
Performance Comparison of Deep Neural Network Quantizers to

Continuous ASR Systems

Tobias Watzel, Lujun Li, Ludwig Kürzinger, Gerhard Rigoll
Technical University of Munich, Chair of Human-Machine Communication, Email: tobias.watzel@tum.de

Abstract
Continuous approaches where a Hidden Markov Model
(HMM) is combined with a Gaussian Mixture Model
(GMM)/Deep Neural Network (DNN) are still one of the
most popular architectures in Automatic Speech Recog-
nition (ASR). They performed well on several challeng-
ing databases. Discrete approaches, i.e., models with a
Discrete Hidden Markov Model (DHMM), require a dis-
cretization of the input data whereby information is get-
ting lost. Several discrete approaches tried in the past
to compete in a discrete fashion, however, they were not
able to achieve an equally good Word Error Rate (WER)
as in continuous systems. In our approach we return to
discrete models. We build up a Deep Neural Network
Quantizer (DNNQ), propose a novel training technique
and demonstrate how such a system performs compared
to a continuous system. In our experiments we reveal
that the DNNQ provides a Word Error Rate (WER) re-
duction of 23.0 % on the dev and of 22.8 % on the test set,
respectively, compared to a continuous HMM/Gaussian
Mixture Model (GMM) system.

Introduction
Automatic Speech Recognition (ASR) systems have been
gaining a lot of attention over the past years. Until 2012,
mostly HMM-GMM systems in different variations were
used in speech recognition [4]. Then slowly, DNNs were
getting popular, caused by an increase of computational
power in computer systems. Usually, these DNNs are
combined with an HMM into an HMM-DNN system,
more precisely a hybrid approach. Nowadays, besides
hybrid approaches, end-to-end ASR systems are used in
different approaches, e.g. [3]. Despite of several improve-
ments in end-to-end models, hybrid models are still one of
the best systems with the lowest WERs. Recent architec-
tures can be found in [10, 6]. All hybrid approaches have
in common that the DNN models a continuous posterior
distribution p(y|x) based on a feature x which is com-
bined with a time-variant component, e.g. an HMM [2].
Several years ago, another system category was proposed
which combined DNN with a DHMM to a so-called dis-
crete model. However, it has been disregarded since it
performed worse than a conventional continuous HMM-
GMM model. The idea of a discrete system is to cluster
the input data x in different clusters j, e.g. by applying
the k-means algorithm. As a result we receive a codebook
which can be used by a Vector Quantizer (VQ) to assign
x to a nearest cluster j. By doing so, we retrieve a label
stream based on x. This label stream can be used to train

a DHMM. Differently as in an HMM-GMM, in a DHMM
the emission probability is modeled by a histogram which
is optimized by maximum likelihood (ML).
In order to further improve a discrete system, another
cluster algorithm has to be chosen since the k-means al-
gorithm can only cluster the data by linear class bor-
ders. Therefore, Neukirchen and Rigoll proposed the
NNVQ [11]. The NNVQ is a shallow neural network
which is trained to quantize the data into different
classes. The highest activation of the neuron in the out-
put layer represents the cluster j to which the input x
belongs to. Despite of the plain Resource Management
(RM) database, their model actually outperformed the
traditional k-means system, however, it was only able to
perform equally well as a continuous system does.
In another approach [12] they examined the performance
of the NNVQ on a large-vocabulary speech recognition
(LVSR) task. They evaluated the model on the Wall
Street Journal (WSJ) database [8] and performed better
than a k-means system. However, the continuous system
still outperformed their discrete model.
In the following work, we return to discrete ASR. We
want to apply the current state-of-the-art developments
in neural networks and enhance the ideas of [11, 12].
We take the NNVQ and add several layers to receive a
DNNQ. The resulting model is compared to a continuous
GMM system.

Proposed Method
Let D = {(xi, ŷi)}Ni=1 be a dataset of size N with fea-
ture vectors xi and its corresponding ground-truth label
ŷi. In our approach, we use a DNNQ to act as a VQ
to create the function gθ : X 7→ m̂, where θ represents
the weights of the network and m̂ = {arg maxjm

j
i}Ni=1

is the maximal activation j in the output layer mi of
size Nclu. By changing Nclu, we are able to increase or
decrease the number of emitting labels m̂, thus, in range
of 1 ≤ m̂j ≤ Nclu, whereas the ground-truth labels are
in a range of 1 ≤ ŷk ≤ NK . The dimension of the label
space is defined by NK .
For classification tasks in machine learning, the cross-
entropy loss LCE is popular. It is created in ev-
ery mini-batch {b} to optimize the weights, i.e., for a
single sample {i}

LCE(mi; ŷi) = −
Nclu∑
j=1

δ(ŷi, j) logmj
i , (1)



where δ(ŷi, j) is the Kronecker delta. Based on the LCE

we want to maximize the MI criterion I(Ŷ ;M̂), i.e.,

I(Ŷ ;M̂) = H(Ŷ )−H(Ŷ |M̂), (2)

where H(Ŷ ) is the entropy of Ŷ and H(Ŷ |M̂) represents

the entropy of Ŷ conditioned M̂ . Here, M̂ = m̂j and

Ŷ = ŷk are the discrete random variables produced by
the DNNQ and the ground-truth labels. Note that the
entropy H(Ŷ ) is fixed during training since the ground-

truth labels Ŷ are fixed, meaning that we can only mini-
mize H(Ŷ |M̂). Furthermore, we are only able to reduce

H(Ŷ |M̂) to certain limit until we need to increase the
number of emitting labels ŷ by raising Nclu to further de-
crease the conditioned entropy. However, if we increase
the number of emitting labels, we need to vary the size
of the output layer of the DNNQ i.e. vary Nclu. For a
larger output layer size we do not have suitable labels
which we could use for training since we need identical
dimensions for using LCE.
Due to the variable output layer size m, we propose a
novel training method: We begin by creating the joint
probability Pb(ŷ,m) of the ground-truth labels ŷ and
the DNNQ output m(x) taking the input data x in ev-
ery mini-batch. Next, we condition on m

Pb(ŷk|mj) ≈
ε+

Nb∑
i=1

δ(ŷi, k)mj
i

εNclu +
Nb∑
i=1

mj
i

∀ 1 ≤ j ≤ Nclu ∀ 1 ≤ k ≤ NK .

(3)

Here, ε is a small constant, Nb is the size of the mini-
batch and NK is the dimension of the one-hot-encoded
ground-truth labels ŷ. In order to force the DNNQ
to produce a spiky output, we apply a scaled softmax
output m

mj =
expajTsca

Nclu∑
l=1

expalTsca

∀ 1 ≤ j ≤ Nclu (4)

where Tsca represents a variable for scaling and aj are
the activations of the layer before. By applying a scaling
layer we are able to model the argmax operation in a way
that the DNNQ acts as a VQ but has still valid gradients
which enables us to perform a training.
The theory above contains similarities to [11]. However,
we simplify the process of creating P (ŷ|m) by only tak-
ing the data of the mini-batches to create Pb(ŷ|m) ≈
P (ŷ|m). We achieve this by ensuring that the mini-
batch size is large enough. With Pb(ŷ|m) and the out-
put m = Pb(m) of the DNNQ we can marginalize out m
with

mb,tra = Pb(ŷ|m)Pb(m), (5)

where mb,tra are the transformed outputs of dimension
NK . Finally, we can apply the transformed labels in
LCE(mb,tra; ŷb). Thus, we are able to train the DNNQ
by creating suitable labels for arbitrary output layer sizes
Nclu based on the ground-truth labels ŷ.

Experimental Setup
We evaluate our models on the publicly available
TEDLIUMv2 [13] dataset. The dataset is already
split into training, test and dev set. The training set
contains audio data of 207 h. We train the DNNQ in
tensorflow [1] and use kaldi [9] for pre-processing the
dataset and for decoding and evaluating the final model.
We begin by extracting 12-dimensional MFCCs and the
log-energy for every 25 ms signal frame in each utterance.
Then, we apply a cepstral mean normalization for every
utterance and add delta and delta-delta features. The
resulting features are used to train a basic HMM-GMM
with ML. Next, we cluster the monophone states to
build up a triphone model. Based on the triphone model,
we perform a forced alignment procedure on the entire
dataset which returns state-based triphone labels. We
are mapping these triphone states back to monophone
states which are used for training the DNNQ.
The DNNQ consists of four fully-connected (FC) layers
with 512 neurons and ReLU activations followed by a
batch normalization (BN) [5] layer respectively. We
regularize the weights of the DNNQ by a L2 regulariza-
tion scaled with 10−8 to avoid exploding weights and to
reduce the complexity of the system. The output layer
is a fully-connected layer with sigmoid activations. It
consists of Nclu neurons which symbolize the clusters to
which a feature vector can be assigned to. In order to
produce spiky outputs, we scale the output layer by a
factor of Tsca and feeding it into the softmax function.
The parameter Tsca lets us decide if we want to force
smoother or spikier outputs. In our experiments we
found Tsca = 15 as suitable value. For the optimization
of the DNNQ we apply the Adam optimizer [7] with a
learning rate of 0.01.
The frame-wise CE training is executed as mentioned in
the theoretic part. We begin by sampling Pb(ŷ|m) in
each mini-batch and create Pb(ŷ|m) with ε = 0.01 using
Equation 3. Note that we require a large mini-batch
size for retrieving a representative statistic Pb(ŷ|m).
For this reason we set a high mini-batch size to 15 000.
Then, we can use the obtained statistic Pb(ŷ|m) to
apply the label mapping with Equation 5. For a faster
and stable training, we perform a label smoothing [14].

Results
We evaluate our approach on monophone states. There-
fore, we train one HMM-GMM model on monophone
and one on triphone states using the entire training
set. We map the triphone states to monophone states
to create accurate labels for the DNNQ. The separately
HMM-GMM trained on monophone states is used for
our comparison. After retrieving the ground-truth
labels, we train the DNNQ on the different cluster sizes
Nclu ∈ {300, 600, 900, 1200}. The DNNQ is trained for



Table 1: WERs (%) for Nclu ∈ {300, 600, 900, 1200} taking
the entire training set.

Monophone

DNNQ GMM

Nclu 300 600 900 1200 -

dev 41.8 42.3 44.1 44.7 54.3
test 44.7 43.8 45.6 46.6 56.7

10 epochs and we halve the learning rate after every
epoch. If the performance on the validation set is
increasing, we save the model.
The results depicted in Table 1 demonstrate that
our approach outperformed a conventional continuous
HMM-GMM. The DNNQ was able to obtain a better
performance on the dev set for Nclu = 300 and on the
test set for Nclu = 400. Mainly, the improvement is
a result of a deeper network architecture compared
to [12]. Deeper layers are assisting the DNNQ to
generalize in a better way. Moreover, we are applying
state-of-the-art layers like batch normalization. These
layers are speeding up the training and improving the
generalization process. We observe that increasing Nclu

does not correspond to a lower WER. On the dev set for
Nclu = 300 and on the test set for Nclu = 400 the DNNQ
achieved a final WER of 41.8 % and 43.8 %, respectively.
Compared to the HMM-GMM, which achieved a WER
of 54.3 % on the dev and 56.7 % on the test set, the
DNNQ relatively decreases the WER by 23.0 % and
22.8 %. It seems that the process of discretization is not
hurting the performance as one can observe in Table 1.

Conclusion
In our work, we returned to discrete ASR by applying
a DNNQ. We demonstrate, even though we quantize the
data, we are still able to return a smaller WER compared
to a continuous model. This profound way based on sam-
pling in the mini-batch to train the DNNQ makes it pos-
sible to use an arbitrary output layer size without loos-
ing the flexibility to scale the architecture of the DNNQ.
For future approaches, we will combine our model with
a classical vanilla DNN for ASR. Since we think that
our DNNQ learns to process features differently than a
traditional vanilla DNN, we will focus on an ensemble
approach where we combine the outputs of the DNNQ
and DNN.

References
[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis,

J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Is-
ard, et al. Tensorflow: a system for large-scale ma-
chine learning. In OSDI, vol. 16, pp. 265–283, 2016.

[2] H. A. Bourlard and N. Morgan. Connectionist speech
recognition: a hybrid approach, vol. 247. Springer
Science & Business Media, 2012.

[3] A. Graves and N. Jaitly. Towards end-to-end speech
recognition with recurrent neural networks. In In-

ternational Conference on Machine Learning, pp.
1764–1772, 2014.

[4] G. Hinton, L. Deng, D. Yu, G. Dahl, A.-r. Mohamed,
N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen,
B. Kingsbury, et al. Deep neural networks for acous-
tic modeling in speech recognition. IEEE Signal pro-
cessing magazine, 29, 2012.

[5] S. Ioffe and C. Szegedy. Batch normalization: Ac-
celerating deep network training by reducing inter-
nal covariate shift. arXiv preprint arXiv:1502.03167,
2015.

[6] N. Kanda, Y. Fujita, and K. Nagamatsu. Lattice-
free state-level minimum bayes risk training of
acoustic models. In Proc. INTERSPEECH, 2018.

[7] D. P. Kingma and J. Ba. Adam: A method
for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[8] D. B. Paul and J. M. Baker. The design for the wall
street journal-based csr corpus. In Proceedings of
the workshop on Speech and Natural Language, pp.
357–362. Association for Computational Linguistics,
1992.

[9] D. Povey, A. Ghoshal, G. Boulianne, L. Burget,
O. Glembek, N. Goel, M. Hannemann, P. Motlicek,
Y. Qian, P. Schwarz, et al. The kaldi speech recog-
nition toolkit. In IEEE 2011 workshop on auto-
matic speech recognition and understanding, number
EPFL-CONF-192584. IEEE Signal Processing Soci-
ety, 2011.

[10] D. Povey, V. Peddinti, D. Galvez, P. Ghahremani,
V. Manohar, X. Na, Y. Wang, and S. Khudan-
pur. Purely sequence-trained neural networks for
asr based on lattice-free mmi. In Interspeech, pp.
2751–2755, 2016.

[11] G. Rigoll, C. Neukirchen, and J. Rottland. A new
hybrid system based on mmi-neural networks for the
rm speech recognition task. In 1996 IEEE Interna-
tional Conference on Acoustics, Speech, and Signal
Processing, vol. 2, pp. 865–868. IEEE, 1996.

[12] J. Rottland, C. Neukirchen, D. Willett, and
G. Rigoll. Large vocabulary speech recognition with
context dependent mmi-connectionist/hmm systems
using the wsj database. In Fifth European Con-
ference on Speech Communication and Technology,
1997.

[13] A. Rousseau, P. Deléglise, and Y. Esteve. Enhancing
the ted-lium corpus with selected data for language
modeling and more ted talks. In LREC, pp. 3935–
3939, 2014.

[14] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and
Z. Wojna. Rethinking the inception architecture for
computer vision. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
pp. 2818–2826, 2016.


