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Abstract—3D ConvNets provide a dedicated spatiotemporal
representation in order to incorporate motion patterns within
video frames. However, compared to 2D convolutions, the 3D
convolution kernels increase the number of parameters in the
architecture and the floating point operations during inference
time, which are of critical importance for real-time applications
requiring faster runtime. In this paper, we show a sparse
sampling and stacking strategy to span large time intervals for
3D ConvNet architectures that can attain multiple times less
inference time by relinquishing little amount of classification
accuracy. The proposed approach is validated on action and
gesture recognition tasks using two recent video datasets: Jester
and Something-Something datasets.

I. INTRODUCTION

Action and gesture recognition have received significant
interest within computer vision field in the last few years. The
current work in this domain is generally based on deep Convo-
lutional Neural Networks (ConvNets), which outperform many
state-of-the-art techniques based on hand-crafted features [1],
[2].

ConvNets with three-dimensional convolution kernels (3D
ConvNets) provide a decent way of temporal reasoning over
video frames. For action and gesture recognition, 3D ConvNets
achieve recently better performance compared to ConvNets
with two-dimensional kernels (2D ConvNets) [3]. However,
3D ConvNets have many more parameters and longer infer-
ence time than 2D ConvNets, which limits their real-time
capabilities.

The immense number of parameters in 3D ConvNet archi-
tectures would quickly lead to overfitting. With the availability
of larger datasets (e.g. Sports-1M [1], Kinetics [3]) this overfit-
ting problem is solved recently [4]. Nonetheless, the problem
of large number of floating point operations during inference
time of 3D ConvNets remains to be unsolved.

On the other hand, recent studies proved that expanding
the temporal length of inputs for 3D ConvNets improves
recognition performance [4], [5]. The intuition behind is that
increased temporal length captures the content of actions that
last long time durations better. However, increasing temporal
length of the input also increases the number of floating point
operations linearly. Correspondingly, the best option would be
to have 3D ConvNets to cover larger time durations without
increasing the number of floating point operations which can
be achieved by sparse selection of input frames. As it can be

seen in Fig. 9, reducing temporal dimension from 32 frames
to 16 frames increases the speed more than two times, and the
sparse selection of 16 frames (e.g., taking every second frame
from 32 consecutive frames) achieves better performance than
consecutive 16 frames. The reason behind this performance
gain is that the sparse sampling spans longer time durations
which is better to capture performed actions and gestures.
Dropped frames can also be utilized by appending them to
the selected ones creating a stacked structure which improves
the performance further, as in [20]. The proposed approach is
validated with two recent gesture and action datasets which are
Jester [6] and Something-Something [7] datasets, respectively.

The main contributions of this paper can be summarised
as follows: The speed of the 3D ConvNet architectures can
be increased by reducing the temporal dimension of inputs
(i.e., reducing the computation) with sparse selection and
stacking of the input frames. This approach increases the
speed of the architecture multiple times without significant
performance degradation (e.g., compared to input dimension
of 32 frames, sparsely selected 16 frames is 2 times faster
with only performance degradation of 1.859% accuracy, Fig.
8). Moreover, we experimentally prove that 3D ConvNets still
show relatively good performance even when the number of
input frames reduces to 4. This shows that 3D ConvNets can
capture the temporal relation between such a small number
of frames under correct conditions. These conditions are
discussed in detail in Section IV.

The rest of the paper is organised as follows: Section II
reviews the action and gesture recognition that applies deep
learning. Section III introduces the proposed approach and
implementation details. Experimental results on the Jester and
Something-Something datasets are provided in Section IV.
Finally, Section V concludes the paper.

II. RELATED WORK

ConvNets have been initially applied for static image analy-
sis, which has provided better performance over hand-crafted
features [8], [9]. Then, they have been extended for video
action and gesture recognition [1], [2], [10].

After significant progress in 2D ConvNets in various tasks
especially with ImageNet challenge [11], first deep learning
based video analysis architectures were also based on 2D
convolutional kernels. In [1], [2], [10], [12], video frames



are treated as multi-channel inputs to 2D ConvNets for action
classification. Temporal Segment Network (TSN) [13] divides
video data into segments and combines information from color
and optical flow modalities for action recognition. Recently,
Temporal Relation Network (TRN) [14] builds on top of TSN
to investigate temporal relational reasoning between video
frames at multiple time scales. In [15], the authors propose
to extract features from video frames by a 2D ConvNet and
apply Recurrent Neural Networks (RNN) for global temporal
modeling.

In [16], 3D ConvNets are explored to provide an effective
tool for accurate action recognition. 3D ConvNets use 3D
convolutional kernels and 3D pooling to capture discriminative
features along both spatial and temporal dimensions [5], [17].
However, the number of parameters in 3D ConvNets are much
larger compared to 2D ConvNets. This requires 3D ConvNets
to be pretrained on large datasets first (e.g. Sports-1M [1],
Kinetics [3]) for the application in small scaled datasets
like UCF-101 [18] or HMDB-51 [19] in order to prevent
overfitting. A recent work analysed 3D ConvNets on different
scales of video datasets and proved that Kinetics dataset is
large enough to train deep 3D ConvNets without overfitting
[4].

Temporal dimension of inputs for 3D ConvNets are analysed
in [4], [5], and it is proved that increased temporal dimen-
sion of inputs improves the accuracy of action recognition.
However, increased temporal dimension also increases the
number of floating point operations which results in slower
architectures. Moreover, in order to train architectures with
increased temporal dimension, either batch size or resolution
of the video should be reduced to fit in the same hardware.

In another recent study [20], the authors propose to use data
level fusion for color and optical flow modalities. This work
was the main inspiration to append dropped frames to the
selected ones and create a stacked structure. In Section 4, it is
experimentally proved that stacking increases the recognition
performance.

III. METHODOLOGY

In this section, we describe the sparse selection and stacking
strategy and the network architecture used for gesture and
action recognition. Particularly, we first describe how to apply
sparse selection and stacking and explain how it speeds up
the 3D ConvNet architecture. Then, we introduce the network
architecture that we experimented on. Finally, we describe the
training details.

A. Sparse Selection and Stacking

3D ConvNets require fixed temporal dimension inputs,
which means the length of the input videos should be same.
Therefore, selection of input frames to capture the essence of
the performed actions plays a critical role in the recognition
performance.

Selected input frames for long-term actions should represent
the complete action in order to achieve better performance. In
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Fig. 1. selection of

Sparse
video frames. Sparse selection is
achieved by equidistant downsam-
pling. Every fourth frame is se-
lected and temporal dimension of
32 frames is reduced to 8 frames.

Fig. 2. Stacking dropped frames
to the sparsely selected ones. Mid-
dle frames of the dropped ones
are appended to the selected ones.
Frames of 2,6,...,26,30 are ap-
pended to 4,8,...,28,32 respectively.

Fig. 3.

Downsampling of large
number of video frames to a
smaller predefined number by
dropping some of the frames.

Fig. 4. Upsampling of small num-
ber of video frames to a larger
predefined number by replicating
some of the frames.

this manner, [4], [5] proposed to use longer temporal dimen-
sion. However, the performance gain achieved by increasing
the number of input frames results in a slower runtime of
the architectures. In order to remedy this, we proposed to use
sparse selection and stacking.

Fig. 1 shows how to apply the sparse selection of 8 frames
from 32 frames (i.e., selecting every 4*" frame). This way,
longer time durations are covered without increasing the
number of input frames. Instead of selecting consecutive 16
frames on Jester Dataset, the sparse selection of 16 frames
(selecting every second frame of 32 frames) shows better
performance, Fig. 8. Sparse selection is always applied by
equidistant downsampling for all videos.

Dropped frames can also be used by appending them to
the selected ones creating a stacked structure which improves
the performance. Fig. 2 shows how to apply stacking where
the middle frames of the dropped ones are appended to the
selected ones. With this stacking strategy, overall used frames
become uniformly distributed. If stacking is applied, the first
convolutional layer of the 3D ConvNet should be modified in
order to accommodate the stacked structure with the number
of input channels as proposed in [20].

The above-mentioned strategy can be applied to datasets
that have videos with relatively same temporal dimension. So
that, choosing a predefined number of frames and applying
sparse selection can capture the main motion cues without
much of performance degradation. In other words, it is better
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Fig. 5. ResNeXt block. F refers to the number of feature maps and group
refers to the number of groups for group convolutions.

to use 4 frames distributed over the entire time period rather
than 4 consecutive frames selected at any location within this
time period. However, some datasets have videos with varying
number of frames (e.g., Something-Something Dataset have
videos with a temporal dimension between 20 and 75 frames).
For such datasets, downsampling and upsampling by dropping
and replicating some of the frames in order to get a predefined
number of frames can be applied as in Fig. 3 and Fig. 4,
respectively.

B. Network Architecture

The 3D ConvNet architecture in this study is based on resid-
ual networks (ResNets) [21] which showed good performance
with large enough datasets [4]. As a building block, we used
an extended version of ResNet which is called ResNeXt [22],
as depicted in Fig. 5. For the shortcut connections in Fig. 5,
the summation is used. BN and ReL.U in Fig. 5 refers to batch
normalization [23] and rectified linear unit [24].

Unlike the original ResNet block, the ResNeXt block in-
troduces group convolutions, which divide the feature maps
into small groups. Moreover, ResNeXt introduces cardinality,
which refers to the number of middle convolutional layer
groups in the bottleneck block. The authors in [22] showed that
increasing the cardinality of 2D architectures is more effective
than using wider or deeper architectures. Following the design
choices as in [4], we used ResNeXt-101 in our experiments
with the cardinality of 32. Table I shows the different network
architectures for different input types used for the experiments
on Jester Dataset. F and N in Table I refer to the number of
feature channels corresponding in Figure 5 and the number of
blocks in each layer, respectively.

The size of the first convolutional kernels is determined
from experimentally best performing ones. For the first con-
volutional kernels of (7x7x7), (5x7x7), (3x7x7) and (1x7x7)
zero padding of (3x3x3), (2x3x3), (1x3x3) and (0x3x3) are
used, respectively. The stride of (1x2x2) remained same in
the first convolutional kernel for all the experiments.

Input Stacking convl conv2-5
32-frames (7x7x7) a g g g =g
16-frames  2-stack (3x7x7) Zz oz g ‘g
16-frames - (5x7x7) g@" V\o; o § 8 g %
8-frames 4-stack (3x7x7) ; 0 — g 3 g
8-frames  2-stack (3x7x7) ot S - =%
8-frames - (3x7x7) o NN 3 8
St 2y

4-frames 4-stack (1x7x7) £z 2% %’D O
4-frames 2-stack (3x7x7) S 388
4-frames - (3x7x7)

TABLE 1

THE NETWORK ARCHITECTURE APPLIED FOR THE EXPERIMENTS ON
JESTER DATASET V1.

For the experiments on Something-Something Dataset,
stacking is not applied. The reason is that during downsam-
pling and upsampling, selected frames span a different time
interval since Something Something Dataset have temporally
variant video samples. For the first convolutional kernel in the
network architectures, (7x7x7), (7x7x7), (3x7x7) and (3x7x7)
are used for the temporal dimension of 32 frames, 16 frames,
8 frames and 4 frames, respectively. The remaining configu-
ration is same as Table I for the experiments on Something
Something Dataset.

C. Training Details

For all the experiments, we have used ResNeXt-101 archi-
tecture pretrained on Kinetics dataset which is made available
by the authors of [4]. The final fully connected layer is
modified according to the number of classes of the applied
datasets.

For stacked structure, the first convolutional kernel of the
network architecture is modified according to the number of
input channels. For example, for 4-stack structure, the first
convolutional kernel is modified to accommodate 4 x 3 = 12
input channels.

Learning. We use stochastic gradient descent (SGD) with
standard categorical cross-entropy loss. Size of the mini-batch
is chosen as high as possible according to the hardware
limitations. As we have used NVIDIA Titan Xp GPU for
training, we used 128, 96, 48 and 26 videos as mini-batches for
4 frames, 8 frames, 16 frames and 32 frames of temporal di-
mensions, respectively. For the momentum and weight decay,
0.9 and 1x 1072 are used, respectively. Since we use pretrained
models, we initialize the learning rate relatively small that is
1 x 1072 for all the experiments. For both of the datasets, the
learning rate is reduced twice with a factor of 10~ ! after 5"
and 20*" epochs and optimization is completed after 5 more
epochs.

Regularization. Several regularization techniques have
been applied in order to reduce over-fitting. Weight decay
(7 = 1x1073) is applied on all parameters of the network. We
apply transfer learning by using pretrained models on Kinetics



dataset. Moreover, intensive data augmentation techniques are
applied which is mentioned in the next part.

Data Augmentation. Several data augmentation techniques
are applied to increase the variability of the training videos:
(a) Random resizing (+£10%), (b) random spatial rotation
(£20°), (c¢) spatial elastic deformation [25] with distortion
field strength of @ = 1.0 and standard deviation of the
smoothing Gaussian kernel o = 2.0 (with 50% probability), (d)
random cropping and scale jittering as applied in [13], (e) flip-
ping horizontally with probability 50% (for only Something-
Something dataset), (f) temporal scaling (£10%) and jittering
(£ 2 frames) (for only Something-Something). These data
augmentation steps are applied on-the-fly, and finally the input
is resized to 112 x 112 for network training.

Implementation. We have implemented our approach using
PyTorch [26] with a single Nvidia Titan Xp GPU.

IV. EXPERIMENTS

The performance of the proposed approach is validated
on two publicly available datasets: Jester Dataset V1 and
Something-Something Dataset V1. For the evaluation part,
center cropping with temporally centered selection of the video
frames are used for all the datasets.

A. Datasets

Jester Dataset V1 is currently the largest hand gesture
dataset, which is recently made available [6]. It consists
of 148,092 segmented gesture videos under 27 classes. The
video clips are collected by a large number of crowd-workers
performing predefined hand gestures in front of a camera.
The dataset is divided into training, validation and test sets
containing 118562, 14787 and 14743 videos, respectively.

Something-Something Dataset V1 is a large collection of
densely-labeled video clips that show humans performing
basic actions with everyday objects [7]. It allows machine
learning models to develop fine-grained understanding of basic
actions that occur in the physical world. There are in total
108,499 action videos under 174 classes, which is divided into
training, validation and test sets containing 86017, 11522 and
10960 videos, respectively.

Jester dataset has gesture videos with similar temporal
dimension concentrated between 30 - 40 frames. This makes it
suitable to capture the performed hand gesture by choosing a
temporal dimension of 32 frames. Afterwards, sparse selection
and stacking can successfully be applied to these 32 frames as
in Fig. 1 and Fig. 2. On the other hand, Something-Something
dataset has videos with relatively varying temporal dimension.
This steered us to apply a different strategy for frame selection:
Downsampling and upsampling the input frames to the desired
temporal dimension as in Table 3 and Table 4. The histogram
of video lengths for Jester and Something-Something datasets
are given in Fig. 6 and Fig. 7, respectively. We have conducted
detailed experimental analysis only on the validation set of the
both datasets, since the labels of the test sets are not made
available by the dataset providers.
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Fig. 6. Histogram of video lengths for Jester Dataset V1.
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Fig. 7. Histogram of video lengths for Something-Something Dataset V1.

B. Results Using Jester Dataset

We initially investigated the performance of ResNeXt-101
architecture with consecutively selected 32 frames. It achieves
a very good performance of 96.699% accuracy on the valida-
tion set of Jester dataset. We also investigated its performance
on the test set by submitting our predictions to the official
leaderboard. The ResNeXt-101 architecture competes with
state-of-the-art results having a very similar performance with
96.24% accuracy as can be seen in Table III. So, our objective
is to speed up this architecture without much of a performance
degradation.

Secondly, we analyzed the sparse sampling strategy in order
to cover large time durations without increasing the temporal
dimension of inputs. So, we sparsely selected equidistant
16 frames, 8 frames and 4 frames out of 32 frames and
reported performances of 94.840%, 91.817% and 87.215%,
respectively, which is given in Table II. Although, there is
some performance degradation, achieved performance with
sparse selection is still better than the consecutive selection
since we capture the main motion cues better with sparse
selection, as seen in Fig. 8. On the other hand, we obtain
considerable speed-up by applying sparse selection of 16
frames, 8 frames and 4 frames that are 2.09 times, 3.29 times
and 4.79 times faster than 32 frames, respectively, as can be
seen in Table II and Fig. 9. The speeds in Table II and Fig. 9



Input Stacking Speed (vps) Acc.(%) Model Acc.(%)
32-frames - 73 96.699 DRX3D 96.60
16-frames 2-stack 104 95.250 8-MFFs-3flc 96.28
16-frames - 153 94.840 2 Stream CNN 96.28
8-frames 4-stack 158 93.112 ResNeXt-101 96.24
8-frames 2-stack 206 92.602 (32-frames) :
8-frames - 245 91.817 MFNet 96.22
4-frames 4-stack 271 91.000 NUDT_PDL 95.34
4-frames 2-stack 303 89.572 DIN 95.31
4-frames - 350 87.265 Guangming Zhu 95.01
TABLE II TABLE III

RESULTS ON THE VALIDATION SET OF JESTER DATASET V1.

is calculated as videos per second (vps) using mini-batch of
16 videos.

Thirdly, we analyze the effect of stacking some of the
dropped frames from sparse selection to the selected ones as in
[20]. The selection of the stacked frames is always performed
to keep the overall frame selection uniform. As an example,
let’s assume that we apply sparsely selected 4 frames and
selected frames are 8, 16, 24 and 32. For 4 stack structure,
appended frames to 16 are 10, 12 and 14. Performance gain
achieved by stacking strategy can be seen in Table II.

Lastly, we compared the performance of sparse and consec-
utive frame selection which is depicted in Fig. 8. There is a
significant performance gain achieved by sparse selection since
it contains longer time durations which is better for capturing
the full content of the actions.

C. Results Using Something-Something Dataset

Since Something-Something dataset contains videos having
varying number of frames between 20 - 75 frames (see
Fig. 7), we have applied downsampling and upsampling to
obtain desired temporal dimension. In another perspective,

—8— sparse selection
| —@— consecutive selection

Accuracy

T T T T
4 8 16 32
Number of frames

Fig. 8. Performance comparison of sparse and consecutive frame selections
on the validation set of Jester Dataset V1. Sparse selection is applied on 32
frames.

RESULTS ON THE TEST SET OF JESTER DATASET V1.

downsampling is also a form of sparse sampling. However,
the number of dropped frames in downsampling is not same
and varies according to the video size. Therefore, we have
decided not to apply stacking for this dataset.

We investigated the performance of ResNeXt-101 architec-
ture for 32 frames, 16 frames, 8 frames and 4 frames and
reported performance of 43.200%, 38.144%, 29.943% and
21.315%, respectively, as can be seen in Table IV. Although
we achieve the same speed-up as in Jester dataset, perfor-
mance degradation is significant for Something-Something
dataset, especially for 8 frames and 4 frames temporal dimen-
sions. There are several reasons for that. Firstly, Something-
Something datasets have more action classes (174 compared
to 27 for Jester Dataset) which are more complex than Jester
dataset such that selected 4 frames and 8 frames cannot
capture the full content of the action. Secondly, the number
of training samples for Something-Something dataset is small
(494 average number of training videos compared to 4391 for
Jester Dataset) making it harder to train without overfitting.
Thirdly, the temporal dimension of the video samples varies
too much, making it inappropriate for networks requiring

3501

3001

250 A

Speed (videos per second)

100 -

T T T T
4 8 16 32
Number of frames

Fig. 9. Speed comparison of different temporal dimensions of inputs. As
temporal dimension increases, the speed of the 3D ConvNet architecture drops.



Input Stacking convl Speed (Vps) Acc.(%)
32-frames - (7xX7xT) 73 43.200
16-frames - (7x7x7) 153 38.144
8-frames - (3x7x7) 245 29.943
4-frames - (3x7x7) 350 21.315
TABLE 1V
RESULTS ON THE VALIDATION SET OF SOMETHING-SOMETHING DATASET
V1.

inputs with fixed temporal dimension.

The analysis on Something-Something dataset proves that
dataset characteristics play a critical role on the performance
achieved by sparse sampling. Also, dataset complexity should
also be taken into consideration for the applied temporal
dimension reduction by sparse sampling.

V. CONCLUSION

This paper presents an analysis on the temporal dimension
of inputs for 3D ConvNets to obtain multiple times faster run-
time by relinquishing little amount of classification accuracy.
For this purpose, sparse sampling and stacking strategy are
proposed.

We evaluated the proposed approach on two recent datasets
and demonstrated that sparse sampling and stacking increases
the speed of the architecture by reducing the temporal di-
mension but spanning the same time duration. With the same
temporal dimension of inputs, sparse selection achieves better
performance compared to consecutive selection. The main
reason for this is that the important motion cues of the actions
can be captured better with sparse selection by spanning longer
time durations.

Experimental results proved that datasets should be large
enough to apply sparse sampling without significant perfor-
mance degradation. Moreover, dataset characteristics should
also be taken into consideration for the degree of temporal
dimension reduction by sparse sampling.
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