
End to End Learning of a Multi-layered SNN Based on R-STDP for a
Target Tracking Snake-like Robot

Zhenshan Bing1, Zhuangyi Jiang1, Long Cheng2, Caixia Cai3,∗, Kai Huang2 and Alois Knoll1

Abstract— This paper introduces an end-to-end learning ap-
proach based on Reward-modulated Spike-Timing-Dependent
Plasticity (R-STDP) for a multi-layered spiking neural network
(SNN). As a case study, a snake-like robot is used as an
agent to perform target tracking tasks on the basis of our
proposed approach. Since the key of R-STDP is to use rewards
to modulate synapse strengthens, we first propose a general way
to propagate the reward back through a multi-layered SNN.
Upon the proposed approach, we build up an SNN controller
that drives a snake-like robot for performing target tracking
tasks. We demonstrate the practicability and advantage of our
approach in terms of lateral tracking accuracy by comparing
it to other state-of-the-art learning algorithms for SNNs based
on R-STDP.

I. INTRODUCTION

Recent developments in neuroscience have highlighted
that spiking neural networks are much more plausible and
realistic for modeling the underlying mechanism of the brain.
For living creatures, biological neurons use impulses or
spikes to process information and communicate. Since these
spikes are typically sparse, it allows feasibly power-efficient
and fast-computing implementation of large SNNs [1], [2].
For instance, human brains can carry out visual pattern
analysis and classification in just 100 ms, in spite of the fact
that it involves a minimum of ten synaptic stages from the
retina to the temporal lobe [3]. Therefore, SNNs may offer
an efficient way not only to model the principles underlying
neural structures devoted to locomotion control in living
creatures, but more importantly to be used for controlling
mobile robots to perform tasks autonomously [4].

Since SNNs use non-differential spikes to communicate,
the well-known error back-propagation mechanism is no
longer applicable for training SNNs. For the same reason,
there has been a void of practical learning rules for mobile
robotic applications [5]. Some work constructed their SNNs
with manually adjusted weights by mimicing the different
function units in the brain [6], [7], [8]. However, these
methods have already been burdensome and inefficient for
lightweight network with few connections, let alone for
solving complex networks.

Recently, the functionality of STDP has revealed that the
synaptic connections are affected by the precise timing of
pre- and postsynaptic spikes. Meanwhile, STDP learning rule
has been used in robotic control [4]. Arena [9] presented an
SNN controller based on an unsupervised STDP learning

Authors’ Affiliation: 1 Department of Informatics, Technical University of
Munich, Germany. 2 Key Laboratory of Machine Intelligence and Advanced
Computing (Sun Yat-sen University), Ministry of Education, China; School
of Data and Computer Science, Sun Yat-sen University, China. 3 Institute for
Infocomm Research (I2R), A*STAR, Singapore. ∗ Corresponding author.

Email: {bing, jiangz, knoll}@in.tum.de, chenglong3@mail.sysu.edu.cn,
huangk36@mail.sysu.edu.cn, cai caixia@i2r.a-star.edu.sg

paradigm, which allowed the robot to learn how to navigate
in an unknown environment. Bouganis [10] used supervised
learning to train a single-layer network to control a robotic
arm with four degrees of freedom in 3D space. However,
STDP learning rule usually requires a supervisor or past ex-
perience, which is infeasible for mobile robotic applications
in undiscovered environments.

On the other hand, neuroscience studies show that the
brain modifies the outcome of STDP synapses using one or
more chemicals emitted by given neurons. This mechanism
inspires a new method for training SNNs and is known
as reward-modulated spike-timing-dependent plasticity (R-
STDP) [11], [12]. Since R-STDP can modulate an SNN with
external signals that even sparse or delayed, this method
is well suited for mobile robotic tasks. Mahadevuni [13]
solved an goal approaching task by training an SNN using R-
STDP. Shim [14] further proposed a multiplicative R-STDP
by multiplying the current weight to the normal R-STDP
and assigned the global award to all the synapses among
two separated hidden layers in an SNN.

Even there has been some initial attempts that investigate
robotic control applying SNNs based R-STDP, there still
exist many problems for widespread implementations. First
and foremost, there has been lacking of a unified learning
rule that can be easily applied to different tasks and as-
sign neuron modulations regardless the multi-layered SNN
structure. Second, the strategies of information encoding and
decoding for SNNs are still unclear. Since both typical sensor
data and motor command are time-based, information has to
be converted into spikes and interpreted from spikes as well.

To this end, our paper looks to propose an applicable
multi-layered SNN learning algorithm based on R-STDP
learning rule and implement it for end-to-end control in
robotics domain. Our main contributions are summarized as
follows: First, on the basis of standard R-STDP, we propose
a policy that propagates the reward back through all the
layers of an SNN and acts as an individual neural modulator.
Second, we offer a general workflow to implement an SNN
controller based on our proposed learning rule, together
with information encoding and decoding strategies. A target
tracking task for a snake-like robot is given as a case study.
Finally, our SNN-based controller is simulated in different
tracking scenarios to demonstrate its adaptability. The results
also reveals that compared to other SNN-based controllers
with different topologies, our method has advantages in terms
of tracking accuracy and stability.

II. TARGET TRACKING TASKS

In order to elaborate our SNN controller clearly, we take
target-tracking tasks as case studies for learning and testing

2019 International Conference on Robotics and Automation (ICRA)
Palais des congres de Montreal, Montreal, Canada, May 20-24, 2019

978-1-5386-6027-0/19/$31.00 ©2019 IEEE 9645

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 10:40:44 UTC from IEEE Xplore. Restrictions apply.

90.0°

Far-clipping
plane

near-clipping
plane

CameraHead moduleBody module

Ground floor

Top view

JointSide view

Fig. 1: Views of the first two modules of the snake-like robot.

with a snake-like robot.
The snake-like robot consists of eight joints and nine iden-

tical body modules equipped with passive wheels to facilitate
lateral undulation. An infrared vision sensor mounted at the
front of the head module is used to perceive the information
of the target. As we can see from Fig. 1, the perspective
angle of the camera is set as 90◦ and its detecting range is
between 0.1 m and 5 m. The shadow areas are cropped for
the reason of simplicity. Second, an easily detectable sphere
is used as the target that has a radius of 0.15 m and is placed
in front of the snake at the initial position. This target is set
with a higher temperature and all its surroundings are with
the same base temperature. Thus, it can be easily detected
by the infrared camera. The target trajectory for training is
pre-designed, which is calculated as a sinusoid curve as{

xtarget = t + x0
ytarget = s ·Atarget sin(π× t/τtarget)+ y0

(1)

, where xtarget ,ytarget are the coordinate positions of the
target and (x0,y0) is the initial coordinate. Atarget and τtarget
are constant parameters to modulate the trajectory curve. s
is a factor of +/− 1 that alternates the target’s direction
each time when the simulation resets, so that the robot is
confronted equally with the target going left or right with
respect to its vision sensor. In addition, we also design three
more challenging tracks for evaluating the SNN controller
as unknown scenes, which are a double-frequency sinusoid

Fig. 2: The pre-designed target trajectories. The first sine
track is used as training task. The other three tracks are used
as testing tasks.

Spike generators

Output

calculateRadius()

Input

Parrot neurons

r

LIF neurons

Spike detectors

LIF neuronsvHidden

Fig. 3: A graphical abstraction of the structure of the SNN
with an agnostic hidden layer.

curve as the training scene, a zigzag curve, and a ladder
curve (See Fig. 2). In all these tracks, there is a green dot
that indicates the starting position and a short straight line
for the beginning process. All the physical simulations are
performed in V-REP [15].

III. SNN CONTROLLER

In this section, a multi-layered SNN constructed with
R-STDP synapses is presented, together with its encod-
ing and decoding strategies. Our SNNs are construed with
NEST [16].

A. SNN Architecture

The architecture of the target tracking SNN controller is
shown in Fig. 3, which takes infrared image as the input
and generates steering commands for the snake-like robot as
the output. For the input, the infrared vision sensor data is
used to stimulate poisson neurons to generate spike trains.
The input layer is connected to a hidden layer with the same
size of the input neurons. These neurons in hidden layer are
then connected to two leaky-integrate-and-fire (LIF) output
neurons for steering the robot by calculating the turning
radius. All the connections are using R-STDP synapses in
an “all-to-all” fashion.

B. Information Encoding

The incoming heat map image from the infrared camera is
translated into the network’s input layer as spikes. In order to
ease the computation burden, the image data is given to the
input neurons as follows. The image with resolution 64 × 64
pixels is first reduced to 64 × 16 pixels by cropping the top
and bottom by 24 pixels each, since they contain no target
information. Then, it is further downsampled to 16×4 pixels
by integrating a patch of 4 × 4 pixels into one input neuron.
This yields a single network with 16×4 = 64 input neurons.
The mapping process is visualized in Fig. 4.

9646

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 10:40:44 UTC from IEEE Xplore. Restrictions apply.

64 pixel

64 pixel

24 pixel

24 pixel

Infrared image

4 1

Input state

Transformation

Fig. 4: Visual input encoding strategy. In the right image, a
black pixel means a normalized intensity sum of 0 whereas
a white pixel corresponds to the maximum intensity sum.

Every pixel has an intensity value in the range of [0,255]
according to their infrared radiation. This value per pixel
is then normalized, so that the sum of the intensities of 16
pixels varies between 0 and 16. Again, the resulting value is
normalized and then multiplied by the maximum firing rate
of 300 Hz. This value is then assigned to the corresponding
spike generator for as the mean firing rate.

C. Snake Steering and Information Decoding

For interpreting the neuron activities as motor commands,
the output spikes should be decoded to steer the slithering
locomotion of a snake-like robot.

Therefore, we first introduce the slithering locomotion
of a snake-like robot, which is inspired by the serpentine
curve [17], [18] and the joint angle φi is calculated as

φi = A · (1− e−λ t) · sin(ω t +(i−1) β)+C. (2)

A is the joint amplitude and C is its bias to steer the robot.
ω is the temporal frequency to propagate the wave through
the robot joints and β is the spatial frequency to domain
the wave cycles. 1−e−λ t , as a damping function, is used to
smooth the start-up process, where λ is used to adjust the
convergence rate. Since the gait modeling is not within the
scope of this paper, we just give the relationship between the
turning radius R and the bias C, which is only determined
by the mechanical properties and gait parameters.

R =
l0×∑

N
k=1 cos(A×∑

k
p=1 sin(ω× p))

C
(3)

, where N = 8 is the joints numbers and l0 is the body
module length.

To this point, we can steer the snake-like robot with
desired radius by just computing the bias C in (3), which will
be added or subtracted for steering the robot left or right. The
decoding strategy is inspired by [19], [20] and also adopt a
steering wheel model based on an agonist-antagonist muscle
system to compute the bias C. First, the output spike count
is scaled by the maximum possible output:

mle f t/right
t =

nle f t/right
t

nmax
∈ [0; 1], where nmax =

Tsim

Tre f rac
. (4)

Tsim denotes the simulation time step length and Tre f rac
describes the refractory period length of the LIF neuron.
Based on the difference of the normalized activities mle f t

t

and mright
t and a turn constant k, the amplitude bias C is

calculated as

C = k ·at , where at = mle f t
t −mright

t ∈ [−1; 1]. (5)

When the snake cannot see the target, the network will
receive no input and both outputs will be zero. In this case
the network is designed move to the previous turning angle
as it remembers, since the target get lost continuously in one
side of the vision. To address this issue, the bias for the
current step Ct is calculated as

Ct = τ ·C+(1− τ) ·Ct−1, (6)

with τ =

√
(mle f t

t)
2
+(mright

t)
2

2
. (7)

Thus far, we have a decoding method that translate the
discrete network’s spiking pattern into continuous motor
control signals to steer a snake-like robot.

IV. R-STDP LEARNING

In this section, the R-STDP learning rule is introduced
together with the approach for back-propagating the reward
for all the R-STDP synapses. Then, the training details based
on this learning rule are given as well.

A. Reward-modulated STDP

As the basis of R-STDP, the STDP learning rule models
the synaptic weight change in dependence on the time
difference between firing times of pre- and post-synaptic
neurons and is given as

∆t = tpost − tpre (8)

W (∆t) =

{
A+e−∆t/τ+ , if ∆t ≥ 0
−A−e∆t/τ− , if ∆t < 0

(9)

∆w = ∑
tpre

∑
tpost

W (∆t) (10)

, where w is the synaptic weight. ∆w is the change of the
synaptic weight. tpre and tpost stand for the timing of the
firing spike from pre-neuron and post-neuron. A+ and A−
represent positive constants scaling the strength of poten-
tiation and depression, respectively. τ+ and τ− are positive
time constants defining the width of the positive and negative
learning window.

In the R-STDP, the synaptic weight w is updated based
on the integration of STDP and a reward signal R. First, an
eligibility trace of the synapse is used to collect the changes
generated by STDP, thus it can work with a delayed reward
signal. The eligibility trace E can be defined as

Ė(t) =− E
τE

+W (∆t)δ (t− spre/post)E1, (11)

where the contribution of all spike pairings with the second
spike time at t− spre/post . spre/post means the time of a pre-
or postsynaptic spikes. E(t) decays exponentially with the
time constant τc. The decay rate controls the sensitivity of
plasticity to delayed reward. E1 is a constant coefficient to
modulate the decay rate. W is the synaptic change under
STDP mechanism defined in (9).

9647

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 10:40:44 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Reward back propagation
1: The SNN has X layers
2: The Xi layer has Yi neurons
3: r1 ← r in (14)
4: for i = 1 → (X−1) do
5: for j = 1 → Yi+1 do

6: ri+1, j =
∑

Yi
k=1(ri, j,k · wi, j,k)

max(wi+1, j,1, ... , wi+1, j,(Yi−1), wi+1, j,Yi) · Yi

7: end for
8: end for

Then, the R-STDP learning rule for updating weights is
defined as

ẇ ji(t) = r(t)×E ji(t), (12)

which indicates that the weight of a synapse is by the product
of eligibility trace and reward signal. w ji is the weight of a
synapse from neuron i to neuron j, E ji(t) is an eligibility
trace of this synapse which collects weight changes proposed
by STDP, and r(t) results from a neuromodulatory signal.

Since the reward is directly related to the actions of the
robot, we can regard this as an error from the environment
to the network. Once those output neurons receive the error,
they can back-propagate the error and change the synapse
under the effect of R-STDP. For the aforementioned SNN
architecture, the synapses connecting the output neurons are
directly given the reward r from the environment. However,
the reward for the synapses connecting the input and hidden
neurons are unknown. In this paper, we propose a method to
achieve the “backpropagation” by reversing the dopamine
modulation according to different synaptic weights. The
pseudo-code for this algorithm is shown in Algorithm 1. Let
us assume there is an SNN with X layer including one input
layer, one output layer, and X −2 hidden layer. The output
layer will be regarded as X1. For the ith layer, there are Yi
neurons. ri, j is the reward given to the jth neuron in the ith

layer. wi+1, j,k is the synapse connecting the jth neuron in the
(i+1)th layer and the kth neuron in the previous ith layer. The
reward given from the environment is regarded as r1 for each
output neuron. In order to calculate the reward given from
one neuron, we first sum up all the r ·w from those neurons
connecting it in the previous layer. Then we normalize it by
dividing the maximum synapse value and the neuron amount
of those connections. Thus far, we can finally propagate the
reward through any multi-layered SNN and an example will
be given afterwards.

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
Distance (m)

−1.0

−0.5

0.0

0.5

1.0

1.5

Re
wa

rd

Right Turn Neuron Left Turn Neuron

Fig. 5: Reward definition for target the tracking task.

0 10 20 30 40 50 60
Episode

0
500

1000
1500
2000
2500

Ti
m

e
St

ep
s

0 10000 20000 30000 40000
−0.0015
−0.0010
−0.0005

0.0000
0.0005
0.0010
0.0015

Do
pa

m
in

e
Re

wa
rd

0 10000 20000 30000 40000
−2000

−1000

0

1000

2000

W
ei

gh
t t

o
Le

ft
Ne

ur
on

0 10000 20000 30000 40000
Simulation Time [1 step = 50 ms]

−2000
−1000

0
1000
2000

W
ei

gh
t t

o
Ri

gh
t N

eu
ro

n

Fig. 6: Training details of the SNN controller are recorded
every 100 time steps.

Fig. 7: The target position in the visual field of the robot and
its deviation from the visual center.

B. Reward Definition

As the synapse plasticity is modeled as R-STDP, a value
for this reward-like variable needs to be calculated every
simulation step. This value should somehow reflect the good
or bad actions taken by the robot.

First, the image from the infrared sensor is processed by
only extracting its heat map. Second, the image moments
is calculated to compute the centroid of the target d in the
visual field, which ranges from [−1,1] and 0 indicates the
middle position in the visual field. Thus, the reward r is
defined according to the position d as,

d =
2 ·M10

M00 ·64
−1, d ∈ [−1,1]. (13)

r =
2

1+ e−d·γ −1, with γ = 8. (14)

M10 and M00 are the first-order and zero-order moments of
the image. γ is used to modulate the gradient of the reward

9648

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 10:40:44 UTC from IEEE Xplore. Restrictions apply.

−40 −30 −20 −10 0 10 20 30 40
X axis position (m)

0
5

10
15
20
25
30
35
40

Y
ax

is
po

sit
io

n
(m

) Traget Robot

(a) Double-frequency sine track. (b) Ladder shape track.

−40 −20 0 20 40
X axis position (m)

0

10

20

30

40

Y
ax

is
po

sit
io

n
(m

) Traget Robot

(c) Zigzag track.
Fig. 8: Three testing tracks. In each task, the target track is presented with blue solid line and the robot trajectory is marked
with red dash line.

Spike generators

Output

calculateRadius()

Input

Parrot neurons

r

LIF neurons

Spike detectors

Fig. 9: A graphical abstraction of the structure of the SNN
without a hidden layer.

curve. From Fig. 5, we can see that the reward r is zero
when it is located at the center of the visual field. Thus,
the reward modulation stops working and the two steering
neuron activities are balanced to each other to drive the
snake forward. The reward gets steep when it deviates to
the boundaries and turns to its maximum or minimum value
when it exceeds ±0.6. This can help the robot do its best
from loosing the target outside of the visual field.

According to Algorithm 1, the reward from the ith neuron
in the hidden layer to the input layer can be calculated as

ri =
r · (wle f t −wright)

max(wle f t ,wright) ·2
, (15)

where wle f t/right are the synapses connecting the left and
right output neurons.

C. Training Details
A simulation step is equivalent to 50 ms both for the

simulation of the SNN and the robot simulator itself. In
Fig. 6, the training progress of the R-STDP controller is
shown with its steps in each episode, reward, and synaptic
weights for left and right output neurons. Specifically, it first
shows the time steps in each episode until that the robot
loses the target for 20 consecutive time steps or reaches
the maximum steps 2500. Correspondingly, the dopamine

Spike generators

Output

calculateRadius()

Input

Parrot neurons

r

LIF neurons

Spike detectors

LIF neuronsvHidden

Fig. 10: A graphical abstraction of the structure of the SNN
with a separated hidden layer.

reward varies irregularly at the beginning and levels off
to zero over time steps. In the beginning of the training
procedure, the snake-like robot will just slither randomly,
since all connection weights for both steering neurons have
been randomly set in the range of 100− 1000. Therefore,
during the first 30 episodes, trials are mostly terminated when
the target makes its first turn and drifts out of the vision
field of the robot. Each time the robot loses its target, it will
induce high reward values to change the synaptic weights.
Consequently, the high reward over a longer period of time
causes a significant change in the connection values. Shortly
before step 28,000, the snake-like robot has learned to follow
the target at its first turn, but it still deviates from its optimize
course. At this point, we can clearly see the time step in each
episode is growing steadily. Afterwards, the controller has
successfully learned to follow the target regardless how the
target turns. Episodes are only terminated once the robot has
reached the maximum steps, therefore, the weights change
after step 40,000 are considerably smaller than before and
the reward tends to be zero, which is the most ideal situation.

Finally, we load the well trained synaptic weights to the
SNN and execute the controller on the training scenario. The
deviation of the target in the visual field is shown in Fig. 7.
Since the head module wiggles side to side due to its inherent

9649

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 10:40:44 UTC from IEEE Xplore. Restrictions apply.

sine zigzag ladder
Scenario

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Av
er

ag
e

er
ro

r
With no hidden layer
With separated hidden layer
with agnostic hidden layer

Fig. 11: Tracking accuracy comparison for SNN without
hidden layer, SNN with separated hidden layer, and our
proposed SNN with agnostic hidden layer.

motion pattern, there is a fluctuation of the distance curve.
The tracking accuracy is presented by the distance error in
the visual field, which is around 0.124 in this case.

V. DISCUSSION

In this section, the proposed SNN will be performed in
three target tracking testing scenarios to inspect the adapt-
ability of the controller. Furthermore, the SNN controller
will be compared with two existing SNNs with different
topologies in terms of tracking accuracy in testing scenarios.

A. Testing Scenarios for Target Tracking
To examine the adaptability and practicality of the pro-

posed controller, another three tracking trajectories are used
to run the SNN controller (See Fig. 2). Meanwhile, these
results are shown by plotting the trajectories of the target and
robot at the same time. For the first sine-wave trajectory, we
have double the frequency as the training scene to enhance
the tracking difficulty. From Fig. 8(a) we can see that the
robot follows the path of the target steadily, even it doubles
its frequency as the training sine track. For the second ladder
trajectory in Fig. 8(b), it is even more difficult compared to
the first one due to those sharp corners. We can find that the
robot follows it closely while sometimes cuts across short
path to keep going with the target. For the third triangular
trajectory in Fig. 8(c), the robot has difficulty in following the
target precisely due to its ordinary maneuverability. However,
it keeps cutting short path when the target makes a sharp turn,
yielding a sine curve matching the target triangular path.

B. SNN Topology
In order to present the superiority of the proposed algo-

rithm, the performance is further compared to two SNNs
with different typologies. As shown in Fig. 9, the first kind
SNN architecture has no hidden layers and simply connects
the input and output neurons with R-STDP synapses in an
all-to-all fashion. The second network has a hidden layer that
is separated as such that half of the hidden layer neurons are
connected only to the left and half only to the right output
neuron, as depicted in Fig. 10.

For the first SNN with no hidden layer, the reward r in (14)
is just assigned to all the synapses directly. For the second
SNN with separated layer, the reward is not only given to
the synapses connecting the output neurons, but also to the
synapsed connecting the neurons in the input and hidden

layer as well. However, for our proposed SNN, the reward
for the synapse between input and hidden layer is assigned
according to the rule in (15).

To evaluate the performance of these three SNN con-
trollers, we run them in the testing scenarios to measure their
performances in terms of the lateral localization tracking
accuracy. All these SNNs have the same training environment
and testing parameters to ensure fairness. Specifically, the
target position in the visual field of the robot is recorded to
depict the tracking accuracy and calculated as (13). If the
target is well tracked in the middle, the position value will
be zero. On the other hand, if the target shifts to the left or
right side, the position value will be recorded as +/−1.

Each experiment runs five times and the comparison
results are shown in Fig. 11. For performing the controllers in
the double-frequency sine trajectory scenario, our proposed
SNN with agnostic hidden layer gives not only the lowest
error 0.166, but also a small standard deviation 0.0037.
The SNN with separated hidden layer also shows better
performance than the SNN without hidden layer. The SNN
without hidden layer exhibits the largest error 0.208. Unfor-
tunately, the SNN without hidden layer does not manage the
zigzag or ladder trajectory scenarios totally. Therefore, it is
depicted with the cross marker 6. In the zigzag scenario,
the two SNNs with hidden layer performs similarly error
around 0.22, which is higher that the first scenario due to
its difficulty. But the one with agnostic hidden layer exhibits
higher deviation surprisingly. For the ladder scenario, only
the SNN with agnostic hidden layer is capable of finishing it
to reach the maximum steps with error 0.229. The separated
SNN can manage the task occasionally, therefore, it is also
marked as failure.

Generally among all these three SNNs, the one with
agnostic hidden layer shows the best performance in the
target tracking task with comparatively small deviation and
adaptability to unknown scenarios. Explanations for this can
be found in the topology of the SNN with agnostic hidden
layer that allow for higher robustness due to its all to all
synapses.

VI. CONCLUSION AND OUTLOOK

In this paper, we proposed a general approach to back
propagate rewards to synapses inside each layer of an SNN
on the basis of R-STDP. We took a snake-like robot as
an agent to carry out target tracking tasks as case studies.
First, our SNN controller is capable of learning the training
scenario and working out the unknown scenarios. Second,
by comparing to SNNs that simply assign reward to all the
synapses, our algorithm shows better performance in terms
of accuracy. For future work, the R-STDP learning rule
will be investigated by using deep network architectures and
implemented in real-life robot applications.

ACKNOWLEDGEMENT

The research leading to these results has received fund-
ing from the European Union Research and Innovation
Programme Horizon 2020 (H2020/2014-2020) under grant
agreement No. 720270 (Human Brain Project, HBP) and the
Chinese Scholarship Council.

9650

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 10:40:44 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] S. J. Thorpe and J. Gautrais, “Rapid visual processing using spike
asynchrony,” in Advances in neural information processing systems,
1997, pp. 901–907.

[2] M. Mattia and P. D. Giudice, “Efficient event-driven simulation of
large networks of spiking neurons and dynamical synapses,” Neural
Computation, vol. 12, no. 10, pp. 2305–2329, 2000.

[3] S. Thorpe, A. Delorme, and R. Van Rullen, “Spike-based strategies
for rapid processing,” Neural Networks, vol. 14, no. 6-7, pp. 715–725,
2001.

[4] Z. Bing, C. Meschede, F. Röhrbein, K. Huang, and
A. C. Knoll, “A survey of robotics control based
on learning-inspired spiking neural networks,” Frontiers in
Neurorobotics, vol. 12, p. 35, 2018. [Online]. Available:
https://www.frontiersin.org/article/10.3389/fnbot.2018.00035

[5] J. H. Lee, T. Delbruck, and M. Pfeiffer, “Training Deep Spiking
Neural Networks using Backpropagation,” vol. 10, no. November, pp.
1–10, 2016. [Online]. Available: http://arxiv.org/abs/1608.08782

[6] A. Cyr and M. Boukadoum, “Classical conditioning in different
temporal constraints: an stdp learning rule for robots controlled by
spiking neural networks,” Adaptive Behavior, vol. 20, no. 4, pp. 257–
272, 2012.

[7] C. Richter, S. Jentzsch, R. Hostettler, J. A. Garrido, E. Ros, A. Knoll,
F. Rohrbein, P. van der Smagt, and J. Conradt, “Musculoskeletal
robots: Scalability in neural control,” IEEE Robotics Automation
Magazine, vol. 23, no. 4, pp. 128–137, Dec 2016.

[8] M. B. Milde, H. Blum, A. Dietmller, D. Sumislawska, J. Conradt,
G. Indiveri, and Y. Sandamirskaya, “Obstacle avoidance and
target acquisition for robot navigation using a mixed signal
analog/digital neuromorphic processing system,” Frontiers in
Neurorobotics, vol. 11, p. 28, 2017. [Online]. Available:
https://www.frontiersin.org/article/10.3389/fnbot.2017.00028

[9] P. Arena, S. D. Fiore, L. Patan, M. Pollino, and C. Ventura, “Insect
inspired unsupervised learning for tactic and phobic behavior enhance-
ment in a hybrid robot,” in The 2010 International Joint Conference
on Neural Networks (IJCNN), July 2010, pp. 1–8.

[10] A. Bouganis and M. Shanahan, “Training a spiking neural network
to control a 4-dof robotic arm based on spike timing-dependent
plasticity,” in The 2010 International Joint Conference on Neural
Networks (IJCNN), July 2010, pp. 1–8.

[11] E. M. Izhikevich, “Solving the distal reward problem through
linkage of stdp and dopamine signaling,” Cerebral Cortex,
vol. 17, no. 10, pp. 2443–2452, 2007. [Online]. Available:
http://dx.doi.org/10.1093/cercor/bhl152

[12] R. V. Florian, “Reinforcement learning through modulation of spike-
timing-dependent synaptic plasticity,” Neural Computation, vol. 19,
no. 6, pp. 1468–1502, 2007.

[13] A. Mahadevuni and P. Li, “Navigating mobile robots to target in
near shortest time using reinforcement learning with spiking neural
networks,” in 2017 International Joint Conference on Neural Networks
(IJCNN), May 2017, pp. 2243–2250.

[14] M. S. Shim and P. Li, “Biologically inspired reinforcement learning
for mobile robot collision avoidance,” in 2017 International Joint
Conference on Neural Networks (IJCNN), May 2017, pp. 3098–3105.

[15] E. Rohmer, S. P. Singh, and M. Freese, “V-rep: A versatile and scalable
robot simulation framework,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2013. IEEE, 2013, pp.
1321–1326.

[16] M.-O. Gewaltig and M. Diesmann, “Nest (neural simulation tool),”
Scholarpedia, vol. 2, no. 4, p. 1430, 2007.

[17] S. Ma, “Analysis of snake movement forms for realization of snake-
like robots,” in Proceedings 1999 IEEE International Conference on
Robotics and Automation (Cat. No.99CH36288C), vol. 4, May 1999,
pp. 3007–3013 vol.4.

[18] Z. Bing, L. Cheng, G. Chen, F. Röhrbein, K. Huang, and A. Knoll,
“Towards autonomous locomotion: Cpg-based control of smooth 3d
slithering gait transition of a snake-like robot,” Bioinspiration &
biomimetics, vol. 12, no. 3, p. 035001, 2017.

[19] J. Kaiser, J. C. V. Tieck, C. Hubschneider, P. Wolf, M. Weber,
M. Hoff, A. Friedrich, K. Wojtasik, A. Roennau, R. Kohlhaas et al.,
“Towards a framework for end-to-end control of a simulated vehicle
with spiking neural networks,” in IEEE International Conference
on Simulation, Modeling, and Programming for Autonomous Robots
(SIMPAR),. IEEE, 2016, pp. 127–134.

[20] Z. Bing, C. Meschede, K. Huang, G. Chen, F. Rohrbein, M. Akl,
and A. Knoll, “End to end learning of spiking neural network based
on r-stdp for a lane keeping vehicle,” in 2018 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2018, pp.
1–8.

9651

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 10:40:44 UTC from IEEE Xplore. Restrictions apply.

