
TECHNISCHE UNIVERSITÄT MÜNCHEN

Lehrstuhl für Robotik, Künstliche Intelligenz und Echtzeitsysteme

Heterogeneous Computing for Advanced Driver

Assistance Systems

Xiebing Wang

Vollständiger Abdruck der von der Fakultät der Informatik der Technischen Universität München zur

Erlangung des akademischen Grades eines

Doktors der Naturwissenscha�en (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr. Daniel Cremers

Prüfer der Dissertation: 1. Prof. Dr.-Ing. habil. Alois Knoll

2. Assistant Prof. Xuehai Qian, Ph.D.

3. Prof. Dr. Kai Huang

Die Dissertation wurde am 25.04.2019 bei der Technischen Universität München eingereicht und durch

die Fakultät für Informatik am 17.09.2019 angenommen.

http://www.tum.de
http://www6.in.tum.de
mailto:wangxie@in.tum.de

Abstract

Advanced Driver Assistance Systems (ADAS) is an indispensable functionality in state-of-

the-art intelligent cars and the deployment of ADAS in automated driving vehicles would

become a standard in the near future. Current research and development of ADAS still

faces several problems. First of all, the huge amount of perception data captured by mas-

sive vehicular sensors have posed severe computation challenge for the implementation

of real-time ADAS applications. Secondly, conventional automotive Electronic Control

Units (ECUs) have to cope with the kno�y issues such as technology discontinuation and

the consequent tedious hardware/so�ware (HW/SW) maintenance. Lastly, ADAS should

be seamlessly shi�ed towards a mixed and scalable system in which safety, security, and

real-time critical components must coexist with the less critical counterparts, while next-

generation computation resources can still be added �exibly so as to provide su�cient

computing capacity.

�is thesis gives a systematic study of applying the emerging heterogeneous comput-

ing techniques to the design of an automated driving module and the implementation of

real-time ADAS applications. First of all, this thesis proposes a high-performance and het-

erogeneous ECU called h
2
ECU, for automated driving. By incorporating multiple Multi-

Processor System-on-Chips (MPSoCs), Graphic Processing Units (GPUs), and Field Pro-

grammable Gate Arrays (FPGAs) into the module, h
2
ECU can provide su�cient comput-

ing power while maintaining high scalability. With this platform, several typical ADAS

applications are customized to investigate the performance and energy tradeo� in the het-

erogeneous system. Subsequently, this thesis gives a detailed procedure that helps guide

the performance optimization of parallelized ADAS applications in the heterogeneous sys-

tem. Last but not least, a hybrid framework that combines source-level static code analysis

and trace-based dynamic simulation is proposed to fast and accurately predict the perfor-

mance of running parallel kernels on the representative GPU accelerator. Based on this

framework, this thesis further gives a solution to e�ciently prune the vast program design

space in order to locate the optimal program design con�gurations.

Zusammenfassung

Advanced Driver Assistance Systems (ADAS) ist eine unverzichtbare Funktion in intelli-

genten Automobilen auf dem neuesten Stand der Technik. Der Einsatz von ADAS in auto-

matisierten Fahrzeugen würde in naher Zukun� zum Standard werden. Die derzeitige For-

schung und Entwicklung von ADAS ist nach wie vor mit mehreren Problemen verbunden.

Vor allem die enorme Menge an Wahrnehmungsdaten, die von massiven Fahrzeugsenso-

ren erfasst werden, stellte die Implementierung von Echtzeit-ADAS-Anwendungen vor

große Herausforderungen. Zweitens müssen herkömmliche Automobilindustrie Elektro-

nische Steuergeräte (ECUs) der Automobilindustrie mit den kni�igen Problemen wie der

Einstellung der Technologie und der damit verbundenen langwierigen Wartung von Hard-

ware/So�ware (HW/SW) fertig werden. Schließlich sollte ADAS nahtlos auf ein gemisch-

tes und skalierbares System umgestellt werden, in dem Sicherheit und kritische Echtzeit-

komponenten mit den weniger kritischen Pendants zusammenleben müssen, während die

Rechenressourcen der nächsten Generation noch �exibel hinzugefügt werden können, um

ausreichend Rechenleistung bereitzustellen Kapazität.

In dieser Arbeit wird systematisch untersucht, wie die au�ommenden heterogenen Com-

putertechniken auf den Entwurf eines automatisierten Fahrmoduls und die Implemen-

tierung von Echtzeit-ADAS-Anwendungen angewendet werden können. In dieser Arbeit

wird zunächst ein hochleistungsfähiges und heterogenes Steuergerät mit dem Namen

h
2
ECU für automatisiertes Fahren vorgeschlagen. Durch die Integration mehrerer Multi-

Prozessor-System-on-Chips (MPSoCs), Gra�kprozessoreinheiten (GPUs) und Feldprogram-

mierbare Gate-Arrays (FPGAs) in das Modul kann das Steuergerät h
2
ECU eine ausrei-

chende Rechenleistung bei hoher Skalierbarkeit bereitstellen. Mit dieser Pla�form wer-

den mehrere typische ADAS-Anwendungen angepasst, um die Leistung und den Ener-

giekompromiss im heterogenen System zu untersuchen. Anschließend wird in dieser Ar-

beit ein detailliertes Verfahren beschrieben, das die Leistungsoptimierung parallelisierter

ADAS-Anwendungen im heterogenen System unterstützt. Zu guter Letzt wird ein hybri-

der Rahmen vorgeschlagen, das statische �ellcode-Analyse und dynamische Simulation

auf Basis von Spuren kombiniert, um die Leistung von parallelen Kerneln auf dem re-

präsentativen GPU-Beschleuniger schnell und genau vorherzusagen. Basierend auf die-

sem Rahmen bietet diese Arbeit eine Lösung, um den großen Programmdesignbereich

e�zient zu beschneiden, um die optimalen Programmdesignkon�gurationen zu �nden.

Acknowledgements

Time �ies. Four years of the PhD study has thoroughly remoulded myself and endowed

me with the dedication to scienti�c research and the passion to life. I would like to give

my sincere thanks to those who help and accompany me during my PhD life.

�e foremost thanks go to my supervisor, Prof. Dr. Alois Knoll, for o�ering me the oppor-

tunity of pursuing the PhD study and giving me continuous guidance and encouragement

on my research topic. Without his support, this thesis would not have been possible.

I would also like to thank Prof. Dr. Kai Huang for his inspirations and constructive sug-

gestions on the research direction.

I would like to thank: Dr. Biao Hu, Dr. Long Cheng, Dr. Gang Chen, Dr. Guang Chen,

Dr. Feihu Zhang, and Dr. Caixia Cai for their valuable advices on my research; Zhenshan

Bing, Mingchuan Zhou, Xiang Gao, and Zhuangyi Jiang for their companionship.

Special thanks go to Amy Bücherl, Ute Lomp, Gertrud Eberl, and all my former and current

colleagues in the Chair of Robotics, Arti�cial Intelligence and Real-time Systems for their

help and support.

Last but not the least, I would like to thank my beloved family for supporting me spiritually

throughout my PhD study and my life in general.

�e work presented in this thesis is supported in part by the China Scholarship Council

(CSC) under the Grant Number 201506270152. �is support is gratefully acknowledged.

Contents

List of Abbreviations ix

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 Motivations . 3

1.2 �esis Contributions . 4

1.3 �esis Structure . 6

2 h2ECU: a High-performance and Heterogeneous ECU for Automated Driving 9

2.1 Overview . 10

2.2 Related Work . 11

2.3 System Architecture and Implementation . 12

2.3.1 Architecture Design . 12

2.3.2 Hardware Implementation . 13

2.3.3 On-vehicle Connection . 15

2.4 Evaluation and Discussion . 16

2.4.1 Evaluation Setup . 16

2.4.1.1 Road Lane Detection (RLD) . 17

2.4.1.2 Tra�c Sign Recognition (TSR) . 18

2.4.2 Results and Analysis . 18

2.4.2.1 Road Lane Detection (RLD) . 18

2.4.2.2 Tra�c Sign Recognition (TSR) . 19

2.4.3 Discussion . 21

2.5 Summary . 21

iii

CONTENTS

3 Design of ADAS Applications on Heterogeneous Platforms 23

3.1 Overview . 24

3.2 Related Work . 25

3.2.1 Lane Detection Techniques . 25

3.2.2 Acceleration of ADAS Applications on Heterogeneous Platforms 26

3.3 p-LDA: Particle-�lter-based Lane Detection Algorithm 27

3.3.1 Algorithm Design . 27

3.3.1.1 Pre-processing . 27

3.3.1.2 Lane Detection . 28

3.3.1.3 Lane Tracking . 29

3.3.1.4 Redetection Checking . 30

3.3.2 Parallel and Heterogeneous Implementation . 30

3.3.2.1 Parallel Implementation . 30

3.3.2.2 Heterogeneous Implementation . 31

3.3.2.3 Workload Balance Scheme . 33

3.4 r-LDA: Ransac-based Lane Detection Algorithm . 34

3.4.1 Algorithm Design . 34

3.4.1.1 Vanishing Point Estimation . 35

3.4.1.2 ROI Bounding . 36

3.4.1.3 Top-view Mapping & Homography Matrix Adaption 38

3.4.1.4 On-line Iterative Processing . 39

3.4.2 Parallel and Heterogeneous Implementation . 40

3.4.2.1 Parallel Implementation . 40

3.4.2.2 Heterogeneous Implementation . 41

3.4.2.3 Optimization for Heterogeneous Executions 42

3.5 Evaluation Results . 43

3.5.1 Evaluation Setup . 43

3.5.2 Results and Analysis . 44

3.5.2.1 p-LDA: Particle-�lter-based Lane Detection Algorithm 44

3.5.2.2 r-LDA: Ransac-based Lane Detection Algorithm 48

3.6 Summary . 52

iv

CONTENTS

4 Performance Optimization of ADAS Applications in Heterogeneous Systems 55

4.1 Overview . 56

4.2 Related Work . 57

4.3 Optimization Procedure . 58

4.3.1 Pro�ling . 59

4.3.2 Compute Unit Replication (CR) . 59

4.3.3 Loop Unrolling and Memory Access Coalescing (LU) 59

4.3.4 Accelerator Execution Overlapping (EO) . 60

4.3.5 Dynamical Workload Tuning (DT) . 61

4.3.6 Application-oriented Optimization (AO) . 62

4.3.6.1 p-LDA: Particle-�lter-based Lane Detection Algorithm 62

4.3.6.2 r-LDA: Ransac-based Lane Detection Algorithm 64

4.3.7 Discussion . 64

4.4 Evaluation Results . 64

4.4.1 Evaluation Setup . 64

4.4.2 Pro�ling Results . 66

4.4.2.1 p-LDA: Particle-�lter-based Lane Detection Algorithm 66

4.4.2.2 r-LDA: Ransac-based Lane Detection Algorithm 66

4.4.3 Optimization Results . 66

4.4.3.1 Compute Unit Replication (CR) . 66

4.4.3.2 Loop Unrolling and Memory Access Coalescing (LU) 69

4.4.3.3 Accelerator Execution Overlapping (EO) 70

4.4.3.4 Dynamical Workload Tuning (DT) . 71

4.4.3.5 Application-oriented Optimization (AO) 72

4.4.4 Discussion . 72

4.4.4.1 Performance Bene�t . 72

4.4.4.2 Scalability Analysis . 74

4.5 Summary . 75

5 Performance Estimation for OpenCL Kernels on GPUs 77

5.1 Overview . 78

5.2 Related Work . 79

5.3 Framework Overview . 81

5.4 Source-level Analysis . 82

v

CONTENTS

5.4.1 LLVM analyzeKernel Pass . 82

5.4.1.1 IR Instruction Pruning . 82

5.4.1.2 Loop Bound Analysis . 83

5.4.1.3 CFG Branch Extraction . 84

5.4.2 Runtime Behavior Analysis . 84

5.4.2.1 Warp-based Branch Analysis . 84

5.4.2.2 Execution Trace Generation . 85

5.4.2.3 Cache Behavior Analysis . 88

5.4.2.4 Discussion . 90

5.5 Trace-based Simulation . 91

5.5.1 IR Instruction Pipeline . 91

5.5.1.1 Determining the Number of Active Work Groups 91

5.5.1.2 Determining the Latencies of the Arithmetic and Memory Access

Operations . 92

5.5.2 Calculating the Trace Simulation Time . 93

5.5.3 Discussion and summary . 94

5.6 Evaluation Results . 95

5.6.1 Evaluation Setup . 95

5.6.2 Prediction Results . 96

5.6.2.1 Accuracy . 96

5.6.2.2 Simulation Time Cost . 100

5.7 Case Study with Lane Detection . 100

5.8 Summary . 102

6 Design Space Pruning for OpenCL Kernels on GPUs 103

6.1 Overview . 103

6.2 Related Work . 104

6.3 Problem Statement . 106

6.4 Framework . 106

6.4.1 Framework Overview . 106

6.4.2 Static Analysis Module . 107

6.4.2.1 Duplicated Trace Pruning . 107

6.4.2.2 Inferior Pipeline Elimination . 108

6.4.3 Dynamical Simulation Module . 111

vi

CONTENTS

6.4.4 Discussion . 112

6.5 Evaluation Results . 112

6.5.1 Evaluation Setup . 112

6.5.2 Results . 113

6.5.2.1 Design Space Reduction . 113

6.5.2.2 Search �ality . 115

6.5.2.3 Search Cost . 115

6.6 Summary . 116

7 Conclusion and Future Work 117

7.1 Main Contributions . 117

7.2 Discussion . 118

7.3 Future Work . 119

List of Publications 121

References 123

vii

CONTENTS

viii

List of Abbreviations

ACC Adaptive Cruise Control

ADAS Advanced Driver Assistance Systems

BEV Bird-Eye View

CAN Controller Area Network

CES Consumer Electronics Show

CFG Control Flow Graph

CNN Convolutional Neural Network

COTS Commercial O�-�e-Shelf

CPU Central Processing Unit

DAG Directed Acyclic Graph

DIP Digital Image Processing

ECU Electronic Control Unit

EMS Engine Management System

EPS Electric Power Steering

ESC Electronic Speed Control

FPGA Field Programmable Gate Array

FPU Floating Point Unit

GCDC Grand Cooperative Driving Challenge

ix

LIST OF ABBREVIATIONS

GPS Global Positioning System

GPU Graphic Processing Unit

HD High De�nition

HPC High Performance Computing

HW hardware

ICD Installable Client Driver

ICT Information and Communication Technology

IPM Inverse Perspective Mapping

IR Intermediate Representation

LDA Lane Detection Algorithm

LDW Lane Departure Warning

LIDAR LIght Detection And Ranging

LKA Lane Keep Assistance

LOC Lines Of Code

LRU Least Recently Used

MPSoC Multi-Processor System-on-Chip

OpenCL Open Computing Language

PCA Principle Component Analysis

PCIe PCI Express interface

RANSAC RANdom SAmple Consensus

RLD Road Lane Detection

ROI Region Of Interest

RTE Run Time Environment

x

LIST OF ABBREVIATIONS

SE Scalar Evolution

SFU Special Function Unit

SIMD Single Instruction Multiple Data

SM Streaming Multiprocessor

SSA Static Single Assignment

SURF Speeded Up Robust Features

SW so�ware

TSR Tra�c Sign Recognition

WPM Warp Perspective Mapping

xi

LIST OF ABBREVIATIONS

xii

List of Figures

1.1 Overview of ADAS features and functionalities (�gure from [1]). 2

1.2 Overview of the heterogeneous system studied in this thesis. 5

1.3 �e structure of this thesis. 7

2.1 Sketch overview of h
2
ECU. 12

2.2 Hardware layout of the h
2
ECU-based evaluation board. 14

2.3 Abstraction of the layout of the testbed vehicle. 16

2.4 Performance of the RLD application in di�erent video resolutions. 19

2.5 Speedup of the TSR application over customized baseline in di�erent video resolutions. 20

3.1 General processing �ow of camera-based lane detection algorithms. 25

3.2 Flow chart of p-LDA. 27

3.3 Overview of the execution of p-LDA in heterogeneous context. 32

3.4 Processing �ow of r-LDA overview. 35

3.5 Vanishing point estimation steps. 36

3.6 ROI extraction from the reference frame to compute WPM. 38

3.7 Overview of the designs of r-LDA on di�erent platforms. 41

3.8 Parallel design of the WPM transformation in r-LDA. 42

3.9 Kernel execution time of p-LDA in the di�erent scenarios. 45

3.10 Real-time task rates of the test videos. 45

3.11 Performance of p-LDA in the di�erent scenarios. 46

3.12 Energy cost of p-LDA in the di�erent scenarios. 47

3.13 Energy e�ciency comparison of p-LDA in the di�erent scenarios. 48

3.14 Execution time of the homogeneous execution on CPU. 49

3.15 Time cost of CPU-GPU executions. 50

3.16 Time cost of CPU-FPGA executions. 51

xiii

LIST OF FIGURES

3.17 Performance with di�erent parallel con�gurations. 52

3.18 Energy e�ciency comparison of r-LDA with di�erent parallel con�gurations. 53

4.1 Optimization procedure for parallelized ADAS applications in FPGA-GPU heteroge-

neous platform. 58

4.2 A sample heterogeneous execution with di�erent call order of OpenCL API functions

for FPGA and GPU. 61

4.3 Normalized execution time distribution of the pro�led code blocks in p-LDA and r-LDA. 65

4.4 Performance comparison of p-LDA when replicating di�erent number of compute units. 68

4.5 Performance comparison of r-LDA when replicating di�erent number of compute units. 68

4.6 Performance comparison of p-LDA using di�erent loop unrolling factors. 69

4.7 Performance comparison of r-LDA using di�erent loop unrolling factors, the FPGA

task proportion is 50%. 70

4.8 Performance comparison with di�erent call order of OpenCL API functions. 71

4.9 Performance comparison with and without dynamical workload tuning. 72

4.10 Performance comparison with and without AO optimization. 73

4.11 Performance comparison overview with step-by-step optimizations. 74

5.1 Overview of the performance estimation framework. 81

5.2 Simulation of a sample execution trace on the warp pipeline. 93

5.3 Comparison of the estimated and measured execution time of the test kernels (�adro

K620). 97

5.4 Comparison of the estimated and measured results of KERNEL PRE on di�erent GPUs. 101

5.5 Comparison of the estimated and measured results of KERNEL LD on di�erent GPUs. . 101

5.6 Comparison of the estimated and measured results of KERNEL PF on di�erent GPUs. . 102

6.1 Overview of the hybrid search framework. 105

6.2 Best case of the pipeline execution. 109

6.3 Sample cases of the memory component pipeline. 110

6.4 Design space reduction results of the hybrid search framework on the test GPUs. . . . 114

6.5 Normalized execution time of the selected design on the test GPUs. 115

6.6 Normalized time costs of the exhaustive simulation search and the hybrid search on

the test GPUs. 116

xiv

List of Tables

2.1 Detailed information of the test videos for RLD. 17

2.2 Execution time of the TSR application using OpenCL kernels. 20

3.1 Detailed speci�cation of the hardware platforms. 44

3.2 Task partitions of r-LDA. 48

3.3 Con�gurations of the single-accelerator execution. 50

4.1 Detailed speci�cation of the evaluation platform. 65

4.2 List of main code blocks in p-LDA. 66

4.3 List of main code blocks in r-LDA. 67

4.4 CR and LU con�gurations of the FPGA design. 67

5.1 List of pro�led arithmetic operation types. 92

5.2 Summary of the parameters used in the performance estimation framework. 95

5.3 Hardware speci�cation of the test GPUs. 96

5.4 Accuracy and simulation time consumption of testing the performance estimation

framework on the Rodinia [2] benchmark. 96

5.5 Comparison of the simulation time costs of GPGPU-Sim [3] and the proposed frame-

work in this chapter. 100

5.6 Con�guration of the lane detection kernels. 101

6.1 Hardware speci�cations of the test GPUs. 112

6.2 Design con�gurations of the test OpenCL kernels. 113

xv

LIST OF TABLES

xvi

Chapter 1

Introduction

Self-driving cars would be possible in the foreseeable future, with the maturity of multi-sensor fusion

technology and the ever-increasing data processing capability. �e development of electric vehicles

has become a consensus for academia and industry, not merely because of the advantages, such as

energy conservation and environment protection, over the conventional fuel cars, but also due to the

reason that electric vehicles is able to serve as the infrastructure for intelligent transportation and

autonomous driving. However, current research and development of autonomous driving still stays

at the early stage as it faces several problems including technology, ethics, law, and management

issues. Before deploying a real self-driving car, on modern vehicles a more common way is to use an

embedded but powerful module to assist drivers in driving and decision-making. �is module is called

the Advanced Driver Assistance Systems (ADAS).

ADAS is originally developed to adapt vehicle systems for safety and be�er driving [4]. Speci�-

cally, the system collects environmental data by use of miscellaneous vehicular sensors (seen in Figure

1.1) and then processes the captured data as real-time as possible so as to make an evaluation of cur-

rent vehicle runtime status. A�erwards, with the aid of di�erent control strategies, the system either

takes emergency measures by itself when necessary or gives response to drivers to assist their driving

decisions. In this scenario, the time constraint is extremely strict and therefore hardware components

with high computing power are required. As seen in Figure 1.1, typical ADAS essentially includes

several functionalities, such as Adaptive Cruise Control (ACC), Lane Departure Warning (LDW), Lane

Keep Assistance (LKA), Tra�c Sign Recognition (TSR), etc.

�e electronic component count and associated wiring content within modern vehicles have sky-

rocketed as the automobile continues its transformation into an electronic computing system. Nowa-

days a typical car contains dozens of Electronic Control Units (ECUs) while the premium ones could

have more than 100 ECUs [5] [6]. �ese ECUs are used for diverse functionalities such as driving, park-

1

1. INTRODUCTION

Figure 1.1: Overview of ADAS features and functionalities (�gure from [1]).

ing, safety, air conditioning, navigation, and in-car entertainment, etc. �is rapidly growing number

of ECUs per vehicle has caused a paradigm shi� in Information and Communication Technology (ICT)

architectures by reversing the growth trend of dedicated ECUs for speci�c functions towards inte-

grating more and more disparate functions into one or a few control units. �is is the so-called ECU

consolidation. �e trend is not only adding more ECUs but also more computing power. Such consoli-

dated ECUs must provide not only multiple functionalities but also signi�cantly more performance in

terms of computation resources. For instance, ADAS requires more and more computation resources

as massive multi-sensor information needs to be aggregated and e�ciently processed, within a short

time period, to assist in-car and on-road safety control.

From an overall perspective, the automobile is a progressively complex system and it is posing a

big threat to utilize limited computing power to deal with various real-time and safety-critical tasks

on the vehicles. To improve on-board computation capacity, lots of early e�orts have been paid by

means of continuously increasing the quantity and improving the quality of the ECU components.

However, this proved to be both unrealistic and minimal due to the limitation of �nancial cost and

Amdahl’s law [7]. Along with the widespread use of High Performance Computing (HPC) techniques,

heterogeneous computing becomes a feasible method to solve this computation bo�leneck since it

is highly �exible and scalable. Heterogeneous computing system is de�ned as a uni�ed platform on

which di�erent kinds of processors are integrated to leverage their unique capabilities. As accelerators

or co-processors for Central Processing Units (CPUs), Field Programmable Gate Arrays (FPGAs) and

2

1.1 Motivations

Graphic Processing Units (GPUs) are commonly used in heterogeneous systems due to their outstand-

ing performance in high-speed computing and task parallelism.

1.1 Motivations

ADAS is an indispensable functionality in contemporary intelligent cars and the deployment of ADAS

in automated driving vehicles would become a standard in the near future. State-of-the-art research

and development of ADAS still faces several challenges:

• Performance demand. In 2015, each vehicle has an average of 60-100 sensors on board and this

number is projected to reach as many as 200 sensors per car by 2020 [8]. �ese sensors would

produce a huge amount of car- and road-related data and how to e�ciently process these data

in order to ensure real-time constraint becomes an urgent issue for the development of next-

generation ADAS products.

• Scalability. Conventional vehicle contains lots of ECUs with dedicated functionalities to handle

safety, security, and real-time critical tasks. However, the number of ECUs is gradually exceed-

ing the �nite space able to house all the electronics and associated cabling required to connect

everything together [9]. Future ECU consolidation requires not only combing more ECUs but

also adding scalable hardware components that can be easily adapted for ease of technology

update and product upgrade.

• Hardware/So�ware (HW/SW) maintenance. Over the production time of a car model, not all the

ECUs originally chosen are available in the market over the whole production period. Some of

them will no longer be produced and have to be replaced by newer counterparts due to discon-

tinuation of an ECU’s speci�c technology [5]. Moreover, over the past 30 years, the so�ware has

evolved from nearly zero to tens of millions of Lines Of Code (LOC). For a consolidated ECU,

how to cope with this trend still remains a pendent issue.

For ADAS applications, guaranteeing real-time performance is crucial as it can provide as much

time as possible for drivers to make be�er decisions in a relatively short time frame. �is bound not

only comes from the inherent time-criticality of ADAS tasks, but also stems from the demand of e�-

ciently processing the massive amount of data captured by the various types of sensors equipped in

modern vehicles. In this context, it is inevitable that high-performance accelerators are used to pro-

mote the development and deployment of advanced applications in ADAS. For instance at the Con-

sumer Electronics Show (CES) 2017, Intel announced the GO automotive 5G platform [10], which

3

1. INTRODUCTION

would incorporate Xeon Phi processors and Cyclone V Soc FPGA, to accelerate automotive comput-

ing applications. Such heavy-computing functional components would become standard equipment

for future self-driving vehicles.

With the continuously emerging e�ort of using Commercial O�-�e-Shelf (COTS) components

for ADAS development [11] [12] [13], both GPUs and FPGAs are ready to be deployed in automated

driving systems, due to their signi�cantly higher computational capacity and lower research and de-

velopment cost compared to the dedicated ECU/ASIC-implemented counterparts. Meanwhile, during

the last decade, utilization of GPUs, FPGAs, and other co-processors in academia and industry has

spawned the advent of generic standardization for cross-platform parallel programming, such as the

popular use of Open Computing Language (OpenCL) [14]. On the basis of this programming model,

di�erent accelerators can leverage their respective advantages to complete the computational tasks

in a collaborative way. Especially for such a heterogeneous computing system, how to consider the

real-time performance and low energy tradeo� would be a very interesting topic [15].

�e motivation of this thesis is to give a systematic study of applying heterogeneous computing

techniques to the design of an automated driving module and the implementation of real-time ADAS

applications. In this thesis, a rich set of COTS components are used for the development of ADAS

applications, due to the following reasons: 1© �e time-to-market and development cost of COTS

devices is much lower than the traditional dedicated ECU/ASIC implementations. 2© COTS compo-

nents can provide su�cient computing power and the performance per price is magnitude higher than

automotive-specialized ones [16]. 3©�e wide support of COTS devices for cross-platform program-

ming has promoted program developers and board vendors to pay great a�ention to exploring the

opportunity of applying heterogeneous computing to the development of future ADAS.

�is thesis is intended to give partial answers to the following questions:

1. How could future ADAS applications bene�t from heterogeneous computing?

2. How to apply heterogeneous computing to the development of future ADAS?

3. What needs to be taken into consideration, from a programmer’s perspective, when the hetero-

geneous computing architecture is deployed to accelerate ADAS applications?

1.2 �esis Contributions

With the challenges and questions in Section 1.1 in mind, this thesis �rst investigates the feasibility of

using heterogeneous computing architecture to accelerate parallel ADAS applications. �e overview

4

1.2 �esis Contributions

CPU

GPU FPGA

tasks

Figure 1.2: Overview of the heterogeneous system studied in this thesis. Dashed single-arrow lines are

the task assignment �ow, while the solid double-arrow lines refer to data communication between di�erent

types of processors or accelerators.

of the heterogeneous system studied in this thesis is shown in Figure 1.2. In this system, the CPU acts as

the host scheduler and the hardware accelerators (GPU, FPGA) are used to accelerate the computational

tasks. �e tasks are typical ADAS applications, such as lane detection, pedestrian detection, tra�c sign

recognition, etc. During the processing of the tasks, the host CPU can assign the workloads to either

of the accelerators, based on the scheduling policy and the runtime status of the system. Obviously

in this system, how computational workloads are formed, scheduled, and executed on the hardware

accelerators is critical to the overall system runtime performance.

First of all, this thesis proposes to use a high-performance and heterogeneous ECU called h
2
ECU,

for automated driving. By incorporating multiple Multi-Processor System-on-Chips (MPSoCs), GPUs,

and FPGAs into the module, h
2
ECU can provide su�cient computing power, while maintaining high

scalability. With this platform, several typical ADAS applications are then customized to investigate

the performance and energy tradeo� in the heterogeneous system. Evaluation results show that het-

erogeneous computing is a promising solution for the research and development of future ADAS.

Subsequently, this thesis gives a detailed procedure that helps guide the performance optimization of

parallelized ADAS applications in the FPGA-GPU combined heterogeneous system. Last but not least, a

hybrid framework that combines source-level static code analysis and trace-based dynamic simulation

is proposed to fast and accurately predict the performance of running parallel kernels on the repre-

sentative GPU accelerator. Based on this framework, this thesis further gives a solution to e�ciently

prune the vast program design space in order to locate the optimal program design con�gurations.

�e contributions of this thesis can be summarized as follows:

1. �is thesis proposes to use a novel ECU architecture called h
2
ECU for future automated driv-

ing vehicles. �e architecture is universal w.r.t. functionality, i.e., the di�erent functionalities

5

1. INTRODUCTION

sca�ered on di�erent ECUs can be assembled into this h
2
ECU. By integrating multiple hard-

ware accelerators, the h
2
ECU can provide su�cient computing power. In addition, adding new

functionality is cost-free in terms of computing resources.

2. Typical lane detection algorithms are studied to probe the feasibility of using FPGA-GPU hetero-

geneous architecture for accelerating ADAS applications. Speci�cally, two di�erent implemen-

tations of the lane detection algorithm are presented and a�erwards customized into data-level

parallel programs to enable the executions in heterogeneous context. Experimental results re-

veal that the heterogeneous architecture resolves both the performance and energy bo�lenecks

caused when using homogeneous accelerators.

3. A detailed procedure is proposed to help guide the performance optimization of parallelized

ADAS applications in an FPGA-GPU combined heterogeneous system. �e procedure consists

of one intra-accelerator and two inter-accelerator sub-optimization methods, as well as both

FPGA-speci�c and application-oriented optimization strategies, to boost the program runtime

performance.

4. A hybrid framework that combines source-level static code analysis and trace-based dynamic

simulation is given to fast and accurately predict the performance of running parallel kernels

on the representative GPU accelerator. �e high-level source code is analyzed to extract the

kernel execution trace, which is used to dynamically mimic the kernel execution behavior to

deduce the kernel execution time. �e framework requires no prior knowledge about hardware

performance counter metrics or pre-executed measurement results.

5. Based on the hybrid performance estimation framework, this thesis further gives a hybrid search

framework to e�ciently prune the vast program design space of OpenCL applications in order

to locate the optimal program design con�gurations. By combing both static analysis and dy-

namical simulation methods, the framework can e�ciently prune the program design space and

notably it needs no program runs to �nd the optimal or near-optimal con�gurations.

1.3 �esis Structure

�e structure of this thesis is depicted in Figure 1.3. Chapter 1 summarizes the motivations and contri-

butions of this thesis. Chapter 2 and 3 illustrate the design of the h
2
ECU platform and the development

of the ADAS applications, respectively. A�erwards, Chapter 4 performs the performance analysis of

6

1.3 �esis Structure

Chapter 1 Introduction

Chapter 2 Architecture Design Chapter 3 Application Development

Chapter 4 Performance Analysis & Optimization

Chapter 5 Performance Estimation Chapter 6 Design Space Exploration

Chapter 7 Conclusion & Future Work

Figure 1.3: �e structure of this thesis.

the ADAS applications when they are deployed in the heterogeneous context, and further gives a de-

tailed performance optimization procedure. Taking GPU as the representative accelerator, Chapter

5 models the execution of the parallel kernels and proposes a hybrid performance estimation frame-

work. Based on this framework, Chapter 6 further gives an approach to e�ciently prune the program

design space of OpenCL applications in order to locate the optimal program design con�gurations.

Finally, Chapter 7 concludes with a summary of the main results presented in this thesis. It also gives

an outlook on future research directions of using heterogeneous computing for ADAS development.

To be speci�c, the details of the subsequent chapters are listed below and their contributions are

summarized as well.

Chapter 2 presents the architectural design of the proposed h
2
ECU and its hardware implementa-

tion. We implemented a prototype evaluation board to demonstrate the proposed architecture design

and we also used a real-life electric vehicle as a testbed to harness the board. We modi�ed a COTS

sport utility vehicle DFM AX7 and deployed multiple sensors which are connected via Controller Area

Network (CAN) bus with the board, so that output signals can be directly transmi�ed and converted to

control the vehicle. At last, two frequently-used ADAS applications, namely road lane detection and

tra�c sign recognition, are presented to verify the e�ciency and high �exibility of the h
2
ECU.

Chapter 3 provides two di�erent implementations of the widely-used lane detection application on

heterogeneous commodity hardware. �is chapter illustrates in details how the lane detection tasks

are abstracted, implemented, and parallelized for ease of execution on the hardware accelerators. �e

performance and energy e�ciency of the applications are demonstrated with experiments on di�erent

COTS heterogeneous platforms.

7

1. INTRODUCTION

Chapter 4 proposes a systematic procedure that helps guide the performance optimization of paral-

lelized ADAS applications in an FPGA-GPU combined heterogeneous system. �e optimization takes

into consideration both intra- and inter-accelerator workload processing, as well as FPGA-speci�c

and application-oriented optimization strategies, to enhance the program runtime performance. �e

optimization results are demonstrated by applying the proposed procedure to the two case study ap-

plications presented in Chapter 3.

Chapter 5 gives a hybrid framework that combines source-level analysis and trace-based simulation

to predict the performance of running GPU kernels. �e framework contains a loop-based bidirectional

branch search algorithm to extract the kernel execution trace, and a lightweight simulator to mimic

the kernel execution so as to predict the runtime performance results. �e accuracy and practicability

of the framework are evaluated with benchmarks and a real-world application, on four Nvidia GPUs

across two generations of recent architectures.

Based on the work in Chapter 5, Chapter 6 proposes a hybrid search framework to prune the design

space of work-group sizes for OpenCL kernels running on GPUs. �e framework �rst analyzes the

source code statically to �lter out redundant designs with duplicated execution traces and inferior

pipelines, and then produces the estimated optimal design by searching the work-group sizes that

yield the minimum predicted kernel execution time. �e framework does not require any program

runs to �nd the optimal or near-optimal con�gurations. Experiments show that the framework can

signi�cantly reduce the program design space and generate the estimated work-group size which can

deliver runtime performance comparable to that with the truly optimal con�guration.

At last, Chapter 7 summarizes the main results of this thesis and puts forward future research

directions of using heterogeneous computing for the development of ADAS.

8

Chapter 2

h2ECU: a High-performance and
Heterogeneous ECU for Automated
Driving

Nowadays, the massive sensor information poses huge computation challenge for the design of a real-

time automated driving module. Meanwhile, conventional automotive ECUs cannot ful�ll this ob-

jective due to technology discontinuation and the consequent tedious HW/SW maintenance. As an

auxiliary but essential part for autonomous driving, ADAS is one of the computing-power demanding

functionalities and this system requires more and more computation resources as massive multi-sensor

information needs to be aggregated and e�ciently processed to be�er assist in-car and on-road safety

control. In 2012, Continental rolled out a schedule for autonomous driving, sketching a roadmap that

fully automatic driving at higher speeds and in complex driving situations could be ready for mass

deployment by 2020 and 2025, respectively [17]. �erefore, an ideal ECU module that demonstrates

high performance but consumes low energy is imperative for automotive computing.

Traditional ECUs are not able to meet the requirements of autonomous driving not merely due to

the huge performance demand, but also with the following reasons. First of all, over the production

time of a car model, not all the ECUs originally chosen are available in the market over the whole

production period. Some of them will no longer be produced and have to be replaced by newer coun-

terparts due to discontinuation of an ECU’s speci�c technology [5]. Additionally, over the last 30 years,

the amount of so�ware has evolved from nearly zero to tens of millions of LOC. A current premium car,

for instance, implements about 270 functions deployed over about 70 embedded platforms. Altogether,

the so�ware amounts to about 100MB of binary code [5]. �e next generation of upper class vehicles

is expected to run up to 1GB of so�ware. �e problem here is how to design an ECU to seamlessly cope

9

2. H2ECU: A HIGH-PERFORMANCE AND HETEROGENEOUS ECU FOR AUTOMATED
DRIVING

with such combination of mix-critical so�ware as processor consolidation is closely aligned with the

trend towards mixed criticality systems in which safety, security, and real-time critical components

must coexist with the less critical counterparts.

2.1 Overview

�is chapter illustrates the so�ware design and hardware implementation of a novel architecture called

h
2
ECU—a high-performance and heterogeneous ECU for future automated driving. �e h

2
ECU is a

modular and recon�gurable architecture in which accelerators can be �exibly embedded to achieve

high computation power. �e spatial redundancy of computing resources allows the coexistence of

both safety and non-safety critical applications, providing appropriate partitioning mechanisms. Based

on this architectural design, we implement a prototype evaluation board which incorporates state-of-

the-art MPSoCs, GPUs and FPGAs into a heterogeneous system. �e board is designed in modular

manner, where multiple GPUs and FPGAs are connected via the PCI Express interface (PCIe), depend-

ing on the required computation power. In this way, next generation of GPUs and FPGAs can be

used while the ECU architecture remains unchanged. To program the on-board so�ware, OpenCL is

adopted as the programming framework. Applications programmed with OpenCL can be seamlessly

exploited on both GPU and FPGA devices. Finally, two frequently-used ADAS applications are given

to demonstrate the practical use of the board in real world. �e main contributions of this chapter can

be summarized as follows:

• �is chapter proposes a novel ECU architecture called h
2
ECU for future automated driving vehi-

cles. �e architecture is universal w.r.t. functionality, i.e., the di�erent functionalities sca�ered

on di�erent ECUs can be assembled into this h
2
ECU. By integrating multiple hardware acceler-

ators, the h
2
ECU can provide su�cient computing power. In addition, adding new functionality

is cost-free in terms of computing resources.

• A prototype evaluation board is implemented to demonstrate the proposed architecture. Addi-

tionally, a real-life electric vehicle is modi�ed as a testbed to harness the board. On the vehicle,

multiple sensors are connected via CAN bus with the board, so that output signals can be directly

transmi�ed and converted to control the vehicle.

• Last but not least, two frequently-used ADAS applications, namely road lane detection and tra�c

sign recognition, are presented to verify the e�ciency and high �exibility of the h
2
ECU. Exper-

imental results demonsrate the high performance and �exible recon�gurability of the h
2
ECU-

based evaluation board.

10

2.2 Related Work

�e remainder of this chapter is organized as follows: Section 2.2 reviews state-of-the-art work-in-

progress of on-vehicle ECUs for autonomous driving. Section 2.3 overviews the architecture, hardware

components, and on-vehicle connection of the h
2
ECU. Section 2.4 discusses evaluation results and

Section 2.5 summarizes the work in this chapter.

2.2 Related Work

Most of the traditional ECU products are for commercial use and consequently they scarcely release

details about the technical implementations. At present the industry is pushing ahead to the devel-

opment of ADAS ECUs for large-scale deployment. At CES 2016, �alcomm released its prototype

product based on snapdragon SoC 820A [18] for next-generation automotive applications. Meanwhile

NXP unveiled MPC577xK series microcontroller [19] for ADAS and industrial radar applications. At

CES 2017, Intel announced its GO automotive 5G platform [10] which would incorporate Xeon Phi

processors and Cyclone V Soc FPGA, while Nvidia continues its promotion of the Drive PX 2 platform

[20] and DriveWorks so�ware.

�e general use of autonomous driving vehicles is still not yet mature and the majority work

lies in academic �eld. Earlier studies about on-vehicle autonomous driving modules mainly focus

on the ADAS implementation, i.e., whether autonomous driving tasks can be ful�lled by virtue of

COTS components. In this case, portability, thermal constraint and power consumption issues are

entirely overlooked. For instance, the Caroline [21] developed by TU Braunschweig employs an array

of automotive PCs to function as the hardware platform. Similar con�guration can also be found in

the KTH Scania tractor unit [22], which has participated the Grand Cooperative Driving Challenge

(GCDC) in 2011. Meanwhile, the KIT AnnieWAY [23], which is the winner of GCDC 2011, even uses

a customized Intel Xeon-based server which incorporates two six-core CPUs and a high-end GPU.

�e well-known Google driverless car does not publicly reveal any information about its computing

system. However, the predecessor of the Google car, the Stanford Junior [24], who won the second

place of the DARPA Urban Challenge 2007, is embedded with two Intel quad core workstations. �e

winner of the same race, the CMU Boss [25], is equipped with ten 2.16GHz Core2 Duo processors. As

can be seen, such heavy-computing components will become standard equipment for future vehicles.

Autonomous driving component should, and must cooperatively work with o�-the-shelf automo-

tive ECUs and microcontrollers, which is presented in the previous work in [26], [27], and [28]. It has

been a consensus that the functionalities of conventional on-vehicle ECUs have to remain unchanged

in order to guarantee the hard real-time control of the vehicle, while new modules should be introduced

to handle computing-power demanding automatic driving workload. From this point of view, due to

11

2. H2ECU: A HIGH-PERFORMANCE AND HETEROGENEOUS ECU FOR AUTOMATED
DRIVING

Lane detection Pedestrian detection Vehicle identification Traffic sign recognition

Task
scheduler

R
T
E

core core core core

core core core core
processor #1

core core core core

core core core core
processor #2

core core core core

core core core core
processor #3

......

Operation system I/O management

Fixed

Reconfigurable

Figure 2.1: Sketch overview of h
2

ECU. �e components within red dashed line are �xed while the compo-

nents within blue dashed line are recon�gurable.

the high performance and scalability, accelerators such as GPUs and FPGAs tend to be more active

in future autonomous driving system since this solution can meet both the portability and real-time

requirement of the autonomous driving module.

Following the above-mentioned trend, the work in this chapter proposes a new ECU architecture

for future automated driving. By integrating multiple GPUs and FPGAs into an embedded platform,

the execution of automated driving tasks is e�ectively accelerated while the whole system can be

recon�gured, i.e., heterogeneous cores can be easily replaced without changing the ECU architecture.

Additionally, a real-life COTS vehicle is modi�ed and two typical ADAS applications are developed to

demonstrate the proposed h
2
ECU architecture.

2.3 System Architecture and Implementation

2.3.1 Architecture Design

In general, an autonomous driving module is used to execute ADAS applications and then translate the

results to trigger the launch of lower-level hardware execution units. �ese applications are diverse

functionalities that implicate di�erent criticality levels, such as lane detection, pedestrian detection,

vehicle identi�cation, tra�c sign recognition and so on.

Figure 2.1 reveals the sketch overview of the h
2
ECU architecture. �e system consists of a �xed

12

2.3 System Architecture and Implementation

module where fundamental runtime infrastructures (host scheduler, runtime environment, OS sup-

port, I/O management, etc.) are rooted and a recon�gurable module which enables the computation

power tuning by utilizing �exible hardware accelerators. As an abstraction, each ADAS application

is treated as a stand-alone task which would be executed on certain recon�gurable processing core,

subjected to the task scheduling on the host. �e host scheduler allocates computation tasks to di�er-

ent processing units according to both the scheduling policy and the working status of the processors.

�e recon�gurable processors are potentially high performance accelerators that contain hundreds of

parallel cores. Normally, host CPU behaves as the scheduler while the processors are GPUs, FPGAs or

CPUs as well.

To coordinate the computing of these heterogeneous processors, OpenCL is chosen as the Run

Time Environment (RTE). OpenCL is an industrial standard for heterogeneous computing managed

by Khronos Group [29]. By de�ning a high level abstraction layer for low level hardware instructions,

it enables cross-platform execution from general purpose processors to massively parallel devices. In

this way, autonomous driving tasks programmed with OpenCL can be seamlessly scaled and executed

on a bundle of devices without any source code modi�cation. Additionally, general-purpose operation

system can be used to support the RTE and maintain the I/O communication of each component. With

this design, adding new functionalities is cost-free, in terms of computing resources, as long as the

RTE compatibility is met.

�e bene�t of this architectural design is multi-fold. First, the spatial redundancy of the computing

resources allows the coexistence of both safety and non-safety critical applications, thus providing

appropriate partitioning mechanisms. Secondly, this modular design shows high �exibility as multiple

GPUs and FPGAs can be tuned depending on the required computing power. In this manner, next-

generation GPUs and FPGAs can be used while the ECU architecture can remain unchanged. Lastly,

by virtue of high performance accelerators, the execution of automated driving tasks are e�ectively

accelerated to meet real-time constraint.

2.3.2 Hardware Implementation

Based on the proposed architecture, in the last few years several generations of the prototype product

have been designed. �e prototype evaluation board is a portable embedded platform where multiple

MPSoCs, GPUs, and FPGAs can be assembled together. Figure 2.2 gives the top and side view of the

third generation platform. �e board is based on modular design so that as many components as

possible can be reused in case of technology update and product upgrade. At run-time, the evaluation

board is connected to another CAN communication board, which directly interacts with the auxiliary

13

2. H2ECU: A HIGH-PERFORMANCE AND HETEROGENEOUS ECU FOR AUTOMATED
DRIVING

(a) top view

(b) side view

1

2

2

3

1 2

3
4

5 6

Figure 2.2: Hardware layout of the h
2

ECU-based evaluation board. (a) Top view of the board, part 1 is power

interface, part 2 are two PCIe slots and part 3 is peripheral interface. (b) Side view of the board, the listed

peripheral interfaces are (1) mini-HDMI, (2) HDMI, (3) Audio port, (4) USB 3.0 and 2.0 ports, (5) Ethernet

port, and (6) CAN.

controllers within a vehicle. �e prototype product receives standard 12V DC as working voltage and

currently the overall system is running under Linux OS.

�e prototype evaluation board has �ve main components:

• Power supply. �e power interface consists of two TPS54386 dual 3-A non-synchronous con-

verters to ensure the stable and adequate dual power supply.

• Host scheduler. In current generation, the board employs an Intel Core
TM

i5-3360M processor to

schedule the ADAS applications. Although this power consumption is not suitable for practical

use, it is su�cient for prototype development.

• Processing unit. �e h
2
ECU architecture supports a vast of PCIe-based hardware accelerators

and at present several low-energy-cost GPUs and FPGAs are equipped to handle the parallel

computation workload.

14

2.3 System Architecture and Implementation

• RTE. In order to aggregate di�erent devices, an Installable Client Driver (ICD) loader is con-

structed and this loader acts as a proxy between the user program and the actual implementa-

tions. It employs the C programming language library dl that is used on Linux to dynamically

load libraries at runtime. In this way, OpenCL implementations of di�erent vendors can be

smoothly invoked without any con�icts.

• Data communication. �e standard end-to-end PCIe data transfer protocol is used to facilitate

the I/O interaction between the host CPU and computation devices.

Considering the component placement and space limit, the evaluation board consists of a 165mm×

165mm mainboard, a thermal module, and extra PCIe accelerators. �e mainboard provides a power

interface, which consumes external power supply, and several peripheral ports used to connect exter-

nal sensors. In current generation, the mainboard contains two 16x PCIe slots which support major

state-of-the-art COTS accelerators. �e platform is equipped with 128GB SSD used for disk storage

and 8GB DDR3 RAM used for internal storage. �e host processor is located on the other side of the

mainboard (not visible in Figure 2.2), due to the need of heat dissipation. �e heat of the CPU is both

actively and passively dissipated by the thermal module which is made up of an aluminum heat sink

and a cooling fan.

2.3.3 On-vehicle Connection

We re��ed COTS sport utility vehicle DFM AX7 to support the use of the evaluation board. Figure 2.3

gives the logic layout of this testbed vehicle. �e testbed contains mainly four layers:

• �e upper layer consists of a series of external sensors, such as ultrasound sensor, lidar sensor,

stereo camera, etc. In this layer, the sensors capture the environmental information around the

vehicle for further processing.

• �e h2ECU-based platform is used to handle ADAS tasks real-timely and gives response signal

to the next layer.

• �emiddle layer includes an array of auxiliary controllers aiming at Engine Management System

(EMS), Electric Power Steering (EPS), Electronic Speed Control (ESC), etc. �ese subcontrollers

receive the command signals from the h
2
ECU-based platform and transmit them to the micro-

controllers and hardware components.

• �e lower layer is made up of 1© microcontrollers which correspond to the subcontrollers in

middle layer and 2© lower-level execution units like engine, steering motor, brake solenoid valve,

15

2. H2ECU: A HIGH-PERFORMANCE AND HETEROGENEOUS ECU FOR AUTOMATED
DRIVING

Ultrasound Sensor Lidar Sensor Stereo Camera . . .

I2C LAN USB

h2ECU-based platform

CAN

EMS Subcontrol EPS Subcontrol ESC Subcontrol . . .

throttle steering braking

EMS Controller Steering motor Brake solenoid valve

Engine
EPS Controller ESC Controller

torque position

upper layer
(sensor)

middle layer
(subcontrol)

lower layer
(execution unit)

Figure 2.3: Abstraction of the layout of the testbed vehicle. �e upper layer counts as the input for the

h
2

ECU-based platform. �e ECU platform performs data processing and generates outputs to the middle

layer, which drives the concrete execution units in the lower layer.

etc. �is layer controls the actual driving of the vehicle.

In the upper layer, the sensors acquire the environmental information and then transmit the data

to the h
2
ECU-based platform. �e ECU performs a series of ADAS algorithms and outputs the result,

in form of command signals, to the middle layer. A�erwards each auxiliary controller invokes speci�c

execution unit in the lower layer to control the driving of the vehicle. For instance, in Figure 2.3 the

EMS controller receives thro�le commands from the EMS subcontrol and then regulate the engine.

�en the consequent torque and position signals generated by steering wheel and pedal are received

by EPS and ECS controller, respectively. Subsequently EPS and ECS controller drive the steering motor

and brake solenoid valve, together with the steering and braking commands from the EPS and ECS

subcontrollers.

�e connection protocols between the upper sensors and the h
2
ECU-based platform are miscella-

neous, while the communication between the ECU and the auxiliary controllers is via CAN bus.

2.4 Evaluation and Discussion
2.4.1 Evaluation Setup

Several low-end GPUs and FPGAs are integrated into the evaluation board to ensure su�cient com-

puting performance with rather low energy cost. In particular, Nvidia �adro K600, �adro K620

16

2.4 Evaluation and Discussion

and Nallatech PCIe-385N FPGA are used as the test PCIe accelerators. To demonstrate the proposed

h
2
ECU architecture and the use of the evaluation board, two commonly used ADAS applications are

employed on the prototype product. �e details of the applications are described as follows.

2.4.1.1 Road Lane Detection (RLD)

�is application is used to detect the lane markings while the car is driving along the road. �e algo-

rithm processes video stream captured by a camera on a moving vehicle and highlights the positions

of the lanes in the output stream. First of all, the image frames are pre-processed and transformed into

gray-scale format so that the pixel intensity can be calculated. �en, by calculating the pixel weights

of the lines from a randomly sampled line set, each of the lane markers is detected by selecting the

line with the highest pixel weight. A�erwards the lanes are tracked by applying a particle �lter over

the candidate lines from the previous frame, to predict the positions of lanes in the current frame. �e

details of this algorithm can be referred in [30].

In this application, the lane markings in each frame are either detected by the pixel weight ranking

of the candidate lines or tracked by virtue of the particle �lter which predicts the positions of the lanes

based on the position information of the previous detected frame. �is functionality is implemented

by an OpenCL kernel which can be computed across the di�erent accelerators.

A series of videos recorded in di�erent scenarios is used to reveal real-life road condition. Table

2.1 gives detailed information about the test videos. �ese videos represent various road situations

Table 2.1: Detailed information of the test videos for RLD.

Videos Resolution Total frames Scenario
1 480 × 320 2287 broken lane

2 480 × 360 4601 crossing lane

3 640 × 360 899 dark light

4 640 × 360 1289 rural area

5 640 × 480 232 blur lane

6 640 × 480 250 bus view

7 640 × 480 337 street shade

8 640 × 480 406 blur lane

9 640 × 480 1718 high way

10 640 × 480 1897 broken lane

11 640 × 480 2654 heavy tra�c

12 640 × 480 2799 night highway

13 640 × 480 3056 street road

14 640 × 480 4944 light disturbance

15 640 × 480 4992 night

16 1920 × 1080 1871 high way

17

2. H2ECU: A HIGH-PERFORMANCE AND HETEROGENEOUS ECU FOR AUTOMATED
DRIVING

including in day and night, with heavy tra�c, with blurred and broken lines, in street and highway,

in urban and rural areas, etc. To demonstrate the modular and heterogeneous features of h
2
ECU,

the experiment is conducted with di�erent con�gurations where either GPU, FPGA or both are used

to consume the kernel tasks. For the GPU-FPGA heterogeneous executions, a dynamic work load

balance policy from [31] is used to automatically accelerate the computation. For each con�guration,

each video is run 10 times and the overall results are collected and averaged.

2.4.1.2 Tra�c Sign Recognition (TSR)

�is application is used to detect and recognize the tra�c signs that appear in the images recorded via

the in-car camera. For the detection, based on the Haar-like features extracted from the image, a stage

classi�er is established and used to judge whether the content of a scaled scanning window within

the image is a tra�c sign or not. By performing a series of stage classi�ers at di�erent hierarchies,

an AdaBoost cascade classi�er is subsequently generated to collect the classi�cation results of each

stage classi�er. In this case, the target image window is deemed as a tra�c sign only if all the stage

classi�ers give a positive value. As for the tra�c sign recognition, �rstly a Gabor �lter is adopted to

extract features from the detected image windows. �en these Gabor features are rare�ed via Principle

Component Analysis (PCA) of the feature dimensions. Finally the tra�c signs are distinguished by

means of linear discrimination analysis and template matching.

�e Haar-like feature extraction is observed as the performance bo�leneck which can be paral-

lelized to decrease the execution latency. To demonstrate the high performance of the h
2
ECU-based

platform, an OpenCL kernel is designed for the Haar-like feature object detection. As comparison, a

normal implementation of tra�c sign recognition via Haar-like feature extraction is customized as the

baseline and another implementation using OpenCV API function cvHaarDetectObjects is proposed

to showcase the speedup.

For this algorithm, GPU is used as the accelerator, due to the reason that the OpenCL SDK for

Altera FPGA v13.1 does not support images. During the test, the algorithm is evaluated with inputs

as images under di�erent resolutions, ranging from 160×120 to 1920×1080. For each implementation,

the algorithm is run 30 times and the �nal results are averaged.

2.4.2 Results and Analysis
2.4.2.1 Road Lane Detection (RLD)

�e performance of the RLD application is evaluated in terms of input video resolutions. Figure 2.4

summarizes the performance results. As shown, in all resolutions the executions on the evaluation

18

2.4 Evaluation and Discussion

480×320 480×360 640×360 640×480 1920×1080
Video resolution

0

100

200

300

400

500

600
Fr

am
e

pe
r s

ec
on

d
(fp

s)
Quadro k600
Quadro k620
Stratix v pcie385n
Quadro k600 + pcie385n
Quadro k620 + pcie385n

Figure 2.4: Performance of the RLD application in di�erent video resolutions.

board can achieve real-time performance. Even for high de�nition 1920×1080 videos, the worst case

performance is observed as 37.7275 fps, when the tasks are consumed by the single PCIe-385N FPGA

card. �e results reveal that the h
2
ECU-based platform is able to real-timely handle the RLD application

in a robust way.

Another interesting phenomenon shown in Figure 2.4 is the heterogeneity of h
2
ECU. �at is, the

best performance does not always lie on the single-accelerator execution. �e �adro K620 GPU

outperforms all other con�gurations in most cases when videos with 480×320, 640×360 and 640×480

resolutions are tested. However, the heterogeneous execution (�adro K620 + PCIe-385N FPGA) turns

out to be the best solution when processing 1920×1080 videos. �is is extremely important as state-of-

the-art ADAS requires 1920×1080 de�nition. �is means that future ADAS applications would favor

recon�gurable architecture, such as h
2
ECU, when the single homogeneous processing core cannot

meet the performance demand, not to mention the power and energy constraint.

2.4.2.2 Tra�c Sign Recognition (TSR)

Table 2.2 gives the execution time of the OpenCL-version TSR application on the evaluation board.

It’s seen that all the executions can be completed in the second level, for di�erent image resolutions.

Although this application cannot ful�ll the real-time requirement, the results are justi�ed because the

19

2. H2ECU: A HIGH-PERFORMANCE AND HETEROGENEOUS ECU FOR AUTOMATED
DRIVING

160×120 320×240 640×480 720×480 1280×720 1920×1080
Image resolution

0

5

10

15

20

Sp
ee

du
p

Baseline
OpenCV API

Quadro K600
Quadro K620

Figure 2.5: Speedup of the TSR application over customized baseline in di�erent video resolutions.

procedure and data manipulations of TSR are far more complex than RLD. As the consequence, the

computation task load of this algorithm is far larger than RLD since totally 14 stage classi�ers are

pipelined to do the calculation.

To be�er illustrate the high performance of the h
2
ECU-based platform, Figure 2.5 gives the experi-

mental results when comparing the performance of both the OpenCV- and OpenCL-based implemen-

tation of the TSR algorithm over the customized baseline. From the �gure, it is seen that the speedup

of the OpenCV implementation over the baseline is within 3×, which is rather stable across all im-

age resolutions. However, the OpenCL implementation accelerates the application to a much larger

extent and this speedup ratio becomes greater when the image resolution increases. Speci�cally for

Table 2.2: Execution time of the TSR application using OpenCL kernels.

Image resolution Execution time (ms)
�adro K600 �adro K620

160 × 120 26.68965 34.29279

320 × 240 67.53467 60.93644

640 × 480 237.8679 168.7996

720 × 480 266.0748 186.1955

1280 × 720 699.5103 420.9746

1920 × 1080 1612.417 921.8685

20

2.5 Summary

1920×1080 image, the algorithm can gain a 11.38× and 19.90× speedup on �adro K600 and K620,

respectively. �is reveals a huge potentiality of utilizing h
2
ECU-based platform to accelerate future

ADAS algorithms.

2.4.3 Discussion

Conventional ECUs for ADAS usually incorporates integrated SoCs to deal with real time workloads.

�is is, however, hard to scale across di�erent platforms due to the technique upgrade and the con-

sequent tedious so�ware maintenance. By using recon�gurable architecture, the proposed h
2
ECU in

this chapter is able to leverage between the tradeo�s of performance demand and scalability design.

Although it’s hard to use state-of-the-art ADAS ECUs to test the pro and con of the platform, the

experimental study depicted in this chapter throws light upon the future ADAS blueprint. �e RLD

application shows the performance bene�t of heterogeneous architecture over state-of-the-art homo-

geneous counterpart, while the TSR application reveals the huge potentiality to accelerate automated

driving tasks via COTS accelerators.

�e current generation of the evaluation board is not yet mature and still has some drawbacks.

�e biggest issue lies on the power consumption of the platform. In the future, more energy-saving

techniques and components are expected to be involved to address the power constraint.

2.5 Summary

�is chapter proposes a new ECU architecture called h
2
ECU and then a prototype platform is designed

to facilitate the trend of its mass deployment for automated driving. �e architecture consists of a �xed

module in which the host can schedule the incoming tasks, and a recon�gurable module in which var-

ious COTS hardware can be �exibly inserted to accelerate the computation workload. By integrating

multiple MPSoCs, GPUs, and FPGAs into the module, h
2
ECU can provide su�cient computing power,

while maintaining high scalability. �e proposed architecture is universal w.r.t. functionality and cost-

free w.r.t. functionality update. We implanted the evaluation board into a real-life sport utility vehicle

to verify its feasibility. Finally the h
2
ECU-based platform is tested with typical ADAS applications to

reveal its high performance and �exible recon�gurability.

�e h
2
ECU presented in this chapter is intended to serve as the hardware platform for the studies

in la�er chapters. In the next chapter, the detailed implementations of typical ADAS applications and

their deployment in heterogeneous context will be illustrated.

21

2. H2ECU: A HIGH-PERFORMANCE AND HETEROGENEOUS ECU FOR AUTOMATED
DRIVING

22

Chapter 3

Design of ADAS Applications on
Heterogeneous Platforms

For the automotive industry, ADAS is born to take full advantage of massive multi-sensor information

so as to improve in-car and on-road safety. However, the input database space for ADAS applications

is so large that it poses a big challenge for so�ware developers to design both real-time and highly

e�cient algorithms. For these applications, time constraint and reliability guarantee are vital, due to

the critical personal property safety.

�e work in this chapter focuses on how to implement ADAS applications on heterogeneous plat-

forms. Particularly the widely-used Lane Detection Algorithm (LDA) is chosen as a case study. As

a fundamental functionality in ADAS, lane detection is a well-studied algorithm which has a�racted

much research a�ention since mid-1980’s. Typically for lane detection, camera is the most frequently

used sensor type not merely because of its fairly low cost, but also taking into account that roads and

lanes are designed to be perceived by human drivers and the perception of visual cues is essentially

the same as for human eyes. However, using camera as source of information requires large compu-

tational power to handle the amount of data, particularly to meet the state-of-the-art requirement of

real-time High De�nition (HD) image processing.

Apart from the performance requirement, how to ensure the robust utilization of lane detection

application across various on-road scenarios is still nontrivial. For instance, to reduce noise in�uence

and computational complexity, it is typically a pre-step to extract a Region Of Interest (ROI) within

the whole image before it is actually analyzed. However, how to obtain an e�cient, stable and reli-

able ROI is o�en scenario-speci�c and this size needs to be self-tuned if external on-road condition

changes drastically. What’s more, given a speci�c lane detection algorithm, it is o�en not easy-to-

evaluate when taking an arbitrary road video stream as input, since camera intrinsic and extrinsic

23

3. DESIGN OF ADAS APPLICATIONS ON HETEROGENEOUS PLATFORMS

parameters are o�en unknown and need to be calibrated. On the one hand, this hinders the promo-

tion of the algorithm since the third-party users or other researchers do not always assume the highly

practicability of the sample videos provided by the developer. On the other hand, this prolongs the

development period since it is time-consuming to construct a technically sound benchmark.

�e last important issue lies in the scalability of the application, i.e., how convenient for the end-

users to consider the tradeo� between the algorithmic accuracy and execution speed, and how ex-

pensive for the developers to transplant the application back and forth, for instance, from simulation

environment to real world, and from one platform to another. �e bo�leneck here is not merely hard-

ware con�guration and code modi�cation, but also the burdensome performance optimization across

di�erent architectures.

3.1 Overview

�is chapter presents two di�erent implementations of LDA across heterogeneous platforms. �e �rst

application [31] uses particle �lter to track the detected lane positions, while the second application

[32] detects lane markings via the RANdom SAmple Consensus (RANSAC) approach. For brevity, we

use p-LDA and r-LDA to respectively refer to the aforesaid Particle-�lter-based and RANSAC-based

LDA in la�er sections. For both applications, we customize the heterogeneous implementations from

the naive parallel designs and then investigate the performance and energy tradeo� in heterogeneous

context. �e main contributions of this chapter can be summarized as follows:

• �is chapter presents two di�erent approaches to implement LDA and then customize their

executions on heterogeneous platforms.

• For p-LDA, this chapter gives a lightweight workload balance scheme that can signi�cantly in-

crease the performance, while ensuring the low energy cost. �e scheme can robustly adjust

the workload in diverse road scenarios, based on the computation capacity of each accelerator

in use.

• For r-LDA, this chapter shows how the parallel task loads are implemented and optimized so that

they are mapped to the most suitable processor so as to achieve optimal performance. A detailed

comparative study of using homogeneous and heterogeneous con�gurations to accelerate the

application across di�erent platforms is conducted.

• Taking real-life road scenarios as input, a series of experiments are performed to execute the LDA

implementations on heterogeneous platforms. Experimental results demonstrate the necessity

24

3.2 Related Work

Frame Capture ROI
Definition

Image
Preprocessing Model Fitting

Figure 3.1: General processing �ow of camera-based lane detection algorithms.

of utilizing FPGA-GPU combined heterogeneous architecture for future deployment of ADAS

applications.

�e remainder of this chapter is organized as follows: Section 3.2 reviews state-of-the-art research

about lane detection and its acceleration on commodity hardware. Section 3.3 and 3.4 describe in detail

the implementations of the two LDAs and their parallelization in the heterogeneous systems. Section

3.5 gives evaluation results and Section 3.6 summarizes the work in this chapter.

3.2 Related Work
3.2.1 Lane Detection Techniques

State-of-the-art methods for lane detection can be classi�ed into two categories: camera-based meth-

ods with image stream as input and multiple sensor-based methods which combine a camera sensor

and a minimum of one additional source of environmental information such as LIght Detection And

Ranging (LIDAR) [33] [34], Global Positioning System (GPS) [35] or other vehicle data received via car-

to-car communication. �e algorithms in this chapter pertain to the camera-based methods and there-

fore the following paragraphs mainly review the approaches which only use camera as data source of

information.

Basically camera-based approach are characterized by similar execution procedures shown in Fig-

ure 3.1. First the ROI within the camera-captured image is de�ned for further processing. �is de�ni-

tion of the ROI size is o�en algorithm-dependent. Some approaches a�empt to distinguish and extract

the lanes from the whole image [36] [37] [38], while other researchers generate the ROI via either man-

ually se�ing the ROI boundary [30] [39] [40] or dynamically calculating the lane area with inherent

road properties and camera parameters [41] [42] [43].

A�er the ROI is generated, typical image processing methods are adopted to extract the features

of the lane boundaries, such as color, gradients and edges, to distinguish between the markings and

non-lane areas inside the image. In this step, the image on which the algorithm is operating can be

raw or Bird-Eye View (BEV) images. By using raw image, the lane features can be directly extracted

and mapped back to the image so as to highlight the candidate lanes. However, the perspective e�ect,

i.e., the angle of view under which a scene is acquired and the distance of the objects from the camera,

25

3. DESIGN OF ADAS APPLICATIONS ON HETEROGENEOUS PLATFORMS

in fact must be taken into account in order to weigh each pixel according to its information content.

Current researches o�en use two di�erent approaches, namely Inverse Perspective Mapping (IPM)

[36] [40] [41] [44] and Warp Perspective Mapping (WPM) [45] [46], to compute a BEV image from

the input image. One advantage of this perspective e�ect elimination is the possibility to separate the

relevant part of the image below the vanishing line from the irrelevant data above the vanishing points

that may noise the data without any information gain.

In contrast to IPM which uses intrinsic (focal length, optical center) as well as the extrinsic camera

parameters (pitch angle, yaw angle, roll angle, height above the ground) to calculated the required

transformation matrix, the WPM method is independent from the camera parameters. However, a

minimum of four reference points in the original image as well as the transformed image are required

to compute an a�ne matrix mapping.

�e models used to �t the candidate lanes are miscellaneous. �e studies in [38] [39] [40] [43] used

RANSAC model to perform straight line and spline ��ing to re�ne the detect lanes. In [30] and [47],

the authors proposed to use particle �lter to predict the lane markings a�er the previous lanes are

detected, while the work in [41] adopted similar Kalman tracking. �e biggest advantage of RANSAC

is the robust estimation of model parameters, even if the dataset contains a signi�cant amount of

outliers [48]. However, the bene�t of �lter-based lane tracking is the reduction of the execution time

cost caused by the iterative lane ��ing and detection.

3.2.2 Acceleration of ADAS Applications on Heterogeneous Platforms

State-of-the-art research does not witness too much on the acceleration of lane detection using parallel

platforms. �e authors in [38] used CUDA and TBB to optimize the processing pipeline of a RANSAC-

based road lane detection application. �ey reported a processing speed of 34.8 ms per frame for

640×480 images, with a speedup of around 3.55×. �e work in [49] proposed a lane departure warning

system implemented on an Xilinx FPGA. �ey used Single Instruction Multiple Data (SIMD) structure

to implement vanishing point-based parallel Hough transform and reported a real-time performance

of 40 Hz. Another similar study is presented in [50], which reports the performance result of 30 frames

per second.

Meanwhile, there exist plenty of researches that propose to utilize COTS components to accelerate

other ADAS algorithms, such as pedestrian detection [51], audio sensing [52], tra�c sign detection

[53], etc. While it is a potential trend to speedup ADAS applications with parallel processors, this

chapter presents a comprehensive study of accelerating lane detection with OpenCL. �e data-level

parallelism is adopted for FPGA and GPU devices so that their performance characteristics can be

26

3.3 p-LDA: Particle-�lter-based Lane Detection Algorithm

Input Stream Frame end? Pre-processing Redetection?

Lane Detection

Lane Tracking

Position of
lane markingsOutput Stream

N

N

Y
Y

Figure 3.2: Flow chart of p-LDA.

directly and intuitively compared.

3.3 p-LDA: Particle-�lter-based Lane Detection Algorithm

3.3.1 Algorithm Design

�is section describes the naive design of p-LDA and the procedure is shown in Figure 3.2. As can

be seen, the application analyzes the video stream captured by a moving vehicle frame by frame and

a�empts to extract the exact positions of the lane markings highlighted in output stream. For each

frame, the pre-processing module extracts information about the lane markings via typical Digital Im-

age Processing (DIP) techniques and then passes the processed image to the next step. Depending on

whether or not the estimated state of the lane markings in previous frame can still be applied to the

current frame, the image is processed either using lane detection module to redetect the positions of

the lane markings or using lane tracking module to track the previous position of the lane markings.

3.3.1.1 Pre-processing

�e pre-processing module contains four steps successively applied to the raw images. First a ROI is

cropped from the raw image and only this ROI is further processed. �is is reasonable since normally

only a small part of the image, which shows the street and road condition, contains all the essential

information for the subsequent lane detection and tracking steps. �en this ROI is transformed into a

grayscale format where each pixel re�ects the intensities of the pixel in original image.

A�er grayscaling, the edges of the lane markings are slightly obvious since they are substantially

brighter than the streets and roads around. To enhance this contrast of pixel intensity in ROI, a Sobel

�lter [54] is applied to the grayscaled image to extract transitions and edges in the image. �e Sobel

operator can produce optimal results when 1© the lane markings in the image are extremely bright, 2©

the surrounding environment is extremely dark, and 3© there are no noises. However, in real applica-

tion, images always contain noises whose sources are other road markings, signal posts at roadside,

27

3. DESIGN OF ADAS APPLICATIONS ON HETEROGENEOUS PLATFORMS

varying colors of street material and shadows, etc. �ese disturbances could produce additional and

undesired edges in the image.

To avoid the in�uence of noises in real scenarios, a threshold is used to set the intensity of all

pixels whose gradient falls below the threshold as zero and all pixels who has an intensity above the

threshold as a maximum value. With thresholding the strong edges created by lane markings are

further emphasized and also the computation overhead of the following lane detection and tracking

task is alleviated since much of the noises are erased.

3.3.1.2 Lane Detection

Given a ROI with a band of pixels indicating the positions of the lane markings, the lane detection

module has to extract this information and formulate it. It is assumed that the lane markings within

the ROI are straight lines. �is assumption can always hold since 1© the ROI captures only a small

part of the street ahead the vehicles and 2© in the vast majority of cases the roads are straight or just

moderately bent (i.e. with a small curvature). Moreover, when the road reveals a sharp bend, then the

ROI can be horizontally split into several subblocks within which each has a straight lane marking.

Following this assumption, a lane marking can be represented as a 2-tuple X : (xtop, xbottom),

where xtop and xbottom are the x-coordinates of the two points which intersect with the top and bo�om

border of the ROI. �en the slope of the lane s and any other point on the lane with y-coordinate value

yn can be determined by

s =
xbottom − xtop
ROI HEIGHT

xn = xtop + s · yn.
(3.1)

Note that Equation (3.1) holds if and only if the lane intersects with the top and bo�om borders of

the ROI. �erefore to detect lane markings crossing with the le� and right borders of the ROI, the ROI

is then split into proper subregions where each lane marking intersects only with the top and bo�om

borders of one subregion.

During the detection, a set of candidate lines are randomly generated via assigning random values

from a normal distribution to the elements in the 2-tuple set X = {X1, X2, · · · , Xn}, where n is the

number of the candidate lines. For each candidate line Xi, a weight wi is used to reveal how close the

line is located to the real lane. �is weight is calculated by summing up the intensities of 1© all the

pixels which belong to part of the candidate line overlapping the ROI and 2© pixels in an adjustable

neighborhood around the line, accounting for the width of real lane markings. Hence a weight set

W = {w1, w2, · · · , wn} is obtained. With this set, the line with the highest weight is chosen as the

best line and certain number of candidate lines are also reserved as good lines, which would be further

28

3.3 p-LDA: Particle-�lter-based Lane Detection Algorithm

used in the lane tracking module.

3.3.1.3 Lane Tracking

In this step, to �nd the position of lane markings in current frame, both the ROI of the current frame

generated from the pre-processing module and the best line and good lines of the previous frame cal-

culated from the lane detection module are considered. �e particle �lter [55] is adopted to handle the

lane tracking. �eoretically speaking, given a series of observable explicit states Y , the �lter tries to

determine the posterior density distribution P (X|Y) of an implicit state X . With Bayesian recursion

equation, the posterior density distribution is calculated as

P (X|Y) =
P (Y |X)P (X)

P (Y)
, (3.2)

where P(X) is the prior probability density of state X , P (Y |X) is the likelihood of observation Y

subject to condition state X , and P(Y) is the probability of the state Y .

�e particle �lter extends Equation (3.2) by sampling a range of status values Xi, i.e., so-called

“particles”, from the prior probability distribution of state X . Each of these particles is assigned an

importance weight ωi to express the likelihood that Xi is identical with the true state X , given the

observation value of Y . Hence it is yielded from Equation (3.2) that

P (Xi|Y) =
P (Y |Xi)P (Xi)

P (Y)

=
P (Y |Xi)P (Xi)∑N
i=1 P (Y |Xi)P (Xi)

=
ωi∑N
i=1 ωi

,

(3.3)

where N is the number of the particles.

When applying particle �lter to the lane tracking method, the 2-tuple set can be seen as the implicit

state space, the good lines as the set of particles, and the best line is used as an approximation of the

observation state Y . �e module mainly consists of three steps:

Prediction update. �e good lines represent the position of lane markings in the previous frame,

but are used as the prior probability distribution of lane markings in the current frame. �erefore

some modi�cations are required and here the good lines are shi�ed with sample value from a normal

distribution N(µ, σ2), with mean µ = 0 and standard deviation σ > 0. µ = 0 means no shi� is

expected in optimal case, while σ > 0 reveals a deviation in real scenarios.

Importance weight update. �e importance weight of the particles is calculated by ��ing the

29

3. DESIGN OF ADAS APPLICATIONS ON HETEROGENEOUS PLATFORMS

state of the particles to Gaussian function

ωi =
1

σ
√
2π
e−(Xi−µf)

2/2σ2
f , (3.4)

where µf = Y and σf expresses the noise that accounts for a possible error in case the position of

the lane marking does not change within two frames. �en each importance weight of the particles is

normalized to obtain the updated weight

ωupdatedi =
ωi∑N
i=1 ωi

. (3.5)

Resampling. �is step selects particles from the updated set, according to their importance

weights, to generate a new particle set, with the particle number unchanged. �e purpose of this

is to increase the accuracy of the lane detection and prevent a degeneration of the particle set.

3.3.1.4 Redetection Checking

�e redetection checking step veri�es whether the detected positions are reasonable and conform to

the physical properties of the lane markings themselves. If not, additional detection step is triggered to

seek the lane markings again. �e criteria of redetection are as follows: 1© Lane markings do not cross.

2©�ere exists a minimum distance between each two detected lane markings. �is value is adjustable

and can be small when lots of lanes have to be detected. 3©�ere should be a minimum percentage of

the lane marking within the ROI. Again this parameter is �exible and can be user-de�ned.

3.3.2 Parallel and Heterogeneous Implementation
3.3.2.1 Parallel Implementation

�e pre-processing module presents a high potential of parallelization since each pixel in the ROI can

perform grayscaling and thresholding manipulations by itself. Moreover, the Sobel �lter only requires

knowledge about nine neighbors of the processing pixel. �is again implies that all the pixels can be

handled independently. �us an OpenCL kernel kernelPRE is developed to perform the pre-processing

operations entirely on hardware accelerators.

As for the lane detection module, notice that the candidate lines are randomly generated and hence

they are mutually independent. However the selection of the best line is based on the aggregated

result of all the candidate lines and consequently should be performed only once on the host. As a

result another kernel named kernelLD is implemented to sample the lines and calculate their weights.

As can be seen, similar with lane detection, the prediction and importance weight update steps in

the lane tracking module are executed on every single particle and therefore are unrelated with others.

30

3.3 p-LDA: Particle-�lter-based Lane Detection Algorithm

Algorithm 1: p-LDA (basic version)

Input: raw camera-captured video stream

Output: video stream with lanes marked

1 initialization

2 random number generation . KERNEL RNG

3 while not the end frame do
4 ROI image pre-processing . KERNEL PRE

5 if redetection then
6 lane detection . KERNEL LD

7 candidate line generation

8 else
9 lane tracking . KERNEL PF

10 good line resampling

11 best line extraction and mark lanes in current frame

�e resampling step, in contrast, relies on knowledge from the whole particle set and thus is performed

on the host. Again a kernel kernelPF is used to calculate the updated results of the particles.

Furthermore, it should be noted that both the lane detection and tracking module require normally

distributed random numbers to process their following tasks. In this algorithm, these numbers are

generated by MWC64X [56], which is a small and fast random number generator developed for use

with GPUs via OpenCL. As this task is mandatorily executed on hardware accelerators, another kernel

called kernelRNG is introduced to realize it. In current work this kernel initializes a stream of random

numbers and splits them with a period of 2
40

, which allows the processing of videos lasting far more

than 24 hours and even in the worst case scenario where 10
6

random numbers per frame are used.

With above four kernels, the �ow chart in Figure 3.2 is abstracted as the pseudo-code shown in

Algorithm 1, where the red lines (Line 2, 4, 6, and 9 in Algorithm 1) represent the kernel tasks.

3.3.2.2 Heterogeneous Implementation

�e heterogeneous version of the application tries to distribute the kernel tasks among di�erent ac-

celerators. From Algorithm 1 it is seen that for each input video stream, random number generation

(KERNEL RNG) is run only once and the other three kernels are executed repeatedly inner the frame

loop. For this reason, KERNEL RNG can be performed on every accelerator since its time cost is rather

small, while the other kernels should be sca�ered across the accelerators as they are the main tasks.

Meanwhile, it is worth noting that two layers of data dependencies exist here: 1© both the execu-

tions of KERNEL LD and KERNEL PF use the outputs of KERNEL RNG and KERNEL PRE, and 2© if

the current frame is the �rst tracking frame, then it will need the detected positions of lane markings

in the previous frame, in this case the execution of KERNEL PF relies on the output of KERNEL LD.

31

3. DESIGN OF ADAS APPLICATIONS ON HETEROGENEOUS PLATFORMS

Host
Initialization & setup
Raw image data I/O

ICD loader

Data collection
Lines extraction

Particles resampling

kernel parameters

FPGA GPU

KERNEL RNG: 240 numbers

KERNEL PRE: ROI image

KERNEL LD: n lines

KERNEL PF: n′ particles

KERNEL RNG: 240 numbers

KERNEL PRE: ROI image

KERNEL LD: m lines

KERNEL PF: m′ particles

Intensity weight
Intensity weightImportance weight

Importance weight

fpga kernel parameters gpu kernel parameters

Figure 3.3: Overview of the execution of p-LDA in heterogeneous context. Red and blue items are dis-

tributed tasks on the FPGA and GPU. �e italic items show the transfer of parameters.

Consequently, task-level parallelism for these three kernels is not desirable as it requires the indirect

Device→Host→Device data transfer, which is considerably time-consuming due to the lack of state-

of-the-art commercial direct FPGA-GPU data communication mechanism.

From the above, data-level parallelism of the basic p-LDA is used for the heterogeneous context

and Figure 3.3 gives the overall processing procedure. In general, the host utilizes an ICD loader to

coordinate the tasks executed on FPGA and GPU. When invoking OpenCL API functions, the program

runtime passes kernel parameters to the ICD loader and then the ICD loader calls FPGA- and GPU-

speci�c functions with fpga- and gpu-speci�c parameters respectively.

�e host side is responsible for 1© kernel parameters initialization and raw image I/O when the

program begins, and 2© result collection, weight updating and line resampling during the frame loop.

On each hardware accelerator, the ROI of the image is preprocessed and then the detection kernel

(KERNEL LD) samples a set of candidate lines and calculates their intensity weights individually. As

shown in Figure 3.3, KERNEL LD processes n lines on the FPGA and m lines on the GPU, and subse-

quently returns the intensity weights to the host. On the host, a�er extracting a series of good lines and

one best line, the lane detection operation outputs the position of the lane markings as the form of best

line. Similarly for lane tracking kernel (KERNEL PF), a group of particles are extracted from the output

data of KERNEL LD. Again these particles are sca�ered and processed on the two accelerators. Here

n′ and m′ particles are respectively disposed on the FPGA and GPU. When the importance weights

32

3.3 p-LDA: Particle-�lter-based Lane Detection Algorithm

Algorithm 2: Workload balance scheme

Input: m, n, m′, n′

Output: tkernel

1 trngf ← funcRNG(m+ n), trngg ← funcRNG(m+ n)

2 tkernel ← max(trngf , trngg)

3 while not the end frame do
4 tpreg ← funcPRE(m), tpref ← funcPRE(n)
5 tpre ← tpref + tpreg
6 tkernel ← tkernel + tpre
7 if redetection then
8 tldg ← funcLD(m), tldf ← funcLD(n)
9 tkernel ← tkernel +max(tldf , tldg)

10 m, n← funcAdjustWL(tldf , tldg ,m, n)

11 else
12 tpfg ← funcPF(m′), tpff ← funcPF(n′)
13 tkernel ← tkernel +max(tpff , tpfg)

14 m′, n′ ← funcAdjustWL(tpff , tpfg ,m
′, n′)

of the particles are �nished calculating, they are returned back to the host side and new particles are

resampled based on the aggregated results to step into the new iteration.

3.3.2.3 Workload Balance Scheme

To get the optimal execution, the workload of KERNEL LD and KERNEL PF on GPU and FPGA needs

to be dynamically assigned since GPU and FPGA show distinct computation capacities in consideration

of di�erent types of data manipulations. �is is especially important when the application is intended

to be scaled across platforms where di�erent FPGA and GPU boards are used. Since time and energy

costs are two of the most important indicators when monitoring ADAS applications, this section gives

a time optimization based workload balance scheme for the heterogeneous p-LDA and the energy cost

is a�erwards investigated.

Algorithm 2 briefs the workload balance scheme. Here funcRNG, funcPRE, funcLD and funcPF are

corresponding kernel functions, from which the timing information can be pro�led. �e details of

function funcAdjustWL are shown in Algorithm 3. Assume that the input is the initial task load for

FPGA and GPU devices (i.e., m, n, m′, n′ in Figure 3.3), and the output is the time-optimal executions

of the program (indicated as kernel execution time tkernel). �e idea is that the workload for a device

should be proportional to its computation capacity, i.e., its throughput. Hence, a�er each frame is

processed complete, the kernel execution time on each device is recorded (Line 1, 4, 8, and 12 in Algo-

rithm 2) and the throughput is calculated. �en the total work load is re-assigned based on the current

throughputs of the computing devices (Line 10 and 14 in Algorithm 2). �is scheme assumes that for

33

3. DESIGN OF ADAS APPLICATIONS ON HETEROGENEOUS PLATFORMS

Algorithm 3: Function funcAdjustWL in Algorithm 2

Input: tf , tg , Wf , Wg

Output: Wf , Wg

1 cf ←
Wf

tf
, cg ← Wg

tg

2 Wf ←
cf

cf+cg
(Wf +Wg), Wg ← cg

cf+cg
(Wf +Wg)

each frame, the execution times of KERNEL LD and KERNEL PF are proportional to the current task

load size.

3.4 r-LDA: Ransac-based Lane Detection Algorithm

3.4.1 Algorithm Design

�is algorithm is based on the previous work in [57], which generates an IPM-based BEV image of a

pre-de�ned, �xed ROI inside the input frame. To extract lanes in the IPM transformed image, this ap-

proach �lters the image vertically by a smoothing Gaussian �lter and horizontally by a second deriva-

tive Gaussian �lter. Based on the �ltered IPM values, a simpli�ed Hough transformation is applied,

which gives an initial guess about the position of the lane markings. Two RANSAC iterations are a�er-

wards performed to re�ne the lane detection. �e �rst step matches linear lines using previous Hough

transformation data. A�er applying geometric checks, the second RANSAC iteration �ts the lane to a

third degree Bezier spline. �e subsequent post-processing step tries to re-localize the matched splines

in the original input image and to extend the relocated results.

Although this approach is illumination invariant and provides the capability to detect straight as

well as curved lane markings, it still su�ers from several crucial drawbacks: 1©�e pre-de�ned ROI

only provides a limited section of the available lane marking information inside each image frame

and neglects other relevant information; 2©�e proposed IPM resolution of the ROI is downscaled to

160×120 pixels, which further decreases the lane information; 3© As the top-view IPM transformation

is based on unknown camera parameters, these values have to be guessed, resulting in an inaccu-

rate vanishing point estimation; 4©�e vanishing point does not take road changes into account by

assuming constant street gradients.

�e r-LDA tries to overcome the limitations mentioned above. As the camera parameters of the lane

detection data set are unknown and have to be guessed, which results in an inaccurate transformation

matrix, in order to increase the accuracy of this matrix, in this design the top-view image is processed

by a WPM instead, which is based on the reference frame of the video stream. �e overall design of the

r-LDA is shown in Figure 3.4. �e homography matrix used in WPM is �rst generated o�-line by virtue

34

3.4 r-LDA: Ransac-based Lane Detection Algorithm

Reference frame

Vanishing point estimation

ROI bounding

Top-view mapping

Homography matrix calculation

Homography matrix

ROI image input

Warp perspective mapping

Grayscaling

Edge detection & convolution

Hough transformation

Linear RANSAC

Spline RANSAC

Refitting & extension

Detected lanes

Preprocessing

Model fitting

Off-line On-line

Figure 3.4: Processing �ow of r-LDA overview. �e o�-line part on the le� is executed only once to obtain

the homography matrix. �e actual detection is performed on-line iteratively over each image frame.

of the vanishing point estimation and top-view mapping of the reference frame. Subsequently, each

image is processed on-line via WPM to generate the BEV image. �en the top-view ROI is grayscaled

and convoluted to extract the vertical as well as quasi-vertical lane markings. A�erwards, the lane

marking is re�ned with a simpli�ed Hough transformation and two RANSAC ��ing, which is similar

to the work in [57].

�e di�erence of the improved design with the previous work lies in the o�-line homography

matrix generation and the on-line WPM transformation, therefore the following sections focus on this

part and illustrate in detail the implementations.

3.4.1.1 Vanishing Point Estimation

In contrast to IPM which uses intrinsic as well as the extrinsic camera parameters to calculated the

required transformation matrix, the WPM method is independent from the camera parameters. How-

ever, a minimum of four corresponding point pairs in the original image as well as the transformed

image are required to compute an a�ne matrix mapping. As the perspective transformation matrix

is unknown, these correspondences cannot be calculated directly. To get the corresponding points in

the raw image, the r-LDA uses a vanishing point based mapping from an arbitrary image to its cor-

responding top-view on the reference frame. To estimate the vanishing point the approach in [58] is

35

3. DESIGN OF ADAS APPLICATIONS ON HETEROGENEOUS PLATFORMS

(a) Orientation map. (b) Con�dence score.

(c) Vanishing point voting. (d) Estimated vanishing point.

Figure 3.5: Vanishing point estimation steps. Figure (a) shows the dominant orientation ranging from [0, π)
quantized in steps of 5

◦
. Darker colors correspond to larger angles. Figure (b) illustrates the computed

con�dence score. Brighter values correspond to larger scores. �e area constrained so�-voting values can

be seen in Figure (c). �e brightest value is estimated to be the vanishing point (green circle). Figure (d)

compares the estimated vanishing point (green) to the one used by [57] based on guessed camera parameters

(red).

implemented. �e texture orientations are estimated by convoluting the reference image with multi-

ple Garbor �lters over 36 orientations from [0, π) quantized with a step size of 5
◦
. A�er a con�dence

score is calculated for the 36 values obtained per pixel coordinate for every orientation, a voting map is

obtained based on the con�dence scores inside a lower semicircle around each coordinate centered at

the currently processed pixel. �en the �nal vanishing point is proposed to correspond to the largest

value in the voting map. Figure 3.5 shows the result of the detected vanishing point in the reference

frame. As can be seen, the position of the vanishing point (green circle in Figure 3.5d) estimated in

this work is far more accurate than the one calculated by [57] (red circle in Figure 3.5d).

3.4.1.2 ROI Bounding

It is assumed there are some reasonable environment-related properties in the reference frame:

1. A minimum of two lanes are included in the reference frame, one to the le� side and one to the

36

3.4 r-LDA: Ransac-based Lane Detection Algorithm

right side of the vanishing point.

2. �e lane boundaries in the reference frame are parallel.

3. �e intensity values of the lane markings are higher than that of the surrounding road surface.

4. �e vanishing point lies within the reference frame.

5. �e roll angle of the camera is close to zero and can be neglected.

Figure 3.6 gives the overall procedure of the ROI initialization. Due to Assumption (5), the van-

ishing line can be approximated as a parallel to the x axis that intersects the vanishing point. With

Assumption (1) and (3), Canny edge detector is applied to extract lane boundary points. To eliminate

outliers from the binarized edge data, the image below the vanishing line is sampled with straight lines

centered at the vanishing point within an angle of [0, π) between the x axis and the sampling line with

an empirically de�ned step size of 4
◦

(shown in Figure 3.6a). As a result, lines that overlap with a lane

boundary edge score best. To compensate small vanishing point errors, this procedure iterates over an

o�set of three pixels to the le� and to the right side of the vanishing point. �e �nal scoring for each

line is de�ned as the maximum response over all o�sets. Based on Assumption (1), the set of sampling

lines is separated into two equally sized subsets, ranging from [0, π/2) and [π/2, π), respectively, to

detect one lane boundary in the le� and the right part of the image according to the x coordinate of the

vanishing point. Each lane marking is de�ned as the highest score in the corresponding subset. Ad-

ditionally, an upper and lower y axis boundary (blue lines shown in Figure 3.6c) is further imposed to

neglect image parts without any road information as well as unreliable areas with perspective e�ects.

As observed in Figure 3.6c, the ROI is bounded by the upper and lower y axis limits (blue lines) and

the image border crossing lines (orange lines). �e y-coordinates of the upper and lower boundary are

calculated by

Uy = Vy + α ∗ (H − Vy)

Ly = Vy + β ∗ (H − Vy),
(3.6)

where Vy is the y-coordinate of the vanishing point, H is the image height and α, β are the scale

factors. �e image border meeting points are de�ned by their equal y-coordinates, which is obtained

from

By = Uy + γ ∗ (Ly − Uy), (3.7)

where Uy and Ly are the previously de�ned upper and lower y axis boundaries and γ is a parameter

ranging from [0, 1] to adjust the upper le� and right triangles in the original image, which are neglected

in the BEV as they are supposed to contain irrelevant information about the environment.

37

3. DESIGN OF ADAS APPLICATIONS ON HETEROGENEOUS PLATFORMS

(a) Linear sampling. (b) Detected lane boundaries.

(c) Initialized ROI.

Figure 3.6: ROI extraction from the reference frame to compute WPM. Figure (a) is the linear sampling

from the previously estimated vanishing point with a step size of 4
◦
. Figure (b) shows the detected lane

boundaries (red) for the le� and the right part of the image according to the vanishing point and the median

line inbetween (yellow), which is required to increase the accuracy of the method. �e upper and lower y
axis limits (blue) as well as the extracted reference image feature points for the each lane boundary (green)

and the upper BEV corners in original coordinates (viole�) obtained by the de�ned le� and right image

border crossing lines (orange) can be seen in Figure (c).

With Equation (3.6) and Equation (3.7), the y-coordinate of the image border meeting points is

calculated as

By = Vy + [α+ γ × (β − α)](H − Vy). (3.8)

�at is to say, given image height H , vanishing point y-coordinate Vy and empirically determined

coe�cients α, β and γ, the ROI size is adaptive to the video streams.

3.4.1.3 Top-view Mapping & Homography Matrix Adaption

�e top-view mapping is separated into two steps. Initially, feature point coordinates are obtained from

the reference frame to estimate corresponding points in the BEV image. �en the relations between the

matching points are constrained by the underlying assumptions to compute the required homography

mapping. First the bo�om corner distance in the BEV image is assumed to be a �xed value v and

38

3.4 r-LDA: Ransac-based Lane Detection Algorithm

thereupon the homography matrix is computed. As the distance between the top-view transformed

lane boundary feature points and the medium x axis (xm) in the BEV has to be equal for the upper and

lower image border according to Assumption (2), the bo�om corner distance correction scaling sc is

calculated as

sc =
1

n

n∑
i=0

du(
tPi, xm)

dl(tPi, xm)
, (3.9)

where n is the number of feature points extracted from the input image and du, dl are the upper and

lower distances from the current feature point in BEV coordinates
tPi to xm. �e �nal bo�om border

distance df is computed as

df = 2× v × sc. (3.10)

�e corresponding points in the reference frame and the BEV image are used to compute the corrected

homography matrix. To compensate vanishing point �uctuations due to changing road gradients, in

each frame the homography matrix is adapted to the current street conditions. If the variance of the

lane-to-vanishing point distance exceeds a certain threshold, then Equation (3.9) and Equation (3.10)

are reused to adjust the homography matrix and restore parallel lane conditions.

In conclusion, the improved design solved the drawbacks mentioned above by the following: 1©

�e ROI is adaptive to the captured video, based on the estimated vanishing point. 2©�e improved

method extracts an isosceles trapezium with an approximated rectangular resolution of W × [1−α−

γ(β−α)](H−Vy) pixels transformed to a WPM withW ×H pixels, whereW ,H are the image width

and height, Vy is the y-coordinate of the vanishing point and α, β and γ are coe�cients in Equation

(3.6) and Equation (3.7). Consequently more potential lane marking coordinates can be included at a

higher BEV resolution. 3©�e estimated vanishing point is much more accurate (refer to Figure 3.5d).

4©�e road gradient change is taken into consideration by dynamically regulating the homography

matrix to restore parallel lane conditions.

3.4.1.4 On-line Iterative Processing

�e input of the iterative detection is the cropped ROI based on the boundaries inferred in Section

3.4.1.2. Given homography matrix generated o�-line, the main steps performed on-line are WPM,

image GrayScaling (GS), Edge Detection (ED), image CONVolution (CONV), Hough Transformation

(HT), Linear and Spline RANSAC (LR, SR) model ��ing. �e details of these steps are illustrated as

below.

• WPM is implemented by mapping the pixel value at point Pc in camera coordinate system to

39

3. DESIGN OF ADAS APPLICATIONS ON HETEROGENEOUS PLATFORMS

its corresponding point Pg in BEV ground plane, with projection relationship as

Pg = HaPc, (3.11)

where Ha is the a�ne homography matrix.

• Image GrayScaling (GS) in this design only takes into account one color channel of the input

image, for the sake of e�ciency, when calculating the mean image value.

• Edge Detection (ED) of the grayscaled image is implemented by subtracting the intensity of

each BEV coordinate by the mean image value to reduce the in�uence of non-lane marking

points in further processing steps, whereby negative values are set as zero.

• CONVolution (CONV) of an original image I into the convoluted image J with a kernel matrix

K can be represented as

J(x, y) = K ∗ I =
kx∑

i=−kx

ky∑
j=−ky

K(i, j)I(x− i, y − j), (3.12)

where kx, ky are half of the kernel size in x- and y-direction and x, y are the coordinates of the

current processed pixel. In this design, the image is convoluted with a second order Gaussian

derivative �lter.

• Hough Transformation (HT) is implemented by adding up the pixel values in each column

of the convoluted image, assuming that the lane boundaries highlighted by the previous steps

achieve the highest values.

• Linear and Spline RANSAC (LR, SR) model ��ing can be divided as two stages. First a ran-

dom subset of the data points are used to compute the model parameters. �en the quality of

the postulated model are tested and candidate data points that �t the model within a de�ned

threshold according to a speci�c loss function are added into the consensus set. �e iteration

terminates if the cardinality of the consensus set exceeds a second threshold.

3.4.2 Parallel and Heterogeneous Implementation
3.4.2.1 Parallel Implementation

�e main steps illustrated in Section 3.4.1.4 can be divided into two categories, namely pixel-wise

dependent (taskp d) and independent tasks (taskp ind). �e pixel-wise independent tasks can be highly

parallelized since data manipulations over each image pixel do not interfere with each other and the

40

3.4 r-LDA: Ransac-based Lane Detection Algorithm

WPM GS ED CONV HT LR SR

WPM

WPM

WPM

WPM

GS ED CONV

CONV

CONV

CONV

HT LR

LR

LR

LR

SR

SR

SR

SR

WPM

GS

ED CONV

HT

LR SR

Host

Core #1

Core #2

Core #3

Core #4

Host

Device

thetero tmultiCore tsingleCore

1

2

3

Figure 3.7: Overview of the designs of r-LDA on di�erent platforms.

correctness of the �nal result can be guaranteed. However, the pixel-wise dependent tasks typically

perform atomic data aggregation and therefore might block the parallel processing pipeline, which

poses a potential trade-o�. �e WPM, edge detection, image convolution and RANSAC model ��ing

steps belong to the pixel-wise independent tasks, while the rest two are pixel-wise dependent.

Figure 3.7 gives an overview of native and parallel implementations of the r-LDA. For the native

CPU design, a single-core implementation is provided as the baseline and a multi-core design is a�er-

wards proposed to showcase the speedup as well. �e single-core implementation (Case Ê) handles the

aforementioned steps sequentially, while the multi-core implementation (Case Ë) processes WPM and

image convolution with multiple threads and executes all RANSAC iterations for one vertical line in a

single thread. To ensure the scalability of the parallel implementation, OpenCL is used to program on

GPU and FPGA. In the OpenCL-based implementation (Case Ì), WPM, edge detection, image convolu-

tion and two RANSAC model ��ing workloads are formulated as 4 kernels. Edge detection and image

convolution are combined into one kernel so that the number of writing operations is halved as both

steps are performed simultaneously without caching the mean corrected top-view image. Moreover,

each of the two RANSAC kernels processes a single iteration of one vertical line per invocation. Each

pixel operation on the BEV coordinate is mapped to one work item and all BEV pixel coordinates of

the ROI are divided evenly among the work groups. With regards to the pixel-wise dependent tasks,

di�erent implementations which either includes or excludes the atomic manipulations are presented

in order to test the tradeo� of on-device versus out-of-device data aggregation.

3.4.2.2 Heterogeneous Implementation

In the native design, the homography matrix calculation is executed o�-line only once and therefore is

not parallelized. �e pre-processing step is characterized as two OpenCL kernels, i.e., kernelWPM and

41

3. DESIGN OF ADAS APPLICATIONS ON HETEROGENEOUS PLATFORMS

Input image
ROI of the raw image ROI of the BEV image

(a) Homogeneous design.

Input image

ROI of the raw image ROI of the BEV image

FPGA

GPU

(b) Heterogeneous design.

Figure 3.8: Parallel design of the WPM transformation in r-LDA. �e areas with slashes represent empty

values of the pixels.

kernelCONV, which consume the WPM and image convolution tasks respectively. During the exper-

iments, we found the computation of the RANSAC model ��ing were fast enough when processed on

CPU side, therefore in the optimized design, the model ��ing step is performed on the host since its

time cost is much smaller than that of the pre-processing step.

�e heterogeneous execution is developed with data-level parallelism, since both kernelWPM and

kernelCONV process the pixels in the ROI independently, and therefore during calculation there is no

intra-pixel data dependency. �e heterogeneous design vertically divides the ROI into two parts, of

which either one is taken as an input workload on one accelerator. Taking WPM as example, Figure 3.8

presents its parallel design in the homogeneous (Figure 3.8a) and heterogeneous (Figure 3.8b) execution

scenarios. In the heterogeneous implementation, FPGA and GPU individually transform part of the

raw ROI and then piece together the results into the BEV image. It is the same case with the image

convolution kernel.

3.4.2.3 Optimization for Heterogeneous Executions

�e optimization of both GPU and FPGA kernels is two-fold. First of all, the convolution kernel

(kernelCONV) uses pre-computed values to replace memory reading operations by a multiplication

with a �xed constant, to avoid expensive global memory access. Secondly, each loop inside the kernels

is manually unrolled to ensure the bene�t of coalesced memory access.

�e main optimization e�ort lies in the kernel con�guration on the FPGA platform. As OpenCL

kernel is hardware synthesized and then implemented as dedicated circuit blocks on FPGA, the board

42

3.5 Evaluation Results

resource limits the actual performance and the resource utilization of each kernel needs to be coordi-

nated. In the design the four OpenCL kernels are included into a single �le before they are compiled

as the executable binary �le, taking into account the fact that on-board kernel switching overhead is

signi�cantly expensive and cannot be compensated by the full optimization of each kernel instead, as

each frame is processed continuously in a loop manner.

In Intel FPGA SDK for OpenCL [59], several a�ributes can be used to guide the optimization of

the kernel. To increase the data processing e�ciency, num simd work items can be used to spec-

ify the number of work-items within a work-group so that the kernel is executed in a SIMD man-

ner. num compute units is another a�ribute that can instruct the o�-line OpenCL compiler to gen-

erate multiple kernel compute units capable of executing multiple work groups simultaneously. In

addition, max unroll loops can be indicated to decrease the number of executed iterations at the

expense of increased hardware resource consumption. During the implementation of r-LDA, both

num simd work items and max unroll loops are set as 1 since each kernel is thread-ID dependent and

each loop is manually unrolled.

�e optimization of the aforementioned OpenCL kernels on the FPGA platform is as follows: �rst

it is assumed that each kernel is using the most simpli�ed con�guration, i.e., with num compute units

set as 1, to guarantee that the design meets the board resource limitation. A�erwards, each kernel is

step by step optimized by assigning more compute units to the most time-consuming task load.

3.5 Evaluation Results

3.5.1 Evaluation Setup

�e test environment is a heterogeneous system consisting of multi-core CPU, GPU and FPGA. �e

detail information about the hardware speci�cation is shown in Table 3.1. To evaluate the performance

of the implemented algorithm, the runtime as well as detection quality are measured for the manually

labeled Caltech dataset [60]. �is dataset consists of four clips on various urban street scenarios in-

cluding straight and curved lane markings, shadows, other vehicles, re�ections and street writings to

re�ect real-world conditions.

During the evaluation, the execution time of each run is measured to calculate the real-time perfor-

mance. �e power estimation method is the same as [61] and Altera PowerPlay power analyzer [62] is

used to estimate the power consumption of running each OpenCL kernel on FPGA. As for the power

estimation of GPU and CPU, the metric data come from o�cial speci�cations of the COTS components.

During the runtime evaluation of p-LDA, 2
12 good lines and 2

13 candidate lines are used to detect 2

43

3. DESIGN OF ADAS APPLICATIONS ON HETEROGENEOUS PLATFORMS

lane markings. As for the parameters of r-LDA, the number of RANSAC iterations is set to an optimal

value of 40. Each time the FPGA device is assigned the workload with di�erent proportions, i.e. from

10% to 90% and vice versa, the task proportion on the GPU is from 90% to 10%, with a step of 10%. Each

video is run multiple times and the overall results are �nally collected and averaged.

3.5.2 Results and Analysis
3.5.2.1 p-LDA: Particle-�lter-based Lane Detection Algorithm

In p-LDA, totally four scenarios are involved, namely, single FPGA execution (singleFPGA), single

GPU execution (singleGPU), work-load-constant (heteroConstant) and work-load-balanced (heter-

oBalanced) heterogeneous execution. In heteroConstant scenario, the whole task is partitioned in

advance and then fed to FPGA and GPU devices. �us the task proportions on FPGA and GPU are

always constant. While in heteroBalanced scenario, with given partitioned task, the workload balance

scheme tunes the task proportions on FPGA and GPU during the processing of each frame.

Note that for singleFPGA and singleGPU scenarios, the task proportions on FPGA are constant

100% and 0%, respectively. Hence the results of singleFPGA and singleGPU are used as reference for

evaluating the heterogeneous executions.

Workload balance scheme. �e objective of the workload balance scheme is to minimize the ker-

nel execution time (tkernel in Algorithm 2). To validate the correctness and robustness of this scheme,

1© the kernel execution times of the four designs are recorded and 2© during the heteroBalanced run,

the real-time task rates on both FPGA and GPU devices are monitored. Figure 3.9 gives the results of

the recorded kernel execution time and Figure 3.10 shows the real-time task rates of the test videos.

Figure 3.9 indicates that when compared with singleFPGA, both of the heteroConstant and heter-

oBalanced implementations can shorten the kernel execution time to a large degree. �e kernel time

cost of heteroBalanced is 7.171% of that of singleFPGA and 245.0% of that of singleGPU. It is seen that

Table 3.1: Detailed speci�cation of the hardware platforms.

Platform Information
Host CPU Intel Xeon E31225 @ 3.10GHz

�ermal Design Power 95W

PCIe generation 2.0

Device FPGA GPU

Model Terasic Arria 10 AMD W7100

Architecture Arria 10 AX FirePro

OpenCL SDK version Intel FPGA SDK 16.0 AMD APP SDK 3.0

Peak GFLOPS 1366 3379.2

Peak board power (W) 95 150

44

3.5 Evaluation Results

10 20 30 40 50 60 70 80 90
Initial task proportion on FPGA (%)

0

1

2

3

4

5

6

Ex
ec

ut
io

n
tim

e
(m

s)

1e3
singleFPGA
singleGPU

heteroConstant
heteroBalanced

Figure 3.9: Kernel execution time of p-LDA in the di�erent scenarios.

0 50 100 150 200 250
Frame number

0

20

40

60

80

100

Ta
sk

 p
ro

po
rti

on
 (%

)

Arria 10
AMD W7100

(a) cordova1

0 80 160 240 320 400
Frame number

0

20

40

60

80

100

Ta
sk

 p
ro

po
rti

on
 (%

)

Arria 10
AMD W7100

(b) cordova2

0 50 100 150 200 250 300
Frame number

0

20

40

60

80

100

Ta
sk

 p
ro

po
rti

on
 (%

)

Arria 10
AMD W7100

(c) washington1

0 50 100 150 200
Frame number

0

20

40

60

80

100

Ta
sk

 p
ro

po
rti

on
 (%

)

Arria 10
AMD W7100

(d) washington2

Figure 3.10: Real-time task rates of the test videos.

the time costs of the heterogeneous executions are larger than the singleGPU case. �is is because

the time cost of singleFPGA is an order of magnitude larger than that of singleGPU. �erefore simply

shi�ing the task a li�le from GPU to FPGA would incur considerable latency. As can be observed, the

45

3. DESIGN OF ADAS APPLICATIONS ON HETEROGENEOUS PLATFORMS

10 20 30 40 50 60 70 80 90
Initial task proportion on FPGA (%)

0

30

60

90

120

150
Fr

am
e

pe
r s

ec
on

d
(fp

s)
singleFPGA
singleGPU

heteroConstant
heteroBalanced

Figure 3.11: Performance of p-LDA in the di�erent scenarios.

kernel execution time of heteroConstant always surpasses heteroBalanced, which veri�es the validity

of the workload balance scheme. In Figure 3.10, it is seen that the real-time task proportions of all

the test videos converge within 5 frames and then keep relatively constant with minor �uctuations.

What’s more, the workload balance scheme can identify the optimal task distributions on FPGA and

GPU, regardless of the input video. �is demonstrates the robustness of the workload balance scheme.

Runtime Performance. Figure 3.11 depicts the performance results of the four implementations

running on the test platforms. From the �gure, it is observed that the performance of singleGPU out-

performs singleFPGA and this is reasonable due to the lower computation capacity of FPGA (refer to

the peak GFLOPS in Table 3.1). Both of the heterogeneous runs gain a performance increase than

singleFPGA, which without doubt bene�ts from the high performance GPU. Intuitively, the perfor-

mance declines when more and more tasks are shi�ed to FPGA. As for heteroBalanced scenario, the

performance turns out very stable since the task load is dynamically allocated and the heterogeneous

execution would rapidly converges to equilibrium a�er several frames, which is veri�ed in the above-

mentioned results in Figure 3.10.

On the whole, using heterogeneous architecture improves the performance when compared with

the singleFPGA lower bound. �e workload balance scheme reconciles the heterogeneous system and

during all task rates, the heteroBalanced case increases the performance by an average of 102.1% when

compared with the singleFPGA case.

Energy E�ciency. Figure 3.12 shows the overall energy cost for the four di�erent designs. Fig-

ure 3.12a presents the energy cost of the overall system, while Figure 3.12b gives the results of the

46

3.5 Evaluation Results

10 20 30 40 50 60 70 80 90
Initial task proportion on FPGA (%)

0.0

0.3

0.6

0.9

1.2

1.5

En
er

gy
 (J

)

1e3
singleFPGA
singleGPU

heteroConstant
heteroBalanced

(a) Overall system energy cost.

10 20 30 40 50 60 70 80 90
Initial task proportion on FPGA (%)

0

10

20

30

40

50

En
er

gy
 (J

)

singleFPGA
singleGPU

heteroConstant
heteroBalanced

(b) Accelerator energy cost.

Figure 3.12: Energy cost of p-LDA in the di�erent scenarios.

accelerator energy consumption.

As indicated by Figure 3.12a, the system energy is much larger when using a single FPGA, com-

pared with the energy cost of singleGPU. �is is mainly because the overall execution time of singleF-

PGA is much longer than singleGPU, which poses a huge increment of the CPU energy cost. However,

the heterogeneous designs are able to consume much less energy than singleFPGA. With regards to

the on-device energy cost (Figure 3.12b), using a single GPU costs the least device energy and we

owe this to the huge speedup of the AMD W7100 card. �e energy cost of FPGA is not able to out-

perform the GPU because the low-power advantage of FPGA over GPU simply cannot compensate

for the far-behind performance gap. As the consequence, the device energy increases linearly when

tasks are migrated on FPGA, which is clearly observed via the heteroConstant curve. Nevertheless, the

heteroBalanced design commendably suppresses the energy cost, as it manages to identify the power-

performance tradeo� of FPGA and GPU and subsequently always distributes more task load on GPU.

Based on the performance and energy results, the energy e�ciency results of the four scenarios

are calculated and presented in Figure 3.13. As observed, FPGA turns out a huge advantage over GPU

in terms of the energy e�ciency. �e heterogeneous executions, on the other hand, show values in

the middle since they leverage the performance and energy tradeo� of both platforms. �e energy

e�ciency of the heteroBalanced design is lower than that of heteroConstant, due to the reason that

more task load is assigned to the energy-consuming GPU card.

In summary, the heterogeneous executions consume less energy, when compared with the most-

energy-cost single accelerator (i.e., the singleFPGA case). Using the workload balanced scheme not

only “smoothes” the heterogeneous execution, but also shortens the energy cost regardless of the

initial task rates. Moreover, using the heterogeneous architecture improves the energy e�ciency when

certain performance bound is guaranteed. �e heterogeneous implementations could solve both the

47

3. DESIGN OF ADAS APPLICATIONS ON HETEROGENEOUS PLATFORMS

10 20 30 40 50 60 70 80 90
Initial task proportion on FPGA (%)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
FP

S
pe

r W
at

t

singleFPGA
singleGPU

heteroConstant
heteroBalanced

Figure 3.13: Energy e�ciency comparison of p-LDA in the di�erent scenarios.

performance and energy bo�lenecks caused when only using a single accelerator.

3.5.2.2 r-LDA: Ransac-based Lane Detection Algorithm

�e whole algorithm is partitioned into four parts and each part is recorded with time stamps to obtain

the �nal execution time. Table 3.2 details the information of each partition. Partition I includes the

WPM transformation, image grayscaling and the computation of the image mean gray value. Par-

tition II performs the edge detection, image convolution and the simpli�ed Hough transformation.

Subsequently, Partition III and IV perform the linear and spline RANSAC model ��ing, respectively.

�e reason for this partitioning is straightforward, since each partition natively corresponds to one

OpenCL kernel in the later design.

Homogeneous Execution. �e performance of the single- and multi-core executions on CPU

are evaluated at �rst. Figure 3.14 exhibits the execution time of each partition with single or multiple

Table 3.2: Task partitions of r-LDA.

Module Step Partition Category

Preprocessing

WPM I taskp ind
Image grayscaling I taskp d
Edge detection II taskp ind
Image convolution II taskp ind

Model �tting
Hough transformation II taskp d
Linear RANSAC III taskp ind
Spline RANSAC IV taskp ind

48

3.5 Evaluation Results

Partition I Partition II Partition III Partition IV

102

103

104

105

Ex
ec

ut
io

n
tim

e
pe

r f
ra

m
e

(u
s)

5483.4
10801.1

82.0

437.3

4660.6 4836.3

452.1 558.2

Single-core
Multi-core

Figure 3.14: Execution time of the homogeneous execution on CPU.

threads. Note the logarithmic scale of the y-axis. Here the multi-core implementation is tested with 8

threads. From the �gure, it is seen that the time costs of Partition III and IV are far less than that of

Partition I and II. �is can be explained by the reason that the computation load of the linear and spline

RANSAC model ��ing is rather small, as in practice the number of detected potential lane markings

is always below 10. In this case, the bene�t of concurrently performing RANSAC model ��ing cannot

compensate for the overhead of initializing new threads and additional data synchronization, resulting

in the longer execution time of the multi-core implementation. However, the preprocessing of the ROI

image is computation-intensive and therefore can be accelerated by the parallel implementation. In

this design, the multi-core execution outperforms the single-core version and decreases the execution

time of Partition I and II by 15.01% and 55.22%, respectively.

Single-accelerator Execution. �e OpenCL-based implementation follows the top-down design

principle. First of all, the naive version wraps each of the aforementioned partition into one kernel. Af-

terwards, by gradually pruning lightweight and data aggregation task loads, the runtime performance

of each kernel is re-evaluated to demonstrate the tradeo� of the parallelization of these lightweight

workloads and atomic operations. �e step-by-step optimization of the single-accelerator execution

(CPU-GPU and CPU-FPGA executions) is shown in Table 3.3. �e steps which are marked with ticks

are executed on the GPU (or FPGA), while the rest are run on the host CPU. First, all the steps in

Table 3.3 are assumed to be parallelized (heteroGPU1, heteroFPGA1), then the model computation part

in the RANSAC step is excluded to exhibit the pro and con of parallelizing this lightweight task load

(heteroGPU2, heteroFPGA2). Subsequently, atomic data aggregation tasks are excluded to weigh the

bene�t of implementing them with OpenCL (heteroGPU3, heteroFPGA3). At last, the optimal execution

49

3. DESIGN OF ADAS APPLICATIONS ON HETEROGENEOUS PLATFORMS

Partition I Partition II Partition III Partition IV
0

500

1000

1500

2000

2500

3000

3500
Ex

ec
ut

io
n

tim
e

pe
r f

ra
m

e
(u

s)

14
67

.2

76
7.3

22
21

.3 24
68

.9

13
37

.8

71
6.3

64
9.7

11
51

.814
17

.5

11
75

.8

68
6.5

11
72

.914
00

.9

71
1.2

12
9.0

70
3.2

heteroGPU1
heteroGPU2

heteroGPU3
heteroGPU4

Figure 3.15: Time cost of CPU-GPU executions.

(heteroGPU4, heteroFPGA4) is inferred from the previous contrast tests.

Figure 3.15 gives the runtime results of the CPU-GPU executions. It is clearly seen that in heteroGPU1

the time cost of RANSAC model ��ing (Partition III and IV) is nearly two times large as the image pre-

processing (Partition I and II), although the input task size of the RANSAC part is rather small. As

observed from heteroGPU1 to heteroGPU2, the execution time is decreased rapidly when shi�ing the

RANSAC model computing part to the CPU side. However, this time cost is still large than that of CPU

homogeneous execution (shown in Figure 3.14). Comparing the results of heteroGPU2 and heteroGPU3,

it is seen that the execution of the atomic operations consumes longer time when they are processed

on the CPU side, which means the parallelization of these data aggregation tasks are worthwhile on

GPU. As a consequence, the optimal heteroGPU4 execution excludes the RANSAC part and processes

Table 3.3: Con�gurations of the single-accelerator execution.

Con�guration WPM GS ED CONV HT

RANSAC

Model Computation Model Evaluation

heteroGPU1 ! ! ! ! ! ! !

heteroGPU2 ! ! ! ! ! !

heteroGPU3 ! ! ! !

heteroGPU4 ! ! ! ! !

heteroFPGA1 ! ! ! ! ! ! !

heteroFPGA2 ! ! ! ! ! !

heteroFPGA3 ! ! ! !

heteroFPGA4 ! ! !

50

3.5 Evaluation Results

Partition I Partition II Partition III Partition IV
102

103

104

105

Ex
ec

ut
io

n
tim

e
pe

r f
ra

m
e

(u
s)

21
32

8.3

12
96

5.9

94
89

.5

40
05

.8

21
21

9.5

13
32

9.0

57
91

.7

44
14

.4

55
82

.6

36
53

.9

35
24

.1

34
44

.2

46
82

.4

32
76

.5

12
0.0

63
7.0

heteroFPGA1
heteroFPGA2

heteroFPGA3
heteroFPGA4

Figure 3.16: Time cost of CPU-FPGA executions.

all the other steps on GPU side, which takes an overall time consumption of less than 3 ms.

�e runtime evaluation of CPU-FPGA executions is shown in Figure 3.16. Note the logarithmic

scale of the y-axis. �e execution time of Partition III turns out an apparent decline when the model

computation of the RANSAC ��ing is processed on the host CPU (from heteroFPGA1 to heteroFPGA2),

while there exists a minor increase in the time cost of Partition IV. From the executions of heteroFPGA2

and heteroFPGA3, it is clearly seen that FPGA su�ers much more than GPU when performing the

atomic operations on device side. Removing the data aggregation tasks can decrease the runtime cost

of Partition I and II by 73.69% and 72.59%, respectively. Di�erent to GPU, the optimal CPU-FPGA

execution (heteroFPGA4) excludes both the aggregation workloads (image grayscaling and simpli�ed

Hough transformation) and RANSAC model ��ing from the OpenCL kernels.

Optimal & Heterogeneous Execution. As observed in Table 3.3 and Figure 3.16, the opti-

mal CPU-FPGA heterogeneous execution contains two kernels and the WPM kernel consumes more

time than that of the image convolution kernel. Consequently during the optimization more re-

sources are allocated to the WPM kernel. Speci�cally in the optimal designs, on the FPGA board, the

num compute units a�ribute of the WPM and convolution kernel is respectively set as 12 and 4. Fig-

ure 3.17 presents the performance of the single- and multi-core implementation, the single-accelerator

execution, as well as the heterogeneous GPU-FPGA design.

As depicted in Figure 3.17, all the 5 di�erent implementations are capable of processing 640×480

videos real-timely. �e CPU-GPU execution achieves the best performance of 169.8 fps, while the

CPU-FPGA execution can process the video stream with time cost of 7.07 ms per frame. Nevertheless,

the CPU-only implementations cannot handle 1920×1080 images with a performance demand of 30

51

3. DESIGN OF ADAS APPLICATIONS ON HETEROGENEOUS PLATFORMS

640×480 Resolution 1920×1080 Resolution
0

50

100

150

200

Fr
am

e
pe

r s
ec

on
d

(fp
s)

53.7

9.2

74.2

19.9

169.8

81.6

141.5

47.9

111.5

37.3

single-core CPU
multi-core CPU
heterogeneous CPU-GPU
heterogeneous CPU-FPGA
heterogeneous GPU-FPGA

Figure 3.17: Performance with di�erent parallel con�gurations.

fps. �e single-accelerator and the heterogeneous executions can still ful�ll this requirement, resulting

in speedups of 8.87×, 5.21×, and 4.05× over the single-core implementation, respectively in the CPU-

GPU, CPU-FPGA, and GPU-FPGA-combined scenarios.

�e performance of the heterogeneous GPU-FPGA execution is unable to outperform the single-

accelerator executions, due to the reasons that: 1© As demonstrated in Figure 3.15 and 3.16 the con�g-

urations of the optimal CPU-GPU and CPU-FPGA scenarios are not the same, therefore we applied the

same con�guration of the CPU-FPGA design to the GPU-FPGA execution in order to ensure the data

consistency. �is inevitably sacri�ces the performance of the GPU side. 2©�e data communication

between the host and devices causes an increasing latency when more accelerators are involved in the

system. Moreover, the consumed data in the singe-accelerator case are integrated data blocks and they

are split in the GPU-FPGA execution. �is results in data transfer of small data fragments, which is

considerably time-consuming.

Despite the performance loss, the heterogeneous GPU-FPGA execution still provides a solution

of be�er energy utilization. �e results are shown in Figure 3.18. Similar to p-LDA, using heteroge-

neous architecture for r-LDA also enhances the energy e�ciency, which is rather important when

performance is not the primary consideration.

3.6 Summary

In this chapter, two di�erent approaches to implement the typical LDA in ADAS are presented and

their deployment in the heterogeneous context is further illustrated in detail. �e evaluation results

52

3.6 Summary

10 20 30 40 50 60 70 80 90
Initial task proportion on FPGA (%)

0

1

2

3

4

5

6

7

8

FP
S

pe
r W

at
t

heterogeneous CPU-FPGA
heterogeneous CPU-GPU

heterogeneous GPU-FPGA

Figure 3.18: Energy e�ciency comparison of r-LDA with di�erent parallel con�gurations.

reveal that heterogeneous computing is a promising solution for future ADAS since it is able to regu-

late the performance and energy tradeo� in the system. In the �rst application, this chapter provides

a lightweight workload balance scheme which can robustly tune the tasks between the two acceler-

ators. �e optimization results of the second application reveal that GPU and FPGA exhibit di�erent

characteristics when performing the same task load. FPGA is more sensitive to atomic data aggrega-

tion operations, while both GPU and FPGA are unsuitable to parallelize lightweight workloads. For

lightweight workload, both platforms show a larger overhead when transferring data between the

host and device, compared to the processing of the task itself. However, the atomic data aggregation

operations turn out a severe performance bo�leneck for the FPGA platform, which in the other way

still deserves to being accelerated by GPU.

Inspired by all these observations, the next chapter focuses on the performance aspect and propose

a detailed procedure to optimize the two applications in GPU-FPGA heterogeneous system.

53

3. DESIGN OF ADAS APPLICATIONS ON HETEROGENEOUS PLATFORMS

54

Chapter 4

Performance Optimization of ADAS
Applications in Heterogeneous
Systems

Chapter 3 investigated how the naive designs of the two LDAs are parallelized to enable their exe-

cutions on the COTS hardware accelerators. Inspired by the observations, the work in this chapter

proposes a detailed procedure that helps guide the performance optimization of parallelized ADAS

applications on a heterogeneous platform consisting of GPU, FPGA, and multi-core CPU.

�e explosive growth of massive data captured by various sensors on modern vehicles has im-

pelled the deployment of COTS accelerators for the research and development of ADAS. Aiming at

HPC applications in ADAS, heterogeneous computing emerges as it leverages di�erent accelerators

to strengthen the advantages of the individual counterpart. Moreover, this type of recon�gurable

computing framework is very compatible with portable platforms because of its high �exibility and

scalability. From 2008, OpenCL arises and turns out to be an ideal heterogeneous programming frame-

work as it speci�es a high-level abstraction for low-level hardware instructions, which enables to scale

computations among di�erent brands of platforms without changing the source code.

In heterogeneous context, real time constraint is well handled since di�erent accelerators can be ar-

ranged to consume the computational tasks that �t their inherent processing characteristics. However,

from the host side, how to schedule di�erent accelerators to gain the optimal system performance is

nontrivial. Although the advent of cross-platform programming framework such as OpenCL facilitates

the programmability of ADAS applications on heterogeneous devices, the performance portability is

still vulnerable and subject to the miscellaneous hardware implementations by the respective manufac-

turers. Program developers always need to elaborately and repeatedly de�ne and assign the workload

55

4. PERFORMANCE OPTIMIZATION OF ADAS APPLICATIONS IN HETEROGENEOUS
SYSTEMS

on di�erent platforms so as to gain the best possible performance bene�t. �is error-prone procedure

requires a substantial amount of program deploying, debugging, and tuning e�orts.

4.1 Overview

State-of-the-art studies mainly focus on the implementation and optimization of applications acceler-

ated with a single type of hardware accelerator, such as using GPU [38] [52] [63] or FPGA [51] [53]

[64]. �is chapter investigates several key factors that in�uence the performance gain when deploy-

ing parallelized ADAS applications in heterogeneous systems. �e work in this chapter di�ers from

state-of-the-art with the following aspects:

1. �e study focuses on the heterogeneous systems with multiple types of hardware accelerator,

i.e. with both FPGA and GPU. �erefore, the intra-accelerator workload consumption, which

is a di�erent scenario from previous work, is studied carefully and two optimization methods

called accelerator execution overlapping and dynamic workload tuning are presented.

2. �e applications are customized with data-level parallelism and the workloads assigned to dif-

ferent accelerators are identical. In this way, the comparison of the computational capacity of

each accelerator is fair and intuitive.

3. �e proposed procedure contains various approaches to optimize a native parallelized appli-

cation in a �ne-grained manner. �erefore, this procedure applies to any OpenCL application

that is developed in the early-design stage and intended to be executed in such an FPGA-GPU

heterogeneous system.

A�er the identi�cation of the performance bo�lenecks in the target program, one intra-accelerator

and two inter-accelerator sub-optimization methods are taken into consideration so as to increase the

task processing e�ciency. Moreover, application-oriented optimization of the workload is conducted

to further improve the overall runtime performance. �e two di�erent implementations of LDA illus-

trated in Chapter 3 are taken as case studies and experiment results reveal that for p-LDA and r-LDA,

the optimal designs generated from the procedure can achieve performance gains with an average

speedup of 2.09× and 1.83× over the native parallel implementations, respectively.

�e remainder of this chapter is organized as follows: Section 4.2 is related work and Section 4.3

illustrates in detail the proposed procedure and the sub-optimization methods. Section 4.4 presents

experimental results and Section 4.5 summarizes the work in this chapter.

56

4.2 Related Work

4.2 Related Work

Lane detection is mostly achieved via �ltering techniques to capture lanes, however it is rarely de-

ployed on heterogeneous platforms. �e work in this chapter focuses on the optimization of OpenCL-

based lane detection applications. �e performance portability of OpenCL applications across di�er-

ent platforms remains an open problem. To solve this issue, some researchers have proposed pro�ling

and optimization framework to assist be�er development of OpenCL applications. �e work in [65]

provided a generic tool for performance measurement of OpenCL programs. In [66], the authors pro-

posed a framework combining OpenCL application auto-tuning and runtime resource management.

�e study in [67] presented a transparent OpenCL overlay called Helium, for inter- and intra-kernel

optimization. �e studies mentioned above are not yet mature and to the best of our knowledge,

state-of-the-art research remains at the stage that optimizations are highly dependent on the speci�c

algorithm, architecture, and programming features. In [68], the authors analyzed and pro�led the com-

ponents of the Speeded Up Robust Features (SURF) algorithm. �eir work only involved the pro�ling

of the program and this information can be referenced for performance improvement. Recently, FPGA

devices are mainly used as the accelerator for Convolutional Neural Network (CNN) like the work in

[69] and [70]. In their work, optimizations were mainly performed based on the CNN algorithm itself.

While there exist substantial e�orts to parallelize ADAS applications with GPU [38] [52] [63] or

FPGA [49] [50] [51] [53] [64], few studies are reported to accelerate them with heterogeneous com-

modity hardware [71]. �e study in [11] investigated the feasibility of using COTS hardware for ADAS

development, but the performance optimization is not considered. �e work in [63] presented a step-

by-step optimization of face detection algorithm in CPU-GPU heterogeneous systems. However, this

study considered only the CPU-GPU heterogeneous architecture. Authors in [72] compared the per-

formance of using GPU, FPGA, or both devices to accelerate pedestrian detection applications. Unlike

the data-level parallel designs in this work, in [72] GPU and FPGA process di�erent tasks to ful�ll

task-level parallelism. In [73], the authors exploited FPGA to accelerate a speed-limit-sign recognition

application and showcased the performance and energy results compared with the GPU-implemented

counterpart. �e most related study to the work presented in this chapter is [63], where the authors

used optimization methods including CPU execution time hidden, memory coalescing, and variable

parallel granularity. �e di�erence of the work in this chapter is that rather than using a single GPU,

the FPGA-GPU heterogeneous context is considered so that 1© the execution time of both accelerators

can also be hidden via changing build-in function order, 2© parallelism on FPGA side could be further

adjusted by using pragma primitives, and 3© other optimization methods like dynamical workload

57

4. PERFORMANCE OPTIMIZATION OF ADAS APPLICATIONS IN HETEROGENEOUS
SYSTEMS

Parallelized design

Profiling

Compute unit replication
Loop unrolling

Accelerator execution overlapping

Dynamical workload tuning

Application-oriented optimisation

Optimal design

Resource fitting

Design space
exploration

Hotspot kernels
Candidate designs

Fitted designs

Optimal fitted design

Intra-accelerator

Inter-accelerator

FPGA-specific

Figure 4.1: Optimization procedure for parallelized ADAS applications in FPGA-GPU heterogeneous plat-

form. �e three red dashed boxes indicate the intra-accelerator, inter-accelerator, and FPGA-speci�c opti-

mization module, respectively.

tuning are also presented.

4.3 Optimization Procedure

Figure 4.1 exhibits the proposed optimization procedure. First of all, pro�ling of the application is

needed to locate the hotspot kernels so that the bo�leneck can be identi�ed and further optimized.

Given a native design of the hotspot kernels, generic optimization is utilized on the intra-accelerator

side. �ese optimizations include loop unrolling, memory access coalescing, global memory access

elimination, etc. Particularly for the FPGA, since each OpenCL kernel is abstracted as a compute unit

and further hardware synthesized as a dedicated circuit block on the board, this compute unit can be

replicated multiple times to increase the processing e�ciency. With a set of kernel con�gurations that

indicate di�erent combinations of compute unit replication and loop unrolling factors, a resource check

is conducted at pre-compilation stage to examine whether the candidate designs can actually meet the

on-board resource limitation. �e designs that consume more ALMs, registers, RAM blocks, and DSP

blocks than the maximal available number of the counterparts are discarded and the remaining designs

are passed to the design space exploration module to obtain the optimal kernel design on FPGA.

�e inter-accelerator sub-optimization consists of two steps. On the host, the invocation order of

58

4.3 Optimization Procedure

the kernel functions for di�erent accelerators can be interleaved to hide the kernel launch, host-device

data transfer, and kernel execution overhead. Meanwhile, during the processing of each frame, the

workloads for FPGA and GPU are dynamically tuned so as to balance the time consumption.

Finally, each application has its self-de�ned workload, such as the ROI de�nition in p-LDA and the

RANSAC iteration in r-LDA. �is type of workload is �exible and can also be regulated to enhance the

runtime performance.

4.3.1 Pro�ling

To �gure out the execution time distribution of the program, the high-level source code is segmented

into several blocks and the execution time of each block is subsequently measured. �e executions of

these code blocks express the skeleton of the whole program. For each code block, time stamps are

inserted before and a�er the execution of the code and the proportion of time cost in the total time

consumption is calculated a�er each run. In theory, the code block that consumes the most part of the

total execution time is optimized with top priority.

4.3.2 Compute Unit Replication (CR)

In OpenCL, high-level source code of the kernel is instantiated as a work item running on a compute

unit where a group of work items can execute simultaneously to accelerate the applications. For GPU,

this compute unit is mapped to a stream multi-processing unit and therefore its implementation is

hardware-dependent and beyond of optimization. While on the FPGA platform, the compute unit is

hardware-implemented as a circuit block and by assigning more compute units, the performance can

be enhanced to a large margin as long as the peak computation capacity and resource utilization are

not reached. �e kernel compute unit replication increases the data throughput at the expense of

memory bandwidth contention among the compute units.

�e compute unit replication in this chapter is performed as follows: �rst it is assumed that by

default, each kernel is using the most simpli�ed con�guration, i.e., se�ing only one compute unit for

each kernel, to guarantee that the design meets the board resource limitation. A�erwards, the kernels

is is optimized in a step-by-step manner by assigning more and more compute units to the most time-

consuming task load.

4.3.3 Loop Unrolling and Memory Access Coalescing (LU)

Loop unrolling is a code transformation technique used to reduce the program’s execution time at the

expense of its binary size, which is known as the space-time tradeo�. By unwinding the loop code

59

4. PERFORMANCE OPTIMIZATION OF ADAS APPLICATIONS IN HETEROGENEOUS
SYSTEMS

several times, the control statements are reduced or avoided so that the number of branches are mini-

mized. On the GPU side, loop unrolling is implemented by manually replacing the loop with repeated

sequential statements which eliminates the branch penalty. Loop unrolling on the FPGA board in-

creases the length of pipeline, thus overlapping the executions of more logic units. Similar to compute

unit replication, loop unrolling on FPGA provides a trade-o� between the potential higher perfor-

mance, due to the hidden pipeline execution time, and more intense memory bandwidth contention,

due to larger resource exploitation. On both platforms, the expansion of loop size coalesces memory

access as long as they have adjacent memory addresses.

Additionally, the expensive global memory access in some kernels is eliminated by using pre-

computed values to replace memory-reading operations with data manipulation of a �xed constant

rather than a global variable.

4.3.4 Accelerator Execution Overlapping (EO)

As illustrated in Chapter 3, the heterogeneous implementations of the two applications are data-level

parallel. �erefore each hotspot kernel is executed on both FPGA and GPU platforms. Here, there is

a trade-o� of how and when the kernels are invoked from the host. In general, an overall execution

of an OpenCL kernel can be abstracted as the following �ow: 1© �e input data is stored in a host

bu�er and then wri�en into device memory via the function clEnqueueWriteBu�er. 2©�e kernel is

driven via the function clEnqueueNDRangeKernel to the command queue and is ready for execution.

3©�e output data is generated a�er the kernel is completed and the results are read back from the

device to the host via function call of clEnqueueReadBu�er. 4©�e data on the device and the host

is synchronized over and ready for future use, which is noti�ed by the completion of corresponding

kernel events via the function clWaitForEvents. In the heterogeneous design, both FPGA and GPU

would call their own OpenCL runtime libraries to execute the API functions mentioned above. It is

noted that the call order of these functions should be carefully considered since not all of them are

non-blocking invocations.

Figure 4.2 gives an example to illustrate how the call order of the API functions in�uences the time

cost of executing the kernel on FPGA and GPU. On each platform, the kernel is processed with the

same function call order as the aforementioned �ow, while the sequence of the functions that the host

invokes for di�erent platforms may vary. In Case I, all the invocations of FPGA-related API functions

are before the GPU-related counterparts as if the kernel is sequentially processed one a�er another on

the platforms. In this case, the �rst GPU-related API function is invoked a�er the last FPGA-related API

function is served and the total time cost is the sum of the execution time on FPGA and GPU. In Case II,

60

4.3 Optimization Procedure

buffer write buffer read

kernel execute event wait

1

2

3

4

clEnqueueWriteBuffer clEnqueueReadBuffer

clEnqueueNDRangeKernel clWaitForEvents

FPGA

GPU

1 2 3 4

1 2 3 4

End time

FPGA

GPU

1 2 3 4

1 2 3 4

End time

FPGA

GPU

1 2 3 4

1 2 3 4

End time

Case I

Case II

Case III

Figure 4.2: A sample heterogeneous execution with di�erent call order of OpenCL API functions for FPGA

and GPU. �e blue arrows indicate the exact time point when the API function in the blue circle would

actually take e�ect.

the �rst GPU-related API function is invoked immediately a�er the call of the FPGA-related function

clEnqueueNDRangeKernel, with a subtle lag. �e data read back function clEnqueueReadBu�er on

GPU is called later than the completion of the kernel on FPGA. �erefore, the termination of the GPU-

related function clWaitForEvents indicates the end time point of the total execution. In this case, both

the kernel execution and host-device data transfer time are well overlapped. As shown in the last case,

the data read back part on FPGA is executed a�er the GPU kernel is processed and the total execution

time is longer than that in Case II, since the host-device data transfer time is not hidden.

As can be seen, calling FPGA- and GPU-related API functions in an interleaved way can overlap

the inter-accelerator kernel execution and host-device data transfer time. In this way, the runtime

performance can be improved.

4.3.5 Dynamical Workload Tuning (DT)

For ADAS applications, the input data is normally from a captured road video stream and the program

needs to process the video frame by frame to extract e�ective environmental information so as to assist

61

4. PERFORMANCE OPTIMIZATION OF ADAS APPLICATIONS IN HETEROGENEOUS
SYSTEMS

drivers with decision making. �ese applications can be lane detection, pedestrian detection, tra�c

sign recognition, vehicle identi�cation, etc. Consequently, the hardware accelerators need to process

the workload of every image frame repeatedly, which o�ers the possibility of dynamically tuning the

workloads among di�erent platforms.

As FPGA and GPU show distinct computation capacities in consideration of di�erent types of data

manipulations, inspired by the work in [31], this chapter applies a dynamical tuning of the workload to

ensure that the tasks can be �nished within the shortest possible time. �e basic idea of the dynamical

workload tuning is that the workload to be assigned on a certain device should be proportional to

its computation throughput. �erefore during each processing iteration of the image frame, the total

workload is re-assigned to the involved accelerators based on their historical computation capacities.

Assume there are in total N accelerators in the system and in the previous iteration the i-th ac-

celerator consumes an amount of workload Wi at the expense of time Ti, then the newly assigned

workload W ′i for the current iteration can be calculated as

W ′i =
ci∑N
i=1 ci

N∑
i=1

Wi

ci =
Wi

Ti
,

(4.1)

where ci indicates the computation throughput of the i-th accelerator in the previous iteration. �e

newly assigned workload is a portion of the total workload, where the coe�cient is calculated as the

ratio of the computation throughput of the i-th accelerator to the computation throughput of all the

accelerators in the system.

4.3.6 Application-oriented Optimization (AO)

�eoretically speaking, the performance can be improved as long as the amount of the total workload

can be reduced while guaranteeing the accuracy of the �nal results. In the two case study applications,

the tunable workload lies in the ROI de�nition and the RANSAC iteration, respectively.

4.3.6.1 p-LDA: Particle-�lter-based Lane Detection Algorithm

As described in Section 3.3.1.1, only the image ROI is processed and information of pixels falling in

this area is further computed. �erefore decreasing the ROI size could distinctly shrink the calculation

task load and improve the performance. For this application, the optimization enables an adaptive ROI

when processing the image frames iteratively. �e size of the ROI is adjusted each time a�er the frame

is processed, so that the proper ROI size for the next frame is obtained.

62

4.3 Optimization Procedure

Algorithm 4: ROI tuning scheme for p-LDA
Input: Best line set B, imgWidth, initRoiStart, initRoiEnd, roiStart, roiWidth
Output: roiStartAdapted, roiWidthAdapted

1 Tleft ← 1/4, Tright ← 3/4
2 roiStartAdapted← roiStart
3 roiEndAdapted← roiStart+ roiWidth
4 foreach best line b ∈ B do
5 roiStartAdapted← min〈roiStartAdapted, b.start〉
6 roiEndAdapted← max〈roiEndAdapted, b.end〉
7 if roiStartAdapted < initRoiStart then
8 roiStartAdapted← initRoiStart

9 else if roiStartAdapted > imgWidth× Tleft then
10 roiStartAdapted← imgWidth× Tleft

11 if roiEndAdapted > initRoiEnd then
12 roiEndAdapted← initRoiEnd

13 else if roiEndAdapted < imgWidth× Tright then
14 roiEndAdapted← imgWidth× Tright

15 roiWidthAdapted← roiEndAdapted− roiStartAdapted
16 if redetection then
17 roiStartAdapted← initRoiStart
18 roiWidthAdapted← initRoiEnd− initRoiStart

Algorithm 4 gives the detail of the ROI tuning scheme for p-LDA. First the best line set B, which

contains the lane positions of the current frame, is traversed to get the minimal and maximal x-axis

coordinates of the best lines. �ese two coordinates are seen as the candidate start and end x-axis

positions of the updated ROI. �en the updated ROI is upper-bounded by the start and end x-axis

positions of the initial ROI and lower-bounded by a certain proportion of the image width (here the

coe�cients of proportionality are set as 1/4 and 3/4). If the redetection step is triggered, the width of

the ROI is reset as the initial ROI width. �is scheme ensures that the computation workload of each

frame is no more than that using the initial ROI and no less than that using a region of which the width

equals only half of the image width.

Note that here the optimization focuses on the regulation of the ROI width, rather than the ROI

height, since the ROI height is normally �xed within a visible area of the lane markings. In addition,

the coe�cients of proportionality of the lower-bounded ROI are empirically set. �is is to ensure that

the ROI size would not collapse from a plane to a line when the detected lanes are too close, which

would prevent the ROI construction and further ruin the detected results.

From Algorithm 4, it is seen that the ROI of the next frame is bounded by the positions of the lanes

detected in the current frame. �is indicates that the processed ROI is not subject to user interference

and the detection accuracy does not su�er due to an incomplete ROI.

63

4. PERFORMANCE OPTIMIZATION OF ADAS APPLICATIONS IN HETEROGENEOUS
SYSTEMS

4.3.6.2 r-LDA: Ransac-based Lane Detection Algorithm

In this application the processed ROI is already adaptively bounded, based on the position of the es-

timated vanishing point. �is drives us to turn to the optimization of the model ��ing part. As is

known, the number of RANSAC iterations N is determined by

N =
log(1− ρ)
log(1− ωη)

, (4.2)

where ρ is the probability that the best ��ing model can be found, η is the minimal number of data

points needed to de�ne the model and ω is the probability that any selected data point is within the

error tolerance of the model [48]. Since ω is preliminarily unknown in r-LDA, during the evaluationN

is �rst set as a considerably large value and then gradually reduced until the accuracy hits a tolerable

threshold. In this way, the number of RANSAC iterations is minimized while the accuracy can be still

guaranteed.

4.3.7 Discussion

�e aforementioned optimization methods constitute a systematic procedure for improving the per-

formance of OpenCL-based ADAS applications in FPGA-GPU heterogeneous systems. Compared with

state-of-the-art, the work in this chapter targets a di�erent scenario, i.e., the performance optimiza-

tion of lane detection applications when di�erent hardware accelerators are involved. Apart from the

conventional optimization techniques, this work also takes into consideration the intra-accelerator

kernel execution and give optimization methods such as accelerator execution overlapping and dy-

namic workload tuning. �erefore, the work in this chapter is much more comprehensive.

4.4 Evaluation Results

4.4.1 Evaluation Setup

�e h
2
ECU presented in Chapter 2 is used as the evaluation platform and the details about the hardware

speci�cation are shown in Table 4.1. To evaluate the performance of the two case study applications,

the benchmark videos from Caltech data set [60] are utilized. �is data set consists of four clips on

various urban street scenarios including straight and curved lanes, shadows, re�ections, and street

scenes to re�ect real-world conditions.

During the runtime evaluation of p-LDA, 2
12 good lines and 2

13 candidate lines are used to detect 2

lane markings. As for the parameters of r-LDA, the initial value of the number of RANSAC iterations

is set to 300 and the observed optimal value is 40. Each time the FPGA device is assigned the workload

64

4.4 Evaluation Results

10 20 30 40 50 60 70 80 90
Task proportion on FPGA (%)

0

20

40

60

80

100
No

rm
al

ize
d

pr
op

or
tio

n
(%

)

kernelRNG
copyImageData

kernelPRE
kernelLD

extractLine
kernelPF

resample

(a) p-LDA

10 20 30 40 50 60 70 80 90
Task proportion on FPGA (%)

0

20

40

60

80

100

No
rm

al
ize

d
pr

op
or

tio
n

(%
)

kernelWPM
kernelCONV

linearRansac
splineRansac

postProcessing

(b) r-LDA

Figure 4.3: Normalized execution time distribution of the pro�led code blocks in p-LDA and r-LDA.

with di�erent proportions, i.e. from 10% to 90% and vice versa, the task proportion on the GPU is from

90% to 10%, with a step of 10%. Each video is run multiple times and the overall results are �nally

collected and averaged.

Table 4.1: Detailed speci�cation of the evaluation platform.

Platform Information
Host CPU Intel Core i5-3360M @ 2.80GHz 2 Cores

Device FPGA GPU

Model Nallatech 385 �adro K600

Architecture Stratix V GS Kepler GK

OpenCL SDK version Intel FPGA SDK 13.1 Nvidia CUDA 8.0

Peak GFLOPS 294.7 336.4

65

4. PERFORMANCE OPTIMIZATION OF ADAS APPLICATIONS IN HETEROGENEOUS
SYSTEMS

4.4.2 Pro�ling Results
4.4.2.1 p-LDA: Particle-�lter-based Lane Detection Algorithm

�is application is segmented into 7 main code blocks and the detailed description of them is shown

in Table 4.2. Figure 4.3a reveals the normalized execution time of these code blocks when the work-

loads are distributed to FPGA and GPU with di�erent proportions. As observed in Figure 4.3a, the

time consumption of kernelLD and kernelPF accounts for a minimum of 60.71% (when the FPGA task

proportion is 10%) and a maximum of 83.08% (when the FPGA task proportion is 90%) of the total exe-

cution time. �ese two kernels are therefore the hotspot kernels and need further optimization. Note

that the execution of copyImageData also consumes a considerable amount of time. �is is inevitable

since the raw image data have to be read into the host memory before the pre-processing. One possible

optimization of this code block is to reduce the transmi�ed data size, which is done by the ROI tuning

scheme.

4.4.2.2 r-LDA: Ransac-based Lane Detection Algorithm

�is application contains 5 main functional modules of which the detailed information is listed in

Table 4.3 and their respective execution time distribution is shown in Figure 4.3b. kernelWPM and

kernelCONV are deemed as the hotspot kernels as they occupy the majority part of the total time

consumption (from 57.63% when the FPGA task proportion is 10% to 75.54% when the FPGA task

proportion is 90%). Aside from them, the splineRansac task dominates the remainder of the time cost.

Optimization of this part is done by reducing the number of RANSAC iterations.

4.4.3 Optimization Results
4.4.3.1 Compute Unit Replication (CR)

In this design, the code snippets of kernelLD and kernelPF in p-LDA are within the same OpenCL

kernel function, due to their similar functionalities with minor di�erences, and consequently they

Table 4.2: List of main code blocks in p-LDA.

No. Name Function Description
1 kernelRNG random number generation

2 copyImageData copy image matrix data into array

3 kernelPRE pre-processing of raw image ROI

4 kernelLD lane detection

5 extractLine extract good and best lines

6 kernelPF lane tracking

7 resample particles resampling

66

4.4 Evaluation Results

are always replicated with the same number of compute units. As for r-LDA, kernelWPM and ker-

nelCONV belong to two separate kernel functions and hence they can be replicated with di�erent

con�gurations. For brevity, we use λCR to denote the factor that a compute unite is replicated in the

FPGA design, and λ̂CR to denote the maximum number that a compute unit can be replicated subject

to a given speci�c constraint. �e �rst, third, and fourth columns in Table 4.4 exhibit the detailed CR

con�gurations of the two applications. Here the fourth column (λ̂convCR) gives the maximal compute unit

replication factor for kernelCONV when kernelWPM is replicated with the factor given in the third

column (λwpmCR). It is seen that fewer resources can be assigned to kernelCONV when kernelWPM is

replicated an increasing number of times.

For p-LDA, the maximum CR factor is 3 and Figure 4.4 shows the performance results. As can be

seen, for all task proportion scenarios, replicating the compute unit can boost the runtime performance.

�is speedup becomes larger when λCR increases. �e average speedup is 1.13× and 1.52×, when the

compute unit is replicated 2 and 3 times, respectively.

From Table 4.4, the maximum CR factor for kernelWPM is 9 and kernelCONV can be replicated

up to 7 times when λwpmCR is no greater than 4. For clarity of description, the performance evaluation

of CR optimization for r-LDA is conducted via the control variable method, i.e. varying either λwpmCR

Table 4.3: List of main code blocks in r-LDA.

No. Name Function Description
1 kernelWPM warp perspective mapping

2 kernelCONV image convolution

3 linearRansac linear RANSAC ��ing

4 splineRansac spline RANSAC ��ing

5 postProcessing post-processing

Table 4.4: CR and LU con�gurations of the FPGA design.

p-LDA r-LDA
λCR λ̂LU λwpmCR λ̂convCR λ̂LU

1 9 1 7 16
2 3 2 7 16
3 1 3 7 16
- - 4 7 16
- - 5 6 16
- - 6 4 16
- - 7 3 16
- - 8 2 16
- - 9 1 16

67

4. PERFORMANCE OPTIMIZATION OF ADAS APPLICATIONS IN HETEROGENEOUS
SYSTEMS

10 20 30 40 50 60 70 80 90
Task proportion on FPGA (%)

0.0

0.5

1.0

1.5

2.0
No

rm
al

ize
d

sp
ee

du
p

CR = 1 CR = 2 CR = 3

Figure 4.4: Performance comparison of p-LDA when replicating di�erent number of compute units.

10 30 50 70 90
Task proportion on FPGA (%)

0.0

0.5

1.0

No
rm

al
ize

d
sp

ee
du

p

wpm
CR = 1
wpm
CR = 2
wpm
CR = 3

wpm
CR = 4
wpm
CR = 5
wpm
CR = 6

wpm
CR = 7
wpm
CR = 8
wpm
CR = 9

(a) Replication of kernelWPM when λconv
CR = 1.

10 30 50 70 90
Task proportion on FPGA (%)

0

1

2

No
rm

al
ize

d
sp

ee
du

p

conv
CR = 1
conv
CR = 2

conv
CR = 3
conv
CR = 4

conv
CR = 5
conv
CR = 6

conv
CR = 7

(b) Replication of kernelCONV when λwpm
CR = 1.

Figure 4.5: Performance comparison of r-LDA when replicating di�erent number of compute units.

or λconvCR while se�ing the other one as a constant. Figure 4.5 gives the detailed comparison results

when the FPGA task proportion is 10%, 30%, 50%, 70%, and 90%. An interesting point shown in Figure

4.5a is that merely replicating kernelWPM actually degrades the runtime performance. �is slow-

down becomes larger when λwpmCR gradually increases. �e observed worst performance loss is 15.15%

when the FPGA task proportion is 70% and λwpmCR = 8. A possible explanation is that kernelWPM is

memory-operation dominant and therefore creating multiple instances of this kernel aggravates the

68

4.4 Evaluation Results

10 30 50 70 90
Task proportion on FPGA (%)

0

1

2
No

rm
al

ize
d

sp
ee

du
p CR = 1, LU = 1

CR = 1, LU = 3
CR = 1, LU = 5
CR = 1, LU = 7

CR = 1, LU = 9
CR = 3, LU = 1

Figure 4.6: Performance comparison of p-LDA using di�erent loop unrolling factors.

on-board memory bandwidth contention, incurring a larger performance penalty over the bene�t of

computation scalability.

For kernelCONV, replicating this kernel can be expected to result in much more performance

bene�t, and this gain becomes even larger when more workloads are allocated on FPGA, as is clearly

shown in Figure 4.5b. �e observed maximum speedup is 2.02× when 90% of the tasks are processed

on FPGA, with kernelCONV replicated 7 times.

�e combination of the CR optimizations of kernelWPM and kernelCONV is a trade-o� between

the computation- and memory-intensiveness of these two kernels. During the evaluation, the ex-

haustive exploration of all the ��ed CR designs shows that the best case exists when λwpmCR = 2 and

λconvCR = 7, which exhibits an average 1.55× speedup.

4.4.3.2 Loop Unrolling and Memory Access Coalescing (LU)

To showcase the in�uence of loop unrolling on the runtime performance, the ��ed design space is

exhaustively searched to obtain the available LU con�gurations. For brevity, we use λLU to denote

the factor that a loop is unrolled, and λ̂LU to denote the maximum number that a loop can be unrolled

subject to compiler se�ing and resource constraint. �e second and ��h columns in Table 4.4 give the

LU con�gurations for the two applications, given the pre-determined CR se�ings of the kernels. For

p-LDA, loop unrolling works on both kernelLD and kernelPF since they share the same code snippet.

With regards to r-LDA, LU optimization is only valid for kernelCONV as only this kernel contains a

loop.

For p-LDA, λ̂LU decreases when the kernel is replicated more times. �e loop can be unrolled 9

times when λCR = 1, while no LU optimization can be performed (λ̂LU = 1) when replicating the

compute unit three times. Figure 4.6 reveals the results of LU optimization when λCR = 1 and a

similar trend is also observed in other cases. By way of contrast, the performance result when λCR =

69

4. PERFORMANCE OPTIMIZATION OF ADAS APPLICATIONS IN HETEROGENEOUS
SYSTEMS

wpm
CR = 1, conv

CR = 1 wpm
CR = 2, conv

CR = 7
0.0
0.4
0.8
1.2
1.6

No
rm

al
ize

d
sp

ee
du

p
LU = 1
LU = 2
LU = 3
LU = 4

LU = 5
LU = 6
LU = 7
LU = 8

LU = 9
LU = 10
LU = 11
LU = 12

LU = 13
LU = 14
LU = 15
LU = 16

Figure 4.7: Performance comparison of r-LDA using di�erent loop unrolling factors, the FPGA task pro-

portion is 50%.

3, λLU = 1 is also presented, so as to compare the performance boost of CR and LU optimizations. As

seen in Figure 4.6, the p-LDA application can only gain a subtle performance bene�t when the loop

is unrolled 5 or more times. However, this performance gain cannot rival the counterpart from the

CR optimization, as seen from the last bar in Figure 4.6. For this application, CR optimization gains a

larger performance improvement than LU optimization.

Figure 4.7 depicts the LU optimization results for r-LDA. �e �gure only shows the results when

the FPGA task proportion is 50% and other cases turn out similar results. For comparison of CR and LU

optimization, the native (λwpmCR = 1, λconvCR = 1) and the best (λwpmCR = 2, λconvCR = 7) CR con�gurations

are chosen to exhibit their corresponding LU optimization results. As observed from Figure 4.7, loop

unrolling results in nearly no performance gain when the CR factors are determined. �is phenomenon

is also demonstrated in all of the remaining CR con�gurations. �e reason for this is that the maximum

LU factor for the loop is 16 (the compiler throws out errors when se�ing the LU factor at any value

larger than 16), while the loop itself processes an additive and multiplicative operation of an array

containing 17 elements. As a result, the design space excludes the ideal LU se�ing and hence all the

executions use non-ideal con�gurations and show nearly the same performance results.

4.4.3.3 Accelerator Execution Overlapping (EO)

Following the con�gurations in Figure 4.2, the three execution scenarios with di�erent call orders of

OpenCL API functions are constructed and the resulted performance outcomes are depicted in Fig-

ure 4.8. EO optimization of the p-LDA application achieves a considerable performance boost (shown

in Figure 4.8a), while the speedup for r-LDA is slightly lower (shown in Figure 4.8b). �e average

speedups of Case II over Case I are 1.20× and 1.06×, respectively for p-LDA and r-LDA. For both ap-

plications, executions of Case II always spend less time than that of Case I and III, which demonstrates

70

4.4 Evaluation Results

10 20 30 40 50 60 70 80 90
Task proportion on FPGA (%)

0.0

0.5

1.0

1.5

No
rm

al
ize

d
sp

ee
du

p Case I Case II Case III

(a) p-LDA

10 20 30 40 50 60 70 80 90
Task proportion on FPGA (%)

0.0

0.5

1.0

1.5

No
rm

al
ize

d
sp

ee
du

p Case I Case II Case III

(b) r-LDA

Figure 4.8: Performance comparison with di�erent call order of OpenCL API functions.

the previous analysis in Section 4.3.4.

4.4.3.4 Dynamical Workload Tuning (DT)

�e dynamical workload tuning mechanism illustrated in Section 4.3.5 is applied to the two case study

applications and the comparison of the performance results is presented in Figure 4.9. As can be

observed, DT optimization achieves many more performance gains when the task proportion on FPGA

is larger. �is is especially obvious for p-LDA, where the DT-optimized execution can improve the

performance by up to 39% (when 90% of the task is initially distributed on FPGA). �e reason is that

the dynamical workload tuning mechanism always regulates and assigns the appropriate amount of

workloads for each accelerator. In this way, the tasks are gradually migrated to GPU when the initial

task proportion on FPGA becomes larger, since during the evaluation the �adro K600 GPU has a

higher computation power than the Nallatech PCIe-385N FPGA. �erefore, the performance speedup is

larger when a higher quantity of workloads are initially assigned to FPGA but subsequently consumed

by GPU, compared with the �xed-task-proportion executions.

71

4. PERFORMANCE OPTIMIZATION OF ADAS APPLICATIONS IN HETEROGENEOUS
SYSTEMS

10 20 30 40 50 60 70 80 90
Initial task proportion on FPGA (%)

0.0

0.5

1.0

1.5
No

rm
al

ize
d

sp
ee

du
p Without DT With DT

(a) p-LDA

10 20 30 40 50 60 70 80 90
Initial task proportion on FPGA (%)

0.0

0.5

1.0

1.5

No
rm

al
ize

d
sp

ee
du

p Without DT With DT

(b) r-LDA

Figure 4.9: Performance comparison with and without dynamical workload tuning.

4.4.3.5 Application-oriented Optimization (AO)

Figure 4.10 gives the performance results of using aforementioned AO optimization methods for both

applications, i.e. the ROI tuning scheme for p-LDA and the RANSAC iteration reduction for r-LDA.

Tuning the ROI size improves the runtime performance of p-LDA by an average of 12.86%, which re-

veals that shrinking the ROI size can e�ectively reduce the computational workload. �e performance

gain for r-LDA, however, is negligible, which is due to the minor proportion of RANSAC computation

in the whole execution time. Hence even a huge reduction of RANSAC computation time cannot make

a signi�cant contribution to improving the overall runtime performance.

4.4.4 Discussion

4.4.4.1 Performance Bene�t

Figure 4.11 shows the performance speedup of the two case study applications with the step-by-step

optimizations mentioned above. Overall, the proposed optimization procedure improves the runtime

performance of both applications with a large extent. During the evaluation, the observed optimal

executions of p-LDA and r-LDA can improve the performance by an average of 109.21% and 83.48%

72

4.4 Evaluation Results

10 20 30 40 50 60 70 80 90
Initial task proportion on FPGA (%)

0.0

0.5

1.0

1.5

No
rm

al
ize

d
sp

ee
du

p Without AO With AO

(a) p-LDA

10 20 30 40 50 60 70 80 90
Initial task proportion on FPGA (%)

0.0

0.5

1.0

1.5

No
rm

al
ize

d
sp

ee
du

p Without AO With AO

(b) r-LDA

Figure 4.10: Performance comparison with and without AO optimization.

over the native parallel implementations, respectively.

As the task proportion on FPGA gradually increases, the performance speedup turns out a climbing

trend as well, which is especially evident as seen from the curves of CR, EO, DT, and AO optimizations

in Figure 4.11a and 4.11b. �is reveals that the optimizations favor the FPGA platform and are more

e�cient when processing time-consuming workloads.

�e LU optimization for the test applications is not very signi�cant. We a�ribute this to the re-

source constraint (for p-LDA) and non-ideal compiling issue (for r-LDA), which is illustrated in Section

4.4.3.2. A further study on other ADAS or generic scienti�c computing applications may be�er demon-

strate the e�ectiveness of the LU optimization. �e CR optimization contributes the most part to the

�nal performance gain, since it enables the scaling of the kernel computation in a linear manner. �e

EO, DT, and AO optimizations, on the other hand, further improve the runtime performance. �is is

extremely important since these three optimization methods are platform-independent and therefore

can be seamlessly applied to other heterogeneous systems.

73

4. PERFORMANCE OPTIMIZATION OF ADAS APPLICATIONS IN HETEROGENEOUS
SYSTEMS

10 20 30 40 50 60 70 80 90
Initial task proportion on FPGA (%)

0.5

1.0

1.5

2.0

2.5

3.0

No
rm

al
ize

d
sp

ee
du

p
native
native+LU
native+LU+CR

native+LU+CR+EO
native+LU+CR+EO+DT
native+LU+CR+EO+DT+AO

(a) p-LDA

10 20 30 40 50 60 70 80 90
Initial task proportion on FPGA (%)

0.5

1.0

1.5

2.0

2.5

3.0

No
rm

al
ize

d
sp

ee
du

p

native
native+LU
native+LU+CR

native+LU+CR+EO
native+LU+CR+EO+DT
native+LU+CR+EO+DT+AO

(b) r-LDA

Figure 4.11: Performance comparison overview with step-by-step optimizations.

4.4.4.2 Scalability Analysis

�e optimization procedure proposed in this chapter can be applied to other applications and other

heterogeneous parallel systems as well. �e reasons are multi-fold. First, the CR optimization is FPGA-

related and the LU optimization is valid for both GPU and FPGA. As nowadays GPU and FPGA are

mainstream hardware accelerators used for high performance scienti�c computing, these two opti-

mization methods are applicable for any parallel applications running on GPU and FPGA platforms.

Secondly, the EO and DT optimizations take e�ect when more than one accelerators, even multiple

of the same type of processors, like either GPUs or FPGAs, are deployed for task processing. �ese

74

4.5 Summary

optimization methods are therefore suitable for general heterogeneous and recon�gurable computing.

Lastly, the AO optimization is algorithm-speci�c and can be �exibly adapted to other applications as

long as the inherent parallel workloads in the target program are tunable, which is the normal case for

state-of-the-art parallel applications.

4.5 Summary

�is chapter proposes a detailed procedure to help guide the performance optimization of parallelized

ADAS applications in FPGA-GPU heterogeneous systems. �e optimization procedure contains one

intra-accelerator and two inter-accelerator optimization methods, as well as both FPGA-speci�c and

application-oriented optimization strategies, to boost the program runtime performance. �e opti-

mization results are demonstrated by the evaluation with the two di�erent lane detection applications

presented in Chapter 3. Experimental results show that the procedure can e�ectively reduce the time

consumption, and the optimal designs of the two case study applications improve the runtime per-

formance by an average of 109.21% and 83.48% respectively, over the native parallel implementations.

Moreover, the procedure can be applied to other applications and other heterogeneous parallel systems

as well.

To further investigate the performance of consuming the computation workload on the hardware

accelerators, the work in the next chapter uses GPU as the representative platform and proposes a

novel performance estimation framework to predict the execution time of running OpenCL kernels on

GPUs.

75

4. PERFORMANCE OPTIMIZATION OF ADAS APPLICATIONS IN HETEROGENEOUS
SYSTEMS

76

Chapter 5

Performance Estimation for
OpenCL Kernels on GPUs

�e studies in the previous chapters present how heterogeneous computing can be applied to the

implementation of typical ADAS applications, such as LDA. It is observed that performance portability

poses a big challenge to programmers for the development of parallel applications in the early design

stage. �erefore, motivated by this, this chapter devises a performance modeling approach for the

hardware accelerators. We choose GPU as the representative platform since GPU dominates state-of-

the-art high performance computing realm. Moreover, the performance modeling work on GPU could

also provide insights on similar study with other hardware accelerators.

As a mainstream accelerator, GPU plays a crucial role in scienti�c computing and therefore lots

of research works focused on its performance analysis and prediction. To fully exploit the computing

power of GPU, program developers need a deep understanding of its parallel working mechanism,

in order to e�ciently process the workload at runtime. �is poses a challenge for non-expert users

because they have no prior knowledge about elaborate parallel programming. To solve this, two ap-

proaches, namely auto-tuning and performance estimation, are used to help seek the optimal execution

from the vast program design space. Traditional auto-tuning searches through either the whole [74]

[75] or a sliced [76] [77] design space, which causes a considerable amount of time. Although this time

cost can be reduced by optimization [78] or machine learning based algorithms [79], the relevance

between the program input con�guration and the resulted performance gain still remains obscure.

�erefore, performance estimation is essential to crack the internal program runtime behavior so as

to improve the external program execution e�ciency.

State-of-the-art GPU performance estimation still su�ers from several constraints. First, perfor-

mance model always needs to be subtly tuned for the appropriate con�gurations of the target program

77

5. PERFORMANCE ESTIMATION FOR OPENCL KERNELS ON GPUS

to obtain convincing estimations. �is makes it rather di�cult to derive a general-purpose instead of

application-oriented method. �e reason is that general parallel applications intrinsically include large

amounts of adjustable parameters which could individually or jointly a�ect the runtime performance.

Secondly, performance estimation approaches can hardly keep up with the rapid architectural change

of contemporary GPUs, due to the continuously promotion and upgrade of COTS products. Although

machine learning based methods [80] [81] [82] are applicable to general platforms, the o�-line feature

sampling of the hardware counter metrics over the huge design space incurs a signi�cant amount of

time and the trained model is sensitive to unknown applications. Last but not least, there still exists

possibility to improve the accuracy and usability of state-of-the-art GPU performance models [83]. Al-

though �ne-grained GPU simulators could give rather accurate estimations, the extremely large time

consumption makes it unsuitable for practical use [84] [85].

5.1 Overview

To address the aforementioned issues, this chapter gives a hybrid framework to estimate the perfor-

mance of parallel applications on the GPU. �e framework targets the cross-platform OpenCL [14]

workload so that it can still be applied to other accelerators. �e high-level kernel source code is

�rst transformed into LLVM [86] Intermediate Representation (IR) instructions, from which the pro-

gram execution trace is generated based on GPU’s philosophy of parallelism. A�erwards a lightweight

simulator is developed to dynamically consume the arithmetic and memory access operations in the

execution trace in granularity of 32 work items or so-called warps. �e hardware speci�cation and

micro-benchmarking metrics are also fed to this simulator to obtain the estimated execution time.

In contrast to conventional analytical or machine learning based methods, the proposed framework

does not require extra hardware performance counter metrics captured by a third-party pro�ler, or

measurement results which are obtained a�er executing the whole or a portion of the target kernel

before the estimation. Meanwhile, unlike �ne-grained GPU simulators that spend simulation time

in the scale of hours [87] [88], this framework can give estimation results in a few seconds. For the

evaluation, the framework is validated with 20 di�erent kernels from the Rodinia [2] benchmark. �e

contributions of the work in this chapter are as follows:

• �is chapter proposes a hybrid framework that combines source-level analysis and trace-based

simulation to predict the performance of GPU kernels. �e execution trace of the target kernel

is statically generated and then simulated to estimate the runtime performance.

• A loop-based bidirectional branch search algorithm is given to extract the kernel execution trace

78

5.2 Related Work

that models the warp execution �ow of the GPU kernel.

• A lightweight simulator is developed to mimic the kernel execution and then predict the runtime

performance results, taking into consideration both the IR instruction pipeline and cache mod-

eling. �e simulator can accurately predict the performance of kernels running across di�erent

GPU platforms in a few seconds.

• �e accuracy and practicability of the framework is demonstrated with the Rodinia [2] bench-

mark and a real-world application, on four Nvidia GPUs across two generations of recent archi-

tectures.

�e remainder of this chapter is organized as follows: Section 5.2 is related work and Section

5.3 gives overview of the proposed framework. Section 5.4 and Section 5.5 presents the source-level

analysis and trace-based simulation, respectively. Section 5.6 gives evaluation results and Section 5.7

presents a lane detection case study. Section 5.8 concludes the work in this chapter.

5.2 Related Work

�ere exist lots of studies targeting performance estimation of applications or benchmarks [89] [90]

on CPUs [91] [92]. �ese approaches can provide reference to the performance analysis of GPUs.

�e last decade has witnessed an overwhelming amount of research work targeting the perfor-

mance modeling of GPU platform. Generally speaking, GPU performance modeling techniques can be

divided into four categories: analytical, machine learning based, measurement based and simulation

based methods. �e following paragraphs brie�y review the literatures and introduce these approaches

in an inductive way.

Analytical methods give an abstraction of the workload and hardware and then use equations to

deduce the elapsed time of executing the workload on the target platform. Hong et al. [93] proposed

a static model using memory and computation warp parallelism as metrics to estimate the kernel

execution time. Kothapalli et al. [94] presented a high level prediction method based on BSP [95],

PRAM [96] and QRQW [97] models. A similar work in [98] is also based on BSP [95]. Baghsorkhi et al.

[99] used work �ow graph and program dependency graph to abstract GPU kernels and then extracted

thread- and warp-level parameters to calculate kernel execution time. Zhang et al. [100] presented

a quantitative model using micro-benchmarks to obtain hardware metrics consisting of instruction

pipeline and memory access time. Song et al. [101] proposed a method using similar mechanism.

Wang et al. [102] presented a model involving core and memory frequency scaling. Zhou et al. [103]

79

5. PERFORMANCE ESTIMATION FOR OPENCL KERNELS ON GPUS

proposed a performance analysis framework at assembly instruction level. Most analytical methods

require hardware performance counter parameters which indicates the pre-execution of the kernel

before prediction. In addition, some models are either outdated for new architectures or di�cult to

use due to the substantial calibration e�ort.

Machine learning basedmethods construct the training data set by sampling program- and platform-

related metric features and then use trained model to predict the runtime performance. Baldini et al.

[104] used K-nearest neighbor algorithm to estimate GPU performance from multi-core CPU runs. A

similar work in [80] used forward feature selection stepwise regression and ensemble prediction to

predict GPU performance with CPU implementation. Wu et al. [81] estimated the performance and

power of GPU using K-means clustering and neural network. O’neal et al. [82] used random forest

to analyze DirectX workload in the pre-silicon design stage. Zhang et al. [105] adopted random for-

est to investigate performance and power consumption of ATI GPUs. Amarı́s et al. [106] compared

the accuracy of di�erent machine learning methods to predict the performance of Nvidia GPUs. Ma-

chine learning based methods can estimate the performance of GPU applications with fast response,

since the burdensome training stage is performed o�-line. However, it lacks a clear explanation of the

relationship between the trained features and the predicted outcome. In addition, the indispensable

feature sampling of the hardware counter values over the huge design space is tedious and violates

the principle of predicting the performance before the actual execution.

Measurement based methods grasp the program behavior by sample running a fraction of the target

workload, or the so-called mini-kernel, to seek the correlation and interference between individual

work groups and then estimate the consumed time when the entire kernel is to be executed. Dao et

al. [107] developed hand-cra�ed kernels to crack GPU’s warp scheduling policies and then proposed

a saturation point based linear model to estimate the kernel execution time. In general, measurement

based approaches are universally applicable to di�erent architectures, however the e�ort to calibrate

model parameters for various applications and platforms is onerous.

Simulation based methods simulate in details how GPU processes the workloads in cycle level and

reserve the intermediate status of the hardware and so�ware functional modules during runtime. In

this way, program behavior and performance can be e�ectively and accurately sketched. Gerum et al.

[108] proposed a method for source level performance simulation of GPU. �ere exists some widely

used simulators such as GPGPU-Sim [3], Barra [109] and Ocelot [110]. However, these simulators are

either not actively maintained or subjected to out-of-date architectures. Recently a RTL-level simulator

[111] is announced but still few studies are reported.

With regards to GPU simulation acceleration, there exist some research that either choose a portion

80

5.3 Framework Overview

Source Code

Clang LLVM analyzeKernel Pass

IR Instruction Pruning

Loop Bound Analysis

CFG Branch Extraction

Runtime Behavior Analysis

Warp-based Branch Analysis

Execution Trace Extraction

Cache Behavior Analysis

IR Pipeline SimulationNVCC

Hardware specification

Micro-benchmarking

Bitcode

Kernel compilation information

CFG, branch condition, loop bound, etc.

Execution trace, cache miss info.

Cache spec.

SM config., etc.

Arithmetic latency
Memory access latency
Cache config.

Estimated Time

Figure 5.1: Overview of the performance estimation framework.

[112] or perform a pre-characterization [113] of target workloads and then derive the execution time

from the simulation results. �ere are also studies that focus on the generation of GPU benchmarks

[114] to reveal GPU’s performance spectrum, and modeling of GPU memory systems [115]. �ese

studies are supplementary for GPU performance estimation techniques.

Di�erent to the methods mentioned above, the work in this chapter proposes an analytical and

simulation combined framework to predict the performance of parallel workloads on GPU. �e frame-

work contains a lightweight IR-level simulator to perform a dummy execution of target kernels on

GPU, which does not need any hardware performance counter values as model inputs. With this

mechanism, an accurate estimation of the kernel execution time is obtained with rather li�le simula-

tion time cost.

5.3 Framework Overview

Figure 5.1 gives the overview of the proposed performance estimation framework. �e kernel source

code is �rst processed by Clang compiler to generate the LLVM bitcode �le that contains IR instructions

of the target kernel. Meanwhile, the source �le is passed to NVCC compiler to obtain kernel compila-

tion information that includes the detailed runtime resource usage of the kernel, such as the number

of used on-chip registers and used shared memory size. �e framework mainly contains two modules,

i.e. the source-level analysis and the subsequent trace-based simulation. In the source-level analysis

module, the kernel bitcode �le is processed by an LLVM analyzeKernel pass and the execution trace

is subsequently extracted from the kernel runtime behavior analysis. �e analyzeKernel pass prunes

IR instructions in the basic blocks so that only the arithmetic and memory access operations, which

contribute to the kernel execution time, are retained. �e execution �ow information, such as the loop

statements and the branches, is extracted and analyzed for the following execution trace generation.

Given the Control Flow Graph (CFG) and the execution �ow information, the kernel runtime be-

81

5. PERFORMANCE ESTIMATION FOR OPENCL KERNELS ON GPUS

havior is then analyzed and the execution trace is generated in granularity of warps. �e cache mis-

s/hit information is subsequently obtained according to the cache speci�cation and the execution trace.

�e simulation module mimics the kernel runtime behavior by virtue of constructing an IR instruc-

tion pipeline and consuming the execution trace iteratively. A set of micro-benchmarks are used to

calibrate the target GPU to obtain the hardware metrics such as latencies of the arithmetic operations,

latencies of the memory access operations, and the cache con�gurations. �ese hardware metrics,

together with the hardware speci�cation, the kernel compilation information, the kernel execution

trace, and the cache miss information, are fed to the simulator to estimate the �nal execution time.

5.4 Source-level Analysis
5.4.1 LLVM analyzeKernel Pass

�e analyzeKernel pass collects the basic blocks and builds the CFG of the target kernel. For each basic

block, the IR instructions are documented to construct the intra-block execution trace. �e execution

�ow information used to generate the execution trace is obtained via the three steps illustrated as

follows.

5.4.1.1 IR Instruction Pruning

�is work assumes that the execution time is mainly consumed by the arithmetic and memory ac-

cess operations. �erefore for each basic block, the time-cost-irrelevant instructions, such as the

LLVM-speci�c intrinsic annotations llvm.lifetime.start, llvm.lifetime.end, memory address calculation

instruction getelementptr, the data type conversion instructions trunc, ext, and so on, are �ltered out.

Note that here these instructions are only removed from the execution trace, but are still used for the

later control �ow analysis.

As for function calls, it is observed that the call instruction appears only when invoking 1© the

OpenCL work-item built-in functions, such as get global id, get local id, etc., 2© the synchronization

function barrier, or 3© the LLVM intrinsic functions such as llvm.fmuladd.f32, etc. �e subfunctions

in the source code are replaced by detailed instructions and therefore non-existent in the bitcode �le.

Consequently, all the related information about these function calls is recorded to assist the execu-

tion trace generation whenever necessary. �e OpenCL work-item built-in functions are highlighted

because their return values typically serve as memory address indices that directly determine the mem-

ory access pa�ern. �e synchronization function is labelled as a �ag that noti�es the wait signal of the

warp execution in the pipeline. �e LLVM intrinsic functions are also converted to the corresponding

arithmetic operations in the kernel execution trace.

82

5.4 Source-level Analysis

5.4.1.2 Loop Bound Analysis

Instead of deducing a precise value of the loop trip count, this work a�empts to estimate the loop bound

of each basic block in the loop. �e reasons are multifold. First, state-of-the-art static loop analysis

is still an open problem [116] and therefore it is impossible to adopt a generic method to obtain the

loop trip count of arbitrary code blocks. Secondly, in general, the input of parallel applications is a

regular rectangle- or cuboid-like grid that can be ideally decomposed and mapped to the threads on

the GPU. �e formation of the high-level loop code is regular in the majority of the cases. Lastly, the

loop bound manifests an extreme case of the execution of the loop and this scenario should also be

considered when analyzing the performance of the kernel executions.

�e framework �rst uses Loopus [117] to analyze the loop bound. It is observed that Loopus can

handle simple loops, i.e., when the loop induction variable is a �xed constant. For more complicated

loops, the loop bound is �rst determined by performing an LLVM Scalar Evolution (SE) analysis [118]

of the basic blocks in the loop. �e SE analysis gives an explicit bound if the target basic block either

is within a single-exit loop or has a predictable backedge taken count.

When both Loopus and LLVM SE analysis fail to give outputs, an extra static analysis of the loops

is performed to further extract the loop bound. �e main idea of this static analysis is to identify the

loop induction variable and track its value at the scope of the entire kernel function. First, the exit

basic blocks of the loop are collected, from which the true exit basic block is set as the loop latch block.

�e terminator of the true exit basic block is the loop induction instruction and it is observed that for

all the test kernels this instruction is a conditional branch form of a br instruction. �e conditional

branch has two arguments, of which the �rst is either the loop induction variable or the loop induction

variable updated with an increment of the loop step size, and the second is the end value, which is loop

invariant, of the loop induction variable. In LLVM, the loop induction variable is represented as a Static

Single Assignment (SSA) and this SSA could be: 1© binary operation such as add, mul, etc. 2© load

instruction. 3© phi instruction. For case 1©, all the phi nodes in the loop header block are traversed

and the loop induction variable is set as the phi node of which the return value equals the updated loop

induction variable, when taking the loop latch block as the incoming value. With regards to case 2©,

all the store instructions that write data to the pointer argument of this load instruction are tracked,

by virtue of the memory dependency analysis. �e memory write value of the store instruction that

lies outside of and closest to the loop is deemed the start value, which is also loop invariant, of the

loop induction variable. For case 3©, all the phi nodes in the loop header block are also traversed and

the phi node which equals the loop induction instruction is extracted. �en the updated value of the

loop induction variable equals the return value of this phi node when taking the loop latch block as

83

5. PERFORMANCE ESTIMATION FOR OPENCL KERNELS ON GPUS

the incoming value. With the start value, the end value, and the step size of the loop induction variable

obtained, the loop bound is calculated as the induction time of the loop induction variable within the

loop: loopBound = endV alue−startV alue
stepSize .

With regards to the nest loops, the analyzed result only indicates the loop bound of the basic block

at its current loop level and each of the outer loop bound values equals the loop bound value of one

of the preceding basic blocks, which lies exactly at its corresponding loop level. For each basic block

in the nest loop, at each upper loop level, the closest preceding basic block is recorded so that the nest

loop chain is maintained, for ease of the later execution trace generation. If the deduced loop bound

relies on the induction variable of the outer loop, then the di�erent loop bound values are also recorded

when the outer loop iterates. During the experiments, the aforementioned static analysis manages to

give the loop bound of all the loop basic blocks in the test kernels.

5.4.1.3 CFG Branch Extraction

�e triggering condition of each branch is extracted by analyzing the phi and br instructions within the

head and tail basic blocks of that branch path. �e br instruction is associated with a cmp instruction

from which the branch condition can be deduced. �e branch condition is an expression that contains

the logical operation combination of several variables of which some are conditional variables and the

other are constants. �e conditional variable is represented as an SSA and it can be further re�ned

with one or more SSAs associated with it. �is is done by an iterative search, which terminates when

the termination SSA is: 1© a kernel argument. 2© a temporary variable. 3© a memory load of the data

pointed by a kernel argument, which is a pointer parameter.

5.4.2 Runtime Behavior Analysis
5.4.2.1 Warp-based Branch Analysis

To determine whether a branch condition is hit or miss, the execution of the branch paths is evaluated

in granularity of warps. As shown in Section 5.4.1.3, the values of the branch conditional variables can

be classi�ed into three cases. For case 1©, this branch path is easily determined to be hit or miss since

the input kernel arguments are known. In case 2©, if the temporary variable is thread-ID-dependent,

i.e., the variable is the return value of the aforementioned OpenCL work-item built-in functions, then

this branch path can also be determined to be hit or miss, given the warp ID and the global and local

work size con�guration of the target kernel. If the temporary variable is the loop induction variable,

this branch path can also be masked or unmasked, depending on the logical result of the branch condi-

tion at di�erent loop iterations. For the remaining cases this branch path is assumed to be always hit.

84

5.4 Source-level Analysis

For case 3©, because the value of this memory load can only be determined at runtime, for the sake of

conservation this branch path is also assumed to be always hit.

5.4.2.2 Execution Trace Generation

Let’s �rst consider how GPU walks along the CFG to execute the kernel. For Nvidia GPUs, each

OpenCL work item instance is mapped to a thread and a group of 32 threads are bound together to

execute the instance in lock-step manner. �is group of threads is called a warp for Nvidia GPUs and

the counterpart for AMD GPUs is termed wavefront. When there exists branch divergence within a

warp, the threads would consume the instructions in both branch paths and each thread only reserves

the processed result of the path where the branch condition is hit. Turning back to the CFG, the basic

blocks within di�erent branches are consecutively visited as if they are sequentially processed.

�e execution trace is generated in granularity of warps. �erefore for the case when the branch

condition is thread-ID-dependent, the branch miss information is transformed and associated with the

warp ID, given the global and local work size con�gurations. �e basic block is represented as the data

structure shown in Listing 5.1.

struct BasicBlockInfo {
string BBName; // name of the current BB
list<int> branchMissWarpID; // IDs of the warps that trigger the branch miss
// branch miss information at di�erent loop iteration
// string: name of the basic block that triggers the branch miss
// int: the exact iteration number for basic block #string when branch miss
map<string, int> branchMissLoopCon�g;

int loopDepth; // greater than 1 when current BB is in a loop
string loopBoundExpr; // the loop bound expression
// BBs of which the loop bounds determine current BB’s loop bound
vector<string> associatedBBs;

string precedBB; // preceding BB closest to current BB at upper loop level
vector<int> bounds; // integer values of the loop bounds at each loop level
vector<int> unvisitedCount; // store the visited counters at each loop level
bool isVisited; // true if current BB is visited over at each loop level

};
list<BasicBlockInfo> BBInfoList; // list of data description for BBs in the CFG

Listing 5.1: Sample code of the basic block data description.

�e information about the branch miss due to warp divergence and loop iterations is respectively

stored in the branchMissWarpID and branchMissLoopConfig �elds. �e loopDepth �eld indicates the

loop depth of the basic block. Particularly, this value is set to 1 if the basic block is not in a loop. �e

analyzed loop bound result is stored in the loopBoundExpr �eld. As this expression only indicates

the loop bound of the basic block at its current loop level, the actual loop bound values at each loop

85

5. PERFORMANCE ESTIMATION FOR OPENCL KERNELS ON GPUS

Algorithm 5: Execution Trace Generation

Input: CFG Entry Node B, CFG Exit Node E, Backedge Set BE, Non-backedge Set NE, Basic Block Data

Description List BBInfoList, Warp ID wid, Mask Array M
Output: Kernel Execution Trace T

1 T← ∅, T← ∅, τ ← B . Initialize the execution trace with entry node B

2 updateExecTrace(τ , T, BBInfoList, wid, M)

3 ST← ∅ . Initialize a stack to store the header nodes of multiple branch paths

4 while τ 6= E ∧¬ E.isVisited do . Terminate when exit node is visited

5 τ ← getTraceSuccNode(τ , B, BBInfoList, ST, T, BE, NE)

6 updateExecTrace(τ , T, BBInfoList, wid, M)

7 for i← 0 to T.size() do
8 if M [i]! = 0 then . Remove branch miss nodes from the generated trace

9 T← T+ {T.at(i)}

10 return T

level are calculated each time this basic block is visited and these values are stored in the bounds

�eld. If the loop bound of the basic block is dependent on other basic blocks, these associated basic

blocks are stored as well (the associatedBBs �eld). �e preceding basic block that is closest to the

current basic block but lies at the upper loop level is stored in the precedBB �eld so as to maintain

the nest loop chain. During the execution trace generation, the visited counters of the basic block (the

unvisitedCount �eld) are recorded to indicate the visited status of the basic block, i.e., at which loop

level and with how many times the current basic block is already visited. �e isVisited boolean is set

to TRUE only if the basic block is visited over at each loop level with the number of times equal to the

actual loop bound. Finally, the data descriptions of all the basic blocks in the CFG are stored in a list

BBInfoList.

Given the kernel CFGG = (V,E,B, E), where V is the set of basic block nodes, E is the set of basic

block connections, B is the entry node and E is the exit node, the kernel execution trace is generated

via a loop-based bidirectional branch search shown in Algorithm 5. �e CFG is �rst passed to a circular

check to split the edge set E into the backedge set BE and the non-backedge set NE. In this way, the

CFG is transformed into a Directed Acyclic Graph (DAG) and the paths between any two nodes can be

represented as �nite sequences of which all the nodes belong to the non-backedge set NE. By default

we have the following assumption:

Denote Vc as a set of nodes that construct a circle c in the CFG, if there exists another circle node set

Vc′ , then formula (Vc ⊂ Vc′) ∨ (Vc ⊃ Vc′) ∨ (Vc ∩ Vc′ = ∅) always holds.

�is assumption is reasonable for real-world program because a node in a loop can only be reached

from the nodes in its surrounding loops but can never reach the nodes in another loop that is beyond

all of the outer loop layers of the original loop. �e above assumption ensures that no backedge would

86

5.4 Source-level Analysis

Algorithm 6: updateExecTrace(τ , T, BBInfoList, wid, M)

Input: Candidate Node τ , Candidate Trace T, Basic Block Data Description List BBInfoList, Warp ID

wid, Mask Array M

1 τ .bounds← calcLoopBound(τ , BBInfoList) . update loop bounds

2 loopLevelVisitedCount← 0, unvisitedLoopLevel← 0

3 isBranchMissWarp← FALSE, isBranchMissLoop← FALSE
4 for i← 0 to τ .loopDepth do
5 if τ .unvisitedCount〈i〉 = 0 then . i-th loop level is visited

6 loopLevelVisitedCount← loopLevelVisitedCount+1

7 else . currently the trace iterates exactly at the i-th level of the loop

8 unvisitedLoopLevel← i
9 break

10 if loopLevelVisitedCount 6= τ .loopDepth then
11 for j ← 0 to unvisitedLoopLevel do . reset loop bounds

12 τ .unvisitedCount〈j〉 ← τ .bounds〈j〉
13 τ .unvisitedCount〈0〉 ← τ .unvisitedCount〈0〉 − 1

14 else . τ is visited over when the visited-loop-level count equals the loop depth

15 τ .isVisited← TRUE

16 isBranchMissWarp← checkBranchMissWarp(τ , wid)

17 isBranchMissLoop← checkBranchMissLoop(τ , BBInfoList)

// set the mask value to 0 when τ is a branch miss node, otherwise set it to 1

18 M.add(¬ isBranchMissWarp ∧ ¬ isBranchMissLoop)

19 T← T+ {τ}

wander among di�erent circles in the CFG.

To generate the kernel execution trace, a loop-based bidirectional branch search of the CFG is

performed. As shown in Algorithm 5, the execution trace starts from the entry node B and terminates

when the exit node E is visited. A node stack ST is used to store the header nodes of multiple branch

paths. An array M is used to store the mask values for each node in the candidate trace T. �e mask

value is set to 0 when the node to be appended to T is a branch miss node. For each candidate node τ

to be appended to T, a function updateExecTrace() is invoked to update the visited counters of τ and

another function getTraceSuccNode() is used to obtain the successor node of τ to be appended to T.

Finally, the branch miss nodes are removed from T, based on the mask arrayM , to generate the kernel

execution trace T.

�e implementation of function updateExecTrace() is shown in Algorithm 6. First, the loop bounds

of the candidate node τ can be determined because these values are related to the loop bound expres-

sion (τ .loopBoundExpr) and the current loop iterations and loop bounds of the associated basic blocks

(τ .associatedBBs), and all these information can be calculated before visiting τ at its current loop level

(Line 1 in Algorithm 6). Subsequently, the visited counters of τ are checked to determine at which

87

5. PERFORMANCE ESTIMATION FOR OPENCL KERNELS ON GPUS

loop level the node τ is visited (Line 4−9 in Algorithm 6). Each time the unvisited count value at the

innermost loop level is decreased by 1 (Line 13 in Algorithm 6). �e update of the visited counters is

implemented via a decrement operation with borrowing, i.e., each time the unvisited count value at

loop level λ is reduced to zero, this value is reset to the loop bound at loop level λ and the unvisited

count at loop level (λ+1) is decreased by 1 (Line 11−12 in Algorithm 6). If the unvisited count values

of τ at all loop levels are zero, then this node is labeled as visited (Line 15 in Algorithm 6). At last, the

branch miss information is used to determine whether τ is a branch miss mode. �e corresponding

mask value is wri�en to the mask array M and node τ is appended to the candidate trace T (Line

16−19 in Algorithm 6).

Algorithm 7 gives the detailed implementation of the function getTraceSuccNode(). To �nd the

successor node of τ to be appended to T, the backedge set BE is �rst searched to get the destination

node (element in DBE) of the backedge whose source node is τ (Line 2−15 in Algorithm 7). �e candi-

date backedge nodes (elements in D′BE) are chosen from the nodes in DBE of which the unvisited count

value at the innermost loop level equals neither zero nor the loop bound value (Line 4−6 in Algorithm

7). �e successor node of τ to be appended to T is either itself if τ is in D′BE or the closest-to-τ node

in the intersection set of D′BE and the path node set PB in which each node denotes a reachable path

to τ (Line 8−15 in Algorithm 7).

If there exists no backedge that starts from τ , or all the backedges starting from τ are visited N

times whereN is the loop bound in the innermost level, the non-backedge set NE is searched to obtain

the closest-to-τ non-backedge destination node set D′NE (Line 16−38 in Algorithm 7). �e �rst node

in D′NE is chosen as a candidate successor node sne if none of the nodes in D′NE is a source node of a

backedge, otherwise this source node becomes sne (Line 26 in Algorithm 7). If node stack ST is not

empty and the stack top node ST〈topElement〉 lies between a reachable path from the entry node B

to sne, then the successor node of τ to be appended to T is ST〈topElement〉, otherwise the successor

node to be appended to T is sne (Line 27−33 in Algorithm 7). If ST is empty, then sne is the successor

node of τ to be appended to T and the remaining nodes in D′NE are pushed into ST (Line 35−38 in

Algorithm 7).

If all the edges starting from τ are visited, then the stack top node ST〈topElement〉 is popped as

successor node of τ to be appended to T (Line 40−41 in Algorithm 7).

5.4.2.3 Cache Behavior Analysis

As modern GPUs have rather complex memory hierarchy that comprises caches, we �rst use micro-

benchmarks to obtain the cache hit and miss latencies of the local, constant, and global memory ac-

88

5.4 Source-level Analysis

Algorithm 7: getTraceSuccNode(τ , B, BBInfoList, ST, T, BE, NE)

Input: Current Trace Tail Node τ , CFG Entry Node B, Basic Block Data Description List BBInfoList,
Node Stack ST, Candidate Trace T, Backedge Set BE, Non-backedge Set NE

Output: Candidate Trace Successor Node τ (overwri�en)

1 DBE ← ∅, D′BE ← ∅, DNE ← ∅, D′NE ← ∅, SNE ← ∅
// �rst try to �nd a candidate successor node from the backedges

2 if ∃ be ∈ BE, τ = be.srcNode then
3 DBE = {be.destNode | be ∈ BE, τ = be.srcNode}
4 foreach dbe ∈ DBE do . get candidate nodes that are not visited over
5 if dbe.unvisitedCount〈0〉% dbe.bounds〈0〉 6= 0 then
6 D′BE ← D′BE + {dbe}

7 if D′BE 6= ∅ then
8 if τ ∈ D′BE then . there is a backedge from τ to itself
9 return τ . τ is not visited over at its current loop level

10 else
11 foreach d′be ∈ D′BE do
12 PB ← getNodesInPath(d′be, τ)

13 IBE ← D′BE ∩ PB
14 if IBE 6= ∅ then
15 return IBE〈0〉 . return the closest-to-τ node

// backedge search fails, try to �nd the successor node from the non-backedges
16 else if ∃ ne ∈ NE, τ = ne.srcNode then
17 DNE = {ne.destNode | ne ∈ NE, τ = ne.srcNode}
18 foreach dne ∈ DNE do . get the closest-to-τ non-backedge nodes
19 PN ← getNodesInPath(τ , dne)

20 if DNE ∩ PN = ∅ then
21 D′NE ← D′NE + {dne}

22 if D′NE 6= ∅ then
23 foreach d′ne ∈ D′NE do . get nodes in other backedges
24 if ∃ ben ∈ BE, d′ne = ben.srcNode then
25 SNE ← SNE + {d′ne}

26 sne = (SNE 6= ∅) ? SNE〈0〉 : D′NE〈0〉 . candidate successor
27 if ST 6= ∅ then
28 PS ← getNodesInPath(B, sne)

29 if ST〈topElement〉 ∈ PS then
30 τ ← ST〈topElement〉, ST.pop()
31 else . the stack top node denotes another branch path
32 τ ← sne . but the current path is not visited over

33 return τ
34 else . the current path is the last path of the current branch
35 D′NE ← D′NE − {sne}
36 foreach d′′ne ∈ D′NE do . store the remaining header nodes
37 ST.push(d′′ne)

38 return sne

// all edges starting from τ are visited, get the successor from the node stack
39 else
40 τ ← ST〈topElement〉, ST.pop()
41 return τ

89

5. PERFORMANCE ESTIMATION FOR OPENCL KERNELS ON GPUS

cesses. As the local memory in OpenCL is mapped to the GPU shared memory, notice that the local

memory access has no caching issue, therefore it does not di�erentiate the cache hit/miss access, which

is also observed and demonstrated by the micro-benchmarking results. When handling the constant

and the global memory accesses, the SMs �rst try to fetch the data in the constant or L2 data cache

and if cache miss occurs, the data are fetched again from the o�-chip DRAM. To model this caching

behavior, the constant data cache and the L2 cache are dissected with micro-benchmarks [119] [120] to

obtain the detailed cache con�gurations, such as the cache size, the cache line size, and the cache asso-

ciativity. In OpenCL, the observed constant memory size is 64KB and the DRAM size is obtained from

the o�cial documents. �e L2 cache size is obtained from the CUDA built-in querying commands.

�is work assumes that all the caches use the Least Recently Used (LRU) replacement policy.

For each memory access, i.e. the load or store IR instruction in the execution trace, the memory

referencing address is obtained to analyze the number of memory transactions that a warp would

perform for this memory instruction, since the threads in a warp o�en coalesce the data fetch if the

memory addresses for the threads are contiguous. As the kernel is not executed on the real platform,

a virtual addressing space of the constant data cache and the L2 cache is constructed, and then the

speci�c addresses are assigned to the constant and global variables according to their data size. In this

way, the cache behavior is analyzed using the reuse distance theory and the cache hit/miss for each

memory transaction is estimated given the cache con�guration [121].

5.4.2.4 Discussion

Limitation. As this framework does not use pro�ling or measurement results of the target kernel,

the execution behavior of irregular kernels cannot be exactly determined by the static analysis. Con-

sequently the loop bound analysis and the warp-based branch analysis produce slightly pessimistic

results when the values of the loop trip count and the branch condition rely on the values of the pro-

gram runtime parameters. However, the major part of the applications that can potentially bene�t

from GPU acceleration exhibit relatively regular shapes, i.e., the loop trip count is rather stable and

the number of branches is minimized by the program developer as well. With regards to the kernels

with data-dependent divergence, because the static analysis module can still extract the branch con-

dition and loop iteration variables of the control statements, the dynamic execution �ow can also be

determined if all the input data are known in advance. However this needs the step-by-step simulation

of the program execution, which may incur much more time consumption.

Scalability analysis. �e proposed performance analysis framework in this chapter targets OpenCL

kernels and therefore it can be extended to any platform that supports OpenCL applications. For

90

5.5 Trace-based Simulation

other parallel languages such as CUDA, since the framework takes LLVM bitcode �les as input, CUDA

kernels can also be analyzed if either the LLVM bitcode �le of the kernel can be obtained or the CUDA

kernels can be transformed into the OpenCL counterparts.

5.5 Trace-based Simulation

�e execution trace T generated from the source-level analysis is warp-ID-dependent and during the

simulation each warp consumes its corresponding trace. To estimate the kernel execution time with

given program input and the global and local work size con�gurations, the framework constructs an

IR instruction pipeline and then simulate the trace on the pipeline in granularity of a round of active

work groups.

5.5.1 IR Instruction Pipeline
5.5.1.1 Determining the Number of Active Work Groups

�e number of active warps can be obtained by the o�cial CUDA occupancy calculator. For descriptive

integrality, the derivation is given in details as follows. Given a kernel with NDRange con�guration as

global work size Sglobal and local work size Slocal. Each work item consumes Nreg on-chip registers

(private memory) and Nsm bytes shared memory (local memory). �e number of active work groups

Nawg per Streaming Multiprocessor (SM) is subject to three constraints: the architectural limit, the

register limit, and the shared memory limit. �e architectural limit of the allocatable work groups is

Nlim wg arch = min(Bwg SM , b
Bwarp SM
Nwarp per wg

c) (5.1)

Nwarp per wg = d
Slocal
Twarp

e, (5.2)

whereNwarp per wg is the number of warps per work group, Twarp is the number of threads per warp,

Bwg SM and Bwarp SM is the maximum allocatable work groups and warps per SM, respectively. �e

number of total on-chip registers limits the maximum concurrent work group as

Nlim wg reg =

{
0, Nreg > Breg wi
bNlim warp reg

Nwarp per wg
c × bBreg SM

Breg wg
c, otherwise (5.3)

Nlim warp reg = floor(
Breg wg

ceil(Nreg × Twarp, Greg)
, Gwarp), (5.4)

where Breg wi, Breg SM , and Breg wg are the maximum allocatable registers per work item, SM, and

work group, respectively. Greg and Gwarp are the minimum allocation unit of register and warp,

91

5. PERFORMANCE ESTIMATION FOR OPENCL KERNELS ON GPUS

respectively. Nlim warp reg is the maximum number of potentially allocatable active warps subject

to limited on-chip registers. ceil(x, y) and floor(x, y) are functions used to round the value x up

and down to the nearest multiple of y, respectively. �e number of active work groups due to shared

memory limit is calculated as

Nlim wg sm =

{
0, Nsm alloc > Bsm wg

b Bsm SM

Nsm alloc
c, otherwise

(5.5)

Nsm alloc = ceil(Nsm, Gsm), (5.6)

where Bsm wg and Bsm SM are the maximum allocatable shared memory size per work group and

SM, respectively. Nsm alloc is the actual allocated shared memory size per work group and Gsm is the

minimal shared memory allocation size.

With Equation (5.1), (5.3) and (5.5), the number of active work groups for a kernel is therefore

determined as

Nawg = min(Nlim wg arch, Nlim wg reg, Nlim wg sm). (5.7)

5.5.1.2 Determining the Latencies of the Arithmetic and Memory Access Operations

�e execution trace consists of the arithmetic and memory access operations to be executed on the

target GPU. To obtain the latencies of these operations, a set of OpenCL micro-benchmarks is used to

measure the arithmetical and memory throughput of the target GPU [122]. �is work considers the

basic arithmetic operations listed in Table 5.1 and the latencies of memory access from the OpenCL lo-

cal, constant, and global memory. �e private memory access is essentially on-chip register read/write

and this memory access is deemed arithmetic operation since the pre-allocated registers are excluded

by individual work item and therefore accessing them incurs no contention latency. �e pro�ling of

basic arithmetic operations is conducted over a set of computation-intensive kernels which repeatedly

execute the desired operations for millions of times. To prevent the compiler optimization, the source

and destination operands are exchanged a�er each time the operation is completed. By �ne tuning the

local and global work size of each kernel, the number of active warps per SM is thereupon dynami-

Table 5.1: List of pro�led arithmetic operation types.

Data type Operations
int/uint add, sub, mul, div, rem, mad, shl, shr

�oat/double add, sub, mul, div, mad

�oat/double sin, cos, tan, exp, log, sqr, sqrt

92

5.5 Trace-based Simulation

Computation Memory waiting Constant memory delay
Local memory delay Global memory delay Barrier

Warp
1
2
3
4
5
6
7
8

Group #1

Group #2

0 t1 t2 t3 t4 . . . Timelinetime interval

Synchronization

Synchronization

tgap

Figure 5.2: Simulation of a sample execution trace on the warp pipeline.

cally regulated so as to obtain the corresponding execution latencies ranging from the minimal to the

maximal a�ainable number of active warps.

With regards to the memory access, the framework uses pointer chasing to generate continuous

data access to a large array �lled in the respective memory space. To measure the cache hit and miss

latencies, the pointer chasing stride o�set is set to 1 and the cache line size, respectively. During

the simulation, the memory latency is scaled with a factor equaling the ratio of the maximal to the

actual number of active warps, since all the active warps share the memory bandwidth equally. �e

pro�led results of the memory access characterize the average time period that starts from the memory

instruction issue stage to the �nal data acquisition stage. We term this whole time period as the

memory access “latency” and this time cost is di�erentiated from the time period when the data is

actually read/wri�en by the hardware control circuit, which is called memory access “delay”. �is

work assumes that memory access delay is �xed while memory access latency varies depending on

whether the access is a cache hit or miss.

5.5.2 Calculating the Trace Simulation Time

Given the kernel execution trace T, the latencies of the arithmetic and memory access operations LAT,

and the cache miss information cacheMissInfo in the trace, a lightweight simulator is developed to

maneuver a dummy execution of the kernel with a round of active work groups Nawg . A sample

simulation of this active work groups is conducted on the IR instruction pipeline and the time con-

sumption can be denoted as T
spec(LAT,cacheMissInfo)
pipeline(Nawg,T) . �e estimated execution time of the kernel run is

calculated as

Tkernel = T
spec(LAT,cacheMissInfo)
pipeline(Nawg,T) × d Sglobal

Slocal ×NSM
e × 1

Nawg
, (5.8)

where NSM is the total number of SMs on the target GPU.

�e trace simulation is implemented with a group of active warps continually consuming the arith-

metic and memory access operations in presence of the shared resource and cache contention. For each

93

5. PERFORMANCE ESTIMATION FOR OPENCL KERNELS ON GPUS

memory access, it is assumed that memory read/write delay is constant while the waiting period of

servicing memory read/write varies depending on whether the memory access is cache hit or miss.

�e latency of memory read/write is modeled as three parts: the pre-waiting latency, the read/write

delay and the post-waiting latency, of which the sum is the pro�led cache hit or miss latency.

For be�er illustration, Figure 5.2 gives an example to illustrate how an execution trace is fed into the

warp pipeline. �e sample trace is de�ned as (comp, constMemAccess, comp, localMemAccess, barrier,

comp, globalMemAccess). �e number of active work groups is 2 and each work group consists of 4

warps. Each time before a warp consumes a new operation in the trace, it will �rst check whether the

required contention resource is idle. If so it would lock the resource and notify a value denoting the

latency of consuming the current operation, otherwise it would notify a value denoting the time needed

to wait until the resource is released. If the warp hits a barrier for synchronization, it will notify value

0 and wait for the other warps in the same work group to arrive at this barrier. A global timer starts at

time point 0 and increases by a unit of time interval (indicated by the time point of t1, t2, t3, . . . on the

Timeline-axis in Figure 5.2) when all the active warps have noti�ed a time value. During every time

interval, the timer checks the noti�cation time of each warp and chooses the minimum positive time

value as the incremental time interval. Once all the active warps �nish their own traces, the global

timer gives the total time of consuming the execution trace.

5.5.3 Discussion and summary

As observed in Figure 5.2, the execution time of the sample trace is computation-bound and the syn-

chronization latency is hidden by the computation pipeline. However, if there exist more memory

access operations before the barrier, there would be a gap between the 2-nd and 3-rd computation

component (indicated by time point tgap in Figure 5.2) and in this case the synchronization latency

would contribute to the �nal execution time. Consequently, analytical performance estimation meth-

ods are normally subject to kernel variances because the order that the computation and memory

components appear in the execution trace is inconstant and unpredictable, which has a tremendous

impact on calculating the consuming latency of the instruction pipeline.

Table 5.2 summarizes the parameters used in the proposed framework. As shown, this method re-

quires neither the pre-execution of the whole or a portion of the target kernel nor the pro�led results

of the hardware performance counter metrics. �e used information are the program con�guration

parameters, kernel compilation report, and the hardware speci�cations. �e micro-benchmarking met-

rics are obtained by calibrating the target GPU once and these data can be reused for the performance

prediction of all the kernels running on this platform. During the simulation, each kernel takes the

94

5.6 Evaluation Results

same kernel compilation results and the same group of execution traces as inputs. For each speci�c

run, only the corresponding global and local work size con�gurations are fed to the simulator to obtain

the estimated results. Moreover, only a round of active work groups is actually fed to the pipeline and

therefore the simulation time cost is small.

Overall speaking, compared with traditional architectural simulation methods [3], the proposed

framework requires less input information and can give faster estimation outcomes. In addition, the

framework does not require the instruction trace representatives generated from the kernel runs,

which is subject to speci�c workloads and may incur substantial e�ort when the input parameters

vary a lot.

5.6 Evaluation Results

5.6.1 Evaluation Setup

Four COTS GPUs are used to evaluate the performance estimation framework and the detailed in-

formation is shown in Table 5.3. �ese GPUs are from recent Kepler and Maxwell architectures with

di�erent compute capacities so as to demonstrate the robustness of the framework. �e framework

is tested with 20 OpenCL kernels from the Rodinia [2] benchmark. �e evaluation uses the default

Table 5.2: Summary of the parameters used in the performance estimation framework.

No. Parameter De�nition Obtained
1 Sglobal Number of global work size Program con�guration

2 Slocal Number of local work size Program con�guration

3 Nreg Number of registers used per work item Kernel compilation

4 Nsm Bytes of shared memory used per work item Kernel compilation

5 Bwg SM Maximum allocatable work groups per SM Hardware speci�cation

6 Bwarp SM Maximum allocatable warps per SM Hardware speci�cation

7 Breg wi Number of maximum allocatable registers per work item Hardware speci�cation

8 Breg SM Number of maximum allocatable registers per SM Hardware speci�cation

9 Breg wg Number of maximum allocatable registers per work group Hardware speci�cation

10 Bsm wg Bytes of maximum allocatable shared memory per work group Hardware speci�cation

11 Bsm SM Bytes of maximum allocatable shared memory per SM Hardware speci�cation

12 Gsm Number of minimum allocation bytes of shared memory Hardware speci�cation

13 Greg Number of minimum allocation unit of registers Hardware speci�cation

14 Gwarp Number of minimum allocation unit of warps Hardware speci�cation

15 FREQcore Clock frequency of the thread core on target GPU Hardware speci�cation

16 NSM Number of SMs on target GPU Hardware speci�cation

17 Twarp Number of thread cores per warp Hardware speci�cation

18 Nawg Number of active work groups Equation 5.7

19 LAT Latencies of arithmetic and memory access operations Micro-benchmarking

20 cacheMissInfo Cache hit/miss information about the memory access Cache behavior analysis

21 T Kernel execution trace Algorithm 5

22 T
spec(LAT,cacheMissInfo)
pipeline(Nawg,T)

Estimated execution time in a round of active work groups Simulation

23 Tkernel Estimated total kernel execution time Equation 5.8

95

5. PERFORMANCE ESTIMATION FOR OPENCL KERNELS ON GPUS

input from the benchmarks and conduct a design space exploration that results in a total of 306,558

estimation runs. �e simulation is performed on a desktop computer with an Intel
®

Core
TM

i7-3770

CPU.

5.6.2 Prediction Results
5.6.2.1 Accuracy

Table 5.4 presents the experimental results. �e third column in Table 5.4 lists the number of total

design con�gurations of each kernel and the fourth column indicates the average number of IR in-

structions in the execution trace during the simulation. �e average MAPE on the four GPUs is 17.04%

and on each GPU, the optimal kernel prediction can achieve an average MAPE of less than 7%. Overall,

the performance estimation framework is robust and accurate.

To observe how close the predicted outcome can get to the actual measured results, the result com-

parison of �adro K620 is shown in Figure 5.3 and the remaining GPUs show similar trends. To clearly

Table 5.3: Hardware speci�cation of the test GPUs.

Name Architecture SMs/Cores Clock freq.(MHz)
�adro K600 Kepler GK107 1/192 876

GeForce GTX645 Kepler GK106 3/384 824

�adro K620 Maxwell GM107 3/384 1058

GeForce 940M Maxwell GM108 3/384 1072

Table 5.4: Accuracy and simulation time consumption of testing the performance estimation

framework on the Rodinia [2] benchmark.

Bench. name Kernel name
Number of Average MAPE (%) Time
total design trace �adro GeForce �adro GeForce per

con�gurations length K600 GTX645 K620 940M run (ms)

backprop
bpnn adjust weights 11450 41 24.24 24.34 22.16 22.12 23.03

bpnn layerforward 11450 74 19.38 27.05 21.14 26.55 40.08

bfs
BFS 1 14028 79 11.55 7.969 10.16 20.47 60.09

BFS 2 14028 7 14.43 20.24 9.879 11.73 10.40

b+tree
�ndK 42000 100 35.68 31.12 8.941 12.86 72.93

�ndRangeK 42000 163 40.63 39.80 13.42 13.42 119.66

cfd

compute �ux 3072 616 15.32 19.81 9.077 14.41 77.55

compute step factor 3072 33 12.83 27.76 43.04 3.315 14.01

initialize variables 3072 18 11.89 9.149 29.65 7.902 15.38

memset 12 2 8.085 25.80 6.803 18.83 7.081

time step 3072 31 5.191 18.38 18.04 16.20 23.78

hotspot hotspot 1024 22093 15.36 14.21 4.325 9.389 4130.09

kmeans
kmeans c 40000 2338 12.95 22.99 19.06 20.37 824.60

kmeans swap 40000 533 10.23 19.80 15.76 17.74 219.67

lud lud internal 8267 108 17.41 23.18 8.278 34.18 45.10

nn nearestNeighbor 66 9 10.89 26.84 7.090 12.38 6.030

nw
nw kernel1 19408 1431 9.228 21.88 9.090 25.86 65.27

nw kernel2 19408 1431 9.239 24.69 8.551 24.87 63.99

particle�lter particle naive 104 52387 19.59 16.99 13.82 11.93 11751.93

path�nder dynproc 31025 1469 3.716 6.560 14.33 9.737 1055.97

Average 15327.9 4148.15
15.39 21.43 14.63 16.71 931.3317.04

96

5.6 Evaluation Results

0.0 0.7 1.4 2.1 2.8 3.5 4.2
Design configuration ID 1e3

0

2

4

Ti
m

e
(u

s)

1e2

Estimated
Measured

(a) bpnn adjust weights

0.0 0.7 1.4 2.1 2.8 3.5 4.2
Design configuration ID 1e3

0.0

1.6

3.2

4.8

Ti
m

e
(u

s)

1e2

Estimated
Measured

(b) bpnn adjust weights

0 1 2 3 4 5 6
Design configuration ID 1e3

0.0

1.5

3.0

4.5

Ti
m

e
(u

s)

1e4

Estimated
Measured

(c) BFS 1

0 1 2 3 4 5 6
Design configuration ID 1e3

0
1
2
3
4

Ti
m

e
(u

s)

1e3

Estimated
Measured

(d) BFS 2

0.0 0.7 1.4 2.1 2.8 3.5 4.2
Design configuration ID 1e4

101

102

103

104

Ti
m

e
(u

s)
Estimated
Measured

(e) �ndK

0.0 0.7 1.4 2.1 2.8 3.5 4.2
Design configuration ID 1e4

101

102

103

104

Ti
m

e
(u

s)

Estimated
Measured

(f) �ndRangeK

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Design configuration ID 1e3

0.0
0.5
1.0
1.5
2.0

Ti
m

e
(u

s)

1e4

Estimated
Measured

(g) compute �ux

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Design configuration ID 1e3

0

1

2

3

Ti
m

e
(u

s)

1e3

Estimated
Measured

(h) compute step factor

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Design configuration ID 1e3

0.0

0.4

0.8

1.2

Ti
m

e
(u

s)

1e3

Estimated
Measured

(i) initialize variables

1 2 3 4 5 6 7 8 9 10 11 12
Design configuration ID

0
6

12
18
24

Ti
m

e
(u

s) Estimated
Measured

(j) memset

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Design configuration ID 1e3

0
1
2
3
4

Ti
m

e
(u

s)

1e3

Estimated
Measured

(k) time step

0.0 0.2 0.4 0.6 0.8 1.0
Design configuration ID 1e3

0
12
24
36
48
60

Ti
m

e
(u

s) Estimated
Measured

(l) hotspot

0.0 0.4 0.8 1.2 1.6 2.0 2.4
Design configuration ID 1e3

102

103

104

Ti
m

e
(u

s) Estimated Measured

(m) kmeans c

0.0 0.4 0.8 1.2 1.6 2.0 2.4
Design configuration ID 1e3

102

103

104

Ti
m

e
(u

s) Estimated Measured

(n) kmeans swap

0.0 0.2 0.4 0.6 0.8 1.0
Design configuration ID 1e3

0

2

4

6

Ti
m

e
(u

s)

1e3
Estimated Measured

(o) lud internal

1 14 27 40 53 66
Design configuration ID

0

3

6

9

Ti
m

e
(u

s)

1e3

Estimated
Measured

(p) nearestNeighbor

0.0 0.3 0.6 0.9 1.2 1.5
Design configuration ID 1e3

0

20

40

60

Ti
m

e
(u

s) Estimated
Measured

(q) nw kernel1

0.0 0.3 0.6 0.9 1.2 1.5
Design configuration ID 1e3

0

20

40

60

Ti
m

e
(u

s) Estimated
Measured

(r) nw kernel2

0 20 40 60 80 100
Design configuration ID

103

105

107

Ti
m

e
(u

s) Estimated
Measured

(s) particle naive

0 1 2 3 4 5 6
Design configuration ID 1e3

101
102
103
104
105

Ti
m

e
(u

s)

Estimated Measured

(t) dynproc

Figure 5.3: Comparison of the estimated and measured execution time of the test kernels (�adro K620).

97

5. PERFORMANCE ESTIMATION FOR OPENCL KERNELS ON GPUS

show the variation trend of the execution time, for some kernels only partial results in the whole design

space are depicted because the curves become too dense if the total number of design con�gurations is

too large. �e design con�guration ID on the x-axis represents the number of di�erent program input

and local work size se�ings. �e execution time results are sorted in an ascending order with the global

and local work size as primary and secondary key, respectively. For some kernels, the program input

is also taken as the sorting key. Note that the number of total design con�gurations is very large and

therefore is represented in the scienti�c notation format, except for kernel memset, nearestNeighbor,

and particle naive. �e y-axes of kernel findK, findRangeK, kmeans c, kmeans swap, particle naive,

and dynproc are represented in logarithmic scale because the execution time shows several orders of

magnitude di�erence in the absolute value. On the whole view, the predicted results accurately follow

the variation trend of the actual execution time across the design space. �is reveals that the execution

trace and the simulation remarkably re�ect the runtime behavior of the kernels, which means that the

framework can also help users �nd the optimal execution even for a vast design space.

As observed in Figure 5.3, the MAPE turns out higher when the actual execution time is a few

microseconds, particularly for kernel nw kernel1 and nw kernel2 (shown in Figure 5.3q and 5.3r). �is

is because in these cases the kernel overhead dominates the execution time and the predicted time is

only a small portion that contributes to the �nal runtime performance. �e kernel overhead includes

prerequisite resource allocation, warp scheduling, and kernel launching, etc. �e measurement of

kernel overhead is infeasible as it is strongly associated with the speci�c kernel. A possible way is to

a�ach a �xed threshold to the predicted outcome, but again how to set this threshold is pendent.

backprop �e MAPEs of this application across four GPUs are quite stable (around 25% in Ta-

ble 5.4). �e main error source of kernel bpnn adjust weights is that there are multiple thread-ID-

dependent branches and nest branches in the execution �ow. �e generated execution trace covers as

more branches as possible if the estimated run might step into that branch, thus incurring slight over-

estimation in some cases (shown in Figure 5.3a). For kernel bpnn layerforward, the underestimation

in Figure 5.3b comes from barrier synchronization and kernel overhead.

bfs �e prediction of this application is be�er than backprop, due to the much less branches. As

seen in Figure 5.3c and 5.3d, kernel BFS 1 su�ers from larger overestimation than BFS 2 when the

work group size is very small, this is caused by the assumed more cache misses than expected.

b+tree �e MAPEs of the kernels in this application are higher on Kepler than Maxwell GPUs.

One possible explanation is that the kernels contain structure data and how these data are organized in

memory varies across architectures. Moreover, the multiple runtime-dependent nest branches in the

main loop body of both kernels cause workload imbalance and also deteriorate the prediction accuracy.

98

5.6 Evaluation Results

cfd Estimation of kernel initialize variables shows slightly be�er accuracy in the variation am-

plitude (Figure 5.3i), which is the same case as kernel memset (Figure 5.3j). For the remaining three

kernels, the error stems from the variant memory access behavior.

hotspot �is application contains rather regular workload distribution across work items and the

framework performs the prediction very well, as shown in Figure 5.3l. �e minor underestimation is

caused by the kernel overhead, because the execution time of this kernel is less than 60 us.

kmeans Figure 5.3m and 5.3n show that the predicted outcome of kmeans swap reveals larger

�uctuations than kmeans c. We a�ribute this to the continuous global memory data exchange which

incurs irregular memory access.

lud & nn �ese two applications exhibit rather accurate predictions since both kernels have no

branch divergence and lud internal only has a loop with �xed bound.

nw Both nw kernel1 and nw kernel2 have several runtime-dependent branches, which makes

the estimation more pessimistic. However, Figure 5.3q and 5.3r reveal counter-expectation results.

�e reason is that kernel overhead also contributes to the MAPE and it is nonnegligible because the

total execution time is only a few microseconds. Consequently, kernel overhead compensates for the

overestimation and even increases the time consumption for most cases.

particle�lter �e predicted execution time shows overestimation for kernel particle naive in Fig-

ure 5.3s, because there exists runtime-dependent branches in the loop, which constructs the unevenly

distributed workload across work items. �e estimation always assumes the longer execution trace

for all the warps and therefore is conservative.

path�nder Similar to lud and nn, prediction results on this application is rather accurate, as loops

are iterated with �xed times and the branches are equally visited by the warps.

To summary, the hybrid framework performs well on the test benchmarks in terms of MAPE. �e

variation trend of the kernel execution time in the design space is accurately captured by the estimated

results. However, the in�uence of the kernel overhead is signi�cant when the overall execution time

is very small, i.e., a few microseconds in the test. In these cases, the dominant factor that contributes

to the kernel execution time is not the computation and memory access latency but the interference

from the overhead. �e proposed framework may incur overestimation for irregular workloads, due

to the conservative branch divergence analysis. However, note that bfs is also an irregular application

and the framework can still give rather good estimation results.

99

5. PERFORMANCE ESTIMATION FOR OPENCL KERNELS ON GPUS

5.6.2.2 Simulation Time Cost

�e last column in Table 5.4 presents the average simulation time of predicting the execution time of

each kernel run. As shown, on average the framework can give prediction results within 0.931 second,

which is much faster than using a �ne-grained simulator [87] [88]. �e consumed times of estimating

kernel hotspot and particle naive are longer than the remaining kernels due to their extremely long

execution traces.

�e simulation time cost of the framework is also compared with the widely-used GPGPU-Sim [3]

and Table 5.5 gives the results. As shown, the simulation cost of the proposed method is only a few

seconds, while GPGPU-Sim takes time in magnitude of minutes. �e framework achieves an average

speedup of 164.39× over GPGPU-Sim, in terms of the simulation time cost, on the test benchmarks.

5.7 Case Study with Lane Detection

To demonstrate the e�ectiveness of the proposed framework, the p-LDA presented in Chapter 3 is

used as the test case. �e algorithm consists of three steps, namely pre-processing, lane detection, and

lane tracking. For each image frame, the pre-processing step extracts the information about the lane

markings and then passes the processed image to the next step. Depending on whether the estimated

positions of the lane markings in previous frame can still be applied to the current frame, the image is

processed either reusing the lane detection step to detect the positions or using particle �lter to track

the previous positions of the lane markings. �e aforementioned three steps are mapped to three

kernels and Table 5.6 gives the program con�guration of the application during the experiment. For

640×480 input videos, the ROI size of KERNEL PRE is 512×96 and the other two kernels are con�gured

with global work size ranging from 2
10

to 2
13

.

�e timing information of these kernels is collected for the whole video and then the averaged

Table 5.5: Comparison of the simulation time costs of GPGPU-Sim [3] and the proposed frame-

work in this chapter.

Benchmark Simulation time (ms) SpeedupGPGPU-Sim �e proposed framework
bfs 4517000 70.49 64080.01

hotspot 200000 4130.09 48.43

lud 168000 45.10 3725.06

nn 3000 6.030 497.51

nw 1673000 129.26 12942.91

path�nder 280000 1055.97 265.16

Geo. mean 244433.52 148.69 164.39

100

5.7 Case Study with Lane Detection

1 2 3 4 5 6 7 8 9 10
Design configuration ID

0.0
1.2
2.4
3.6
4.8
6.0

Ti
m

e
(u

s)
1e3

K600 Estimated
K600 Measured

(a) KERNEL PRE (k600)

1 2 3 4 5 6 7 8 9 10
Design configuration ID

0.0
0.4
0.8
1.2
1.6
2.0

Ti
m

e
(u

s)

1e3
GTX645 Estimated
GTX645 Measured

(b) KERNEL PRE (gtx645)

1 2 3 4 5 6 7 8 9 10
Design configuration ID

0.0
0.2
0.4
0.6
0.8
1.0

Ti
m

e
(u

s)

1e3
K620 Estimated
K620 Measured

(c) KERNEL PRE (k620)

1 2 3 4 5 6 7 8 9 10
Design configuration ID

0.0
0.2
0.4
0.6
0.8
1.0

Ti
m

e
(u

s)

1e3
940M Estimated
940M Measured

(d) KERNEL PRE (940m)

Figure 5.4: Comparison of the estimated and measured results of KERNEL PRE on di�erent GPUs.

2 4 6 8 10 12 14 16 18 20
Design configuration ID

0.0

0.8

1.6

2.4

3.2

Ti
m

e
(u

s)

1e4
K600 Estimated
K600 Measured

(a) KERNEL LD (k600)

2 4 6 8 10 12 14 16 18 20
Design configuration ID

0.0

0.3

0.6

0.9

1.2

Ti
m

e
(u

s)

1e4
GTX645 Estimated
GTX645 Measured

(b) KERNEL LD (gtx645)

2 4 6 8 10 12 14 16 18 20
Design configuration ID

0.0
0.7
1.4
2.1
2.8
3.5

Ti
m

e
(u

s)

1e3
K620 Estimated
K620 Measured

(c) KERNEL LD (k620)

2 4 6 8 10 12 14 16 18 20
Design configuration ID

0.0
0.7
1.4
2.1
2.8
3.5

Ti
m

e
(u

s)

1e3
940M Estimated
940M Measured

(d) KERNEL LD (940m)

Figure 5.5: Comparison of the estimated and measured results of KERNEL LD on di�erent GPUs.

results per frame are calculated. Figure 5.4, 5.5, and 5.6 respectively presents the results of the predicted

and the measured time of KERNEL PRE, KERNEL LD, and KERNEL PF. As can be observed, for all the

kernels across the di�erent GPUs, the estimations keep the same variation trend with the measured

Table 5.6: Con�guration of the lane detection kernels.

Kernel name Global size Local size No. of designs
KERNEL PRE 49152 {21

, 2
2
, 2

3
, . . . , 2

10} 10

KERNEL LD 2
10

, 2
11

, 2
12

, 2
13 {21

, 2
2
, 2

3
, 2

4
, 2

5} 20

KERNEL PF 2
10

, 2
11

, 2
12

, 2
13 {21

, 2
2
, 2

3
, 2

4
, 2

5} 20

101

5. PERFORMANCE ESTIMATION FOR OPENCL KERNELS ON GPUS

2 4 6 8 10 12 14 16 18 20
Design configuration ID

0.0
0.3
0.6
0.9
1.2
1.5

Ti
m

e
(u

s)

1e4
K600 Estimated
K600 Measured

(a) KERNEL PF (k600)

2 4 6 8 10 12 14 16 18 20
Design configuration ID

0.0
1.1
2.2
3.3
4.4
5.5

Ti
m

e
(u

s)

1e3
GTX645 Estimated
GTX645 Measured

(b) KERNEL PF (gtx645)

2 4 6 8 10 12 14 16 18 20
Design configuration ID

0.0
0.4
0.8
1.2
1.6
2.0

Ti
m

e
(u

s)

1e3
K620 Estimated
K620 Measured

(c) KERNEL PF (k620)

2 4 6 8 10 12 14 16 18 20
Design configuration ID

0.0
0.4
0.8
1.2
1.6
2.0

Ti
m

e
(u

s)

1e3
940M Estimated
940M Measured

(d) KERNEL PF (940m)

Figure 5.6: Comparison of the estimated and measured results of KERNEL PF on di�erent GPUs.

results. �e average MAPEs of the three kernels are 15.45%, 19.60%, and 17.10%, respectively. �e

average prediction error for this application is 17.38%.

5.8 Summary

Performance modeling of GPUs is critical for parallel program developers and end-users as the urgent

need of hardware accelerators in high performance scienti�c computing �elds. Extant work on GPU

performance prediction is either out-of-date for the emerging new generations of architectures, or

cumbersome to use due to the substantial e�ort of tedious calibration and parameter tuning on target

platform and target applications. �is chapter proposes an analytical and simulation combined frame-

work to predict the performance of parallel workloads on GPUs. �e hybrid framework contains a

static module that analyzes high-level source code to extract kernel execution trace and a simulation

module that dynamically mimics the kernel execution behavior to deduce the �nal kernel execution

time. A so�ware tool chain is further provided to enable the fast performance prediction of target ker-

nels. �e framework requires no prior knowledge about the hardware performance counter metrics

or pre-executed measurement results. Experimental results reveal that the framework can accurately

grasp the variation trend and predict the execution time in the design space with high accuracy and

li�le time cost. Furthermore, it can help users to �nd the optimal execution in the vast design space.

Following the work in this chapter, the next chapter presents an approach to e�ciently prune the

program design space of OpenCL kernels running on GPUs.

102

Chapter 6

Design Space Pruning for OpenCL
Kernels on GPUs

Chapter 5 proposed a hybrid framework to predict the performance of running OpenCL kernels on

GPUs. Although this method cannot provide absolutely precise estimation results, it is capable of

grasping the variation trend of the kernel execution time, which means it can help users to �nd the

optimal execution in the vast design space. Motivated by this, the work in this chapter investigates

how to e�ciently prune the program design space of an OpenCL kernel so that the optimal design

con�guration can be quickly located.

6.1 Overview

Over the last decade, GPUs have a�racted an overwhelming amount of a�ention, and utilization of

GPUs has dominated state-of-the-art research about image processing, machine learning, high perfor-

mance computing, and even embedded system design.

One of the critical problems for GPU programmers is how to locate the optimal con�guration of a

speci�c parallel application so that it can deliver the best runtime performance. In general, GPU appli-

cations take very large workloads as input and these workloads are evenly split and further mapped

onto the numerous thread cores that handle substantial data manipulations. Given the huge workload

size, the search for a proper sub-workload size that yields optimal performance is nontrivial. For in-

stance, on Nvidia GPUs, the work-group size of an OpenCL [14] kernel in one dimension can vary

from 1 to 1024, and the number of dimensions can be up to 3. Such a huge design space poses a chal-

lenge for programmers to pick a suitable con�guration in a relatively short time period, especially in

the early design stage.

To address the aforementioned issue, two main methodologies are adopted in state-of-the-art re-

103

6. DESIGN SPACE PRUNING FOR OPENCL KERNELS ON GPUS

search. �e �rst technique is called measurement-based performance auto-tuning [78] [123], which

samples a portion of the kernel executions selected from the entire design space and then tries to iden-

tify the optimal con�guration with the aid of miscellaneous search strategies [78] or machine learning

algorithms [79]. �is approach assumes that neighboring executions are su�ciently related that the

search strategy can detect a trend in the variations of the execution time to identify the optimal de-

sign. �e second approach is program abstraction, which �rst extracts key features from the static

source code [124] or dynamic kernel execution results [125], then de�nes metrics that are directly or

indirectly correlated with the runtime performance. By optimizing these performance metrics, the

optimal designs are �nally derived. In this method, it is critical to deduce performance metrics that

have a signi�cant impact on the kernel runtime performance.

While the aforementioned methods are e�ective for �nding the optimal or near-optimal con�gura-

tions, there are still some drawbacks. First, performance auto-tuning depends heavily on the execution

results of pro�ling runs on the target GPUs. �is can incur substantial e�orts, including program de-

ployment, debugging, and pro�ling time cost, when applying the method to di�erent platforms. Sec-

ondly, although performance metrics can reasonably re�ect the kernel runtime behavior, providing a

clear explanation of how these metrics can in�uence the kernel execution time is not straightforward.

Finally, static performance metrics are o�en subject to speci�c programming language or hardware

platform, so extra e�ort is needed when applying them to di�erent architectures.

�is chapter proposes a hybrid search framework to �nd the optimal work-group size for OpenCL

kernels running on GPUs, given the constant and known input workload. �e framework includes a

static analysis module that �lters out redundant designs with duplicated execution traces and inferior

pipelines, and a dynamical simulation module that produces the estimated optimal design by searching

the work-group sizes that yield the minimum predicted kernel execution time. Notably, the proposed

framework does not require any program runs to �nd the optimal or near-optimal designs. �e e�ec-

tiveness of the framework is evaluated with a set of OpenCL kernels from the Rodinia [2] benchmark,

on two Nvidia GPUs across two recent architectures (Maxwell and Pascal).

�e remainder of this chapter is organized as follows: Section 6.2 is related work and Section 6.3

gives problem formulation. Section 6.4 presents the details of the hybrid search framework. Section

6.5 gives evaluation results and Section 6.6 concludes the work in this chapter.

6.2 Related Work

�e literature on performance auto-tuning and design space exploration for parallel applications has

grown over the last decade. At �rst, performance auto-tuning research mainly focused on commonly

104

6.2 Related Work

Available designskernel.cl GPU config.

Static Analysis Module
Duplicated Trace Pruning

Inferior Pipeline Elimination

Pruned designs

Dynamical Simulation Module

Estimated optimal design

Figure 6.1: Overview of the hybrid search framework.

used but computationally demanding algorithms, such as matrix multiplication [126] [127], stencil

computation [128], fast Fourier transform [74], etc. �e popular use of GPUs for general-purpose sci-

enti�c computing has driven the emergence of auto-tuners used for generic algorithms. Measurement-

based auto-tuners prune the program design space with sampling executions and then identify the

optimal con�guration using various search strategies [78] [79] [123]. Other studies have proposed

performance metrics that are used as object function during optimization to derive the parameters re-

lated to the optimal executions [124] [125]. �ere are also studies that combine measurement outcomes

and extracted program metrics to identify the optimal parameter se�ings [129].

Apart from the aforementioned studies, other researchers have proposed methods to optimize the

kernel in the pre-execution stage, via code generation [130] and compiler optimization techniques

[131]. �ese methods are orthogonal to the work in this chapter since this work assumes that the

kernel source code is given. �erefore, these techniques can be applied to pre-optimize the target

program before applying the framework presented in this chapter.

In this work, the kernel is analyzed using the IR instructions generated by the LLVM compiler

[86]. �e method applies static execution trace and pipeline analysis results to prune the program

design space and then identi�es the optimal or near-optimal work-group size via dynamical execution

trace simulations. �erefore, the proposed framework does not require any program runs. Unlike

comparable state-of-the-art methods, the framework presented in this chapter neither requires tedious

pro�ling to obtain representative execution results, nor does it adopt performance metrics extracted

from high-level kernel source code.

105

6. DESIGN SPACE PRUNING FOR OPENCL KERNELS ON GPUS

6.3 Problem Statement

In OpenCL, the input workload is represented as a number of work items and this total number of

work items (or the global size,GS) can be divided into several work groups. Each group of work items

with a work-group size WG, is a set of work instances mapped to a single SM on GPUs. �e present

work solves the following problem: Given a kernel with NDRange con�guration of global sizeGS and

a set of possible work-group sizes WG = {wg0, wg1, · · · , wgK}, where K is the number of possible

designs, �nd the appropriate work-group size wgopt so that the kernel execution time is minimal.

6.4 Framework

6.4.1 Framework Overview

For Nvidia GPUs, each OpenCL work item instance is mapped to the thread cores on the SM and a

group of 32 threads, which is also called one warp, are bound together to execute the instance in lock-

step manner. All threads in one warp consume the same instructions, while the consumed instructions

in di�erent warps may vary. Due to resource and architectural limit, given a speci�c work-group size

(wg), the number of active warps (Nwg
aw) for a kernel can be determined at compile time. In general,

a larger value of Nwg
aw delivers be�er performance, though the best case execution does not always

reveal the largest value of Nwg
aw .

Figure 6.1 gives an overview of the proposed hybrid search framework. Given the kernel source

code (kernel.cl) and target GPU speci�cations (GPU config.), for a �xed and known input workload size,

the possible design con�gurations can be obtained via an exhaustive traversal of the valid work-group

sizes. �e static analysis module contains two main steps that analyze program runtime behavior based

on the execution traces that result from choosing di�erent work-group sizes. �e work-group sizes that

yield the same execution traces and the same in-memory layouts for the input kernel arguments, are

grouped in one batch, and only the con�guration with the minimum number of rounds of active warps

in each batch is chosen as a representative design. �e representative designs extracted from di�erent

batches are then pruned further by �ltering out inferior cases in which the lower bound of the best-

case execution time is larger than the upper bound of the worst-case execution time yielded by another

representative design. �e pruned designs are then fed to the dynamical simulation module, in which

an exhaustive search is performed to estimate the kernel execution time. Finally, the con�guration

with the shortest predicted execution time is chosen as the estimated optimal design.

106

6.4 Framework

6.4.2 Static Analysis Module

An execution trace is de�ned as the sequence of IR instructions that one warp would consume. �e

static analysis module uses the loop-based bidirectional branch search algorithm from the work in

Chapter 5 to obtain the execution trace of each warp. Suppose the work-group size is set as wg and

the set of execution traces for a round of active warps is de�ned as T, the kernel execution time is

estimated as follows:

tkernel = t
spec(LAT,cacheMissInfo)
pipeline(Nwg

aw ,T)︸ ︷︷ ︸
Sub-item Ê

×
d GS
wg×NSM

e × d wg
Nwi

warp
e

Nwg
aw︸ ︷︷ ︸

Sub-item Ë

, (6.1)

where LAT is the latency of the arithmetic and memory access operations on the target GPU, cache-

MissInfo is the cache miss information in the execution traces T, NSM is the total number of SMs on

the target GPU,Nwi
warp is the number of work items per warp (�xed to 32 for current Nvidia GPUs), and

Sub-item Ê in Equation (6.1) is the time needed for a round of active warps to complete the execution

traces T.

6.4.2.1 Duplicated Trace Pruning

In Equation (6.1), the latency of the arithmetic and memory access operations (LAT), the number of

work items per warp (Nwi
warp), and the total number of SMs (NSM) are hardware-dependent and there-

fore remain constant when varying the work-group size. �e cache miss information in the execu-

tion traces (cacheMissInfo) is determined by the in-memory layout of the input kernel arguments

(denoted as argMemLayout) and the hardware speci�cations of the memory hierarchy (denoted as

gpuMemConfig). Consequently, when varying the work-group size wg, the kernel execution time

is only determined by argMemLayout, Nwg
aw , and T, since the remaining parameters are hardware-

dependent and constant.

First of all, the details of argMemLayout and T for each work-group size are compared and the

work-group sizes with the same contents of argMemLayout and T are combined into one batch. Here

the same execution tracesTmeans that both the execution trace for each warp and the number of active

warps are identical. �en information of argMemLayout is extracted from the invoked argument list

of the kernel function, and the memory size and data type of each argument is obtained from the host

source code. It is observed that for most of the kernels, argMemLayout remains constant when varying

the work-group size, as it is only a�ected by the input workload. For the cases in which the memory

bu�er sizes of kernel arguments are determined by the work-group size, these work-group sizes are

assigned to di�erent batches.

107

6. DESIGN SPACE PRUNING FOR OPENCL KERNELS ON GPUS

Algorithm 8: Inferior pipeline elimination

Input: Representative design set WG, Global size GS, Total number of SMs NSM

Output: Pruned design set WG
1 WG← ∅
2 foreach wg ∈WG do
3 isPruned← FALSE
4 Lwg

B ← calcPipelineLowerBoundLatency(wg)

5 latwg
B ← d GS

wg×NSM
e × d wg

Nwi
warp
e × L

wg
B

N
wg
aw

6 foreach wg′ ∈WG do
7 Lwg′

W ← calcPipelineUpperBoundLatency(wg′)

8 latwg′

W ← d GS
wg′×NSM

e × d wg′

Nwi
warp
e × L

wg′
W

N
wg′
aw

9 if latwg
B < latwg′

W then
10 isPruned← TRUE
11 break

12 if isPruned == FALSE then
13 wg ←WG

14 return WG

�e work-group sizes in the same batch show the same execution behavior for a round of active

warps, so the values of Sub-item Ê in Equation (6.1) are equivalent. Sub-item Ë in Equation (6.1)

indicates the number of rounds of active warps needed for the entire kernel run. �erefore, the work-

group size with the lowest value of Sub-item Ë in a batch reveals the minimal kernel execution time,

and this design is chosen as the representative design from this batch. A�er all representative designs

from all batches are collected, they are fed to the following pruning module.

6.4.2.2 Inferior Pipeline Elimination

�e duplicated trace pruning step �lters out the work-group sizes that showcase the same execution

behavior within a round of active warps. A�erwards, the execution times among di�erent execution

traces are analyzed, and design con�gurations with inferior pipelines are eliminated. Algorithm 8

gives the detail of this procedure. For each work-group size wg, the lower bound of the best-case

pipeline execution latency (LwgB) is deduced, and thereby the lower bound of the best-case execution

time (latwgB) is calculated. If this lower bound is still larger than the upper bound of the worst-case

execution time yielded by another design (latwg
′

W) within the representative design set, the selected

design results in an inferior pipeline and is removed from the search space. As shown in Line 5 and

8 in Algorithm 8, latwgB and latwg
′

W are calculated in a similar way, i.e., by replacing Sub-item Ê in

Equation (6.1) with LwgB and Lwg
′

W , respectively. �e details of how LwgB and LwgW are deduced (Line 4

and 7 in Algorithm 8) are illustrated as follows.

108

6.4 Framework

Computation Memory waiting Memory load/store

Case I

Case II

Figure 6.2: Best case of the pipeline execution.

Preliminaries. For Nvidia GPUs, the resources shared by a warp pipeline are the Floating Point Unit

(FPU), the Special Function Unit (SFU), and various memory load/store units. Since the OpenCL kernel

execution is modeled at the IR level, the types of memory access are di�erentiated as memory access

from Local Memory (LM), Constant Memory (CM), and Global Memory (GM). Private memory access

is performed on-chip and is not mutually exclusive for the work items in one work group. Moreover,

the cache accesses of CM and GM load/store are considered as memory accesses from the Constant

Cache (CC) and the Global Cache (GC). For each memory access, i.e., the load/store IR instruction in the

execution trace, the memory referencing addresses are extracted and thereupon the number of memory

transactions and cache hit/miss accesses that a warp needs to perform when consuming the execution

trace [132] are analyzed. �e memory access latencies are obtained via micro-benchmarking and the

latency results characterize the average time from the memory instruction issue stage to the �nal data

acquisition stage. �e memory delay is denoted as the time during which the data is read/wri�en

by the hardware control circuit. �e memory latency is modeled as three parts: pre-waiting latency,

memory delay (memDelay) and post-waiting latency, of which the sum is the micro-benchmarked

memory latency (memLatency).

Given an arbitrary execution trace running on a warp pipeline, the mutually exclusive resources

are the computation components (FPU, SFU) and the memory components (LM, CM, GM, CC, GC).

Suppose the execution trace is de�ned as T = {τ0, τ1, · · · , τm}, where τi is the execution trace for Ni

warps and

∑m
i=0Ni = Nwg

aw . Let’s consider the best and worst cases of the kernel execution.

Best-case analysis. In the best-case execution, computation and memory access instructions are

consumed in an interleaved manner, so that the execution times are overlapped as much as possible.

For instance, Figure 6.2 presents two extreme cases in which the memory access latency in Case I and

the computation latency in Case II overlap perfectly. In these two cases, the overall kernel execu-

tion time is equal to either the computation latency or the memory access latency. �erefore, LwgB is

109

6. DESIGN SPACE PRUNING FOR OPENCL KERNELS ON GPUS

Memory waiting
Memory load/store Warp pipeline depth is d

d × memDelay
memLatency

memLatency

d × memDelay

Case I

Case II

Figure 6.3: Sample cases of the memory component pipeline.

calculated as

LwgB = max(L
Nwg

aw

fpu , L
Nwg

aw

sfu , Lb
Nwg

aw

lm , Lb
Nwg

aw
cm , Lb

Nwg
aw

gm , Lb
Nwg

aw
cc , Lb

Nwg
aw

gc), (6.2)

where the latencies of the computation components are calculated as follows:

L
Nwg

aw
comp =

m∑
i=0

LNi
comp (6.3)

LNi
comp =

opType(τi)∑
num(OP, τi)× lat(OP), (6.4)

where comp = {fpu, sfu}, opType(τi) is the number of instruction types in the execution trace τi,

num(OP, τi) is the number of OP instructions in the execution trace τi, and lat(OP) is the micro-

benchmarked latency of OP instruction. Here OP refers to the basic arithmetic instructions for the

FPU, and the transcendental instructions for the SFU, respectively.

With regard to the latencies of the memory components, because memDelay, instead of mem-

Latency, is the main factor that stalls the memory component pipeline, the overall latency is directly

related to the pipeline depth, i.e., the number of active warps running on the pipeline. Consider the two

cases in Figure 6.3, where the pipeline depth d in�uences the latency of the memory components. In

Case I, the pipeline is not deep enough, so the memory load/store delay time cannot hide the memory

waiting time (d×memDelay ≤ memLatency).

Suppose each warp has κ memory components, the pipeline latency in this case is calculated as

LI = κ×memLatency + (d− 1)×memDelay. (6.5)

110

6.4 Framework

However, as the pipeline becomes deeper, as shown in Case II, the memory delay becomes the dom-

inant factor in the pipeline latency and the memory waiting time is totally overlapped with it (d ×

memDelay > memLatency). In this case, the pipeline latency is

LII = κ× d×memDelay +memLatency −memDelay. (6.6)

From Equation (6.5) and (6.6), the latency of each type of the memory components is

LNi
comp = κNi × lNi

max + lNi
min −memDelaycomp (6.7)

lNi
max = max(Ni ×memDelaycomp,memLatencycomp) (6.8)

lNi
min = min(Ni ×memDelaycomp,memLatencycomp), (6.9)

where comp = {lm, cm, gm, cc, gc}, i = 0, 1, · · · ,m, and κNi
is the number of memory components

in the execution trace τi. �e best-case memory component latency is calculated as

Lb
Nwg

aw
comp = max(LN0

comp, L
N1
comp, · · · , LNm

comp), (6.10)

where comp = {lm, cm, gm, cc, gc}.

Worst-case analysis. In the worst-case execution, the IR instructions in the execution traces con-

struct a permutation that the latencies of the computation and memory components barely overlap.

In this work, the upper bound of the pipeline latency is derived as an extreme case in which at any

time only one IR instruction in the execution trace is consumed as if there is always synchronization

between each IR instruction. Consequently, LwgW is deduced as

LwgW = L
Nwg

aw

fpu + L
Nwg

aw

sfu + Lw
Nwg

aw

lm + Lw
Nwg

aw
cm + Lw

Nwg
aw

gm + Lw
Nwg

aw
cc + Lw

Nwg
aw

gc (6.11)

Lw
Nwg

aw
comp =

m∑
i=0

LNi
comp, comp = {lm, cm, gm, cc, gc}, (6.12)

whereL
Nwg

aw

fpu andL
Nwg

aw

sfu are calculated from Equation (6.3), andLNi
comp is calculated from Equation (6.7).

6.4.3 Dynamical Simulation Module

�e pruned designs output by the static analysis module are a part of the possible work-group sizes in

the entire program design space. Subsequently, the dynamical simulation method from Chapter 5 is

used to predict the kernel execution time needed for each design. �e simulation performs a dummy

execution of each IR instruction in the execution trace set T for a round of active warps and outputs

the total time of consuming the execution traces, given LAT and cacheMissInfo. �e kernel execution

111

6. DESIGN SPACE PRUNING FOR OPENCL KERNELS ON GPUS

time is estimated from Equation (6.1). A�er the exhaustive simulation search, the work-group size that

produces the minimum predicted execution time is chosen as the optimal work-group size wgopt.

6.4.4 Discussion

�e proposed hybrid search framework does not require any program runs of the target kernel on the

target GPU. Although the dynamical simulation module performs an exhaustive simulation search of

the pruned designs from the static analysis module, this time cost is rather small compared with the

exhaustive simulation search of all the possible designs from the entire program design space, because

the two-stage static pruning step �lters out most of the redundant design con�gurations. �e bound

analysis of the best- and worst-case executions of the IR instruction pipeline manifests the extreme

cases of the pipeline latency overlapping, given arbitrary execution traces and arbitrary pipeline depth.

Although the actual execution of the pipeline can always be determined once the execution traces

are �xed, this information can only be obtained through dynamical simulations. Hence, the bound

estimation of the pipeline latency is intended to provide an e�ective �lter that reduces the number of

simulated designs.

6.5 Evaluation Results

6.5.1 Evaluation Setup

Two Nvidia GPUs are used to evaluate the hybrid search framework and Table 6.1 gives the detailed

hardware speci�cations. �e proposed framework is tested with a set of OpenCL kernels from the

Rodinia [2] benchmark. �e detailed con�guration is given in Table 6.2. �e evaluation uses the

default input workloads from the benchmarks and excludes the kernels whose work-group size cannot

be varied when the global size is �xed. For backprop, the number of possible work-group sizes is very

small because this application allocates shared memory according to the selected work-group size.

Table 6.1: Hardware speci�cations of the test GPUs.

Device name �adro K620 Titan XP

Architecture Maxwell GM107 Pascal GP102

Compute capacity 5.0 6.1

Number of SMs 3 30

Number of cores per SM 192 128

Clock frequency (MHz) 1058 1405

Number of cores per warp 32 32

Maximum active work groups per SM 32 32

Maximum active warps per SM 64 64

112

6.5 Evaluation Results

�erefore, the shared memory quickly reaches the capacity limit when the work-group size is set to

a large value. For kmeans, the number of features may vary even if the global size is �xed to (10000,

1, 1), therefore di�erent cases are tested, in which the number of features was set to 16, 32, and 64,

respectively. �e simulations are performed on a desktop with an Intel
®

Core
TM

i7-3770 CPU.

6.5.2 Results
6.5.2.1 Design Space Reduction

Figure 6.4 shows the design space reduction results on the test GPUs. �e x-axis represents the kernel

IDs (Column 2) in Table 6.2. �e bar results show the number of designs for each kernel. Speci�-

Table 6.2: Design con�gurations of the test OpenCL kernels.

Benchmark Kernel ID Kernel name Global work size
No. of total designs
�adro Titan
K620 XP

backprop

#1 adjustWeight 1 (100, 1600, 1) 75 84

#2 adjustWeight 2 (100, 3200, 1) 66 78

#3 adjustWeight 3 (100, 6400, 1) 48 75

#4 layerForward 1 (100, 1600, 1) 75 84

#5 layerForward 2 (100, 3200, 1) 66 78

#6 layerForward 3 (100, 6400, 1) 48 75

bfs

#7 bfs1 1 (1048576, 1, 1) 1024 1024

#8 bfs1 2 (2097152, 1, 1) 1024 1024

#9 bfs2 1 (1048576, 1, 1) 1024 1024

#10 bfs2 2 (2097152, 1, 1) 1024 1024

cfd

#11 computeFlux 1 (97152, 1, 1) 1024 1024

#12 computeFlux 2 (193536, 1, 1) 1024 1024

#13 computeFlux 3 (232704, 1, 1) 1024 1024

#14 computeStepFactor 1 (97152, 1, 1) 1024 1024

#15 computeStepFactor 2 (193536, 1, 1) 1024 1024

#16 computeStepFactor 3 (232704, 1, 1) 1024 1024

#17 initVariable 1 (97152, 1, 1) 1024 1024

#18 initVariable 2 (193536, 1, 1) 1024 1024

#19 initVariable 3 (232704, 1, 1) 1024 1024

#20 timeStep 1 (97152, 1, 1) 1024 1024

#21 timeStep 2 (193536, 1, 1) 1024 1024

#22 timeStep 3 (232704, 1, 1) 1024 1024

gaussian

#23 fan1 (4096, 1, 1) 1024 1024

#24 fan2 (4096, 4096, 1) 7262 7262

kmeans

#25 kmeansSwap feat16 (10000, 1, 1) 1024 1024

#26 kmeansSwap feat32 (10000, 1, 1) 1024 1024

#27 kmeansSwap feat64 (10000, 1, 1) 1024 1024

nn

#28 nearestNeighbor 1 (131072, 1, 1) 1024 1024

#29 nearestNeighbor 2 (262144, 1, 1) 1024 1024

#30 nearestNeighbor 3 (524288, 1, 1) 1024 1024

#31 nearestNeighbor 4 (1048576, 1, 1) 1024 1024

particleFilter #32 particleNaive (2048, 1, 1) 1024 1024

113

6. DESIGN SPACE PRUNING FOR OPENCL KERNELS ON GPUS

#1 #2 #3 #4 #5 #6 #7 #8 #9
#10 #11 #12 #13 #14 #15 #16 #17 #18 #19 #20 #21 #22 #23 #24 #25 #26 #27 #28 #29 #30 #31 #32

Kernel ID

100

101

102

103

104

105

No
. o

f d
es

ig
ns

75 66 48 75 66 48

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

72
62

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

41 38 30 47 45 35

15 14 6 5

11
5

73 72 89 65 57 90 66 58 88 59 46

51
6 86

3

21
6

21
6

21
6

93

52

29

16

10
03

Native Pruned

0

20

40

60

80

100

120

De
sig

ns
 re

du
ce

d
(%

)

(a) �adro K620

#1 #2 #3 #4 #5 #6 #7 #8 #9
#10 #11 #12 #13 #14 #15 #16 #17 #18 #19 #20 #21 #22 #23 #24 #25 #26 #27 #28 #29 #30 #31 #32

Kernel ID

100

101

102

103

104

105

No
. o

f d
es

ig
ns

84 78 75 84 78 75

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

72
62

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

42 42 39 49 47 48 73 54

5 4

10
3 22

2

23
8

29
8

33
0

29
7

10
9

13
8 20

1

9

25

52

30
7 74

3

10
14

10
14

10
14

65 97 12
3

82

10
22

Native Pruned

0

20

40

60

80

100

120

De
sig

ns
 re

du
ce

d
(%

)

(b) Titan XP

Figure 6.4: Design space reduction results of the hybrid search framework on the test GPUs. �e bar results

indicate the number of design con�gurations of the native and the pruned search. �e red point values

indicate the percentage of the pruned designs from the native search space.

cally, the Native bar represents the number of total designs and the Pruned bar represents the number

of pruned designs yielded by the static analysis module. �e red points give the design reduction

percentage for each test kernel. Note that the number of total designs varies from a few to several

thousand and therefore is represented in logarithmic scale.

As can be seen, the proposed approach is quite e�ective for most of the test kernels. Speci�cally,

the proposed framework can prune the number of designs by more than 90%, for bfs, nn, and the

kernel timeStep. On average, the static analysis module reduces the program design space by 77.81%

and 68.06%, respectively, on �adro K620 and Titan XP GPUs. For both GPUs, the limiting factor on

the percentage of the program design space reduction is backprop and particleFilter. As for backprop,

the number of total designs is rather small, so the number of redundant con�gurations are greatly

outnumbered by the remaining kernels. With regard to particleFilter, the kernel execution times across

all designs are quite stable, so the static analysis module is not able to signi�cantly prune the design

con�gurations, resulting in a still very large pruned design space. �e case is the same with kmeans

running on the Titan XP GPU.

114

6.5 Evaluation Results

#1 #2 #3 #4 #5 #6 #7 #8 #9 #1
0

#1
1

#1
2

#1
3

#1
4

#1
5

#1
6

#1
7

#1
8

#1
9

#2
0

#2
1

#2
2

#2
3

#2
4

#2
5

#2
6

#2
7

#2
8

#2
9

#3
0

#3
1

#3
2

Av
g.

Kernel ID

0.0

0.5

1.0

1.5

2.0

2.5

No
rm

. e
xe

c.
 ti

m
e

Quadro K620 Titan XP

Figure 6.5: Normalized execution time of the selected design on the test GPUs.

6.5.2.2 Search�ality

Figure 6.5 presents the performance results on the test GPUs. �e x-axis represents the kernel IDs (Col-

umn 2) in Table 6.2, and the y-axis represents the ratio of the runtime performance of the test kernels

with the selected work-group size to that with the truly optimal design. On average, the performance

with the selected designs is 1.062 times and 1.233 times slower than that with the truly optimal con-

�gurations, respectively for the �adro K620 and Titan XP GPUs. For the kernel adjustWeight, the

hybrid search framework manages to �nd the truly optimal work-group size con�guration for the

�adro K620 GPU.

�e worst results come from the kernel layerForward and fan2 running on the Titan XP GPU. �is is

due to the reason that although the dynamical simulation can give a fairly good estimation of the kernel

execution time on the whole, it fails to accurately predict some extreme cases that might showcase the

minimal estimated execution time. To demonstrate the e�ectiveness of the static analysis module, for

the kernel layerForward and fan2 running on the Titan XP GPU, the test kernels with pruned designs

are also exhaustively executed and the work-group size with the minimal execution time is chosen

as a candidate work-group size con�guration. Results show that the candidate con�gurations always

match the truly optimal work-group size.

6.5.2.3 Search Cost

�e search cost is measured by recording the time needed to obtain the optimal con�guration for the

test kernels when using the exhaustive simulation search and the hybrid search, respectively. �e

results are shown in Figure 6.6. On average, the proposed hybrid search framework takes only 24.70%

and 34.57% of the time required by the exhaustive simulation search to �nd the optimal work-group

size, for the �adro K620 and Titan XP GPUs, respectively. Similar to the percentage of the program

115

6. DESIGN SPACE PRUNING FOR OPENCL KERNELS ON GPUS
#1 #2 #3 #4 #5 #6 #7 #8 #9 #1

0

#1
1

#1
2

#1
3

#1
4

#1
5

#1
6

#1
7

#1
8

#1
9

#2
0

#2
1

#2
2

#2
3

#2
4

#2
5

#2
6

#2
7

#2
8

#2
9

#3
0

#3
1

#3
2

Av
g.

Kernel ID

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

. s
ea

rc
h

tim
e

Exhaustive simulation search Hybrid search (Quadro K620) Hybrid search (Titan Xp)

Figure 6.6: Normalized time costs of the exhaustive simulation search and the hybrid search on the test

GPUs.

design space reduction, the limiting factor is the large search time needed for backprop, particleFilter,

and kmeans on the Titan XP GPU.

6.6 Summary

Designing an e�cient design-space exploration of parallel workloads meant for GPUs is non-trivial

due to the large numbers of possible design con�gurations. �e work in this chapter addresses the se-

lection of work-group size for OpenCL kernels and proposes a hybrid-search framework for pruning

the design space of possible work-group sizes for OpenCL kernels running on GPUs. �e proposed

space-search framework includes two modules. First, a static analysis module applies two stages of

design-space pruning by �ltering out design con�gurations that have duplicated execution traces and

inferior pipelines. Second, a dynamical simulation module estimates the optimal design con�guration

by exhaustively searching the work-group sizes that yield the minimum predicted kernel execution

time. �e proposed framework does not require any program runs to �nd optimal or near-optimal

work-group size con�gurations. Experiments show that the framework can signi�cantly reduce the

program design space and generate the estimated work-group size which can deliver runtime perfor-

mance comparable to that with the truly optimal con�guration.

116

Chapter 7

Conclusion and Future Work

�is chapter makes a brief summary of the main contributions of the work presented in this thesis.

Meanwhile, it will also give discussions about the main results of the thesis and then come up with

the prospect of further research direction when using heterogeneous computing systems for the de-

velopment of ADAS applications.

7.1 Main Contributions

�e primary contributions of the work in this thesis lie in the investigation of applying the heteroge-

neous computing techniques for the development of parallel ADAS applications. �e work is done in

a systematic way, i.e., both the hardware architecture design and the so�ware application implemen-

tations are carefully considered, before the detailed studies about performance analysis, optimization,

estimation, and program design space exploration are conducted. Speci�cally, the main points illus-

trated in this thesis are listed as follows:

1. Hardware architecture design. To cater to the requirements of high-performance-guarantee

and low-energy-consumption for future ADAS applications and to tackle the problems of tedious

HW/SW maintenance and low scalability existed in conventional automotive ECUs, Chapter 2

proposes to adopt the modular design philosophy for the implementation of a novel ECU archi-

tecture called h
2
ECU. �e platform integrates multiple hardware accelerators so as to provide

su�cient computing power, while traditional dedicated functionalities can be seamlessly exe-

cuted on the �xed host module. �e high performance, �exibility, and scalability of this archi-

tecture is demonstrated by the deployment on a modi�ed real-life vehicle and evaluations with

two customized ADAS applications.

2. So�ware application implementations. Based on the heterogeneous context, two di�erent

117

7. CONCLUSION AND FUTUREWORK

approaches to realize the lane detection application are presented in Chapter 3. �e comprehen-

sive study of how to abstract, parallelize, and optimize the computation tasks using the com-

modity hardware accelerators provide a paradigm for deploying generic ADAS applications in

the heterogeneous systems. �e performance and energy e�ciency of executing the applica-

tions with heterogeneous con�gurations are also demonstrated by a series of experiments on

real-world road scenarios.

3. Performance optimization procedure. With the heterogeneous platform and the case ap-

plications in hand, Chapter 4 gives further study towards the aspect of the performance opti-

mization. In this chapter, a detailed optimization procedure is provided for those ADAS applica-

tions which are parallelized for single-accelerator scenario, but not fully optimized for multi-

accelerator heterogeneous con�gurations. �e optimization procedure takes into considera-

tion the perspectives from the host, intra-accelerator, inter-accelerator, accelerator-speci�c and

algorithm-oriented executions and thus the performance enhancement is presented in a step-

by-step manner. Moreover, it is applicable to generic parallel applications programmed with

OpenCL, and other heterogeneous and recon�gurable computing systems.

4. Hybrid performance estimation and design space pruning framework. In Chapter 5 and

6, detailed studies about the performance estimation and design space pruning of OpenCL ker-

nels on the representative GPU platforms are given. �e work in these two chapters concentrates

on a hybrid framework that combines static source code analysis and dynamical execution trace

simulation approaches to model and monitor the runtime behavior of the parallel OpenCL ker-

nels. �e robustness, accuracy, and time cost of the hybrid framework are a�erwards evaluated

and analyzed.

7.2 Discussion

Heterogeneous computing is an emerging technique for the development and deployment of scienti�c

computing applications in the scenarios where high performance needs to be guaranteed, while other

expenses such as the energy, power, or thermal consumptions are expected to be minimized. �e work

in this thesis applies the heterogeneous computing architecture to the automotive domain and depicts

relatively span-new and preliminary studies of using heterogeneous computing for the development

of ADAS applications.

�e work in Chapter 2 and 3 shows the possibility and feasibility of running ADAS applications

on a customized heterogeneous platform. It is seen that within the heterogeneous context, the real-

118

7.3 Future Work

time performance of the ADAS applications can be e�ortlessly achieved, meanwhile the energy cost

can also be regulated. �is type of recon�gurable computing exhibits considerably high �exibility

and scalability for the development of next-generation ADAS applications and the design of future

automated driving module.

�e work in Chapter 4 looks into the various aspects of the heterogeneous systems and the pro-

posed optimization procedure gives insights and guidance for potential program developers who wish

to maximize the performance of their projects by virtue of leveraging various hardware computation

resources. �e FPGA-GPU heterogeneous system studied in this chapter serves as a typical template

for other recon�gurable computing systems, and the associated performance optimization methods

can be expanded to other scenarios as well.

�e work in Chapter 5 and 6 demonstrated that, despite the diversity of applications and architec-

tures, the performance results are somehow predictable within tolerable error range, and the inherent

vast program design space of the parallel applications can be e�ciently pruned. �e GPU platform

studied in this chapter throws light upon the adoption of hybrid approach for the performance mod-

eling and analysis of parallel applications on commodity hardware.

7.3 Future Work

�e contributions in this thesis present initial research and provide partial solutions for the devel-

opment and deployment of ADAS applications in heterogeneous computing systems. Possible future

work regarding to this topic are listed in the following:

• Hardware design. �e performance demand is considered as the primary goal for the embedded

systems, especially for ADAS. �e proposed h
2
ECU is a prototype platform for current research

use. However, as a portable device, power consumption and the associated thermal management

are also important topics that needs to be considered. For the real automotive products, how to

address these issues simultaneously is a critical topic which deserves further study.

• Application implementation. �e work in this thesis chooses LDA as the case application as it

represents a category of applications which require high computing power and thus deserve

well-performed parallelization. For ADAS, there exists a wide range of other applications using

miscellaneous sensors and how to involve them into the heterogeneous context is also a very

promising future work.

• Analysis and optimization of other indices. Performance analysis is the main focus of the work in

this thesis and the energy e�ciency is also investigated for the parallelized ADAS applications.

119

7. CONCLUSION AND FUTUREWORK

A potential research direction in the next step would be how to optimize other indices, such as

energy, power, or both, for the workload processed in the heterogeneous systems.

• Involvement of other accelerators. �e aim of heterogeneous computing is to foster strengths

and circumvent weaknesses of various hardware accelerators to maximize the task processing

e�ciency. Currently, GPUs and FPGAs are two types of mainstream devices that dominate the

scienti�c computing realm. How to model and analyze the performance of the overall system

which consists of both GPUs and FPGAs, or even with other commodity hardware components,

is still a rather new topic for future study.

120

List of Publications

[1] Xiebing Wang, Linlin Liu, Kai Huang, and Alois Knoll. Exploring FPGA-GPU Heteroge-

neous Architecture for ADAS: Towards Performance and Energy, In International Confer-

ence on Algorithms and Architectures for Parallel Processing (ICA3PP), pages 33–48. Springer, 2017.

[2] Xiebing Wang, Mingyue Cui, Kai Huang, Alois Knoll, and Long Chen. Improving the per-

formance of ADAS application in heterogeneous context: A case of lane detection, In IEEE

20th International Conference on Intelligent Transportation Systems (ITSC), pages 1–6. IEEE, 2017.

[3] Xiebing Wang, Christopher Kiwus, Canhao Wu, Biao Hu, Kai Huang, and Alois Knoll.

Implementing and Parallelizing Real-time Lane Detection on Heterogeneous Platforms,

In IEEE 29th International Conference on Application-speci�c Systems, Architectures and Processors

(ASAP), pages 1–8. IEEE, 2018.

[4] Xiebing Wang, Kai Huang, Alois Knoll, and Xuehai Qian. A Hybrid Framework for Fast

and Accurate GPU Performance Estimation through Source-Level Analysis and Trace-

Based Simulation, In IEEE 25th International Symposium on High-Performance Computer Archi-

tecture (HPCA), pages 506–518. IEEE, 2019.

[5] Xiebing Wang, Kai Huang, Long Chen, and Alois Knoll. h2ECU: A High-Performance and

Heterogeneous Electronic Control Unit for Automated Driving, IEEE Micro, 38(5):53–62,

2018.

[6] Mingchuan Zhou, Long Cheng, Manuel Dell’Antonio, Xiebing Wang, Zhenshan Bing, M

Ali Nasseri, Kai Huang, and Alois Knoll. Peak TemperatureMinimization for Hard Real-

Time Systems Using DVS and DPM, Journal of Circuits, Systems and Computers, 1950102, 2018.

[7] Xiebing Wang, Kai Huang, and Alois Knoll. Performance Optimisation of Parallelized

ADAS Applications in FPGA-GPU Heterogeneous Systems: A Case Study With Lane De-

tection, IEEE Transactions on Intelligent Vehicles, 4(4):519–531, 2019.

121

LIST OF PUBLICATIONS

[8] Xiebing Wang, Xuehai Qian, Alois Knoll, and Kai Huang. E�cient Performance Estima-

tion andWork-group Size Pruning for OpenCL Kernels on GPUs, IEEE Transactions on Par-

allel and Distributed Systems, 31(5):1089–1106, 2020.

122

References

[1] Texas Instruments. Advanced Driver Assistance (ADAS) Solutions Guide. https:

//uk.farnell.com/wcsstore/ExtendedSitesCatalogAssetStore/cms

/asset/images/europe/common/applications/automotive/pdf/ti-a

das-solution-guide.pdf, 2015. xiii, 2

[2] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W Sheaffer, Sang-Ha

Lee, and Kevin Skadron. Rodinia: A benchmark suite for heterogeneous computing. In

IEEE International Symposium on Workload Characterization (IISWC), pages 44–54. IEEE, 2009.

xv, 78, 79, 95, 96, 104, 112

[3] Ali Bakhoda, George L Yuan, Wilson WL Fung, Henry Wong, and Tor M Aamodt. Ana-

lyzing CUDAworkloads using a detailed GPU simulator. In IEEE International Symposium

on Performance Analysis of Systems and So�ware (ISPASS), pages 163–174. IEEE, 2009. xv, 80, 95,

100

[4] Wikipedia. Advanced driver assistance systems. https://en.wikipedia.org/w

iki/Advanced driver assistance systems, 2017. 1

[5] Manfred Broy, Ingolf H Kruger, Alexander Pretschner, and Christian Salzmann. En-

gineering automotive so�ware. Proceedings of the IEEE, 95(2):356–373, 2007. 1, 3, 9

[6] Jeffrey A Cook, Ilya V Kolmanovsky, David McNamara, Edward C Nelson, and

K Venkatesh Prasad. Control, computing and communications: technologies for the

twenty-�rst century model T. Proceedings of the IEEE, 95(2):334–355, 2007. 1

[7] David P Rodgers. Improvements in multiprocessor system design. In ACM SIGARCH

Computer Architecture News, 13, pages 225–231. IEEE Computer Society Press, 1985. 2

[8] MEMS Journal. Automotive Sensors and Electronics Expo 2017. http://www.auto

motivesensors2017.com/, 2017. 3

123

https://uk.farnell.com/wcsstore/ExtendedSitesCatalogAssetStore/cms/asset/images/europe/common/applications/automotive/pdf/ti-adas-solution-guide.pdf
https://uk.farnell.com/wcsstore/ExtendedSitesCatalogAssetStore/cms/asset/images/europe/common/applications/automotive/pdf/ti-adas-solution-guide.pdf
https://uk.farnell.com/wcsstore/ExtendedSitesCatalogAssetStore/cms/asset/images/europe/common/applications/automotive/pdf/ti-adas-solution-guide.pdf
https://uk.farnell.com/wcsstore/ExtendedSitesCatalogAssetStore/cms/asset/images/europe/common/applications/automotive/pdf/ti-adas-solution-guide.pdf
https://en.wikipedia.org/wiki/Advanced_driver_assistance_systems
https://en.wikipedia.org/wiki/Advanced_driver_assistance_systems
http://www.automotivesensors2017.com/
http://www.automotivesensors2017.com/

REFERENCES

[9] Tuxera. What does ECU consolidationmean for automotive storage? https://www.

tuxera.com/blog/ecu-consolidation-mean-automotive-storage/,

2018. 3

[10] Intel. Intel® GOTM Automotive Solutions. https://www.intel.com/content/

www/us/en/automotive/go-automated-driving.html, 2017. 3, 11

[11] Kai Huang, Biao Hu, Long Chen, Alois Knoll, and Zhihua Wang. ADAS on COTS with

OpenCL: a case study with lane detection. IEEE Transactions on Computers (TC), 2017. 4, 57

[12] Jörg Fickenscher, Sebastian Reinhart, Frank Hannig, Jürgen Teich, and Mohamed Es-

sayed Bouzouraa. Convoy tracking for ADAS on embedded GPUs. In IEEE Intelligent

Vehicles Symposium (IV), pages 959–965. IEEE, 2017. 4

[13] Matina Maria Trompouki, Leonidas Kosmidis, and Nacho Navarro. An open bench-

mark implementation for multi-CPU multi-GPU pedestrian detection in automotive

systems. In IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages 305–

312. IEEE, 2017. 4

[14] Aaftab Munshi. �e OpenCL speci�cation. In IEEE Hot Chips Symposium (HCS), pages

1–314. IEEE, 2009. 4, 78, 103

[15] Mohamed Zahran. Heterogeneous computing: here to stay. Communications of the ACM

(CACM), 60(3):42–45, 2017. 4

[16] Majdi Ghadhab, Jörg Kaienburg, Martin Süsskraut, and Christof Fetzer. Is So�ware

Coded Processing an Answer to the Execution Integrity Challenge of Current and Fu-

ture Automotive So�ware-Intensive Applications? In Advanced Microsystems for Automo-

tive Applications, pages 263–275. Springer, 2016. 4

[17] Continental. Continental Strategy Focuses on Automated Driving. https://www.

continental-corporation.com/en/press/press-releases/automate

d-driving-128072, 2012. 9

[18] �alcomm. Snapdragon 820 Automotive Platform. https://www.qualcomm.com

/products/snapdragon/processors/820-automotive, 2016. 11

[19] NXP. MPC577xK: Ultra-Reliable MPC577xK MCU for Automotive ADAS & Industrial

Radar Applications. https://www.nxp.com/products/processors-and-

124

https://www.tuxera.com/blog/ecu-consolidation-mean-automotive-storage/
https://www.tuxera.com/blog/ecu-consolidation-mean-automotive-storage/
https://www.intel.com/content/www/us/en/automotive/go-automated-driving.html
https://www.intel.com/content/www/us/en/automotive/go-automated-driving.html
https://www.continental-corporation.com/en/press/press-releases/automated-driving-128072
https://www.continental-corporation.com/en/press/press-releases/automated-driving-128072
https://www.continental-corporation.com/en/press/press-releases/automated-driving-128072
https://www.qualcomm.com/products/snapdragon/processors/820-automotive
https://www.qualcomm.com/products/snapdragon/processors/820-automotive
https://www.nxp.com/products/processors-and-microcontrollers/power-architecture-processors/mpc5xxx-55xx-32-bit-mcus/ultra-reliable-mpc57xx-32-bit-automotive-industrial-microcontrollers-mcus/ultra-reliable-mpc577xk-mcu-for-automotive-adas-industrial-radar-applications:MPC577xK
https://www.nxp.com/products/processors-and-microcontrollers/power-architecture-processors/mpc5xxx-55xx-32-bit-mcus/ultra-reliable-mpc57xx-32-bit-automotive-industrial-microcontrollers-mcus/ultra-reliable-mpc577xk-mcu-for-automotive-adas-industrial-radar-applications:MPC577xK

REFERENCES

microcontrollers/power-architecture-processors/mpc5xxx-55xx-

32-bit-mcus/ultra-reliable-mpc57xx-32-bit-automotive-indus

trial-microcontrollers-mcus/ultra-reliable-mpc577xk-mcu-fo

r-automotive-adas-industrial-radar-applications:MPC577xK, 2016.

11

[20] Nvidia. NVIDIA DRIVE PX: Scalable AI Supercomputer For Autonomous Driving. ht

tps://www.nvidia.com/en-us/self-driving-cars/drive-px/, 2017. 11

[21] Fred W Rauskolb, Kai Berger, Christian Lipski, Marcus Magnor, Karsten Cornelsen,

Jan Effertz, Thomas Form, Fabian Graefe, Sebastian Ohl, Walter Schumacher, et al.

Caroline: An autonomously driving vehicle for urban environments. Journal of Field

Robotics (JFR), 25(9):674–724, 2008. 11

[22] Jonas Mårtensson, Assad Alam, Sagar Behere, Muhammad Altamash Ahmed Khan,

Joakim Kjellberg, Kuo-Yun Liang, Henrik Pettersson, and Dennis Sundman. �e de-

velopment of a cooperative heavy-duty vehicle for the GCDC 2011: Team Scoop. IEEE

Transactions on Intelligent Transportation Systems (TITS), 13(3):1033–1049, 2012. 11

[23] Andreas Geiger, Martin Lauer, Frank Moosmann, Benjamin Ranft, Holger Rapp,

Christoph Stiller, and Julius Ziegler. Team AnnieWAY’s entry to the 2011 grand co-

operative driving challenge. IEEE Transactions on Intelligent Transportation Systems (TITS),

13(3):1008–1017, 2012. 11

[24] Michael Montemerlo, Jan Becker, Suhrid Bhat, Hendrik Dahlkamp, Dmitri Dolgov,

Scott Ettinger, Dirk Haehnel, Tim Hilden, Gabe Hoffmann, Burkhard Huhnke, et al.

Junior: �e stanford entry in the urban challenge. Journal of Field Robotics (JFR), 25(9):569–

597, 2008. 11

[25] Chris Urmson, Joshua Anhalt, Drew Bagnell, Christopher Baker, Robert Bittner,

MN Clark, John Dolan, Dave Duggins, Tugrul Galatali, Chris Geyer, et al. Au-

tonomous driving in urban environments: Boss and the urban challenge. Journal of

Field Robotics (JFR), 25(8):425–466, 2008. 11

[26] Inwook Shim, Jongwon Choi, Seunghak Shin, Tae-Hyun Oh, Unghui Lee, Byungtae Ahn,

Dong-Geol Choi, David Hyunchul Shim, and In-So Kweon. An autonomous driving sys-

tem for unknown environments using a uni�ed map. IEEE Transactions on Intelligent

Transportation Systems (TITS), 16(4):1999–2013, 2015. 11

125

https://www.nxp.com/products/processors-and-microcontrollers/power-architecture-processors/mpc5xxx-55xx-32-bit-mcus/ultra-reliable-mpc57xx-32-bit-automotive-industrial-microcontrollers-mcus/ultra-reliable-mpc577xk-mcu-for-automotive-adas-industrial-radar-applications:MPC577xK
https://www.nxp.com/products/processors-and-microcontrollers/power-architecture-processors/mpc5xxx-55xx-32-bit-mcus/ultra-reliable-mpc57xx-32-bit-automotive-industrial-microcontrollers-mcus/ultra-reliable-mpc577xk-mcu-for-automotive-adas-industrial-radar-applications:MPC577xK
https://www.nxp.com/products/processors-and-microcontrollers/power-architecture-processors/mpc5xxx-55xx-32-bit-mcus/ultra-reliable-mpc57xx-32-bit-automotive-industrial-microcontrollers-mcus/ultra-reliable-mpc577xk-mcu-for-automotive-adas-industrial-radar-applications:MPC577xK
https://www.nxp.com/products/processors-and-microcontrollers/power-architecture-processors/mpc5xxx-55xx-32-bit-mcus/ultra-reliable-mpc57xx-32-bit-automotive-industrial-microcontrollers-mcus/ultra-reliable-mpc577xk-mcu-for-automotive-adas-industrial-radar-applications:MPC577xK
https://www.nxp.com/products/processors-and-microcontrollers/power-architecture-processors/mpc5xxx-55xx-32-bit-mcus/ultra-reliable-mpc57xx-32-bit-automotive-industrial-microcontrollers-mcus/ultra-reliable-mpc577xk-mcu-for-automotive-adas-industrial-radar-applications:MPC577xK
https://www.nvidia.com/en-us/self-driving-cars/drive-px/
https://www.nvidia.com/en-us/self-driving-cars/drive-px/

REFERENCES

[27] Kichun Jo, Junsoo Kim, Dongchul Kim, Chulhoon Jang, and Myoungho Sunwoo. De-

velopment of autonomous car–Part II: A case study on the implementation of an au-

tonomous driving system based on distributed architecture. IEEE Transactions on Indus-

trial Electronics (TIE), 62(8):5119–5132, 2015. 11

[28] Stefanos Kokogias, Lars Svensson, Gonçalo Collares Pereira, Rui Oliveira, Xinhai

Zhang, Xinwu Song, and Jonas Mårtensson. Development of Platform-Independent

System for Cooperative Automated Driving Evaluated in GCDC 2016. IEEE Transactions

on Intelligent Transportation Systems (TITS), 2017. 11

[29] Khronos Group. OpenCL Overview. https://www.khronos.org/opencl/, 2017.

13

[30] Kai Huang, Biao Hu, Jan Botsch, Nikhil Madduri, and Alois Knoll. A scalable lane de-

tection algorithm on cotss with OpenCL. In Design, Automation & Test in Europe Conference

& Exhibition (DATE), pages 229–232. IEEE, 2016. 17, 25, 26

[31] Xiebing Wang, Linlin Liu, Kai Huang, and Alois Knoll. Exploring FPGA-GPU Hetero-

geneous Architecture for ADAS: Towards Performance and Energy. In International Con-

ference on Algorithms and Architectures for Parallel Processing (ICA3PP), pages 33–48. Springer,

2017. 18, 24, 62

[32] Xiebing Wang, Christopher Kiwus, Canhao Wu, Biao Hu, Kai Huang, and Alois Knoll.

Implementing and Parallelizing Real-time Lane Detection on Heterogeneous Plat-

forms. In IEEE 29th International Conference on Application-speci�c Systems, Architectures and

Processors (ASAP), pages 1–8. IEEE, 2018. 24

[33] Albert S Huang, David Moore, Matthew Antone, Edwin Olson, and Seth Teller. Find-

ing multiple lanes in urban road networks with vision and lidar. Autonomous Robots,

26(2):103–122, 2009. 25

[34] Qingqan Li, Long Chen, Ming Li, Shih-Lung Shaw, and Andreas Nuchter. A sensor-

fusion drivable-region and lane-detection system for autonomous vehicle navigation

in challenging road scenarios. IEEE Transactions on Vehicular Technology (TVT), 63(2):540–

555, 2014. 25

126

https://www.khronos.org/opencl/

REFERENCES

[35] Junaed Sattar and Jiawei Mo. SafeDrive: A Robust Lane Tracking System for Au-

tonomous and Assisted Driving Under Limited Visibility. arXiv preprint arXiv:1701.08449,

2017. 25

[36] Byambaa Dorj and Deok Jin Lee. A precise lane detection algorithm based on top view

image transformation and least-square approaches. Journal of Sensors, 2016, 2016. 25, 26

[37] Jianwei Niu, Jie Lu, Mingliang Xu, Pei Lv, and Xiaoke Zhao. Robust LaneDetection using

Two-stage Feature Extraction with Curve Fitting. Pa�ern Recognition, 59:225–233, 2016. 25

[38] Somchok Sakjiraphong, Andre Pinho, Matthew N Dailey, Mongkol Ekpanyapong, and

Adriano Tavares. Real-time road lane detection with commodity hardware. In Pro-

ceedings of the International Electrical Engineering Congress, pages 1–4. IEEE, 2014. 25, 26, 56,

57

[39] Shuliang Zhu, Jianqiang Wang, Tao Yu, and Jiao Wang. Amethod of lane detection and

tracking for expressway based on RANSAC. In IEEE 2nd International Conference on Image,

Vision and Computing, pages 62–66. IEEE, 2017. 25, 26

[40] Huachun Tan, Yang Zhou, Yong Zhu, Danya Yao, and Keqiang Li. A novel curve lane

detection based on improved river �ow and ransa. In IEEE 17th International Conference on

Intelligent Transportation Systems (ITSC), pages 133–138. IEEE, 2014. 25, 26

[41] Hanyu Xuan, Hongzhe Liu, Jiazheng Yuan, and Qing Li. Robust Lane-mark Extraction

for Autonomous Driving under Complex Real Conditions. IEEE Access, 2017. 25, 26

[42] Jongin Son, Hunjae Yoo, Sanghoon Kim, and Kwanghoon Sohn. Real-time illumination

invariant lane detection for lane departure warning system. Expert Systems with Applica-

tions, 42(4):1816–1824, 2015. 25

[43] Hunjae Yoo, Ukil Yang, and Kwanghoon Sohn. Gradient-enhancing conversion for

illumination-robust lane detection. IEEE Transactions on Intelligent Transportation Systems

(TITS), 14(3):1083–1094, 2013. 25, 26

[44] Wenjie Lu, Emmanuel Seignez, Roger Reynaud, et al. Monocular multi-kernel based

lane marking detection. In IEEE 4th Annual International Conference on Cyber Technology in

Automation, Control, and Intelligent Systems, pages 123–128. IEEE, 2014. 26

127

REFERENCES

[45] Seung-Nam Kang, Soomok Lee, Junhwa Hur, and Seung-Woo Seo. Multi-lane detection

based on accurate geometric lane estimation in highway scenarios. In IEEE Intelligent

Vehicles Symposium (IV), pages 221–226. IEEE, 2014. 26

[46] Tin Trung Duong, Cuong Cao Pham, Tai Huu-Phuong Tran, Tien Phuoc Nguyen, and

Jae Wook Jeon. Near real-time ego-lane detection in highway and urban streets. In IEEE

International Conference on Consumer Electronics-Asia, pages 1–4. IEEE, 2016. 26

[47] Raghuraman Gopalan, Tsai Hong, Michael Shneier, and Rama Chellappa. A learning

approach towards detection and tracking of lane markings. IEEE Transactions on Intelli-

gent Transportation Systems (TITS), 13(3):1088–1098, 2012. 26

[48] Martin A Fischler and Robert C Bolles. Random sample consensus: a paradigm for

model �tting with applications to image analysis and automated cartography. Commu-

nications of the ACM (CACM), 24(6):381–395, 1981. 26, 64

[49] Xiangjing An, Erke Shang, Jinze Song, Jian Li, and Hangen He. Real-time lane departure

warning system based on a single FPGA. EURASIP Journal on Image and Video Processing,

2013(1):38, 2013. 26, 57

[50] Roberto Marzotto, Paul Zoratti, Daniele Bagni, Andrea Colombari, and Vittorio

Murino. A real-time versatile roadway path extraction and tracking on an FPGA plat-

form. Computer Vision and Image Understanding, 114(11):1164–1179, 2010. 26, 57

[51] Michael Hahnle, Frerk Saxen, Matthias Hisung, Ulrich Brunsmann, and Konrad Doll.

FPGA-based real-time pedestrian detection on high-resolution images. In Proceedings

of the IEEE Conference on Computer Vision and Pa�ern Recognition Workshops (CVPRW), pages

629–635, 2013. 26, 56, 57

[52] Petko Georgiev, Nicholas D Lane, Cecilia Mascolo, and David Chu. AcceleratingMobile

Audio Sensing Algorithms through On-Chip GPU O�loading. In Proceedings of the 15th

Annual International Conference on Mobile Systems, Applications, and Services (MobiSys), pages

306–318. ACM, 2017. 26, 56, 57

[53] Weijing Shi, Xin Li, Zhiyi Yu, and Gary Overett. An FPGA-Based Hardware Accelerator

for Tra�c Sign Detection. IEEE Transactions on Very Large Scale Integration Systems (TVLSI),

25(4):1362–1372, 2017. 26, 56, 57

128

REFERENCES

[54] Irvin Sobel. An isotropic 3× 3 image gradient operator. Machine Vision for three-

demensional Sciences, 1990. 27

[55] Neil J Gordon, David J Salmond, and Adrian FM Smith. Novel approach to

nonlinear/non-Gaussian Bayesian state estimation. In IEE Proceedings F-Radar and Sig-

nal Processing, 140, pages 107–113. IET, 1993. 29

[56] David B. Thomas. �e MWC64X Random Number Generator. http://cas.ee.ic.

ac.uk/people/dt10/research/rngs-gpu-mwc64x.html, 2011. 31

[57] Mohamed Aly. Real time detection of lane markers in urban streets. In IEEE Intelligent

Vehicles Symposium (IV), pages 7–12. IEEE, 2008. 34, 35, 36

[58] Hui Kong, Jean-Yves Audibert, and Jean Ponce. General road detection from a single

image. IEEE Transactions on Image Processing (TIP), 19(8):2211–2220, 2010. 35

[59] Intel. Intel® FPGA SDK for OpenCLTM
. https://www.intel.com/content/da

m/www/programmable/us/en/pdfs/literature/hb/opencl-sdk/aocl-

best-practices-guide.pdf, 2017. 43

[60] Mohamed Aly. Caltech Lanes. http://www.vision.caltech.edu/malaa/dat

asets/caltech-lanes, 2014. 43, 64

[61] Jeremy Fowers, Greg Brown, Patrick Cooke, and Greg Stitt. A performance and en-

ergy comparison of FPGAs, GPUs, and multicores for sliding-window applications. In

Proceedings of the ACM/SIGDA International Symposium on Field Programmable Gate Arrays (ISF-

PGA), pages 47–56. ACM, 2012. 43

[62] Intel. PowerPlay Early Power Estimators and Power Analyzer. https://www.inte

l.com/content/www/us/en/programmable/support/support-resourc

es/operation-and-testing/power/pow-powerplay.html, 2017. 43

[63] Weiyan Wang, Yunqan Zhang, Shengen Yan, Ying Zhang, and Haipeng Jia. Paralleliza-

tion and performance optimization on face detection algorithm with OpenCL: A case

study. Tsinghua Science and Technology, 17(3):287–295, 2012. 56, 57

[64] Xuechao Wei, Yun Liang, Tao Wang, Songwu Lu, and Jason Cong. �roughput optimiza-

tion for streaming applications on CPU-FPGA heterogeneous systems. In 22nd Asia and

South Paci�c Design Automation Conference (ASP-DAC), pages 488–493. IEEE, 2017. 56, 57

129

http://cas.ee.ic.ac.uk/people/dt10/research/rngs-gpu-mwc64x.html
http://cas.ee.ic.ac.uk/people/dt10/research/rngs-gpu-mwc64x.html
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/opencl-sdk/aocl-best-practices-guide.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/opencl-sdk/aocl-best-practices-guide.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/opencl-sdk/aocl-best-practices-guide.pdf
http://www.vision.caltech.edu/malaa/datasets/caltech-lanes
http://www.vision.caltech.edu/malaa/datasets/caltech-lanes
https://www.intel.com/content/www/us/en/programmable/support/support-resources/operation-and-testing/power/pow-powerplay.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources/operation-and-testing/power/pow-powerplay.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources/operation-and-testing/power/pow-powerplay.html

REFERENCES

[65] Robert Dietrich and Ronny Tschüter. A generic infrastructure for OpenCL perfor-

mance analysis. In IEEE 8th International Conference on Intelligent Data Acquisition and Ad-

vanced Computing Systems: Technology and Applications (IDAACS), 1, pages 334–341. IEEE, 2015.

57

[66] Davide Gadioli, Simone Libutti, Giuseppe Massari, Edoardo Paone, Michele Scandale,

Patrick Bellasi, Gianluca Palermo, Vittorio Zaccaria, Giovanni Agosta, William For-

naciari, and Cristina Silvano. Opencl application auto-tuning and run-time resource

management for multi-core platforms. In IEEE International Symposium on Parallel and

Distributed Processing with Applications (ISPA), pages 127–133. IEEE, 2014. 57

[67] Thibaut Lutz, Christian Fensch, and Murray Cole. Helium: a transparent inter-kernel

optimizer for OpenCL. In Proceedings of the 8th Workshop on General Purpose Processing using

GPUs (GPGPU), pages 70–80. ACM, 2015. 57

[68] Perhaad Mistry, Chris Gregg, Norman Rubin, David Kaeli, and Kim Hazelwood. Ana-

lyzing program �ow within a many-kernel OpenCL application. In Proceedings of the 4th

Workshop on General Purpose Processing on Graphics Processing Units (GPGPU), page 10. ACM,

2011. 57

[69] Jialiang Zhang and Jing Li. Improving the Performance of OpenCL-based FPGAAccel-

erator for Convolutional Neural Network. In Proceedings of the ACM/SIGDA International

Symposium on Field-Programmable Gate Arrays (ISFPGA), pages 25–34. ACM, 2017. 57

[70] Naveen Suda, Vikas Chandra, Ganesh Dasika, Abinash Mohanty, Yufei Ma, Sarma Vrud-

hula, Jae-sun Seo, and Yu Cao. �roughput-optimized OpenCL-based FPGA accelerator

for large-scale convolutional neural networks. In Proceedings of the ACM/SIGDA Interna-

tional Symposium on Field-Programmable Gate Arrays (ISFPGA), pages 16–25. ACM, 2016. 57

[71] Yang Xing, Chen Lv, Long Chen, Huaji Wang, Hong Wang, Dongpu Cao, Efstathios Ve-

lenis, and Fei-Yue Wang. Advances in Vision-Based Lane Detection: Algorithms, Inte-

gration, Assessment, and Perspectives on ACP-Based Parallel Vision. IEEE/CAA Journal

of Automatica Sinica, 5(3):645–661, 2018. 57

[72] Calum Blair, Neil M Robertson, and Danny Hume. Characterizing a heterogeneous

system for person detection in video using histograms of oriented gradients: Power

versus speed versus accuracy. IEEE Journal on Emerging and Selected Topics in Circuits and

Systems, 3(2):236–247, 2013. 57

130

REFERENCES

[73] Matthew Yih, Jeffrey M Ota, John D Owens, and Pinar Muyan-Özçelik. FPGA versus

GPU for Speed-Limit-Sign Recognition. In IEEE 21st International Conference on Intelligent

Transportation Systems (ITSC), pages 843–850. IEEE, 2018. 57

[74] Akira Nukada and Satoshi Matsuoka. Auto-tuning 3-D FFT library for CUDA GPUs.

In Proceedings of International Conference on High Performance Computing Networking, Storage

and Analysis (SC), page 30. ACM, 2009. 77, 105

[75] Alexander Monakov, Anton Lokhmotov, and Arutyun Avetisyan. Automatically Tun-

ing Sparse Matrix-Vector Multiplication for GPU Architectures. In 5th International Con-

ference on High-Performance Embedded Architectures and Compilers (HiPEAC), pages 111–125.

Springer, 2010. 77

[76] Jee W Choi, Amik Singh, and Richard W Vuduc. Model-driven autotuning of sparse

matrix-vector multiply on GPUs. In ACM SIGPLAN notices, 45, pages 115–126. ACM, 2010.

77

[77] Andrew Davidson, Yao Zhang, and John D Owens. An auto-tuned method for solving

large tridiagonal systems on the GPU. In IEEE 25th International Symposium on Parallel and

Distributed Processing (IPDPS), pages 956–965. IEEE, 2011. 77

[78] Cedric Nugteren and Valeriu Codreanu. CLTune: A generic auto-tuner for OpenCL

kernels. In IEEE 9th International Symposium on Embedded Multicore/Many-core Systems-on-

Chip (MCSoC), pages 195–202. IEEE, 2015. 77, 104, 105

[79] Thomas L Falch and Anne C Elster. Machine learning based auto-tuning for enhanced

OpenCL performance portability. In IEEE International Parallel and Distributed Processing

Symposium Workshop (IPDPSW), pages 1231–1240. IEEE, 2015. 77, 104, 105

[80] Newsha Ardalani, Clint Lestourgeon, Karthikeyan Sankaralingam, and Xiaojin Zhu.

Cross-architecture performance prediction (XAPP) usingCPUcode to predictGPUper-

formance. In Proceedings of the 48th International Symposium on Microarchitecture (MICRO),

pages 725–737. ACM, 2015. 78, 80

[81] Gene Wu, Joseph L Greathouse, Alexander Lyashevsky, Nuwan Jayasena, and Derek

Chiou. GPGPU performance and power estimation using machine learning. In IEEE

21st International Symposium on High Performance Computer Architecture (HPCA), pages 564–

576. IEEE, 2015. 78, 80

131

REFERENCES

[82] Kenneth O’neal, Philip Brisk, Ahmed Abousamra, Zack Waters, and Emily Shriver. GPU

Performance Estimation using So�ware Rasterization and Machine Learning. ACM

Transactions on Embedded Computing Systems (TECS), 16(5s):148, 2017. 78, 80

[83] Souley Madougou, Ana Varbanescu, Cees de Laat, and Rob van Nieuwpoort. �e land-

scape of GPGPU performance modeling tools. Parallel Computing, 56:18–33, 2016. 78

[84] Zhibin Yu, Lieven Eeckhout, Nilanjan Goswami, Tao Li, Lizy John, Hai Jin, and

Chengzhong Xu. Accelerating GPGPU architecture simulation. In ACM SIGMETRICS

Performance Evaluation Review, 41, pages 331–332. ACM, 2013. 78

[85] Jen-Cheng Huang, Lifeng Nai, Hyesoon Kim, and Hsien-Hsin S Lee. TBPoint: Reducing

simulation time for large-scale GPGPU kernels. In IEEE 28th International Parallel and

Distributed Processing Symposium (IPDPS), pages 437–446. IEEE, 2014. 78

[86] Chris Lattner and Vikram Adve. LLVM:A compilation framework for lifelong program

analysis & transformation. In Proceedings of 2nd IEEE/ACM International Symposium on Code

Generation and Optimization (CGO), page 75. IEEE Computer Society, 2004. 78, 105

[87] Sangpil Lee and Won Woo Ro. Parallel GPU architecture simulation framework ex-

ploiting work allocation unit parallelism. In IEEE International Symposium on Performance

Analysis of Systems and So�ware (ISPASS), pages 107–117. IEEE, 2013. 78, 100

[88] Geetika Malhotra, Seep Goel, and Smruti R Sarangi. Gputejas: A parallel simulator

for gpu architectures. In IEEE 21st International Conference on High Performance Computing

(HiPC), pages 1–10. IEEE, 2014. 78, 100

[89] Karthik Ganesan, Jungho Jo, and Lizy K John. Synthesizing memory-level parallelism

aware miniature clones for spec cpu2006 and implantbench workloads. In IEEE Interna-

tional Symposium on Performance Analysis of Systems & So�ware (ISPASS), pages 33–44. IEEE,

2010. 79

[90] Reena Panda, Xinnian Zheng, Shuang Song, Jee Ho Ryoo, Michael LeBeane, Andreas

Gerstlauer, and Lizy K John. Genesys: Automatically generating representative train-

ing sets for predictive benchmarking. In International Conference on Embedded Computer

Systems: Architectures, Modeling and Simulation (SAMOS), pages 116–123. IEEE, 2016. 79

132

REFERENCES

[91] Jian Chen, Lizy Kurian John, and Dimitris Kaseridis. Modeling program resource de-

mand using inherent program characteristics. In Proceedings of the ACM SIGMETRICS Inter-

national Conference on Measurement and modeling of computer systems, pages 1–12. ACM, 2011.

79

[92] Xinnian Zheng, Haris Vikalo, Shuang Song, Lizy K John, and Andreas Gerstlauer.

Sampling-based binary-level cross-platform performance estimation. In Proceedings of

the Conference on Design, Automation & Test in Europe (DATE), pages 1713–1718. European De-

sign and Automation Association, 2017. 79

[93] Sunpyo Hong and Hyesoon Kim. An analytical model for a GPU architecture with

memory-level and thread-level parallelism awareness. In ACM SIGARCH Computer Ar-

chitecture News, 37, pages 152–163. ACM, 2009. 79

[94] Kishore Kothapalli, Rishabh Mukherjee, M Suhail Rehman, Suryakant Patidar,

PJ Narayanan, and Kannan Srinathan. A performance prediction model for the CUDA

GPGPU platform. In IEEE 16th International Conference on High Performance Computing

(HiPC), pages 463–472. IEEE, 2009. 79

[95] Leslie G Valiant. A bridgingmodel for parallel computation. Communications of the ACM

(CACM), 33(8):103–111, 1990. 79

[96] Steven Fortune and James Wyllie. Parallelism in random access machines. In Proceed-

ings of the 10th Annual ACM Symposium on �eory of Computing (STOC), pages 114–118. ACM,

1978. 79

[97] Phillip B Gibbons, Yossi Matias, and Vijaya Ramachandran. �e �eue-Read �eue-

Write PRAMmodel: Accounting for contention in parallel algorithms. SIAM Journal on

Computing, pages 638–648, 1997. 79

[98] Marcos Amarís, Daniel Cordeiro, Alfredo Goldman, and Raphael Y de Camargo. A

simple bsp-based model to predict execution time in gpu applications. In IEEE 22nd

International Conference on High Performance Computing (HiPC), pages 285–294. IEEE, 2015. 79

[99] Sara S Baghsorkhi, Matthieu Delahaye, Sanjay J Patel, William D Gropp, and Wen-

mei W Hwu. An adaptive performance modeling tool for GPU architectures. In ACM

SIGPLAN Notices, 45, pages 105–114. ACM, 2010. 79

133

REFERENCES

[100] Yao Zhang and John D Owens. A quantitative performance analysis model for GPU ar-

chitectures. In IEEE 17th International Symposium on High Performance Computer Architecture

(HPCA), pages 382–393. IEEE, 2011. 79

[101] Shuaiwen Song, Chunyi Su, Barry Rountree, and Kirk W Cameron. A simpli�ed and

accurate model of power-performance e�ciency on emergent GPU architectures. In

IEEE 27th International Symposium on Parallel and Distributed Processing (IPDPS), pages 673–

686. IEEE, 2013. 79

[102] Qiang Wang and Xiaowen Chu. GPGPUperformance estimationwith core andmemory

frequency scaling. In IEEE 24th International Conference on Parallel and Distributed Systems

(ICPADS), pages 417–424. IEEE, 2018. 79

[103] Keren Zhou, Guangming Tan, Xiuxia Zhang, Chaowei Wang, and Ninghui Sun. A per-

formance analysis framework for exploiting GPU microarchitectural capability. In

Proceedings of the International Conference on Supercomputing (ICS), page 15. ACM, 2017. 79

[104] Ioana Baldini, Stephen J Fink, and Erik Altman. Predicting gpu performance from cpu

runs usingmachine learning. In IEEE 26th International Symposium on Computer Architecture

and High Performance Computing (SBAC-PAD), pages 254–261. IEEE, 2014. 80

[105] Ying Zhang, Yue Hu, Bin Li, and Lu Peng. Performance and power analysis of ATI GPU:

A statistical approach. In IEEE 6th International Conference on Networking, Architecture and

Storage (NAS), pages 149–158. IEEE, 2011. 80

[106] Marcos Amarís, Raphael Y de Camargo, Mohamed Dyab, Alfredo Goldman, and Denis

Trystram. A comparison of GPU execution time prediction using machine learning

and analytical modeling. In IEEE 15th International Symposium on Network Computing and

Applications (NCA), pages 326–333. IEEE, 2016. 80

[107] Thanh Tuan Dao, Jungwon Kim, Sangmin Seo, Bernhard Egger, and Jaejin Lee. A per-

formance model for gpus with caches. IEEE Transactions on Parallel and Distributed Systems

(TPDS), 26(7):1800–1813, 2015. 80

[108] Christoph Gerum, Oliver Bringmann, and Wolfgang Rosenstiel. Source level perfor-

mance simulation of gpu cores. In Proceedings of the 2015 Design, Automation & Test in Europe

Conference & Exhibition (DATE), pages 217–222. EDA Consortium, 2015. 80

134

REFERENCES

[109] Sylvain Collange, Marc Daumas, David Defour, and David Parello. Barra: A parallel

functional simulator for gpgpu. In 18th Annual IEEE/ACM International Symposium on Mod-

eling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS), pages

351–360. IEEE, 2010. 80

[110] Gregory Frederick Diamos, Andrew Robert Kerr, Sudhakar Yalamanchili, and Nathan

Clark. Ocelot: a dynamic optimization framework for bulk-synchronous applications

in heterogeneous systems. In Proceedings of the 19th International Conference on Parallel Ar-

chitectures and Compilation Techniques (PACT), pages 353–364. ACM, 2010. 80

[111] Raghuraman Balasubramanian, Vinay Gangadhar, Ziliang Guo, Chen-Han Ho, Cherin

Joseph, Jaikrishnan Menon, Mario Paulo Drumond, Robin Paul, Sharath Prasad, Pradip

Valathol, and Karthikeyan Sankaralingam. Enabling GPGPU low-level hardware ex-

plorations withMIAOW: an open-source RTL implementation of a GPGPU. ACM Trans-

actions on Architecture and Code Optimization (TACO), 12(2):21, 2015. 80

[112] Zhibin Yu, Lieven Eeckhout, Nilanjan Goswami, Tao Li, Lizy K John, Hai Jin, Chengzhong

Xu, and Junmin Wu. GPGPU-MiniBench: Accelerating GPGPUmicro-architecture sim-

ulation. IEEE Transactions on Computers (TC), 64(11):3153–3166, 2015. 81

[113] Kishore Punniyamurthy, Behzad Boroujerdian, and Andreas Gerstlauer. GATSim: ab-

stract timing simulation of GPUs. In Proceedings of the Conference on Design, Automation &

Test in Europe (DATE), pages 43–48. European Design and Automation Association, 2017. 81

[114] Jee Ho Ryoo, Saddam J �irem, Michael Lebeane, Reena Panda, Shuang Song, and Lizy K

John. Gpgpu benchmark suites: How well do they sample the performance spectrum?

In 44th International Conference on Parallel Processing (ICPP), pages 320–329. IEEE, 2015. 81

[115] Reena Panda, Xinnian Zheng, Jiajun Wang, Andreas Gerstlauer, and Lizy K John. Sta-

tistical pattern basedmodeling of GPUmemory access streams. In Proceedings of the 54th

Annual Design Automation Conference (DAC), page 81. ACM, 2017. 81

[116] Xiaofei Xie, Bihuan Chen, Liang Zou, Yang Liu, Wei Le, and Xiaohong Li. Automatic

Loop Summarization via Path Dependency Analysis. IEEE Transactions on So�ware Engi-

neering (TSE), (1):1–1, 2017. 83

135

REFERENCES

[117] Moritz Sinn and Florian Zuleger. Loopus: A Tool for Computing Loop Bounds for

C Programs. In Proceedings of the Workshop on Invariant Generation (WING), pages 185–186,

2010. 83

[118] Robert A Van Engelen. E�cient symbolic analysis for optimizing compilers. In Inter-

national Conference on Compiler Construction (CC), pages 118–132. Springer, 2001. 83

[119] Henry Wong, Misel-Myrto Papadopoulou, Maryam Sadooghi-Alvandi, and Andreas

Moshovos. Demystifying GPUmicroarchitecture throughmicrobenchmarking. In IEEE

International Symposium on Performance Analysis of Systems & So�ware (ISPASS), pages 235–246.

IEEE, 2010. 90

[120] Xinxin Mei and Xiaowen Chu. DissectingGPUmemoryhierarchy throughmicrobench-

marking. IEEE Transactions on Parallel and Distributed Systems (TPDS), 28(1):72–86, 2017. 90

[121] Siqi Wang, Guanwen Zhong, and Tulika Mitra. CGPredict: Embedded GPU Perfor-

mance Estimation from Single-�readed Applications. ACM Transactions on Embedded

Computing Systems (TECS), 16(5s):146, 2017. 90

[122] Peter Thoman, Klaus Kofler, Heiko Studt, John Thomson, and Thomas Fahringer. Au-

tomatic OpenCL device characterization: guiding optimized kernel design. In 17th In-

ternational European Conference on Parallel Processing (Euro-Par), pages 438–452. Springer, 2011.

92

[123] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley, Jeffrey

Bosboom, Una-May O’Reilly, and Saman Amarasinghe. Opentuner: an extensible frame-

work for program autotuning. In Proceedings of the 23rd International Conference on Parallel

Architectures and Compilation (PACT), pages 303–316. ACM, 2014. 104, 105

[124] Shane Ryoo, Christopher Rodrigues, Sam Stone, Sara Baghsorkhi, Sain-Zee Ueng, John

Stratton, and Wen-mei Hwu. Program optimization space pruning for amultithreaded

GPU. In Proceedings of the 6th Annual IEEE/ACM International Symposium on Code Generation

and Optimization (CGO), pages 195–204. ACM, 2008. 104, 105

[125] Thanh Tuan Dao and Jaejin Lee. AnAuto-Tuner for OpenCLWork-Group Size onGPUs.

IEEE Transactions on Parallel & Distributed Systems (TPDS), pages 283–296, 2018. 104, 105

136

REFERENCES

[126] Changhao Jiang and Marc Snir. Automatic tuning matrix multiplication performance

on graphics hardware. In 14th International Conference on Parallel Architectures and Compila-

tion Techniques (PACT), pages 185–194. IEEE, 2005. 105

[127] Samuel Williams, Leonid Oliker, Richard Vuduc, John Shalf, Katherine Yelick, and

James Demmel. Optimization of sparse matrix-vector multiplication on emerging mul-

ticore platforms. In Proceedings of the ACM/IEEE Conference on Supercomputing (ICS), pages

1–12. IEEE, 2007. 105

[128] Kaushik Datta, Mark Murphy, Vasily Volkov, Samuel Williams, Jonathan Carter,

Leonid Oliker, David Patterson, John Shalf, and Katherine Yelick. Stencil computation

optimization and auto-tuning on state-of-the-artmulticore architectures. In Proceedings

of the ACM/IEEE Conference on Supercomputing (ICS). IEEE, 2008. 105

[129] Robert Lim, Boyana Norris, and Allen Malony. Autotuning GPU Kernels via Static

and Predictive Analysis. In 46th International Conference on Parallel Processing (ICPP), pages

523–532. IEEE, 2017. 105

[130] Sangmin Seo, Jun Lee, Gangwon Jo, and Jaejin Lee. Automatic OpenCL work-group size

selection for multicore CPUs. In 22nd International Conference on Parallel Architectures and

Compilation Techniques (PACT), pages 387–397. IEEE, 2013. 105

[131] Simon Moll, Johannes Doerfert, and Sebastian Hack. Input space splitting for OpenCL.

In 25th International Conference on Compiler Construction (CC), pages 251–260. ACM, 2016. 105

[132] Xiebing Wang, Kai Huang, Alois Knoll, and Xuehai Qian. A Hybrid Framework for

Fast and Accurate GPU Performance Estimation through Source-Level Analysis and

Trace-Based Simulation. In IEEE 25th International Symposium on High Performance Computer

Architecture (HPCA), pages 506–518. IEEE, 2019. 109

137

	List of Abbreviations
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivations
	1.2 Thesis Contributions
	1.3 Thesis Structure

	2 h2ECU: a High-performance and Heterogeneous ECU for Automated Driving
	2.1 Overview
	2.2 Related Work
	2.3 System Architecture and Implementation
	2.3.1 Architecture Design
	2.3.2 Hardware Implementation
	2.3.3 On-vehicle Connection

	2.4 Evaluation and Discussion
	2.4.1 Evaluation Setup
	2.4.1.1 Road Lane Detection (RLD)
	2.4.1.2 Traffic Sign Recognition (TSR)

	2.4.2 Results and Analysis
	2.4.2.1 Road Lane Detection (RLD)
	2.4.2.2 Traffic Sign Recognition (TSR)

	2.4.3 Discussion

	2.5 Summary

	3 Design of ADAS Applications on Heterogeneous Platforms
	3.1 Overview
	3.2 Related Work
	3.2.1 Lane Detection Techniques
	3.2.2 Acceleration of ADAS Applications on Heterogeneous Platforms

	3.3 p-LDA: Particle-filter-based Lane Detection Algorithm
	3.3.1 Algorithm Design
	3.3.1.1 Pre-processing
	3.3.1.2 Lane Detection
	3.3.1.3 Lane Tracking
	3.3.1.4 Redetection Checking

	3.3.2 Parallel and Heterogeneous Implementation
	3.3.2.1 Parallel Implementation
	3.3.2.2 Heterogeneous Implementation
	3.3.2.3 Workload Balance Scheme

	3.4 r-LDA: Ransac-based Lane Detection Algorithm
	3.4.1 Algorithm Design
	3.4.1.1 Vanishing Point Estimation
	3.4.1.2 ROI Bounding
	3.4.1.3 Top-view Mapping & Homography Matrix Adaption
	3.4.1.4 On-line Iterative Processing

	3.4.2 Parallel and Heterogeneous Implementation
	3.4.2.1 Parallel Implementation
	3.4.2.2 Heterogeneous Implementation
	3.4.2.3 Optimization for Heterogeneous Executions

	3.5 Evaluation Results
	3.5.1 Evaluation Setup
	3.5.2 Results and Analysis
	3.5.2.1 p-LDA: Particle-filter-based Lane Detection Algorithm
	3.5.2.2 r-LDA: Ransac-based Lane Detection Algorithm

	3.6 Summary

	4 Performance Optimization of ADAS Applications in Heterogeneous Systems
	4.1 Overview
	4.2 Related Work
	4.3 Optimization Procedure
	4.3.1 Profiling
	4.3.2 Compute Unit Replication (CR)
	4.3.3 Loop Unrolling and Memory Access Coalescing (LU)
	4.3.4 Accelerator Execution Overlapping (EO)
	4.3.5 Dynamical Workload Tuning (DT)
	4.3.6 Application-oriented Optimization (AO)
	4.3.6.1 p-LDA: Particle-filter-based Lane Detection Algorithm
	4.3.6.2 r-LDA: Ransac-based Lane Detection Algorithm

	4.3.7 Discussion

	4.4 Evaluation Results
	4.4.1 Evaluation Setup
	4.4.2 Profiling Results
	4.4.2.1 p-LDA: Particle-filter-based Lane Detection Algorithm
	4.4.2.2 r-LDA: Ransac-based Lane Detection Algorithm

	4.4.3 Optimization Results
	4.4.3.1 Compute Unit Replication (CR)
	4.4.3.2 Loop Unrolling and Memory Access Coalescing (LU)
	4.4.3.3 Accelerator Execution Overlapping (EO)
	4.4.3.4 Dynamical Workload Tuning (DT)
	4.4.3.5 Application-oriented Optimization (AO)

	4.4.4 Discussion
	4.4.4.1 Performance Benefit
	4.4.4.2 Scalability Analysis

	4.5 Summary

	5 Performance Estimation for OpenCL Kernels on GPUs
	5.1 Overview
	5.2 Related Work
	5.3 Framework Overview
	5.4 Source-level Analysis
	5.4.1 LLVM analyzeKernel Pass
	5.4.1.1 IR Instruction Pruning
	5.4.1.2 Loop Bound Analysis
	5.4.1.3 CFG Branch Extraction

	5.4.2 Runtime Behavior Analysis
	5.4.2.1 Warp-based Branch Analysis
	5.4.2.2 Execution Trace Generation
	5.4.2.3 Cache Behavior Analysis
	5.4.2.4 Discussion

	5.5 Trace-based Simulation
	5.5.1 IR Instruction Pipeline
	5.5.1.1 Determining the Number of Active Work Groups
	5.5.1.2 Determining the Latencies of the Arithmetic and Memory Access Operations

	5.5.2 Calculating the Trace Simulation Time
	5.5.3 Discussion and summary

	5.6 Evaluation Results
	5.6.1 Evaluation Setup
	5.6.2 Prediction Results
	5.6.2.1 Accuracy
	5.6.2.2 Simulation Time Cost

	5.7 Case Study with Lane Detection
	5.8 Summary

	6 Design Space Pruning for OpenCL Kernels on GPUs
	6.1 Overview
	6.2 Related Work
	6.3 Problem Statement
	6.4 Framework
	6.4.1 Framework Overview
	6.4.2 Static Analysis Module
	6.4.2.1 Duplicated Trace Pruning
	6.4.2.2 Inferior Pipeline Elimination

	6.4.3 Dynamical Simulation Module
	6.4.4 Discussion

	6.5 Evaluation Results
	6.5.1 Evaluation Setup
	6.5.2 Results
	6.5.2.1 Design Space Reduction
	6.5.2.2 Search Quality
	6.5.2.3 Search Cost

	6.6 Summary

	7 Conclusion and Future Work
	7.1 Main Contributions
	7.2 Discussion
	7.3 Future Work

	List of Publications
	References

