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Abstract— Pedestrian detection has attracted enormous re-
search attention in the field of Intelligent Transportation System
(ITS) due to that pedestrians are the most vulnerable traffic
participants. So far, almost all pedestrian detection solutions
are based on the conventional frame-based camera. However,
they cannot perform very well in scenarios with bad light
condition and high-speed motion. In this work, a Dynamic and
Active Pixel Sensor (DAVIS), whose two channels concurrently
output conventional gray-scale frames and asynchronous low-
latency temporal contrast events of light intensity, was first
used to detect pedestrians in a traffic monitoring scenario. Data
from two camera channels were fed into Convolutional Neural
Networks (CNNs) including three YOLOv3 models and three
YOLO-tiny models to gather bounding boxes of pedestrians
with respective confidence map. Furthermore, a confidence map
fusion method combining the CNN-based detection results from
both DAVIS channels was proposed to obtain higher accuracy.
The experiments were conducted on a custom dataset collected
on TUM campus. Benefiting from the high speed, low latency
and wide dynamic range of the event channel, our method
achieved higher frame rate and lower latency than those only
using a conventional camera. Additionally, it reached higher
average precision by using the fusion approach.

I. INTRODUCTION

With the rapid development of the automobile industry,
especially the autonomous driving technologies, road traffic
safety issue is becoming increasingly prominent. According
to the United Nation Improving Global Road Safety report
released in 2017, road traffic accidents lead to more than 1.3
million deaths per year worldwide. In particular, pedestri-
ans, motorcyclists and bicyclists are involved in more than
half of road traffic deaths. Hence, pedestrian detecting and
tracking approaches for collision avoidance have turned into
a research hotspot in Intelligent Transportation System (ITS)
in the last years.

Up to now, numerous methods for pedestrian detection
have been proposed. Most of them were based on time-
of-flight sensors [1] and imaging sensors. Various sensing
data gathered by these devices were processed by detec-
tion algorithms to estimate the positions of pedestrians.
By applying a fast and precise detection method, positions
of pedestrians can be obtained and informed to drivers or
unmanned vehicles immediately to avoid possible collisions
with the pedestrians.
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Fig. 1. Framework of mixed frame-/event-driven pedestrian detection.

Nevertheless, all the existing pedestrian detection systems
have their own drawbacks. The systems based on the time-
of-flight sensor that involves with Lidar are still expensive.
Although some methods and algorithms can achieve high
accuracy [2][3], the systems based on the imaging sensor
still exist inherent problems such as data redundant, high
latency and being sensitive to light condition.

In order to achieve high frame rate, low latency and
wide dynamic range, the Dynamic and Active Pixel Sensor
(DAVIS), a promising vision sensor, has been introduced
into ITS for vehicle and pedestrian detection [4]. DAVIS
camera is composed by two channels, the Active Pixel
Sensor (APS) channel and the Dynamic Vision Sensor (DVS)
channel. APS and DVS channel outputs the conventional
gray-scale frames and asynchronous events recording the
illumination changes, respectively. By mixing both channels
in the framework of CNN-based detection, the performance
of the pedestrian detection can be improved. The system
is able to gain high accuracy, high frame rate and good
robustness simultaneously.

In this work, a CNN-based pedestrian detection approach
mixing the frame and the event channel of DAVIS camera
was first proposed. Two kinds of You Only Look Once
(YOLO) networks were trained for detecting pedestrian in
two DAVIS channels, respectively. Furthermore, a confidence
map fusion method was designed to acquire uniformed
and more precise results. We compared the performance of
detection algorithm implemented with YOLOv3 and YOLO-
tiny, further compared the results with another CNN network
trained by the mixed sensor channel. Until now, the DVS
channel of DAVIS, a neuromorphic vision sensor, were rarely
used in ITS. Hence, our frame and event channel mixed
pedestrian detection approach is of great significance to
explore the application of neuromorphic vision sensor in
detecting pedestrian in ITS.

The rest of this paper is organized as follows. In section
II, we listed the state-of-the-art methods of the pedestrian
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detection. In section III, we introduced the framework and
the methodology of the mixed frame-/event-driven pedestrian
detection. The experiment results were shown and discussed
in section IV. In section V, we draw the conclusion and point
out the possible further work.

II. RELATED WORK
In recent years, pedestrian detection remains a popular

research topic due to its extensive applications, such as
collision avoidance and pedestrian intention prediction. Ar-
ticles in this field are mainly classified into two categories
according to the utilization of vision sensor is conventional
or neuromorphic.

A. Pedestrian detection by conventional vision sensors
Features-based model and deep learning model are two

widely used models for vision-based pedestrian detection [5].
The difference of them is whether the model extracts features
by using specified feature descriptor.

For features-based model, the choice of feature descriptor
plays a more important role in improving the quality of
pedestrian detection instead of the classifier choice (e.g.
SVM or decision forest) [6]. The most effective feature
descriptors are Histograms of Oriented Gradients (HOG)
[7][2], Haar-like features [8][9], Local Binary Patterns (LBP)
[10], texture features [11], Integral Channel Features (ICF)
[12][13] as well as its variants [6][14].

Different from the feature-based model, deep learning
models extract features at different layers of deep learning
architecture automatically instead of manually. The most
famous deep learning model is Convolution Neural Networks
(CNN). In [15], CNN is employed as classifier to detect
pedestrians. Compared with the approach to SVM with Haar
features, CNN can achieve higher accuracy and lower false
positive rate (FPR). The deep learning frameworks based on
CNN usually include single shot detector (SSD) [16], Region
CNN (R-CNN) [17] and its variations [18][19], YOLO [20]
and its variations [21].

Despite pedestrian detection approaches based on conven-
tional vision sensors have achieved significant improvement,
a ten-fold improvement can still be made before reaching
human performance [22]. Additionally, they also cannot
overcome the image blur and low frame rate in the scenarios
with bad light condition and high-speed motion.

B. Pedestrian detection by neuromorphic vision sensors
Neuromorphic vision sensor, also named event-based cam-

era, is a novel bio-inspired silicon retina commonly used in
motion detection, object detecting and tracking. In previous
work, it was successfully applied to detecting vehicles while
no more research regarding on pedestrian detection has been
reported, as we know.

In [23], a Spiking Neural Network (SNN) was utilized
to count the number of cars only with a simple, fully local
Spike-Timing-Dependent Plasticity (STDP) rule. However,
the use of spikes restricts the application range of SNNs
and so far no obvious ways are available to use SNNs to
generate bounding box in object detection. An alternative
way to address the outputs of DVS is to convert events to
frames and then use frame-based detection methods. In our
previous work [4], the neuromorphic vision sensor was firstly

introduced into intelligent transportation systems and applied
clustering methods to detect and track vehicles from frames
which were reconstructed by events.

Due to the similarity between a conventional frame and
an accumulating frame of events, CNNs are more and more
employed to deal with the object detection problem by event-
based cameras. [24] used a DVS to predict steering angle of
a self-driving car by adapting a convolutional architecture
to the events. It was proved that pre-trained CNN still has
good performance on frames that accumulated by events.
DVAIS is also performed in object detection with a lack of
labeled ground truth. In [25], images from APS channel of
DAVIS passed through a normal CNN to get pseudo-labels
of vehicles which were later used as targets in a supervised
learning process based on YOLO for event-based images
from DVS channel.

In a predator/prey scenario, DAVIS (both the APS and
DVS channel) and CNN architectures were utilized to detect
the prey and steering a predator robot to chase the prey robot
[26][27]. In [26], regions of interest (ROI) were generated by
clustering the event information. Then, target was detected
by applying CNN on output of APS channel in ROI. High
accuracy and low computational cost were achieved simul-
taneously via this method.

III. METHODOLOGY

A. Event-based Vision Sensor

Dynamic vision sensor (DVS) is the first commercial
neuromorphic vision sensor, also named silicon retina [28].
Different from the conventional passive and active pixel
sensors, DVS outputs responses to light intensity changes in
the order of microseconds as an asynchronous events. Only if
the difference between current brightness and last sampled
brightness exceeds a certain threshold, a pixel-level spike
is transmitted. The spikes are encoded as Address Event
Representations (AERs). Each spike can be represented as a
tuple (x, y, t, p). (x, y) identifies the position of the triggered
pixel, t is the timestamp corresponding to the triggering time
and p is the polarity of event, +1 indicates the positive spike
while -1 indicates the negative one.

Dynamic and Active Pixel Vision Sensor (DAVIS) is a
vision sensor combining an APS and a DVS. Therefore, it
has two channels to generate event streams and frame streams
concurrently. For each DAVIS pixel, the APS circuit and
DVS circuit share a single photodiode, but the APS channel
is independent to the DVS channel. The active pixel frames
have a uniform exposure because of a synchronous global
shutter. A DAVIS240 with 240× 180 pixels was applied in
this work. It has a wide dynamic range of 130 dB. The DVS
channel can generate 12 million events per second and the
APS channel can output maximal 35 frames per second [29].

Although the DVS channel can output events with high
dynamic range, low latency and sparse output, the lack of
absolute brightness information introduces a great challenge
for object detection and classification. The frames generated
from APS channel can address this shortage. Hence, DAVIS
combined with DVS channel and APS channel has a more
promising range of application than DVS. The output of APS
channel can be used for detection and classification, while the
output of DVS channel is suitable for detecting and tracking
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(a) 10 ms interval (b) 20 ms interval

Fig. 2. DVS frames reconstruction by fixed time interval method

the moving objects. In this work, outputs of both channels of
DAVIS were performed for pedestrian detection to achieve
a fast and accurate detection algorithm.

B. Frame reconstruction

As mentioned above, converting events to frames is the
prerequisite for using CNN. Thereby, the events deriving
from the DVS channel need to be accumulated as frames.
Based on the generation mechanism of events, there exist
three frame reconstruction methods. They are fixed events
number, leaky integrator, and fixed time interval method,
respectively.

In this work, the frames were reconstructed at a fixed
frame duration, such as 10ms, 20ms, etc. In each time
interval, the positive events were plotted as white pixels and
the negative events were plotted as black pixels with a gray
background. The reconstructed frames with different time
intervals were shown in Fig. 2. It is clear that accumulation
with longer time results in more intact objects in frames.

In particular, the output frequency of APS channel was
25fps, it means that an APS frame was generated every 40
ms. Therefore, 10 ms and 20 ms intervals were selected to
reconstruct DVS frames so that higher frequency of detection
could be achieved.

C. Pedestrian detection based on CNN

YOLO is a novel convolutional neural network (CNN),
which considers object detection as a regression problem.
Instead of adopting sliding windows approach and region
proposal methods, YOLO uses the whole images to train
detection model which can realize real-time prediction of
bounding boxes and their class probabilities simultaneously.

YOLO-tiny is a tiny model with 16 convolutional layers
to realize extremely fast object detection in sacrifice of
little accuracy. Another YOLO model is YOLOv3, the most
advanced version of YOLO by far. Compared with YOLO-
tiny, YOLOv3 is a larger network with more convolutional
layers to extract features. By applying several optimization
approaches, YOLOv3 improves accuracy significantly, while
it is more time-consuming and requires more computing
resources.

In this work, both YOLOv3 and YOLO-tiny models were
used to detect pedestrians in both APS frames and DVS
frames.

D. Confidence Map Fusion

YOLO network can generate the confidence maps, in
which each pixel value represents the probability of this
pixel belonging to an object. All pixel values are normalized
in the range of [0,255]. Fig. 3 showed an example of the
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Fig. 3. Framework of fusion process

fusion process. On the left side, confidence maps of two
channels generated by YOLO were visualized as heatmaps,
where yellow boxes represented large value and blue boxes
indicated small value.

The fusion goal is to infer the more accurate information
about object from multiple confidence maps. Mathematically,
to find out the information variable x (location, size) of an
object from the input image I can be formed as P (x|I). Once
the identical object appears in different confidence maps,
Bayesian inference can be applied to obtain

P (x|I) =
∫

P (x|C)P (C|I)dL ≈
N∑
i=1

wiP (x|Ci) (1)

where N denotes the number of confidence maps, Ci is
the i-th confidence map and wi = P (Ci|I) represents the
confidence score of the i-th confidence map. wi indicates
the weight of each individual confidence map and the sum
of wi over the i = 1, · · · , N . Hence, P (x|I) is approximated
by the weighted sum of the confidence maps.

In this case, the value of N is 2, which means two channels
of DAVIS. P (x|Ci) represents the location and the size
(x, y, w, h) of one bounding box in the image from APS
channel or DVS channel. Since P (x|Ci) is available from
the output of CNN, the fusion task is converted to derive
the optimal confidence score of each bounding box in each
channel.

E. Approximation of the confidence scores

However, it is infeasible to obtain wi,opt directly owing to
the unknown true probability Pt(x|I) in practice. In order
to approximate the value of confidence score, an approach
based on the difference between center area and surrounding
area of the object defined on confidence maps was proposed.
Fig. 3 showed the whole framework of this fusion approach.
Both center area and surrounding area were selected in
confidence maps from DVS channel and APS channel. The
center area, which represented object pixels, was determined
by the bounding box generated by CNN. A bigger box
representing background pixels was created as surrounding
area box at the same center position of the center area box.
Fig. 4 showed the relationship between center area box (red
box) and surrounding area box (yellow box). Obviously, the
area ratio between center area box and surrounding area
box was (1 + α)2, where α was the padding ratio of width
and height. Through the comparison of characteristics of the
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Fig. 4. Relationship between center area and surrounding area

center area and the surrounding area, the difference between
object pixels and background pixels could be approximated.

In this work, histograms were adopted to represent charac-
teristics of pixels. The gray-scale histogram of the center area
was denoted as Hc(b). Similarly, the gray-scale histogram
of the surrounding area was Hc(b). b was the index of the
bins of histogram. In order to realize the comparison, both
histograms are normalized as normalized center histogram{
p(b)

}
and normalized surrounding histogram

{
q(b)

}
. The

log likelihood of the normalized histogram can be defined as

L(b) = log
max

{
p(b), δ

}
max

{
q(b), δ

} (2)

where δ is a small value to ensure that log likelihood L(b)
makes sense even when p(b) or q(b) is equal to zero.

In order to quantify the distinction of the object pixels and
surrounding pixels, the variance of log likelihood L(b) with
respect to a normalized histogram h(b) can be defined as

var(L;h) = E
[
L2(b)

]
−
(
E
[
L(b)

])2
(3)

Therefore, the M�1
ii can be approximated by the variance

of log likelihood function with respect to the normalized cen-
ter histogram and normalized surrounding center histogram
as follows:

M�1
ii ≈

var
(
L; (p+ q)/2

)
var(L; p) + var(L; q)

(4)

In (4), var(L; p)and var(L; q) are the center probabil-
ity variance and surrounding probability variance of the
confidence map, respectively. var(L; (p + q)/2) represents
the mixed probability variance of the confidence map. The
lower the center probability variance and the surrounding
probability variance are, the higher the mixed probability
variance is. This results in larger M�1

ii . On the contrary,
high center probability and surrounding probability lead to
small M�1

ii . Low probability variance indicates that the
characteristics of pixels are similar and high probability
indicates that the characteristics of pixels are various. Large
M�1

ii means that the current bounding box can distinguish
the object and the surrounding area well and it should have
higher confidence score in the fusion process.

Substituting M�1
ii back into Wopt = M�11̄

1̄TM�T 1̄
, the i-th

element of optimal confidence score is

wi,opt ≈
VR(Li; p, q)∑N
j=1 VR(Lj ; p, q)

(5)

where

VR(Li : p, q) =
var(Li; (p+ q)/2)

var(Li; p) + var(Li; q)
(6)

Here, wi,opt is directly proportion to between-class prob-
ability variance and inversely proportion to within-class
probability variance. Hence, with optimal confidence scores
of both APS frames and DVS frames, new bounding boxes
can be created.

IV. EXPERIMENTS
The experiments of pedestrian detection were conducted

on a custom dataset which was collected by a DAVIS240
mounted on a pole nearby traffic signal on TUM campus.
The dataset was of length 14.4 seconds with 34.3 million
events. For the sake of training and testing, the APS frames
and DVS frames were both annotated manually to record the
position and the size of bounding boxes as well as its label.
Totally, 1313 APS frames, 2630 DVS frames reconstructed
by 20 ms interval and 5260 DVS frames reconstructed by
10 ms interval were labeled.

A. Detection by CNN
TABLE I

THE FRAME NUMBER OF EACH DATASET USED IN EXPERIMENTS

Dataset Train set Valid set Test set
APS frames 463 438 440

10ms DVS frames 1776 1748 1738
20ms DVS frames 888 874 869

Mixed APS and 10ms DVS frames 2239 2186 2178
Mixed APS and 20ms DVS frames 1351 1312 1309

In order to be concise, an unified naming method was
adopted to shorten the length of testing case names. For
example, YOLOv3 driven by APS frames was abbreviated
to YOLOv3 APS, YOLO tiny driven by mixed APS and
10ms DVS frames was abbreviated to YOLO tiny M10ms,
YOLOv3 which was trained by mixed APS and 10ms
DVS frames but tested by APS frames was abbreviated to
YOLOv3 M10ms APS.

Both YOLOv3 and YOLO-tiny were trained with five
different datasets separately as shown in Table I. The mixed
APS and DVS frames means that frames from two channels
are regarded as one set for training a identical network, but
the number of frame pairs is the same as the number of DVS
frames when fusing both channels. The pedestrian detecting
results which were separately obtained by YOLOv3 as well
as YOLO-tiny in a road crossing scene are presented in
Fig. 5. For the mixed APS and DVS frames, APS frames
and DVS frames are tested separately on the same network.
In addition, the threshold was set to 0.2, which maximized
the F1-score in our case, to display images with bounding
boxes whose confidence score was above 0.2. As shown in
Fig. 5, The results from YOLOv3 were superior to those
from YOLO-tiny on the same dataset. On the other hand,
the detection process on 20ms DVS frames performed better
than that on 10ms DVS frames using the same network
model. Comparing the APS channel with DVS channel, it
indicated that the former detected more pedestrians than
the latter. Moreover, for YOLO-tiny architecture, the better
performance were achieved by using the mixed datasets than
using single APS channel or DVS channel.
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Fig. 5. Predicted results. The outputs from YOLOv3 are shown in the upper row while outputs from YOLO-tiny are shown in the lower row.
Meanwhile, the results of the same dataset are shown in the same column. Specifically, (a) YOLOv3 (b) YOLOv3 M20ms APS (c) YOLOv3 M10ms APS
(d) YOLOv3 20msDVS (e) YOLOv3 M20ms DVS (f) YOLOv3 10msDVS (g) YOLOv3 M10ms DVS (h) YOLO tiny (i) YOLO tiny M20ms APS (j)
YOLO tiny M10ms APS (k) YOLO tiny 20msDVS (l) YOLO tiny M20ms DVS (m) YOLO tiny 10msDVS (n) YOLO tiny M10ms DVS
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Fig. 6. Precision-Recall curves

Meanwhile, the Precision-Recall (P-R) curves of above
tests were shown in Fig. 6. In order to reflect the overall
performance, the Average Precision (AP) of each model,
instead of F1-score, was evaluated on APS and DVS frames,
as shown in Table II and Table III, respectively. The AP is
approximately equal to the area under the P-R curve.

TABLE II
APS OF APS FRAMES EVALUATED BY DIFFERENT MODELS

AP (%)
YOLOv3 APS 84.97
YOLO tiny APS 70.30
YOLOv3 M20ms APS 76.79
YOLO tiny M20ms APS 54.04
YOLOv3 M10ms APS 73.38
YOLO tiny M10ms APS 53.00

TABLE III
APS OF DVS FRAMES EVALUATED BY DIFFERENT MODELS

AP (%)
YOLOv3 20msDVS 87.30
YOLO tiny 20msDVS 64.32
YOLOv3 M20ms DVS 93.08
YOLO tiny M20ms DVS 77.28
YOLOv3 10msDVS 83.30
YOLO tiny 10msDVS 47.80
YOLOv3 M10ms DVS 86.68
YOLO tiny M10ms DVS 70.33

In terms of APS frames, YOLOv3 performed better than
YOLO-tiny. For YOLOv3 driven only by APS frames, the
AP reached 84.97%. In addition, the models which were
driven by mixed APS and DVS frames were inferior to that
driven only by APS frames. One possible reason is that the
number of APS frames used for training was less than DVS

frames. For instance, the number of APS frames was half
of 20ms DVS frames in mixed APS and 20ms DVS frames
dataset. Due to the unbalancedness in mixed datasets, the
model tended to learn features from DVS frames with lower
APs than APS features.

Regarding on 20ms DVS frames and 10ms DVS frames,
the performance of YOLOv3 was better than YOLO-tiny
due to the deeper network. The APs from the 20ms DVS
frames were higher than that from the 10ms DVS frames.
Since the shapes of pedestrians in the 20ms DVS frames
are more intact than in the 10ms DVS frames, it is easier
for CNN to recognize pedestrians in 20ms DVS frames.
As predicted, the networks driven by the mixed APS and
DVS frames performed better than that driven by only DVS
frames, which indicated that APS frames can be regarded as
the supplements of DVS frames.

B. Fusion based on confidence maps
Before fusing, the time synchronization problem of two

channels needed to deal with. The frame rate of the APS
channel was approximately 25Hz (the interval is 40ms) while
the DVS frames were reconstructed in 10 ms and 20 ms
interval, respectively. Hence, in the duration of each APS
frame, two DVS frames in 20 ms interval or four DVS frames
in 10 ms interval were generated. The matched timeline
was plotted in Fig. 7. For the pair of APS and 20ms DVS
frames, each APS confidence map matched two 20ms DVS
confidence maps, including one occurring at the same time
and another occurring 20 ms later. For the pair of APS
and 10ms DVS frames, each APS confidence map matched
four 10ms DVS confidence maps which were generated 10
ms before, at the same time, 10 ms later and 20 ms later,

8336

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 10:41:03 UTC from IEEE Xplore.  Restrictions apply. 



20ms DVS frames

10ms DVS frames

APS frames

Fusion of APS 

and 20ms DVS

Fusion of APS 

and 10ms DVS

Fig. 7. Timeline of generated APS and DVS frames

respectively. Hence, the maximum time difference between a
DVS confidence map and the corresponding APS confidence
map was 20 ms. Considering the normal walking speed of
an adult is about 1.4m/s, the maximum position error of the
pedestrians from two channels was 0.028 m.

After detection process by CNNs, confidence maps from
both APS channel and DVS channel were obtained. To im-
prove detection performance, the fusion method was applied
to combine confidence maps from both channels. In this
work, eight different fusion pairs were tested, each of them
consisted of an APS confidence map and a DVS confidence
map. For the non-mixed datasets, APS and DVS confidence
map derived from two separated networks which were trained
by APS frames and DVS frames, respectively. Whereas, for
the mixed datasets, the APS and the DVS confidence map
were two subsets of those deriving from an identical network.

Furthermore, the fusion process was performed under
different values of α ∈ (0, 1) to find out the best size ratio
of the surrounding box and the center box. As shown in
Fig. 8 and Fig. 9, the blue line represented the AP evaluated
on DVS frames after fusion. The red and green dotted lines
respectively represent the constant AP value on APS frames
as well as DVS frames detected by the non-mixed model and
the mixed model. By changing the value of α, the maximum
AP value occurred between 0.3 and 0.5. Hence, the value of
α was determined as 0.4.

Average precisions of different models by using fusion
approach were shown in Table IV, where the APS channel
was regarded as the conventional frame-based camera.
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Fig. 8. The relationship between APs and ratio of surrounding area and
center area during fusion process in non-mixed models

C. Discussion
As shown in Table IV, the APs of the YOLOv3 were

around 12-23% higher than that of the YOLO tiny for
all cases. Pedestrian detection on DVS channel reached
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Fig. 9. The relationship between APs and ratio of surrounding area and
center area during fusion process in mixed models

TABLE IV
APS IN APS CHANNEL, DVS CHANNEL AND FUSION PROCESS

APS (%) DVS (%) Fusion (%)
10ms, non-mixed, YOLOv3 84.97 83.30 86.20
20ms, non-mixed, YOLOv3 84.97 87.30 87.20
10ms, non-mixed, YOLO tiny 70.30 47.80 74.20
20ms, non-mixed, YOLO tiny 70.30 64.32 75.10
10ms, mixed, YOLOv3 73.38 86.68 85.83
20ms, mixed, YOLOv3 76.79 93.08 92.70
10ms, mixed, YOLO tiny 53.00 70.33 72.06
20ms, mixed, YOLO tiny 54.04 77.28 79.31

equivalent performance to the APS channel via YOLOv3,
but worse via YOLO tiny. By contrast, our method fusing
both channels significantly improved the AP of YOLO tiny.
Moreover, the AP achieved 72-93% via our method, on
average, 3% exceeding to the APS channel on non-mixed
datasets and 18% exceeding to APS channel on the mixed
datasets. Theoretically, our method could achieve 2-4 times
of the frame-rate, that is 50-100 fps, than the APS channel.
In experiments, by using the mixed YOLO tiny architecture,
the average frame-rate on APS channel was 141.51 fps and
on DVS channel was 145.12 fps, which were higher than
inherent frame-rate of APS channel and DVS channel, but it
actually achieved about 57 fps by fusing both channels.

V. CONCLUSIONS
Pedestrian detection is a very important and knotty prob-

lem in the field of Intelligent Transportation System. Current
approaches are usually based on the frame-based camera.
Aiming to improve the performance of pedestrian detection
at speed and accuracy, a DAVIS was utilized in a scenario
of traffic monitoring and a confidence map fusion method
was used on both APS and DVS channels. After tested on
a custom dataset collected in a cross, our method ultimately
achieved 2.28 times higher frame-rate and 3-18% higher
average precision than only using the APS camera.
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