LV on a
set of tasks. Our main findings are that these type of models are capable of expressing
stochastic patterns in the data resulting in better test-log-likelihood compared to baseline
models.

The primary motivation of introducing BNN+LV is that they are able to express the
stochasticity in the data, thereby model the aleatoric uncertainty, while still maintaining
uncertainty in its parameters, which models epistemic uncertainty. In this chapter we
want to take a more detailed look into these two forms of uncertainty in the prediction
of BNN+LV. In particular, our analysis will try to address the following questions:

e How much predictive epistemic and aleatoric uncertainty do we observe for different
kinds of problems? How does the decomposition change with respect to the size
of the network?

e [s the uncertainty decomposition in BNN+LV meaningful, in the sense that it
matches our intuition?

e How calibrated is the predictive uncertainty? Can we make a connection to the
risk of making an error?

e Can we interpret epistemic and aleatoric uncertainty based on the input features
of the problem?

e Can we utilize the decomposition of uncertainty for decision making in active
learning?

To answer these questions we will do a set of experiments. We group these experiments
into four categories: In Section 6.1 we focus on analyzing predictive uncertainty. We will
inspect the decomposition of uncertainty for a set of tasks, which are designed such that
we expect a particular form of decomposition to emerge. Also in this section we compare
the decomposition for different model sizes of BNN+LV and different divergence mea-
sures. In Section 6.2 we will study the calibration of predictive uncertainty by linking it
to the test error in regression and classification domains. In Section 6.3 we will present
results of the sensitivity analysis for predictive uncertainty, a novel method for model
inspection that we have introduced in Section 3.3. This method aims to explain predic-
tive uncertainty in terms of the contribution of each input feature. Lastly, in Section
6.4 we will consider active learning scenarios, to study if and how the decomposition of
uncertainty can be utilized for sequential decision making, in simple toy domains.

o7

6 Model Inspection & Uncertainty Analysis for BNN+LV

The methods and experiments presented in this chapter include published results from
Depeweg et al. (2017b, 2018, 2017c¢).

6.1 Analysis of Predictive Uncertainty

In Chapter 3 we have introduced the concepts of epistemic and aleatoric uncertainty. As
part of this chapter we introduced a novel probabilistic model, the BNN+LV, to model
and separate these two forms of uncertainty. In this section we want to confirm this
property empirically on a set of tasks.

6.1.1 Problem Description

While model inspection studies are to an extent subjective, the approach we take is to
define experiments where there are clear sources of uncertainty coming from either the
data density or randomness. We can then observe if the resulting uncertainty decom-
position matches the intuition behind the generative model. Similar model inspection
studies into epistemic and aleatoric uncertainties can be found in Kendall and Gal (2017)
(Section 5).

Here, we will use two groups of experiments: The first group consists of low-dimensional
regression problems. In particular we use the heteroscedastic and bimodal artificial
benchmark problems (Sec. 4.2) and the wet-chicken dynamics (Sec. 4.3.1). All three
tasks exhibit intrinsic noise in their dynamics so we expect some aleatoric uncertainty
in the predictions of the BNN+LV. We further will make the data density non-uniform,
so we ideally see varying epistemic uncertainty as function of the input x.

The second group of tasks are derived from the MNIST data set (Sec. 4.4). We
consider a total of 5 different experiments:

1. Standard MNIST

2. Object rotation

3. Subsampling data of a subset of classes

4. Applying label noise to a subset of classes
5. Occlusion of peripheral areas in the image

The details of each experiment will be described in Section 6.1.3. In each experiment
we will extract and decompose the predictive uncertainty into epistemic and aleatoric
components (see Section 3.2). Specifically, in the predictive distribution of BNN+LV we
estimate the two uncertainty components given by Eq. (3.2). These are, for every input
X, we estimate Egoy) [H(y«|W,x4)], which is the aleatoric uncertainty and H[y,|x.] —
Eom) [H(y«|W, x4)] which is the epistemic uncertainty. These we can then visualize and
interpret for all experiments.

o8

6.1 Analysis of Predictive Uncertainty

6.1.2 Model Specification

We will use different model architectures for the two groups of experiments and specify
the hyper-parameter we use for training here.

For the experiments based on MNIST we use a BNN+LV trained with bb-a with
a = 1.0 and for the latent variables we use an inference network as described in Section
3.1.4. Concretely, the BNN has three hidden layers with 150 units each, with linear
rectifiers for the hidden layer and the softmax activation function for the output layer.
The feed-forward topology is [784, 150,150, 150, 10]. The inference network has a single
hidden layer with 100 units, with a topology of [784 + 10,100, 2]. The final two nodes
output the mean and variance of the latent variable: m7,v?. We train for 150 epochs
using Adam as optimizer with a learning rate of 0.001 and a mini-batch size of 250.

For the regression problems we train for 5000 epochs a BNN+LV with two-hidden
layer and 20 hidden units per layer. We use linear rectifier as activation function. For
training we use Adam as optimizer with a learning rate of 0.001. These are the same
settings that we used in Chapter 5.

To estimate the information-theoretic components we repeatedly sample W and z
a total of 250 times. In the case of MNIST we can directly compute all information-
theoretic components (see Section 3.2) in closed form because the predictive distribution
is a categorical distribution. For the regression problems we estimate these using a
nearest neighbor approach (Kozachenko and Leonenko, 1987).

6.1.3 Experiments
Group: Regression Problems

We start by doing a set of qualitative comparisons on artificial benchmark problems.
Our goal is to empirically confirm that BNN+LV are able to decompose uncertainty in
heteroscedastic and bimodal noise settings. We will further an additional study where
we will use different network sizes and compare the decomposition of uncertainty for
different values of «.

Heteroscedastic Noise We consider a regression problem with heteroscedastic noise
where y = Tsin(x) + 3| cos(z/2)|e with € ~ N(0,1). We sample 750 values of the input
x from a mixture of three Gaussians with mean parameters {u; = —4, u2 = 0, ug = 4},
variance parameters {o] = %,02 = 0.9,03 = %} and with each Gaussian component
having weight equal to 1/3 in the mixture. Figure 6.1a shows the data. We have many
points at the borders and in the center, but few in between.

Figure 6.1 shows the results obtained (see caption for details). The resulting decompo-
sition of predictive uncertainty is very accurate: the epistemic uncertainty (Figure 6.1f),
is inversely proportional to the density used to sample the data (Figure 6.1b). This
makes sense, since in this toy problem the most informative inputs are located in regions
where data is scarce. However, this may not be the case in more complicated settings.
Finally, we note that the total predictive uncertainty (Figure 6.1d) fails to identify in-

99

6 Model Inspection & Uncertainty Analysis for BNN+LV

20 s
o3P 1| £
= [\ 1 2
R 1| 3
Q 1 -~ ,’ %
goaf 1 PR 1|3
a (N S
\ ’ ~. 1|3
0.0 \ Pt e T
-2 = 0 2 4 -z = 0 2 4
X X
(a) (b)
25 e 25
» Y Fay S1.0
o - o . 2 o~
2.0 ¢ S, £20 S . > .
= . ‘e E o . g ~,) A
I & % > s M . .o % 4 %
15[“ A Tis : p o W s " 5|
< . J .', I V ™ k4
107 = 0 2 2 197 = 0 2 2 097 = 0 2 2
X X X
(d) (e) (f)

Figure 6.1: Uncertainty decomposition on heteroscedastic data. (a): Raw data. (b): Density
of z in data. (c): Predictive distribution p(y.|zs). (d): Estimate of H(y,|zy). (e):
Estimate of Eqoy) [H(y. |z, W)]. (f): Estimate of entropy reduction H(y.|z,) —
Eqow) [H(yxlzs, W)

formative regions. In conclusion we observe that the decomposition of uncertainty in
BNN+LV allows us to identify informative inputs when the noise is heteroscedastic.

Bimodal Noise Next we consider a toy problem given by a regression task with bimodal
data. We define z € [-0.5,2] and y = 10sin(z) + € with probability 0.5 and y =
10 cos(x) + €, otherwise, where € ~ N (0,1) and € is independent of x. We sample 750
values of x from an exponential distribution with A\ = 2. Figure 6.2a shows the data.
We have many points on the left, but few on the right.

Figure 6.2 shows the results obtained (see caption for details). Figure 6.2c shows that
the BNN+LV has learned the bimodal structure in the data and Figure 6.2d shows how
the total predictive uncertainty increases on the right, where data is scarce. The aleatoric
uncertainty (Figure 6.2e), by contrast, has an almost symmetric form around z = 0.75,
taking lower values at this location. This makes sense since the data generating process
is symmetric around x = 0.75 and the noise changes from bimodal to unimodal when
one gets closer to x = 0.75. Figure 6.2f shows an estimate of the epistemic uncertainty,
which as expected increases with z. In conclusion we say that the decomposition of
uncertainty allows us to identify informative inputs when the noise is bimodal.

Heterogeneous Noise Patterns We consider data sampled from a 2D stochastic system
called the wet-chicken (see Section 4.3.1). The wet-chicken transition dynamics exhibit
complex stochastic patterns: bimodality, heteroscedasticity and truncation (the agent
cannot move beyond the boundaries of state space: [0,5]%). The data are 7,500 state
transitions collected by random exploration. Figure 6.3a shows the states visited. For

60

6.1 Analysis of Predictive Uncertainty

IS
”

Data Density
N
v’
¢,
Predictive Distribution

o
~
[l

H(Y W)
; N
o
H(Y) - H(Y[W)
oo
» 3
S
v
h

15 oW
-0.5 0.0 0.5 1.0 1.5 2.0 -0.5 0.0 0.5 1.0 1.5 2.0 -0.5 0.0 0.5 1.0 1.5 2.0
X X X
(d) (e) (f)

Figure 6.2: Uncertainty decomposition on bimodal data. (a): Raw data. (b): Density of x
in data. (c): Predictive distribution: p(y.|zs). (d): Estimate of H(y.|zx). (e):
Estimate of Eqoyy [H(ys|z,, W)]. (f): Estimate of entropy reduction H(y.|z.) —

Eq(W) [H(y*|x*a W)]
5 5 5 12
0 0
4 4 4 1.0%
=
—1~ -1 0.8%
=Y b =Y = 0 ﬁm
2 _o 2 _92 2 2
045
-3 -3 0.2
0 0 0 0.0
0 2 4 5 0 2 4 5 0 2 4 5
x x x

(a) (b) (©) (d)
Figure 6.3: Uncertainty decomposition on wet-chicken dynamics. (a): Raw data. (b): En-
tropy estimate H(s;y1|st) of predictive distribution for each s; (using a; = {0,0}).
(e): Conditional entropy estimate Eqyy [H(st11(s¢, W)]. (f): Estimated entropy
reduction.

H(Y|W)

each transition, the BNN+LV predicts the next state given the current one and the
action applied. Figure 6.3d shows that the epistemic uncertainty is highest in the top
right corner, while data is most scarce in the bottom right corner. The reason for this
result is that the wet-chicken dynamics bring the agent back to y = 0 whenever the agent
goes beyond y = 5, but this does not happen for y = 0 where the agent just bounces
back. Therefore, learning the dynamics is more difficult and requires more data at y = 5
than at y = 0. The epistemic uncertainty captures this property, but the total predictive
uncertainty (Figure 6.3b) does not.

61

6 Model Inspection & Uncertainty Analysis for BNN+LV

Heteroscedastic Problem Bimodal Problem
e h=10 0.2 o h=10
0.04 e h=20 . e h=20
7 e h=40 . ® h=40
2 XY o h=80 » B ° h=80 s
< S N & s
& J o [& o &
1 0.02 o St wee 0.1)
s | o N s s A s A
=~ o o o S
g oe e, . wd‘-°\-."-. . IS4
o & B P
0.00 AN e ™
M) OA..-:'. ~e 0.0
—2.5 0.0 2.5 0 1 2
X X
() (b)
Heteroscedastic Problem L5 Bimodal Problem
0.15[15 o5 e h=10 : a=05 e h=10
® h=20 * h=20
. e h=40 _ © h=40
z0.10 * e h=80 s | =10 o h=80
> >
Ly &
| 1
= 0.5
Lh &
0.0 —
0 1 2
X
Heterc ic Problem Bimodal Problem
[a=10] e h=10 [a=10] e h=10
® h=20 e h=20
__1.0] e h=40 . ® h=40
2 ® h=80 2 ° h=80
<3 &
& oY
L L1
0.5 2
& &
0 1 2
X X
(e) ()
Heteroscedastic Problem Bimodal Problem
HMC e h=10 HMC e h=10
® h=20 e h=20
_0.2] o h=40 03 o h=40
2 e | 2 -
= s | = s
& e S
& . 0.2 o)
) ’. ,'.o s) ‘g‘o
go1 3 Sa "'"i N 9 b2
[. lcf. o Ve o i 20.1
o
H Oy ® 4
0.0 .
—2.5 0.0 2.5 0.0 0 1 2
X X
(8) (h)

Figure 6.4: Predictive epistemic uncertainty for the heteroscedastic (left) and bimodal (right)

62

problem. Rows 1-3: using variational Bayes (o« = 107%) , @ = 0.5 and o = 1 as
divergence measure. Row 4: Using Hamiltonian Monte Carlo (HMC), a sampling
method, to estimate the unbiased posterior over BNN+LV. In each plot we show
the estimated epistemic uncertainty for four different network sizes from smallest
(violet) to largest (green). For HMC we only consider network sizes from 10 to 40
due to scalability constraints.

6.1 Analysis of Predictive Uncertainty

Comparison between network sizes and different values of & In the previous exper-
iments we used a neural network topology with h = 20 hidden units that was optimized
w.r.t. a a-divergence with o = 1. Here, we repeat these experiment for the two stochas-
tic toy problems with varying network sizes and optimization methods. In particular we
use h € {10,20,40,80} as number of hidden units and o = {107%,0.5,1.0} for different
values of . As in Chapter 5 we use a = 107 to approximate variational Bayes (VB).

In addition we use the method Hamiltonian Monte Carlo (HMC) as additional baseline.
HMC is a sampling method and as we discussed in Section 2.2.3, these methods can be
asymptotically unbiased. For the heteroscedastic and bimodal problem, which are small
scale, we can use HMC as a ground-truth. After convergence, we can expect that HMC
will provide unbiased samples from the true posterior p(W,z | D) over BNN+LV (that is
Eq. (3.10) in Section 3.1), whereas in variational inference we only obtain samples from
the approximate posterior (V). By comparing to this method we can see how large the
effect of the variational approximation is on the decomposition of uncertainty. For HMC
we use a burn-in of 500k and then collect 200k samples where we only keep every 10th
sample. The decomposition then follows as usual, where instead of a posterior ¢(W) we
have an empirical distribution formed by the samples.

In Figure 6.4 we show the results. We see that for the problem with bimodal noise
(right-hand side) the results look very similar across all methods, whereas for the het-
eroscedastic problem only o = 1 and HMC produce a pattern that corresponds to the
data density. In addition the epistemic uncertainty in HMC appears to be more peaked
and overall lower uncertainty than using a = 1, which suggest that while the approximate
posterior ¢(W) leads to a similar decomposition of uncertainty, it seems to overestimates
predictive uncertainty.

Group: MNIST Problems

We will now present the result on problems based on the MNIST data set. In each
paragraph we will describe the setup of the experiment and then summarize our main
findings.

Standard MNIST We consider the MNIST setting, with standard training and test
data splits. We find that with a test accuracy is 0.98 this means that BNN+LV give
competitive performance on the MNIST data set using a feed-forward architecture. In
Fig. 6.5 we show the decomposition of uncertainty for 4 different settings. We see that
we have predominately epistemic and a neglectable amount of aleatoric uncertainty. This
makes sense because the images of the data set (see Fig. 4.3) in principle do provide
enough information about the class; in other words MNIST is not partially observable.
Interestingly, for the incorrectly classified data in the test set we have large epistemic
uncertainty (see rightmost bar plot in Fig. 6.5). We will investigate this scenario in
more detail in Section 6.2.

MNIST with Label Noise In this study we introduce noise on the class labels on the
data. In particular, for all training examples with labels of either 1 or 7 we flip the

63

6 Model Inspection & Uncertainty Analysis for BNN+LV

MNIST
0.8 Il Epistemic
I Aleatoric
20.6
c
g
804
c
s
0.2
0.0 L
Training Test Correct Incorrect
Data Data

Figure 6.5: Standard MNIST setting. We show the epistemic (blue) and aleatoric (red) predic-
tive uncertainties. From left to right: Uncertainties on training set, uncertainties on
test set, uncertainties on correctly classified test images, uncertainties of incorrectly
classified test set.

class assignment with a probability of %, so 33% of images that originally had class 1,
now belong to class 7, and vice versa. We choose sevens and ones here, because of their
similar visual representation. Note that this noise is heteroscedastic, because it only
applies to a subset of classes, all other classes are unaffected. Fig. 6.6 summarizes our

MNIST with label noise

Il Epistemic
0.4 Il Aleatoric

Uncertainty

{1,7} {1,7} Other Other
Train Test Train Test

Figure 6.6: MNIST with label noise. We show the epistemic (blue) and aleatoric (red) pre-
dictive uncertainties. From left to right: Uncertainties on: training an test set of
examples with class 1 or 7, training and test set of examples for all other classes.

findings. We see for those classes affected by label noise we have significantly larger
aleatoric uncertainty, whereas in all other classes we have mostly epistemic uncertainty.
This corresponds to the design of the experiment: adding heteroscedastic label noise
results in a decomposition with increased aleatoric uncertainty.

MNIST: Subsampling Here we subsample particular classes in the training data: for
all data with classes of y € {0,6,8,9} we remove 75% of examples from the training set,

64

6.1 Analysis of Predictive Uncertainty

MNIST subsampled

0.3 Il Epistemic
Il Aleatoric
g
-:-3 0.2
£
[
Q
=
0.1
0.0

™ {o0,6,8,9} {0,6,8,9} Other Other
Train Test Train Test

Figure 6.7: MNIST with subsampled classes. We show the epistemic (blue) and aleatoric (red)
predictive uncertainties. From left to right: Uncertainties on: training an test set of
examples from subsampled classes y € {0, 6,8, 9}, training and test set of examples
for all other classes.

whereas all other classes have the original set of examples. Similarly to the previous
experiment we choose these classes because of their similar visual representation. The
results shown in Fig. 6.7 show that for these classes the epistemic uncertainty is signifi-
cantly higher than for the remaining ones, which makes sense, as lower data density in
these areas leads to higher uncertainty about how the correct function may look like to
make the images x to the classes y.

MNIST: Rotations We consider the effect of rotations on the uncertainties in the pre-
dictive distribution. To that end we use the models trained in the standard MNIST
setting. Then we evaluate the epistemic and aleatoric uncertainties on test data, where
we rotate the objects in 8 steps of 45 degrees. Fig. 6.8 shows two examples of the
rotation operation. We show two example results of the decomposition in Fig. 6.9. Pre-
dominately, we observe an increase in epistemic uncertainty. This makes sense because
a rotation will move a training examples out of the known manifold. In Fig. 6.9b we see
a rotation of the digit 9. Here, a rotation by 180 degrees will lead to very low epistemic
uncertainty, because in this case the image will look like a 6.

MNIST: Occlusion In this experiment we study the effect of occlusion on the predictive
uncertainties. We consider occlusion in the form of masking out the peripheral parts
of the image. In particular we consider four occlusion levels and train a BNN+LV and
decompose predictive uncertainty in each of them individually. For the original 28 by 28
MNIST image, we restrict the image in both x and y dimension to the following upper
and lower bounds of pixels, starting at zero: {(.,.),(7,21),(10,18),(11,17),(12,16)}.
These occlusion levels are visualized in Fig. 6.10.

In Fig. 6.11a we show the results of the decomposition of uncertainty for various levels
of occlusion. We see here that as more and more parts of the images are hidden, the
aleatoric uncertainty continuously increases. This makes sense, by the introduction of

65

6 Model Inspection & Uncertainty Analysis for BNN+LV

Figure 6.8: Two sets of example images with rotations of 45 degrees in counter-clockwise di-
rection.

90°

18(

15° mmm epistemic
B 5leatoric

15° mmm epistemic
B sleatoric

() (b)

Figure 6.9: Epistemic and aleatoric uncertainties for two example images. Left plot: Circular
bar plot showing uncertainties as a function of the rotation operation. Right plot:
Original image under consideration.

the occlusion the problem becomes gradually more partially observable, the input image
does not contain enough features to make a reliable classification. Correspondingly the
test accuracy, that we show in Fig. 6.11b decreases as the level of occlusion increases.

6.1.4 Discussion

We studied the decomposition of predictive uncertainty on a set of tasks with varying
noise patterns and data densities. Our main finding is that the epistemic and aleatoric
uncertainties we extracted from the BNN+LV correspond to the data generating model:
the presence of noise patterns in the data results in aleatoric and data scarcity results

66

6.1 Analysis of Predictive Uncertainty
[-‘-
¥
(a) (b) () (d) (e)

(f) (8) (h) (1))

Figure 6.10: Two example images of the MNIST task with different levels of occlusion. From
left to right: occlusion level 0 (no occlusion) to level 4 (strongest occlusion). For
each level of occlusion the model only receives the area inside the red square as

input data.
MNIST with Occlusion 1.0 MNIST with Occlusion
0.8 Il Epistemic
| = Aleatoric 0.8
ey
‘E 0.6 g
g 8 0.6
] <
g 0.4 o
l&\ 0.4
0.2
0.2
0.0 0 1 2 3 4
Occlusion Level Occlusion Level
(a) (b)

Figure 6.11: MNIST with occlusion. Left plot: epistemic (blue) and aleatoric (red) uncertain-
ties for varying level of image occlusion (x-axis). Right plot: Test accuracy of
BNN+LV trained on MNIST with varying level of image occlusion (x-axis).

in epistemic uncertainty. These findings were present both in toy regression and image
classification domains. We further observed that the divergence measure we use to train
BNN-+LV seems to affect these forms of uncertainties. In the default setting of & = 1 the
decomposition is similar in shape compared to the ground-truth we obtain using HMC
in stochastic toy problems. For variational Bayes and o = 0.5 this, however, does not

67

6 Model Inspection & Uncertainty Analysis for BNN+LV

seem to be the case. We will discuss this question further at the outlook of this thesis
in Chapter 8.

6.2 Predictive Uncertainty and Test Error

Here we want to study how the uncertainty in the predictive distribution relates to the
risk of the model making an error in its predictions at test time. In the previous section
we already saw that for the standard MNIST setting, we observed on average high
epistemic uncertainty in test data that was classified incorrectly, whereas for correctly
classified test data the epistemic uncertainty was low (see Fig. 6.5). This dependency
can be beneficial, as predictive uncertainty can be extracted by the model and can,
for instance, be used to know beforehand how trustworthy the prediction is going to
be. This is related to the concept of adversarial examples in computer vision where
small change to an input image x, which are non-perceptible to humans, induce a wrong
classification with high confidence (Szegedy et al., 2013). Recent work in Gal and Smith
(2018) proved that in an idealized, theoretical setting, which includes the absence of any
aleatoric uncertainty in the data, a Bayesian neural network cannot have adversarial
examples, because the confidence for predicting adversarial examples will always be low
due to an increase in epistemic uncertainty.

Intuitively, an error in the model’s prediction can occur in three scenarios:

1. The relationship between input and output is stochastic due to aleatoric uncer-
tainty.

2. The model does not know the correct prediction due to limited data, which results
in epistemic uncertainty in the predictive distribution.

3. The model is confident in its prediction but it is wrong.

Because the cause of error can be attributed to both epistemic and aleatoric uncer-
tainty, we suggest to use the full predictive uncertainty, that is H[y.|x4], to connect it
to the test error. Measuring calibration of predictive uncertainty already establishes a
link between these two concepts. In the regression experiments done in Chapter 5 we
measured the log-likelihood of the test data under the model to estimate quality and
calibration of uncertainty estimates. For instance, for a Gaussian predictive distribution
given by Eq. (5.6) the log-likelihood will be low, if the test error is high, but the model
has high confidence (02 is low).

In this section we want to study this relationship in more detail for BNN+LV. We will
use the trained models we used in the regression studies from Chapter 5 and from the
standard MNIST classification task.

68

6.2 Predictive Uncertainty and Test Error

Epistemic Uncertainty / Misclassification

1.0 >
7
//
////
/’,
& et
0.5 -
= ///
/”
’/
//
-7 = ROC(area = 0.955 % 0.002)
'
0.0 05
FPR

1.0

Figure 6.12: ROC curve of predicting misclassification based on epistemic uncertainty in the
standard MNIST domain. X-axis: False positive rate. Y-axis: True positive rate.

Kin8nm

Combined Cycle Power Plant

Naval Propulsion

—— Moving Average
99% Quantile

N 90% Quantile
EE 50% Quantile

Abs. Test Error

200 600

400
Sorted indeces

(a)

Gas Turbine

Abs. Test Error

—— Moving Average
99% Quantile

N 90% Quantile

Il 50% Quantile

Abs. Test Error

500
Sorted indeces

(b)

Industrial Benchmark

2
Q
I}

0.01

—— Moving Average
99% Quantile

N 90% Quantile

Il 50% Quantile

500
Sorted indeces

(©)

Wind Turbine

—— Moving Average
99% Quantile
W 90% Quantile

1.5
Il 50% Quantile

Abs. Test Error
[N
=3

e
)

0.0!

2000
Sorted indeces

1000

(d)

—— Moving Average
99% Quantile

N 90% Quantile

MM 50% Quantile

100|.

Abs. Test Error
Abs. Test Error

2000
Sorted indeces

(e)

0.0!

—— Moving Average
99% Quantile

B 90% Quantile

B 50% Quantile

500
Sorted indeces

(f)

250

Figure 6.13: Uncertainty quality visualization (see Teye et al. (2018)) for six regression prob-
lems. Gray dots are absolute test error of a test data points, sorted by their es-
timated predictive uncertainty under the BNN+LV. The shaded blue areas show
the 50% (dark blue), 90% (blue) and 99% (light blue) quantile of the predictive
distribution, i.e (50/90/99)% of errors on test data are expected to fall under this

curve. Black curve shows moving average of test error.

To start in Fig. 6.12 we show the receiver operating characteristic (ROC) curve
between misclassification and predictive uncertainty in the standard MNIST setting.

69

6 Model Inspection & Uncertainty Analysis for BNN+LV

The ROC curve measures the false positive rate against the true positive rate of a
classifier. In our case the classifier is the amount of predictive uncertainty, whereas the
target variable is the occurrence of a misclassification. We obtain an area under curve of
0.98 of the ROC curve; this means that in almost all cases a high predictive uncertainty
is an accurate predictor for misclassification. For regression the work in Teye et al.
(2018) highlights a novel way to link predictive uncertainty to test error visually. Here,
we compute the (50/90/99)% quantiles of the predictive distributions for all test inputs
X,, this means under the model (50/90/99)% of errors are expected to be higher (lie
outside) of the corresponding quantile. We can then compute the actual test errors and
see how accurate the quantiles of the predictive distribution of the BNN+LV are. In
Fig. 6.13 we show the results for 6 of the regression problems from Chapter 5. We see
that in most cases the average test errors follows the 50% quantile very closely. In the
Naval Propulsion example, however, the quantiles are much larger than the actual test
errors. This indicates that the BNN+LV expects the test errors to be much larger than
they actually are. In all plots the gray points, which indicate individual test errors,
have considerable variance. A possible reason for this is randomness, which results in
aleatoric uncertainty.

6.3 Sensitivity Analysis

In Section 3.3 we introduced a novel method for model inspection, called the sensitivity
analysis of predictive uncertainty. The main idea is to examine the effect of each feature
on the epistemic and aleatoric uncertainty in the prediction of BNN+LV. We discussed
advantages of this method for monitoring and decision making and in this section we
want to apply this method to a set of regression data sets and visualize the results.

6.3.1 Problem Description

In this experiment we are interested in the question of how input features impact the
uncertainty in the predictions of the BNN+LV. In particular, how sensitive is each
feature towards epistemic and aleatoric uncertainty? To address these question we use
the gradient of the uncertainty components with respect to the input features. This can
be obtained by the mechanism described in Section 3.3. We can quantify the sensitivity
using Eq. (3.32) and Eq. (3.33).

We generate an artificial benchmark dataset and additionally use 8 standard regression
benchmarks in varying domains and dataset sizes (see Section 4.1). For all experiments,
we use a BNN with 2 hidden layer. We first perform model selection on the number of
hidden units per layer from {20, 40, 60,80} on the available data.

For the artificial data set we use a function with 2 input features and heteroskedastic
noise: y = 7sin(z1) + 3| cos(z2/2)|e with € ~ N(0,1). The first input variable z; is
responsible for the shape of the function whereas the second variable xo determines
the noise level. We sample 500 data points with x; ~ exponential(A = 0.5) — 4 and
T ~ U (—4, 4).

70

6.3 Sensitivity Analysis

6.3.2 Model Specification

We use the same set of hyper-parameters that we used in Chapter 5. For the sensitivity
analysis we will sample N,, = 200 w ~ ¢(W) and N, = 200 samples from z ~ N (0,).
All experiments were repeated 5 times and we report average results.

6.3.3 Experiments

Artificial Data Fig. 6.14a shows the sensitivities. The first variable z is responsible for
the epistemic uncertainty whereas xo is responsible for the aleatoric uncertainty. This
result corresponds with the generative model for the data: xo affects the noise level,
whereas z1 determines the shape of the deterministic part of the function.

Standard Regression Benchmarks In Fig. 6.14 we show the results of all experiments.
For some problems the aleatoric sensitivity is most prominent (Fig. 6.14f,6.14g), while
in others we have predominately epistemic sensitivity (Fig. 6.14e,6.14h) and a mixture
in others. This makes sense, because we have variable dataset sizes (e.g. Boston Housing
with 506 data points and 13 features, compared to Protein Structure with 45730 points
and 9 features) and also likely different heterogeneity in the datasets.

In the power-plant example feature 1 (temperature) and 2 (ambient pressure) are the
main sources of aleatoric uncertainty of the target, the net hourly electrical energy out-
put. The data in this problems originates from a combined cycle power plant consisting
of gas and steam turbines. The provided features likely provide only limited information
of the energy output, which is subject to complex combustion processes. We can expect
that a change in temperature and pressure will influence this process in a complex way,
which can explain the high sensitivities we see. The task in the naval-propulsion-plant
example, shown in Fig. 6.14i, is to predict the compressor decay state coefficient, of a
gas turbine operated on a naval vessel. Here we see that two features, the compressor
inlet air temperature and air pressure have high epistemic uncertainty, but do not in-
fluence the overall sensitivity much. This makes sense, because we only have a single
value of both features in the complete dataset. The model has learned no influence of
this feature on the output (because it is constant), but any change from this constant
will make the system highly uncertain.

6.3.4 Discussion

We have shown results of the sensitivity analysis for predictive epistemic and aleatoric
uncertainty on standard regression and toy data sets. For some cases, such as the toy
dataset we observe that the results match the generative model for the data. In others we
could interpret the results based on summary statistics of the problem, such as data set
size and dimensionality. In general, because the sensitivity analysis is an introspective
method, there is no direct way to evaluate the quality of the results.

71

6 Model Inspection & Uncertainty Analysis for BNN+LV

toy Power Plant Kin8nm

oL __IVi Lo| W T o.7;| I T
0.50

1 0.5
0.25

0 0.0 0.00

0-4] puy pepistemic 0.2 g jepistemic 0.075(pumm epistemic
0.050

0.2 0.1
0.025

0ol oo I e e

0-4 puy aleatoric 0.2 g Jaleatoric 0.075 gy aleatoric
0.050
0.025 I l l I I .

X 00

Feature

()

Energy Efficiency

1 2 3 4
Feature

(b)

Concrete Strength

0.0

1 2 3 4 5 6 7 8
Feature

(©)

Protein Structure

0.6 3
-7 L5 . T
0.4] 2| 1.0
0.2 1 0.5)
0.0' 0 0.0'
0.0 W Jepistemic 0.15| M Jepistemic 0.6| gy pepistemic
0.04 0.10 0.4

0.0
0.0

5)
0

0.2

0.0

[Ialeatoric

Feature
(d)

Wine Quality Red

0.1:

0.14

0.0:

0.0

5| - Ialeamric
0

5|

il

T2 3 4 5 6 1 8

Feature
(e)

Boston Housing

0.6

0.4]

0.2

0.0

. Ialeatoric

1 2 3 4 5 6 7 8 9
Feature

(f)

Naval Propulsion

Iy I 20 7
0.4 0.4
0.2 0.2 10 I I
0.0 0.0 o
mmm Jevistemic 0.15 g Jepistemic mmm fevistemic
0.10) 0.4
0.10
0.05 0.05 0.2
0.00! — = —— 0.00! 0.0
. feleatoric 015 pE J2leatoric mm [eleatoric
0.10) 0.4
0.10

Feature

(g)

Figure 6.14: Sensitivity analysis for the predictive expectation and uncertainty on toy data
(a) and UCT datasets (b)-(i). Top row shows sensitivities w.r.t. expectation (Eq.
(3.31)). Middle and bottom row show sensitivities for epistemic and aleatoric

1 2 3 4 5 6 7 8 9 10 11 12 13

Feature

(h)

0.2

0.0

123456 7 8 910111213141516
Feature

@)

uncertainty (Eq. (3.32) and Eq. (3.33)). Error bars indicate standard errors.

6.4 Active Learning

In this section we will do a set of active learning experiments on stochastic problems using
BNN+LV. Active learning requires sequential decision making. We will show that if we

72

6.4 Active Learning

follow an information-theoretic approach, based on MacKay (1992), a decomposition of
uncertainty in epistemic and aleatoric components will arise naturally.

6.4.1 Problem Description

Active learning is the problem of iteratively collecting data so that the final gains in
predictive performance are as high as possible (Settles, 2010). In many practical prob-
lems we have a large amount of unlabeled observation data X, whereas obtaining target
variables Y is expensive. This is usually the case if obtaining targets requires manual
labeling by human experts. The key goal in active learning is to choose those observa-
tions x, for which obtaining labels y, would improve the performance of the learning
algorithm the most.

Let us define a training data set D = {x,, yn})_; of already known observations and
targets. From this data set we can learn the functional relationship between inputs and
outputs. In active learning, the algorithm then sequentially decides for which x, the
corresponding target y, should be shown and included in the training set. The target is
unknown beforehand, the decision is therefore only based on the observation x,.

One way to do such selection is to apply the information-theoretic approach for active
learning, that was first described by MacKay (1992). The main idea is that using
a Bayesian modeling approach we can reason about for which x, the entropy of the
posterior p(6V) will decrease the most, if we include (x4, y4) in the training set. Because
yy is unknown, we need to integrate over all possible values it can take. The reasoning
behind this approach is that the data that maximize the reduction in entropy of p(6|W)
provides the most knowledge about the data generating process, assuming the modeling
assumption is correct.

There exist many approaches in literature that follow this approach (MacKay, 1992;
Hernéndez-Lobato and Adams, 2015; Guo and Greiner, 2007). These approaches how-
ever assume a deterministic relationship between inputs and outputs, and consequently
use deterministic methods (mostly GPs) as model class. Here, we consider the case of
actively learning arbitrary non-linear functions in the presence of complex noise. We
will first derive the information-theoretic approach using BNN+LV and then perform a
set of active learning experiments.

6.4.2 Uncertainty Decomposition for Active Learning

We assume we have a BNN+LV that is parameterized by weights W. This model is
used to describe a batch of training data D = {(x1,¥y1), -, (Xn,yn~)}, resulting in a
approximate posterior over the parameters q(W|D).

The expected reduction in posterior entropy for W that would be obtained when
collecting the unknown target y, for the input x, is

HOW|D)=Ey,x, 0 HWVID U {x,y:})]
= I(W, y*)
= H(y.[x.) — Eyowip) [Hy. W, x.)]

73

6 Model Inspection & Uncertainty Analysis for BNN+LV

In standard Bayesian modeling approaches such as GPs or BNNs the right hand side
of Eq. (6.3) will be constant, because given a set of weights W (or f in a GP setting)
the function is assumed to be deterministic, the remaining uncertainty H(y,|W,x,) is
constant with respect to x,.

We see that the decomposition of uncertainty that we introduced in Section 3.2 has
arisen naturally in this setting: the most informative points x, for which to collect y, next
is the one for which the epistemic uncertainty in the BNN-+LV predictive distribution is
the highest.

The epistemic uncertainty in Eq. (6.3) can be approximated using standard entropy
estimators, e.g. nearest-neighbor methods Kozachenko and Leonenko (1987); Kraskov
et al. (2004); Gao et al. (2016). For that, we repeatedly sample W and z, and do forward
passes through the BNN+LV to sample y,. The resulting samples of y, can then be used
to approximate the respective entropies for each x, using the nearest-neighbor approach:

H(ys|xx) — Eq(W) [H(y« W, x4)]
M

(YL vE) - D [y] (6:4)
i=1

where ICI() is a nearest-neighbor entropy estimate given an empirical sample of points,
yl, ..., yE are sampled from p(y,.|x,) according to Eq. (3.19), Wi,..., Wi ~ ¢(W) and
yi’Wi, ... ,yf’wi ~ p(ye Wi, x,) for i =1,..., M.

There are alternative ways to estimate the entropy, e.g. with histograms or using ker-
nel density estimation (KDE) Beirlant et al. (1997). We choose nearest neighbor meth-
ods because they tend to work well in low dimensions, are fast to compute (compared
to KDE) and do not require much hyper-parameter tuning (compared to histograms).
However, we note that for high-dimensional problems, estimating entropy is a difficult

problem.

6.4.3 Model & Baseline Specification

We will use the two artificial benchmark problems and wet-chicken dynamics for our
experiments. The settings are the same as in Section 6.1.3: that means in each of
these three settings we start with a training data which is described in the respective
paragraphs of Section 6.1.3. For the wet-chicken dynamics we predict y-dimension of
successor state s(t + 1) to make the evaluation comparable to that of Chapter 5.

The general set-up is as follows. We start with the available data described in Section
6.1.3 and train the methods on this data set. At each iteration, we select a batch of data
points to label from a pool set which is sampled uniformly at random in input space.
The selected data is then included in the training set and the log-likelihood is evaluated
on a separate test set. The test set is of size 500 for the bimodal and heteroscedastic
problem and 2500 for the wet-chicken problem. and is sampled uniformly in input space.
After that, the models are re-trained (from scratch). This process is performed for 150
iterations and we repeat all experiments 5 times.

74

6.4 Active Learning

Method
Dataset Ibb-a OV, 9x) Hpboa(ys|X4) GP
Heteroscedastic -1.794+0.03 -1.92+0.03 -2.0940.02
Bimodal -2.04+0.01 -2.06=%0.02 -2.8640.01
Wet-chicken -0.54+0.02 -0.68+0.05 -1.8040.00

Table 6.1: Test log-likelihood in active learning experiments after 150 iterations.

Heteroscedastic —2.0 Bimodal 04 Wet-chicken
— lob-a(W, ys) — loo-a(W, ¥ys) — lot-a (W, y)
3 =175 Hupa(yalx.) 3 —— Hopa(yalx.) 3 —— Hooa(yslxs)
o o o
£ £ £
] g g
= 5 = 2.1 = —0.6
5, —1.85 & >
s ‘ L © ©
7 ‘ Ml» % 5
[2 [
—1.95
0 50 100 50 227 50 100 TE R 50 100 50
Iteration Iteration Iteration
(a) (b) (c)

Figure 6.15: Test log-likelihoods over active learning iterations for three benchmarks. Error
bars indicate standard error over 5 repetitions.

The method we propose is to use a BNN+LV to describe the data and for the data
collection process to use the reduction in entropy, given by Eq. (6.3) in each of the 150
iterations. We refer to this method as Ipp. (W, ysx) and compare it with two baselines.
The first baseline also uses a BNN+LV to describe data, but does not perform a decom-
position of predictive uncertainty, that is, this method uses the full uncertainty H(y,|x)
instead of Eq. (6.3) for active learning. We call this method Hppo(yx|Xxx). The second
baseline is given by a Gaussian process (GP) model which collects data according to
H(y.|x4) since in this case the uncertainty decomposition is not necessary because the
GP model does not include latent variables. The GP model assumes Gaussian noise and
is not able to capture complex stochastic patterns.

We train for 5000 epochs a BNN+LV with two-hidden layer and 20 hidden units
per layer. We use Adam as optimizer with a learning rate of 0.001. For Gaussian
processes(GPs) we use the standard RBF kernel using the python GPy implementation.
For the entropy estimation we use a nearest-neighbor approach as explained in the main
document with k£ = 25 and 500 samples of ¢(WW) and 500 samples of p(z).

6.4.4 Experiments

Table 6.1 shows the test log-likelihoods obtained after 150 iterations. Overall, BNN+LV
outperform GPs in terms of predictive performance. We also see significant gains of
Ibb-a WV,) over H(y,|x,) on the heteroscedastic and wet-chicken tasks, whereas their
results are similar on the bimodal task. The reason for this is that, in the latter task,
the epistemic and the total uncertainty have a similar behavior as shown in Figures 6.2d

75

6 Model Inspection & Uncertainty Analysis for BNN+LV

and 6.2f. Finally, we note that heteroscedastic GPs Le et al. (2005) will likely perform
similar to BNN+LV in the heteroscedastic task from Figure 6.2, but they will fail in the
other two settings considered (Figures 6.2 and 6.3).

In Fig. 6.15 we show the test log-likelihood over the course of the active learning
iterations for Ipp.o (W, ysx) and H(y,|x.). We see that when using the full uncertainty,
without the decomposition, the predictive performance does barely improve over time
in the heteroscedastic and wet-chicken problem. This is because, the data collection
focuses on the stochastic areas in this problem and does not explore those areas where
data is scarce.

6.4.5 Discussion

We have performed an empirical study in active learning as part of model inspection.
Here, we have showed that using the information-theoretic approach for active learning
a decomposition of uncertainty naturally occurs. We showed on a set of small-scale
benchmarks, that exhibit complex stochasticity, that utilizing this decomposition leads
to an improvement in the data collection process, compared to either using the full
uncertainty or Gaussian process. These results also imply that for these set of problems
the decomposition is meaningful, in the sense that data scarcity affects mostly the weight
uncertainty ¢(WW) whereas stochasticity is modeled by the latent variable z.

76

7 Reinforcement Learning

Reinforcement learning (RL) is a subfield of machine learning. An agent is interacting
with an environment by executing actions. Such interaction will lead to a state transition
of the environment which returns a cost (or reward) signal back to the agent. The task of
the agent is to identify the best possible actions that minimizes the costs, or maximizes
the rewards, over a (possibly infinitely long) horizon of steps.

In the standard setting of time-discrete systems at each time step ¢t = 1,...,7T an
agent receives from the environment E the current state observation s; and is tasked to
choose an action a;. The action is then applied to the environment transitioning into
the next state s¢;11. Upon this transition the agent receives a cost ¢; = c(s¢, at, St+1)-
The Markov decision processes (MDP) is a classical mathematical framework in RL to
formalize this situation. A MDP M is 5-tuple:

M= (S, 4,P,C), (7.1)

where S is the state space, A is the action space, P is the transition function Sx AxS —
[0, 1] indicating the probability of the successor state s;11 when applying action a; in
state s; and C is the cost function S x A xS — R. Note that S and .4 may be continuous
or discrete. The Markov property of an MDP then states that:

p(st-f—l’SO? -o+35¢,A0, - - 7at) = p(st+1|st7 at) : (72)

We note that in the framework we described here we assume that the true state s; is
visible to the agent. If this is not the case, we have a partially observable Markov decision
process (POMDP), an extension of a MDP with conditional observations §2 based on
observation probabilities O.

In the standard RL case the goal of the agent is to interact with the environment via
actions to minimize the cumulative future costs:

C=co+rye1+7%ca+..., (7.3)

where v € [0, 1] is called the discount factor.

The agents behavior can be described by a policy: m : S — A which can be determin-
istic or stochastic. The expected cumulative costs when executing policy 7 for a given
starting state sg gives rise to the value function:

T
V7(s) = E[Clso = s| = E[>_~'eilso =] (7.4)
t=0

The value function measures the expected cost of executing the policy 7 in environment
FE starting at a particular starting position sg. The horizon T' can be finite or or infinite,

7

7 Reinforcement Learning

in the latter case a discount factor «v < 1 is necessary such that the cumulative costs are
finite. The optimal policy 7* is such that for all starting positions, the value function
is minimal. We have now described the key ingredients of a reinforcement learning
problem: an agent that interacts with an environment F, that we describe via a time-
descrete MDP, a policy 7, a cost signal ¢; and a value function V (Sutton and Barto,
1998).

Numerous algorithms exist that try to solve the RL problem often designed for specific
application scenarios and with different properties. In most cases we assume that the true
MDP is unknown to the agent. In that case one fundamental property that distinguishes
RL algorithms is whether to follow a model-based or model-free approach. In model-
based RL we first build an approximation E of the environment and then utilize this
for decision making: by having a model of the environment at hand, the agent can
simulate the effect of its actions and thereby decide what the best possible action is.
Model-free algorithms, by contrast, do not construct such approximation; instead these
methods only focus on finding out what the best sequence of actions is without explicitly
understanding the dynamics of the environment. To give an illustrative example: A cat
does not need to know how a floor heating system works in order to find the most
comfortable place to sit. Similarly, to drive a car one does not need to know the specifics
of the physical processes in the car’s engine. In this thesis we focus on model-based RL
and we will describe the key properties in the next section.

We can further classify RL problems into interactive (or online) and batch RL problems
(Lange et al., 2012; Ernst et al., 2005). In interactive RL, which is the classical case in
literature, the agent can directly interact with the environment at hand. Over time the
agent is expected to improve continuously until converging to the optimal actions in any
given situation. Because of this, in an interactive setting, the agent needs to balance
exploration and exploitation. Exploration is necessary to gain new information about
the behavior of the environment while exploitation makes the agent behave in a way he
considers most optimal at the current state of learning. Thus, one important quality
metric of RL algorithms is the balance of these two behaviors. One example for this is
e-greedy exploration: with probability € the agent chooses the action he considers most
optimal at the current stage of learning and with probability 1 — € he executes a random
action (Sutton and Barto, 1998). The value of € is scheduled to increase over the course
of training.

By contrast in batch RL the agent is not allowed to interact with the system during
learning, it has only access to a data set, a batch, D of observations and applied ac-
tion, and perhaps insight about the cost function ¢. Such a setting is often present in
safety-critical systems, such as robotics or real-world industry systems, to avoid possi-
ble damage to the system caused by exploration behavior (Gordon, 1995; Ernst et al.,
2005). While the problem of exploration and exploitation is not present in this setting,
the knowledge the agent has about the system dynamics is limited to the available data:
some areas in state space may be over- or underrepresented in D. This situation calls
for data-efficient methods i.e., how to gain the most insight from the limited data that
is available. Furthermore, the agent ideally should incorporate the uncertainty over the
system dynamics due to limited data into the learning process. Related, but slightly

78

different concepts are on-policy and off-policy methods. The former indicates that in
order to evaluate and improve a current policy estimate, this policy needs to be applied
to the environment. In contrast an off-policy method does not require that: we have a
behavior policy interacting with the system, and our current estimate. While off-policy
and batch RL are related, in most off-policy settings it is assumed that over time the
current policy estimate replaces the behavior policy in an iterative process. The problem
setting is still considered ”online”: interacting with a target system to gradually figure
out what the best course of action is. This interactive process is not given in a batch
RL setting.

Nowadays especially model-free algorithms see widespread use and achieve impressive
practical results in interactive settings. Two famous examples are learning to play Atari
games (Mnih et al., 2015) or beating human professional players in the game of Go (Silver
et al., 2016). While model-free RL has shown impressive results, these approaches are
not without downsides. One important weakness is data-efficiency. FEven for simple
RL benchmarks these methods require large amounts of data, and these data can only
come from interacting with the environment. The effects of this are slow and hardware
hungry training and the requirement of intensive interaction with the environment E. By
contrast, humans can learn to play new games very quickly. While some of this learning
speed can be attributed to having more rich prior knowledge (see e.g. Dubey et al.
(2018)), another reason could be that we build internal models of the environment we are
interacting with, such as a basic model of physics of the outer world. Especially in batch
RL settings, where the available data is restricted by default, data-efficiency becomes
an important criteria, consequently model-free methods appear to perform poorly (Hein
et al., 2017Db).

Model-based methods, by contrast, are expected to be more data-efficient. This is
because by building a simulation based on the available data of the environment, the
model is able to interpolate between data points and therefore extracts much more
knowledge of the data. For instance, Deisenroth and Rasmussen (2011) uses a GP model
for a real-world cart-pole task and show a data-efficiency an order of magnitude above
model-free approaches. On the other hand, the main disadvantage of using model-based
methods is the risk of model-bias. When we use the model to optimize the policy and if
model and environment differ, the policy is vulnerable to ”bias” by the model. A policy
that exploits dynamics in the model that do not translate to the real environment will
give suboptimal turnout and also may be dangerous in safety-critical applications. To
quote from Deisenroth et al. (2013): ”Dealing with inaccurate dynamics models is one
of the biggest challenges in model-based RL since small errors in the model can lead to
large errors in the policy”. One way to address the issue of model-bias is to maintain
uncertainty over the dynamics of the model. For instance, the work in Deisenroth and
Rasmussen (2011) uses Gaussian processes as a model to express uncertainty over the
dynamics function.

A further issue is that state transitions can be stochastic. In many real-world sce-
narios stochasticity may often arise due to some unobserved environmental feature that
can affect the dynamics in complex ways (such as unmeasured gusts of wind on a boat).
Popular methods used for approximating the environment transition functions include

79

7 Reinforcement Learning

Gaussian processes (Kuss and Rasmussen, 2004; Ko et al., 2007; Deisenroth and Ras-
mussen, 2011), fixed bases such as Laguerre functions (Wahlberg, 1991), and adaptive
basis functions or neural networks (Draeger et al., 1995; Schaefer et al., 2007). All of these
methods assume deterministic transition functions, perhaps with some addition of Gaus-
sian observation noise. Thus, they are severely limited in the kinds of stochasticity—or
transition noise—they can express.

Modeling stochastic effects in the data, while maintaining parameter uncertainty, is
the central motivation for developing BNN+LV. In the previous chapters in regres-
sion (Chapter 5) and model inspection (Chapter 6) we also showed empirically that
BNN+LV provide competitive predictive performance, has meaningful uncertainty over
its parameters and can model stochasticity of the data. In this chapter we develop a
novel model-based RL method that utilizes BNN+LV as models. We consider the batch
RL scenario due to the relevance of this scenario for industrial RL problems. To study
the effectiveness of these models we focus on tasks that possess stochasticity in the dy-
namics. In Section 7.2 we will study risk-sensitive scenarios and show that BNN+LV
enable us to develop a novel risk-sensitive criterion using a decomposition of uncertainty
to identify policies that balance expected cost, model-bias and noise aversion.

7.1 Model-based Reinforcement Learning

In model-based reinforcement learning, an agent uses its experience to first learn an
approximation of the environment and then uses this model to reason about what action
to take next. Omne central question in model-based RL therefore is: what is a good
model? In Chapter 5 we evaluated the predictive performance of BNN+LV on a set
of problems, including stochastic dynamic (toy- and real-world) systems. Here we saw
that BNN+LV provide superior predictions in the presence of noise. Building on this
insight in this chapter we wantto show how BNN-+LV can be used as models for RL and
evaluate how policies that are trained under a BNN+LV model behave in comparison
to standard baseline models. We want to address the following questions:

1. How can we efficiently train policies when using BNN+LV as models for reinforce-
ment learning?

2. Do BNN+LV enable learning accurate policies for stochastic benchmarks?

3. How does the performance of policies under BNN+LV dynamics compare to base-
line models?

The methods and experiments presented in this section were previously published in
Depeweg et al. (2017a).

7.1.1 Problem Description

In the beginning of this chapter we have introduced the Markov decision process (MDP)
as the classical mathematical framework to describe an environment E. In the context of

80

7.1 Model-based Reinforcement Learning

model-based RL, we can describe an MDP alternatively using the concept of a discrete-
time stochastic dynamic systems which is the framework used in classical control theory
(Bertsekas, 2002). The general form of a (time-)discrete dynamic system is:

str1 = f(st,a, 2t) (7.5)

where f is an unknown function that takes as input the current observable state s;, the
control signal (action) a;, and an unobserved/latent stochastic disturbance z; from an
unknown distribution. All z; are assumed to be independent random variables. The
equivalence of this formulation to the MDP follows from the fact that the next state
st+1 is only dependent on the current state and action (which is the Markov property),
the state s; is assumed to be observable, and the stochastic disturbance is independent
w.r.t. t. Because of this Eq. (7.5) describes a probability distribution p(s;+1|s¢, a;). As
with MDPs also deterministic systems can be described by Eq. (7.5), with z; = 0.
The environment further has a cost function c:

Ct = C(St, at,StH) > (7-6)

that returns a scalar cost signal when doing a particular transition.

We consider a batch RL setting, where we are given a batch of state transitions
D = {(st,as,s¢+1)} formed by triples containing the current state s;, the action applied
a; and the next state s;11 from such a discrete-time dynamic system. For example, D
may be formed by measurements taken from an already-running dynamic system.

Model-based RL methods include two key parts (Deisenroth et al., 2013): In the
first part we learn a model of the dynamics of the environment and in the second part
we utilize this model to learn a policy. While in interactive RL these two steps are
interwoven, in batch RL we have a simple two-step process: In the first step we want
to estimate a model from the available data given by D. This is a standard supervised
learning task. From the batch of state transitions we infer the functional relationship
between current state and action and successor state given by Eq. (7.5). Such a task can
be a regression or classification problem depending if the state and action space is discrete
or continuous. Different methods will make different assumptions about the form of the
system dynamics. For instance, if a standard neural network is used f is assumed to be
deterministic and consequently the stochastic disturbance z is not modeled. If state and
action spaces are discrete, estimating the transition function, which reduces to a three
dimensional tensor of probabilities pg , ¢ is straightforward and Bayesian modeling over
discrete systems has also been studied in the last decades (Shapiro and Kleywegt, 2002;
Nilim and El Ghaoui, 2005; Bagnell et al., 2001). In this work however we will focus on
continuous state and action sequences.

We identify that Eq. (7.5) has the same form as Eq. (3.1) from Chapter 3. In fact, this
class of function was the starting point in the derivation of BNN+LV. By applying the
simplification we outlined in the aforementioned chapter we can therefore approximate
Eq. (7.5) with:

St = ftrue(stfla A1, 2t Wtrue) + €t , zt ~ N(Oa '7) . (77)

81

7 Reinforcement Learning

where the latent variables z; ~ N(0,7) and additive observation noise variable €, ~
N(0,X) account for the stochasticity in the dynamics. For this reason, BNN+LV seem
to be promising candidates as models for time-discrete dynamics systems, because they
approximate the general form given by Eq. (7.5). As mentioned earlier, existing model-
based methods do not model the stochasticity to such a level of generality (see for
instance Deisenroth et al. (2013), Eq. (3.1)).

The second step in model-based RL is to identify the best possible actions under a
model M. Most methods usually make a single estimate of a model M (see for instance
Schaefer et al. (2007)), whereas methods that utilize Bayesian modeling will instead
provide a distribution over models p(M) (Bagnell and Schneider, 2001; Deisenroth and
Rasmussen, 2011; Gal et al., 2016).

Let us define a roll-out, or trajectory:

T = ((So, ao), ey (ST, aT)) s (78)

over a horizon of T'. A roll-out is a sequence of steps which result from interacting with
a model via actions a in a recursive way: when in s;, we apply action a; to the model,
which leads to a state transition to s;y1. The starting state sy may be fixed or could be
any state in the state space S depending on the problem. We define 7|M as a trajectory
under a model M and p(7|M) as the (typically intractable) distribution over all possible
trajectories under M. Finally, let p(7) = [p(7|M)p(M)dM be the marginal distribution
over all trajectories.

One approach to identify the optimal actions is model predictive control (MPC). At

each point in time MPC optimizes a sequence of actions ay, ..., ar over a horizon T with
respect to
t+T
a,...,ar = argmin E| E e s (7.9)
at,...,ar t=t

where the expectation is over all trajectories 7 that can be generated under the model (or
distribution over models, see for instance Chua et al. (2018)) using the action sequence
a¢,...,ar and starting in the current state s;. After finding the best sequence of actions
the MPC controller uses the first and executes it on the ground-truth environment.
After selecting an action a; the horizon T gets shifted on step in the future and the
optimization is repeated, a process called receding horizon control.

Because the minimization process in Eq. (7.9) is typically not solvable analytically,
there exist numerous approximation techniques. The most simplistic method would be
to perform a random search in action space. More sophisticated approaches exist, for
instance by assuming linearity in the effect of the actions (Todorov and Li, 2005), or
using more efficient search strategies such as particle swarm optimization (PSO) (Hein
et al., 2018) . MPC, however, has drawbacks. One is that it can be very slow to use
in practice, or relies on strong approximation about the nature of the dynamics (such
as the aforementioned linearity). Furthermore, MPC does not estimate a policy 7, but
needs to repeat the planning process at every point in time. This can also make it slow
to apply in practice and maybe even be prohibitive in industrial RL context.

82

7.1 Model-based Reinforcement Learning

Instead, in batch RL it can be desirable to have a policy w, that can be deployed on
the target system, without any learning or optimization taking place afterwards. One
method that enables is model-based policy search and which will be the topic of the next
section.

7.1.2 Model-based Policy Search with BNN+LV

In model-based policy search we try to find a parametric policy a; = m(s¢; Wy), which
for instance could be modeled by a neural network. In this work we model policies as
deterministic functions. While stochastic policies are often used to guide exploration,
here we consider the batch RL scenario where exploration is not allowed.

We define p(7|Wy, M) as the distribution of all possible trajectories under model M
and with a policy parameterized by W,.. The objective function to minimize in model-
based policy search is given by:

J(Wr) = Epn)Epiriw, M) [Z Ct] , (7.10)
t=1

which means we want to find the parameters W, of policy 7, that minimizes the expected
cost over all possible models and trajectories for a horizon of size T

The two challenges in policy search are estimating the objective in Eq. (7.10) and
performing the minimization with respect to the policy parameters W; itself. For certain
model classes, such as Gaussian processes, the objective can be estimated by moment
matching: because the predictive distribution of a GP is Gaussian, uncertainty can be
propagated in every step and by that a distribution over trajectories can be obtained
(Deisenroth and Rasmussen, 2011). An alternative method is to sample trajectories: if
we are able to sample from the distribution over models, that is p(M), we can generate
random roll-outs 7|\Wy, M of interaction between model and current policy (see for
instance Gal et al. (2016)). In the case of high variance the work in Ng and Jordan (2000)
propose an efficient sampling process by constraining the random number generation.

For minimization we want to find the optimal policy:

Wy, = argmin J (W) . (7.11)
Wr

Given we can estimate Eq. (7.10), in principle any gradient-free method can be applied,
such as random search in parameter space of W,, or more sophisticated methods such
as PSO (Hein et al., 2017b). However, faster convergence and more scalable applica-
bility can be expected by utilizing gradient information for policy updates. This can
be achieved in two ways. If every component in J, that is the model, the policy and
cost function is differentiable, we can obtain an analytical gradient. This is because
the cost ¢; is connected to the current state s; and action a; which themselves are con-
nected to the previous state s;_; which then enables calculating gradients in the same
way as backpropagation in neural networks (see Section 2.4.1) and for which automatic
differentiation tools can be used.

83

7 Reinforcement Learning

If gradients cannot be computed analytically, for instance when the cost signal is
sparse, a gradient has to be estimated. This can be done using finite difference methods
or policy gradient techniques (Deisenroth et al., 2013). In this thesis, we only consider
problems where an analytical gradient is available. For completeness at the end of this
section we provide a short digression into model-based policy gradient. This approach
is a blueprint that would enable the methodologies and ideas we develop in this work
to be applicable to situations where for instance the reward is sparse and therefore not
differentiable.

We will now describe the minimization process of the objective in Eq. (7.10) by
gradient descent. As model class we will use BNN+LV. In the next section describe the
policy search process using alternative methods, that will also serve as baselines for the
experiments that follow. As mentioned earlier we assume that given a batch of data D
of state transitions we have trained a BNN+LV. The result of this is a distribution over
models, given by the distribution ¢()). The transition model in Eq. (7.7) specifies a
probability distribution p(s;|s;—1,a;—1) that we approximate by:

P(St|St—17at—1) ~ /N(St|f(st—17at—1, Zt; W)v E)q(W)N(zt\O,'y) dWdz , (7-12)

where the feature vectors in our BNN are now s;_; and a;_; and the targets are given by
s¢. In this expression, the integration with respect to W accounts for stochasticity arising
from lack of knowledge of the model parameters, while the integration with respect to
z+ accounts for stochasticity arising from unobserved processes that cannot be modeled.
In practice, these integrals are approximated by an average over samples of z; ~ N (0,)
and W ~ q.

In the second part of model-based policy search, we optimize the parameters W, of
a policy that minimizes the sum of expected cost over a finite horizon T with respect
to the belief ¢(W). This expected cost is obtained by averaging over multiple virtual
roll-outs. For each roll-out we sample W, ~ ¢ and then simulate state trajectories using
the model s;1 = f(st, ar, 263 Wi) + €41 with policy a; = m(sy; Wi), latent variables
2t ~ N(0,v) and additive noise €41 ~ N(0,X). This procedure allows us to obtain
estimates of the policy’s expected cost for any particular cost function. If model, policy
and cost function are differentiable, we are then able to tune W, by stochastic gradient
descent over the roll-out average.

We approximate the exact costs given by Eq. (7.10) using Monte Carlo, by drawing
K samples of models {W*,... , WX} and generating a trajectory:

T
JWx) = Epan)Eprpw,,) [Z Ct] (7.13)
t=1
T
= Eqom) Ep(riw.,w) [Z Ct] (7.14)
t=1
1 Z7 geeesZ. €7,...,E
~ E Z ZC(S:VIC’{ f’ ’ 5}7{ If’ ’ f}aWW)] 7 (715)
k=1 Lt=1

84

7.1 Model-based Reinforcement Learning

Algorithm 1 Model-based policy search using BNN+LV.
Input: D = {s,,a,, Ay} forne 1.N
Fit qOWV) and X by optimizing (3.15).
function UNFOLD(s)
sample{W?', .., WEY from q(W)

C+0
for k=1: K do
for t =0:7 do

Z}{C—f—l ~ N(077>
Ay — f(st,ﬁ(st;Wﬂ),sz;Wk)
61]:—}—1 ~ N(O> 2)
St41 ¢ St + Ay +€f
C <+ C + c(st+1)
return C/K

Fit Wy by optimizing + SN uNFOLD(s,)

Figure 7.1: Pseudocode of the algorithm for model-based policy
search using BNN+LV.

where sl/v’{zl""’Zt}’{el"”’et}’w’r is the state that is obtained at time ¢ in a roll-out gen-

erated by using a policy with parameters Wy, a transition function parameterized by
W and latent variables z1,..., 2z, with additive noise values €1, ..., €. In the last line
we have approximated the integration with respect to W, z1,..., 27, €1,...,€r and sg
by averaging over K samples of these variables. To sample sy, we draw this variable
uniformly from the available transitions (s, a¢,s¢+1). The gradient can then be obtained
by utilizing the Monte Carlo approximation of Eq. (7.15):

K T
~ 1 Wka{zk7"'7Zk}7{€k7"'7€k}’w7r
vwﬁﬂm)wwﬁK; ;dst B (7.16)

Algorithm 1 shows the full computation scheme of model-based policy search using
BNN+LV. The gradients can be obtained using automatic differentiation tools such as
Theano (Bergstra et al., 2010). Note that Algorithm 1 uses the BNNs to make predictions
for the change in the state A; = s;11 — s; instead of for the next state s;y1 since this
approach often performs better in practice (Deisenroth and Rasmussen, 2011).

Digression: Model-based Policy Gradient Policy gradient is one major subfield of
reinforcement learning. These techniques are on-policy: to estimate the gradient of J
w.r.t. the current policy, parameterized by W, this policy needs to be applied to the
system. However, here we consider the case of applying the policy inside a model M,
which makes them applicable to a batch RL scenario. Due to the Markov property of

85

7 Reinforcement Learning

Eq. (7.5) the distribution over trajectories, that is p(7|W;,, M) can be expressed as:

T
p(T W, M) = p(so) [[p(sesilse, ar = w(se; We); M) . (7.17)
t=0
The log-derivate, or REINFORCE, trick (Williams, 1992) allows us to rewrite the gra-
dient of this distribution w.r.t. the policy parameters as:

Vw,p(T\Wx, M) = p(7|Wx, M)V log p(T|Wr, M) (7.18)

The REINFORCE trick allows us to simplify the derivation of the gradient of the ob-
jective J such that:

T
Vw,J Wr) = VYw, EvEprpy,m [ZC St,at] , (7.19)
t=1
T
= E,(n)Vw, /p(TWﬂ, M) Zc(st,at)dT , (7.20)
t=1
T
=By / (T[We, M)V, log p(7|We, M) Y~ sy, ar)dr (7.21)
t=1
T
o0 (e i) [V, 1og (7 Wie, M) Y~ sy,)] (7.22)
t=1
T
= Epan) Ep(rpwi,m) ZVWW log(p(si+1lst,ar = m(sg; Wa), M))c(se,a) , (7.23)
t=1

T
= E, o) Eperpw,,) Zvat log(p(stt1lst, at, M)V, m(se; Wr)e(se, ae) - (7.24)

t=1
This result enables estimating the gradient of the objective given by Eq. (7.10), even in
the case that the cost function is not differentiable: the outer two expectations Ej)
and E, -y, 1) can be estimated by sampling trajectories and the the gradients are only
w.r.t. to the model and policy. Note that because we require a deterministic policy

a gradient w.r.t. the model is needed, whereas for stochastic policies this is not the
required (Peters and Schaal, 2006).

7.1.3 Model & Baseline Specification

We will use the same set of parametric models that we used in the regression experiments
in Chapter 5. The policy search procedure will differ slightly for different methods and
here we want to describe this for each baseline.

1. Standard neural networks (MLP): Similar as in Chapter 5 we train the neural
network using early stopping. We model the dynamic system in Eq. (7.5) using:

St = ftrue(stfly ag—1, Wtrue) + €, (725)

86

7.1 Model-based Reinforcement Learning

where we approximate Wiue using the set of weights with the lowest validation
error. The observation noise €; is constant additive Gaussian noise whose vari-
ance is given by the minimal squared validation error. The approximation to the
objective function J(W;) then is:

K

T
~ i anlﬂ{elfr--veicLWﬂ'
JWr) & 2 2 [; c(s;) (7.26)

. MLP Ensemble (MLP Ens.): We use an ensemble of 25 neural networks by run-
ning the training process of the MLP 25 times in parallel. The model assump-
tion is the same as in the MLP, in addition we have an empirical distribution
p(M) = {W,..., Wk with corresponding constant output variances U%, . ,0’%(.

The objective function then is

K T
1 anl,k’ ek,.‘.,ek ,Wﬂ—
USEEDS [§ o(s)Y" e e)] . (7.27)

k=1 Lt=1

. Gaussian processes (GP): These have recently been used for policy search under
the name of PILCO (Deisenroth and Rasmussen, 2011). For each dimension of
the target variables, we fit a different sparse GP using the FITC approximation
(Snelson and Ghahramani, 2005). In particular, each sparse GP is trained using
150 inducing inputs by using the method stochastic expectation propagation (Bui
et al., 2016). After this training process we approximate the sparse GP by using
a feature expansion with random basis functions (see supplementary material of
Hernandez-Lobato et al. (2014)). This allows us to draw samples from the GP
posterior distribution over functions, enabling the use of Algorithm 1 for policy
training. Note that PILCO will instead moment-match at every roll-out step as
it works by propagating Gaussian distributions. However, in our experiments
we obtained better performance by avoiding the moment matching step with the
aforementioned approximation based on random basis functions.

. Bayesian neural networks (BNN): The BNN is trained with v = 1 but does not
have a latent variable model.

As in Chapter 5 all methods based on neural networks share the same topology and
hyper-parameters. The specific hyper-parameters differ for each experiment due to scala-
bility and specifics of each benchmark. We will therefore describe them in the subsequent
paragraphs.

7.1.4 Experiments

We now evaluate the performance of our algorithm for policy search in three different
benchmark problems. These problems are chosen based on two reasons. First, they
contain complex stochastic dynamics and second, they represent real-world applications

87

7 Reinforcement Learning

Baselines BNN+LV
Benchmark MLP MLP Ens. GP BNN VB a=0.5 a=1.0
Wet-chicken -2.71+£0.09 -2.64+0.06 -3.05+0.06 -2.88+0.06 -2.67+0.10 -2.37+0.01 -2.42+0.01
IB -183.5+4.1 -184.5+7.4 -285.24+20.5 -177.043.7 | -180.2+0.6 -174.2+1.1 -171.1+2.1
Gas -0.65+0.14 -0.42+0.01 -0.6440.18 -0.44+0.02 -0.454+0.02 -0.41£0.03 -0.55+0.08

Table 7.1: Policy performances over different benchmarks. Printed are average values over 5
runs with respective standard errors.

common in industrial settings. A Theano implementation of algorithm 1 is available
onlinel.

The first experiments we conduct is on the wet-chicken benchmark. We choose this
because the benchmark is very simple but exhibits complex stochastic patterns, mak-
ing it ideal to empirically evaluate whether the capability to model stochastic pat-
terns in BNN+LV lead to better performing policies than using baselines. The sec-
ond experiments uses the industrial benchmark, a system with stochasticity and high-
dimensionality, which was designed to mimic some properties observed in real-world
industrial systems. Lastly, we use data from a real gas turbine and design a task with
partial observability.

Wet-Chicken

The neural network models are set to 2 hidden layers and 20 hidden units per layer. We
use 2500 random state transitions for training. We found that assuming no observation
noise by setting I' to a constant of 1075 helped the models converge to lower energy
values. For policy training we use a horizon of size T = 5 and optimize the policy
network for 100 epochs, averaging over K = 20 samples in each gradient update, with
mini-batches of size 10 and learning rate set to 107°.

The predictive distributions of different models for y;,1 are shown in Figure 7.2 for
specific choices of (x¢, y¢) and (az+, ayt). These plots show that BNNs+LV with o = 0.5
are very close to the ground-truth. While it is expected that Gaussian processes fail to
model multi-modalities in Figure 7.2¢, the FTIC approximation allows them to model
the heteroscedasticity to an extent. VB captures the stochastic patterns on a global
level, but often under or over-estimates the true probability density in specific regions.

After fitting the models, we train policies using Algorithm 1 with a horizon of size
T = 5. Table 7.1 shows the average reward obtained by each method. BNN+LV with
a = 0.5 or @ = 1 produce the best policies, whereas VB seems to lack robustness and
has much larger empirical variance across experiment repetitions.

Figure 7.3 shows three example policies, myp ,ma=0.5 and mgp (Figure 7.3a,7.3b and
7.3c, respectively). The policies obtained by BNNs with random inputs (VB and o = 0.5)
show a richer selection of actions. The biggest differences are in the middle-right regions
of the plots, where the drift towards the waterfall is large and the bi-modal transition
for y (missed by the GP) is more important.

! https://github.com/siemens/policy_search_bb-alpha

88

https://github.com/siemens/policy_search_bb-alpha

7.1 Model-based Reinforcement Learning

s8¢ =(2.0,3.0) , a; = (0,0.0) 5, = (2.0,4.0),a; = (—1.0,0.0)

GP GP
VB
0.6 - o =05 0.6 —— ZB= 0.5
— =®= Ground Truth — =@= GroundTruth
I T
2 S
& A Q
0
0 1 2 3 4 5 1 2 3 4
Yi+1 Yi+1
(a) (b)
s = (4.3,3.0) , a; = (0.3,1.0) s, = (0.0,1.5) , a; = (0.0,0.0)
GP GP
0.6
—— Zio.s 0.6 —— Zio.s,
— =8= Ground Truth | —_ 8= Ground Truth
z z
NS 3
ISH ISH
% _/ 0
1 2 3 4 5 0 1 2 3 4 5
Yt+1 Yt+1
(<) (d)

Figure 7.2: Predictive distribution of y; given by different methods in four different scenarios.
Ground truth (red) is obtained by sampling from the real dynamics.

. GP
Ed i
4
3
0 >
2
_r _
2
1
- 1 2 3 4 5o
X

() (b) (©)

AR
ARRARARR KRR KR
A Y
AR Y
LAAAANAANLNNNNY
[SIE]
[SIE]

(=]

A
-

wol3

Figure 7.3: Visualization of three policies in state space. Waterfall is indicated by top black
bar. Left: policy myp obtained with a BNN trained with VB. Avg. reward is
—2.53. Middle: policy my—g.5 obtained with a BNN trained with a = 0.5. Avg.
reward is —2.31. Right: policy mgp obtained by using a Gaussian process model.
Avg. reward is —2.94. Color and arrow indicate direction of paddling of policy
when in state s;, arrow length indicates action magnitude. Best viewed in color.

89

7 Reinforcement Learning

480 MLP

40
Time
831 a=20.5
samples. samples samples.
— sample me; | — sample mean A w— sample mean
e ground truth

=514/,

196; 20 40 6 80 9% 20 40 60 80

Time Time

Figure 7.4: Roll-outs of algorithm 1 for two starting states sy (top/bottom) using different types
of BNNs (left to right) with K = 75 samples for T = 75 steps. Action sequence
Ag, -+, Ar—75 given by data set for each sg. From left to right: model trained
using VB,a = 0.5 and o = 1.0 respectively. Red: trajectory observed in data set,
blue: sample average, light blue: individual samples.

Industrial applications

We now present results on two industrial cases. First, we focus on data generated by
a real gas turbine and second, we consider a recently introduced simulator called the
industrial benchmark, with code publicly available (Hein et al., 2017a).

Gas turbine data For the experiment with gas turbine data we simulate a task with
partial observability. As we discussed in Section 4.3.3 we have 40,000 observations of
a 30-dimensional time-series of sensor recordings from a real gas turbine available. We
are also given a cost function that evaluates the performance of the current state of the
turbine. The features in the time-series are grouped into three different sets: a set of
environmental variables E; (e.g. temperature and measurements from sensors in the
turbine) that cannot be influenced by the agent, a set of variables relevant for the cost
function Ny (e.g. the turbines current emission) and a set of steering variables A; that
can be manipulated to control the turbine.

We first train a world model as a reflection of the real turbine dynamics. To that
end we define the world model’s transitions for N; to have the functional form N; =
f(Ei_s,..,E, Ay_5,..A¢). The world model assumes constant transitions for the envi-
ronmental variables: F;y1 = F;. To make fair comparisons, our world model is given by
a non-Bayesian neural network with deterministic weights and with additive Gaussian
output noise.

90

7.1 Model-based Reinforcement Learning

We then use the world model to generate an artificial batch of data for training the
different methods. The inputs in this batch are still the same as in the original turbine
data, but the outputs are now sampled from the world model. After generating the
artificial data, we only keep a small subset of the original inputs to the world model.
The aim of this experiment is to learn policies that are robust to noise in the dynamics.
This noise would originate from latent factors that cannot be controlled, such as the
missing features that were originally used to generate the outputs by the world model
but which are no longer available. After training the models for the dynamics, we use
algorithm 1 for policy optimization. The resulting policies are then finally evaluated in
the world model.

All neural network architectures have two hidden layers with 50 hidden units each. For
policy training and world-model evaluation we perform a roll-out with horizon 7' = 20.
For learning the policy we use mini-batches of size 10 and draw K = 10 samples from gq.

In Table 5.1 from Chapter 5 we already evaluated the predictive performance of dif-
ferent methods on these data. Here we saw that BNN+LV provide the highest test
log-likelihood whereas ensembles of MLPs performed best in terms of test RMSE. The
results of the policy given by Table 7.1 reflect that, using these two methods as models
give rise to the best performing policies.

Industrial benchmark We provide a description of this benchmark in Section 4.3.2.
For each setpoint S € {10,20,---,100} we generate 7 trajectories of length 1000 using
random exploration. This batch with 70,000 state transitions forms the training set.
We use 30, 000 state transitions, consisting of 3 trajectories for each setpoint, as test set.

For data preprocessing, in addition to the standard normalization process, we apply a
log transformation to the reward variable. Because the reward is bounded in the interval
[0, Rynaz), we use a logit transformation to map this interval into the real line. We define
the functional form for the dynamics as Ry = f(A¢—15, -+, A, Re—15, -, R¢—1). This
time-embedding is done to reduce the effect of temporal dependencies due to the partial
observability of this benchmark. By this we hope to transform this benchmark which is
a POMDP to an equivalent MDP, which is licensed by Takens’ theorem (Takens, 1981).
For more details on this we refer to Bush and Pineau (2009).

For the neural network models we use two hidden layers with 75 hidden units.We use
a horizon of T' = 75, training for 500 epochs with batches of size 50 and K = 25 samples
for each roll-out.

Each row in Figure 7.4 visualizes long term predictions of the MLP and BNNs trained
with VB and a = 0.5 in two specific cases. In the top row we see while all three meth-
ods produce wrong predictions in expectation (compare dark blue curve to red curve).
However, BNNs trained with V' B and with « = 0.5 exhibit a bi-modal distribution of
predicted trajectories, with one mode following the ground-truth very closely. By con-
trast, the MLP misses the upper mode completely. The bottom row shows that the VB
and a = 0.5 also produce more tight confident bands in other settings.

Next, we learn policies using the trained models. Here we use a relatively long horizon
of T'= 75 steps. Table 7.1 shows average rewards obtained when applying the policies

91

7 Reinforcement Learning

to the real dynamics. Because both benchmark and models have an autoregressive
component, we do an initial warm-up phase using random exploration before we apply
the policies to the system and start to measure rewards.

We observe that GPs perform very poorly in this benchmark. We believe the rea-
son for this is the long search horizon, which makes the uncertainties in the predictive
distributions of the GPs become very large. Tighter confidence bands, as illustrated in
Figure 7.4 seem to be key for learning good policies. Overall, & = 1.0 performs best
with o = 0.5 being very close.

7.1.5 Discussion

In this section we have shown how BNN+LV can be used in model-based RL, in particular
for gradient-based policy search. We have presented an algorithm that uses random roll-
outs and stochastic optimization for learning a parameterized policy in a batch scenario.
This algorithm is particularly suited for industry domains.

BNN+LV have allowed us to solve the wet-chicken benchmark, which is a challenging
problem where model-based approaches usually fail. They have also shown promising
results on industry benchmarks including real-world data from a gas turbine. In partic-
ular, our experiments indicate that a BNN trained with o = 0.5 or @ = 1 as divergence
measure in conjunction with the presented algorithm for policy optimization is a powerful
black-box method for policy search.

92

7.2 Risk-sensitive Reinforcement Learning

7.2 Risk-sensitive Reinforcement Learning

In the previous section we studied BNN+LV for model-based RL in a batch scenario. The
objective of this study was to minimize expected costs. Here we found that BNN+LV
serve as powerful models that give rise to policies that produce low costs on the target
system. In Section 3.2 we developed the idea of decomposing predictive uncertainty
in the predictions of BNN+LV into epistemic and aleatoric components: the epistemic
component originates from lack of knowledge about the model parameters whereas the
aleatoric component originates from stochasticity in the data. In Chapter 6 we visualized
this on a set of tasks, which resulted in meaningful decompositions. As part of this
chapter we further studied active learning scenarios (see Section 6.4) and showed that
the decomposition could be used for sequential decision making.

Here, we want to see how we can further utilize the uncertainty decomposition in
the field of reinforcement learning, in particular for risk-sensitive RL. In risk-sensitive
RL the main idea is that the agent, in addition to minimizing costs, should also take
into account a particular criterion of risk. One example of this is to avoid (potentially
low-probability) worst-case events. This can be realized by augmenting the objective
function with an additional objective that is called the risk-sensitive criterion. In this
study we extend the standard risk-sensitive criterion via an uncertainty decomposition
in BNN+LV. The decomposition enables us to define a novel risk-sensitive criterion to
identify policies that balance expected cost, model-bias and noise aversion.

There exist numerous work on utilizing model uncertainty for safe or risk-sensitive
RL (Mihatsch and Neuneier, 2002; Garcia and Fernandez, 2015). In safe RL numerous
other approaches exist often in the context of exploration (Joseph et al., 2013; Hans
et al., 2008; Garcia and Fernandez, 2012; Berkenkamp et al., 2017). Uncertainties over
transition probabilities have been studied in discrete MDPs since a long time (Shapiro
and Kleywegt, 2002; Nilim and El Ghaoui, 2005; Bagnell et al., 2001) often with a focus
on worst-case avoidance. Our work extends this to continuous state and action space
using scalable probabilistic models.

The methods and experiments presented in this section are based on the publications
Depeweg et al. (2017b, 2018).

7.2.1 Problem Description

We maintain the scenario of the previous section, we consider model-based RL in a batch
scenario: we are given a batch of state transitions D = {(s, a;,s¢+1)} formed by triples
containing the current state s;, the action applied a; and the next state sy11 from such
a discrete-time dynamic system. We also want to perform policy search by gradient
descent.

Following Garcia and Fernandez (2015) we can define a risk-sensitive criterion as:

Definition 7.2.1. (Risk-Sensitive Criterion) In risk-sensitive RL, the objective function
includes a scalar parameter S that allows the desired level of risk to be controlled. The
parameter 3 is known as the risk sensitivity parameter, and is generally either positive

93

7 Reinforcement Learning

or negative: f > 0 implies risk aversion, § < 0 implies a risk-seeking preference, and
(through a limiting argument) 8 = 0 implies risk neutrality.

The classic risk-sensitive criterion penalizes the deviations of the cumulative cost C
from the expectation E[C] for a particular starting state sp. To keep the notation
simple, for the rest of this section we denote by 7 roll-outs that all originate from the
same starting state sg. For example, the risk-sensitive objective could be:

JWr) = Ep(T|Wﬂ—)[C] + Up(TlWﬂ)(C)) (7.28)

where o,)(C) is the standard deviation of C' across all trajectories and model in-
stances under the current policy given parameterized by W,.. The risk-sensitive param-
eter 5 determines the amount of risk-avoidance (8 > 0) or risk-seeking behavior (8 < 0)
when optimizing W;.

Instead of working directly with the risk on the final cost C, we can alternatively

consider the sum of risks on the individual costs c1,...,cp.:
T
JWr) = Z Epriwa e + opriw,) (ct) (7.29)
t=1

Here we consider these individual risk terms for every time step ¢ instead of the risk of
the cumulative cost because the former is a more restrictive criterion since low risk on
the ¢; will imply low risk on C, but not the other way around.

In the next section we show how we can further decompose the standard risk term,
that is oy,)(ct) utilizing the results from Section 3.2.

7.2.2 Uncertainty Decomposition for Risk-sensitive RL

The standard deviation o,(-w,)(ct) is w.r.t. the distribution over 7, that is all trajec-
tories that the policy m may generate, for a particular starting state sg. Two causes
lead to a possible spread in the trajectories: the system may be stochastic, or we have
uncertainty over the system dynamics. Applying the idea of the variance decomposition
we introduced in Section 3.2 we can decompose this term into epistemic and aleatoric
terms using the law of total variance. In particular,

N|=

Optriwn)(@6) = {7200 Byt an[et]) + Epan o, anen)] (7.30)

where E, - w, anlce] and J;(TIWW,) (ct) denote the mean and variance of ¢; under virtual
roll-outs performed with policy W, and under the dynamics of one particular model M.
In a similar manner as in Eq. (3.26), the operators Ej)[-] and O;E(M)(') in Eq. (7.30)
compute the mean and variance of their arguments when M ~ P(M).

In a BNN+LV we have that p(M) = ¢(W) and the randomness in a model originates
from sampling the latent variable z and the additive Gaussian noise €. Here, the two
terms inside the square root in Eq. (7.30) have a clear interpretation. The first one,
that is US(W)(Ep(ﬂme) [ct]), encodes the risk originating from the sampling from the

94

7.2 Risk-sensitive Reinforcement Learning

distribution over models ¢(W) in the virtual roll-outs. Any variation inside one partic-
ular model originating from randomness in z or € will be integrated out by the inner
expectation B, -, w)lc]). We call this term the epistemic risk. By contrast the second
term, Egy) [U§(r|WW7W)(Ct)]’ represents the expected risk originating from the sampling
of z and € in the virtual roll-outs. This is because the outer expectation will integrate
all variation that occurs due to uncertainty over the model parameters. Thus this term
measures the average variability in each model due to stochastic effects and call this
term the aleatoric risk.

We can now extend the objective in Eq. (7.10) with a new risk term that balances
the epistemic and aleatoric risks. This term is obtained by first using risk-sensitive
parameters 3 and v to balance the epistemic and aleatoric components in Eq. (7.30),

and then summing the resulting expression for t =1,...,T:
T 1
2
o(y,B) = Z {/BZUS(W)(Ep(ﬂWﬁ,W) [ed]) + Y Eqom 0w,) (Ct)]} : (7.31)
t=1

Therefore, our ‘risk-sensitive criterion” uses the function JW;) = E[C] + o(7,),
which can be approximated via Monte Carlo and optimized using stochastic gradient
descent. The Monte Carlo approximation is generated by performing M x N roll-outs
with starting state sp sampled uniformly from D. For this, W is sampled from ¢(WV) a
total of M times and then, for each of these samples, N roll-outs are performed with
W fixed and sampling only the latent variables and the additive Gaussian noise in the
BBN-+LVs. Let 2" and €"" be the samples of the latent variables and the additive
Gaussian noise at step ¢ during the n-th roll-out for the m-th sample of W, which we
denote by W™. Then

W {2z ’"}7{65"’",---767’"}71/\/#)

Cmn(t) = c(s, (7.32)

denotes the cost obtained at time ¢ in that roll-out. All these cost values obtained at
time ¢ are stored in the M x N matrix C(t). The Monte Carlo estimate of J(W;) is
then

T M 3
WH%Z{W—I—{B%Q[(t)1/N] Z } } (7.33)

t=1 m=1

where 1 denotes a vector with all of its entries equal to 1, C(t),,. is a vector with the
m-th row of C(t) and 62[x| returns the empirical variance of the entries in vector x.

By setting 8 and + to specific values in Eq. (7.33), the user can choose different trade-
offs between cost, aleatoric and epistemic risk: for v = 0 the term inside the square
root is 3% times 02 [C(t)1/N] which is a Monte Carlo approximation of the epistemic
risk in Eq. (7.30). Similarly, for 8 = 0, inside the square root we obtain 72 times
= S2M_ 62 [C(t)n.] which approximates the aleatoric risk. For 4 = 5 the standard risk
criterion o(c¢;) is obtained, weighted by .

95

7 Reinforcement Learning

At the beginning of this chapter we identified the model-bias as one of the main chal-
lenges in model-based RL. We show now that the epistemic risk term in Eq. (7.30) can be
connected to this concept. Model-bias occurs because a policy with W, is optimized on
the model but executed on the ground truth system. The more model and ground truth
differ, the more the policy may be ’'biased’ by the model (Deisenroth and Rasmussen,
2011). Given the initial state sy, we can quantify this bias with respect to the policy
parameters W, as:

2
‘Wﬂ'yMtrue) [Ct] p(T'Wﬂ—) [Ct]> b (734)

M’ﬂ

t:1

where Ej, -, Miwe)lct] 15 the expected cost obtained at time ¢ across roll-outs starting
at sp, under the ground truth dynamics and with policy 7(s¢; Wr). E[c] is the same
expectation but under BNN+LV dynamics sampled from ¢()V) on each individual roll-
out.

Unfortunately we may not be able to avoid the existence of such discrepancy when
data is limited, which is always the case in a batch RL scenario: if the learning method
does not have enough data, we can not expect it to accurately model the true dynamics.
However, for some areas in state space we may have more data available than in others
and consequently, we can expect the risk for model bias to be lower in these areas.
Therefore the goal is to guide the policy search towards policies that stay in these areas
of the state space where the risk for model-bias is low. Eq. (7.34) is impossible to compute
in practice prior to policy execution on the ground-truth system. However, let us assume
that the true dynamic can be expressed by a neural network with latent variables and
weights Wirue. We can then rewrite Ep, iy, Myue) (€] @5 Epir i, Wirwe)[ct] and since we
do not know Wiy, we can further assume that Wiyye ~ g(W). The expected model-bias
is then

T
Eb(Wr)] = Eqw) {Z (W W) 2] — p(Twﬂ)[ct])Q} (7.35)
. t=1
= 7w Epirpw)let]) - (7.36)
t=1

We see that our definition of epistemic risk also represents an estimate of model-bias
in model-based RL. This risk term will guide the policy to operate in areas of state space
where model-bias is expected to be low.

The aleatoric risk term in Eq. (7.30) can be connected with the concept of noise
aversion. Let o2 (W Wirne) (ct) be the variance obtained at time ¢ across roll-outs starting
at sg, under the ground truth dynamics and with policy 7(s;; Wy). Assuming Wipye ~
q(W), the expected variance is then E;y) [Ui(ﬂww,w(q)]' This term will guide the policy
to operate in areas of state space where the stochasticity of the cost is low. Assuming
a deterministic cost function this stochasticity is determined by the model’s predictions
that originate from z; and €;.

96

7.2 Risk-sensitive Reinforcement Learning

10

=
%®
=)
o
]
©
B
S

= 930
Al
-~ 925

4000 5000 6000. [}

L5 (Brrueled = Emoaet[ed])?

Zt Etrue [ct]
3
N

1
T
1
T
I
2
L

.l
w -
B
ZgEtruP[ct]
=} =]
> &
i /

1100 200 300 400 500 31001 3200 3300
T Zt(Eh'ue[Ct] - Emodel[ct])2 T Zt(EfT‘UE [ct] - Ewmdel [Ct])2
(a) (b)

Figure 7.5: RL experiments. (a): results on Industrial Benchmark. (b): results on wind turbine
simulator. Each curve shows average cost (y-axis) against model bias (x-axis).
Circle colour correspond to different values of 5 (model-bias weight) and curve
color indicates different values of v (noise-averseness weight). The purple curve is
the baseline v = 8. The black curve is nearest neighbor baseline.

7.2.3 Model & Baseline Specification

We consider the risk-sensitive criterion for different choices of 8 and +, comparing it with
three baselines. The first baseline is obtained by setting § = «v = 0. In this case, the
policy optimization ignores any risk and is therefore the method we used in Section 7.1.
The second baseline is obtained when 8 = «. In this case, the risk criterion simplifies to
Bo(ct), which corresponds to the traditional risk-sensitive approach in Eq. (7.28), but
applied to the individual costs cq,...,cr. The last baseline uses a deterministic neural
network to model the dynamics and a nearest neighbor approach to quantify risk: for
each state s; generated in a roll-out, we calculate the Euclidean distance of that state
to the nearest one in the training data. The average value of the distance metric for
s; across roll-outs is then an approximation to o(c;). To reduce computational cost,
we summarize the training data using the centroids returned by an execution of the
k-means clustering method. We denote this method as the nn-baseline. We will specify
hyper-parameters in the following section.

7.2.4 Experiments

We investigate the following questions: To what extent does our new risk criterion reduce
model-bias? What trade-offs do we observe between average cost and model-bias? How
does the decomposition compare to other simple methods? For this we consider two
model-based RL scenarios. The first one is given by the industrial benchmark (see
Section 4.3.2) and the second RL scenario is a modified version of the HAWC2 wind
turbine simulator. (see Section 4.3.4).

We are given a batch of data formed by state transitions generated by a behavior
policy mp, for example, from an already running system. The behavioral policy has
limited randomness and will keep the system dynamics constrained to a reduced manifold

97

7 Reinforcement Learning

500 — 500 — 500 —
| — Emodel[ct] — Em*us[ct] — Emodel[ct] — Erme[ﬁt] — Emndel[ct] — Etru?[at]

350 | 350 | 350|

Ct
Ct
Ct

200 200 200

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
T T T

(a) (b) ()

Figure 7.6: 100 roll-outs on industrial benchmark ground truth system (light green), their av-
erage (dark green), and the average of corresponding roll-outs on the BNN+LVs
model (blue) for a fixed value of the initial state so. We show results for three
policies with different model-bias and noise-averseness trade-offs. Policies are opti-
mized using (a): no risk penalty (8,7 = 0). (b): a penaly on the model-bias only
(y=0,8=4). (c): a penalty on the noise risk only (v = 4,5 = 0).

in state space. This means that large portions of state space will be unexplored and
uncertainty will be high in those regions.

Industrial Benchmark Policies in the industrial benchmark specify changes A, A, and
A; in three steering variables v (velocity), g (gain) and s (shift) as a function of s;. In
the behavior policy these changes are stochastic and sampled according to

zy, ifo(t) <40

Ay =14 —z, ifo(t) > 60 (7.37)
Uy, otherwise
zg, if g(t) <40

Ag =4 —z4, if g(t) > 60 (7.38)
ug, otherwise

As = ug, (7.39)

where z,, zg ~ N(0.5, %) and wy, ug, us ~ U(—1,1). The velocity v(t) and gain g(t) can
take values in [0, 100]. Therefore, the data collection policy will try to keep these values
only in the medium range given by the interval [40, 60]. Because of this, large parts of the
state space will be unobserved. After collecting the data, the 30, 000 state transitions are
used to train a BNN with latent variables with the same hyperparameters as in Section
7.1. Finally, we train different policies using the Monte Carlo approximation and we set
the horizon of T" = 100 steps, with M = 50 and N = 25 and a mini-batch size of 1 for
750 epochs. The total training time on a single CPU is around 18 hours.

Figure 7.5a shows results. The y-axis in the plot is the average total cost at horizon T’
obtained by the policy in the ground truth system. The z-axis is the average model-bias
in the ground truth system according to Eq. (7.34). Each individual curve in the plot is

98

7.2 Risk-sensitive Reinforcement Learning

obtained by fixing v to a specific value (line colour) and then changing /3 (circle colour).
The policy that ignores risk (5 =« = 0) results in both high model-bias and high cost
when evaluated on the ground truth, which indicates overfitting. As 3 increases, the
policies put more emphasis on avoiding model bias, but at the same time the average
cost increases. The best tradeoff is obtained by the dark red curve with v = 0. The risk
criterion is then 3 Zthl aqow)(E[ce/W]). In this problem, adding noise risk by setting
~ > 0 decreases performance. The nn baseline shows a similar pattern as the BNN+LVs
approach, but the trade-off between model-bias and cost is worse.

Figure 7.6 shows roll-outs for three different policies and a fixed initial state sg. Figure
7.6a shows results for a policy learned with v = g = 0. This policy ignores risk, and as a
consequence, the mismatch between predicted performance on the model and the ground
truth increases after ¢ = 20. This result illustrates how model bias can lead to policies
with high costs at test time. Figure 7.6b shows results for policy that was trained while
penalizing model-bias risk (5 = 4, v = 0). In this case, the average costs under the
BNN+LVs model and the ground truth are similar, and the overall ground truth cost
is lower than in Figure 7.6a. Finally, Figure 7.6¢ shows results for a noise-averse policy
(8 =0, =4). In this case, the model bias is slightly higher than in the previous figure,
but the stochasticity is lower.

Wind Turbine Simulator We are given a batch of around 5,000 state transitions gen-
erated by a behavior policy 7. The policy does limited exploration around the neutral
action a(t) = 0. The system is expected to be highly stochastic due to the unpredictabil-
ity of future wind dynamics. Furthermore the dimensionality of state observation is much
higher than the action dimensionality, so, with the limited data set that we have, we
expect it to be very challenging to learn the influence of the action on the reward accu-
rately. First we train a BNN with two hidden layers and 50 hidden units per layer on
the available batch using a-divergence minimization with a = 1.0. In the second step,
using the model, we train a policy with 20 hidden units on each of the two layers in the
usual way, using the Monte Carlo estimate. The total training time on a single CPU is
around 8 hours.

The results for wind turbine simulator can be found in Figure 7.5b. As in the previous
experiment we see that the epistemic risk weight § acts as a trade-off between model-
bias and policy cost: as [increases the model-bias decreases but so does the policy
performance. The best trade-offs between expected cost and model bias are obtained
by the policies with v = 7.5. These policies are noise-averse and will try to avoid noisy
regions in state space. This makes sense because in wind turbines, high noise regions in
state space are those where the effect of wind turbulence will have a strong impact on
the average cost. We believe that in this problem being noise-averse is a good heuristic:
choosing actions that make the system behave more noisy are sub-optimal. If the policy
that generated the data explored these noisy regions they are considered ”safe” in terms
of epistemic uncertainty, and hence the epistemic risk term will not penalize these actions
in any way.

99

7 Reinforcement Learning

7.2.5 Discussion

In this study we have utilized the decomposition of predictive uncertainty into its epis-
temic and aleatoric components for risk-sensitive reinforcement learning. In particular
we proposed a novel risk-sensitive criterion for model-based reinforcement learning which
decomposes risk into model-bias and noise aversion components. This criterion enables
a user to implement more fine-grained preferences for policy search. In particular, the
user can specify the weights of the objective function that minimize costs, avoiding
stochasticity and minimize the risk for model-bias.

The experiments confirmed that this specification leads to a minimization of these
respective quantities and thus how the decomposition of uncertainty is useful for decision
making in the context of risk.

100

8 Conclusions & QOutlook

Conclusions

As the centerpiece of this thesis we have developed a novel method for supervised learn-
ing, called Bayesian neural network with latent variables (BNN+LV) in Chapter 3. The
motivation for BNN+LV was to fuse three properties in one machine learning method:
First, the method should be a powerful black-box tool for function approximation. Sec-
ond, it should be a probabilistic model that can express uncertainty over its parameters.
Lastly, the method should be able to model stochastic effects in the data such as het-
eroscedasticity or multimodality. This combination of properties enables modeling both
epistemic and aleatoric uncertainty with high flexibility. The former due to inferring
uncertainty estimates over the parameter of the model and the latter due to the addi-
tion of latent variables with allows to express the aforementioned stochastic effects in
the data. For decision-making we have shown how these two forms of uncertainty can
be decomposed in the model’s predictive distribution for different metrics to measure
uncertainty.

In the second part of the thesis we have investigated the applicability of BNN+LV
in different supervised learning scenarios, with a focus to confirm these aforementioned
properties of the model empirically.

Regression We have compared the predictive performance of BNN+LV on a wide range
of tasks and to several baselines. Overall we found that BNN+LV provide better esti-
mates of uncertainty in terms of test log-likelihood compared to all baselines, especially
in settings known to posses stochastic effects. For function approximation, measured in
RMSE, BNN+LV outperformed standard neural networks but were inferior to ensem-
bles. We believe one reason for this to be the lower heterogeneity in parameter space
compared to ensembles. Furthermore we confirmed empirically that the choice of diver-
gence measure in the variational approximation seems to act as a trade-off between the
quality of uncertainty estimates and function approximation.

Model Inspection In this chapter we investigated predictive uncertainty in BNN+LV.
We found that on a set of tasks, both artificial and in vision, the uncertainty decomposi-
tion provided meaningful results and matched the intuition behind the data generating
process: in areas of data scarcity we saw an increase in epistemic, and in areas of in-
creased stochasticity an increase in aleatoric uncertainty. We further found that the
choice of divergence measure in BNN+LV affects the decomposition. Using the sensi-
tivity analysis we showed how to measure the impact of each feature to both epistemic

101

8 Conclusions & Outlook

and aleatoric components in standard regression problems. Lastly, we have shown how
to utilize the decomposition in BNN+LV for more efficient sequential decision making:
in a set of active learning experiments a data-acquisition strategy that utilizes the de-
composition of uncertainty outperformed both GPs and a strategy that uses the full
uncertainty.

Reinforcement Learning In the field of model-based reinforcement learning (RL) we
studied the usefulness of BNN+LV as models for dynamic systems. Here, our main
results are that BNN+LV serve as powerful models, especially for stochastic systems,
that give rise to policies that produce lower costs than baseline methods. We further
developed a novel risk-sensitive criterion in the field of risk-sensitive RL, that enables a
practitioner to specify its preference for policies that minimize costs, avoid stochasticity
and minimize the risk for model-bias.

Future Work

At the end of this thesis we want to address a set of open problems that pose interesting
research directions and extensions to the method proposed in this thesis.

I. Modeling temporal dependencies & POMDPs:

In BNN+LV and in stochastic dynamic systems, as described in Bertsekas (2002),
one central assumption is to assume temporal independence in the latent variable
z. For standard supervised learning this assumption is reasonable and the latent
variable of the BNN+LV enables modeling stochastic effects in the data, which
was the main motivation of developing this method in the first place. However, for
temporal dynamics, such as constructing roll-outs in model-based RL, this assump-
tion implies that we rely on the MDP assumption of the form of Eq. (7.5). For
some applications this MDP assumption will not hold, for instance the industrial
benchmark is a partially observable system (POMDP). We approached this problem
using a time-embedding of previous observations o(t—k), ..., o(t) to approximate a
MDP state. Ideally, we want a more principled approach, that considers temporal
dependencies of the latent variable.

II. Bias of variational inference:

In Section 2.2 we introduced variational inference as one technique that allows
more complex probabilistic models, such as the BNN+LV, to be computationally
tractable. In Section 3.1.4 we further introduced amortized inference in BNN+LV
as another technique for approximation. The effect of these approximations is still
an open question in research because obtaining a ground-truth can be difficult in
large data settings. We conducted an initial study on this topic in Section 6.1. Here
we found that the effect of approximation and divergence measure used can have a
large effect on the decomposition of uncertainty in BNN+LV. The work in Cremer
et al. (2018) provides a first analysis into the effect of the bias of amortization and
the mean-field approach commonly used in VI.

102

I11.

IV.

Optimal training in BNN+4LV: A stage-wise process?

BNN+LV try to solve three problems at once: function approximation of the deter-
ministic structure of the data, uncertainty estimates over this function and mod-
eling stochastic effects in the data by inference of the latent variables. This can
in principle lead to difficult training and sub-optimal convergence. In its current
state, these problems are solved simultaneously by minimizing the energy function
in Eq. (3.15) through gradient descent. Initializing the parameters of the model
in a certain way, such as starting with low values of the variance of the weights,
is an attempt to encourage a stage-wise training process. However, how to most
effectively train this model is still an open question.

Incorporation of prior knowledge & Interpretability

BNN+LV are parametric models based on neural networks. These methods are
considered black-box and usually have a large set of parameters. It is therefore not
obvious how prior knowledge about a problem can be incorporated in the inference
process. By contrast, in a Gaussian processes it is much easier to formalize knowl-
edge about a problem into the prior. Prior knowledge can potentially overcome
the tendency of BNN-+LV to underfit, an issue we observed for instance in Chapter
5. Here, we want to highlight two recent works that address this issue. The work
in Flam-Shepherd et al. (2017) presents a method to transfer a GP prior, which
is formulated in function space, into a prior over parameters of BNNs. Ghosh
et al. (2018) develop so-called horseshoe priors on the weights to induce sparsity
for better model selection.

Furthermore, after training there is no simple way to obtain insight about the nature
and properties of the approximated function. We have performed a set of model
inspection studies in Chapter 6 and introduced a novel method for interpretabil-
ity: the sensitivity analysis of predictive uncertainty to approach these questions.
However, understanding neural network models is still an ongoing research topic
(e.g. Koh and Liang (2017), Montavon et al. (2018)).

103

Bibliography

Shun-Ichi Amari. Differential geometry of curved exponential families-curvatures and
information loss. The Annals of Statistics, pages 357-385, 1982.

Hagai Attias. Inferring parameters and structure of latent variable models by varia-
tional Bayes. In Proceedings of the Fifteenth conference on Uncertainty in artificial
intelligence, pages 21-30. Morgan Kaufmann Publishers Inc., 1999.

J. Andrew Bagnell and Jeff G. Schneider. Autonomous helicopter control using reinforce-
ment learning policy search methods. In Proceedings 2001 ICRA. IEEFE International
Conference on Robotics and Automation (Cat. No. 01CH37164), volume 2, pages
1615-1620. IEEE, 2001.

J. Andrew Bagnell, Andrew Y Ng, and Jeff G Schneider. Solving uncertain markov
decision processes. 2001.

Anoop Korattikara Balan, Vivek Rathod, Kevin P Murphy, and Max Welling. Bayesian
dark knowledge. In Advances in Neural Information Processing Systems (NIPS), pages
3438-3446, 2015.

Jan Beirlant, Edward J. Dudewicz, Laszlé Gyorfi, and Edward C. Van der Meulen. Non-
parametric entropy estimation: An overview. International Journal of Mathematical
and Statistical Sciences, 6(1):17-39, 1997.

James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pas-
canu, Guillaume Desjardins, Joseph Turian, David Warde-Farley, and Yoshua Bengio.
Theano: A cpu and gpu math compiler in python. In Proc. 9th Python in Science
Conf, volume 1, 2010.

Felix Berkenkamp, Matteo Turchetta, Angela P. Schoellig, and Andreas Krause. Safe
model-based reinforcement learning with stability guarantees. In Advances in Neural
Information Processing Systems (NIPS), pages 908-918, 2017.

Dimitri P. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific
optimization and computation series. 2002. ISBN 9781886529083.

Christopher M. Bishop. Pattern recognition and machine learning, 5th Edition. Infor-
mation science and statistics. Springer, 2007. ISBN 9780387310732.

David Blei, Alp Kucukelbir, and Jon D. McAuliffe. Variational inference: A review for
statisticians. Journal of the American Statistical Association, 112(518):859-877, 2017.

105

Bibliography

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight
uncertainty in neural networks. In International Conference on Machine Learning
(ICML), pages 1613-1622, 2015.

Steve Brooks, Andrew Gelman, Galin Jones, and Xiao-Li Meng. Handbook of markov
chain monte carlo. CRC press, 2011.

Gavin Brown. Diversity in neural network ensembles. PhD thesis, Citeseer, 2004.

Thang D. Bui, Daniel Herndndez-Lobato, Yingzhen Li, José Miguel Herndndez-Lobato,
and Richard E. Turner. Deep Gaussian processes for regression using approximate
expectation propagation. In International Conference on Machine Learning (ICML),
pages 1472-1481, 2016.

Keith Bush and Joelle Pineau. Manifold embeddings for model-based reinforcement
learning under partial observability. In Advances in neural information processing
systems, pages 189-197, 2009.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep rein-
forcement learning in a handful of trials using probabilistic dynamics models. arXiv
preprint arXiw:1805.12114, 2018.

Chris Cremer, Xuechen Li, and David Duvenaud. Inference suboptimality in variational
autoencoders. arXiv preprint arXiv:1801.03558, 2018.

Guillaume Dehaene and Simon Barthelmé. Expectation propagation in the large data
limit. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 80
(1):199-217, 2018.

Marc Deisenroth and Carl E. Rasmussen. PILCO: A model-based and data-efficient
approach to policy search. In International Conference on Machine Learning (ICML),
pages 465-472, 2011.

Marc Peter Deisenroth, Gerhard Neumann, and Jan Peters. A survey on policy search
for robotics. Foundations and Trends in Robotics, 2:1-142, 2013.

Stefan Depeweg, José Miguel Hernandez-Lobato, Finale Doshi-Velez, and Steffen Udluft.
Learning and policy search in stochastic dynamical systems with Bayesian neural
networks. International Conference on Learning Representations (ICLR), 2017a.

Stefan Depeweg, José Miguel Hernandez-Lobato, Finale Doshi-Velez, and Steffen Ud-
luft. Uncertainty decomposition in Bayesian neural networks with latent variables.
Workshop on Reliable Machine Learning in the Wild, ICML, 2017b.

Stefan Depeweg, José Miguel Hernandez-Lobato, Steffen Udluft, and Thomas Runkler.
Sensitivity analysis for predictive uncertainty in Bayesian neural networks. Furopean
Symposium on Artificial Neural Networks, (ESANN), 2017c.

106

Bibliography

Stefan Depeweg, Jose Miguel Hernandez-Lobato, Finale Doshi-Velez, and Steffen Udluft.
Decomposition of uncertainty in Bayesian deep learning for efficient and risk-sensitive
learning. In International Conference on Machine Learning (ICML), pages 1192-1201,
2018.

Armen Der Kiureghian and Ove Ditlevsen. Aleatory or epistemic? does it matter?
Structural Safety, 31(2):105-112, 2009.

Andreas Draeger, Sebastian Engell, and Horst Ranke. Model predictive control using
neural networks. IEEE Control systems, 15(5):61-66, 1995.

Rachit Dubey, Pulkit Agrawal, Deepak Pathak, Thomas L. Griffiths, and Alexei A. Efros.
Investigating human priors for playing video games. arXiv preprint arXiv:1802.10217,
2018.

Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode reinforcement
learning. Journal of Machine Learning Research, 6(Apr):503-556, 2005.

Daniel Flam-Shepherd, James Requeima, and David Duvenaud. Mapping Gaussian
process priors to Bayesian neural networks. In NIPS Bayesian deep learning workshop,
2017.

Jerome H. Friedman. Greedy function approximation: a gradient boosting machine.
Annals of statistics, pages 1189-1232, 2001.

Li Fu and Tinghuai Chen. Sensitivity analysis for input vector in multilayer feedforward
neural networks. In Neural Networks, 1993., IEEFE International Conference on, pages
215-218. IEEE, 1993.

Yarin Gal. Uncertainty in deep learning. University of Cambridge, 2016.

Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approximation: Representing
model uncertainty in deep learning. In international conference on machine learning,
pages 1050-1059, 2016.

Yarin Gal and Lewis Smith. Idealised Bayesian neural networks cannot have adversarial
examples: Theoretical and empirical study. arXiv preprint arXiv:1806.00667, 2018.

Yarin Gal, Rowan McAllister, and Carl E. Rasmussen. Improving PILCO with Bayesian

neural networks dynamics models. In Data-Efficient Machine Learning workshop,
ICML, 2016.

Weihao Gao, Sewoong Oh, and Pramod Viswanath. Breaking the bandwidth barrier:
Geometrical adaptive entropy estimation. In Advances in Neural Information Pro-
cessing Systems (NIPS), pages 24602468, 2016.

Javier Garcia and Fernando Ferndndez. Safe exploration of state and action spaces in
reinforcement learning. Journal of Artificial Intelligence Research, 45:515-564, 2012.

107

Bibliography

Javier Garcia and Fernando Fernandez. A comprehensive survey on safe reinforcement
learning. Journal of Machine Learning Research, 1(0):1437-1480, 2015.

Zoubin Ghahramani and Matthew J. Beal. Variational inference for Bayesian mixtures
of factor analysers. In Advances in Neural Information Processing Systems (NIPS),
pages 449-455, 2000.

Soumya Ghosh, Jiayu Yao, and Finale Doshi-Velez. Structured variational learning of
Bayesian neural networks with horseshoe priors. arXiv preprint arXiv:1806.05975,
2018.

Geoffrey J. Gordon. Stable function approximation in dynamic programming. In Ma-
chine Learning Proceedings 1995, pages 261-268. Elsevier, 1995.

Delve Development Group. Delve Datasets. https://www.cs.toronto.edu/~delve/
data/datasets.html, 2019. [Online; accessed 09-January-2019].

Yuhong Guo and Russell Greiner. Optimistic active-learning using mutual information.
In International Joint Conference on Artificial Intelligence (IJCAI), pages 823-829,
2007.

Arjun K. Gupta and Daya K. Nagar. Matriz variate distributions. Chapman and Hal-
1/CRC, 1999.

Alexander Hans and Steffen Udluft. Efficient uncertainty propagation for reinforcement
learning with limited data. In ICANN, pages 70-79. Springer, 2009.

Alexander Hans, Daniel Schneegafl, Anton Maximilian Schéfer, and Steffen Udluft. Safe
exploration for reinforcement learning. In ESANN, pages 143—-148, 2008.

Lars Kai Hansen and Peter Salamon. Neural network ensembles. IEEE transactions on
pattern analysis and machine intelligence, 12(10):993-1001, 1990.

He He and Wan-Chi Siu. Single image super-resolution using Gaussian process regression.
In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on,
pages 449-456. IEEE, 2011.

Donald O. Hebb. The organization of behavior. a neuropsychological theory. 1949.

Daniel Hein, Stefan Depeweg, Michel Tokic, Steffen Udluft, Alexander Hentschel,
Thomas Runkler, and Volkmar Sterzing. A benchmark environment motivated by

industrial control problems. In IEEE Symposium Series on Computational Intelli-
gence (SSCI), 2017a.

Daniel Hein, Alexander Hentschel, Thomas Runkler, and Steffen Udluft. Particle swarm
optimization for generating interpretable fuzzy reinforcement learning policies. Engi-
neering Applications of Artificial Intelligence, 65:87-98, 2017b.

108

https://www.cs.toronto.edu/~delve/data/datasets.html
https://www.cs.toronto.edu/~delve/data/datasets.html

Bibliography

Daniel Hein, Alexander Hentschel, Thomas Runkler, and Steffen Udluft. Particle swarm
optimization for model predictive control in reinforcement learning environments. In

Critical Developments and Applications of Swarm Intelligence, pages 401-427. 1GI
Global, 2018.

James Hensman and Neil D. Lawrence. Nested variational compression in deep Gaussian
processes. arXiv preprint arXiv:1412.1370, 2014.

José Miguel Herndndez-Lobato and Ryan Adams. Probabilistic backpropagation for
scalable learning of Bayesian neural networks. In International Conference on Machine
Learning, pages 1861-1869, 2015.

José Miguel Herndndez-Lobato, Matthew W. Hoffman, and Zoubin Ghahramani. Predic-
tive entropy search for efficient global optimization of black-box functions. In Advances
in Neural Information Processing Systems (NIPS), pages 918-926, 2014.

José Miguel Hernandez-Lobato, Yingzhen Li, Mark Rowland, Daniel Hernandez-Lobato,
Thang Bui, and Richard E. Turner. Black-box a-divergence minimization. In Inter-
national Conference on Machine Learning (ICML), pages 1511-1520, 2016.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computa-
tion, 9(8):1735-1780, 1997.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward net-
works are universal approximators. Neural networks, 2(5):359-366, 1989.

Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel.
VIME: Variational information maximizing exploration. In Advances in Neural Infor-
mation Processing Systems (NIPS), pages 1109-1117, 2016.

Edwin T. Jaynes. Probability theory: The logic of science. Cambridge university press,
2003.

Joshua Joseph, Alborz Geramifard, John W. Roberts, Jonathan P. How, and Nicholas
Roy. Reinforcement learning with misspecified model classes. In International Con-
ference on Robotics and Automation (ICRA), pages 939-946, 2013.

Markus Kaiser, Clemens Otte, Thomas Runkler, and Carl Henrik Ek. Bayesian align-
ments of warped multi-output Gaussian processes. arXiv preprint arXiv:1710.02766,
2017.

Alex Kendall and Yarin Gal. What uncertainties do we need in Bayesian deep learning
for computer vision? In Advances in Neural Information Processing Systems (NIPS),
pages b574-5584, 2017.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

109

Bibliography

Diederik P. Kingma and Max Welling. Auto-encoding variational Bayes. arXiv preprint
arXw:1312.6114, 2013.

Diederik P. Kingma, Tim Salimans, and Max Welling. Variational dropout and the
local reparameterization trick. In Advances in Neural Information Processing Systems
(NIPS), pages 2575-2583, 2015.

Jonathan Ko, Daniel J. Klein, Dieter Fox, and Dirk Haehnel. Gaussian processes and
reinforcement learning for identification and control of an autonomous blimp. In IEEE
Robotics and Automation, pages 742—747, 2007.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence
functions. arXiv preprint arXiv:1705.04730, 2017.

L.F. Kozachenko and Nikolai N. Leonenko. Sample estimate of the entropy of a random
vector. Problemy Peredachi Informatsii, 23(2):9-16, 1987.

Alexander Kraskov, Harald Stogbauer, and Peter Grassberger. Estimating mutual in-
formation. Physical review E, 69(6):066138, 2004.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in Neural Information Processing Systems
(NIPS), pages 1097-1105, 2012.

Malte Kuss and Carl E. Rasmussen. Gaussian processes in reinforcement learning. In
Advances in Neural Information Processing Systems (NIPS), pages 751-758, 2004.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scal-
able predictive uncertainty estimation using deep ensembles. In Advances in Neural
Information Processing Systems (NIPS), pages 6402—6413, 2017.

Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In
Reinforcement learning, pages 45-73. Springer, 2012.

Torben J. Larsen and Anders Melchior Hansen. How 2 hawc2, the user’s manual. Tech-
nical report, Risg National Laboratory, 2007.

Torben J. Larsen, Gunner Larsen, Helge A Madsen, Kenneth Thomsen, and Sgren M
Pedersen. Comparison of measured and simulated loads for the siemens swt2.3 op-
erating in wake conditions at the lillgrund wind farm using hawc2 and the dynamic
wake meander model. EWFEA offshore 2015, 2015.

Miguel Lazaro-Gredilla and Michalis Titsias. Variational heteroscedastic Gaussian pro-
cess regression. 2011.

Quoc V. Le, Alex J. Smola, and Stéphane Canu. Heteroscedastic Gaussian process
regression. In International Conference on Machine Learning (ICML), pages 489—
496, 2005.

110

Bibliography

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

Yann LeCun, Sumit Chopra, Raia Hadsell, M. Ranzato, and F. Huang. A tutorial on
energy-based learning. Predicting structured data, 1(0), 2006.

Yingzhen Li. Approzximate Inference: New Visions. PhD thesis, University of Cambridge,
2018.

Yingzhen Li and Yarin Gal. Dropout inference in Bayesian neural networks with alpha-
divergences. arXiv preprint arXiv:1703.02914, 2017.

Yingzhen Li, José Miguel Hernandez-Lobato, and Richard E. Turner. Stochastic expec-
tation propagation. In Advances in Neural Information Processing Systems (NIPS),
pages 2323-2331, 2015.

Moshe Lichman. UCI machine learning repository. http://archive.ics.uci.edu/ml,
2013.

Christos Louizos and Max Welling. Structured and efficient variational deep learning
with matrix Gaussian posteriors. In International Conference on Machine Learning,
pages 1708-1716, 2016.

David J.C. MacKay. Information-based objective functions for active data selection.
Neural computation, 4(4):590-604, 1992.

Stephan Mandt, Matthew D. Hoffman, and David M. Blei. Stochastic gradient descent
as approximate Bayesian inference. The Journal of Machine Learning Research, 18
(1):4873-4907, 2017.

Hermann G. Matthies. Quantifying uncertainty: modern computational representation
of probability and applications. In Fxtreme man-made and natural hazards in dynam-
ics of structures, pages 105-135. Springer, 2007.

Rowan McAllister, Yarin Gal, Alex Kendall, Mark Van Der Wilk, Amar Shah, Roberto
Cipolla, and Adrian Vivian Weller. Concrete problems for autonomous vehicle safety:
Advantages of Bayesian deep learning. International Joint Conferences on Artificial
Intelligence, Inc., 2017.

Oliver Mihatsch and Ralph Neuneier. Risk-sensitive reinforcement learning. Machine
learning, 49(2-3):267-290, 2002.

Thomas Minka. Power ep. Technical report, Technical report, Microsoft Research,
Cambridge, 2004.

Tom Minka. Divergence measures and message passing. Technical report, Microsoft
Research, 2005.

111

http://archive.ics.uci.edu/ml

Bibliography

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg
Ostrovski, et al. Human-level control through deep reinforcement learning. Nature,
518(7540):529, 2015.

Grégoire Montavon, Wojciech Samek, and Klaus-Robert Miiller. Methods for interpret-
ing and understanding deep neural networks. Digital Signal Processing, 73:1-15, 2018.

Radford M. Neal. Bayesian Learning for Neural Networks. Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 1996. ISBN 0387947248.

Yurii Nesterov. A method for unconstrained convex minimization problem with the rate
of convergence o (1/k” 2). In Doklady AN USSR, volume 269, pages 543547, 1983.

Andrew Y. Ng and Michael Jordan. Pegasus: A policy search method for large mdps
and pomdps. In Proceedings of the Sixteenth conference on Uncertainty in artificial
intelligence, pages 406-415. Morgan Kaufmann Publishers Inc., 2000.

Arnab Nilim and Laurent El Ghaoui. Robust control of markov decision processes with
uncertain transition matrices. Operations Research, 53(5):780-798, 2005.

David A. Nix and Andreas S. Weigend. Estimating the mean and variance of the target
probability distribution. In Neural Networks, 1994. IEEE World Congress on Com-
putational Intelligence., 1994 IEEE International Conference On, volume 1, pages
55-60. IEEE, 1994.

John Paisley, David Blei, and Michael Jordan. Variational Bayesian inference with
stochastic search. arXiv preprint arXiv:1206.6430, 2012.

Jan Peters and Stefan Schaal. Policy gradient methods for robotics. In Intelligent Robots
and Systems, 2006 IEEE/RSJ International Conference on, pages 2219-2225. IEEE,
2006.

Rajesh Ranganath, Sean Gerrish, and David Blei. Black box variational inference. In
Artificial Intelligence and Statistics, pages 814-822, 2014.

Carl E. Rasmussen. Gaussian processes in machine learning. In Advanced lectures on
machine learning, pages 63—71. Springer, 2004.

Alfréd Rényi. On measures of entropy and information. Technical report, Hungarian
academy of sciences, 1961.

Frank Rosenblatt. The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological review, 65(6):386, 1958.

Anton M. Schaefer, Steffen Udluft, and Hans-Georg Zimmermann. The recurrent control
neural network. In ESANN, pages 319-324. Citeseer, 2007.

112

Bibliography

Jirgen Schmidhuber. Deep learning in neural networks: An overview. Neural networks,
61:85-117, 2015.

Matthias Seeger. Expectation propagation for exponential families. Technical report,
2005.

Robin Senge, Stefan Bosner, Krzysztof Dembcezyniski, Jorg Haasenritter, Oliver Hirsch,
Norbert Donner-Banzhoff, and Eyke Hiillermeier. Reliable classification: Learning
classifiers that distinguish aleatoric and epistemic uncertainty. Information Sciences,
255:16-29, 2014.

Burr Settles. Active learning literature survey. University of Wisconsin, Madison, 52
(55-66):11, 2010.

Alexander Shapiro and Anton Kleywegt. Minimax analysis of stochastic problems. Op-
timization Methods and Software, 17(3):523-542, 2002.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, loannis Antonoglou, Veda Panneershelvam, Marc

Lanctot, et al. Mastering the game of go with deep neural networks and tree search.
nature, 529(7587):484, 2016.

Edward Snelson and Zoubin Ghahramani. Sparse Gaussian processes using pseudo-
inputs. In Advances in Neural Information Processing Systems (NIPS), pages 1257
1264, 2005.

Edward Snelson and Zoubin Ghahramani. Sparse Gaussian processes using pseudo-
inputs. In Advances in Neural Information Processing Systems (NIPS), pages 1257—
1264, 2006.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.
The Journal of Machine Learning Research, 15(1):1929-1958, 2014.

Andreas Stuhlmiiller, Jacob Taylor, and Noah Goodman. Learning stochastic inverses. In
Advances in Neural Information Processing Systems (NIPS), pages 3048-3056, 2013.

Martin Sundermeyer, Ralf Schliiter, and Hermann Ney. Lstm neural networks for lan-
guage modeling. In Thirteenth annual conference of the international speech commu-
nication assoctation, 2012.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with
neural networks. In Advances in Neural Information Processing Systems (NIPS),
pages 3104-3112, 2014.

Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement Learning. MIT
Press, Cambridge, MA, USA, 1st edition, 1998. ISBN 0262193981.

113

Bibliography

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, [an
Goodfellow, and Rob Fergus. Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199, 2013.

Floris Takens. Detecting strange attractors in turbulence. In Dynamical systems and
turbulence, Warwick 1980, pages 366—381. Springer, 1981.

Mattias Teye, Hossein Azizpour, and Kevin Smith. Bayesian uncertainty estimation for
batch normalized deep networks. arXiv preprint arXiv:1802.06455, 2018.

Emanuel Todorov and Weiwei Li. A generalized iterative lqg method for locally-optimal
feedback control of constrained nonlinear stochastic systems. In American Control
Conference, 2005. Proceedings of the 2005, pages 300-306. IEEE, 2005.

Volker Tresp. The wet game of chicken. Technical report, 1994.

Constantino Tsallis. Possible generalization of boltzmann-gibbs statistics. Journal of
statistical physics, 52(1-2):479-487, 1988.

Bo Wahlberg. System identification using Laguerre models. IEEE Transactions on
Automatic Control, 36:551-562, 1991.

Max Welling and Yee W. Teh. Bayesian learning via stochastic gradient Langevin dy-
namics. In International Conference on Machine Learning (ICML), pages 681-688,
2011.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine learning, 8(3-4):229-256, 1992.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals.
Understanding deep learning requires rethinking generalization. arXiv preprint
arXiv:1611.03530, 2016.

Hans-Georg Zimmermann, Christoph Tietz, and Ralph Grothmann. Forecasting with
recurrent neural networks: 12 tricks. In Neural Networks: Tricks of the Trade, pages
687-707. Springer, 2012.

114

Index

a-divergence, 9 Energy function, 14
Ensembling, 24

Active learning, 72 Entropy, 7

Adversarial examples, 68 Entropy estimation, 7

Aleatoric uncertainty, 2, 30, 38 Epistemic uncertainty, 2, 30, 38

Armortized inference, 36 Expectation propagation, 13

) Exponential family distributions, 13
Backpropagation, 21

Bagging, 24 Factor tying, 14

Batch reinforcement learning, 78

Bayes factor, 6 Gas turbine data set, 47

Bayes theorem, 6 Gaussian process, 17
Evidence, 6 Kernel, 18
Likelihood, 6 Mean function, 18
Prior, 6 Generalization, 5

Bayesian neural network, 25 Gradient boosting, 24

Belief propagation, 13
Boosting, 24

Boostrapping, 24

Boston housing data set, 43

Hamiltonian Monte Carlo, 16, 63
Hellinger distance, 9
Hyperbolic tangent, 20

Industrial benchmark, 46
Inference network, 37, 59
Inversion sampling, 31

Cavity distribution, 14

Classification, 5

Combined power plant data set, 43

Concrete strength data set, 44

Convolutional neural networks, 20

Cross entropy, 21 Kin8nm data set, 44
KL divergence, 8

Jensens’s inequality, 10

Divergence, 8

a-divergence, 9 Latent variables, 30

Hellinger distance, 9 Law of total variance, 38

KL divergence, 8 Linear rectified unit, 20
Dropout, 23 Log-derivate trick, 12, 86

Logit transformation, 36
Early stopping, 22

Empirical Bayes, 11 Marginal likelihood, 6
Energy efficiency data set, 44 Markov chain Monte Carlo, 16

115

INDEX

Markov decision process, 77 Rejection sampling, 16
Mean-field approach, 26 Reparameterization trick, 12
MNIST, 48 Risk-sensitive criterion, 93
Model predictive control, 82 Risk-sensitive RL, 93

Model selection, 6 ROC curve, 70

Model-based reinforcement learning, 80 Roll-out, 82

Model-bias, 79, 96 Root mean squared error, 50
Monte Carlo variational Bayes, 11

Multi-layer perceptron, 20 Sensitivity analysis, 40, 70
Mutual information, 38 Softmax function, 21

Sparse pseudo input GP, 19
Stationary kernels, 18
Stochastic process, 18
Neural networks, 20 Sufficent statistics, 13

Noise aversion', 96 Supervised learning, 5
Non-parametric models, 17

Natural parameters, 13
Naval propulsion data set, 44

Takens’ theorem, 91

Overtraining, 22
VETLTALiIne, Test log-likelihood, 51

Parametric functions, 5 Test set, 5

Partial observability, 29 Tilted distribution, 14

Partially observable MDP, 46, 77 Training set, 5

Particle swarm optimization, 82 Type II maximum likelihood, 11
PILCO, 87

Policy, 77 Uncertainty decomposition, 38
Policy gradient, 85 Universality theorem, 22

Policy search, 83

Power expectation propagation, 13
Predictive distribution, 6, 26, 33 Variance, 7
Predictive uncertainty, 7, 37 Variational Bayes, 10

Proposal distribution, 16 Variational free energy, 10
Variational inference, 8

Value function, 77

Radial-basis function kernel, 18 Variational lower bound, 10
Random walk, 16

Receding horizon control, 82 Weight decay, 22

Recurrent neural networks, 20 Wet-chicken benchmark, 45
Regression, 5, 49 Wind turbine simulator, 47
Reinforcement learning, 77 Wine quality red data set, 44

116

	Abstract
	Acknowledgements
	List of Abbreviations
	1 Introduction
	2 Modeling Uncertainty in Supervised Learning
	2.1 Bayesian Modeling
	2.2 Variational Inference
	2.2.1 Variational Bayes
	2.2.2 -divergence Minimization
	2.2.3 Comparison between VI and Sampling Methods

	2.3 Gaussian Processes
	2.4 Modeling Uncertainty in Neural Networks
	2.4.1 Neural Networks
	2.4.2 Ensembling/Bootstrapping Neural Networks
	2.4.3 Bayesian Neural Networks

	3 Modeling Epistemic and Aleatoric Uncertainty
	3.1 Bayesian Neural Networks with Latent Variables
	3.1.1 Model Assumption
	3.1.2 Variational Approximation
	3.1.3 Algorithmic Design Decisions
	3.1.4 Amortized Inference

	3.2 Uncertainty Decomposition
	3.3 Sensitivity Analysis of Epistemic and Aleatoric Uncertainty

	4 Data Sets and Benchmarks
	4.1 Standard Regression Benchmarks
	4.2 Artificial Benchmark Problems
	4.3 Dynamics Systems
	4.3.1 Wet-chicken Benchmark
	4.3.2 Industrial Benchmark
	4.3.3 Gas Turbine Data
	4.3.4 Wind Turbine Simulator

	4.4 MNIST Handwritten Digit Data

	5 Accuracy and Uncertainty Calibration in Regression
	5.1 Problem Description
	5.2 Model & Baseline Specification
	5.3 Experiments
	5.4 Discussion

	6 Model Inspection & Uncertainty Analysis for BNN+LV
	6.1 Analysis of Predictive Uncertainty
	6.1.1 Problem Description
	6.1.2 Model Specification
	6.1.3 Experiments
	6.1.4 Discussion

	6.2 Predictive Uncertainty and Test Error
	6.3 Sensitivity Analysis
	6.3.1 Problem Description
	6.3.2 Model Specification
	6.3.3 Experiments
	6.3.4 Discussion

	6.4 Active Learning
	6.4.1 Problem Description
	6.4.2 Uncertainty Decomposition for Active Learning
	6.4.3 Model & Baseline Specification
	6.4.4 Experiments
	6.4.5 Discussion

	7 Reinforcement Learning
	7.1 Model-based Reinforcement Learning
	7.1.1 Problem Description
	7.1.2 Model-based Policy Search with BNN+LV
	7.1.3 Model & Baseline Specification
	7.1.4 Experiments
	7.1.5 Discussion

	7.2 Risk-sensitive Reinforcement Learning
	7.2.1 Problem Description
	7.2.2 Uncertainty Decomposition for Risk-sensitive RL
	7.2.3 Model & Baseline Specification
	7.2.4 Experiments
	7.2.5 Discussion

	8 Conclusions & Outlook
	Bibliography
	Index

