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Abstract

In construction site progress tracking, a point cloud of the construction site is compared to

the 3D BIM-model of the planned building. If a sufficiently large number of points can be

detected in the vicinity of a building component, this component is likely built. The schedule,

deposited in the BIM-model, is used to derive the overall progress of the construction site and

to detect delays. Problems occur when the quality of the point cloud makes the detection

of objects ambiguous. Occluded areas, sparse regions, or temporary objects aggravate the

comparison between the point cloud and the model. Object detection in point clouds would

improve this workflow significantly.

Pointwise classification is generally an unsolved problem. The low quality of the point clouds

in use, renders the application of classical feature descriptors impossible. Therefore, this

thesis investigates how pointwise classification can be applied to point clouds with the help

of deep learning. Different deep neuronal network architectures are explored. In order to

train the architecture of choice, a dataset is needed. Because there is no shape dataset for

construction site related objects, a generator is developed which can generate datasets based

on common mesh files.

The theory behind machine learning in general and neuronal networks in specific is explained.

Followed by the workflow to create a dataset and to train the neuronal network. Results and

suggestions for further investigations complete this work.



Zusammenfassung

In der automatischen Baufortschrittskontrolle wird ein BIM-basiertes 3D Modell mit einer

Punktwolke verglichen. Wenn sich genügend Punkte in der Nähe eines Bauteiles befinden,

kann man davon ausgehen, dass das tatsächlich fertig gestellt wurde. Mit dem im BIM-Modell

beinhalteten bauteilspezifischen Ablaufplan kann eine Aussage über den Baufortschritt getrof-

fen werden. Problematisch wird es, wenn die Punktwolke nicht eindeutig Aufschluss über

Teilbereiche der Baustelle gibt. Das kann bei Verdeckungen, lichten Stellen oder temporären

Objekten, wie Schalungen, vorkommen. Wenn Objekte auch unabhängig vom BIM-Modell

erkannt werden können, erhöht das die Genauigkeit der Fortschrittskontrolle signifikant.

Die generelle Klassifizierung von Punkten in einer Punktwolke ist zur Zeit eine ungelöste

Fragestellung. Hinzu kommt, dass die verwendeten Punktwolken für die Baufortschrittskon-

trolle keine gute Qualität aufweisen und deshalb klassische Methoden zur Klassifizierung

untauglich sind. Diese Arbeit befasst sich damit, wie punktweise Klassifizierung mittels

Deep Learning auf Punktwolken angewandt werden kann. Es werden unterschiedliche Ar-

chitekturen auf Tauglichkeit untersucht. Damit man ein Neuronales Netz trainieren kann

braucht man einen Datensatz. Das es wenige Datensätze für Punktwolken und gar keine für

Baustellen gibt, wird ein Datensatz künsltich generiert. Die Objekte in diesem Datensatz

basieren auf üblichen geometrischen Netzen.

Es wird die Theorie hinter maschinellem Lernen und im speziellen Neuronalen Netzten

beleuchtet und die Arbeitsweise des Datensatzgenerators erklärt. Ergebnisse und Vorschläge

für das weiter Vorgehen runden die Arbeit ab.
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Chapter 1

Introduction

Learning has always been a challenging task for computers. What is the difference between

storing data in a database and learning this data? It turns out that there are two main

differences. We encode information into physical quantities like bits and bytes, which have

well-defined positions inside a storage medium, e.g. a hard drive and a certain value. For the

storage, we use file descriptors, a query language like SQL, or cloud service like Dropbox to

retrieve the desired information. Because the structure of the stored data and its position are

well defined, retrieving it is an algorithmic problem. An SQL query will always return the

same data under the same initial conditions, the time this takes would depend on the amount

of data stored in the database. How come that our brains do not exhibit this kind of trait? It

can easily remember your high school teacher’s name, but fails when you think about what

your colleague wore yesterday. This property is called auto-associative. It can be compared

with an unstable system, which, if disturbed, seeks for the minimal energy state. The distur-

bance is your thought and the minimal energy state the answer for your high school teacher’s

name. But why does this not always succeed? Because we learned this piece of information -

namely the teacher’s name - but we have not learned the coworker’s wardrobe. But we could

because of we - as humans - have the ability to do so. How we do it exactly is still a question

of research and the example described above a massive oversimplification. Indeed, the study

of the human brain is one of the most interesting research topics nowadays. But, to be able

to make a machine learn something, there is no need to fully understand the brain at first.

As often in biology and engineering, humanity tries to replicate nature but finds a suitable

solution along the way. A plane flies because of the same underlying physical rules as well as

a bird does but with totally different strategies. As well as our brain works with Neurons, a

synthetically neuronal network does, too. But to be efficient we use graphics cards and no

brain tissue [55].
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Research means to pursue a solution for problems. Problems which are not immediately

important for people on a daily basis. With solutions, most people have not even heard

from. This thesis is a connection between deep learning and the task to track progress on

construction sites. Deep learning is an abstract field of study located in the computer science

department, whereas progress track has a fundamental relation to a concrete problem in

reality. This contrast makes this thesis so interesting.

1.1 Context

Industrial manufacturing demands automation. In order to automate manufacturing, the

manufactured products must be split into processes which require space, time, material,

working hours and most importantly the relation between all of them. The birth hour of

automation was Henry Ford inventing the assembly line [14]. Since then, the car has become

an overengineered symbol of our modern age. It is not surprising that cars became what

they are today. Technical machines where each assembly processes can be tracked, each

material knows its origin and even the smallest parts are optimized to near perfection. But

it makes sense to optimize cars in specific; they are identical to a high degree. Parts can

be shared among different types, and any kind of improvement for one model is generally

applicable to others. A whole ecosystem of car companies and their suppliers evolved, and

work together. This is only made possible through a high standardization in planning and

an almost vanishing margin for interpretation even in reality. Therefore, the lifecycle of a car

is well defined in contrast to the building industry.

Any kind of building is a unique piece of collaboration. It starts with the idea, planned by

the architect, approved by the civil engineer, build by the different construction companies,

managed by facility firms and used by people, to be finally torn down by a wrecking company.

This lifecycle is large for buildings and information is scattered among different parties, which

have no motivation to store this information longer than needed. Information, like construc-

tion plans, building processes, material quantities and many more are not preserved for later

use. And even if it would, there is little standard generally, and in particular no standard for

storing it in a digital way.

Building Information Modeling (BIM) tries to overcome this problem by defining an inter-

national standard for a building lifecycle. This standard is, of course, not paper-based. The

goal is to map as many information possible around a detailed and semantically described

4D representation of the building. In theory, there should be one place for information and a

well-defined way to retrieve it. Construction sites are a pivotal part in the life of a building,

and due to their nature, they are prone to create discrepancies between the plan and the real-

ity. Saying this, a lot of ad hoc decisions and interpretation is common on construction sites,

due to missing or not available information. Again, BIM tries to overcome these problems
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by defining a data format, called Industry Foundation Classes (IFC). This format is derived

from the STEP model used in the automobile industry. It defines a relation between entities

for a BIM model and describes the material, properties, and processes. This model forms the

basis where every contributing party is meant to update the model accordingly, but can also

retrieve current information out of it. Conflicts can, therefore, be resolved as early as possible

and with the most information at hand, and not when it is most urgent. This saves money for

all parties while granting the most freedom for design choices. Construction plans can be seen

as the language to exchange information among trades. In the beginning, these plans were

drawn by hand. This evolved to computer-aided design but got stuck in 2D without seman-

tical information. Even today, some plans are still created purely two dimensional. There is

no way to validate these kinds of plans in an efficient and computer-based way. Errors might

thus be discovered only on construction sites. BIM with IFC fosters a standard where all 2D

plans are derived from one 3D model of the building, which guarantees consistency. Besides

the spatial extent, this model carries detailed information for every building component of

the building. Therefore, even a 2D plan has additional and correct information of properties

it describes. It is an ambitious task to standardize the lifecycle of a building and to convince

every participant to comply with this standard. But it is also a huge effort for companies

to familiarize themselves with the spirit behind BIM. Especially, when they do not see the

bigger picture, but only more work for them. It is the task of research and politics to make

these advantages visible particularly in reality and not only in theory.

BIM has many facets and it would be out of scope to enumerate them all. Please see [3] for

an exhaustive introduction to BIM. Still, the motivation for this thesis stems from a common

problem during the construction process.

1.2 Motivation

Like in other disciplines and especially in construction, deadlines are present. They define

the timeline for the building process. Deadlines are also the basis for supplements either the

client or the construction company has to pay. Documentation of the construction process is

a monotonic yet time-consuming task, which is also prone to errors made by humans. From

experience, we know that even today this documentation is primarily paper-based.

For example, the total amount of wastewater connector is sought over several plans, because

the construction company claims that in the tendering less of them are listed. The company is

responsible to build according to the construction plan, but can only charge up the number of

connectors stated in the tendering. The solution is to count all the occurrences of connectors

on all plans by hand, which is a tedious job.

If this construction site was managed according to BIM standards, the tendering would have

derived the correct amount of connectors from the 4D mode and every plan would be derived

from the model, too. Therefore, the frequency of such questions would be minimal and a
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short query to the model would yield the correct answer. This is the inevitable advantage of

BIM driven planning and execution.

The Architectural Engineering and Construction (AEC) industry relies upon an accurate

planning phase, but also needs feedback during construction. An own research branch has

developed, dedicated to the question of how progress on active construction sites can be

received. Embedded in the context of BIM, a comparison between the actual and the planned

progress is drawn, based on a point cloud of the construction site at a specific moment. The

point cloud can be obtained by a variety of remote sensing techniques or photogrammetric

methods, which create a point cloud of the construction site.

Constructed parts of the building like walls, windows or ceilings, are represented in the BIM

model together with their instantiation time and duration. This temporal relation is derived

from a work schedule. If the construction goes according to the plan, the BIM would repre-

sent the reality accurately. The work from Braun et al. [5][6], harnesses detailed information

about construction progress by comparing point cloud snapshots of the construction site with

3D geometry of the BIM. The point clouds are generated from airborne UAVs (e.g. drones)

through photogrammetric methods, see [54]. They are aligned with the 3D model of the con-

structed building through an Iterative-Closest-Point algorithm (ICP). When the point cloud

is well aligned over the 3D model, existing building components have a significant amount

of points in their vicinity. Based on the work schedule, the components are compared to the

construction state as ”as planned” vs. ”as built”. This comparison gives information if a cer-

tain building component is constructed in time or delayed. In order to accurately reflect the

construction state, the quality of the point cloud is of vital importance. The quality is gener-

ally not guaranteed due to occlusion of important building components and clutter or objects

only temporarily on site. Further research from Braun et al. is aiming at a better perception

of the construction site as a whole, see [8]. The detected building components are projected

back into the images used to generate the initial point cloud from. In [26], a Convolutional

Neuronal Network (CNN) is used to detected formwork, which is normally not modeled in a

BIM, but occludes walls in construction process. For more details the reader is referred to [7].

1.2.1 Thesis

The main ideas revolve around the comparison between a BIM and the real-world point

cloud representation. Obviously, a BIM cannot represent all objects present at an ongoing

site. But objects not represented in the model cannot be captured. Thus, their appearance

on a construction site cannot be transformed into knowledge. In the worse case, they lower

the quality of the point cloud. Therefore, this thesis investigates a way to support the

aforementioned ideas and derive additional information out of point clouds through a Deep

Neuronal Network (DNN).
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PointNet [46], a DNN, specifically designed for acting upon point clouds, is used to detect

common objects on site. Because of the lack of appropriate training data, a generator is

developed. The generator generates random point clouds by arranging mesh objects, like

container, houses, excavators etc. in a specified area called a scene. An algorithm samples

points from the surface of the mesh objects and then preprocesses them, in order to make

them trainable by PointNet. Detected objects from PointNet, in turn, can help to better

derive the progress state of the construction site.

1.3 Related Work

This topic is split into two parts as we discuss related work in the context of progress track

on construction sites and general point cloud perception through pointwise classification.

1.3.1 Construction Progress Monitoring

Han et al. recently started an effort to collect a Construction Material Library(CML) suited to

train CNNs on materials common on construction sites [20]. They use integrated information

models(IIM), which again are overlays of an as-built point cloud of the construction site and

the BIM. They generate the point cloud via photogrammetry and can, therefore, calculate the

position of the camera which took the pictures. Based on IIMs they developed a crowdsourced

BIM-guided web platform to enhance their CML. The platform processes the point cloud and

aligns it with the BIM, afterwards it provides an adapted labeling tool based on LabelMe [49]

for construction site annotations. This allows to incorporate material information from the

BIM into the labeling process. At last, the annotated images are quality controlled.

Using the crowdsourcing approach to label images for classification is a common procedure. It

becomes difficult to produce quality labels when the workforce is not familiar with the objects

or materials they are confronted with. Using the Amazon crowdsource platform MTurk, this

might be a valid concern. Han et al. expect their tool to circumvent these difficulties by

providing strong guidance and good quality control.

In 3D reconstruction, the spatial data is not easily obtained. The techniques range from

laser-scanners, 3D range cameras or stereo-photography. It either lacks accuracy, involves

manual work or is expensive. An ever appearing problem with image-derived point clouds is

their absolute scale. Therefore, the point clouds must be scaled manually on basis of a known

length in the point cloud or their generating images. Brilakis et al. tackle the problem of

point cloud scale with a novel algorithm by placing reference objects of certain measures on

site [47]. The algorithm detects these objects like cubes or sheets of paper and derives the

scale from them. These point clouds can then be used to generate better IIMs.

Furthermore, Brilakis et al. developed a framework which enables the user to progressively
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monitor a construction site on basis of inexpensive stereo cameras [57]. His novel algorithm

enhances the capturing of point clouds.

Bosché et al. [4] obtain the construction progress through laser scan derived point clouds. He

proposes a system which co-registers the point cloud with the BIM using ICP. A virtual lasers

scan simulation is then carried out on the BIM. The virtual laser scanner is positioned at

the same position as the initial lasers scanner in reality. The simulated points are compared

to the point cloud and based on the overlap, the progress can be derived.

1.3.2 Point Cloud Classification

Scaffolds occlude important parts of the building during construction. Therefore, photogram-

metry fails to capture the underlying facade well enough if at all. Yet, experts can derive the

current state of the construction from the existence and arrangement of scaffolds. The recent

work from Xu et al. [62] deals with detection of scaffolds on construction sites.

In the first step they ”crop” the scaffold out of a point cloud. For the second step, they

invented a feature descriptor for point clouds, called LSSHOT, which is based on Principal

Component Analysis (PCA). PCA is a method to derive the main direction of variance for a

dataset by analyzing the eigenvalues of its covariance matrix. With points in R3, this allows

them to state in which direction the points in a specified support region extend the most. This

information and the robustness of their descriptor, allows deriving the different building parts

of scaffolds from low-quality point clouds. Their LSSHOT descriptor was tailored for scaf-

folds. Additionally, a random forest classifier was trained in a supervised manner to classify

the descriptors’ output. This technique seems powerful but is limited to scaffold detection.

Additional effort is required to transfer it to different classification tasks on construction sites

where the object’s features might not be as well captured as for scaffolds.

CNNs - as we will discuss in 3.1.5 - have proved their robustness in many real-life applica-

tions. These networks consume sequential data like sound and images. Point clouds, in turn,

have no inherent order. This leads to the problem that a CNN cannot be trained on point

clouds right away. In computer vision and in simulations, voxels constitute the counterpart

to pixels and structure 3D space. Voxels can become memory intensive quite fast because

to capture low level features a high resolution is needed. Unfortunately, in 3D space, the

memory consumption rises by the power of three. In [61] a CNN is trained on a voxel rep-

resentation of 3D space. Because of the lack of training data they also used the generator

approach. Out of ModelNet10 data, they modeled realistic scenes and applied an efficient

tree-based 3D volumetric object representation to it. A CNN is trained on this data. With

performance in mind, this approach was fast enough to be deployed on drones for real-time

classification.

This approach seems quite interesting, but the implementation is just constrained to classi-
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fication of objects in one scene. But not classification of each pixel. Still, their performance

is intriguing.



8

Chapter 2

Learning

Nowadays, Machine-Learning (ML) is a buzzword. It evokes a fascination on people, probably

because learning is a property only associated with life. The recent rise of DNN and their

capabilities have brought ML into public knowledge while their underlying basics are normally

left out in discussions. Chapter 3 provides a comprehensive introduction to Neuronal Network

(NN) while this chapter focuses on the fundamental concepts of ML, which apply to NN as

well.

Before we jump into the details, we provide an introduction to the topic by investigating the

problem space mathematically but also from the intuition.

2.1 The Curse of dimensionality, but Manifolds

Let’s imagine a problem from solid mechanics in 3D space. Every point, describing the solid,

has three coordinates. The solid is divided into 1000 elements along each axis, thus makes a

total of 1,000,000,000 elements. Each coordinate value is a one-byte floating point number.

We would need 3 TB alone to store the points.

Solving the equation system naively would require a stiffness matrix of 1018 bytes or 1 exabyte.

Admittedly, 1, 0003 is not a large problem at all. What would happen now, when we add

another dimension to the space the problem lives in1? The number of values per points would

increase to 4 and we would need 1, 0004 elements. Which leads to 1,000,000,000,000 elements

and 4,000 TB to store the points alone. These numbers are just not tradable for us at the

moment. The number of memory needed to store such problems grows exponentially with

each dimension we add. This is one occurrence of ”The Curse of Dimensionality” [17].

1This might seem designed, but there is an ongoing effort to incorporate time into finite element formula-
tion, which would be a 4D-problem. This is called space-time finite elements [11].
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In ML, the space we analyze is way bigger than the problem described above. Luckily, we

are searching for familiar patterns in this space and do not need to store it.

Intuitively, for image recognition, there must be high-density regions in the wide space of

feature configurations, where features, we are interested in, cluster. Or, to put it differently,

we would encounter familiar images by uniformly sampling each pixel in an image, when

familiar patterns would be distributed randomly.

Figure 2.1: random points in search space

The images displayed above are randomly picked ”points” in the design space of all images

with 256-bit color and a resolution of 180 × 140. We can view an image as a point where

each pixel values is stretched out in one dimension. Therefore, our noisy images belong to

the design space of dimensions 1× 25, 200. They obviously do not represent any recognizable

object. But this space does contain points which have meaning to us and there is a non-zero

chance of picking one randomly. In comparison to our solid mechanical problem from 2.1,

a space with 25,200 dimensions would be ridiculous. We can illustrate this with a small

example.

Given the above images with 25,200 dimensions. We constrain each pixel’s value to the range

[0, . . . , 255] and sample the pixels uniformly at random. The amount of possible unique

images we could create is 25625200 ≈ 1060680. This number is incomprehensibly large2.

Manifold theory says that we can capture regions in high dimensional space by constructing

manifolds [17]. These are lower dimensional connected regions in a higher dimensional space.

In three dimensions a plane or a sphere is a manifold. In dimensions higher than 4, humans

struggle to visualize such entities.

We can imagine a ML algorithm to describe manifolds in the design space. Similar to the

explicit equation of a plane 2.1.

P (x, y; a, b, c, d) =
−ax− by − d

c
= z (2.1)

The input vector is limited to the (x, y) plane and (a, b, c, d) are the parameters which control

the shape. This enables us to transition from one point to another, just by moving along

the manifold (plane). As long as the manifold captures the desired data sufficiently accurate,

moving on the manifold guarantees that the generated outcome is not arbitrary.

When we talk about (mathematical) spaces, inherently, the question of distance arises. How

2There are 1080 atoms in the observable universe
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far are the images respectively the points apart from each other? We could use the L1 or L2
3

distance for example pictures. In [29], the authors used the image of a woman and distort

them in different ways. It is shown that these distances completely fail to generalize and

assign high distances to the images, although for us they occur as the same woman. This is

not too surprising as these measures work on the lowest level possible.

Figure 2.2: Trees: Every Picture referrers the idea of a tree
(all images taken form www.pixabay.com)

Figure 2.2 shows examples on the manifold ”tree”. Undoubtedly, these images refer to trees

but they look completely different.

Our brains are outstanding classifiers and far more complex than any NN nowadays. But at

the core the brain’s nerve cells also form a neuronal network with ”parameters”.

Our brains have their own parameters each, still we would agree that the images in 2.2 show

trees. Additionally, there are more elements in certain scenes, elements like a mountain or

other trees but we would still agree that a tree is in focus. This is the manifold ”tree”

intersecting with other manifolds of kind ”forest” or ”mountain”.

We can, therefore, conclude that our brains created a manifold where the input points (image)

are mapped to the idea of a ”tree”. Manifolds generate structure and, therefore, reduce the

dimensionality of the design space. This is a rather loose interpretation of manifold theory

and certainly not sound, but it helps our intuition of what ML algorithms try to accomplish.

For details in manifold theory, see [56].

2.2 Machine Learning

The main idea behind ML algorithms is to convert an input to an output as a function does.

The main difference is that we don’t define the logic behind this function, but rather let the

function figure out the logic by its own. It does so through a process called training where it

processes examples. This is called data-driven approach [17].

The function is a mathematical model with tunable parameters for which the data is pro-

vided. During training, an optimization algorithm, see 2.7, tries to find suitable values for

these parameters to solve a given task. Tasks define the way, machine learning algorithms

process an example. An example is represented as a vector in Rn where every entry is called a

3These are just the summed differences of the two image points represented as [1×n] dimensional vectors.
L2 is the Euclidean distance.

www.pixabay.com)
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feature. These are values which represent the data in an example. Image pixels are a common

appearance for features.

The ongoing research has brought a great variety of different techniques for problems effi-

ciently solvable with ML. We need to formalize learning in order to be able to apply it to

machines.

”A computer program is said to learn from experience E with respect to some

class of task T and performance measure P, if its performance at tasks in T, as

measured by P, improves with experience E.” - Mitchell [39, 17]

This statement is mostly selfcontained and the details will be explained in the following

chapters. We can further specify the terms task, performance and experience by defining

building blocks for ML algorithms [17].

quality dataset objective function

optimization procedure model

Experience for a ML algorithm is provided through a dataset. Even large datasets are only

a minimal example of the vast size of the design space they are sampled from, as we saw in

section 2.1.

Therefore, it is important to put a strong emphasis on quality of the data provided to ma-

chine learning algorithms. We will have a closer look on datasets in section 2.5.

The task, what the model is meant to archive, defines the model’s architecture.

In ML the objective function compares the output from a model to a provided label. It is

called loss or cost function, see 3.1.

Generally, in optimization problems, we try to minimize an objective function with respect to

its variables θ. The optimization procedure is the way we try to minimize the cost function

with respect to (wrt.) the model parameters.

Two fundamentally different approaches exist in optimization. A gradient-based approach

and a heuristical approach. Gradient-based approaches require the cost function to be differ-

entiable wrt. the parameters of interest.

The heuristical approach does not need a differentiable cost function. It can be summarized

by making educated guesses where the minimum in the design space is located. These guesses

are, of course, backed by sound mathematical theories. Evolutionary and genetical algorithms

are well-known types of this kind.

Gradient-based algorithms have proved their superiority throughout the last years because

of the reincarnation of backpropagation as an efficient way to compute derivatives [17].

The different building blocks can be combined rather flexible, but that they work well together

is not given. To combine the right blocks or invent new types is a question of research.
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2.2.1 Supervised Learning Algorithms

Supervised techniques require labeled data. Therefore, a dataset must provide a correct ”pre-

diction” for each input it contains. The algorithm’s task is to find the minimizing parameters

for a model on the training set by processing the input and the label. But these parameters

must also minimize the cost on examples which the net has not seen during training. If it

does so, we say the net generalizes well instead of learning the training set by hard.

Gathering enough data for training a model, is an expense that should not be underestimated.

If a problem requires supervised learning techniques in the first place, it is most likely that

there exist no other algorithms efficiently solving it. This lead to a circular dependency,

which is broken by humans annotating huge amount of data [16]. See For example bench-

mark dataset like [35], [10], [32] and section 2.5 where different datasets are investigated in

more detail.

Classical supervised tasks are regression tasks (2.3) or classification tasks as our pointwise

classification of point clouds. Image classification and segmentation falls under this category

as well.

2.2.2 Unsupervised Learning Algorithms

Unsupervised learning algorithms do not need labeled data. Their label is either their input

or the input altered by a function.

Autoencoders are famous representatives of this type. By applying convolutions (3.1.5) and

max pool (3.1.6) layers stepwise, they break down the features of their input into a relatively

small feature vector where a similar net in reverse order tries to upsample the feature vector

to its initial input. This can be interpreted as a very general compression algorithm.

Other techniques are applied to data where a correlation between sample points is presumed.

An example is Principal Component Analysis, where a reduction in the dimensionality along

the most and the less variance is sought [29].

Unsupervised learning is an exciting topic as it does not require labels, but it is also less

applicable to task where external information is needed.

2.3 Linear Regression or ”Hello-World”

In order to build our intuition for ML algorithms, we start with the ”Hello-World” example

linear regression. First of all, we need the data of interest, which is displayed in figure 2.3.

We can clearly see a linear correlation between the x and y values. Next, we define the linear

model for the general case for an arbitrary number of dimensions. We adopt the common

convention for variables. Normal letters indicate scalars a, bold letters vectors a, and capital

bold letters matrices A.
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Figure 2.3: dataset with linear correlation

ŷ = wᵀx+ b (2.2)

The weights w and the input x form a scalar product where we can think of a weight

influencing each input. A high value wi increases the influence of xi on ŷ, whereas a low

value of wi indicates that this particular input does not matter much for the prediction.

The updated equation 2.2 is just one dimensional and thus represents a line. The weight

vector w and the sample vector x are reduce to a scalar.

Now, we need to connect the training data and the parameter w of the model. This is done

through the loss function.

We use the Mean Square Error (MSE) [17], [59] and denote the predictions from our model

as ŷ.

MSE =
1

m
‖ŷ − y‖2L2 (2.3)

We now take the gradient wrt. the weight w and set it to zero,

∇wMSE =
1

m
∇w ‖xw − y‖2L2 (2.4)

⇒ ∇w

(
w2xTx− 2wxTy + yTy

)
= 0 (2.5)

⇒ w =
(
xTx

)−1
xTy (2.6)

Please note that x now refers to all scalar sample points and not to a sample vector of

more than one entry. This formulation resembles the normal equation for the general linear

regression problem. Because we use a scalar weight, example, and label, we can define the

normal equations in terms of vectors instead of matrices. A complete derivation of the normal

equations 3.35 can be found in [17].

w =
(
XTX

)−1
XTy (2.7)
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We derived a closed formula for the weights. This is only possible in the linear case as closed

forms are usually unobtainable. Nevertheless, this formula contains pitfalls.

At first, we invert a matrix, which is generally a bad idea. Second, the matrix is generated

from X and its transpose, which squares the condition number of the matrix we try to invert.

This is even worse. The simplest solution to this problem is converting the expression 3.35 to

an equation system and tackle it with the whole arsenal of linear equation solvers, iterative

or direct [38]. (
XTX

)
w = XTy (2.8)

We learn that even one of the simplest machine learning algorithm contains pitfalls. Our task

was to predict a value y given a value x.

Our performance measure or cost function was the MSE, which we can intuitively interpret

as minimizing the Euclidean distance between the labels y and the label ŷ.

In this simple case the labels are the dataset.

The optimization procedure was the one-time derivation of the normal equations and its

subsequent solving with a variety of different possible methods.

2.4 Task

A task defines the way a ML should process a given example. An example’s data is called a

feature. Structured examples form datasets.

Pixels in image processing tasks are a typical example of features. In case of NNs, features

are not limited to examples. Layers can also output features or feature maps, which do not

necessarily have an intuitive interpretation.

Figure 2.4: Features in AlexNet
from http://cs231n.github.io/understanding-cnn/

The images in 2.4 show a subset of

the features in the first convolutional

layer from the famous AlexNet. The

net learns high-frequency gray-scale

features, which are grouped in the

top, and low-frequency color features

grouped below [29].

Important to note is that the process of learning is not the task. The algorithm improves its

performance on the task by learning [17]. The following is a non-exhaustive list of common

tasks encountered in ML.
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Classification is a task, where an input is mapped to one class i out of a set of k classes,

f : Rn → {1, . . . , k}. For instance, in image classification, an image is mapped to one

pivotal point shown in the image. This could be an image of a dog mapped to the number

1 from the set of numbers {1,2,3,4}, where each number corresponds to the actual animal

{”dog”,”cat”,”bird”,”fox”}. We often refer to classification output from a model as ”hot-one”

encoded. This means the output is a vector in Rn where the detected class ki is one and all

other entries are zero [17].

Structured output in general, enforces meaningful relationship among elements of the

output vector of a NN. For example, the xy-coordinate of an element in an image, returning

a hierarchical tree-structure of a sentence or most prominent image segmentation. Image

segmentation can be seen as an extension of classification in a way, that every input pixel is

mapped to a class.

Regression is a technique to estimate the relationship among variables. The net learns a

compressed, yet not exact, representation of the dataset. This representation can predict a

numeric value based on the input. It is similar to classification f : Rn → R, except the format

of the output.

A more fine-grained list of tasks can be found in [17].

2.5 Experience is Data

For ML algorithms datasets are the source of experience. We can divide learning algorithms

into two categories, unsupervised learning algorithms and supervised learning algorithms.

Reinforcement Learning is also mentioned here for completeness but not investigated further

as its experience comes from a feedback loop not from a dataset. See [28] for an introduc-

tion.

Datasets bare an underestimated effort to obtain, yet their quality is highly important in

ML. The trained model’s assumptions are only based on the training data. If the model

is trained on ambiguous data, it has no chance to perform satisfyingly on real-world data.

There is generally no simpler way to generate annotate real-world data than to do it by hand.

Otherwise, there would not be the necessity for ML in the first place.

Research groups provide datasets for learning tasks they work on and for others to indepen-

dently verify their findings.
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2.5.1 Dataset Selection

The MNIST database of handwritten digits [35] contains 70,000 images (28x28) divided into

60,000 training and 10,000 test images. It is a subset of the larger NIST dataset [31]. Each

handwritten digit is associated with its real digit. The images are gray-scale, small in size

and the label describes the image completely, which makes it ideal for introduction to deep

learning.

Figure 2.5: left: random sample from MNIST,
right: degenerated data

Many different techniques have been applied to the MNIST dataset e.g, NN, CNN, support

vector machines and k-nearest neighbors. The mean error rate on MNIST for classification

from the top ten performing architectures is 0.28% [2]. This means that not even three

digits out of 1,000 are misclassified. This is even more impressive when compared with the

degenerated examples from figure 2.5.

The CIFAR-10 dataset consists of 60,000 colored 32x32 images, 50,000 for training and

10,000 for testing. It comprises ten classes like car, deer, truck or dog, which describes

the pivotal part of the image. CIFAR-100 extends the labels to 100 where each image is

additionally classified by one superclass. For example, ”fruit and vegetables” is the superclass

containing ”apples”, ”mushrooms”, ”oranges”, ”pears”, ”sweet peppers”. The mean accuracy

for the top performing architectures is 94.94 [2]

Figure 2.6: random sample from CIFAR dataset
https://www.cs.toronto.edu/∼kriz/cifar.html

https://www.cs.toronto.edu/~kriz/cifar.html
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ImageNet is an ongoing research project which tries to organize images in a tree of

synsets [23]. A synset groups similar pictures together and names their content. Each synset

can have zero or many subsets, which describe the images in more detail. The deeper we

traverse the hierarchy the more specific the image description becomes. An image contained

in a leaf node inherits all the categories from its parents thus forms a transitive relation.

ImageNet is inspired by WordNet which organizes English words in a hierarchical manner.

Figure 2.7 shows an example for the word star.

Figure 2.7: ImageNet synsets for star

The topmost example is from the

synset ”star”, at level 5 in the tree.

The description reads: ”Any celestial

body visible (as a point of light) from

the Earth at night”. Its supersets are:

Root → natural objects → celestial

body, heavenly body → star.

The second row images are from an-

other synset called ”star” at depth 5,

but it is reached differently. Root →
Misc → plane figure, 2-dimensional

figure→ star. And described like: ”A

plane figure with 5 or more points; of-

ten used as an emblem”.

There are 40 synsets associated with the word star in the same manner described above

e.g.”rock stars”, ”track stars” or the ”starfish”. Most synsets refer to plants with the word

star in their names. Considering that there are more than 14,000,000 images and 21000

synsets indexed in ImageNet, we get an impression of how much effort is put into generating

quality datasets.

2.6 Performance

We divide the term performance into two parts. On the one side the objective function and

on the other a measurable quantity.

2.6.1 The Loss

In 2.3 we encountered our first loss function, namely the Mean Square Error. In the deep

learning community, the term loss and cost function are used interchangeably.

An attempt to differentiate them both is, that the loss (function) refers to the value we
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get after processing one example or minibatch from the dataset. The cost (function) is the

accumulated loss for the whole training set. The term objective function stems from the

optimization community and is not used very often in the context of deep learning (dl).

Throughout this thesis, we use cost and loss interchangeably, but stick to this definition

when appropriate.

One huge drawback is that the loss function does not carry explicit meaning. Is a loss of 42

good in our context or not? This is hard to interpret. Further, in classification, we infer our

model with test data and obtain a probability distribution over all classes. This is simply

too much information. What we want to know is if the model predicted the example’s class

correctly.

We can conclude that the loss function is the mathematical connection between the prediction

of the ML algorithm and the corresponding label. Because its differentiable wrt. the model’s

parameters, it allows calculating the gradient of them. In 2.7 we will learn a method, which

uses the gradient to drive the parameters in the right direction so that the loss becomes small.

The specific way how the gradient is obtained is discussed in 3.3.

2.6.2 Measure

Performance measure indicates how good a ML algorithm performs on a task in a human-

interpretable way. It mainly depends on the task which measure is applicable. We can

imagine a performance measure as the distilled information from the output of a machine

learning algorithm (mla).

For classification tasks, the measure is accuracy, which is the ratio between all examples and

the correctly classified examples. The error rate is defined as error rate = 1− accuracy. For

image segmentation tasks, this is straight forward, as this is a pixelwise comparison.

For tasks where a machine learning algorithm is meant to predict a bounding box normally

the Intersection over Union (IoU) is used. This is the union area of the ground truth and the

predicted bounding box. So a IoU of 1 is best, whereas 0 is worst. [17].

A careful analysis has to be done before designing a performance measure because it is not

always clear what exactly depends on it.

In the context of point clouds, this seems straight forward: Accuracy, by pointwise compari-

son. This is also the way it is implemented in code. A further idea was to define a threshold

for correct classified points per object and measure how many objects the network would

detect correctly. This measure is weaker compared to the pointwise comparison but would

give better insight into real-life applications 4.4.
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2.7 Gradient Descent

Let’s revisit our model from the ”Hello-Word” example in section 2.3. The solution provided

worked quite well. With the huge variety of linear solvers bigger and more complex dataset

should not be a problem to train. But one crucial assumption still limits us to come up with

a general machine learning algorithm: Linearity.

What if our model introduces non-linearities? There is no way to state the normal equations

anymore, and therefore we have to use a different technique called Gradient descent [17], [38].

Gradient descent is an iterative method for minimizing an objective function. In its simplest

form it can be written in the following manner:

θi+1 = θi − η∇θf(θ) (2.9)

In other words, we are looking for a parameter set θ∗ which minimizes the objective function

f(θ). We start with a random guess of our parameters θ0 and follow the negative gradient

”downhill”. In reality, θ0 is chosen in a smart way to help the gradient find step areas on the

manifold. This hill-climbing analogy does, of course, only hold in three dimensions whereas

ML problems can have millions of dimensions.

The η in front of the gradient expression in equation 2.12 is the so called learning rate. It is

our first hyperparameter. In the hill-climbing analogy, it is the step size we take, as we move

downhill. The implication is that large steps might miss the minimum while tiny ones take

too long to finally arrive. It is our task to find a balancing learning rate. Plenty of effort

needs to be carried out to answer the question of the optimal learning rate under certain

circumstances, but in the end it depends on the specific setup [17], [42], [9]. Some advanced

methods try to adept it on the fly [30].

We could also tackle our normal equations with gradient descent and if our weight matrix

happens to be positive definite then gradient descent is guaranteed to converge, too [38].

But this assumption does not hold any longer for NNs, as the non-linearities in the activa-

tions convert the initial problem to a non-convex optimization problem. Giving up the field

of convex optimizations with all its beneficial properties is a risky step. There is no guarantee

anymore that we will find a global minimum of our objective function because suddenly there

are local minima and saddle points all over the optimization space.

Nevertheless, research has shown that the benefits overcome the disadvantages, as NNs have

no problem to describe non-linear relations in the dataset which is their most important ad-

vantage.

We stated the general method of how we solve for an optimizing vector θ∗, but this does not

answer the question of how we obtain the gradient. Even worse for NNs, because their gra-

dients have the same dimension as the number of trainable parameters. Section 3.3 explains

the procedure of how we can compute the gradient for NNs in an efficient way and enable us

to use gradient-based optimization for NNs.
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2.7.1 Stochasitc Gradient Descent

A great variety of different gradient descent flavors exist4. In case of ML, Stochastic Gradient

Decent (SGD) is the most important one. We will discuss it in the context of NNs, but it

should be noted that it is not limited to it.

Equation 2.14 states a general loss function. The loss calculated from the loss function always

refers to the whole training set (note the sum from 1 to m, which is the number of examples

in the training set) [17].

C(θ) =
1

m

m∑
i=1

L(xi, yi,θ) (2.10)

The gradient would just be ∇θL, summed over all examples m and normalized by 1
m . There-

fore, the gradient must be computed for all training examples at once to obtain one step in

the right direction.

Section 2.5 showed that current datasets contain examples up to hundred thousands, which

is prohibitively large to calculate the gradient for. This gradient would be the most exact

representation of the gradient at the position θi wrt. the whole dataset.

Fortunately, SGD allows us to approximate the gradient. We just sample a subset from the

training set called a minibatch. With the minibatch, we incidentally introduced another hy-

perparameter which influences our training results. Only the examples from the minibatch

are used in SGD to calculate the gradient. The resulting gradient is only an approximation

for the real gradient on the whole training set at position θi but still good enough. We obtain

g(θ) =
1

m′
∇θ

m′∑
i=1

L(xi, yi,θ), (2.11)

for the gradient [17]. Notice that m′ is only the size of the minibatch. Using this method

decouples the gradient calculation from the total number of training examples. Our initial

equation for gradient descent changes now to

θi+1 = θi − ηg (2.12)

Calculating the gradient is a constant matrix-vector multiplication and storage. The examples

can also be processed independently from each other. This task is asking for parallelism.

There already exists a device made for exactly these two purposes: graphics cards. Normally,

the minibatch size is aligned to fit the graphics card’s memory such that one minibatch

occupies the most memory. This way the graphics card is used efficiently and a good starting

point for the hyperparameter ”minibach size” is obtained, too.

SGD structures training. Let’s assume a training dataset with 1000 examples and an optimal

minibatch size of 10 examples. We would need to process 100 minibatches, in order to cycle

4Conjugate Gradient, Momentum based methods, etc
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through the complete training set once. One cycle is called an epoch, which is yet another

hyperparameter we need to get right.

2.8 Validation

In section 2.3 we derived linear regression with generated data. For such simple cases where

we have a linear correlation in 1D, we do not need much testing. We can verify the result

by looking at the plot5. For higher dimensional data in classification tasks, we need another

way to verify our results.

2.8.1 Overfitting

ML models have capacity which determines the model’s ability to fit certain function families.

Obviously, a model, which is linear in its input, simply cannot represent quadratic correlation

even with infinite examples. But using a very general model with too much capacity for the

example data, leads to the phenomenon called overfitting. We need to find a balance between

the model’s ability to fit the data while not overfitting it.

2

1

0

1

2
1.  mse: 113.99

p 1

2.  mse: 106.24

p 2

3.  mse: 45.10

p 4

0 5 10
2

1

0

1

2
4.  mse: 13.92

p 7

0 5 10

5.  mse: 12.34

p 10

0 5 10

6.  mse: 2502.52

p 20

Figure 2.8: model capacity

5This is generally discouraged and ironically called the ”eye-norm”
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Figure 2.8 shows a linear regression model6 with increasing polynomial degree p. The poly-

nomial degree is directly correlated with the model’s capacity. It’s our task to find a suitable

one. This p is another parameter in the series of hyperparameters which influences our

model’s behavior.

For the first three values of p the model clearly struggles to find a suitable function to repre-

sent the data. We say the model is biased (towards certain values) but has very low variance.

Its capacity is simply too low, we call this underfitting. We can see that with a polynomial

degree of 7 the model fits the data best.

The last plot shows the model which is almost not biased at all(it fits the values almost

exactly) but has a very high variance (especially on the edges of the plot). Thus it highly

overfits the data.

How do we find the right parameter for p? We use a performance measure, in this case, the

Mean Square Error.
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Figure 2.9: hyperparameter tuning

Plot 2.9 shows a simple analysis, where we plot the MSE against the polynomial degree. The

plot reveals the optimal choice for p equal to 7.

Other degrees would yield an equally good result, but an important rule in ML is that one

should always use the least complex model. Actually, this does not only apply to ML and is

commonly known as Ocam’s Razor [17].

6The model is linear with respect to its parameters θ but not in its input. As long as the model is linear
in its parameters we refer to it as linear regression [17].
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This kind of analysis is necessary when models depend on hyperparameters. When the

model’s training phase is time-consuming, tuning such parameters is an involving task.

Remark: We picked a polynomial function to fit a cosine with noise. This sound like we used

the wrong model. In real-world application, we have no knowledge of what the underlying

distribution might be, so using polynomials is not a bad guess. They are easy to handle, and

can become complex enough through a simple increase of the polynomial degree.

However, it is possible that the model is just not the right one to satisfyingly fit the data.

The only possible solution, in this case, is to use another model.

2.8.2 Training, Validation and Test Set

In previous derivations, we did not distinguish between different parts of the dataset nor did

we attempt to verify our results. In section 2.8.1, we found a promising value for p, but

the only thing that we could conclude was that it fits our data. But is it robust for real-life

application, too?

A common standard has emerged in order to classify the performance of machine learning

algorithms and their hyperparameters. The dataset is divided into three parts, namely train-

ing, validation and test set, as shown in figure 2.10. The training set is chosen to be the

largest one where the model is trained on.

The validation set is a 10%-20% subset of the training set [29]. The sets must not share any

examples among each other.

training validation test

80% 20%

Figure 2.10: dataset split

The validation set is used to validate the accuracy of the model on examples the model has

not seen before. We, therefore, obtain a training error and a validation error. The error of

the validation set is obviously bounded by the error on the training set. Or put differently,

the error on the training set is lower than the error on the validation set.

errortrain < errorvalidation (2.13)

An extended training on the training set, when the training error has already saturated,

would increase the validation error. Our model would simply learn the noise from the train-

ing set. Exactly this is overfitting. But now we have a tool at hand to indicate it.

We can now compare the training error and the validation error throughout the training, and

determine the overall performance of the network. We can also tune our hyperparameters.
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See figure 2.11 where the green curve can be interpreted as the validation error.

Figure 2.11: idealized curves for a training run
figure taken from [17]

Both errors decay rapidly in the beginning because the machine learning algorithm captures

the direction with most variance relative easily. They both level off after a certain amount of

training examples. The validation error starts to increase slowly whereas the training error

constantly decreases. At this point, overfitting has begun. Normally, the two errors tend to

oscillate a lot, therefore, it is not immediately clear when this point is reached.

Equipped with this knowledge, we can now tweak the model’s hyperparameters until a suf-

ficient performance on the validation set is reached. We now know that the model has

captured the underlying distribution well. Unfortunately, the model is now biased towards

the validation set because the hyperparameters depend on it.

In order to still see how good the model has learned to generalize, the performance on the

test set is evaluated. Like the examples from the validation set, the test set’s data has to

be from the same distribution but must not contain an example from the validation nor the

training set. After testing the model on the test set, its hyperparameters must not change

anymore to make a valid statement of the model’s performance.

On first sight, we might think that a low training error is desirable under any circumstances,

but this is definitely a question of balance between learning noise and generalization. Take

for instance a dataset of human faces. Clearly, the skin color would be biased, because it is

impossible to cover all existing skin colors in one dataset. One way we can think of overfitting

is that the model would match the skin color of noses precisely and assign lower confidence

to noses with slightly different colors. We can conclude that constant training on the train

set might increase performance of the model. But if overfitting happens we give up the most

desirable property of ML: The ability to generalize beyond the training set.
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2.9 Regularization

We seek the minimum of a loss function with respect to a given training set, but hope that it

also minimizes the corresponding validation set. If this is the case, we say that our learning

algorithm generalizes well. An extended training on the training set, when the training error

already has saturated, would increase the validation error. Our model would simply learn

the noise from the training set. This is again overfitting.

We can tackle overfitting with regularization. With gradient descent, the gradient and there-

fore the machine learning algorithm’s weights are not constrained mathematically. Nothing

prevents single weights to become relatively large and dominate the neuron’s activation. We

can add a regularization term to our loss function which constrains the values of the weights

either absolutely or indirect.

2.9.1 L2 Regularization

The L2 regularization is very common throughout NNs design [29].

C(w) =
1

m

m∑
i=1

L(xi, yi,w) +
1

2
λw2 (2.14)

We just add 1
2λw

2 to the loss function and introduced another hyperparameter λ the regu-

larization strength. We can interpret this term as a constraint for weights to not get too large

because any large weight would contribute quadratically to the loss. Therefore, the weights

layers become diffuse. The L2 regularization is also known as weight decay because through

the nature of this formula the weights decay with the rate −λw7.

As the regularization term in equation 2.14 is multiplied by the learning rate anyway, we

are allowed to just divide the whole term by half. This is for convenience, and simplifies the

derivative. Figure 2.12 shows data which is divided linearly with some outliers.

In the left image the network overfits the data as it splits it very precisely. The middle net-

work manages to capture the linearity better, whereas the right model accepts the outliers

as noise. This is accomplished with different regularization strengths.

Side note: These 2D representations of the NNs decision boundaries are only made possible

through low feature dimensionality. These can be interpreted as manifolds diving the design

space, as we learned in the section 2.1.

7It is clear that the regularization term in 2.14 drives the weights towards zero. Unfortunately, this sharp
distinction depends on the optimization methods and their actual implementation, as shown in [36]
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Figure 2.12: Regularization
taken from [29]

2.9.2 Dropout

Dropout has become a standard regularization method, due to a simple yet efficient idea.

During training, neurons per layer become deactivated with a hyperparameter probability p.

We assume a layer with 100 neurons where dropout is applied. With p = 0.5, 50 out of 100

neurons would just not contribute to the next layer’s activations. Figure 2.13 visualizes this

idea [53].

Figure 2.13: dropout visualized
taken from [53]

The training phase of the network can be seen as a training of exponentially many subnets

with shared weights. During the test phase all neurons are used, but with their weights

scaled.

The implication is that the neurons do not co-adapt as they would when trained normally.

They become more robust with respect to the activations received from the layer below and

cannot form complex relations which work well on the training set but fail to generalize well.

The motivation comes from evolution where sexual reproduction also depends on genes from
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two genders plus some random mutations. The argument is that genes which work together

in random combinations are more robust than from organisms which reproduce on their own

genes [53].

2.9.3 Other methods

There are many different methods which are not described here in detail because of limited

scope. For completeness they are mentioned here. Like L2 regularization, the same method

can be stated without the quadrature, which is then called L1 regularization, see [29],[41].

This regularization drives the weights to become sparse which a few dominating weights.

This makes the network very robust against noise.

An even simpler method is called max norm constraint where an upper bound for each weight

is defined. Therefore, the network cannot explode during training.

A recently introduced method is batch normalization, which yields quite promising results

for real applications, see [24].
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Chapter 3

Deep Neuronal Networks

We have merely scratched the surface of ML in chapter 2. Nevertheless, in the following

chapter, we want to shed light on Deep Neuronal Networks, which are often coined black

boxes. DNNs are a mighty subcategory of supervised machine learning algorithms. They have

gained a massive hype since Alex Krizhevsky won the ImageNet competition in 2012 [33].

DNNs proved their capabilities in the following years. They allowed for breakthroughs in

vision, speech recognition, and even gameplay. AlphaGo was a DNN trained by Google,

which improved its play style by repeated matches against itself [51]. Go is considered the

most complex game in terms of possible game scores. In comparison to chess, no heuristic

approach is applicable, thus it stood unmanageable for computers to comprehend for a long

time. But eventually, AlphaGo beat the Japanese Go master Lee Sedol in 2016.

The design of NN neuronal networks is inspired by the human brain. One of the most

intriguing physical objects on planet earth. It is capable of perceiving light, sound, heat etc.

as well as feel emotions, and deduce complex interactions with the environment out of it.

But interestingly, the brain’s complexity arises from a rather small object called a Neuron.

Neurons are interconnected with each other and therefore form a neuronal network. A neuron

fires when the input from all previous neurons it is connected to add up to a given threshold.

This leads to a cascading effect, which only in sum allows complex computations.

Like any human adaption from nature, a neuron in an artificial neuronal network has not

much in common with the physical object in our brain. It is rather a mathematical description

of components which build up and resemble the neuronal network in our brain.

Starting off at the beginning with the most simplest neuron, the so-called perceptron. The

idea of a perceptron was first introduced by Warren S. McCuloch and Walter H. Pitts in 1943,

who investigated biological neurons. And later in the 1960th picked up by Frank Rosenblatt

who discovered the mathematical theory around it [48].
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3.1 Layers and Activations

DNN are stacked layers of neurons where the following layer consumes the output of the

previous layer. The type of layer defines the way the neurons are interconnected among

each other. The connections can be depicted as a graph. We will only focus on feedforward

DNN without skip connections. Feedforward means that there are no loops allowed in the

computational graph, like in a Recurrent Neuronal Network (RNN). Skip connections allow

connection beyond the immediate layer, like in ResNet [21]. We start with the predecessor of

neurons in a NN the perceptron, and form our idea of DNNs as we investigate more complex

neuron arrangements.

3.1.1 Perceptron

A perceptron is a function which takes an input vector x = {x1, x2, . . . xn} dots it with a

weight vector w = {w1, w2, . . . wn} and subtracts a bias b from it. We denote this result as a

logit and call it z. The logit is than processed by a activation function f(z), if the result of

the activation function is larger or equal than zero the perceptron’s output will be 1 otherwise

0. We will see different kinds of activation functions in the following sections. For now we

simply assume f(z) = z. We can formulate an equation which describes a linear perceptron:

p(w,x, b) =

−1 if f(wTx− b) < 0

1 if f(wTx− b) ≥ 0
(3.1)

Please note that, linear refers to the activation function not the fact that we dot the input

and weight vector, which is similar to linear regression. We can interpret weights as a measure

of how much a certain input should contribute to the function’s output. A high value favors

a given input, whereas a low or even negative one does not. The bias can be seen as a

parameter which simply shifts the activation function, see 2.3.

At first glance, nothing would limit us to build an artificial neuronal network with perceptrons.

But unfortunately, the perceptron is not mathematically continuous. It is only capable of

evaluating to 0 or 1. As we will see, training makes heavy use of the gradient1, thus this is

not a desired property of perceptrons.

Furthermore, perceptrons are not universal, for instance, they are not able to learn the XOR

equation, which was a discouraging outcome for the inventors [17].

The perceptron was the initial attempt to recreate real neurons behavior. But we have already

seen a similar function, as we developed our first linear regressor in 2.3, which had a more

appealing property as it was at least continuous.

1Of course, the field of evolutionary algorithms overcome this drawback. But these algorithms are not
deeper investigated in this thesis as the prevailing algorithms are gradient based.
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3.1.2 Multilayer Perceptron or Fully Connected

We can state a more suitable form of the perceptron and call it a neuron.

f(x) = wTx− b (3.2)

We encounter that a neuron is the same as our linear regressor stated in section 2.2. We

could stack more of them and form a layer [29].

f(x) = W Tx− b (3.3)

What changed now is that we order the weight vector into a matrix W with dimensions

n×m and a bias vector of dimension m as. The dimension m corresponds to the amount of

neurons per layer, whereas the dimension n indicates the dimensions of the example data x.

We have made ourselves a classifier out of many neurons. The output dimension is the same

as the input dimension x. Nothing stops us from passing the output from the first layer into

another one.

g(x) = W T
2 f(x)− b2 = W T

2 (W T
1 x− b1)− b2 (3.4)

We build ourselves a fully connected network. In deed, this is a small network as it only

consists of an input and an output layer. We could stack as many layers this way as we want,

which we call hidden layers.

It is important to note that W2,W1 do not need to share the same dimension m, as long as

they are the same in n, thus n corresponds to the number of neurons we want have in the

layers.

We have passed the output from one layer to the next unchanged. This is problematic as

shown in equation 3.5 [38].

A1 ∗ (A2 ∗X) = (A1 ∗A2) ∗X = A ∗X (3.5)

Activations are necessary to break the linearity between the layers in a DNN. Without them

we could stack as much layers as we want but still obtain a linear classifier.

If we added a non-linearly to the output of a layer, the associative property of the equation

3.5 would not hold any longer. We just denote the activation function with σ(x), and apply

it elementwise to the output of f(x).

f(x) = σ(W Tx− b) (3.6)

Because we applied f elementwise, nothing changed in the output dimensionality of f(x)

and we can further use it to bulid up layers.

g(x) = σ(W T
2 f(x)− b2) = σ(W T

2 σ(W T
1 x− b1)− b2) (3.7)
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This is the most simplest from of a DNN, also known as the Multilayer Perceptron (MPL)

(although we actually used the formulation of a neuron rather than a perceptron)[17]. How

the output is interpreted depends on the choice for σ. We are not bound to always use the

same σ as our activation function. As long as the function is differentiable with respect to

the weights, we can use it. Commonly, hidden layers share a type of activation and only in

the last layer a different function is chosen [42].

3.1.3 Softmax and Sigmoid

Let us assume a DNN for a classification task where we do not treat the output in any way

different than the inner layers. These output values, or scores, would be hard to interpret.

They are not bounded, can be negative and they do not share any relationship among each

other. The only measure we would have is that we assume that the highest value is the class

score, as done with Support Vector Machines [29].

Fortunately, the softmax function provides an escape from this dilemma and further opens

up new ways of interpreting DNN predictions [17], [29].

softmax(x)i =
exi∑k
j=1 e

xj
(3.8)

The softmax function takes a vector x and maps it to the same vector space, f : Rk → Rk. It

squeezes the values in the range [0, 1] and makes them sum to 1. This looks suspiciously like a

discrete distribution over all classes k. Of course, we intuitively talked about predictions, in a
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Figure 3.1: softmax function applied to scores
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statistical sense, when we mean the output of a DNN, but strictly speaking this is only made

possible through special treatment in the output layer. The binary counterpart of softmax is

the Sigmoid function [59], see 3.9.
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Figure 3.2: Sigmoid function

σ(z) =
1

1 + e−z
(3.9)

It squeezes a number from R into the range from ]0; 1[. In former years it was even used as

an activation in hidden layers. The Sigmoid is discouraged today because its learning slows

down tremendously when the weight is very wrong. A small example illustrates this. The

derivative of the sigmoid function can be written in terms of the Sigmoid function itself.

σ′(z) = (1− σ(z))σ(z) (3.10)

The complete derivation can be found in [17] or [29]. We can now plug in different values

and observe that for high or low values the gradient is very small as shown in figure 3.3.

We will see in section 3.3, that backpropagation is based on repeated multiplication of local
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Figure 3.3: derivative of the sigmoid function

gradients. When the gradient is small multiplication will enhance the error, which leads to

the phenomenon of vanishing gradients [29].
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3.1.4 ReLu

In oder to overcome the problem with vanishing gradients the Rectified Linear Unit (ReLu)

was developed. The ReLu is extremely simple. It adds the non-linearity by constraining the

input value to zero when it is below zero.
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Figure 3.4: Rectified Linear Unit (ReLu)

ReLu(z) = max(0, z) (3.11)

The figure above shows the plot with the zero values in orange. The ReLu is computationally

way more efficient than the Sigmoid function. It does not even involve arithmetic operations.

It allows significantly faster training, see [29]. Unfortunately, ReLus can be become locked

either by wrong initialization or unfavorable gradients. Imagine a neuron with a negative

weight wi bigger in magnitudes than the remaining weights and bias for this neuron. This

would influence the neuron such that the ReLu would always be zero. In turn, no gradient

would flow through it anymore. Whole parts of the network could be locked this way. There

are remedies for this scenario as Leaky ReLus or maxout [17]. But in general, right weight

initialization and good regularization should be enough to not run into problems.

3.1.5 Convolutional Layers

Layers, other than fully connected, have the purpose to reduce the number of connections per

layer by exploiting a certain structure of the example data. For convolutions, this structure

comes in form of sequential data which can be exploited when the data in the vicinity of one

feature helps to understand the dataset in depth. A simple example helps to explain this

idea.

Figure 3.5 shows a convolution in one dimension. The gray squares indicate the input.

The yellow squares show the output. The output is a simple dot product between the green

weights and the input (a bias term is omitted for brevity). The amount of weights we use

per layer is a hyperparameter F and called the receptive field [29].

Additionally, there is the stride S, which specifies the value the receptive field slides along one
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Figure 3.5: Convolution examples in 1D. Left example: stride S = 1, padding P = 1, receptive filed
F = 3, input W = 5. Output is therefore (5− 3 + 2 ∗ 1)/1 + 1 = 5. The left example is similar only
the stride changed to S = 2; The output is (5− 3 + 2 ∗ 1)/2 + 1 = 3.
(Image and values taken from https://cs231n.github.io/convolutional-networks/).

dimension. The stride is 1 for the left example and it is 2 for the right example in figure 3.5.

The input vector is extended with zeros at the beginning and at the end. This is called

padding P , and is an optional hyperparameter. It extends the input dimensions artificially

with zeros such that the receptive field and the stride fit together or to produce a certain

output. If the padding was not there on the left example the output dimension would only

be 3 instead of 5.

We can use the following formula to calculate the number of output neurons

O = (W − F + 2P )/S + 1 (3.12)

where W is the size of the input vector and O is the output [29]. See figure 3.5 for calculations.

Convolutions are mostly explained by a sliding window analogy which can be misleading

sometimes. When we expect the neurons (yellow squares) to be there and ready to calculate

their output by shared weights, then there is no need to use a sliding analogy as it suggests

motion. It is only useful to explain the reason how the exact amount of neurons have come

together. Also in actual implementations, no sliding is carried out.

Doubtless, CNN became famous for their great ability to percept images. In 2012 Alex

Krizhevsky [33] won the ImageNet competition with a CNN trained on his computer at

home. He rediscovered the work from LeCun in 1989 where he tried to read handwritten

postal zip code [34]. Therefore, the idea to use convolutions as learnable filters is actually

older than commonly expected. Unfortunately for LeCunn, back in his days the hardware

and datasets were not good enough for a major breakthrough.

In the same manner, as we did it for one dimension, we can formulate convolutions in higher

spaces. For example, for a 3D tensor with spatial extensions [Hight × Width × Depth].

This accidentally coincides with the representation of images in computer memory, where the

depth is 3 and maps to the colors RGB (red, green, blue).

We define an oversimplified input gray-scale image X with dimensions [7, 7, 1], see figure 3.6.

We now need to group our weights to conform to the new input dimensions. It is common to

use a symmetric receptive filed and therefore we define our weights as [3× 3× 1] (blue). The

depth equals the depth of the input tensor. In order to understand the output dimensions,

we now slide the weights along one dimension with a stride of one. Because of symmetry, it is

https://cs231n.github.io/convolutional-networks/
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Figure 3.6: two-dimensional convolution operation
https://github.com/PetarV-/TikZ/tree/master

actually irrelevant which dimension we choose. Because we used no padding the output is a

tensor with dimensions [5× 5× 1]. We can check the result by using equation 3.12. We have

a stride S = 1, a receptive field F = 3, no padding P = 0 and input W = 7 which defines

our output as follows (7− 3 + 2 ∗ 0)/1 + 1 = 5. Which is correct.

We now convolved one filter and produced one output or feature map. To processes colored

images we need to extend the filter. Straight forward, we define a new input X with dimen-

sions [7, 7, 3] and adapt out weights F accordingly [3, 3, 3]. Using this extended dimensions,

nothing would change in the output feature map!

The only thing what changes is, that we need to take the scalar product through all three

dimensions. We can image figure 3.6 stacked three times, where each layer of the input

X[x, y, :] and the weights W [x, y, :] have distinct values. We carry out the convolutions for

each layer and obtain three output maps. The final result is the sum of all three feature

maps. We can conclude that the depth of the input does not influence our calculation on the

width and height of our output.

Even better, we can manually adjust the depth of the new convolutional layers. We just

define a new set of weights F2 with the same dimensions of our first one, namely [3, 3, 3]. We

do the same calculations and obtain a new output. If we stack them up, we would end up

with another 3-dimensional tensor for further processing. The amount of different filters we

want to stack up is a hyperparameter and can be seen as the number of filters we want to

apply to the input X. Interestingly, we consumed a 3D tensor and produced another one.

Let’s assume for a moment we used padding and the first two dimensions were the same as

the ones from the input, e.g.[7,7,3] and [7,7,n]. Then the output would produce n different

”images” of features, found in the original image.

To become a fully adequate layer for a neuronal network, we still need to add a non-linearity.

Most commonly ReLu is applied element-wise to every output value. Convolutions have the

appealing property that they are invariant to transformation in the input. This becomes

intuitively clear when we recall that the weights for one feature map are shared. The feature

map would detect an object irrelevant of its position.

https://github.com/PetarV-/TikZ/tree/master
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A more in-depth introduction to Convolutional Neuronal Networks can be found in [29], [42], [9],

whereas the theory is covered in [17].

3.1.6 Max Pooling Layers

Convolutions are tightly bound to max pool layers. As complex as convolutions might be,

the pooling operation is quite simple. The idea behind pooling is that convolutions, despite

their efficient, still produce a lot of unnecessary information. Figure 3.7 shows one simplified

feature map.

Figure 3.7: max pool operation visualized
https://de.wikipedia.org/wiki/Convolutional Neural Network#/media/File:Max pooling.png

We assume that high values correspond to the detection of a certain feature. When one

feature is highly present than the output in its vicinity is not of so much interest anymore and

therefore discarded. During pooling the output from a convolutional layer is downsampled.

By an example division into filter sizes of [2 × 2] and stride 2, the highest value is allowed

through and forms the output. This procedure reduces the amount of information to a

quarter.

The values for the filter size and the stride are common values and have turned out to be

generally applicable. But nothing hinders us to choose different values. However, a filter size

of more than 2 is probably too destructive.

Empirically, max pooling has shown good results by almost none computational cost. There

is also average-pooling or L2 norm pooling ([17]), which is mentioned here for completeness.

Max pool layers have come in criticism over the years, because of their destructiveness on

spatial relations among features. A discussion can be found in 7.3. Unfortunately, there is

no new technique in sight which provides a practical solution to this problem.

https://de.wikipedia.org/wiki/Convolutional_Neural_Network#/media/File:Max_pooling.png
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3.2 Automatic Differentiation

We now have an understanding of DNN architectures, and we know that they are trainable

with a method called gradient descent 2.7. The remaining question is how we obtain the

gradient in an efficient way for a large number of parameters.

Automatic Differentiation (AD) is a research field which tries to provide access to the deriva-

tives of (programmed) functions defined by computational algorithms. This makes AD dif-

ferent from numerical and symbolic differentiation in an interesting way.

In order to get a good understanding of the different differentiation approaches, we review

them both.

Numeric Differentiation: Equation 3.13 shows the mathematical definition of derivatives,

but can also be interpreted as an approximation when the limit is omitted. The method of fi-

nite differences, for example, builds directly on top of it [38]. This formula is straight forward

to program, but evaluation suffers from truncation as well as round-off errors. Truncation

errors arise from h not actually being zero. Round-off errors are the inaccuracy added from

machine-precision [38].
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Figure 3.8: numerical error

d f(x)

dx
= lim

h→0

f(x+ h)− f(x)

h
(3.13)

Plot 3.8 shows the error for the evaluation of equation 3.13 of the function f(x) = x2. The

kink in the graph indicates the limit of accuracy we can reach with a 64 bit float number. As h

becomes smaller than approximately 10−7, the error increases. This behavior does not reflect
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the actual math. A simple remedy to overcome this problem includes a slight reformulation

of 3.13.

d f(x)

dx
=
f(x+ h)− f(x− h)

2h
(3.14)

More sophisticated remedies have been developed to alleviate round-off error related problems

but at the core this property remains.

Symbolic Differentiation does not suffer from precision errors because it evaluates the

derivative exactly. This technique comes close to the human handcrafted derivatives. Ba-

sically, the derivative is not approximated but actually calculated. The end result is in

anyway correct. But usually, a much simpler and more efficient form of the derivative exists.

Furthermore, this technique is not capable of deriving control flow operations like if/else.

Automatic Differentiation neither suffers from roundoff errors nor does it produce ineffi-

cient analytical expressions.

It is after all very memory intensive. The fundamental property of any sequential computer

algorithm is that it can be unrolled into a graph. In other words, any arbitrary complex

computer algorithm can be decomposed into a primitive mathematical expression. AD ex-

ploits exactly this structure instead of trying to work on its mathematical abstraction. It is

important to note that this will not lead to a closed form of the gradient, but will give us

only the gradient with respect to some input. Normally, our datasets.

AD is applied in two steps which we denote forward pass and backward pass. The forward

pass traverses the graph in its initial direction from input to output. Every node in the graph

denotes a certain operation as granular as summation or division. Indeed, it is common to

group sequential parts of the graph into one node. Each node stores its own output value

calculated from all input values defined by the graph. This doubles the amount of memory

used for every node. The final node produces the actual output of the function.

Now, we can traverse backward through the graph and calculate the gradient with respect

to every node by applying the chain rule. Again, the gradient is stored per node, increasing

the memory demand even further.

The chain rule generalizes very well to higher dimensions and therefore tensors. Where the

gradient of a matrix-vector multiplication is the backpropagated gradient times the respective

Jacobian. The Jacobian is in most cases sparse or simply a multiple of the input vector, so

efficient algorithms try to avoid storing it completely.

The backward pass is commonly known as the famous Backpropagation (BP) algorithm. As

we can see in next chapter 3.3 the BP algorithm is only a piece – arguably an important

one – in the whole filed of automatic differentiation which is not reflected in most literature.

BP is the workhorse computing the gradient. All deep learning frameworks like Tensorflow,

Theano, (Py)Torch, MS CNTK etc. abstract all the math away from the user, so in the end,
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the forward and the backward pass is carried out automatically. This is a huge benefit and

makes deep learning even accessible for users not familiar with multivariable calculus.

3.3 Backporpagation

Backpropagation is a method to obtain the gradient of an objective function. What is done

with the gradient is in the domain of the optimization method. In other words, we could

use gradient descent for training a DNN and compute the gradient a different way e.g. with

finite differences.

Indeed, this was done in the early 60th. Results were obtained so slowly that NNs where

abandoned from research. This was just not the right technique. Gradient descent is a basic

method out of a group of first-order optimization techniques which require the gradient to

optimize an objective function. Second order optimization methods, like the Newton method,

require the Hessian matrix to optimize the objective function. Theses methods usually con-

verge much faster, but are computationally more involving. For deep learning they are not

of relevance outside of research.

BP is a method, proved highly efficient, to obtain the gradient. In other words, the opti-

mization algorithm can be anything to your liking, like Stochastic Gradient Descent, Adam

or RMSProp, as long as it depends on the gradient of the objective function.

In order to better understand Backpropagation (BP) we need be clear about its fundamental

building blocks. First of all, we quickly recap the chain rule, one pivotal point [40].

Chain Rule

∂

∂x
[f (u)] =

∂

∂u
[f (u)]

∂u

∂x
(3.15)

If the derivate of a function with respect to the non-primary x variable is seeked, than this

equals the derivative of the same function with respect to to its primary variable u times

the derivative of the primary variable u with respect to to the non-primary variable x. This

holds true for nested variables as well, which is the reason for the name: chain rule.

The Gradient

The word gradient is used very loosely in every day’s conversations. The gradient has a well

defined mathematical meaning, but people often refer more to its abstraction as a calculated
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property (of the neuronal net), guiding the way to a global minimum (eventually). The exact

meaning even differs from discipline to discipline. Strictly speaking, the gradient is a multi-

variable mathematical operator which generalizes the derivative to higher dimensions. It is

generally denoted with the ∇-operator. For three dimensions it can be written like this [40]:

∇ =


∂
∂x
∂
∂y
∂
∂z

 (3.16)

In most cases the gradient is referred to as the result of the application of the gradient-

operator to a function. We will mostly stick to this loose definition, because, as we will see,

it is not the intention of BP to give a closed form for the gradient nor write out every partial

derivate for all parameters.

The gradient’s outcome is a vector-field which defines a vector for each point of the function.

Each vector is perpendicular to the nouveau-lines and points in the direction with the highest

descent of the function. The gradient vector’s magnitude indicates the slop of the function.

The gradient is often associated with R3 and Cartesian coordinates mainly due to problems

given in 3D space. Nevertheless, the gradient generalizes well with higher dimension where,

for instance, the gradient of the velocity field for fluid flow is the acceleration tensor in R4.

What makes intuitively sense as the acceleration a is the derivative of the velocity v, v̇ = a.

Let’s focus on the gradient in the context of machine learning.

f (x) = w1x
2 + w2x+ w3, f ′(x) = 2 · w1x+ w2 (3.17)

Equation 3.17 is a simple parabola and its derivative. It might seem cumbersome but it is

useful to define the equation for each node in order to apply the chain rule. Figure 3.9 shows

the computational graph for this function. Every node is denoted with a unique name and

signals witch math operation is carried out with its inputs.

f = w3 + a
a = c+ b

b = w2 ∗ x

c = w1 ∗ d

d = x ∗ x
(3.18)

We try to achieve the same derivate, by applying the chain rule, as we get in 3.17. The results

for the derivatives with respect to all variables are given in 3.19
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Figure 3.9: Computational graph of equation 3.17
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∂w2
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∂f

∂a

∂a

∂b
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∂w2
= x

∂f

∂w3
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(3.19)

and the most interesting one:

∂f

∂x
=
∂f

∂a

(
∂a

∂b

∂b

∂x
+
∂a

∂c

∂c

∂d

∂d

∂x

)
= 1 · (1 · w2 + 1 · w1 · 2x) = 2 · w1x+ w2 (3.20)

This experiment shows that the calculation for the derivative wrt. x works. Admittedly, this

seems unnecessarily sophisticated, and we do not want to store the gradient that way.

Let’s focus on the numbers in figure 3.9. The input is x = 3 depicted in green. The weights are

w = [2,−1, 1] in blue. We carry out the forward pass by calculating the intermediate results

shown in green as well. The forward pass ends when the function is evaluated completely.

We start backpropagation by evaluating the first derivative ∂f
∂f which is obviously 1 denoted

in red. With the help of the equations in 3.19, we can propagate the error back to x. In the

last layers we can see, that the input x has different outputs. To obtain the general gradient,

we need to sum them up. The result shows the overall influence of x on f . We can now

compare equation 3.20 with the gradient we obtained with backpropagation. And come to
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the same result.
∂f(x,w)

∂x
= 2 · w1x+ w2 = 2 · 2 · 3− 1 = 11

∂f(x,w)

∂x
= 6 + 6− 1 = 11

(3.21)

Incidentally, we have also calculated the gradient wrt. the weights. This gradient actually

comes for free. And as we fixed x we can now start gradient descent. The gradient on the

weights reads ∇wf = [9, 3, 1]. We recall the gradient descent equation 2.12.

θi+1 = θi − η∇θf(θ) (3.22)

To obtain θi+1, which are the weights in our case, we need to subtract the gradient from

current weights.

wi+1 = wi − η∇wf(x;w) =

 2

−1

1

− 1 ·

9

3

1

 =

−7

−4

0

 (3.23)

For η = 1 we get our new weights. The update process is oversimplified here, and many more

sophisticated update techniques were developed.

It is important to note that the gradient in backpropagation is a completely local phenomenon

per node. It is determined only by the node’s input and output during forward pass and the

backpropagated error. In the example from figure 3.9 there was actually no need to use the

value of the forward pass in the calculations. But if the graph had more complex nodes, their

output would be necessary, too.

This procedure scales to higher dimensions without problems. For detailed information the

reader is referred to [17] and [29].

3.4 Entropy vs. Maximum Likelihood

Entropy is a measure of information a source emits and how it is encoded on a limited

channel. Information can be measured in bits, nats or whole words, depending on the base of

the logarithm used in equation 3.24. In deep learning, its usual to use the natural logarithm

with nats, whereas bits, with the logarithm of base 2, are used in information theory [17].

For further derivation, it is not utterly important to always refer to ”information” in the

context of loss functions. But it gives the loss one way of interpretation and a unit.

The entropy of a discrete distribution y is given by the following equation:

H(y) =
∑
i

yi log(
1

yi
) = −

∑
i

yi log(yi) (3.24)



3.4. Entropy vs. Maximum Likelihood 43

The minus in 3.24 does intuitively fit as the logarithm for values between [0, 1] is negative.

Thus gives a positive entropy. Let’s assume we define the random variable X to be the

number of students for each course of study at the faculty ”Bau Geo Umwelt”(BGU)

X = {CivilEnginieering,Geodesie,

Enginieering,Geology)}
(3.25)

and a probability distribution over the random variable X:

y = P (X) = {0.47, 0.06, 0.31, 0.16}. (3.26)

The goal now is to represent the four courses in a manner which reduces the amount of bits

used to send it over a channel. We imagine a bit sequence for each course, naively we could

define it like so:

Civil Engineering = {1, 0, 0, 0} Civil Engineering = {1, 1}

Env. Engineering = {0, 1, 0, 0} Env. Engineering = {1, 0}

Geodesy = {0, 0, 1, 0} Geodesy = {0, 1}

Geology = {0, 0, 0, 1} Geology = {0, 0}

The left encoding is known as one-hot encoding, commonly used as labels for ML tasks. These

are definitely not the most saving encoding we can come up with, although the suggestion

on the right is much better than on the left. The entropy of distribution y is given by,

H(y) = −(0.47 ∗ log2(0.47) + 0.06 ∗ log2(0.06)+

0.31 ∗ loga(0.31) + 0.16 ∗ log2(0.16)) = 1.72 [bit]
(3.27)

The result can be interpreted such that we would need 1,72 bit on average to encode y,

to obtain the most saving encoding. One, out of a view, optimal encodings would be the

following:

Civil Engineering = {1}

Env. Engineering = {0}

Geodesy = {0, 1}

Geology = {0, 0}

Because, Civil and Environmental Engineering are much more frequent it is better to encode

it with viewer bits to save bandwidth on the channel.
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We can also make an image our information source by letting it emit pixels one after another.

Noise has high entropy, whereas the entropy of the tree’s image is only high where the tree is

apparent. We can see that pure information does not instantly mean that the image shows

something recognizable. Less information is often better than too much.

Figure 3.10: the entropy of noise and a tree
image from www.scipy.org

3.4.1 Cross Entropy

Admittedly, we are not interested in encodings, but a measure for how good our prediction

is. We introduce cross entropy as a measure of how good an arbitrary distribution ŷ is able

to approximate y.

H(y, ŷ) =
∑
i

yi log(
1

ŷi
) = −

∑
i

yi log(ŷi) (3.28)

In our case we could assume, that the students are spread equally over all courses, which

gives us a uniform distribution of ŷi = 0.25 for every course. Doing the math yields a cross

entropy of

H(y, ŷ) = −
∑
i

yi log2(ŷi) = 2.0 [bit] (3.29)

Subtracting the entropy of the target distribution and our approximation, gives us an addi-

tional ”fee” of our transmission of H(y, ŷ−H(y)) = 0.298 [bits]. The fee comes from the fact

that we use ŷ instead of y for our encoding. This difference is called the Kullback-Leibler

divergence (KLD) [17].

KL(y||ŷ) = H(y, ŷ)−H(y) =

n∑
i=1

yi log(
yi
ŷi

) (3.30)

If y = ŷ the KLD would be zero and the approximation would be the original distribution.

This starts to look like a ”loss” for NNs because the KLD indicates how much our approxi-

mation is apart from our target distribution.

What happens when we would use KLD as our loss function.

∇ŷKL(y|ŷ) = ∇ŷH(y, ŷ)−∇ŷH(y) = ∇ŷH(y, ŷ) (3.31)

www.scipy.org
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We can clearly see, that minimizing the KLD with respect to our prediction is the same as

minimizing the cross entropy, because the entropy of our target distribution does not depend

on ŷ.

So, we are left with the cross entropy as our loss function for the m-th training example,

Lossm = −
n∑

i=1

yilog(ŷi) (3.32)

By summing over all training examples, we end up with our cross entropy as a suitable cost

function.

Cost = −
k∑

m=1

n∑
i=1

ymi log(ŷmi ) (3.33)

It is important to notice, that looking at our loss, we always refer to one training example.

Whereas, when we specified our cost we took a step back and took all training examples into

account. We leave the cost function as it is for now, but will return to it at the end of the

chapter.

3.4.2 Maximum Likelihood Estimation

What if we do want to directly predict a model ŷ(x;θ). Our model is a NN with θ as its

parameters and x ∈X are the training examples. We can ask the question:

”Given a training set X, how do the model’s parameters look like, that the likelihood of the

model predicting the data is maximized”.

We investigate a slightly more complex example than 3.26. Namely, the average age of stu-

dents at the faculty BGU 3.11.

The samples are drawn from a normal distribution N (µ, σ2) with µ = 23 and σ = 32.

The Maximum Likelihood Estimation (MLE) gives us a way to compute the target distribu-

tion under the assumption that the data is independent and identically distributed (i.i.d.).

We can state the likelihood function

L(θ|x1, x2, x3, , . . . , xn) = f(x1, x2, x3, . . . , xn|θ) =

n∏
i=1

f(xi|θ) (3.34)

The ”|” divides the argument into variables and parameters. L(θ|x1, x2, x3, . . . , xn) indicates

that L is dependent on θ and the parameters xi are fixed. Through the multiplication, the

argument’s variables and parameters are switched.

By now, equation 3.34 is just a way to make θ our variable. We now seek a θ which

maximizes our likelihood function because at this point the distribution estimates our samples

x1, x2, x3, . . . , xm best. Straight forward, we formulate the product of 3.34, with f being the

2these values are assumptions



3.4. Entropy vs. Maximum Likelihood 46

0 500 1000 1500 2000 2500 3000
samples

18

20

22

24

26

28

ag
e

3k samples

0.0 0.1 0.2
probability

normal distribution

Figure 3.11: age samples of students from BGU

normal distribution

f = N (x|µ, σ2) =
1

σ
√

2π
e−

(x−µ)2

2σ2 . (3.35)

n∏
i=1

f(xi|θ) = N (x1|µ, σ2)×N (x2|µ, σ2)×

N (x3|µ, σ2)× · · · × N (xn|µ, σ2)

(3.36)

The keen reader might noticed that using the normal distribution as our f is not a NN.

That’s because derivation with only two variables than view hundred is simpler and as we

initially sampled our data points from a normal distribution, chances are high that we can

recover out initial µ and σ. Of course, f can be a different model.

To find the desired values for µ, σ, we need to take the respective derivatives.

From calculus we know that deriving a product is much more cumbersome than a sum.

Therefore, we apply a small trick and define the log-likelihood as our function, we want to

maximize. We are allowed to do this because the logarithm is strictly monotonic and does

only scale the likelihood function. The maximizing parameters θ stay the same. In turn the

gain is significant as, we can now write the product as a sum,

log(L) = log(

n∏
i=1

f(xi|θ)) =
∑
i

log(N (xi|µ, σ2)) (3.37)
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Using the definition of 3.35 equation 3.37 can be written as

ln(L) =
n∑

i=1

[
−(xi − µ)2

2σ2
+ ln

(
1

σ
√

2π

)]

=− n ln(σ)− n

2
ln(2π)− 1

2σ2

n∑
i=1

(xi − µ)2
(3.38)

As we are free in our choice of the logarithm’s base, we choose the natural logarithm because

it cancels nicely with the exponential function in the normal distribution.

∂ ln(L)

∂µ
=− 1

2σ2

n∑
i=1

2(xi − µ) = 0 ⇒ µ =
1

n

n∑
i=1

xi

∂ ln(L)

∂σ
=− n 1

σ
+

1

σ3

n∑
i=1

(xi − µ)2 = 0 ⇒ σ =

√∑n
i=1(xi − µ)2

n

(3.39)

Figure 3.12 shows how the error decreases as the number of samples increases. This property

hold independent of the model used [17]. Of course, the model must be able to represent

the data. In other words, using more samples for the MLE always reduces the error of the

parameters.

A small error on the training set is not per se what we want. As NN are generally over

parameterized, they tend to overfit the training data, which, in turn, leads to a worse gen-

eralization, see 2. In this section we have used f = N (x|µ, σ2) as out model. Without
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Figure 3.12: parameter error

problems, we could also define f to be the Poisson distribution or MSE. Indeed, using the

normal distribution in the MLE is the same as minimizing the MSE, we just predict the mean

and guess a sigma. This is derived in [17].
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But what really is of interest for us is using the MLE as a loss function. We recall equation

3.37. But for simply inserting our prediction vector we do not obtain a solution directly.

Because the class of the input x is in range [1, 2, 3, . . . , k], we would need to figure out the

correct label at backpropagation time. We can do better by carefully examining the MLE for

the NN case.

x ∈X ŷ(x|θ) y Lm =

n∑
i=1

log(ŷmi ) (3.40)

Equation 3.40 shows the log likelihood function for the m-th training example x in X. The

sum over all entries of the discrete distribution’s vector – our model’s predictions ŷi – gives

us the likelihood of the example x. We know that our labels are mutually exclusive, and thus

form a one-hot encoded vector. This encoding represents four classes with the ’1’ indicating

the respective class. Because the values lie in the range from [0, 1] we can also interpret this

as a distribution over all classes where the mass density sits on the correct class. Thus, ’0’

indicates 0% of the input being the class and 1 indicates 100%.

Equation 3.41 shows an example label and the corresponding predictions.

ym =


0

0

1

0

 ŷm =


0.2

0.4

0.98

0.1

 ŷm{y=1} = ŷmi = 0.98 (3.41)

The only prediction of interest is the one where the label’s vector entry is 1. With this

knowledge, we can define the cost function with respect to the whole training set as

Cost =
M∑

m=1

log(ŷm{y=1}) =
M∑

m=1

log(ŷmi ) (3.42)

Please note that we do not need to sum over the prediction’s vector anymore. Each example

produces exactly one probability ŷi which is of interest for us.

3.4.3 The Link

We revisit the cross entropy cost from equation 3.43.

Cost = −
M∑

m=1

n∑
i=1

ymi log(ŷmi ) (3.43)

The assumption of our one-hot encoded label still hold, therefore we are can see that all

entries except one for the inner sum become 0. This again leaves us with almost the same



3.4. Entropy vs. Maximum Likelihood 49

cost as derived from the MLE. Using the numbers from 3.41 clarifies this statement.

Cost = −
M∑

m=1


ym1 log(ŷm1 )

ym2 log(ŷm2 )

ym3 log(ŷm3 )

ym4 log(ŷm4 )

 = −
M∑

m=1


0 log(0.2)

0 log(0.4)

1 log(0.98)

0 log(0.1)

 = −
M∑

m=1

log(ŷmi ) (3.44)

We obtain the negative MLE as a cost function. In optimization, problems usually stated as

a minimization of the objective function. It is more a matter of preference instead of having

mathematical advantages, because there is no difference between maximizing a function f

or minimizing its corresponding negative function −f . Therefore, we stick with the negative

cost function and state:

Minimizing the KLD between two distributions is the same as minimizing the cross-entropy

between them and also the same as minimizing the negative-log-likelihood of the model. The

KLD is a distance measure, so apart from cross entropy and likelihood, we can also think of

decreasing the ”distance” between the predictions and the labels.

In literature, the cost or loss, for the most part, is denoted as the cross entropy. This may

be because of its straight forward formulations including the labels as y by default. The

cross-entropy does not limit us in using one-hot encoded labels but also allows soft labels in a

sense that the probabilities of the input do not need to be mutually exclusive. In other words,

we are allowed to use a discrete distribution as a label where the entries are not restricted to

0 or 1.

Deep learning implementations e.g TensorFlow or PyTorch, support this difference through

extra layers which are called softmax_cross_entropy_with_logits() or

sparse_softmax_cross_entropy_with_logits() [18], [15]. Logits refer to the unscaled out-

put of the last layer, similar to the z variable defined in 3.1.1.

In case of one-hot encoded vectors, we run into a slight problem. Imagine C = {0, 1, 0, 0}
as the target distribution. If ŷi reaches zero for the target probability equal to 1, we would

calculate log(0) which is minus infinity. Thus, reaching the target probability is not even

possible.

Nevertheless, if the prediction manages to come close to the target this suffices any-

way, because we are only interested in the maximum value. For example max(ŷ) =

{0.3, 0.98, 0.04, 0.02} = ŷ2, does not depend on ŷ1 being 0.3 or 0.5. Deep learning imple-

mentations take care of the argument of the logarithm not being zero.

3.4.4 Softmax-Loss

In section 3.1.3 we introduced the softmax function as a way to normalize each entry of a

vector. With the findings in section 3.4.1 we can now deduce a combination of the cross-
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entropy and the softmax. We recall both equations.

Cost = −
M∑

m=1

log(ŷmi ) s(x)i =
exi∑k
j=1 e

xj
(3.45)

As we have seen in3.4.3, only one entry is of interest. Thus, the softmax reduces to one

equation and we can plug it in our cost function.

Cost = −
M∑

m=1

ln

(
eŷ
m
i∑k

j=1 e
ŷmj

)
= −

M∑
m=1

ŷmi − ln

 k∑
j=1

eŷ
m
j

 (3.46)

Equation 3.46 benefits the design process of neuronal networks because the intermediate

step, explicitly defining a softmax for the output scores, is abstracted away. Additionally,

the implementation handles corner cases much more reliably and efficiently. Equation 3.46

also implies a subtle fact. Cross-entropy does only implicitly penalize other than the desired

prediction. Its main concern is to increase the target probability ŷi.

3.5 Inference

The NN has been trained successfully and the test metric has reached a satisfying level. Now,

the time has come, to use the network in a production environment. This is generally called

inference.

When we compare the training state of a NN with the inference state we need to consider

latency and throughput. It is clear that training requires a high throughput in order to

be efficient and latency is of minor importance [12]. In real-life applications, like image

classification at Google, Facebook providing image captions for blind people [60] or in self-

driving vehicles, latency is the decisive factor.

In the training state, the network requires to store the gradient for every tensor in each

layer. But when the net is inferred the gradient is obviously not needed anymore as we

are not going to alter the parameters of the NN. Thus, BP is omitted completely. BP

heavily relies on a fine-grained key of the network’s graph in order to apply the chain rule

correctly. The absence of BP, in turn, allows us now to generously compress the network’s

layers and parallelize them on the GPU3. This decreases the latency and reduces the memory

consumption approximately by half. Further analysis of the graph and its parameters can

detect parts which are unlikely to influence the result due to their low activations. This parts

can safely be pruned reducing the size of the network in total [19].

3assuming that almost all serious applications run on GPUs nowadays.
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3.6 Miscellaneous

Computational power is by far the most important aspect when training a neuronal network.

Unfortunately, even the fastest CPU is not built for massive parallel code. Luckily graphics

card have been around doing exactly this. Let’s have a look at how graphics cards work on

an abstract basis, leaving out the technical details and hardware implementations.

Every Pixel’s value is computed by the same instructions similarly a construction pipeline.

Assuming the CPU wants to display a space shuttle on the screen, this data is only available

in binary in the RAM of the computer. The space shuttle is composed out of different

geometry primitives. Each of which has its own local coordinate system. The graphics

card first demanding task is calculating the transformation matrices for each object, with

respect to the world coordinate system, the space shuttle exists in. Immediately thereafter

it renders the geometry consisting out of triangles. The 3D-Geometry is than projected into

the perspective of the viewer in the 2D-plane. All triangles which are not part of the scene

are clipped e.g. excluded from the pipeline. This process is hardwired in graphics cards due

to the enormous speed benefit and the relative simplicity. A, so called, shader adds the color

or texture to each remaining triangle. The end result is then sent to the monitor.

These steps above describe the necessary tasks to convert abstract binary data to one pixel’s

value. Because these instructions don’t differ for all pixels this pipeline can be applied to all

of them at once.

This oversimplification does, of course, not give justice to the complex topic of computer

graphics but it is sufficient to understand its relevance in deep learning. In comparison, a

CPU is deliberately designed to carry out different complex tasks in parallel but only on a

view cores. To be precise the tasks are called processes and their jobs can range from a simple

counter to a resource-intensive sorting procedure.

How can we now exploit the parallel capabilities a graphics card provides in terms of training

a deep neuronal network?

When we recall the formula of the loss function from 2.14 we can observe that we need to

average the loss over the whole minibatch. If we would run the training sequentially the

program would consume a training example one after the other. It would store the loss for

every training pair and sum over it in the end, providing the loss for that mini-batch. Like in

the case of pixels, the network’s graph definition stays the same for every training example.

Furthermore, the computation for each example is independent from each other, meaning

there is no circumstance where one process (training example) requires data from another.

In practice, it is advisable to fit the size of a mini-bach to the memory of the underlying

hardware.
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Chapter 4

PointNet

Geometry and computation are very tied subjects. Since human eyesight is the best way to

get data into the brain, it does not surprise that we use monitors to interact with computers.

Computer vision is the collection of methods to make images perceptible for machines and

data visible for humans. Many methods have real-time constraints, which means a certain

computation has to be finished after a fixed amount of time. Modern monitors have a refresh

rate of 60 Hz, which constrains the computation time for one frame to roughly 1.6 ms. If

this constraint is violated by a tiny margin, humans percept it as a lag spike. To meet these

constraints, graphics cards had been developed.

Not only hardware is necessary for flawless computer graphics, but data structures also play

an important role. They define the possibilities, what is representable.

4.1 Mesh vs. Point

In order to visualize an object on a computer screen, the object must be defined. At the

lowest level, 3D points alone are used to define the discrete position of an object’s surface.

We call this representation a point cloud.

Point clouds, in general, are three-dimensional collections of points in the Euclidean space.

Each point is described through its coordinates. Normally, Cartesian coordinates are chosen

but through transformation, points can be mapped to arbitrary coordinate systems as long

as the transformation preserves the metric. This is done when large landscape scans are

populated into regional maps. The metric in Euclidean space is simply the distance between

one point and the origin and evaluated by the L2 Norm. Points are related to each other by

distance.

The simple description of point clouds makes it possible to automatically retrieve them from

the real world. The downside is the massive amount of data generated in the range of

gigabytes. Depending on their generation, they might be scaled incorrectly or other objects
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occlude parts which leads to sparse regions. Point clouds inherently lack the information

about geometrical membership. There is no incorporated information which identifies points

belonging to the same object. Even further, no way exists to unambiguously detect surfaces

and their orientation in space. With the absence of surfaces, there is no chance to make

statements about volume or use point clouds directly in simulations. Point clouds can carry

additional information per point, either from measurement or from calculations, like color or

normal vectors. This again increases the overall amount of data needed to store the point

cloud.

An intuitive idea is to connect neighboring points with each other, such that they form

triangles. This allows for fewer points in regions where the object is flat, as the triangles

comply with them well enough. Regions where high curvature is present, more triangles are

needed. Incidentally, this also defines a volume if the mesh is closed. And finally, normal

vectors are defined through the triangle. The famous but simple STL format defines a mesh

this way by storing three points for each triangle and the normal vector. The application

which processes STL files is responsible to check if there are gaps between triangles or if

triangles intersect. Originally developed for 3D printing, STL files do not meet the advanced

requirements for today’s graphics.

STL stores the vertices for each triangle separately although triangles normally share their

nodes with neighboring ones. The Boundary Representation (B-rep) model overcomes this

drawback of STL files but makes the geometry representation more complex. In B-rep models,

every node is stored only once. Through a graph based relation, the nodes are connected

to lines, which are connected to surfaces which form volumes. This topology removes the

redundant nodes and opens up for complex descriptions of volumes and even holes.

All mesh representations carry more information than a point cloud. But, in the end, meshes

are completely arbitrary data structures which try to describe the 3D reality efficiently. They

have no inherent relation to reality, which makes it hard to retrieve them from a real scene.

Therefore, we try to utilize the simplest 3D representation, a point cloud, to track the progress

of the construction sites in reality and accept their drawbacks.

4.1.1 3D Scanning and Reconstruction

There are active and passive methods to obtain point clouds. Active methods emit some

measurable quantity whereas passive methods rely on ambient light or moving sources. We

will not cover passive methods, as they do not have any importance for progress track prob-

lems. Active methods can roughly be divided in time-of-flight methods and triangulation

methods.

Time-of-flight methods are based on the relation d = c∗t where c is the speed of light, t is time

and d is the distance. They send out a laser pulse which is reflected from an object’s surface.
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The duration between the dispatch of the pulse and the arrival of its reflection is measured.

These methods can operate over a large distance. The more accurate the measurement of

the duration is, the more accurate is the distance. This is also the downside of time-of-flight

methods, as their accuracy range in millimeters. Light detection and Ranging (Lidar) is

based on this technique and gained popularity as it is used for autonomous vehicles [54].

Triangulation techniques exhibit the opposite trait as they are not suitable for long-range mea-

surements, but produce very accurate results in short-range. They are based on a constant

laser point on the target surface. A sensor recognizes the position of the point’s reflection.

The laser emitter, the sensor lens, and the target point form an imaginary triangle. The

angle of the laser emitter and sensor, as well as their distance, is known. The angle of the

reflection hitting the sensor lens is proportional to the distance of the target surface. Out of

this relation the distance can be calculated.

The photogrammetric approach tries to derive point clouds from 2D images of the same

scene. This is done through feature tracking throughout all the images. Because this feature

detector is quite robust to scale, rotation and illumination it accurately finds the features

even when the image quality is low. Out of the correlation of the same features in different

images, a distance is derived. Unfortunately, this distance is not absolute and must be scaled

manually. Photogrammetric point clouds have color information by design as pictures are

not gray-scale anymore. In the context of progress tracking, this is an advantage.

4.2 Boundary Conditions

In contrast to image recognition, feature recognition tasks in point clouds deal with some

substantially different problems. Point clouds are scattered unordered datasets. In images,

the spatial relation of pixels is fixed. A CNN does exactly exploit this property, see 3.1.5.

Point clouds do still represent the same information even when the points are permuted. This

is an important realization.

Points form subsets in space which build up important features a NN needs to capture.

Features like edges or skewed areas appear locally and might not have a large spatial extent.

These features add up and describe the whole object, which, in turn, might span over half the

construction site. Therefore, features must be matched locally, but the NN needs to be able

to learn that some features form objects belong together over a large distance. To conclude

the NN must

• be invariant to !N permutations

• heavily rely on the distance between points

• be insensitive to affine transformations of the input point set



4.3. Spatial Transformation Networks 55

An interesting fact is described in [46], where the authors initially trained their net with

normalized point clouds and obtained good results. This is, of course, a meaningful pre-

processing, but violates the restriction that the net’s prediction must not be influenced by

absolute values. Loosely speaking, the net learned the simple fact that points with z-value

near zero most likely describe the floor of a room. Admittedly, it is quite challenging to find

good data augmentation, to break the dependency to absolute values.

As briefly explained in 1.3.2 often a volumetric approach is chosen. Voxels structure space

the way pixels structure images. These structures can be equally exploited by CNNs. This

approach is problematic as voxels do only indicate that one or more points are present in-

side. The exact information of the arrangement of these points is lost. This means we lose

information on the lowest, yet most important level, but gain a data structure which is ready

to be processed by a CNN. We choose PointNet mainly because its architecture makes it

possible to consume point clouds directly, and therefore preserves local features.

4.3 Spatial Transformation Networks

PointNet makes use of Spatial Transformer Network (STN)s. They were originally developed

by Google to provide an attention mechanism to label house numbers on street view images.

Apparently, they can also be used for point clouds. To better understand the workflow of

PointNet, we quickly discuss them in the general context and see later how they are applied

to point clouds.

A spatial transformer network STN, see details in [25], enables attention mechanisms for

larger neuronal networks. It alters the input image in a way that only parts with most

interesting information will be passed to the next layers. Thus, it derives an (affine) trans-

formation matrix out of the input image, which is, in turn, applied to the same input leaving

it augmented. The augmented data will be further processed by the later layers without

any additional effort. The location in the network’s graph, where the STN is applied, is not

restricted to the net’s input layer and can be applied even sequentially.

Although the size of the transformation matrix, e.g. the number of parameters, can be chosen

arbitrary, it is usually set to a meaningful number. Originally developed for a CNN, the au-

thors choose a matrix of size R2×R3, which makes six parameters θ total. These parameters

are learned in the same training cycles the net would undergo anyway and due to its size not

much overhead is added.

Figure 4.1 shows the architecture of a STN. The localization net can be any kind of neuronal

network which has a regression layer at the end and a continuous activation for backpropa-

gation. Regression layer in this context simply describes a network type where the output

values are not squashed into a function, e.g. softmax, but used unaltered as the parame-

ter values. The grid generator and sampler are constructs, often used in computer graphics

for texture maps. This is a further advantage as the computation is already carried out on
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Figure 4.1: Spatial Transformer Network

graphics cards.

It be must be emphasized that the STN is responsible for picking the right transformation,

as only the transformed part of the slice is further processed. PointNet’s authors, there-

fore, regularize the loss function with a term which makes the transformation matrix near

orthogonal. Further, as seen in figure 4.1, the computational graph is split into two parallel

paths. Nevertheless, it still classifies as a feedforward network because there are still no loops

present. The matrix multiplication of the STN’s output and the input image, is modeled

as a normal operation, where the gradient is split accordingly. One part of the gradient is

backpropagated into the STN, whereas the other skips it. Finally, they joined together at

position U in figure 4.1.

4.4 PointNet Architecture

In order to understand PointNet, we give an overview of all building blocks and explain them

in detail afterward. See [46] and [45] for comprehensive information.

Figure 4.2: PointNet architecture
taken from [46]
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Figure 4.2 shows the architecture of PointNet1. The blue area marks the classification part

whereas the yellow part refers to segmentation. We discuss all tensor dimensions without the

additional batch dimension for clarity. Furthermore, only the key dimensions of certain layers

are mentioned, as these numbers are pretty common (power of 2), and do not contribute to

a better understanding of the concept. They are mentioned in the 4.2.

PointNet consists out of spatial transformers, shared MPLs, one max pool layer and fully

connected layers. Right in the beginning the input point cloud of form [N × 3] is split into

two computational graphs. One is passed through the transformer network one is unaltered.

PointNet uses STNs for the input layer and between the max pool layers. Evidently, the

implementation uses a R3 × R3 transformation matrix to process points of dimension R3.

With this additional networks they gain an improvement of 0.8% [17].

The augmented point is then passed in a MPL with shared weights. The idea of weight

sharing within a MPL seems counterintuitive on the first glance. An MPL actually defines

itself through a full connection. It does make sense, though, when viewed in the context of

convolutions with a filter size of [1 × 1]. Throughout one filter all weights are shared. As

the extent of the kernel is one, e.g the kernel processes one point at a time, the weights only

depend on the dimension of the input in our case (x, y, z) (or x, y, z, R,G,B when we include

color). This brilliant idea decreases the weights per filter dramatically and pays respect to

the invariance of points. If the kernel size was larger, we would need to define proximity

between points, which we do not have since there could be N ! permutations in the input.

At last, it benefits the implementation, because convolutional layers are a fundamental and

highly optimized building block of every deep learning framework.

After the first sequence of STN, shared MPL and another STN, the calculated local point

features are buffered. A stacked sequence of shared MPLs aggregate the global features out

of the local ones. Finally, the max pool operation reduces these features to a global feature

vector of dimension 1024. The max pool operation breaks the dependence on the order of the

points. It does so by symmetry. The problem, still, is that we filter the features per point

but cannot aggregate the global feature vector which is independent of the input ordering

of the points. In general, the remedy for the above-stated permutation problem is simply a

symmetric function [40]. Common examples are:

f(x) = max{x1, x2, x3 . . . xn} (4.1)

f(x) = x1 + x2 + x3 . . . xn (4.2)

The max pool operation works on the max operation shown in 4.1. Evidently, we can see

that this function is independent of the input order.

1There is also the vanilla version without the spatial transformer network. We won’t consider it in our
discussion, as it is not for significance for our task.
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4.4.1 Classification

The global feature vector carries enough information for classification purpose. It is processed

by a simple stack of fully connected layers (or real MPL without weight sharing). They regress

the global feature vector of size 1024 to a vector of size k, where k is the number of classes

the net was trained on. Classification was not investigated in this thesis, because it does

not have significance for the progress tracking. To apply classification, we would need to

preprocess the construction site into pieces which the net could unambiguously classify. We

want to explicitly circumvent this task.

4.4.2 Segmentation

If we could identify the class of an object by pixelwise classification, we had more information

at hand. And we could state more precise progress of the site. Therefore, we make use of

segmentation, which assigns a class to each point separately. In theory, points of the same

class cluster and form an object of interest. PointNet archives this through the combination

of features. We recall that we buffered our local point features before we extracted the global

features out of it. PointNet concatenates the 1024 global features with the 64 local features

and obtains a new feature vector of size 1088, see 4.2. This vector is sampled down again

through repeated application of shared MPLs until the last layer. Here a softmax classifier

uses one-hot encoded labels per point. PointNet is trained with cross-entropy loss, both

classification and segmentation, see 3.4
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Figure 4.3: Softmax layer visualized
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Figure 4.3 visualizes the last segmentation layers. The black lines indicate 128 the feature

vector size in the second last layer where the number of features are reduced to the number of

classes per points. Each neuron predicts a probability for each point being a specific class i.

The dots indicate their label. The color green means the highest probability of the prediction

corresponds to the label. Red means a wrong prediction. It is important to note that, despite

the fact that PointNet is invariant to input permutations, once the points are processed their

order must not change anymore.

4.5 PointNet++

PointNet provides an efficient way to process point clouds, but its design lacks hierarchical

feature aggregation wrt. point neighborhoods on different scales. PointNet derives its sugges-

tion for pointwise segmentation only from per point features and global features through one

pooling operation. This is suboptimal, as the surrounding of points encode highly important

information of the class it belongs to. This opens up the question again how to structure

space and how to define a ”neighborhood” which is robust even in sparse regions?

PointNet++ [45] is PointNet’s successor which tries to find an answer to this question. The

idea revolves around set abstraction layers, which consist out of a sampling layer, a grouping

layer and, indeed, a PointNet layer. A set abstraction layer processes its input matrix to

form the desired output matrix in the following way: N × (d+C)→ N ′× (d+C ′). N is the

number of input points, d the dimension of the metric space (normally 3 for (x, y, z)) and C

is the dimension of features, which can be color or normals in the input layers. The amount

of input points is reduced to N ′ when processed in a set abstraction layer. This does not

matter for classification, but for segmentation it introduces complexity.

The sampling layer samples a subset N ′ of all input points N in an iterative farthest point

manner. The authors claim better performance compared to random sampling. Intuition

confirms that as points which are farthest apart are most likely key feature points which

form the skeleton of the shape they represent. The subsampled centroids N ′ define the local

region through the ball-metric.

The grouping layer takes the subsampled points from the previous sampling layer and addi-

tionally a small set of centroid points within the set and groups them. These centroid points

form the ”neighborhood” depending on the ball radius around them. The output is of form:

N ′×K× (d+C ′). Where K indicates the number of points per group. C ′ is the dimension of

new aggregated features. K can have different values, which correspond to the points within

the ball radius around the centroid.

The next layer is, indeed, a PointNet layer. As we know from 4.4, PointNet has by design

no problem consuming a varying number of points. Each point in one group K is transformed

into a local reference frame defined by the centroids contained in N ′. PointNet now extracts

features, exactly the same way as it does in its original version. Differently, the region where
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it is applied is determined by the sampling and grouping algorithm. The extracted features

only correspond to this regions.

The remaining questions are. How to aggregate features throughout the set abstraction layers

and how does this aggregation influences the choice of the parameters used in these layers?

The locality approach introduces a problem when the point cloud becomes sparse locally.

The lowest region can therefore not produce robust features and may propagate wrong infor-

mation downstream. Two remedies for this problem were investigated.

Multi-Scale Grouping (MSG) solves this by constructing different scale groups for the Point-

Net layers and concatenates the features. This approach is straight forward but is compu-

tationally more intensive as the PointNet layer is used multiple times on one centroid. The

more promising approach is called Multi-Resolution Grouping (MRG) where the features

aggregated in a convolutional manner. Each level, except the lowest, concatenate their com-

puted features with the one from the level beneath per centroid. This way the feature vector

gathers feature information from each level.

Regardless of which approach was used, none of them produced feature vectors for all points

because they were subsampled in the beginning. The authors used interpolation between

points of the same level and use skip links between levels to restore the missing information

for input points which were not processed. The interested reader is referred to [45] for details.

4.6 Summary

The PointNet flavors provide an advanced technique to extract features from point clouds.

They address the problems of consuming an unordered set of points while being invariant to

input permutations. Their findings are solely based on benchmark datasets. This makes it

hard to estimate PointNets applicability for real-life tasks as construction sites in advance.

Experience has shown, that there are two limiting factors for PoinNet(++)’s application

which might be hard to overcome. The first one is the simple fact that training data is

from crucial importance. Generating high-quality data with realistic perturbations is a most

challenging task.

The second factor is PointNet’s limit to use 2500 points per input. This number is not

large in the world of point clouds and interesting features might only appear over large

distances. Future research will show if there is enough room for improvement to overcome

these limitations.

Despite these facts, PointNet seems to be the only universal approach to classify point clouds.

Manually feature engineered approaches might work better, but this highly depends on the

circumstances.
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Chapter 5

Point Cloud Generation

The pivotal task of this thesis was to develop a concept to use PointNet [46] [45], or its

successors, in order to detect certain objects in point clouds from construction sites. Point-

Net, as explained in chapter 4, is a DNN trained in a supervised manner. This leads to the

common question where to get labeled point cloud data from? Especially from the domain

of construction sites.

Recent research, as explained in chapter 1, uses point clouds to derive construction progress

and delays. These point clouds have no labels. Labeling them would require hundreds of

work hours, and a framework which is suitable for this task, as used in the research of [13],

similar to [49] for pictures. Their annotating framework was designed for detailed room scans

and is not optimized for clustered heterogeneous construction sites. Even if it was, the task

would be too time-consuming still to label enough point clouds to train PointNet.

As the DNN get deeper and more complex during the last years a common technique called

transfer learning [58] was established in the deep learning community. This technique pro-

vides weights from an already trained NN. These nets are usually trained on current datasets,

see 2.5, and therefore do not need to be trained from scratch. The user would allow gradient

updates only on the last view layers, assuming that the former layers have learned to gener-

alize well enough. This allows for a significantly smaller dataset.

Also this approach was discarded, as a significantly smaller dataset would have needed time-

consuming annotations, too. Further, the selection of trained PointNet models was limited

to the one trained by Charles R. Qi et. al. Using a trained model makes it hard to alter

the model architecture as the weights and biases are tied to it. This is not ideal for research

problems. It would have also limited us to TensorFlow as the deep learning framework.

Because of these reasons, the decision fell on data generation. The idea was to generate point

clouds by sampling them from mesh (stl, ply, obj,etc.) representations, see 4.1. This has

some advantages:
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• infinite amount of data to train, evaluate and test

• the flexibility to use any mesh object in the dataset

• the possibility for fine-grained data augmentation

• the possibility to compose objects out of other objects

The framework was programmed with these features in mind. These advantages do, of course,

not come without disadvantages. The generated point clouds do not reflect low-level features

from real-world data, and fail to resemble a construction site overall. Without alternatives to

the proposed plan, the task was to generate the point cloud as random as possible to make

the net learn a broad variety of features.

5.1 Generator Architecture

We provide an overview of the architecture but will not explain code details. Python is the

programming language of our choice. Mainly because it is all-purpose and object-oriented.

It comes with bindings to all major deep learning frameworks, has nice integration of n-

dimensional array manipulation though Numpy [44] and a large community, fostering scien-

tific coding through Anaconda.

The goal is to obtain a ready to train point cloud training set as a file. Usually, datasets

are created in a file structure. We discouraged this approach in favor of the hdf5-file format

as the storage for the point cloud data. Hdf5, explained in 5.2, does not just store massive

amount of data in a simple structured way, but also allows for metadata which was the de-

cisive criteria. Metadata allows having everything packed up in one large file which can be

easily deployed on a server. A drawback is, that generally, every data piece in a hdf5-file

is not simply accessible without a Python script. We split the data generation process into

three stages.

Aggregation Arrangement HDF5-File

external files

Figure 5.1: generator stages



5.1. Generator Architecture 63

5.1.1 Aggregation

The first task was to handle different mesh file formats in order to load the mesh into memory.

A lot of external libraries were tested and only a view were taken as dependencies. The core

geometrical functionally formed the Trimesh library1.

From experience, these libraries provide a mesh object with numerous methods. It is easy to

retrieve the mesh’s vertices or the connection graph as numpy arrays.

To not lose functionality, a wrapper class around the Trimesh mesh object was created which

we denote WrapMesh. The wrapmesh holds information of the mesh, a name and the class

label for future point sampling. Additional effort was set upon directly generating objects

like a house, container and scaffold. These objects did not come from a file.

A strong requirement was to be able to use objects composed out of many warpmeshes. Be-

cause scaling and rotation shears the object when its center of gravity does not coincide with

the origin, the element class is introduced. The Element aggregates wrapmesh objects, and

worked as a proxy for wrapmesh methods in order to provide a cleaner Application Program-

ming Interface (API).

Figure 5.2: element composed out of three WrapMehes

Figure 5.2 displays an element which houses three different wrapmesh objects. The colors in-

dicate the different class labels as scaffold, roof and body. Please note, that labels don’t carry

any transitive information. A roof is not a subcategory of house, for example. PointNet’s

architecture would not allow for that kind of relations. Nevertheless, due to the implemen-

tations through the element class these relations can be mapped easily. The element also

computes the ground truth for the whole mesh on the xy-plane which is important later on.

In order to create a meaningful point cloud from elements, they must be distributed over an

1https://trimsh.org/index.html
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area while their default size should vary.

For this reason, the factory pattern was used. Providing a factory for each element together

with a Transformer class which transformed the elements in stipulated random ways. The

transformer class generated a transformation matrix tailored to the size and type of the ele-

ment. To apply transformation correctly the object’s center of mass is moved to the origin.

We used homogeneous coordinates for transformation, as shown in equation 5.1.

Rz(α) =


cosα − sinα 0 0

sinα cosα 0 0

0 0 0 0

0 0 0 1

 Sx,y(b) =


sx 0 0 0

0 sy 0 0

0 0 sz 0

0 0 0 1

 T lx,y(c) =


1 0 0 tx

0 1 0 ty

0 0 1 tz

0 0 0 1


(5.1)

Where R is the rotation matrix, S scales the element and T l is the translation to the origin.

To combine them we multiply them from the right.

T (α, b, c) = T lx,y × Sx,y ×Rz (5.2)

Another class, called ElementSequence, holds all element factories, and invokes the construc-

tion process in each factory. For every iteration, all the elements have the same probability

to be created.

Figure 5.3 shows STL meshes and their corresponding point clouds.

Figure 5.3: STL examples and their point cloud representation (container,excavator,concrete pump)

At this sage we have created the elementsequence object that can be iterated over. In each

iteration step a randomly selected factory creates a scaled and rotated element. The trans-

formation is determined by the transformer class. The elements must then be positioned in

a specified area, which we denote as a Scene.

5.1.2 Arrangement

The arrangement was an unexpectedly involving task. The random sized object must not

intersect but should be placed as random as possible. In the following explanation, ”element”

still refers to the object, but for simplicity, only the ground truth representation is shown.

Figure 5.5 shows the possible arrangement strategies for different elements. A Scene object
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defines the size of the populated area and holds the elements. The gray rectangles constitute

the ground truth for each element. The ground truth is derived from the scaled and rotated

elements and is axis aligned, see figure 5.4. Therefore, rectangles touching each other does

not mean the point clouds intersect.

Element

x

y

Figure 5.4: ground truth and element area

For the random approach, the idea was to sample points uniformly at random, and use

them as the element’s center, see image in figure 5.5. The random approach was abandoned

quickly because the scene was populated too sparsely. And intersections couldn’t be excluded

completely.

The closest to mid approach tried to iteratively move randomly placed objects near to

the origin. One object after another is moved along an imaginary line which goes through

the origin and the element’s center point (projected on the x,y-plane). One iteration moved

every object a distance t towards the origin. If two objects intersected, no movement would

happen.

text-like closest to mid random

Figure 5.5: three scene arrangement solution

The iteration ends when no objects are able to move closer to the origin. This approach gen-

erally suffered from a high computational workload. At unfortunate placements, the objects
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got locked. Intersections were calculated through the Trimesh intersection module which was

faulty, and did not recognize intersections correctly. The incomplete documentation compli-

cated the pursuit of a solution. Therefore, this method was discarded as well.

The text-like approach interpreted each element in the queue as ”character” and placed

them on a straight line. The two largest elements defined the minimum distance between two

rows as depicted as dotted lines in the left image in figure 5.5. This method worked quite

well, but also produced too much space between elements. In addition, small elements placed

around a bigger element were not possible.

The final decision fell on a mathematical problem called packing problem, more precisely the

knapsack problem [1]. We used the python library rectpack2 as an implementation, instead

of implementing it again. Figure 5.6 shows a solution plot for the problem fitting n rectangles

in a predefined area.

Figure 5.6: Knapsack problem
https://github.com/secnot/rectpack

The packing algorithm was used to

process each generated element se-

quentially. It started in the lower left

corner and placed the elements best

fitting. The Knapsack packing algo-

rithm was primary created for prob-

lems including more than one area,

which are called bins in this context.

Based on a fitness measure, the rect-

angles where placed in the best fit-

ting bin. It was also totally fine to

not find a suitable bin for the algo-

rithm, which then simply discarded

this element. This led to subtle bugs.

Because of the algorithm’s nature, all elements were clustered near the origin. Additionally,

relative small elements filled gaps created by larger ones and therefore amplify clustering.

Figure 5.7 shows example plots for a scene. This approach was random enough and inter-

sections could be ruled out.

Until now, we worked with mesh objects from Trimesh. Sampling points from triangulated

meshes seems straight forward but includes a pitfall. The naive approach would suggest to

just use the nodes from the mesh as a point cloud. This limits the number of points to

the nodes of the mesh which is hardly enough to call it a point cloud. Furthermore, the

mesh nodes cluster in regions with high curvature, which leaves the number of points biased

towards curvy regions.

We used Pyntcloud’s3 sampling algorithm, based on the area of the triangle, to sample n

points uniformly from the mesh. The number of points is regulated through a parameter

2https://github.com/secnot/rectpack
3https://github.com/daavoo/pyntcloud

https://github.com/secnot/rectpack
https://github.com/secnot/rectpack
https://github.com/daavoo/pyntcloud
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Figure 5.7: Ground truth of three scenes. Clusterings can be observed in the left and in the middle
image. Sparse regions are unfortunately still present. These image illustrate different scales of the
objects, for example excavator and column.

provided to the element factory. Small elements get a lower number of points whereas bigger

elements get more. This parameter can be set in the corresponding element factory. Because

the algorithm depends on the area of each triangle of the mesh, this sampling became a bot-

tleneck when more than 50,000 points where requested. An open task remains to discard the

use of Pyntcloud and use the underlying sampling algorithm directly because it is completely

based on pandas [37]4

5.1.3 Sampling Slices

In chapter 4, we described the PointNet in detail. It can process 2500 point at max directly.

This is quite little in the domain of scene scans where 1 million points are still considered

small. The generated scene had to be preprocessed in order to be consumed by PointNet.

We will denote chunks of the point cloud with more than 2500 but less than 5000 points as

slices.

With the split-of-concern-principle in mind, we had the idea to leave slicing to the PyTorch

dataloader. The dataloader organizes the load process for a NN. It has a nice interface to

augment the provided data on the fly and in parallel through so-called workers. Unfortu-

nately, the dataloader and the hdf5-implementation did not work together at all, even though

hdf5 aggressively supports parallelism. Only one worker thread worked as expected, which

killed any performance boost.

The advantage of the dataloader would have been that only whole scenes were required.

Additionally, we could have used the same procedure for real-world laser scans, too. Unfor-

tunately, the slicing problem was computationally too expensive and not realizable in real

time during the training process with only one worker. Therefore, slicing also became part

of the dataset generation process. Two sampling techniques were further investigated.

4Pandas belongs to the famous scipy ecosystem and provides highly optimized two and one-dimensional
data structures for statistical computation.
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k-nearest Neighbors

The idea was to pick points at random and use their 2500 surrounding neighbors as one slice.

First of all, we calculated a kd-tree for the point cloud. The resulting matrix contained the

indices of the neighbor point as row vectors. By sampling a number between zero and the

number of points in the point cloud, we used the number as an index to pick a slice and

deleted the corresponding points from the point cloud. Then, we needed to recalculate the

kd-tree in order to give credit to the missing points we sampled the slice from. This, approach

suffered from redundant recalculations of the kd-tree.

Furthermore, this procedure created spatially widespread slices the smaller the point cloud

became which is not a desired property for training data. Additionally, from uniform regions,

the algorithm sampled the slices in a spherical fashion. This makes sense as a sphere defines

the nearest neighbors on a plane region. This led to a heavily biased dataset in the sense

that the network learned spherical features where none exist in reality. Due to the downsides

described above, this approach was discarded.

Equal Slices

The equal slice approach mitigates the spherical sampling problem by equally partitioning

of the point cloud in rectangles with a predefined size. Straight forward, we developed an

algorithm which divided the point clouds into slices according to a given width and length

(w, h). Figure 5.8 shows renderings from one scene. The renderings on the right display the

full point cloud whereas the renderings on the left depict the slices cut out from the cloud.

Figure 5.8: Four point cloud renderings depicting the same scene. The colors indicate the class for
each point and have no further meaning. (pale yellow:excavator, green:bar, purple: container, blue:
roof, brown: house body, beige: concrete pump, turquoise: container(cube), yellow:scaffold)
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Due to the high variation of point density, there are only a few slices generated per scene

which have enough points to be consumed. The measured ratio of all slices and slices with

more than 2500 point is between 25% - 30%.

The hard to overcome issue is that, on the one side we are constrained by the upper bound of

2500 points per slice, but on the other we seek to classify large objects in a scene. If the object

is larger than a slice, then its learnable features span across multiple slices. This destroys

the connection between them, and the NN is not able to comprehend their correlation. This

fundamental problem has a high priority in further investigations.

5.2 HDF5 Dataset

The Hierarchical Data Format (HDF5) was developed by the non-profit HDF-Group com-

pany to satisfy the needs of scientist to store massive amount of heterogeneous data in an

ordered way. HDF5 is a self-describing binary file which is able to represent n-dimensional

datasets without limitations in size. Its elements, in turn, can self be complex objects. It’s

meant for easy sharing, it is not platform agnostic and parallel I/O is natively supported. It

provides meta attributes which describe the stored data.

The library is implemented in C but almost every common programming language provides

wrappers around it, like h5py which is used in this thesis. HDF5 files are composed out of

groups, attributes, datasets. Groups can be viewed as folders holding datasets. Datasets are

n-dimensional arrays holding different data types and structures. Attributes are the meta

information of the data stored and might be, for example, a simple string. Because hdf5

datasets are ordered and self-describing they suite very well as a data source for deep learn-

ing tasks.

The sampling algorithms explained in section 5.1.3 are interwoven with the creation of the

hdf5-file. Nevertheless, for the algorithm it makes no difference how the actual points are

sampled. Therefore, these sections can be treated independently. During the programming

process, a lot of different hdf5-file structures were tested. In order to explain the dataset

creation, we first need to look at the PyTorch dataloader and dataset class because they

highly depend on each other.

The PyTorch dataloader gets a PyTorch dataset at instantiation time. During training, the

dataloader is iterated over, which in turn iterates over the dataset. The dataset class defines

an abstract base class for the user to derive from. It demands, that Python’s famous magic

methods len and getitem are defined. Where len refers to the ”length” of the

object and getitem is a method, which defines the logic of which item is returned when

the object is iterated. These are only a small selection of python specific functions, but they

make Python so effective. For more details the reader is referred to the Python documenta-

tion5.

5https://docs.python.org/3/reference

https://docs.python.org/3/reference
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The len method obviously refers to the length of the dataset whereas the getitem

method returns a tuple of the actual data and its corresponding label. There is normally not

too much computation carried out in the getitem method beside the loading procedure

of the data and the label from disk. The dataloader, in turn, is responsible for data augmen-

tation on the fly. For images, this includes cropping, transformation, adding filters etc.

In our case, the dataset gets the hdf5 file and must be able to understand its structure in

order to load the data from it. Therefore, more logic is contained in the dataset class.

During the dataset creation, an user-defined number of scenes n is created. The slices of

every scene belong to a group to render them later on. Every scene is partitioned in i × j
slices which makes n × i × j slices in total. If every slice had a sufficient number of points,

we would know the exact number of slices per group and indexing would be no problem. But

the exact number of slices per scene is only known after slicing.

As described in 5.1.3, the chosen equal slicing did not guarantee that all slices from the scene

where suitable for the training phase. A simple remedy for this problem is to not store slices

from the same scene together in one group of the hdf5-file but sequentially. Rendering scenes

and evaluations become impossible this way because we do not know which slices belong to

the same scene. A simple solution would have been to add a tag to each dataset which shows

the corresponding scene, but this was unknown during the programming phase.

Figure 5.9 shows the diagram of the data storage format.

HDF5-File

Scene1

Group: scene

whole Scene

Slice1

Slice2

Slice n

[...]

[...]

[...]

[...]

attr.: n 

Scene2

23

17

Figure 5.9: initial structure for the HDF5 file

On the left, we can see that the file is structured into m groups, which contains n slices

(gray). Additionally, the whole scene is saved as well. This is done to compare the slices
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with their corresponding scene where they are sampled from. And to detect the parts the

algorithm has discarded in the rendering process. The numbers (23,17) indicate the number

of slices in each scene group. The dataset knows this structure and iterates through all scene

groups, while counting the visited slices, until the counter equals the slice index. This needs

further optimization.

The duration to create a dataset is linearly dependent on the number of scenes we want in our

dataset. Further studies have shown that sampling the points from large and complicated

meshes, like the concrete pump, becomes a bottleneck. We can assume 2-4 hours for a

sufficiently large dataset.

5.3 Training

The dataset generation process and the training are distinct phases. Nevertheless, the dat-

aloader’s part is quickly explained here.

The dataset class, which reads the hdf5 file, provides the raw slice to the dataloader. Because

our constraint on the slice was that it must at least contain 2500 points and 5000 at max, the

dataloader must subsample the slice further to yield exactly 2500 points. It does so randomly.

This leads to an interesting fact, that the NN does not encounter the exact training example

twice, which is highly desirable.

On demand, the dataloader augments the points by subtracting their mean from them. This

gives credit to the fact that it is not important at all for the class at where it is placed in 3D

space. The slice is translated into the origin by subtracting the mean from it. This form of

augmentation is necessary in order to not bias the network with point values from one range,

e.g. only positive. At inference time, this would perform poorly on point values in negative

range.

When a dataset of pictures is normalized through its mean value, it is highly important that

the mean is only calculated on the training set. This calculated mean is then applied to the

test validation set and during inference, see [29]. For our 3D points, this is not important as

we calculate the mean for each slice independently. But is also clear that the NN has only

seen values defined by the measures of the slices it is trained on. This is a trade-off we have

to take. A further consideration is to completely normalize the slices by squeezing all point

values into the unit sphere.

5.4 Improvements

There are only a view inconveniences in this setup which became only clear after the first

training runs. First of all, there is no gain for the complex class hierarchy only to carry

the mesh representation until the sampling algorithm samples the points from them. At this
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point we suggest, to discard meshes from the process completely, expect the very initial phase

where they are loaded. The sampled point cloud would completely replace them leaving us

with the simple Numpy array representation. This would simplify the whole generation pro-

cess a lot. The disadvantage is that transformation must then be applied to the number

of point in the point cloud, which could become a bottleneck as well. In the spirit of this

simplification, the point cloud and the labels should be processed separately. Currently, the

labels extend the point cloud array as a fourth dimension. For homogeneity reasons, the

labels have the same floating point precision as the rest of the points, e.g. float32. This is

a waste of memory as uint8 would be more than sufficient for labels representing 20 classes

at max.

The hdf5 file structure has proved its superiority when the user is familiar with it, but it

can be drastically simplified. Two specific ideas need further investigation. Hdf5 provides

pointer-like references to all hdf5 types like groups, attributes, or datasets. Additionally, it

allows to reference regions inside a dataset. This allows for only on massive datasets, con-

taining all points from all slices. The reference would be used to define where a slice begins

end ends. Arranging the references into groups of scenes further allows identifying the whole

scene.

Another idea was to not group the slice datasets into scene groups, but leave all of them

in the root level. A simple integer attribute would allow sorting the slices by scenes. This

approach seems simpler to implement.

Minor improvements contain revision of the element factories by providing a base class

where every factory inherits from. At generation time, the factories get the class index as an

argument independently from each other. No logic checks if a class number is accidentally

assigned multiple times to different objects which is error-prone. Supplementary, the total

amount of classes must be set manually, which could also be automated.
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Chapter 6

Results

As we have now seen the workflow of PointNet and the generation of training data, we can

now dedicate ourselves to the actual results.

6.1 Choice of Implementation

Beside the papers for PointNet1 and PointNet++2, Charles R. Qi et al. provide implemen-

tations on Github for research use. Both are implemented in TensorFlow. As explained

in 4.5, PointNet++ uses farthest point sampling to generate subsets from the input point

cloud. For this rather exotic purpose TensorFlow does no provide a default implementation.

Therefore, they implemented a custom layer in C++, tide to a version 9.0 of Nvidia CUDA’s

deep learning library cudnn. To run PointNet++ at all, one needs to compile this layer at

first. Additionally, one needs cudnn9.0 and therefore a Nvidia graphics card.

TensorFlow composes a graph of user-defined computations and compiles it to hardware in-

structions. A session is needed to run computations at all. The computational graph is

heavily optimized for training but must not change after its instantiation. This makes it hard

to debug, test and comprehend. On the other side TensorFlow is known for its incomparable

speed.

These reasons led to the choice of a custom implementation of PointNet in PyTorch. Py-

Toch, in contrast to TensorFlow, builds its graph during runtime repeatedly for one forward

and backward pass. This design allows logical control flow statements, like if/else, in the

computational graph. Further, tensors are accessible right away, and therefore much easier

to debug. We used the implementation from fxia223 for this thesis.

1https://github.com/charlesq34/pointnet
2https://github.com/charlesq34/pointnet2
3https://github.com/fxia22/pointnet.pytorch

https://github.com/charlesq34/pointnet
https://github.com/charlesq34/pointnet2
https://github.com/fxia22/pointnet.pytorch
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This code was adjusted in large part. Especially the input queue was completely rewritten

in order to load data from the hdf5 file.

6.2 Evaluation

The first test run already brought interesting insights. Figure 6.1 plots show the test/train

accuracy on the left and the test/train loss on the right. The pale colors indicate the real

values, whereas the full colored lines represent the smoothed version.
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Figure 6.1: First Run

learning rate: 0.01 momentum: 0.9 batch size: 20
# epochs: 250 classes: 11 slices: c.a. 6000

The training set, for this run, was generated with 11 different classes and approximately

6, 000 slices. For training the Adam optimizer was used with a momentum of 0.9 and a batch

size of 20.

At first glance, the graphs look pretty normal. The Accuracy rises and saturates as well as

the loss, only in reverse. The training loss is also lower than the test loss which, in turn,

leads to a higher train accuracy. Overfitting is not observable as the test loss still decreases,

but cannot be fully excluded. On the whole, major mistakes in the training data and errors

in the model do not seem likely.
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Noticeable, though, is that the actual values for accuracy and loss are of high frequency.

Oscillating graphs are not unusual, but to this extent, it is not. One possible explanation

could be the batch size being too small. Therefore, we could not generate a stable gradient

and the weights are exposed to biased updates. This increases the variance which, in turn,

leads to unstable predictions, see [17].

Further, the train accuracy saturates early at a value of around 70%. As we cannot observe

overfitting yet, this indicates, that the model’s capacity is to low. Another explanation could

be that the training data produces too similar objects with many similar features. Due to

the small size of each slice, the features might be ambiguous. Increasing the slices is not a

solution. During training 2500 points are randomly subsampled to meets the nets constraint.

If we would extend the slice the overall point density decreases which destroys local features.

Increasing the point limit PointNet consumes above 2500, would lead to problems with max

pooling. Max pooling makes a DNN robust to slights perturbations in the input but also

destroys the spatial relationship of features. Larger max-pooling layers would embrace this

behavior.

A downside of PointNet’s architecture is that it struggles to recognize scale. This can be

observed by the frequent misclassification of bars. Their shape is quite similar to bricks.

PoinNet’s architecture enhances this behavior because it makes its predictions by low-level

local features and global features. The max pool layers destroy the spatial relation. If the

max pool layer filters feature for a cuboid, the local features cannot tell its spatial extent.

Therefore, PoinNet’s ’guessing’ in this case. We believe, if the bar had distinct local features

like notches, PointNet would recognize them better.

6.2.1 Slices

Figure 6.2 shows the evaluation on the test set. Green denote correctly classified points

whereas red denotes the opposite. We can observe ten classes, like concrete pump, house

(roof,body), scaffold, bar, brick, ground (up, down), container1, container2. Container1 is

created out of a simple boolean operation. Container2 is sampled from a STL-file, see 5.3.

We divided the ground into two regions, upper and lower, in order to test PointNet’s ability

to identify the same structure as two distinct classes only depending on its position. This

works quite well. The other reason we used the ground is to already have a little number of

points everywhere.
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Figure 6.2: Evaluation on the test set

Figure 6.3: Information is not passed beyond two slices
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Figure 6.3 shows two slices. On the left, the network manages to recognize the correct class.

On the right site, it struggles. If the information exchange would happen between slices, such

cases would be less frequent. It would be definitely worth investigating a dynamic slicing

technique where objects are not cut.

We have to put this constraint into a bigger picture. The net cannot concatenate information

throughout slices where one slice’s spatial extent amounts only a few meters. Thus, the net

has initially no chance to capture objects over a large extent. Whether this becomes a

limitation, depends on the circumstances. In the scope of progress track, compact objects,

which change their position a lot, are of interest. Objects like clutter, reinforcement steel,

concrete bombs, formwork. Therefore, this approach seems still applicable.

6.2.2 Test runs

We extended the number of batches per epoch to 640. Despite the fact that more data is

better, the increase in training data had not much influence on the results. Figure 6.4 show

the graphs.
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Figure 6.4: Run with larger dataset

learning rate: 0.01 momentum: 0.9 batch size: 20
# epochs: 250 classes: 11 slices: c.a. 13000
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We can observe a similar graph to 6.1. The training accuracy constantly increases, where as

the train accuracy saturated around 70% as in the first run. This is a clear indicator that the

NN overfits the dataset. The loss’ graph confirms that behavior. The training loss decreases

while the test loss has saturated. We can conclude that a training set with approximately

8000 slices is sufficient to train PointNet.

For the next test run, we reduced the number of classes to 3. The main objects of interest

were bars and formwork. The rest was classified as clutter. Figure 6.5 shows the graphs.

This stunning results must be viewed critically. We archived a very good test error of 3.68%.
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Figure 6.5: Run with only 3 classes

But as we only used three classes, the absolute amount of points belonging to classes bar

and scaffold is already low. In other words, the net archives a pretty good accuracy by

assigning clutter to all points. Figure 6.6 shows the models predictions as well as the boolean

representation. Despite the fact that the model could assign clutter to all point, we observe

quite a good prediction from the network. Even tiny objects like bricks are captured well

enough.
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Figure 6.6: Prediction and boolean representation for 3 classes

6.2.3 Inference

In order to infer PointNet, data augmentation was necessary. The datasets contained the

slices at positions where they were sampled from the scene. The scene is by design always

located in the first quadrant. PointNet learned the object’s position to be positive. To make

inference invariant to the actual position of the slice in the coordinate system, we subtracted

the mean from all points. This translated the slice to the origin. PointNet was now trained

on these augmented data. We could not observe any significant changes in the classification

error on the test set. In inference, in turn, we could be sure that PointNet was not biased by

the absolute position of the slice.

Figure 6.7 depicts PointNet’s prediction on real-world data. The colored point cloud on the

right shows the pixelwise prediction of PointNet. The comparison to real-world objects is

hard to draw, as we have no labels for it. The training dataset did not contain similar patterns

which could be recognizable in the real-world point cloud. Nevertheless, we can observe that

the predictions are not arbitrary. Similar predictions cluster where distinct objects can be

observed in the input. The yellow regions in the back indicate the class container. There is

obviously no container on the high ground, but a pile of formwork is located in that region,

which has a similar shape. Furthermore, the scaffold is completely classified green, except its

railings which are brown. This indicates a clear distinction between object shapes, the net is

able to recognize.
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Figure 6.7: Inference on a real-world construction site point cloud

We can conclude that real-life application is not in reach yet. But the results are highly

promising as they prove that the deep learning approach is the right choice for this problem.
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Chapter 7

Outlook & Improvements

7.1 Deep Learning Approach

Deep learning is a universal tool. Its power combined with user-friendly frameworks lower

the barrier for people to use it. But it is most likely not the right tool for medium complex

daily tasks. We recall Occam’s Razor and ask: Is deep learning the right approach for this

problem? There are, of course, other promising methods available, see 7.4. Still, point

cloud classification is an unsolved problem in general with many pathological corner cases

in specific. Thus, applying deep learning seems like more than a justified approach. The

decision to use PointNet was mainly due to the appealing property that it works on point

clouds directly. In contrast, volumetric deep learning approaches lack the information on the

lowest level. They render the point cloud unnecessary voluminous. It must be investigated

if these architectures might yield better results than PointNet.

7.1.1 Additional Features

All our experiments were solely based on 3D coordinates without additional information. It is

most likely that color information would drastically increase the performance and robustness

of PoinNet. For example, the spatial arrangement of a scaffold’s and a crane’s struts may

exhibit a similar feature vector, but color would completely determine the one from the other.

Additionally, normals could also help PointNet to improve its predictions. In [46] the authors

describe an experiment where they use PointNet to predict normals on a point cloud. This

shows that PointNet is able to extract features corresponding to normals. If we would provide

normal right from the beginning, PointNet does not need to learn them.

To add extra information to points, the generator becomes a lot more complex. Normals

could be incorporated into the generation process without much effort. Color information is

trickier as we need to sample it from textures.
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7.2 Dataset

The quality of the dataset is crucial. Future work must decide if the generator approach will

lead to sufficient improvements for real-life data. An important question is: Can a generator

produce realistic enough point clouds to train PointNet?

We suggest an experiment in which we include real point cloud slices into the training process

which represent clutter as a whole class. This would simplify the creation process and might

help the NN to learn real-world pattern.

The classes per se need revision and a more careful definition. Using broader labels which

include different objects, might help to generalize better in the first place. We suggest classes

like ’vehicle’ including concrete pumps, cranes, excavators, trucks and the like.

Composing different datasets where the focus lies on one specific classes would allow mixing

datasets. For example, when the net struggles to recognize a truck, it might be useful to

train on the vehicle dataset for a while.

7.3 Disaster: Max Pooling

As we have seen in 3.1.6 max pooling is a rather simple technique to reduce the complexity

of the embedding space and extract the most important features out of it. Thus by design,

information is definitely lost when passed through a max pool layer. The deep-learning

community has an ongoing debate about max pool layers. One famous opponent said:

“The pooling operation used in convolutional neural networks is a big mistake and the fact

that it works so well is a disaster.” – Geoffrey Hinton

But what is it, that makes max pooling a disaster. And what can we learn from Hinton in

order to improve our PointNet implementation?

Geoffrey Hinton is a Professor of the Computer Science Department of the University of

Toronto, Canada [22]. Coming from a background in psychology, he early believed in the

power of neuronal networks. Cited as the ”God Father of AI” in The Telegraph, he predicts

a sinister future for the path AI-research is heading. As an opponent for intelligent lethal

weapons, he signed an open letter from the Future of Life Institute [43] along with Stephen

Hawking, Elon Musk, Steve Wozniak and Max Tegmark.

Scientifically, he is the inventor of CapsulesNet. A new neuronal network architecture which

inherently preserves spatial relations between embeddings. His proposed technique to train

the network is called ”routing by agreement”. This allows lower layers to decide to which

neuron in the higher layer their output is routed. Therefore, the route through the network

can be tracked and has an intuitive impact on the input. One downside is that routing by

agreement implements a k-nearest-neighbor-like algorithm, which contains a loop. A loop is
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not a usual construct in neuronal network architectures, thus it has not been optimized for

modern deep-learning frameworks. Its results are state of the art on MNIST (2.5) dataset.

But it lacks accuracy on CIFAR where the error is around 10.6%. This seems quite a lot,

but as mentioned in thier paper [50], this is what all new major architectures achieved in the

beginning.

Hinton aside, he is not the only one against pooling layers. 2015 a research group around Jost

Tobias Springenberg published a paper called ”Striving for Simplicity: The All Convolutional

Net” [52]. As the name suggests, they use the property of convolutions to reduce the spatial

size of the input image. Comparing with other architectures they archive an accuracy of

95.95% on the CIFAR-10 dataset what secured them the second place. But only place 19

on CIFAR-100 with an accuracy of 66.29% [2]. This suggests that their initial idea avoiding

pooling layers does not scale to larger, meaning more complex, datasets.

Nevertheless, these findings definitely need more investigation wrt. our PointNet architecture

where the pivotal point exactly is the max pool operation.

7.4 Point Descriptors

Before deep learning became famous, people engineered point descriptors. Point descriptors

seek to extract information about one point of a point cloud and its neighbors which is invari-

ant to scale, translation and noise. The idea is that robust point descriptors can be matched

across point clouds. Therefore, a specific relation among point descriptors indicates the pres-

ence of an object. Point descriptors must be only obtained once. No time-consuming learning

process is required. Their application on large datasets comes with a high computational cost.

This is the disadvantage compared to DNN, which can be tweaked to real-time performance

even on budget hardware. Two promising descriptors are explained in the following.

SHOT (Signatures of Histograms OrienTations) descriptors are inspired by the SIFT algo-

rithm used in photogrammetry to generate point clouds out of images, see 1.3.2. The point

cloud is divided into a spherical gird where the cosine between the feature point normal and

the normal of neighboring points is computed. The results are packed in histogram bins.

This way the histogram encodes information at this feature point. A classification algorithm

(random forest) can be trained on histograms, recognizing common descriptors between the

same objects. This is roughly the approach suggested in [62].

Spin Images uses the normals per feature point and rotate an imaginary canvas around it.

During rotation, the canvas will be intersected by neighboring points. The frequency of the

points intersecting one specific pixel is encoded in gray values. After rotation and smoothing

the canvas contains an ”image” of the neighborhood of the feature point. The canvas size is

not scale-invariant and neither is the descriptor, see [27].

There are a large variety of descriptors: Histogram-based, transform-based, 2D view-based,
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graph-based and combinations. None of them provides a general approach to robustly extract

objects out of point clouds.

7.5 Conclusion

The perception of point clouds is an unsolved problem. In comparison to images, point clouds

life in an even larger space. That is why it is evidently hard to extract useful information out

of them. Common well-defined descriptor approaches for feature extraction have not solved

this task yet. With the rise of more powerful deep learning techniques it seems straight

forward to apply them on point sets. The pioneering CNNs only work on structured data,

what point clouds are not. Because point clouds are only used in specific cases, there is only

limited to none labeled data.

In this thesis, we investigated exactly this two issues. Many promising deep learning ap-

proaches were examined. Our decision fell on PointNet, as it works in point clouds directly.

Hardly any preprocessing - in terms of voxelization - has to be done to use it. We used a

custom implementation in PyTroch.

In order to overcome the lack of point clouds data, we developed a generator. The generator

randomly places mesh objects on an user-defined area. The user can further specify arbitrary

transformations which then are applied to the objects. Finally placed in the right position,

points are sampled from the meshes. This leads to scenes which resemble constructions sites.

These scenes are sliced to be consumed by PointNet. Out of these slices, with the help of the

hdf5-file format, datasets were created. Because we sampled the points from known mesh

types, every point has a label assigned to it.

We showed in chapter 6 that PointNet is able to capture objects from datasets. Depending

on the dataset and the number of classes, we archive 75%-97% test accuracy. This number

shows that this approach works. We show further that PointNet’s prediction fully depends

on the instances provided in the dataset. Based on our findings, the future effort has to be

put on tuning the dataset and add color and normals to it. Furthermore, ways to use the

successor version of PointNet, PointNet++, have to be investigated.
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