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Abstract

In the current technology state of the world, the internet acts as the central hub for
all kinds of communication between different nodes. Regardless of the subject, all
types of devices now can directly connect to the internet or can connect indirectly by
using gateways. All the improvements in connectivity between devices emerged a new
concept called the Internet of Things.

There is a vast amount of data generated by millions of different devices. These
data contain different information about both the environment and the state of devices.
The data processing is required to make them understandable or to aggregate new
information by combining them.

The requirements in any data processes are similar. They only distinguish between
each other regarding use-case. However, these differences can be parameterized.
Therefore, the programmers only require to configure their system from a high-level
perspective. These configurations consist of the information about the user devices,
protocols, how data is stored and how data is processed.

In this thesis, the configurable rule engine with semantic capabilities is presented.
The thesis also introduce how semantic ontologies can be used for the classification
of the IoT data. The rule engine uses ontologies and flows to process and to analyze
any data that is received. These flows are also self-adaptable with the caching and
optimization features. The rule engine can apply flows either on data streams to derive
the active state or the data batches to process and to analyze historical data of a device
or devices. The resulted rule engine provides an easy-to-use development environment
with a high-level configuration in the domain of IoT.

Moreover, users can use their use-case specific semantic ontologies to handle the
data classification. These high-level configurations can either be done in a user-friendly
web interface or through an application program interface. Therefore, a developer can
define functionalities regarding the process and the analysis of the data. Also, the
challenging gap between high-level design and actual low-level implementation has
been covered with the flows and ontologies that are configured by the users to match
their design.
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1 Introduction

1.1 Background

Internet of Things (IoT) has become an emerging technology with the power of low
priced computational units and cloud technology. There are thousands of different
examples in the real world which targets both the end-users and the industry.

The problem with the current state of the art is the requirement of tremendous time
investment by the developers. Developers need to spend this time to develop both
embedded software and web services to achieve their goal. Most of this time is spent on
functionalities that are already implemented in different projects with slight differences.

In most cases, the applications have similar capability requirements to process their
data with some little customization. The most basic needs during a data process flow
can be listed as;

• Retrieving the data,

• Checking whether a data point in a data stream satisfies a condition,

• Checking whether a data batch in historical data satisfies a condition,

• Forwarding the data to another data process flow,

• Manipulating the data,

• Classifying the data,

• Triggering defined events.

There are requirements and challenges while building a system which can process
data. Availability, the need of time, integration of a new process into the system and
the vast number of different devices can be considered as some examples of these
requirements and challenges.

The required functionalities to define data process flows in the area of IoT diverge
from each other with only a little customization. Business logic, interoperability of
the sensors and actuators, machine to machine (M2M) communication and context-
aware services are the divergency items and the primary concern for each IoT system
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1 Introduction

[1]. Therefore, any abstraction to define functionalities shall also allow fundamental
freedom not to lose these divergency items.

To point out the challenges in the current state of the art within an example, a
company which delivers IoT solutions for the factory automation systems can be
taken into account. This company customizes its system to match with the needs of
their customers. In the scope of data processing, this customization may be adding
the support of the different type of devices, introducing new methods into the data
flow, implementation of brand-new feature or integration of features that are already
implemented in the past for another customer.

All of these customizations may lead to challenges which may end up with hiring
new developers or losing the potential customers. A generic and practical rule engine
can be defined to implement and to maintain the functionalities of the necessary
system in the IoT domain. The predefined and parameterized building blocks within a
functional user interface (UI) and application program interface (API) can sustain a fast
and practical environment to ease and erase these challenges.

1.1.1 Hardware Abstraction Layer (HAL)

In the IoT practical course offered in the Technical University of Munich, the hardware
abstraction layer for single board computers is built. With the help of this layer, a
single board computer can be configured easily. In the user-friendly web GUI, users
can choose between Odroid or Raspberry Pi for their single board computers. Then,
they can choose which sensors are attached and which communication protocols are
used to send the gathered data. There are currently 23 different supported sensors and
3 different communication protocols. The deployed script in the single board computer
can configure itself according to the user configuration made in GUI. It sends all data
coming from sensors to the servers using configured communication protocols.

This layer has been extended to a platform with IoT core which covers required
web services functionalities to store and access the data of the devices with multi-
protocol support. In the following semesters, the development of this platform will
be sustained. The goal of this platform is to solve the challenges and problems that
developers encounter concerning the need of technical background and time by serving
a configurable platform with an easy-to-use user interface. This generic and practical
platform can be extended with the easily configurable rule engine to process live data
streams or historical data batches of the devices. Therefore, this thesis also aims to
integrate with the current platform. The integration details are given in the following
chapters.
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1 Introduction

1.2 Proposed Solution

This master thesis aims to build an ontology-based rule engine to define data flows
needed for web services in the area of IoT within a generic and practical development
environment. An abstraction of all functionalities that are necessary for any data
flow would help to achieve this generic rule engine. The predefined and customizable
building blocks, such as ontology models to classify the data and the rules to process the
data are crucial for a generic and practical platform with the help of the abstraction. On
the other hand, the generalization of the system would create an applicability trade-off.
So to maintain practicality, the resulting platform shall be definite and comprehensive
enough to support any IoT project and the other areas rather than IoT shall not be a
concern. In other words, the building blocks shall not be too broad to support any
domain. Additionally, all customization concerning each building block shall be done
in easy-to-use interfaces that are supplied to the users to maintain practicality.

While designing a system for data processing that is used in different use cases in IoT
as well as others, some design concerns must be taken into account by the developers.
The techniques and the architecture to enable communication between all necessary
nodes, the format for the data that is stored, how and when data is served can be
considered as the primary design concerns [1]. After the design phase of the system
has been finished, the design shall be easily implemented to make the prototypes
live and to run them. The resulting platform shall support the developers during the
implementation process. It should be available to be used with any other services that
are already present.

The resulting platform provides solutions in different degrees for the practicality
challenges and problems in the IoT domain. These challenges and issues can be listed
as follows;

1. The requirement of the technical background,

2. The need for the time investment,

3. The maintenance of the system,

4. The reimplementation of already implemented functionality,

5. The deployment of the system,

6. The different technology backgrounds of the developer in the team.

The rule engine provides solutions to the developers by simplifying the working en-
vironment. It solves the problem of the requirement for vast amount of time investment
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and technical background, and maintenance challenge by providing practical tools.
The platform shall render a practical and easy to learn web UI for hobby users with a
less technical background. The data and the rules, which are owned by the platform
user, are easily accessible and mutable by the platform user in the UI. The platform
users can quickly adapt even if they have little technical background since the system
provides building blocks by using the most common user experience (UX) elements
such as drag-drop objects, wires, and forms.

The rule engine provides its tools in different levels to keep solutions in a readable
way. These tools can be listed as;

• Nodes that are responsible with a single task to apply on data.

• Flows that contain nodes and wire them to each other. They represent a use-case
in the entire solution.

• Ontology models to classify data according to business logic

• Ontologies that contains both the ontology model and flows represent an entire
solution to realize a business logic.

M. G. Kibria et al. proposed that a semantic ontology which declares every device
as objects on the gateways can be used for the energy efficiency [2]. N. Lee and H.
Lee also suggested an IoT service architecture that provides services with an object
gateway [3]. The semantic ontologies can also be used to classify data with the help of
the existing reasoners in the field. Nevertheless, the management of ontology model
according to business logic and how a data is represented in an ontology model are the
topics that need to be covered to build a generic and practical platform that serves any
needs of IoT.

To build business logic and to define data evaluation methods on the ontologies;
the flows, which are in if-then form decision-making tools, must be introduced in the
platform. The flows function like a chain of blocks, where each does a small fraction of
the functionality while interpreting the logic. There are different types of nodes that
each has a different function in flow handling. The limited toolbox of generic nodes
also preserves the practicality for the users since they do not need to master a vast pool
of different block types. Different types of nodes are introduces in following chapters.

In addition to these simplifications, the platform also supports reusability of any
functionality or data hierarchy to avoid the reimplementation challenge. Therefore,
the developers such as in the company that is given in subsection 1.1 do not need to
reimplement functionalities that are required by a new customer. Instead, they can
reference the model or the flows that are already implemented for another customer.
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The deployment of the system is easier for the most basic user with the existing UI.
However, there are more tools for power users to handle their deployment challenge.
The power users such as working in a company are provided with an application
program interface (API) to use any functionality of the platform through HTTP requests
and Internet of Things Easy Query Language (IoTeQL). By using these, the power users
can manipulate their models and flows as well as the UI for their basic operations on
their system. With the help of API and IoTeQL, existing systems such as the system
of the company can be transferred to the platform quickly with the help of a script.
Moreover, when the company needs to provide their services with little customization
for a new customer, they can promptly achieve it with the help of reusable components.

Since the platform is technology independent and focuses on the construction of the
logic, different technology background of the team members is not a concern for the
developer teams. Business logic can be simply implemented in the system like drawing
a flow chart. They can easily adapt to the development environment of the platform
with any background.

Elasticsearch

Query Manager

Ontology Manager

Ontologies

Ontology Engine

Historical
Data

Web Application

Figure 1.1: The high level architectural diagram of the platform

In figure 1.1, the high-level architecture of the rule engine is shown. The task of the
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ontology manager is to run the flows of ontologies on the data when required. The
management of the ontology models and classification of data is the responsibility of
the ontology engine. The query engine is a high-level application programming
interface to manage both the ontology manager and the ontology engine. Since
ontology engine and ontology manager are isolated and loosely coupled with each
other, they can scale individually with the help of load balancing capabilities of the
query manager. Moreover, the query manager can autoscale by using generic autoscale
and load balancing services of cloud vendors. Consequently, only the query manager
horizontally scales when the number of queries is increased, or just the rule manager
scales horizontally when the massive amount of flows is needed to be handled at the
same time. A platform user can access all of the subsystems by their APIs, or the query
manager to manage all the system at once. Therefore, any change in any subsystem
does not lead to a change in the overall architecture.

In figure 1.2, a simple ontology model for classification basic connected car data
is shown. Any data can be classified depending on their sourcing sensors or their
fields. These ontology models should be defined depending on the use-case. If the
classification should be done in a more broad sense, the ontology model should also be
extended to match with needs.
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Field 

Velocity Field Location Field Acceleration Field 

Sensor 

GPSVelocity Sensor Acceleration Sensor 

Data 

hasField

fromSensor

Velocity Data 

fromSensor

Location Data 

hasField

fromSensor

Acceleration Data 

hasField

Figure 1.2: Simple ontology of the connected car data
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2 Data Management

The data management requirements can differ by the use case. Every requirement
is addressed with different tools supplied by the rule engine. Therefore, developers
benefit from different tools to realize their use cases by creating components. All the
components needed is encapsulated within the ontology of the use case. They all
interact with each other to serve the needs of business logic.There are three different
components encapsulated in ontologies. These are flows, nodes and models. To keep
ontology management simple, any components that owned by an ontology cannot be
shared. However, they can be duplicated to other ontologies.

The flows defined by the developer process the data. The flows are the chain of
functioning blocks which are called nodes. These flows can be easily implemented by
using query engine API directly or the user interface.

The nodes are simple function blocks which are only obligated with one operation
in flows. They can be wired to each other inside of a flow. They are configurable
according to the requirement.

The classification of data is done in a completely independent application which is
called ontology engine. Ontology engine is loosely coupled with the rest of the system.
It classifies data by using Web Ontology Language(OWL) and HermiT OWL Reasoner.
HermiT uses ontology models defined in OWL and classify data using inference logic.
In the entire system, when to classify data and what to do with the classified data
is defined in the flows. Flows communicate with the ontology engine whenever it is
needed by using correct MQTT topics.

Currently, there are three ways to handle with resulted data. They can be stored in
ElasticSearch database, published in defined topics of any MQTT broker or stored in
the nodes of the flows for further calculation.

2.1 Ontology Management

As described before, an ontology can have different components to manage different
needs. In figure 2.1, the components belong to an ontology is shown. An ontology
can have as many flows as it needs to manage the data process. Each flow is consist
of various nodes. These nodes can send or receive data to each other inside the flow.
However, they cannot be connected with the nodes in different flows. Therefore, the

8



2 Data Management

encapsulation of the data traversing inside a flow is sustained. Ontologies also own
an OWL document with ontology model to be used in the classification of data. This
document stored and managed by Ontology Engine while all the flows are managed in
Ontology Manager.

Ontology

Flow

Node

Class
Structure of
Data (OWL)

Configuration

Configuration

Configuration

Figure 2.1: Components of an Ontology

All these subsystems can be located in different machines in the cloud without
any common resource. Nevertheless, they have to be aware of where each subsystem
is located and how they can communicate with them. Most of the communication
between components is done in a structured way. The flows send data to classify to
Ontology Engine by using "/ontology/query/<Ontology ID>" MQTT topic. Then,
Ontology Manager returns after classification the received data back to flows by using
"/ontology/classified/<Ontology ID>/<Class Name>" MQTT topic. If a received data
belong to more than one class, the same data is published to topics of all matched
classes.
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2 Data Management

2.1.1 Data Classification in Ontologies

The knowledge base of how to classify a received data is kept in Ontology Engine. This
knowledge base is defined in an extendable way with OWL. Moreover, each ontology
has its knowledge base to operate. Therefore, any user can extend their classification
logic by extending the related OWL file. Thanks to these extensions, more complex and
specific classification can be made to achieve the goals of business logic.

There are different definitions that can be made in OWL. Classes are used for
grouping resources with similar attributes. Individuals represent any concrete resource.
The relationship between any two different classes are given with the object properties.
The actual values can be assigned to a class are represented by the data properties.

Ontology engine uses these definitions to classify received data. The most critical
OWL class which is defined and used in the ontology engine is "IoTOntology:Data".
For each received data, a new individual of IoTOntology:Data class of related ontol-
ogy is created. For each field existing in data, a class named as "IoTOntology:<Field
Name>Field", a new individual of that class and a data property named as "IoTOntol-
ogy:has<Field Name>Value" are created if they do not exist in current ontology model.
Then, an object property assertion is added to newly generated data individual with
"IoTOntology:hasField" object property and field individual. A data property assertion
is also added by using related data and the value itself.

Listing 2.1: Sample Received Data

1 {
2 "id": "091798e5-9cbf-4036-98f0-26e13b3a744a",
3 "temperature" :24.5,
4 "flame": false
5 }

JSON object given in listing 2.1 can be taken as an example. Ontology engine creates
a new individual in the ontology for this data. In figure 2.2, generated individual with
its properties from this data is shown. This generated individual is used by the reasoner
to classify data.
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«IoTOntology:Data» 
095938b0-a99a-4b7e-b717-2c2a1fb79dd0 

«IoTOntology:IdField» 
IoTOntology:IdFieldInd 

«IoTOntology:TemperatureField» 
IoTOntology:TemperatureFieldInd 

«IoTOntology:FlameField» 
IoTOntology:FlameFieldInd 

IoTOntology:hasField IoTOntology:hasField IoTOntology:hasField 

IoTOntology:hasIdValue IoTOntology:hasTemperatureValue IoTOntology:hasFlameValue 

xsd:string 
"091...44a" 

xsd:float 
24.5 

xsd:boolean 
false 

Figure 2.2: Generated Individual of Received Data

With the help of HermiT reasoner, classes that a data belongs to is inferred. When
any device is created using Harware Abstraction Layer from TUM IoT practical course,
an ontology model which is able to classify data of defined sensors in HAL is also
created. By just using this as our knowledge base without any modification, Ontology
Engine can deduct that the data belongs to all FlameData, TemperatureData, DataW-
ithTemperatureField and DataWithFlameField classes. In OWL snippet in listing 2.2;
OWL classes, properties and restrictions related to this reasoning process can be found.

Listing 2.2: Temperature Data Class from OWL File

<owl:Class rdf:about="IoTOntology:Data">
<rdfs:subClassOf rdf:resource="IoTOntology:Object"/>
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2 Data Management

</owl:Class>

<owl:Class rdf:about="IoTOntology:Field"/>

<owl:ObjectProperty rdf:about="IoTOntology:hasField">
<rdfs:domain rdf:resource="IoTOntology:Data"/>
<rdfs:range rdf:resource="IoTOntology:Field"/>

</owl:ObjectProperty>

<owl:Class rdf:about="IoTOntology:TemperatureData">
<rdfs:subClassOf rdf:resource="IoTOntology:Data"/>

</owl:Class>

<owl:ObjectProperty rdf:about="IoTOntology:hasTemperatureField">
<rdfs:subPropertyOf rdf:resource="IoTOntology:hasField"/>
<rdfs:domain rdf:resource="IoTOntology:Data"/>
<rdfs:range rdf:resource="IoTOntology:TemperatureField"/>

</owl:ObjectProperty>

<owl:Class rdf:about="IoTOntology:DataWithTemperatureField">
<owl:equivalentClass>

<owl:Restriction>
<owl:onProperty rdf:resource="IoTOntology:hasField"/>
<owl:someValuesFrom rdf:resource="IoTOntology:TemperatureField"/>

</owl:Restriction>
</owl:equivalentClass>
<rdfs:subClassOf rdf:resource="IoTOntology:TemperatureData"/>

</owl:Class>

In figure 2.3, the deduction process for the reasoning of the received data can
be found. By the definition of IoTOntology:DataWithFlameField and IoTOntology:
DataWithTemperatureField classes, every IoTOntology:Data individual which has at
least one temperature or flame field is belong to IoTOntology:DataWithFlameField or
IoTOntology:DataWithTemperatureField classes. Therefore, IoTOntology:Data indi-
vidual is also an individual of both IoTOntology:DataWithFlameField and IoTOntol-
ogy:DataWithTemperatureField classes. Moreover, it also belongs IoTOntology:FlameData
and IoTOntology:Temperature classes since they are super-classes of IoTOntology:
DataWithFlameField and IoTOntology:DataWithTemperatureField classes. Hiearchy of
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IoTOntology:FlameData and IoTOntology:Temperature classes can be seen in figure 2.4.

id ="095938b0-a99a-4b7e-b717-2c2a1fb79dd0"
D = Data
TD f = DataWithTemperatureField
TD = TemperatureData
T = TemperatureField
T∗ = TemperatureField(TemperatureFieldInd)
FD f = DataWithFlameField
FD = FlameData
F = FlameField
F∗ = FlameField(FlameFieldInd)

TD f (x)→ TD(x)
hasField(D(id), T∗) hasField(D(x), T) ≡ TD f (x)

TD f (id)
TD(id)

FD f (x)→ FD(x)
hasField(D(id), F∗) hasField(D(x), F) ≡ FD f (x)

FD f (id)
FD(id)

Figure 2.3: Reasoning of Received Data

IoTOntology:Data

IoTOntology: 
TemperatureData

IoTOntology: 
FlameData

IoTOntology: 
DataWith 

TemperatureField 

IoTOntology: 
DataFrom 

TemperatureSensor 

IoTOntology: 
DataWith 

SensorField

IoTOntology: 
DataFrom 

FlameSensor

Figure 2.4: Hierarchy of Flame and Temperature Data Classes
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2.2 Process of Data in Ontologies

Ontology manager manages every step in the data process. The flows and their nodes
handle the data processing in ontologies. The flows manage and encapsulate their
nodes. There are three types of nodes with their sub-types. These types are sink
nodes, middle nodes, and source nodes. Data is gathered, processed and sunk by
these nodes of flows. The source nodes are the entry point for all kind of data. They
redirect data that they have gathered to their proceeding nodes. The middle nodes
handle all the required process on the data to generate resulting data. They execute
their proceeding nodes with their resulting data. The proceeding nodes cannot have
information about what is the data like in previous steps. They can only reach data
generated by their prior node. In sink nodes, the resulted data is sunk from flow and
Ontology Manager to any other system. This system could be Ontology Engine, MQTT
broker or Elasticsearch database.

«interface» 
Node

«interface» 
SinkNode

«interface» 
MiddleNode

«interface» 
SourceNode

Figure 2.5: Three Node Type

An ontology can have more than one flow with each doing their processes on data.
The flows cannot share a node or cannot pass data to each other directly. Nevertheless,
it is possible to pass data by making a source node to listen to a message coming over
MQTT topic and sinking the data from a sink node of another flow to the same MQTT
topic.

The flows also manage the caching functionality and self-adapt accordingly the data
reached to their source nodes and resulted in data in sink nodes. When a data reached
to any source node of a flow, the flow checks whether this data is cached previously.
If it is cached in the cache of the flow, the sink nodes are executed with cached data
directly bypassing middle nodes. In figure 2.6, the activity diagram for a flow with
multiple nodes is shown.
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Flow

Cached?

Cache Pair

Source Node

Check Cache

Middle Node

Execute

Pass to Next

... Sink Node

Execute

Send

no

yes

Figure 2.6: Flow Activity Diagram

2.2.1 Nodes for Data Processes

As mentioned in section 2.2, there are three main types of nodes. These are the sink,
middle and source nodes. Moreover, each of these types has its sub-types. Depending
on the needs of users, they can easily extend these sub-types since they have all their
configuration and the implementation of the system serves all kind of abstraction to
achieve this.
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«interface» 
SourceNode 

MqttSourceNode ElasticsearchSourceNode OntologySourceNode

Figure 2.7: Source Node Types

As it can be seen in figure 2.7, there are three different sub-types of the source node
type. MqttSourceNode can be configured with the address of any MQTT broker and
any topic with wildcard support. When they receive any message from the topic,
they parse it into a JSON object and execute their proceeding node or nodes with it.
OntologySourceNode can be configured with an ontology class. Therefore, they listen
for data that belongs to the same ontology and is classified as its class. They are the entry
point for any data classified by using the Ontology Engine. ElasticsearchSourceNode is
diversified from the other source nodes by not sourcing data from streams. It is also
cannot be set as a starting node of any flows. When ElasticsearchSourceNode executed
by a node, it requests the Elasticsearch database according to its configuration and data
from the prior node. Then, it passes the gathered data to the next node in the flow. It
can be used when a flow requires historical data.

«interface» 
SinkNode 

MqttSinkNode ElasticsearchSinkNode OntologySinkNode

Figure 2.8: Sink Node Types

Sink nodes can be considered as mirrors of source nodes. Instead of sourcing data to
be processed in the flow, they sink the resulting data to required endpoints. There are
three different sub-types of the sink node type. MqttSinkNode is used to publish the
resulting data to any MQTT topic. It can be configured with the address and port of the
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MQTT broker and the topic that data should be published. It can also have configured
to publish only some fields of the resulted data to the topic and to add the timestamp
field to the data just before it publishes. Therefore, any system that is subscribed to the
topic can distinguish when the data is generated without any further process.

OntologySinkNode is used to classify any data by using OntologyEngine. It redirects
any data to the topic with ontology name it belongs to the MQTT broker located
in OntologyEngine. They can be used in anywhere in a flow. Therefore, there is a
chance for users to classify the data just after they receive them in flow or after the
processing in a flow. ElasticserchSinkNode is very similar to MqttSinkNode. They are
used to sink data to the Elasticsearch database instead of an MQTT broker. They can
be configured whether to update existing data in the database or to create a new data
object in the database. The data stored by ElasticsearchSinkNode can be further used
by ElasticsearchSourceNode to process historical data.

«interface» 
MiddleNode

«interface» 
BridgeNode

«interface» 
ManipulationNode

MapNode ReduceNode FilterNode

GroupingNode BranchNode

Figure 2.9: Middle Node Types

Middle nodes are grouped under two different interface as can be seen in figure 2.9.
The nodes that implement ManipulationNode interface are responsible for manipulating
any data according to their configuration. This manipulation is done on the defined
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field or fields of the data rather than the data as a whole. Therefore, any field that is
not configured in the node is safe and not lost. The manipulation on nodes is done by
the user-defined simple JavaScript functions to be executed on fields. The resulting
field value can be kept in a newly created field as well as source field. When the result
of a manipulation node recorded in a new field, it is an option for the user to keep the
sourcing field.

There are three different manipulation nodes which are inspired by one of the most
common ways to iterate over a sequence of data. MapNodes are used to change a
single value or sequence of values programmatically. They apply a unary function to
all values in the field. ReduceNodes use a binary function to combine a sequence of
elements to produce a single value. FilterNode applies a unary predicate and filters
out the values that do not satisfy this predicate.

The BridgeNodes are responsible for data flow. They decide which path a data
should take and when it should take this path. There are two different BridgeNodes
which are GroupingNode and BranchNode. GroupingNode groups received data by
configured field and create sequences in non-grouping fields with values in the data
sequence. It passes a group when the group size reaches the limit configured in the
node. Therefore, proceeding nodes of a GroupingNode are only executed when a
group reaches the limit. BranchNodes can be configured with a predicate and a field.
It checks whether the defined field of data satisfies the predicate. Then, it passes the
received data to its proceeding nodes only when the predicate is satisfied.

2.2.2 Self-Adaptation of Flows

The flows can self-adapt to work faster and to have better readability. There are two
different self-adaptation methodologies used in the flows. The first one is caching the
data as received and resulted in pairs. The second one is the optimization of flows by
their nodes.

There exist two different types of caching strategy currently implemented in the
flows. Users can make the selection of caching strategy in the configuration of flow.
The selection depends on diversity and frequency of data received by the flow. Hash-
CachingStrategy and HashlessCachingStrategy are two different types of caching
strategy implemented in the system. The only difference, HashCachingStrategy apply
the MD5 message-digest algorithm on data to generate a 128-bit hash value. Then, it
uses this hash value as storing addresses of data in both cache and pre-cache. It also
uses it for comparison of resulted data in pre-cache. The detailed flow chart of the
caching process for both strategies can be seen in figure 2.10. Both of them is configured
with a limit and fields. The cache pair for a data pair is only generated when the
limit is reached with the same data pair. However, the caching for received data stops
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whenever they produce different data in the flow. Nevertheless, some fields depending
on use-case can be ignored during caching in both received and resulting data. These
fields can be an identification of a sensor, timestamp or any field has no effect on the
calculation. Therefore, the flows that are not involved with timestamp or identification
can also be created with caching capabilities.
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Figure 2.10: Caching Flow of a Data
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The selection of whether to use HashCachingStrategy or HashlessCachingStrategy
should be selected by the user depending on data frequency and diversity generated
by the devices. If data generated by devices are expected to be too divergent, then
HashlessCachingStrategy could require a huge amount of memory space. Because
of every received data should be stored in cache or pre-cache to keep track of every
data. If devices generate data too frequent, then HashCachingStrategy could add an
overhead cost for computing MD5 hashes with time complexity of O(n). Therefore,
using which caching strategy should be decided concerning this trade-off. Even using
no caching strategy might be considered if the user believes that generated data is both
too divergent and frequent.

There are also two different optimization strategies which optimize flows simply
checking as pairs of subsequent nodes. The BasicBranchMergeStrategy and the Ba-
sicFilterMergeStrategy work in a very similar way. They check if two subsequent
BranchNode or FilterNode have the same configured fields. Then, they replace them
with only one node by merging predicates of the nodes using a logical and operator.

2.2.3 Responsiveness to Further Needs of IoT

IoT is a newly emerged field in computer science. Therefore, new technologies, systems,
and standards are introduced every day.

The rule engine is designed modular enough to respond to any need in the future.
There are different sub-systems which are loosely coupled with each other. Also, the
changes made in any sub-system does not affect all system completely. In other words,
the flows do not need to be adapted if the management or the usage of ontology models
is changed. Thence, the required changes for adaptation can be made quickly when
any language more powerful or popular than OWL arrives.

The users integrate their ontology models to their ontologies. Any change in the
system is not required to inherit a new ontology model. So, users who use the open-
source ontology models can quickly change to a newer version of the ontology model.
This change can be made easily by using APIs of the rule engine. Thus, users can
handle models with the most recent classification techniques.

Moreover, the specialized and decoupled nodes decrease the amount of time invest-
ment to introduce a new technology or system. For any new system or technology,
a new node type can be implemented with parameters that are needed by the new
system or technology. Therefore, users can use the new node to integrate the new
technology into their business logic.

20



3 Software Tools and Techniques for Rule
Engine

The rule engine can be considered as a Platform as a Service solution. It provides a
practical environment to handle data in different degrees for developers. As mentioned
before, this practical environment is supplied by its different sub-systems. Each
sub-system has its interfaces to interact. Nevertheless, the platform also provides
higher-level interfaces to give access to features of the platform as a whole.

By providing interfaces for both sub-systems and the whole platform, the usage of
sub-systems as separate components is achieved. Therefore, any user, that own rule
engine and wants to use ontology-based classification functionality of the rule engine,
can use the ontology engine separately with its interface.

Each sub-system has its API to be interacted. These APIs are designed to match with
the demands of their corresponding sub-system.

3.1 Ontology Engine API

Ontology engine manages classification of any data depending ontology definition
written in Web Ontology Language (OWL). It is designed to publish all classified data
to all interested parties. Therefore, if more than one OntologySource node points at the
same ontology class, they should receive classified data. The API of ontology engine
is implemented in MQTT to achieve many-to-many communication. Since MQTT is
already in the communication stack of ontology manager, the integration with it can be
made directly.

The management of ontology definitions in ontology engine is also handled over
MQTT to keep the technology stack in ontology engine as simple as possible. OWL
files belong to any ontology can be read, created, updated or deleted over matching
MQTT topics.

Ontology engine can also be used as a separate component to classify data sent
by any IoT system. Therefore, classification functionalities of ontology engine can be
integrated into any existing IoT system. These kinds of systems can use the MQTT
topics that are used to integrate the ontology manager. Ontology engine subscribes and
publishes to predefined topics depending on the ontology.
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The topics that the ontology engine subscribes are;

• ontology/create - Used to create a new ontology. It creates ontology based on the
id field in the message.

• ontology/update/<Ontology ID> - Used to update an existing ontology.

• ontology/delete/<Ontology ID> - Used to delete an existing ontology.

• ontology/read - Used to request the current OWL file of ontology. It reads
ontology based on id field in the message.

• ontology/query/<Ontology ID> - Engine classify data published through mes-
sages with ontology definition belongs to id.

The topics that the ontology engine publishes are;

• ontology/read/<Ontology ID> - The topic where response to a read reques is
sent. Engine publish OWL files based on read requests.

• ontology/create/<Ontology ID>/<Ontology Class Name> - Engine publishes
classified data with ontology id and class name.

3.2 Ontology Manager API

Ontology manager has a REST API to manage every ontology, flow, and node. Any
component located in ontology manager can be managed by using this REST API.
Ontology manager rearranges its components, runs or stops some of its components
based on HTTP requests made into its REST API. It is possible to use the ontology
manager as the only system by its API if a user does not need the classification
capabilities.

3.3 Managing the Entire Platform

When the user needs the functionalities that satisfied by different subsystems, problems
may occur in the management of all subsystems. Therefore, the rule engine provides
two different interfaces. These interfaces can be used by the user to manage all
subsystems at the same time.

Query manager and the web application manage the entire rule engine. Both of them
handle communication between the API of ontology manager and ontology engine.
Therefore, a user can create, update, read or delete their components in both sub-system
with only one high-level interface.
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3.3.1 Query Manager

Query manager is a high-level API to be used in management all platform. Any other
system can programmatically use it. It handles the read, create, update and delete
requests for all ontologies and their sub-components. When a request received by the
query manager, it makes correct requests to ontology engine, ontology manager or both.
It only has one HTTP endpoint with the POST method to reduce usage complexity.
This endpoint only accepts requests with the Internet of Things Easy Query Language
(IoTeQL) payload. Therefore, it is possible and easy to use query manager over existing
command-line tools (like cURL). Moreover, any future command-line tool explicitly
written to manage the rule engine can be achieved easily. The advantages of using
IoTeQL are covered in proceeding sections.

Internet of Things Easy Query Language - IoTeQL

IoTeQL is a language created to manage the entire rule engine. It has read, create,
update and delete (CRUD) functionalities. It is used by the query manager to take
actions depending on the requests of the user. It can be used to manage ontologies,
flows, and nodes.

Each query in IoTeQL has command, type, header, and JSON-like body. It is possible
to operate more than one component by using query sequence The command section
in a query defines which CRUD operation should be used for that query. The type
section defines what kind of component it should handle. Ontology, flow or node can
be used for the type field. The sub-type of the component and the id is declared in
the header section. If the query is made with a create command, then id field is not
required in the header. Id is returned as a result to the user instead.In the body, the
rest of the configuration about the component is defined. Nevertheless, users have the
freedom to place the body configurations into the header to keep query cleaner.

IoTeQL also has referencing capabilities to other components. These components
can be created in the same query sequence or have been already created. For already
created components in the ontology manager, ids should be referenced. For referencing
components that are being created in the same query sequence, their names can be
used since they are still not assigned with an id from the ontology manager. If the same
name is used for the different components, then an attribute called as reference id can
be added to the header which is used for distinguishing components. This reference id
can be used to distinguish components in future.
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3.3.2 Web Application - Graphical User Interface

For better usability of the entire system, a web application with an user-friendly
graphical user interface (GUI) is implemented. Using this GUI, users can manage all of
their components. The web application serves a practical GUI to use every function of
the query manager. A user can view, create or edit any component they have using this
GUI. The web application translates actions of the user to IoTeQL and makes queries to
the query manager.

In figure 3.1, the sequence diagram for a user tries to create a new ontology using the
web application interface is shown. The web application serves for usability purposes
with a simple user interface. It is also possible for a user to surpass the web application
and use query manager directly within their needs. Initial communication configuration
of components is set by the Query Manager in their initialization process. It balances
and pairs each ontology to existing Ontology Engines and Ontology Managers. Besides
to initial configuration, reallocation of a component to different machine or fault in an
existing system might cause reconfiguration of the components. For this purpose, the
Query Manager also notifies and re-configures each component to how to communicate
with their fellow component when needed.

In the web application, creating and viewing flows can be intuitively comprehended.
The nodes in a flow are shown as a graph with only one-directed edges. These edges
represent proceeding nodes that data should be forwarded. Addition of new edges or
new node can be done effortlessly by using simple buttons in the UI.
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There are different approaches from the researchers around the world to build semantic
ontologies in the field of IoT. The built ontologies are used for different purposes.
However, they converge in terms of how they are used. They are mostly used to derive
more information from sensor data. The derived information is used for classification,
visualization, and interoperation of sensors and sensor data.

There also exist particular implementations to construct a rule manager. Shukla and
Sornalakshmi stated that building a rule-based engine to process and integrate logic
has several advantages [4]. They described these advantages at different levels for each
user. They require less time to re-code and to test when the business policy changes.
They are easier to learn and understand than procedural code. Therefore, it can be a
good bridge between business analysts and developers. They are less complicated since
they are consistent representations of business rules. Moreover, they can be reused by
changing the only necessary parts.

This chapter presents an overview of the related researches. It also covers the
connection between researches and the thesis. Moreover, how to combine the results of
the researches with the resulting platform of the thesis is discussed.

Analyzing and representing raw sensor data is hard since they are generated in
different patterns and continuously. Seo, Chun, Oh and Lee proposed and sensor
data processing architecture for modeling semantic data from sensor streams [5]. They
analyzed raw sensor data with various machine learning strategies. Then, they used
this analyzed data and semantic ontologies to process their semantic data to form a
semantic knowledge base. Finally, this semantic knowledge base can be used to build a
higher level application.

With the help of ontology-based rule engine, the generated knowledge base can be
used in the ontology engine to classify data streams. Business logic can be created
on top of it by defining flows which use this knowledge base. Therefore, the aim of
building higher level applications can be achieved easily in the rule engine.

Park, Bang, Pyo, and Kang built a semantic open IoT service platform [6]. This
platform serves a semantic repository to reach IoT data in a structured way. It collects
data from sensors. They use ontology models to process this data and gather more
meaningful information. Afterward, all the gathered contextual information is stored
in a semantic repository. In this repository, the realation between all data is also stored.
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Therefore, semantic interoperability between different IoT devices can be achieved.
Also, the service can provide this knowledge to involved parties by querying the
derived contextual knowledge in the semantic repository using SPARQL.

The results of semantic open IoT service platform can be used together with the
ontology-based rule engine. In any use-case, the sensor data can be forwarded to the
service platform from a flow in the rule engine. Therefore, a semantic repository with
the derived contextual knowledge can be gathered. The derived contextual knowledge
can be translated into OWL format. Therefore, users can improve their ontology models
in rule engine with the derived contextual knowledge that are coming from open IoT
service.

Research has been held for using Semantic Sensor Network (SSN) Ontology to
provide visual data service for heterogeneous sensor data. Zhang, Zhao, Wang, and
Pan used SSN ontology to derive meaningful information and visualize it from raw
sensor data [7]. To achieve this, they mapped the generated sensor data to RDF format.
Then, they used SSN ontology to make ontology-based inference on the mapped
data. With the help of SPARQL, they managed to query the inferred data with the
requirements of users. The visualization of diagrams and maps is achieved by using
ECharts with observation values.

Kaed, Khan, Berg, Hossayni, and Saint-Marcel presented a semantic rules engine
for the industrial IoT gateways [8]. They designed the rules engine explicitly for
embedded devices and other resourceful devices. The primary purpose of the engine is
to provide a simple environment to create rules within an abstraction of heterogeneity
of devices, protocols, and data. It manages sensors and the data directly coming to the
gateway from sensors. The rules that are defined in Lua scripting language are used
to manage them. It also provides endpoints to communicate with applications which
are located in web servers or cloud. The semantic queries can also be made through
this endpoints. The rules engine interact with the semantic engine (SQenIoT) to resolve
these queries. With the help of the SQenIoT, semantic queries such as a request for
temperature information on a specific floor can be made to the gateway. The evaluation
of a semantic query is based on the co-located ontologies and stored annotated data.

The semantic rule engine which is introduced by Kaed et al. [8] has similarities
with the rule engine that is presented in this thesis. Nevertheless, the design choice
of being specific for the embedded devices, using a scripting language and using
semantic ontologies for queries are three distinct differences. In thesis rule engine, the
ontologies are used only for classification directly with ontologies, and the annotated
data are not kept in anywhere. Nevertheless, processed historical data can be annotated
again for classification. The semantic rule engine does not provide a practical way of
defining rules such as flows. Therefore, any user should know Lua scripting language
to implement a new rule for their use-case.
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In this chapter, the IoT platform from TUM IoT Practical course and widely used
technologies which provides similar functionalities for users are reviewed in terms of
the relationship with the rule engine.

5.1 IoT Platform from TUM IoT Practical Course

In the scope of IoT practical course held in TUM, participants developed an IoT platform
which supports users to build IoT use-cases practically. IoT platform has different
layers to help its users.

Hardware Abstraction Layer can be used to configure single-board computers within
the needs of use-case. This configuration can be done in a user-friendly web application.
Therefore, the single-board computers can read data from its configured sensors and
send them to the required endpoints.

Hardware Abstraction Layer (HAL) is integrated with the rule engine. The initial
ontology model defined in the rule engine has all classes to identify data that may be
received from any sensor supported by HAL. For every single-board configuration,
this ontology model is created in the ontology engine. Moreover, the current web
application of the rule engine is an extended version of the web application of HAL.

When a new device is registered in HAL, it also creates a new ontology for it by
using QueryManager. The required classes to identify any data based on their sensor id
are also added to the ontology model whenever a new sensor is attached to the device.
Therefore, the classification and process of data can be quickly done by setting the rule
engine as a communication endpoint for the device.

Finally, the extension of the IoT platform can be achieved with the help of the rule
engine. Any data generated by HAL can be processed and classified according to the
needs of the user in the cloud. Moreover, the actions can be sent to HAL according to
processed data. Then, the required actions can be taken in device by using actuator
support of HAL.
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5.2 Node-RED

Node-RED is a flow-based programming tool for IoT [9]. IBM’s Emerging Technology
Services team initially developed it. It is now supported and owned by Javascript
Foundation.

Node-RED also inherits the flow-based programming approach similar to the rule
engine. Users can create applications by dragging function specific nodes into their
workspaces. The nodes can be wired to each other to create flow. Therefore, users can
integrate their hardware devices, APIs and online services.

Node-RED can run any capable device. It can run on, including, but not limited
to, Raspberry Pi, Cloud, and even Android [10]. A great community also supports it.
There are current 1190 flows, and 1876 different nodes shared in the Node-RED library
[11].

In comparison with the rule engine, Node-RED is a more general purpose tool. It is
designed to handle any needs of programming in IoT. It can process data as the rule
engine in the most basic level.

Nevertheless, the rule engine specialized in data handling. It serves data processing
specific tools for its users. It provides built-in caching functionality in the flows.
Therefore, fewer computation resources are used for handling the same received data.
The flows in the rule engine are also aware of their nodes. Hence, they can optimize
themselves with optimization strategies. They can change into more readable and faster
types of flows without any operation by the user.

Moreover, the classification of any data is more practical in the rule engine. Semantic
ontology-based classification can be made by using the ontology engine and user-
defined ontologies. In the other hand, Node-RED does not provide any native practical
way for the classification.

5.3 openHAB

openHAB is an open-source home automation software. It provides an environment
for integrating different home automation solutions and IoT gadgets in the market [12].

openHAB is built-on pluggable architecture [13]. This architectural choice allows it to
support new technologies, systems, and devices as they arrive in the market. There are
currently more than 300 add-ons, which supports different technologies and systems,
and more than 1500 different devices in its library [14].

Similar to the rule engine, openHAB uses rules-based approach for automating
processes [15]. openHAB uses a scripting language called Rules-DSL. Users can define
rules to manage all the devices and the systems they use. Rules-DSL creates an easy to
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use environment since its syntax, likewise the rule engine.
On the other hand, the initial setup of openHAB is tricky. It requires technical

knowledge to choose correct add-ons and use them [12]. The setup may require reading
and understanding logs of openHAB. It also requires basic Java knowledge since the
scripting language is built on top of Java. It is not designed for any person to use.
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In this chapter, the performance results of the ontology-based rule engine are presented
and discussed. The rule execution performance is done by using a real-world example.
The use-case based on the real world is presented in the following section.

The performance of the rule engine is analyzed in terms of the two different metrics.
The first metric is the ontology creation time. The second metric is the flow execution
time.

Different parameters are considered for each metric. The parameters for the ontology
creation time can be listed as;

• The number of instances running an ontology manager,

• The number of flows that are owned by an ontology,

• The number of nodes that are owned by a flow,

• The number of virtual users sending ontology creation requests to the query
manager in parallel.

The parameters for the rule execution time can be listed as follows;

• The number of virtual devices used in parallel

• Time interval of data sent to flows by the virtual devices.

The other variables remain unchanged during the analysis process. All sub-systems,
which are ontology manager, ontology engine and query manager, are set-up in different
instances. These instances are created with Amazon EC2 by Amazon Web Services.
Each instance is launched with the configuration of 1 GB RAM, 8 GB SSD storage, and
1 virtual CPU. To handle IoTeQL queries, five different instances of query manager are
set-up. Amazon Web Services Load Balancer is used for managing loads of these query
managers.

The IoTeQL queries that are sent to the query manager are randomly generated.
The number of flows inside of ontologies and the number of nodes inside of flows are
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randomly selected. The random selection is made with a Gaussian distributed series of
numbers with defined minimum, maximum, and skew values.

Two different parameter sets are used for the random IoTeQL query generation.
These parameter sets can be seen in the table 6.1.

Set 1 Set 2
Node Parameters

Minimum 1 1
Maximum 10 20

Skew 1.5 1.5
Flow Parameters

Minimum 1 1
Maximum 10 20

Skew 2 1

Table 6.1: The parameter sets used for query generation

The first set of the queries are more realistic and closer to ontologies that can be
created during the implementation of a real-world use-case. On the other hand, the
second set of queries are more overwhelming and consists of a tremendous amount of
nodes.

Therefore, the generated results with the first set of queries give more meaningful
information about how the rule engine performs in the real world. Nevertheless, the
second set of queries creates an environment for understanding the performance of
the rule engine under stress. In other words, the second set of queries still generates
valuable information on how the rule engine acts in overwhelming situations.

The load balancing capabilities of the query manager have been used during the
analysis. Therefore, queries can be distributed among a variable number of ontology
managers. The analysis is done by using 1, 2, and 5 different instances of ontology
manager.

The analysis is held for the different number of instances, and each parameter set
given in 6.1. The number of virtual users is increased until the creation of an ontology
took a few seconds. This can be defined as the limit of the rule engine with given
resources. Because of longer response time for an ontology creation request affects the
usability of the rule engine.

Open-Source technologies are also used for load generation, result storage, and
visualization. For the load generation and the result generation, k6 is used. All
generated data is stored in InfluxDB. Grafana is also used for the visualization of the
results in a meaningful way. The graphs and the metrics that can be found later in this
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section are created by Grafana.

Figure 6.1: Request per second for 1 instance and 1 user with the query set 1

Figure 6.2: Request duration for 1 instance and 1 user with the query set 1

Mean Median Maximum Minimum 90th Percentile 95th Percentile
113.388 ms 110.21 ms 143.73 ms 71.20 ms 137.92 ms 140.87 ms

Table 6.2: Results for 1 instance and 1 user with the query set 1

The very first test is done with only 1 virtual user on 1 instance with the first query
set. k6 sent one request per second to the query manager as can be seen in figure 6.1.
The ontology creation for this kind of environment can be considered as fast. With
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the average time of 113.388 ms, it can actively create new ontologies. Therefore, an
ontology would be already created when a new request arrives.

The response time of the rule engine only goes under the expectation when there
are 50 different users. Also, these users send the ontology to create requests in parallel
continuously. As it can be seen in figure 6.4, the response time for the requests is gone
as high as 6.35 seconds. This would slow the work process of the users since this delay
also affects updating their existing ontologies. The average requests that are handled in
one second is 13.82 as shown in figure 6.3.

Figure 6.3: Request per second for 1 instance and 50 users with the query set 1

Figure 6.4: Request duration for 1 instance and 50 users with the query set 1

Mean Median Maximum Minimum 90th Percentile 95th Percentile
2.52 s 2.11 s 6.35 s 724.74 ms 4.60 s 5.18 s

Table 6.3: Results for 1 instance and 50 users with the query set 1
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In table 6.4, the performance results for one instance with very limited resources is
shown. The ontology manager has no problem in terms of creating new ontologies
until there are 50 different users in parallel. It is not expected for all users to create a
new ontology or update their ontologies this frequent. The ontologies are components
that are created once and updated only for maintenance. Therefore, the limit of 50 users
can be considered as the limit for the expected number of users who creates ontologies
in parallel. A corporate company with thousands of employees can even use the rule
engine with only one instance. The rule engine can handle requests of thousands of
users since they do not make modifications on ontologies frequently.

Number of Virtual Users Mean Median Maximum
1 113.388 ms 110.21 ms 143.73 ms
10 144.69 ms 123.82 ms 464.12 ms
20 694.50 ms 597.84 ms 2.37 s
30 1.05 s 687.26 ms 3.98 s
50 2.52 s 2.11 s 6.35 s

Number of Virtual Users Minimum 90th Percentile 95th Percentile
1 724.20 ms 137.92 ms 140.87 ms
10 62.18 ms 220.75 ms 271.39 ms
20 42.03 ms 1.47 s 1.69 s
30 90.41 ms 2.51 s 3.02 ms
50 724.74 ms 4.60 s 5.18 s

Table 6.4: Results for 1 instance with the query set 1

As described above, 1 instance of the ontology manager is enough to handle with
requests of employees in a corporate company. However, it might still be used for
providing a cloud solution that multiple companies are using. In this case, more
instances should be launched, or the resources of existing instances should be increased.
When there are two different active ontology manager instance, the response time gets
slightly better. As shown in figure 6.5, the average of the requests per second increased
to 16.37 from 13.82. The mean of request duration also decreased to 2.03 seconds from
2.52 seconds as indicated in table 6.5. The biggest differences between 1 and 2 instances
are maximum, 90th and 95th percentile values. Therefore, the interval for ontology
creation is much shorter than only one instance since maximum and minimum values
are closer.
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Figure 6.5: Request per second for 2 instances and 50 users with the query set 1

Figure 6.6: Request duration for 2 instances and 50 users with the query set 1

Mean Median Maximum Minimum 90th Percentile 95th Percentile
2.03 s 1.75 s 5.47 s 51.00 ms 3.68 s 4.16 s

Table 6.5: Results for 2 instances and 50 users with the query set 1

If the number of ontology manager instances is increased to 5, then the request
duration decreases completely. As shown in table 6.7, it has no problem handling 30
different users at once. It gives almost the same result when 2 instances handle 20 users
or 1 instance handles 10 users. The mean request duration gets unacceptable value
when there are 100 virtual users. This unacceptable amount is still not too high and
only 3.19 seconds.
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Number of Virtual Users Mean Median Maximum
10 149.44 ms 128.45 ms 436.94 ms
20 276.82 ms 195.95 ms 2.00 s
50 2.03 s 1.75 s 5.47 s

Number of Virtual Users Minimum 90th Percentile 95th Percentile
10 57.71 ms 239.23 ms 323.63 ms
20 49.63 ms 545.69 ms 707.83 ms
50 51.00 ms 3.68 s 4.16 s

Table 6.6: Results for 2 instances with the query set 1

Number of Virtual Users Mean Median Maximum
30 259.69 ms 162.85 ms 3.18 s
100 3.19 s 3.14 s 9.79 s

Number of Virtual Users Minimum 90th Percentile 95th Percentile
30 44.45 ms 488.71 ms 705.72 ms
100 60.82 ms 6.46 s 7.19 s

Table 6.7: Results for 5 instances with the query set 1

When used query set is changed to the second one, the request duration increases
dramatically. The tremendous amount of nodes in each query causes this performance
fall. As shown in table 6.1, the expected number of flows and nodes are much higher
than the query set 1. The results that can be found below show performance of the
ontology manager under a stress test rather than a real world use.

The performance of only one instance shows that it can still handle the request of 10
users as seen in table 6.8. However, it gets almost 4 times slower for 10 users. When the
number of users changed to 20, it gets nearly 8 times slower. In other words, it reaches
an unacceptable value. While it was able to handle requests until 50 users with the
query set 1, the delay is too high for even 20 users with the query set 2.
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Number of Virtual Users Mean Median Maximum
1 113.388 ms 110.21 ms 143.73 ms
10 524.04 ms 468.04 ms 8.4 s
20 5.07 s 4.73 s 12.83 s

Number of Virtual Users Minimum 90th Percentile 95th Percentile
1 724.20 ms 137.92 ms 140.87 ms
10 134.16 ms 628.41 ms 700.89 ms
20 658.48 ms 7.85 s 7.98 s

Table 6.8: Results for 1 instance with the query set 2

In table 6.9 the performance results for 2 instances is shown. The impact of having
more instances is greater for the query set 2. The performance of two instances for
20 users is better with 1.6 seconds on average than one instance. It was only 500
milliseconds for 50 users when the query set 1 is used.

Number of Virtual Users Mean Median Maximum
5 571.47 ms 492.23 ms 2.08 s

20 3.47 s 3.28 s 9.67 s

Number of Virtual Users Minimum 90th Percentile 95th Percentile
5 193.10 ms 888.67 ms 1.11 s

20 180.02 ms 6.45 s 7.60 s

Table 6.9: Results for 2 instances with the query set 2

The performance results for 5 instances can be seen in table 6.10. Five instances can
handle requests of 20 users in 1.34 seconds on average. However, the performance goes
lower than the sufficient amount when there are 30 different users in parallel.
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Number of Virtual Users Mean Median Maximum
1 408.07 ms 401.11 ms 519.07 ms

10 504.00 ms 471.34 ms 1.70 s
20 1.34 s 824.88 ms 6.33 s
30 4.23 s 4.75 s 12.76 s

Number of Virtual Users Minimum 90th Percentile 95th Percentile
1 279.82 ms 483.52 ms 507.04 ms

10 90.23 ms 718.51 ms 870.93 ms
20 134.80 ms 3.42 s 4.06 s
30 177.81 ms 7.85 s 8.69 s

Table 6.10: Results for 5 instances with the query set 2

6.1 Overspeed Warning System for Connected Cars

The automobile industry is developed to be smarter with the growth of connected
mobility. Even mid-level cars have a connection to the internet over mobile services.
They use this connection taking remote actions on cars or sending generated data to
the internet for further processing.

As a use case example, the concept of connected cars is taken in the account. The
cars in this use case are assumed with GPS integration. The speed and speed limit in
the current road considered to be gathered from this GPS.

The use-case is about a warning system which informs users when they are close
to the speed limit with their acceleration. There are two different warning levels. The
critical warning is sent to users when they are expected to reach a speed limit within
5 seconds. The regular warning is sent to users when the prediction of reaching the
speed limit within 20 seconds is made five times one after another.

An ontology with three different flows and an ontology model is created to match
with the requirements of the use-case. The flows process the data received from cars
and send them particular MQTT topics when they generate a warning. The ontology
models are used to classify the processed data whether it is a warning or critical
warning.

The first flow can be seen in figure 6.7. It first receives data from cars. Then, it
combines every two subsequent data from the same car to find the current acceleration
of the car. It uses this acceleration and current speed to find when the car reaches
the speed limit if it keeps the acceleration. Finally, it sends the processed data to the
ontology engine for classification. The node by node description of car data classifier
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flow can be found in table 6.11.

Figure 6.7: Car data classifier flow

Name Type Description
acceleration_source Mqtt Source Gathers data from cars

merge_two_car_data Grouping
Merge two subsequent

data of the same car

find_differences Reduce
Find differences between speed

and timestamp of two data
find_acceleration Map Find acceleration using differences

find_time_to_speed_limit Map
Find expected time to speed limit
using speed limit, current speed

and acceleration

time_to_speed_limit_classify Ontology Sink
Sends generated data
to the ontology engine

Table 6.11: Nodes of car data classifier flow

The car warning flow can be seen in figure 6.8. It gathers all data that are classified
as a warning from the ontology engine. It first checks whether the last three warning
are subsequent and time differences are low enough. It sends to warning topic of
MQTT broker if the three warnings satisfy the condition to be a warning. In table 6.12,
descriptions of each node can be found.
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Figure 6.8: Car Warning Flow

Name Type Description
warning_source Ontology Source Gathers data with warning class

merge_three_car_warning Grouping Merges three warning data

is_warning_frequent Map
Checks and flags whether
three data is subsequent

check_time_differences Reduce
Checks and flags time
difference of each data

is below 20 seconds
extract_continue Branch Decides to continue by checking flags

warning_sink Mqtt Sink Sends data to warning topic

Table 6.12: Nodes of car warning flow

The critical warning flow is just used to redirect all critical warning data to critical
warning topic of MQTT broker. The flow and nodes are shown in figure 6.9 and table
6.13.
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Figure 6.9: Car Critical Warning Flow

Name Type Description

critical_warning_source Ontology Source
Gathers data with

critical warning class

critical_warning_sink Mqtt Sink
Sends data to

critical warning topic

Table 6.13: Nodes of car critical warning flow

A part of the OWL representation for the ontology model is shown in listing 6.1.
The ontology model can classify data as a warning or critical warning. It checks time
to speed limit field of data to do this classification. As it can be seen, any data with
less than 5 time to speed limit value is classified as a critical warning. They are also
classified as a warning since the critical warning is a sub-class of warning. If the time
to speed limit value is less than 20 but not 5, then data will be classified only as a
warning.

Listing 6.1: OWL representation of Critical Warning

<owl:Class rdf:about="http://example.com##CriticalWarning">
<owl:equivalentClass>

<owl:Restriction>
<owl:onProperty

rdf:resource="http://example.com##hasTime_to_speed_limitValue"/>
<owl:someValuesFrom>

<rdfs:Datatype>
<owl:onDatatype

rdf:resource="int"/>
<owl:withRestrictions rdf:parseType="Collection">

<rdf:Description>
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<xsd:maxExclusive>
5

</xsd:maxExclusive>
</rdf:Description>

</owl:withRestrictions>
</rdfs:Datatype>

</owl:someValuesFrom>
</owl:Restriction>

</owl:equivalentClass>
<rdfs:subClassOf rdf:resource="http://example.com##Warning"/>

</owl:Class>
<owl:Class rdf:about="http://example.com##Time_to_speed_limitField">

<rdfs:subClassOf rdf:resource="http://example.com##Field"/>
</owl:Class>

Simulations are used during the test of this use-case since real cars could not be used.
A simulation of a car generates meaningful car data to be used in the use-case. They
randomly accelerate positively or negatively within certain limits. They also change
their speed limit values to simulate a car that is changing roads.

The tests are done using 5, 10, 30, 50, 100, and 500 different simulations in parallel.
Therefore, an environment that can simulate the system until 500 cars is created. The
data frequency for each simulation is changed between 2, 1, 0.5, and 0.2 data per second.
EC2 instances with 1 GB RAM, 1 virtual CPU, and 8 GB SSD storage are used to deploy
an ontology engine, ontology manager and, query manager as the testing environment.

In figure 6.10, the execution time vs. time graph for 5 virtual devices that are each
sending 2 data per second is shown. The rule engine shows promising and stable
results for this scenario. It has an average of 5.64 milliseconds flow execution time for
the warning system.

Another graph can be seen in figure 6.11 with 50 different virtual cars. These virtual
cars are programmed to send data to the flow on every 2 seconds. The flow execution
time changes between 5 milliseconds and 66 milliseconds. There is a remarkable
difference between the minimum and maximum values overall execution. The different
data arrived at the same time causes this difference. The new data needs to wait until
the execution of existing data in the flow is ended.
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Figure 6.10: Flow execution time for overspeed warning system with 5 devices and
frequency 2 s−1

Figure 6.11: Flow execution time for overspeed warning system with 50 devices and
frequency 0.5 s−1

When the number of devices is changed to 500 with the data frequency of 1 per
second, the execution time grows over time. The race between data that entered flow
occasions this likewise the test with 50 virtual devices. Accumulated data over time
increase the execution time. The flow execution time is increased by 50 seconds. After
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data sending is stopped by virtual devices at the end of the test, it starts to decrease.
Because of accumulated data pool got smaller.

Figure 6.12: Flow execution time for overspeed warning system with 500 devices and
frequency 1 s−1

In table 6.14, the summary of all tests that are with the overspeed warning system
for connected cars use case is indicated. The flows have no problem with processing 2
data per second until 100 different cars. It can even process data of 500 different cars
when they send data every 5 seconds.
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Number of Simulations Frequency Minimum Maximum Mean
5 2 4 ms 16 ms 5.64 ms
10 2 5 ms 47 ms 8.15 ms
30 2 5 ms 57 ms 18.20 ms
50 2 6 ms 338 ms 23.3668 ms
100 2 6 ms 89 ms 22.16 ms
500 2 6 ms 35208 ms 25756.42 ms
5 1 7 ms 133 ms 10.66 ms
10 1 6 ms 52 ms 12.966 ms
30 1 8 ms 56 ms 15.91 ms
50 1 8 ms 189 ms 21.06 ms
100 1 8 ms 60 ms 20.70 ms
500 1 8 ms 49044 ms 31399.83 ms
5 0.5 10 ms 21 ms 11.18 ms
10 0.5 10 ms 22 ms 11.84 ms
30 0.5 11 ms 154 ms 15.76 ms
50 0.5 5 ms 66 ms 11.32 ms
100 0.5 5 ms 333 ms 16.35 ms
500 0.5 3 ms 75049 ms 34204.03 ms
5 0.2 4 ms 6 ms 5.04 ms
10 0.2 7 ms 109 ms 7.03 ms
30 0.2 5 ms 125 ms 7.11 ms
50 0.2 6 ms 136 ms 7.98 ms
100 0.2 5 ms 46 ms 12.08 ms
500 0.2 4 ms 4361 ms 271.59 ms

Table 6.14: Performance results of overspeed warning system

Every flow can only run in a single machine and cannot be distributed. Therefore,
horizontal scaling does not help to improve these results. Nonetheless, there are
few options to increase the performance to support more devices. The first one is
to scale instance with the flow vertically. The second option is to create identical
ontologies with a load balancing ontology ahead. The logical ontologies should not
be reachable by the real world devices but only load balancing ontology. The load
balancing ontology should redirect all data the logical ontologies with any custom load
balancing algorithm.
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The current implementation of the rule engine establishes a practical environment for
data processing. However, there is still more space for it to grow. With future work
to be held, it can support more technologies and will not lock users to work with few
technology options. Furthermore, it can also provide more tools to effectively serve
other needs of data processing.

In this chapter, the critical prospective works for the improvement of the rule engine
will be listed and discussed.

7.1 Dockerization

The rule engine consists of different sub-systems. Management and setup of every sub-
system can be tricky for some users. Therefore, the dockerization of every sub-system is
crucially important. The whole system shall also be dockerized into only one container.
Thus, the management will be simpler for users who want to keep everything in the
same machine instance.

7.2 Auto-scaling

Ontology manager is not stateless, and flows cannot be shared between two computers.
Therefore, generic auto-scaling technologies of cloud vendors cannot be used directly.

On the other hand, the query manager is aware of the load of each system since it
handles load balancing. Therefore, the query manager can also manage the scaling
of sub-systems automatically. It can launch new instances when the load of existing
instances is too high.

7.3 Support for More Communication Protocols

The rule engine only supports MQTT for data receiving and sending. However,
there are much more different communication protocols that are used in IoT. Thus,
more protocols should be supported by the flows. The future protocols that must be
supported by the flows can be listed as;
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• CoAP

• HTTP

• Kafka

• Websocket

• LwM2M

7.4 Time-Scheduled Flow Triggers

Flows in the rule engine can only run when a data received by its source nodes. The
current source nodes restrain to create flows that run on a scheduled time. In other
words, the flows cannot be programmed to create daily summaries from the historical
data at midnight. Flows shall be programmable to run on a scheduled time to handle
such cases.

7.5 Practical Environment for Ontology Model Creation and
Modification

The users are expected to create and modify their custom ontology models by using
third-party tools. The support for viewing and modifying ontology models shall be
added to both the web application and IoTeQL. It should also provide practical ways
for modification of the models. Therefore, users can modify their ontology models
without expert knowledge.

7.6 Semantic Queries to Historical Data

The semantic ontologies are only used for on-demand data classification. The usage of
the semantic ontologies can be extended to gather more meaningful information using
both historical data and ontology models. The flows can be used to query historical
data by using IoTeQL and SPARQL.

7.7 Better Environment for Node Development

The open-source platforms similar to the rule engine are powered by huge communities
as can be seen in chapter 5. The node development should be simplified to enable a
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development environment for the practical rule engine. The developers shall be able to
integrate their custom nodes to all sub-systems easily. Therefore, a library consists of
custom nodes, developed by the community, can be created.

7.8 Development Tools

The rule engine provides a practical environment for development with its web ap-
plication and IoTeQL. Nevertheless, the development environment can be improved
further. IoTeQL syntax highlighters for the popular text editors and command-line
tools to manage both ontologies and flows shall be developed.

7.9 Integration with Related Works

In chapter 5, popular related platforms has been presented. The users might want to use
the rule engine together with the features of these platforms. Thence, the integration
modules for these platforms shall be published in the libraries of the platforms.
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