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Motivation: 5G Vision
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Ø Not all aspects are needed for all services

Motivation: 5G Vision
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Source: 
ITU-R (2015): Recommendation ITU-R M.2083-0 IMT Vision – Framework and overall objectives of
the future development of IMT for 2020 and beyond (09/2015)
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It is mostly machines that communicate over networks
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Network



§ Networked Machines à Networked Cyber Physical Systems (NET CPS)

Control matters

Motivation: Control
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Industry 4.0, Tesla Factory
http://www.nytimes.com

Robot cooperation
http://iridia.ulb.ac.be/~mathews

Trucks platooning, Scania
www.scania.com
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§ Key challenge in design and analysis of cyber-physical systems:
Control over shared communication networks
- quality of control may be degraded due to the congestion while accessing the 

scarce communication resources 

§ Cyber Physical Networking: joint consideration of control and 
networking concepts to improve the system performance

§ possibly involving
- all network layers (cross-layer design,…)
- all communicating nodes between devices (edge computing,…)
- multiple control loops with different control strategies

Motivation: Cyber Physical Networking
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§ Support of control over shared communication networks 

§ Focus on 
-Communication: Medium Access Control (MAC) 
-Control: multi-loop networked control system (NCS), all control loops 

share a communication network 

Focus of this tutorial
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§ System model: Networked Control System
- Including a short primer on control

§ Selected use cases and results
-Decentralized wireless MAC & Control: Adaptive Random Access
-Scheduled wireless access & Control: Age of Information vs. Value of 

Information

§ NCS experience for everybody: 
Intro to NCS benchmark platform

§ … with a break in between

Outline
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§ DFG Priority Programme Cyber-Physical Networking (SPP 1914) 
https://www.spp1914.de/

§ Understanding the fundamental trade-offs btw. communication and control systems 
§ Fundamental limits for communication latency, reliability, efficiency, and control performance 

including the role of feedback/side information
§ Joint analysis methods and joint optimisation metrics defining the interfaces
§ Mathematical models and analysis of interacting communication and control dynamics

§ Design methods for horizontal/vertical coordination and control, surpassing the 
limitations of todays abstraction 
§ Co-design and adaptive feedback mechanisms for control and protocols over unreliable 

communication channels such as wireless
§ Distributed control and communication in large-scale systems
§ Latency-aware horizontal/vertical coordination: interfaces, integration of network, operating 

system and applications

DFG SPP 1914 Cyber Physical Networking
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Project areas

§ Cooperative control and networking 
for wireless networks (e.g., topology 
control, consensus-based control, 
multi-agent systems, event-based c.)

§ Co-design of control and networking/
communications (e.g., information exchange between control and networking, 
model predictive CPN)

§ Higher layer network aspects (e.g., latency, resilience-aware networking, co-
designed architecture for in-network control)

§ Performance measurements and modeling

in interdisciplinary teams of control/automation and communication/ network 
experts 

DFG SPP Cyber Physical Networking
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https://www.spp1914.de



Networked Control Systems
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Networked Control Systems
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§ Machine-to-Machine: Sensing & Actuation
§ Control systems, coupled via communication networks

à Networked Control Systems

The following system model is based on the view of the
DFG SPP 1914 Cyber-Physical Networks project
„Optimal Co-Design of Wireless Resource Management and Multi-loop 
Networked Control“ (Hirche, Kellerer)

Sensor

Wireless communication

Actuator Plant

ControllerController



Cross-Layer Design Framework
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§ Optimal Network & Control – Global Optimization Problem

§ Control and network protocols: distributed solutions to global OP



Scenario & Problem Formulation
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§ N stochastic Linear Time 
Invariant (LTI) systems

!"#$% = '%!"% + )%*"% + +"%

§ Colocated
Controller - (Actuator) - Plant

§ Plant state is sensed remotely, e.g., camera

§ Shared network: blocking / collisions / packet errors

,"% = -1, if OK
0, otherwise



§ Control: use of algorithms & feedback in engieering systems;
usually for dynamic system

§ Dynamic a system whose behavior changes over time,
system: often in response to external stimulation

Excursion: Quick Introduction to Control (1)
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Based on a tutorial given by Sebastian Trimpe, MPI für Intelligente Systeme, 2018. 
Textbook: Carl Johan Aström, Richard M. Murray, “Feedback Systems“, Princeton University Press

system

d (evtl.) disturbances

u
control input

y
output



§ Feedback: two (or more) dynamic systems connected
such that they influence each other

§ Control design a dynamic system “the controller“ (= system 2)
System: to influence the process (= system 1) in a desired way

Quick Introduction to Control (2)
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system 1system 2
u

y

closed loop (with feedback)



§ Control System
§ design a dynamic system “the controller“ (= system 2) to influence the process

(= system 1) in a desired way
§ modern control systems: controller is an algorithm running on a computer

Quick Introduction to Control (3)
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sensorsdynamic
systemu yactuator

controller

noise noise

system 1: process or dynamic system

system 2: controllerclock

computer with control algorithm/control law: transforms y → u

operator input



§ Typical representations of Dynamic Systems

(a) continuous time

(b) discrete time

Here: discrete-time linear time-invariant (LTI) systems
!"#$ = &!" + ()" + *"

Quick Introduction to Control (4)
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system

d(t)
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system
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§ x(t): system state
§ Differential equation:

!̇(-) = /!
/- = 0(! - , ) - , / - )
2 - = !(-)

§ Difference equation
!"#$ = 0(!", )", /")

2" = !"



Discrete-time Linear Time-Invariant (LTI) stochastic Networked Control 
Systems (NCS)

!"#$ = &!" + ()" + *"
! + + 1 = &! + + () + + * +

§ + ∈ {0,1,2, … } discrete time-step
§ ! ∈ ℝ5: system state, & ∈ ℝ5×5: state matrix
§ ) ∈ ℝ7: control input, ( ∈ ℝ5×7: input matrix
§ * ∈ ℝ5: random noise vector

Special: 1-dim.
§ ! 0 = 0
§ & = 1 ∈ ℝ$×$

Quick Introduction to Control (5)
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A < 1

A = 1:

A > 1



§ Networked Control System (NCS)

Quick Introduction to Control (6)
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communication network



Scenario & Problem Formulation
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Generalized optimization problem:
• with control and scheduling/link access policies as optimization problem variables

max
$,&

'() *, +, , s. t.0
1∈3

45(7)91 ≤ )5 and x=>? = Ax= + Cu= + EF

local or global

QoC
Quality of Control

communication success
GF

H = I
1, if fails
0, otherwise

OK

GF
H = 4F

HTFH



Scenario & Problem Formulation
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§ Dead-beat control law
(linear discrete-time control: feedback → stable state)

!"# = −&#E ("# )"# ,
with )"# = +,# , … +"# and &# - arbitrary stabilizing feedback gain

§ Model-based estimation (if ."# = 0 i.e. communication failed):
E ("# )"# = 0# − 1#&# E ("23# )"23#

§ Network Induced Error (~estimation error) [MTH15] 
4"53# = 1 − ."# 0#4"# + 8"#



Scenario & Problem Formulation
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§ Network Induced Error (~estimation error) [MTH15] 

!"#$% = 1 − )"% *%!"% + ,"%

àSeparation of Control and Communication problems

Two application examples: 

(1) Decentralized wireless MAC & Control

(2) Scheduled wireless access & Control (up-/downlink scheduling)



Generalization of the above problem
§ Multi-loop
§ Single-hop → Multi-hop
§ Base station (2 hop, central)
§ Multiple hops (wireless and wired)

§ MAC → Multi-layer
§ Routing (topology, node buffering)
§ Transport (TCP congestion control)

§ Network functions
§ Edge computing (location/migration

of controller)

=> computationally very hard to solve – decomposition needed

Outlook: Global Optimization Problem

24



§ Cost function

Global Optimization Problem

25

• Nodes are linked according to the topology Q
• Action set A
• Transmission determined by a choice of (Q;A)



§ System model: Networked Control System
- Including a short primer on control

§ Selected use cases and results
-Decentralized wireless MAC & Control: Adaptive Random Access
-Scheduled wireless access & Control: Age of Information vs. 

Value of Information

§ NCS experience for everybody: 
Intro to NCS benchmark platform

Outline
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Decentralized wireless MAC & Control: 
Adaptive Random Access
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§ Adaptive decentralized MAC for Event-Triggered NCS

§ LTI control loop

§ State dynamics à estimation error dynamics

§ Local scheduler: event-based with threshold Λ"

§ Decentralized medium access with Mk channels
§ timeslot == control period
§ uniform choice of the channels
§ collision occurs if the same channel is chosen
§ channel feedback: collision (1,0), Mk

Adaptive Random Access: Scenario

Vilgelm M, Mamduhi MH, Kellerer W, Hirche S. Adaptive Decentralized MAC for Event-Triggered Networked Control Systems, ACM HSCC, 2016



§ Adaptive decentralized MAC for Event-Triggered NCS

§ LTI control loop

§ State dynamics à estimation error dynamics

§ Local scheduler: event-based with threshold Λ"

§ Decentralized medium access with Mk channels
§ timeslot == control period
§ uniform choice of the channels
§ collision occurs if the same channel is chosen
§ channel feedback: collision (1,0), Mk

Adaptive Random Access: Scenario

control loop

scheduler

network
Mk

#$"

Vilgelm M, Mamduhi MH, Kellerer W, Hirche S. Adaptive Decentralized MAC for Event-Triggered Networked Control Systems, ACM HSCC, 2016

Λ"



§ Event-triggered NCS and Multichannel Slotted ALOHA
§ Communication delay ≈ connection establishment delay

§ Threshold-based event triggering:

P[$%& = 1|*%& ] = ,0, if ||*%& || ≤ Λ&
1, otherwise

with $%& (local) scheduling variable.
§ Successful reception: :%& = $%& ;%& with 

P ;%& = 1 $%& = 1 = <% − 1
<%

>?

Adaptive Random Access: Treshold-based Trigger
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M. Vilgelm, M. H. Mamduhi, W. Kellerer, S. Hirche, “Adaptive Decentralized MAC for Event-Triggered NCS,” ACM HSCC, 2016



Adaptive Random Access: Initial Evaluation

§ Given N subsystems with Ai, Wi, and Mk channels

§ Network performance depends on control loop & Λ"
§ Control loop performance depends on network & Λ"

§ Metric: variance of an estimation error

Vilgelm M, Mamduhi MH, Kellerer W, Hirche S. Adaptive Decentralized MAC for Event-Triggered Networked Control Systems, ACM HSCC, 2016

M=10, A=2



§ Performance Evaluation: Threshold

Adaptive Random Access: Eval. of Threshold

32

[C3] M. Vilgelm, M. H. Mamduhi, W. Kellerer, S. Hirche, “Adaptive Decentralized MAC for Event-Triggered NCS,” ACM HSCC, 2016



§ Adapting to varying number of channels – network state

Adaptive Random Access: Adaptation
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[C3] M. Vilgelm, M. H. Mamduhi, W. Kellerer, S. Hirche, “Adaptive Decentralized MAC for Event-Triggered NCS,” ACM HSCC, 2016



§ Adaptive choice of the threshold based on available channels

§ Relative gain from adaptation depends on the variability of the number of channels

Adaptive Random Access: Adaptation gain

Vilgelm M, Mamduhi MH, Kellerer W, Hirche S. Adaptive Decentralized MAC for Event-Triggered Networked Control Systems, ACM HSCC, 2016



Scheduled wireless access and control:
Age of Information 
vs. Value of Information

„Age-of-Information vs. Value-of-Information Scheduling for Cellular
Networked Control Systems“

35



Scheduled wireless access: Scenario

36

• N stochastic LTI control loops share the same network
• Centralized scheduler in Base Station (BS) determines UL and DL 

transmissions

Plant N is observed by Sensor N



• N stochastic LTI control loops 
share the same network

• Each sub-system consists of 
sensor Si , controller Ci and 
plant Pi

• Observed plant state xi[ki] at time-step ki is transmitted towards Ci

- First on uplink (UL) from Si to base station (BS)
- Then on downlink (DL) from BS to Ci

• Only the latest generated measurement is stored in the packet queue
• Centralized scheduler determines UL and DL transmissions

Scheduled wireless access: Scenario
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How to distribute (schedule) the UL and DL resources among the
sub-systems (control loops)?



• Central scheduler has to consider
the importance of a sensor value
to decide for scheduling
considering both hops

• Possible “importance“ metrics:

- Delay → Age of Information (AoI)

- Meaning of content of sensor value → Value of Information (VoI)

• We compare both in this example: Age-of-Information vs. Value-of-
Information Scheduling for Cellular Networked Control Systems

Challenge: two-hop communication system

38



• a recently proposed performance metric that measures information
freshness at the destination node

• proposed in 2011 by S. Kaul and R. Yates 
for vehicular networks [1,2]
- [1]: “Average end-to-end (application-to-application) 

delay observed in any vehicle’s state”
- [3]: “Time since last update was received”

• Age of Information ∆ " :

∆ " = " − & "

• t: current time
• u(t): time-stamp

of the most recent update

Age of Information (AoI)

39

AoI

Age when sensor value received

initial 
offset

si = u(t), time sensor value is taken

[1] Kaul, et al. Minimizing age of information in vehicular networks. 8th IEEE Conference on Sensor, Mesh and Ad Hoc Communications and Networks, 2011.
[2] Kaul, Yates, Gruteser, Real-time status: How often should one update? IEEE INFOCOM, 2012.
[3] Talak et al. Minimizing age-of-information in multi-hop wireless networks. 55th Annual Allerton Conference on Communication, Control, and Computing, 2017.



• deals with the content of a new update independently of its timeliness
• VoI stems from information theory (Shannon)
• The amount of reduction in the uncertainty 

of a stochastic process at the recipient

Value of Information (VoI)
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• N stochastic LTI control loops 

share the same network

• Each sub-system consists of 

sensor Si , controller Ci and 

plant Pi

• Observed plant state xi[ki] at time-step ki is transmitted towards Ci

- First on uplink (UL) from Si to base station (BS)

- Then on downlink (DL) from BS to Ci

• Only the latest generated measurement is stored in the packet queue

• Centralized scheduler determines UL and DL transmissions

Back to our scenario

41

How to distribute (schedule) the UL and DL resources among the
sub-systems (control loops)?



• as also before:

Recap: Stochastic LTI Networked Control Systems
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Network Model
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Control Model (1)
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Control Model (2)
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Age of Information and Value of Information
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VoI =
expected value
of squared
estimation error

AoI =
time difference
to sensor value
generation time



• VoI depends on plant dynamics (system matrix A) 
• A < 1: sub systems tend to stability / A > 1: plant dynamics require control

System Dependability of VoI
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VoIVoI

AoIAoI

linear subsystem



Value-of-Information on UL / DL
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Value-of-Information on UL / DL
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• stable sub-systems (control loops) are less scheduled by VoI-scheduler
(→ delay) with scarce resources (increasing N)

• VoI: less improvement expected from sensor values for stable loops

Simulation Results
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• Uplink (UL) capacity increased => bottleneck shifts from UL to downlink
• VoI-scheduler can better deal with scarce ressources (N=120)
• VoI buffers information that is not urgent (low VoI) (stable loops)

Sensitivity to UL/DL Bottleneck Shift
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UL ≤ DL

UL > DL
AoI, N = 120

VoI, N = 120



§ System model: Networked Control System
- Including a short primer on control

§ Selected use cases and results
-Decentralized wireless MAC & Control: Adaptive Random Access
-Scheduled wireless access & Control: Age of Information vs. Value of 

Information

§ NCS experience for everybody: 
Intro to NCS benchmark platform

Outline
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NCS benchmark platform
https://github.com/tum-lkn/NCSbench
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§ We combined Network and Control
domains
§ towards our benchmarking platform 

à NCSbench

§ in a practical approach 
àTwo-Wheeled Inverted Pendulum

Introduction & Motivation

54

Motivation

Network Domain

DuT LoadGen
J
I

J
I

Network domain has well-known benchmarks

(e.g., RFC 2544 [1])

Control domain

Control domain has its own benchmarks

(e.g., [4])

: we want to create a holistic benchmark combining network and control domain approaches

: therefore we need a common platform to apply our benchmark

• joint paper on NCS benchmarking (TUM-NET, TUM-LKN, TU Berlin, FU Berlin):

Sebastian Gallenmüller, Stephan Günther, Maurice Leclaire, Samuele Zoppi, Fabio Molinari, Richard Schöffauer,

Wolfgang Kellerer, and Georg Carle. “Benchmarking Networked Control Systems”. In: 1st Workshop on
Benchmarking Cyber-Physical Networks and Systems. Oporto, Portugal: IEEE, Apr. 2018

Barcamp I - Implementation Sprint | TU Berlin | 24th April 2018 3

Control Systems Group, TUB – Chair of Network Architectures and Services, TUM – Chair of Communication Networks, TUM
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§ ... a Benchmarking Platform that is ...

§ Easy to recreate & affordable

à Lego Mindstorm EV3

§ Easy to reproduce

à Public GitHub Repository & Wiki

à Step-by-step instructions for usage

à Documentation for extension

NCSbench
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https://git.io/fpaU4

https://git.io/fpaU4


Current Status & Outcome
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[2] Reproducible Benchmarking Platform for 
Networked Control Systems, 
(under submission) => TR at TUM 

[1] Benchmarking Networked Control Systems, 
CPSBench, 2018

[3] Design Of a Networked Controller For a 
Two-Wheeled Inverted Pendulum Robot, 
(under submission)



NCSbench Platform – Implementation

§ Flexible model of the CPS
1. Computing System
2. Communication Network
3. Control Logic

à allows the performance analysis
of the individual components!

§ In our implementation
1. Lego Mindstorm & any PC
2. Ethernet & Wi-Fi networks
3. Delay & packet loss tolerant

57



NCSbench Platform – Performance

§ Measures of  the delays of the NCS
§ Network delays (!")
§ Controller (!#,%)
§ Sensor (!#,&)
§ Actuator (!#,')
§ Computing system

§ Measures of the control performance
§ Sensor à pitch angle, robot position (fig)
§ Actuation à motor voltage (fig)

58
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§ Measurement scenario:
§ Robot balancing for one minute
§ Data collection via scripts on Controller
§ Logging on Robot too expensive (only one CPU core, slow disk), data sent to Controller
§ Network: wired (Ethernet) & wireless (IEEE 802.11g, 2.4 GHz)

§ KPIs:
§ Network:
§ Transmission Latency (in ms)
§ Jitter

§ Control:
§ Pitch angle of robot (gyro)
§ Rotation angle of motors
§ Motor voltage
§ Lost predictions

NCS Benchmark

59

Scenario ∑Pitch ∑Rot. ∑Volt Loss

Wired 763 152090 2067 0

Wireless 938 217080 2637 10

Scenario Median +- 95% Q3 99.9%

Wired 4.38 +- 0.041 5.03 6.66

Wireless 8.09 +- 0.053 8.54 10.88

cumulative deviations from reference value



§ Results:
§ Several publications directly based on the TWIP and the 

NCSbench
§ Collaboration between different project partners
§ Reproducible NCS benchmark combining Network & Control 

KPIs

§ Open Source NCSbench framework (https://git.io/fpaU4)
§ TWIP software
§ Measurement scripts 
§ Plotting scripts

§ Future Work
§ Benchmarking platform is currently limited by Robot’s 

controller
§ Solution: Better hardware (Raspberry Pi-based)
§ Testing with different networks (WLAN 802.11ac, Bluetooth)
§ Better sensors 

§ Extend the TWIP to a non-linearized controller

NCSbench: Summary

60

https://git.io/fpaU4


§ M2M Applications à Networked Control Systems

§ NCS Model à Network Induced Error for Decoupling from Control

§ Global Optimization model needs further decomposition

§ Threshold-based policy for multi-channel ALOHA

§ Network induced error à up-/downlink scheduling problem in a cellular 

network scenario

§ NCSbench to experiment with your favorite
§ Control law

§ Communication network strategy

Conclusion

61
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