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Performance Optimisation of Parallelized ADAS
Applications in FPGA-GPU Heterogeneous Systems:

A Case Study With Lane Detection
Xiebing Wang , Kai Huang , and Alois Knoll

Abstract—The explosive growth of massive data captured by
various sensors on modern vehicles has impelled the deployment of
Commercial Off-The-Shelf (COTS) accelerators for the research
and development of Advanced Driver Assistance Systems (ADAS).
Although the advent of cross-platform programming framework
such as Open Computing Language (OpenCL) facilitates the pro-
grammability of ADAS applications on heterogeneous devices, the
performance portability is still vulnerable and subject to different
hardware implementations by the heterogeneous manufacturers.
With this issue in mind, in this article we propose a detailed
procedure that helps guide the performance optimisation of par-
allelized ADAS applications in an FPGA-GPU combined hetero-
geneous system. Taking two different lane detection applications
as case studies, we provide one intra-accelerator and two inter-
accelerator optimisation methods, as well as both FPGA-specific
and application-oriented optimisation strategies, to boost the pro-
gram runtime performance. Experiment results on a heterogeneous
platform with COTS FPGA and GPU components reveal that the
optimal designs generated from the procedure can improve the
runtime performance of the two applications by an average of
109.21% and 83.48% over the native parallel implementations,
respectively.

Index Terms—ADAS, FPGA, GPU, OpenCL, lane detection.

I. INTRODUCTION

GUARANTEEING real-time performance is crucial for
state-of-the-art Advanced Driver Assistance Systems

(ADAS) applications as it can provide as much time as possible
for drivers to make better decisions in a relatively short time
frame. This bound not only comes from the inherent time-
criticality of ADAS tasks, but also stems from the demand to
efficiently process the massive amount of data captured by the
various types of sensors equipped in modern vehicles. In this

Manuscript received July 15, 2018; revised December 24, 2018; accepted
March 21, 2019. Date of publication August 28, 2019; date of current version
November 21, 2019. This work was supported in part by China Scholarship
Council under Grant 201506270152 and in part by National Natural Science
Foundation of China under Grant 61872393. (Corresponding author: Kai
Huang.)

X. Wang and A. Knoll are with the Department of Informatics, Technical
University of Munich, Garching 85748, Germany (e-mail: wangxie@in.tum.de;
knoll@in.tum.de).

K. Huang is with the Key Laboratory of Machine Intelligence and Ad-
vanced Computing, Ministry of Education, and School of Data and Com-
puter Science, Sun Yat-sen University, Guangzhou 510006, China (e-mail:
huangk36@mail.sysu.edu.cn).

Color versions of one or more of the figures in this article are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIV.2019.2938092

context, it is inevitable that high-performance accelerators are
used to promote the development and deployment of advanced
applications in ADAS. For instance at the Consumer Electronics
Show (CES) 2017, Intel announced the GO automotive 5G
platform [1], which would incorporate Xeon Phi processors
and Cyclone V Soc FPGA, to accelerate automotive computing.
Such heavy-computing functional components would become
standard equipment for future self-driving vehicles.

With the continuously emerging effort of using Commercial
Off-The-Shelf (COTS) components for ADAS development
[2]–[4], both Graphic Processing Unit (GPU) and Field Pro-
grammable Gate Array (FPGA) are ready to be deployed in
automated driving systems, due to their significantly higher
computational capacity and lower research and development
cost compared to dedicated ECU/ASIC-implemented counter-
parts. Meanwhile, during the last decade the popular use of
GPUs, FPGAs, and other co-processors in academia and in-
dustry has spawned the advent of generic standardization for
cross-platform parallel programming such as Open Comput-
ing Language (OpenCL) [5]. On the basis of this framework,
different accelerators can leverage their respective advantages
to complete the computational tasks in a collaborative way.
However, despite the seamless code portability, performance
portability still cannot be guaranteed due to the miscellaneous
hardware implementations by the respective manufacturers. Pro-
gram developers always need to elaborately define and assign
the workload on these heterogeneous platforms so as to gain the
best possible performance benefit.

This article investigates several key factors that influence the
performance gain when deploying parallelized ADAS applica-
tions in heterogeneous systems. State-of-the-art studies mainly
focus on the implementation and optimisation of applications
accelerated with a single type of hardware accelerator, such as
using GPU [6]–[8] or FPGA [9]–[11]. We propose a detailed
procedure that helps guide the performance optimisation of
parallelized ADAS applications on a heterogeneous platform
consisting of GPU, FPGA, and multi-core CPU.

Our work differs from state-of-the-art with the following
aspects: 1© In this work, we focus on the heterogeneous systems
with multiple types of hardware accelerator, i.e. with both FPGA
and GPU. Therefore, the intra-accelerator workload consump-
tion, which is a different scenario from previous work, is studied
carefully and two optimisation methods called accelerator exe-
cution overlapping and dynamic workload tuning are presented.
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2© We customize the applications with data-level parallelism
and the workloads assigned to different accelerators are identi-
cal. In this way, the comparison of the computational capacity
of each accelerator is fair and intuitive. 3©We provide a detailed
procedure that contains various approaches to optimise a native
parallelized application in a fine-grained manner. Therefore, this
procedure applies to any OpenCL application that is developed
in the early-design stage and intended to be executed in such an
FPGA-GPU heterogeneous system.

This article presents a substantial extended work of our previ-
ous study in [12]. We also provide a customized heterogeneous
design of the work in [13] and thereupon apply the proposed
procedure to obtain the optimal execution. We use two different
Lane Detection Algorithms (LDA) as case studies and both of
them are programmed with OpenCL for ease of use on a single
GPU or FPGA device, but not fully optimised in a system com-
bining both accelerators. The first application [14] customizes an
FPGA-GPU combined implementation of particle-filter-based
lane detection and tracking, while the second application [13]
detects lane markings via the RANdom SAmple Consensus
(RANSAC) approach. For brevity, we use p-LDA and r-LDA
to respectively refer to the aforesaid Particle-filter-based and
RANSAC-based Lane Detection Applications in latter sections.

After the identification of the performance bottlenecks in the
target program, one intra-accelerator and two inter-accelerator
sub-optimisation methods are taken into consideration so as to
increase the task processing efficiency. Moreover, application-
oriented optimisation of the workload is conducted to further
improve the overall runtime performance. Experiment results
reveal that for p-LDA and r-LDA, the optimal designs generated
from the procedure can achieve performance gains with an
average speedup of 2.09× and 1.83× over the native parallel
implementations, respectively.

The remainder of this article is organized as follows: Section II
is related work and Section III gives the background of the lane
detection applications. Section IV illustrates in detail the pro-
posed procedure and the sub-optimisation methods. Section V
presents experimental results and Section VI concludes.

II. RELATED WORK

A. Lane Detection Techniques

State-of-the-art methods for lane detection can be classi-
fied into two categories: camera-based methods with an image
stream as input and multi-sensor-based methods combining
camera and a minimum of one additional source for environmen-
tal perception such as LIght Detection And Ranging (LIDAR)
[15], [16], Global Positioning System (GPS) [17], or other data
receivers. The applications in this article adopt camera-based
methods and therefore we mainly review the approaches which
only use cameras as source of information.

In general, camera-based approaches are characterized by
an execution procedure similar to that shown in Fig. 1. The
Region Of Interest (ROI) in which the lane markings are located
is either the whole raw image [7], [18], [19] or cropped from
the captured image via manual boundary setting [2], [20] or
dynamical lane area calculation [21], [22]. With the ROI defined,

Fig. 1. General process flow of camera-based lane detection.

further image processing can be performed on either the raw
image directly or a Bird’s-Eye-View (BEV) image which is
transformed via Inverse Perspective Mapping (IPM) [18], [20],
[21] or Warp Perspective Mapping (WPM) [23], [24]. In contrast
to IPM which uses intrinsic and extrinsic camera parameters to
calculate the required transformation matrix, the WPM method
is independent from the camera parameters. However, for WPM
a minimum of four reference points in the original image as
well as the transformed image are required to compute an affine
matrix mapping. The models used to fit the candidate lanes
generated from the image pre-processing step are miscellaneous.
Some studies use the RANSAC model to conduct line fitting [7],
[20], [22], while other research adopts filtering techniques to im-
plement lane tracking [2], [21], [25], [26]. The biggest advantage
of RANSAC-based lane fitting is the robust estimation of model
parameters, even if the data set contains a significant amount of
outliers [27]. However, the benefit of filter-based lane tracking
is a considerable reduction of time consumption caused by the
iterative lane detection.

B. ADAS Applications on Heterogeneous Platforms

Lane detection is mostly achieved via filtering techniques
to capture lanes, however it is rarely deployed on heteroge-
neous platforms. In this article, we focus on the optimisation
of OpenCL-based lane detection applications. The performance
portability of OpenCL applications across different platforms
remains an open problem. To solve this issue, some researchers
have proposed profiling and optimisation framework to as-
sist better development of OpenCL applications. The work in
[28] provided a generic tool for performance measurement of
OpenCL programs. In [29], the authors proposed a framework
combining OpenCL application auto-tuning and runtime re-
source management. The study in [30] presented a transparent
OpenCL overlay called Helium, for inter- and intra-kernel opti-
misation. The studies mentioned above are not yet mature and to
the best of our knowledge, state-of-the-art research remains at
the stage that optimisations are highly dependent on the specific
algorithm, architecture, and programming features. In [31], the
authors analyzed and profiled the components of the Speeded
Up Robust Features (SURF) algorithm. Their work only in-
volved the profiling of the program and this information can
be referenced for performance improvement. Recently, FPGA
devices are mainly used as the accelerator for Convolutional
Neural Network (CNN) like the work in [32] and [33]. In their
work, optimisations were mainly performed based on the CNN
algorithm itself.

While there exist substantial efforts to parallelize ADAS ap-
plications with GPU [6]–[8] or FPGA [9], [10], [11], [34], [35],
few studies are reported to accelerate them with heterogeneous
commodity hardware [36]. The study in [2] investigated the
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feasibility of using COTS hardware for ADAS development, but
the performance optimisation is not considered. The work in [6]
presented a step-by-step optimisation of face detection algorithm
in CPU-GPU heterogeneous systems. However, this study con-
sidered only the CPU-GPU heterogeneous architecture. Authors
in [37] compared the performance of using GPU, FPGA, or both
devices to accelerate pedestrian detection applications. Unlike
the data-level parallel designs in our work, in [37] GPU and
FPGA process different tasks to fulfil task-level parallelism. In
[38], the authors exploited FPGA to accelerate a speed-limit-sign
recognition application and showcased the performance and en-
ergy results compared with the GPU-implemented counterpart.
Their work does not involve both FPGA and GPU, and the
optimisation part is also limited to FPGA only. The most related
work to this article is [6], where authors used optimisation meth-
ods including CPU execution time hidden, memory coalescing
and variable parallel granularity. The difference of our work is
that rather than using a single GPU, we tested the FPGA-GPU
heterogeneous context so that (i) the execution time of both
accelerators can also be hidden via changing build-in function
order, (ii) parallelism on FPGA side could be further adjusted
by using pragma primitives, and (iii) other optimisation methods
like dynamical workload tuning are also presented.

III. BACKGROUND

In this section we give a brief review of the two case study
applications and then explain how they are parallelized on the
FPGA-GPU heterogeneous platform.

A. p-LDA: Particle-Filter-Based Lane Detection Application

1) Algorithm Overview: This application mainly consists of
three modules, namely pre-processing, lane detection, and lane
tracking. For each frame, the pre-processing module extracts
information about the lane markings and then passes it to the
next step. Depending on whether or not the estimated state in
previous frame can still be applied to current frame, the image is
processed either using the lane detection module to redetect the
positions of the lane markings or using the lane tracking module
to track the previous position of the lane markings.

The pre-processing module crops the ROI from the raw image
and then transforms it into a grayscale format where each pixel
reflects the intensity of the pixel in the original image. To
enhance the contrast of the pixel intensity, a Sobel filter [39] is
applied to the grayscaled image to extract transitions and edges.
To avoid the influence of noises, a threshold is used to tune the
intensities of all pixels in the image.

During lane detection, first of all a set of candidate lines X =
{X1, X2, . . . , Xn} is randomly generated via assigning random
values from a normal distribution, where n is the number of the
candidate lines. For each candidate line Xi, a weight wi is used
to reveal how close the line is located to the real lane. The line
with the highest weight is chosen as the best line and certain
number of candidate lines are reserved as good lines, which is
further used in the lane tracking module.

For lane tracking, a particle filter [40] is adopted to predict
the lane markings, using both the ROI of the current frame

Fig. 2. Parallel design of lane detection and lane tracking modules in p-LDA.
Here the lines refer to candidate lines and good lines, respectively for lane
detection and lane tracking tasks. The red line represents the best line.

and the best line and good lines of the previous frame. The
particle filter consists of three steps: (i) the prediction update step
modifies previous good lines as the prior probability distribution
of lane markings in the current frame; (ii) the importance weight
update step recalculates the weights of the particles; and (iii) the
resampling step selects particles from the newly updated set so
as to prevent particle set degeneration.

Finally the redetection checking step verifies whether the
detected positions reasonably conform to the physical properties
of the lane markings. If not, additional detection step is triggered
to seek the lane markings again.

2) Parallel and Heterogeneous Design: In the native de-
sign, each of the above three modules is programmed as an
OpenCL kernel. For the sake of brevity, we use kernelPRE,
kernelLD, and kernelPF to refer to them respectively.
Additionally, a random number generator is used to provide
normally distributed random numbers for both lane detection
and lane tracking tasks. This kernel, termed as kernelRNG, is
executed only once, while the remaining kernels are executed
frame by frame.

As for the heterogeneous design, the computation workloads
of kernelLD and kernelPF are split and partially executed
on FPGA and GPU, while the kernelPRE task is consumed
on both devices, because of data dependency, in that lane de-
tection and lane tracking relies on the calculated results of
the pre-processing step. Fig. 2 depicts the parallel design of
lane detection and lane tracking modules when these tasks are
executed on a single FPGA/GPU (Fig. 2(a)) or both accelerators
(Fig. 2(b)). In the heterogeneous design, the lines are sampled on
each device (m lines generated on FPGA and n lines generated
on GPU as shown in Fig. 2(b)) and then collected to calculate
the best line from the merged outcome (m+ n lines).

B. r-LDA: Ransac-Based Lane Detection Application

1) Algorithm Overview: This application also contains three
steps, namely homography matrix calculation, pre-processing,
and model fitting. The homography matrix calculation step is
performed off-line only once, which uses a reference frame to
generate the homography matrix. The pre-processing and model
fitting steps are performed iteratively for each frame to extract
the detected lane positions in the original input image.
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Fig. 3. Parallel design of the WPM transformation in r-LDA. The areas with
slashes represent empty values of the pixels.

The homography matrix calculation is implemented via van-
ishing point estimation [41] and top-view mapping of a reference
frame in the input video stream. The feature points are obtained
with ROI bounding to estimate their corresponding points in the
BEV image. Then the relations between the matching points
are constrained by the underlying assumptions to compute the
required homography mapping.

The pre-processing step first generates a WPM-based BEV
image of a pre-defined, fixed ROI inside the input frame and
then filters the image with a second derivative Gaussian filter.
Afterwards this top-view ROI is grayscaled and convoluted to
highlight the vertical as well as quasi-vertical lane markings in
the original ROI.

The model fitting step applies a simplified Hough trans-
formation to give an initial guess about the positions of the
lane markings and afterwards performs both linear and spline
RANSAC fitting to locate the matched splines in the original
input image. The first step matches linear lines using previous
Hough transformation data and the second RANSAC iteration
fits each lane to a third-degree Bezier spline after applying proper
geometric checks.

2) Parallel and Heterogeneous Design: In the native design
[13], the homography matrix calculation is executed off-line
only once and therefore is not parallelized. The pre-processing
step is characterized as two OpenCL kernels, i.e., kernelWPM
and kernelCONV, which consume the WPM and image con-
volution tasks respectively. The model fitting step is performed
on the host since its time cost is much smaller than that of the
pre-processing step.

In this work we develop a customized heterogeneous execu-
tion with data-level parallelism, since both kernelWPM and
kernelCONV process the pixels in the ROI independently,
and therefore during calculation there is no intra-pixel data
dependency. The heterogeneous design vertically divides the
ROI into two parts, of which either one is taken as an input
workload on one accelerator. Taking WPM as example, Fig. 3
presents its parallel design in the homogeneous (Fig. 3(a)) and
heterogeneous (Fig. 3(b)) execution scenarios. In the heteroge-
neous implementation, FPGA and GPU individually transform
part of the raw ROI and then piece together the results into the

Fig. 4. Optimisation procedure for parallelized ADAS applications in FPGA-
GPU heterogeneous platform. The three red dashed boxes indicate the
intra-accelerator, inter-accelerator, and FPGA-specific optimisation module,
respectively.

BEV image. It is the same case with the image convolution
kernel.

IV. OPTIMISATION PROCEDURE

Figure 4 exhibits the proposed optimisation procedure. First
of all, profiling of the application is needed to locate the hotspot
kernels so that the bottleneck can be identified and further opti-
mised. Given a native design of the hotspot kernels, generic
optimisation is utilized on the intra-accelerator side. These
optimisations include loop unrolling, memory access coalesc-
ing, global memory access elimination, etc. Particularly for the
FPGA, since each OpenCL kernel is abstracted as a compute
unit and further hardware synthesized as a dedicated circuit
block on the board, this compute unit can be replicated multiple
times to increase the processing efficiency. With a set of kernel
configurations that indicate different combinations of compute
unit replication and loop unrolling factors, a resource check
is conducted at pre-compilation stage to examine whether the
candidate designs can actually meet the on-board resource lim-
itation. The designs that consume more ALMs, registers, RAM
blocks, and DSP blocks than the maximal available number of
the counterparts are discarded and the remaining designs are
passed to the design space exploration module to obtain the
optimal kernel design on FPGA.

The inter-accelerator sub-optimisation consists of two steps.
On the host, the invocation order of the kernel functions for
different accelerators can be interleaved to hide the kernel
launch, host-device data transfer, and kernel execution overhead.
Meanwhile, during the processing of each frame, the workloads
for FPGA and GPU are dynamically tuned so as to balance the
time consumption.

Finally, each application has its self-defined workload such
as the ROI definition in p-LDA and the RANSAC iteration in
r-LDA. This workload is flexible and can also be regulated to
enhance the runtime performance.
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A. Profiling

To figure out the execution time distribution of the program,
the high-level source code is segmented into several blocks and
the execution time of each block is subsequently measured.
The executions of these code blocks express the skeleton of the
whole program. For each code block, time stamps are inserted
before and after the execution of the code and the proportion of
time cost in the total time consumption is calculated after each
run. In theory, the code block that consumes the most part of the
total execution time is optimised with top priority.

B. Compute Unit Replication (CR)

In OpenCL, high-level source code of the kernel is instan-
tiated as a work item running on a compute unit where a
group of work items can execute simultaneously to accelerate
the applications. For GPU, this compute unit is mapped to a
stream multi-processing unit and therefore its implementation
is hardware-dependent and its optimisation is beyond the scope
of this article. While on the FPGA platform, the compute unit
is hardware-implemented as a circuit block and by assigning
more compute units, the performance can be enhanced to a large
margin as long as the peak computation capacity and resource
utilization are not reached. The kernel compute unit replication
increases the data throughput at the expense of memory band-
width contention among the compute units.

We perform the compute unit replication as follows: first
we assume the most simplified configuration, i.e., setting only
one compute unit for each kernel, to guarantee that the design
meets the board resource limitation. Afterwards, the kernels is
optimised in a step-by-step manner by assigning more and more
compute units to the most time-consuming task load.

C. Loop Unrolling and Memory Access Coalescing (LU)

Loop unrolling is a code transformation technique used to
reduce the program’s execution time at the expense of its binary
size, which is known as the space-time tradeoff. By unwinding
the loop code several times, the control statements are reduced
or avoided so that the number of branches are minimized. On the
GPU side, loop unrolling is implemented by manually replacing
the loop with repeated sequential statements which eliminates
the branch penalty. Loop unrolling on the FPGA board in-
creases the length of pipeline, thus overlapping the executions
of more logic units. Similar to compute unit replication, loop
unrolling on FPGA provides a trade-off between the potential
higher performance, due to the hidden pipeline execution time,
and more intense memory bandwidth contention, due to larger
resource exploitation. On both platforms, the expansion of loop
size coalesces memory access as long as they have adjacent
memory addresses.

Additionally, the expensive global memory access in some
kernels is eliminated by using pre-computed values to replace
memory-reading operations with data manipulation of a fixed
constant rather than a global variable.

D. Accelerator Execution Overlapping (EO)

As illustrated in Section III-A2 and Section III-B2, the hetero-
geneous implementation is data-level parallel and each hotspot

Fig. 5. A sample heterogeneous execution with different call order of OpenCL
API functions for FPGA and GPU. The blue arrows indicate the exact time point
when the API function in the blue circle would actually take effect.

kernel is executed on both FPGA and GPU platforms. Here,
there is a trade-off of how and when the kernels are invoked
from the host. In general, an overall execution of an OpenCL
kernel can be abstracted as the following flow: 1©The input data
is stored in a host buffer and then written into device memory
via the function clEnqueueWriteBuffer. 2© The kernel
is driven via the function clEnqueueNDRangeKernel to
the command queue and is ready for execution. 3© The output
data is generated after the kernel is completed and the results
are read back from the device to the host via function call of
clEnqueueReadBuffer. 4© The data on the device and
the host is synchronized over and ready for future use, which
is notified by the completion of corresponding kernel events
via the function clWaitForEvents. In the heterogeneous
design, both FPGA and GPU would call their own OpenCL
runtime libraries to execute the API functions mentioned above.
The call order of these functions should be carefully considered
since not all of them are non-blocking invocations.

Figure 5 gives an example to illustrate how the call order of the
API functions influences the time cost of executing the kernel
on FPGA and GPU. On each platform, the kernel is processed
with the same function call order as the aforementioned flow,
while the sequence of the functions that the host invokes for
different platforms may vary. In Case I, all the invocations
of FPGA-related API functions are before the GPU-related
counterparts as if the kernel is sequentially processed one after
another on the platforms. In this case, the first GPU-related API
function is invoked after the last FPGA-related API function
is served and the total time cost is the sum of the execution
time on FPGA and GPU. In Case II, the first GPU-related API
function is invoked immediately after the call of the FPGA-
related function clEnqueueNDRangeKernel, with a subtle
lag. The data read back function clEnqueueReadBuffer
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on GPU is called later than the completion of the kernel on
FPGA. Therefore, the termination of the GPU-related function
clWaitForEvents indicates the end time point of the total
execution. In this case, both the kernel execution and host-device
data transfer time are well overlapped. As shown in the last case,
the data read back part on FPGA is executed after the GPU kernel
is processed and the total execution time is longer than that in
Case II, since the host-device data transfer time is not hidden.
As can be seen, calling FPGA- and GPU-related API functions
in an interleaved way can overlap the inter-accelerator kernel
execution and host-device data transfer time and consequently
boost the runtime performance.

E. Dynamical Workload Tuning (DT)

For ADAS applications, the input data is normally from a
captured road video stream and the program needs to process
the video frame by frame to extract effective environmental
information so as to assist drivers with decision making. These
applications can be lane detection, pedestrian detection, traffic
sign recognition, vehicle identification, etc. Consequently, the
hardware accelerators need to process the workload of every
image frame repeatedly, which offers the possibility of dynam-
ically tuning the workloads among different platforms.

As FPGA and GPU show distinct computation capacities in
consideration of different types of data manipulations, much like
[14], we apply a dynamical tuning of the workload to ensure that
the tasks can be finished within the shortest possible time. The
basic idea of the dynamical workload tuning is that the workload
to be assigned on a certain device should be proportional to
its computation throughput. Therefore during each processing
iteration of the image frame, the total workload is re-assigned to
the involved accelerators based on their historical computation
capacities.

Assume there are in total N accelerators in the system and in
the previous iteration the i-th accelerator consumes an amount of
workload Wi at the expense of time Ti, then the newly assigned
workload W ′

i for the current iteration can be calculated as

W ′
i =

ci
∑N

i=1 ci

N∑

i=1

Wi

ci =
Wi

Ti
(1)

where ci indicates the computation throughput of the i-th accel-
erator in the previous iteration. The newly assigned workload is a
portion of the total workload, where the coefficient is calculated
as the ratio of the computation throughput of the i-th accelerator
to the computation throughput of all the accelerators in the
system.

F. Application-Oriented Optimisation (AO)

Theoretically speaking, the performance can be improved
as long as the amount of the total workload can be reduced
while guaranteeing the accuracy of the final results. In the two
case study applications, the tunable workload lies in the ROI
definition and the RANSAC iteration, respectively.

1) p-LDA: As described in Section III-A1, only the image
ROI is processed and information of pixels falling in this area
is further computed. Therefore decreasing the ROI size could
distinctly shrink the calculation task load and improve the perfor-
mance. For this application, our optimisation enables an adaptive
ROI when processing the image frames iteratively.

Algorithm 1 gives the detail of the ROI tuning scheme for
p-LDA. First the best line set B, which contains the lane positions
of the current frame, is traversed to get the minimal and maximal
x-axis coordinates of the best lines. These two coordinates are
seen as the candidate start and endx-axis positions of the updated
ROI. Then the updated ROI is upper-bounded by the start and
end x-axis positions of the initial ROI and lower-bounded by a
certain proportion of the image width (here the coefficients of
proportionality are set as 1/4 and 3/4). If the redetection step
is triggered, the width of the ROI is reset as the initial ROI
width. This scheme ensures that the computation workload of
each frame is no more than that using the initial ROI and no less
than that using a region of which the width equals only half of
the image width.

Note that here we focus on the regulation of the ROI width,
rather than the ROI height, since the ROI height is normally
fixed within a visible area of the lane markings. In addition,
the coefficients of proportionality of the lower-bounded ROI are
empirically set. This is to ensure that the ROI size would not
collapse from a plane to a line when the detected lanes are too
close, which would prevent the ROI construction and further
ruin the detected results. From Algorithm 1, it is seen that the
ROI of the next frame is bounded by the positions of the lanes
detected in the current frame. This indicates that the processed
ROI is not subject to user interference and the detection accuracy
does not suffer due to an incomplete ROI.

2) r-LDA: In this application the processed ROI is already
adaptively bounded, based on the position of the estimated
vanishing point. This drives us to turn to the optimisation of
the model fitting part. As is known, the number of RANSAC
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Fig. 6. Normalized execution time distribution of the profiled code blocks in p-LDA and r-LDA.

iterations N is determined by

N =
log(1− ρ)

log(1− ωη) (2)

where ρ is the probability that the best fitting model can be
found, η is the minimal number of data points needed to define
the model and ω is the probability that any selected data point
is within the error tolerance of the model [27]. Since ω is
preliminarily unknown in r-LDA, during the evaluation we first
set N as a considerably large value and then gradually reduce
this value until the accuracy hits a tolerable threshold. In this
way, the number of RANSAC iterations is minimized while the
accuracy is still guaranteed.

G. Discussion

The aforementioned optimisation methods constitute a sys-
tematic procedure for improving the performance of OpenCL-
based ADAS applications in FPGA-GPU heterogeneous
systems. Compared with state-of-the-art, this work targets a
different scenario, i.e., the performance optimisation of lane
detection applications when different hardware accelerators are
involved. Apart from the conventional optimisation techniques,
we also take into consideration the intra-accelerator kernel
execution and give optimisation methods such as accelerator
execution overlapping and dynamic workload tuning.

V. EVALUATION AND ANALYSIS

A. Evaluation Setup

We use a heterogeneous system consisting of multi-core CPU,
GPU, and FPGA as the evaluation platform. The details about
the hardware specification are shown in Table I. To evaluate
the performance of the two case study applications, we utilize
the benchmark videos from Caltech data set [42]. This data set
consists of four clips on various urban street scenarios including
straight and curved lanes, shadows, reflections, and street scenes
to reflect real-world conditions.

During the runtime evaluation of p-LDA, we use 212 good
lines and 213 candidate lines to detect 2 lane markings. As for

TABLE I
DETAILED SPECIFICATION OF THE EVALUATION PLATFORM

Fig. 7. Detected lane results of the two applications.

the parameters of r-LDA, we set the initial value of the number
of RANSAC iterations to 300 and the observed optimal value
is 40. Each time the FPGA device is assigned the workload with
different proportions, i.e. from 10% to 90% and vice versa, the
task proportion on the GPU is from 90% to 10%, with a step of
10%. Each video is run multiple times and the overall results are
finally collected and averaged.

B. Detection Results

Figure 7 presents the detection results of the two applications.
As can be seen, r-LDA detects more lanes than p-LDA, since the
expected number of detected lanes of p-LDA is preset to 2. In
this work, we mainly focus on the performance optimisation and
the accuracy results are demonstrated in the previous studies.
Note that our performance optimisation does not significantly
influence the accuracy of these two applications. Details about
the accuracy results of p-LDA and r-LDA are reported in [2] and
[13], respectively.
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TABLE II
LIST OF MAIN CODE BLOCKS IN p-LDA

TABLE III
LIST OF MAIN CODE BLOCKS IN r-LDA

C. Profiling Results

1) p-LDA: This application is segmented into 7 main code
blocks and the detailed description of them is shown in Table II.
Fig. 6(a) reveals the normalized execution time of these code
blocks when the workloads are distributed to FPGA and GPU
with different proportions. As observed in Fig. 6(a), the time
consumption of kernelLD and kernelPF accounts for a
minimum of 60.71% (when the FPGA task proportion is 10%)
and a maximum of 83.08% (when the FPGA task proportion is
90%) of the total execution time. These two kernels are therefore
the hotspot kernels and need further optimisation. Note that the
execution of copyImageData also consumes a considerable
amount of time. This is inevitable since the raw image data
have to be read into the host memory before the pre-processing.
One possible optimisation of this code block is to reduce the
transmitted data size, which is done by the ROI tuning scheme.

2) r-LDA: This application contains 5 main functional mod-
ules of which the detailed information is listed in Table III and
their respective execution time distribution is shown in Fig. 6(b).
kernelWPM and kernelCONV are deemed as hotspot kernels
as they occupy the majority part of the total time consumption
(from 57.63% when the FPGA task proportion is 10% to 75.54%
when the FPGA task proportion is 90%). Aside from them, the
splineRansac task dominates the remainder of the time cost.
Optimisation of this part is done by reducing the number of
RANSAC iterations.

D. Optimisation Results

1) Compute unit Replication (CR): In our design, the code
snippets of kernelLD and kernelPF in p-LDA are within
the same OpenCL kernel function, due to their similar func-
tionalities with minor differences, and consequently they are
always replicated with the same number of compute units. As for
r-LDA,kernelWPM andkernelCONV belong to two separate
kernel functions and hence they can be replicated with different
configurations. For brevity, we use λCR to denote the factor
that a compute unite is replicated in the FPGA design, and

TABLE IV
CR AND LU CONFIGURATIONS OF THE FPGA DESIGN

Fig. 8. Performance comparison of p-LDA when replicating different number
of compute units.

λ̂CR to denote the maximum number that a compute unit can
be replicated subject to a given specific constraint. The first,
third, and fourth columns in Table IV exhibit the detailed CR
configurations of the two applications. Here the fourth column
(λ̂conv

CR ) gives the maximal compute unit replication factor for
kernelCONV when kernelWPM is replicated with the factor
given in the third column (λwpm

CR ). It is seen that fewer resources
can be assigned to kernelCONV when kernelWPM is repli-
cated an increasing number of times.

For p-LDA, the maximum CR factor is 3 and Fig. 8 shows
the performance results. As can be seen, for all task proportion
scenarios, replicating the compute unit can boost the runtime
performance. This speedup becomes larger when λCR increases.
The average speedup is 1.13× and 1.52×, when the compute unit
is replicated 2 and 3 times, respectively.

From Table IV, the maximum CR factor for kernelWPM is 9
andkernelCONV can be replicated up to 7 times when λ

wpm
CR is

no greater than 4. For clarity of description, we compared the per-
formance results of CR optimisation for r-LDA via the control
variable method, i.e. varying either λ

wpm
CR or λconv

CR while setting
the other one as a constant. Fig. 9 gives the detailed comparison
and due to space limitations, we have only shown the results
when the FPGA task proportion is 10%, 30%, 50%, 70%, and
90%. An interesting point shown in Fig. 9(a) is that merely repli-
catingkernelWPM actually degrades the runtime performance.
This slowdown becomes larger when λ

wpm
CR gradually increases.

The observed worst performance loss is 15.15% when the FPGA
task proportion is 70% and λ

wpm
CR = 8. A possible explanation is

that kernelWPM is memory-operation dominant and therefore
creating multiple instances of this kernel aggravates the on-board
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Fig. 9. Performance comparison of r-LDA when replicating different number
of compute units.

memory bandwidth contention, incurring a larger performance
penalty over the benefit of computation scalability.

For kernelCONV, replicating this kernel can be expected to
result in much more performance benefit, and this gain becomes
even larger when more workloads are allocated on FPGA, as
is clearly shown in Fig. 9(b). The observed maximum speedup
is 2.02× when 90% of the tasks are processed on FPGA, with
kernelCONV replicated 7 times.

The combination of the CR optimisations of kernelWPM
and kernelCONV is a trade-off between the computation- and
memory-intensiveness of these two kernels. In our evaluation,
the exhaustive exploration of all the fitted CR designs shows
that the best case exists when λ

wpm
CR = 2 and λconv

CR = 7, which
exhibits an average 1.55× speedup.

2) Loop Unrolling and Memory Access Coalescing (LU):
To showcase the influence of loop unrolling on the runtime
performance, we have searched through the fitted design space to
obtain the available LU configurations. For brevity, we use λLU

to denote the factor that a loop is unrolled, and λ̂LU to denote the
maximum number that a loop can be unrolled subject to compiler
setting and resource constraint. The second and fifth columns in
Table IV give the LU configurations for the two applications,
given the pre-determined CR settings of the kernels. For p-LDA,
loop unrolling works on both kernelLD and kernelPF since
they share the same code snippet. With regards to r-LDA, LU
optimisation is only valid for kernelCONV as only this kernel
contains a loop.

For p-LDA, λ̂LU decreases when the kernel is replicated
more times. The loop can be unrolled 9 times when λCR = 1,
while no LU optimisation can be performed (λ̂LU = 1) when

Fig. 10. Performance comparison of p-LDA using different loop unrolling
factors.

Fig. 11. Performance comparison of r-LDA using different loop unrolling
factors, the FPGA task proportion is 50%.

replicating the compute unit three times. Fig. 10 reveals the
results of LU optimisation when λCR = 1 and a similar trend
is also observed in other cases. By way of contrast, we also
show the performance result when λCR = 3, λLU = 1, so as to
compare the performance boost of CR and LU optimisations.
As seen in Fig. 10, the p-LDA application can only gain a subtle
performance benefit when the loop is unrolled 5 or more times.
However, this performance gain cannot rival the counterpart
from the CR optimisation, as seen from the last bar in Fig. 10.
For this application, CR optimisation gains a larger performance
improvement than LU optimisation.

Figure 11 depicts the LU optimisation results for r-LDA. Due
to space limitations, we have only shown the results when the
FPGA task proportion is 50% and other cases turn out similar
results. For comparison of CR and LU optimisation, we chose the
native (λwpm

CR = 1, λconv
CR = 1) and the best (λwpm

CR = 2, λconv
CR =

7) CR configurations and exhibit their corresponding LU optimi-
sation results. As observed from Fig. 11, loop unrolling results in
nearly no performance gain when the CR factors are determined.
This phenomenon is also demonstrated in all of the remaining
CR configurations. The reason for this is that the maximum LU
factor for the loop is 16 (the compiler throws out errors when
setting the LU factor at any value larger than 16), while the
loop itself processes an additive and multiplicative operation of
an array containing 17 elements. As a result, the design space
excludes the ideal LU setting and hence all the executions use
non-ideal configurations and show nearly the same performance
results.

3) Accelerator Execution Overlapping (EO): Following the
configurations in Fig. 5, we conduct the three execution scenar-
ios with different call order of OpenCL API functions and the
results are depicted in Fig. 12. EO optimisation of the p-LDA
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Fig. 12. Performance comparison with different call order of OpenCL API functions.

Fig. 13. Performance comparison with and without dynamical workload tuning.

Fig. 14. Performance comparison with and without AO optimisation.

application achieves a considerable performance boost (shown
in Fig. 12(a)), while the speedup for r-LDA is slightly lower
(shown in Fig. 12(b)). The average speedups of Case II over
Case I are 1.20× and 1.06×, respectively for p-LDA and r-LDA.
For both applications, executions of Case II always spend less
time than that of Case I and III, which demonstrates the previous
analysis in Section IV-D.

4) Dynamical Workload Tuning (DT): We apply the dynam-
ical workload tuning mechanism illustrated in IV-E to the two
case study applications and obtain the performance compari-
son results as presented in Fig. 13. As can be observed, DT
optimisation achieves many more performance gains when the
task proportion on FPGA is larger. This is especially obvious
for p-LDA, where the DT-optimised execution can improve the
performance by up to 39% (when 90% of the task is initially

distributed on FPGA). The reason is that the dynamical workload
tuning mechanism always regulates and assigns the appropriate
amount of workloads for each accelerator. In this way, the tasks
are gradually migrated to GPU when the initial task proportion
on FPGA becomes larger, since in our evaluation the Quadro
K600 GPU has a higher computation power than the Nallatech
385 FPGA. Therefore, the performance speedup is larger when
a higher quantity of workloads are initially assigned to FPGA
but subsequently consumed by GPU, compared with the fixed-
task-proportion executions.

5) Application-Oriented Optimisation (AO): Figure 14 gives
the performance results of using aforementioned AO optimisa-
tion methods for both applications, i.e. the ROI tuning scheme
for p-LDA and the RANSAC iteration reduction for r-LDA.
Tuning the ROI size improves the runtime performance ofp-LDA
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Fig. 15. Performance comparison overview with step-by-step optimisations.

by an average of 12.86%, which reveals that shrinking the ROI
size can effectively reduce the computational workload. The
performance gain for r-LDA, however, is negligible, which is
due to the minor proportion of RANSAC computation in the
whole execution time. Hence even a huge reduction of RANSAC
computation time cannot make a significant contribution to
improving the overall runtime performance.

E. Summary and Discussion

1) Performance Benefit: Figure 15 shows the performance
speedup of the two case study applications with the step-by-step
optimisations mentioned above. Overall, the proposed optimi-
sation procedure improves the runtime performance of both
applications with a large extent. In our evaluation, the observed
optimal executions of p-LDA and r-LDA can improve the per-
formance by an average of 109.21% and 83.48% over the native
parallel implementations, respectively.

As the task proportion on FPGA gradually increases, the
performance speedup turns out a climbing trend as well, which
is especially evident as seen from the curves of CR, EO, DT, and
AO optimisations in Fig. 15(a) and 15(b). This reveals that the
optimisations favour the FPGA platform and are more efficient
when processing time-consuming workloads.

The LU optimisation for the test applications is not very
significant. We attribute this to the resource constraint (for
p-LDA) and non-ideal compiling issue (for r-LDA), which is
illustrated in Section V-D2. A further study on other ADAS
or generic scientific computing applications may better demon-
strate the effectiveness of the LU optimisation. The CR op-
timisation contributes the most part to the final performance
gain, since it enables the scaling of the kernel computation in
a linear manner. The EO, DT, and AO optimisations, on the
other hand, further improve the runtime performance. This is
extremely important since these three optimisation methods are
platform-independent and therefore can be seamlessly applied
to other heterogeneous systems.

2) Scalability Analysis: The optimisation procedure pro-
posed in this article can be applied to other applications and
other heterogeneous parallel systems as well. The reasons are
multi-fold. First, the CR optimisation is FPGA-related and the
LU optimisation is valid for both GPU and FPGA. As nowadays
GPU and FPGA are mainstream hardware accelerators used for
high performance scientific computing, these two optimisation
methods are applicable for any parallel applications running on
GPU and FPGA platforms. Secondly, the EO and DT optimisa-
tions take effect when more than one accelerators, even multiple
of the same type of processors, like either GPUs or FPGAs,
are deployed for task processing. These optimisation methods
are therefore suitable for general heterogeneous and reconfig-
urable computing. Lastly, the AO optimisation is algorithm-
specific and can be flexibly adapted to other applications as
long as the inherent parallel workloads in the target program
are tunable, which is the normal case for state-of-the-art parallel
applications.

VI. CONCLUSION

In this work, we propose a detailed procedure to help
guide the performance optimisation of parallelized ADAS
applications in FPGA-GPU heterogeneous systems. We pro-
vide one intra-accelerator and two inter-accelerator sub-
optimisation methods, as well as both FPGA-specific and
application-oriented customizations, to boost the runtime per-
formance. Evaluation results show that our optimisation pro-
cedure can effectively reduce the time consumption, and the
optimal designs of the case study applications can signifi-
cantly improve the runtime performance over the native parallel
implementations.
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