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Abstract. The work “Fitness Functions for Testing Automated and
Autonomous Driving Systems” describes fitness function templates and
how they can be combined and applied for testing named systems. It
focuses on the methodological aspect. This document provides supple-
mentary material for interested readers. The fitness function, which has
been derived for the use case example of the main work, is applied on a
technical level. It serves as input for search-based techniques to generate
test cases.

1 Recapitulation

It is assumed that the reader has read the main work. Only the most important
parts are recapitulated. In the main work’s example (see Figure 1)), the ego
vehicle e accelerates from standstill and approaches the other car c3, which
is driving at a lower velocity than e. Thus, e changes to the middle lane, while
simultaneously c1 changes also to the middle lane behind e. During this scenario,
e must not violate the safety distances, e.g. the one to c2 (shaded area in Figure
1). Each other car ci has a parameter for its longitudinal starting position s0,ci , a
starting time tstart,ci for accelerating from standstill, and a desired velocity vi it
tries to reach and hold throughout the scenarios. In addition, the lane change of
c1 is triggered at a specific time, described by parameter tlc,c1 . These parameters
span a ten-dimensional space of possible test scenarios.
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Fig. 1. Parameterized scenario of a highway scenario with a schematic depiction as
well as parameters and their domains, resulting in a ten-dimensional space of possible
test scenarios
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In the main work, the following fitness functions for single- as well as multi-
objective search have been derived with the help of the presented templates:
The combined fitness function for single-objective search does look as following.
Powers of ten are used as offsets oi, e.g. o1 = 103 and o2 = 104.

fsingle =



α+ o4, e does not change lanes
β + o3, sc2(te,start) < se(te,start)
γ + o2, se(tc1,start) < sc1(tc1,start){
δ + o1, not simultaneous

ε, otherwise

For an application of multi-objective search, the templates need to be changed,
e.g. ε only can be computed if all scenario-specific properties underlying the
other templates are fulfilled.

ε̃ =

{
∞, α+ β + γ + δ > 0

ε

For the experiments, ∞ is replaced by sufficiently large constant similar to oi.
By that, minimum and average fitness values of the optimization process can
be shown. Preparing the other templates analogously yields the final vector of
fitness values. α stays unchanged as it does not depend on other templates.

fmulti = [α β̃ γ̃ δ̃ ε̃]

The presented parameterized scenario, which constitutes a search space, to-
gether with the fitness function(s) serve as input for search-based techniques to
yield test cases.

2 The System and the Experiment Setup

The widely used simulation tool CarMaker from IPG Automotive [5] is used
for experiment purposes. Its MATLAB Simulink [1] API provided the means
to connect the simulation with optimization, for which we used the single- and
multi- objective optimizers of the MATLAB global optimization toolbox [2].
Note that the technological aspect is not the focus and more advanced techniques
could be used. The population size is set to 60 and the number of generations to
15, resulting in 900 simulation executions, which means each system is tested in
900 test scenarios during the optimization. To show both the results of single-
and multi-objective search, the first experiment will be conducted using single-
objective search, the second one using multi-objective search. For highlighting
the difference of a faulty and a “correct” system, the first experiment will be
done using a faulty one, the second using a “correct” one. The experiments
were executed multiple times to rule out randomization effects, but only one
experiment run is presented.
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3 The System

The architecture of our demonstration system follows the general control para-
digm, which contains the notions of sensing, long-term planning (or decision-
making), short-term planning, tracking and actuation [9,3,4]. Sensors are not
used for the purposes of this work. The quantities that would be provided by the
sensors are directly fed from the simulation to the decision-making. The system-
internal control flow is depicted in Figure 2. The decision making computes
whether a lane change is necessary or beneficial (using [8]). If so, the best gap
and timing between cars on the best lane is chosen. In the case that a previously
chosen gap changes significantly, re-computation is tried. If the gap became
infeasible, the lane change is aborted. In the next iteration, a new gap may be
chosen.
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Fig. 2. System architecture overview

The short-term planning of longitudinal and lateral trajectories follows the
concepts of a state-of-the-art approach [6,7] (see Figure 3). This model predictive
control approach first predicts the positions xi and velocities vi of surrounding
cars ci for each sample time step tk over a short time horizon (cf. Figure 3).
For safety distance planning, a time gap τ is used. The safety corridor for the
lane change (dashed green lines) is bounded by the distance tg(vi) = τ ·vi to the
predicted positions xi of other cars ci. Quadratic optimization is used first to find
a safe longitudinal and afterwards a safe lateral trajectory within these bounds
and within the physical limitations of the ego car. The objective is to keep the
velocity at each time step of the trajectory as close to the desired velocity of
120km/h and the acceleration as low as possible. The tracking of the trajectories
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is done by a PID controller for the longitudinal velocity, controlling the position
of the gas and the brake pedal, and by a PI controller for the lateral position,
controlling the steering wheel angle. Both are tuned for a physical model of a
sports car with a weight of 1,410kg, length of 4.18m, width of 1.83m and height
of 1.35m. The model is provided by CarMaker.

c1c2

c3e

tg(v2) tg(v1)

tg(v3)

x1 x2

x3

Fig. 3. Schematic simplified depiction of the predicted positions xi and time gaps tg(vi)
at a specific prediction time tk

4 The Results

For both experiments, we show the minimum and average fitness of the pop-
ulation (of the genetic optimization) at each iteration. However, for the multi-
objective optimization, the sum of all fitness values xi of the fitness value vector
is used instead of a single value. For the identified worst-cases, the distance of
the ego vehicle to c2 during the lane change of e is depicted, followed by the
parameter values of the worst-cases.

4.1 Results of the Single-Objective Search with a Faulty System

The course of the minimum and average fitness indicates that the way of combin-
ing the templates to a fitness function for single-objective search does not hinder
the optimization to converge. In the worst-case, the ego vehicle approaches c3
and changes the lane behind c2. Shortly after e started to change lanes, also c1
changes lanes. Since e drives at a greater velocity than c2, it needs to slow down
and adjust to the velocity of c2. However, as depicted in Figure 4, the remaining
buffer until the violation of the safety distance is negative from scenario time
9.6s on with the minimum at 10.9s. This means that in the worst-case, the ego
vehicle violated the safety distance maximal by 8.21 meters (the fitness value is
-8.21). The system showed faulty behavior.
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4.2 Results of the Multi-Objective Search with a “Correct” System

For the second experiment (see Figure 5), the system internal computation of
the safety distance is changed such that the system keeps a greater safety dis-
tance. Similar to above, the course of the minimum and average fitness shows
convergence. Due to the large numbers, the fitness improvements at later stages
are difficult to identify. Similar to the worst-case in the first experiment, also
this time, the ego vehicle is driving faster than c2. However, even in the worst-
case scenario, the remaining buffer does not get negative. Instead, 6.23 meters
of distance are kept in addition to the safety distance. Therefore, the system is
believed to be safe. The array of fitness values xi is [0 0 0 0 6.23].
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(a) Distances during the worst-case scenario of the first experiment

s0,c1 = 4.700 tstart,c1 = 2.531 v1 = 24.439 s0,c2 = 94.100 tstart,c2 = 2.778

v2 = 27.106 s0,c3 = 25.764 tstart,c3 = 0.364 v3 = 25.906 tlc,c1 = 8.059

(b) Parameter values of the worst-case scenario of the first experiment

Fig. 4. Results of the first experiment: Faulty system



6 Florian Hauer, Alexander Pretschner, Bernd Holzmüller

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Generation

0

5

F
itn

es
s

104

Mean fitness of population

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Generation

0

100

200

F
itn

es
s

Minimum fitness of population

9.8 10.0 10.2 10.4 10.6 10.8 11.0 11.2 11.4 11.6 11.8 12.0 12.2
Time in s

0

10

20

30

40

50

60

70

D
is

ta
nc

e 
in

 m

Actual distance
Minimum safety distance
Remaining distance until violation

(a) Distances during the worst-case scenario of the second experiment

s0,c1 = 26.979 tstart,c1 = 1.842 v1 = 28.938 s0,c2 = 108.094 tstart,c2 = 2.373

v2 = 33.634 s0,c3 = 102.413 tstart,c3 = 2.537 v3 = 30.678 tlc,c1 = 10.052

(b) Parameter values of the worst-case scenario of the second experiment

Fig. 5. Results of the second experiment: “Correct” system

5 Further comments

Videos that show the 3D animation of the worst-case scenarios can be found
under the following URLs (the red car is the ego vehicle):

– Worst-case of experiment one with single-objective search and faulty system:
https://mediatum.ub.tum.de/1474288

– Worst-case of experiment two with mutli-objective search and “correct” sys-
tem: https://mediatum.ub.tum.de/1474289

https://mediatum.ub.tum.de/1474288
https://mediatum.ub.tum.de/1474289
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