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Abstract

In this thesis, I develop a verified compilation toolchain from executable specifications in
Isabelle/HOL to CakeML abstract syntax trees. This improves over the state-of-the-art in
Isabelle by providing a trustworthy procedure for code generation. The work consists of three
major contributions.

First, I have implemented a certifying routine to eliminate type classes and instances in
Isabelle specifications. Based on defining equations of constants, it derives new definitions
that do not use type classes. This can be used to bypass an unverified step in the current code
generator.

Second, I formalized an algebra for higher-order 𝜆-terms that generalizes the notions of free
variables, matching, and substitution. Terms can be thought of as consisting of a generic (free
variables, constants, application) and a specific part (abstraction, bound variables). With this
algebra, it becomes possible to reason abstractly over a variety of different types.

These two parts are independent from each other and can also be used for other purposes. For
example, I have successfully instantiated the term algebra for other term types in the Isabelle
universe.

Third, a compiler that works similarly to the existing code generator, but produces a CakeML
abstract syntax tree together with a correctness theorem. More precisely, I have combined a
simple proof producing translation of recursion equations in Isabelle into a deeply embedded
term language with a fully verified compilation chain to the target language CakeML.
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1 Introduction

It’s called CakeML ’cause it’s f**king sweet, mate!

(Raf Kolanski)

The first part of this thesis is concerned with the generation of executable code in a functional
programming language from specifications in an interactive theorem prover. I picked the
CakeML language (§1.2) and the Isabelle prover (§1.1). This chapter will give an introduction
to those two systems and give a motivation why a connection between them is desirable
(§1.3).

1.1 Isabelle

Isabelle is a system in the category of interactive theorem provers [97]. These systems provide
a facility for machine-checked proofs: a user may present a proof phrased in a formal language
to the system which will then check its correctness according to the logic implemented in the
system.

Working with interactive theorem provers has often been compared to playing a video
game, in which the user’s objective is to navigate some rules (the logics) to achieve their
goal (the proof), while constantly facing adversities (flaws). Interactivity here means that
feedback is immediate and the user can change their reasoning steps incrementally, repeated
until both user and machine are satisfied. To that end, Isabelle ships with an integrated devel-
opment environment providing similar amenities to those of industry-strength programming
languages.

The immediate question is the trustworthiness of Isabelle itself. As is common in the
LCF family, its implementation strategy is to clearly delineate a kernel providing a set of
primitive inference rules and bookkeeping of definitions and other logical content. All
reasoning goes through this kernel, which – being only a small part of the full system – can
be inspected by critical readers for flaws. The kernel is implemented in the programming
language Standard ML whose strong abstraction and type soundness guarantees make it
particularly suitable for proof assistants. In fact, Standard ML’s predecessor, Meta Language
(ML for short) has been designed by Robin Milner as the implementation language for the
LCF proof assistant [107, §6]. Furthermore, there is research on verification of proof kernels
of similar systems themselves [72, 75].
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1 Introduction

Figure 1.1: The CakeML ecosystem1

1.2 CakeML
CakeML is a verified implementation of a subset of Standard ML [74, 121]. To quote the
website, it is supplemented by “an ecosystem of proofs and tools built around the language”
with the “ecosystem [including] a proven-correct compiler that can bootstrap itself”.2 At time
of writing, the project sports over forty developers and contributors.

Figure 1.1 gives an overview over the ecosystem. The verified part comprises a parser, type
checker, formal semantics and backend for machine code. The correctness proofs are carried
out in the HOL4 system [122]. HOL4 is a proof assistant in the LCF family, similar to Isabelle.

CakeML is an integral part of this work. My compiler produces CakeML abstract syntax
trees and the correctness theorems are justified against its semantics.

1.2.1 Semantics
CakeML’s semantics has been specified in Lem [93], “a tool for lightweight executable math-
ematics”.3 It provides a formal specification language that has features comparable to Is-
abelle/HOL; notably, definition of recursive types, functions and (inductive) predicates. Lem is

1Image source: https://cakeml.org/ecosystem.png, used with permission
2https://cakeml.org/
3https://www.cl.cam.ac.uk/~pes20/lem/
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1.3 Motivation

type lit =

| IntLit of integer

| Char of char

| StrLit of string

| Word8 of word8

| Word64 of word64

datatype lit =

IntLit int

| Char char

| StrLit string

| Word8 (8 word)

| Word64 (64 word)

Listing 1.1: Lem specification of CakeML’s type of literals and the resulting Isabelle text

capable of compiling these specifications to other specification languages, including Isabelle,
HOL4, and Coq.

The remainder of the CakeML ecosystem is implemented in HOL4. For that, the developers
maintain the CakeML semantics in Lem and compile it to HOL4. Consequently, assuming
trust in Lem, the version of the semantics that I use in Isabelle can be considered identical to
the one in HOL4. The Isabelle theories are available in the Archive of Formal Proofs [66].

The CakeML formalization in Lem consists of multiple parts:

Foundation libraries Lem provides a standard library, notably for machine words.

Abstract syntax As is usual in formalizations of programming languages, datatypes for
expressions and values are provided.

Semantics There are three flavours of semantics: (relational) big step, small step, and func-
tional big step [102]. For this thesis, only the big-step semantics is relevant.

Note the absence of parsing and printing (i.e., concrete syntax). This has been developed in
HOL4 without the help of Lem, so a translation to Isabelle would be a significant undertaking.

1.2.2 Compiler
The simplest way for a user to interact with CakeML is to write some source code as they
would for any other language. The CakeML project provides a compiler that can be executed
on x86-64 systems, producing a binary that may run on a variety of hardware platforms. That
compiler has itself been extracted from a formal specification. Assuming the correctness of
HOL4, every compilation guarantees that the resulting binary works correctly according to
the semantics of the source program; in other words, compilation preserves semantics.

Another way to produce a binary program is to use the code extraction facility from HOL4
that goes directly to CakeML abstract syntax trees. This thesis provides a similar tool, but
implemented based on a different approach and for Isabelle/HOL specifications.

1.3 Motivation
The purpose of using an interactive theorem prover – or, more generally, any kind of prover –
is to provide high assurance and trust in the produced artifacts. The range of applications
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1 Introduction

is vast: program and hardware verification, automata and formal languages, security and
confidentiality guarantees, analysis and probability theory, topology, and even general rela-
tivity, to name just a few [4]. The Isabelle community also runs a peer-reviewed repository of
formal proof developments, the Archive of Formal Proofs.4

As outlined in §1.1, Isabelle is designed in such a way that proofs of statements that are
accepted by the system can generally be considered to hold. However, a proof is just a proof; in
absence of other mechanisms, they “do nothing”. This is why the extraction of (or equivalently,
transformation into) executable code is not just an afterthought, but rather an important area
of research.

While Isabelle offers a rich toolkit for functional programming and mathematical specifi-
cations, so far, there is no trustworthy translation to executable code. This means that the
guarantees provided by the system end at its boundaries. The generated code bears – apart
from an unverified algorithm having produced it – no connection to the original specification.
This thesis aims to bridge the gap by developing a verified compiler from Isabelle/HOL to
CakeML.

The compiler operates in multiple stages that can be roughly characterized as preprocessing,
deep embedding, and compilation phases. All stages are either certifying or verified , i.e., an
error in the implementation of the compiler would lead to an Isabelle error that is displayed
to the user. Under no circumstances will the system emit executable code that once compiled
produces an erroneous result.

1.4 Contributions

Many theorem provers – including Isabelle – have the ability to generate executable code in
some (typically functional) programming language from definitions, lemmas and proofs [9,
19, 20, 31, 45, 84, 112]. This makes code generation part of the trusted kernel of the system.
Myreen and Owens [94] closed this gap for the HOL4 system: they have implemented a
tool that translates specifications from HOL4 into CakeML, a subset of SML, and proves a
theorem stating that a result produced by the CakeML code is correct with respect to the
HOL functions. They also have a verified implementation of CakeML [74, 121].

Here, I go one step further and provide a once-and-for-all verified compiler from (deeply
embedded) function definitions in Isabelle/HOL [97] into CakeML proving partial correctness
of the generated CakeML code with respect to the original functions. This is comparable to
the step from “dynamic” to “static” type checking. It also means that preconditions on the
input to the compiler are explicitly given in the correctness theorem rather than implicitly by
a failing translation.

My compiler is in principle applicable to other languages than Isabelle/HOL or even HOL:
Types are erased right away. Hence, the type system of the source language is irrelevant. I
merely assume that the source language has a semantics based on equational logic.

All topics discussed in this thesis have been formalized in Isabelle; definitions and proofs
are machine-checked.

4https://www.isa-afp.org/
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1.5 Structure of this thesis

Publications The following publications stem from work in this thesis:

� Lars Hupel. “Lazifying case constants”. In: Archive of Formal Proofs (Apr. 2017). http:
//isa-afp.org/entries/Lazy_Case.shtml, Formal proof development. issn: 2150-
914x

� Lars Hupel. “Constructor Functions”. In: Archive of Formal Proofs (Apr. 2017). http:
//isa-afp.org/entries/Constructor_Funs.shtml, Formal proof development.
issn: 2150-914x

� Lars Hupel. “Dictionary Construction”. In: Archive of Formal Proofs (May 2017). http:
//isa-afp.org/entries/Dict_Construction.html, Formal proof development.
issn: 2150-914x

� Lars Hupel. “Certifying Dictionary Construction in Isabelle/HOL”. Preprint. 2018. url:
https://lars.hupel.info/pub/dict.pdf

� Lars Hupel and Tobias Nipkow. “A Verified Compiler from Isabelle/HOL to CakeML”.
in: Programming Languages and Systems. Ed. by Amal Ahmed. Cham: Springer
International Publishing, 2018, pp. 999–1026. isbn: 978-3-319-89884-1

� Lars Hupel and Yu Zhang. “CakeML”. in: Archive of Formal Proofs (Mar. 2018). http:
//isa-afp.org/entries/CakeML.html, Formal proof development. issn: 2150-914x

� Lars Hupel. “An Algebra for Higher-Order Terms”. In: Archive of Formal Proofs (Jan.
2019). http://isa-afp.org/entries/Higher_Order_Terms.html, Formal proof
development. issn: 2150-914x

1.5 Structure of this thesis

After this introduction, a chapter on technical preliminaries will follow (§2). Subsequently,
the thesis is roughly structured according to the phases of the compiler (Figure 1.2). The
diagram shows the source object as specified by the user and its transformation into the target
object. Each phase is driven by an implementation, which can either be a certifying one in
ML, or a verified one in Isabelle/HOL (the difference is explained in more detail in §2.2).

The preprocessing phase statically eliminates features that are not supported by the compiler
(§3). Most importantly, the dictionary construction (§3.1) eliminates uses of an advanced type
system feature.

There are various term types that are required for later stages in the compiler. §4 introduces
a term algebra and discusses the differences between those types.

The deep embedding phase (§5) lifts Isabelle terms into an internal model. This allows
reasoning about Isabelle terms in Isabelle itself.

There are multiple compiler phases that process defining equations until a CakeML expres-
sion is reached. These phases are described in §6.
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1 Introduction

ML
Pre-

processing

(§3)

Deep
embedding

(§5)

HOL User
definitions

Simplified
definitions

Terms
(§4)

Embedded
definitions

CakeML
program

Term
compiler

(§6)

Simplifier

implemented as part of this thesisgreen (checkered: already available in Isabelle)
blue specified by user
red generated object

Figure 1.2: Stages of the compiler from Isabelle to CakeML

1.6 How to read this thesis

�

A paragraph with a pencil indicates that the following section – or portions thereof – has
appeared previously in another publication (§1.4). Unless stated otherwise, in publications
with a coauthor, I have contributed the majority of the content, including implementation.

�

Particularly thorny issues, or complicated design decisions stemming from restrictions
of Isabelle or CakeML, are described in a box decorated with Bourbaki’s dangerous bend
symbol. They are not crucial for understanding and can be safely skipped.

When describing a formalization, I frequently refer to theories. Such references (for example�

Ast to the Archive of Formal Proofs) appear in the margin. For other non-bibliographic references,
for example to external tools, I use footnotes.

Some sections in this thesis consist of large quantities of definitions, lemmas, and proofs.
They have been simplified and streamlined for better presentation. Their actual Isabelle
representation can be found in the formalization.
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2 Background

A proof is a proof.
What kind of a proof?
It’s a proof.
A proof is a proof,
and when you have a good proof,
it’s because it’s proven.

(Jean Chrétien)

This chapter describes in detail necessary technical background on Isabelle that is relevant
for understanding the remainder of this thesis.

2.1 Isabelle design

One of the defining features of Isabelle as compared to other proof assistants in the same
family is its modular logic design [104]: the kernel provides the minimal logic Pure, on top
of which other logics can be implemented by users. Pure, in its essence, is a framework
for natural deduction proofs. Proved statements are internally represented as values of
the abstract type thm. Standard ML’s typing discipline ensures that such values can only
be constructed through a finite set of primitives that represent rules or axiom schemas of
constructive logic.

The most basic rule is modus ponens: two statements 𝑃 ⟹ 𝑄 and 𝑃 can be combined
to deduce 𝑄. As is common in literature, this thesis will frequently express such inferences
using the following notation:

𝑃 ⟹ 𝑄 𝑃

𝑄

Based on such primitives, a variety of automated tactics are provided. Tactics in their most
basic form are ML programs that transform theorems into theorems. This can be used for
user interaction when proving theorems:

1. The user indicates that they would like to prove the statement 𝑃.

2. Because the system does not know yet that 𝑃 holds, it generates the goal state 𝑃 ⟹ 𝑃.
A goal state is an implication whose premises are called subgoals and the conclusion is
the statement that the user wants proved. Observe that 𝑃 ⟹ 𝑃 holds for all 𝑃: it is
an axiom schema.

15



2 Background

datatype 𝛼 seq = Empty | Seq 𝛼 (𝛼 seq)

fun conc :: 𝛼 seq ⇒ 𝛼 seq ⇒ 𝛼 seq where
conc Empty ys = ys
conc (Seq x xs) ys = Seq x (conc xs ys)

Listing 2.1: A simple functional program in Isabelle/HOL

3. The user can apply tactics that manipulate some (or all) subgoals. For example, a goal
state 𝑄1 ∧ 𝑄2 ⟹ 𝑃 can be transformed into 𝑄1 ⟹ 𝑄2 ⟹ 𝑃; an instance of
conjunction introduction, where a conjunction is split into two separate subgoals.

4. Eventually, if all subgoals disappear (have been discharged) and the goal state is 𝑃, the
system will accept this as a proved statement. Because the goal state is a value of type
thm at all times, 𝑃 is directly usable as a theorem.

Isabelle comes equipped with a set of standard tactics, for example the simplifier, which is
able to rewrite terms according to (possibly conditional) rewrite rules 𝑡 ≡ 𝑢, and a classical
reasoner based on a tableau calculus [103].

System interaction can happen on two “layers”: the raw ML programming environment, or
the high-level language Isar [127]. For most purposes, users do not manipulate low-level ML
values, but can instead use the abstract Isabelle/Isar syntax.

The most commonly used logic of Isabelle is Higher-Order Logic (HOL for short) based on
work by Gordon [44]. Besides standard features of classical higher-order logic (definitions,
quantifiers, connectives) it provides tools for functional programming, e.g. recursive datatypes
and functions with pattern matching.

2.2 Terminology
The term theory has two meanings: on a physical level, files containing Isabelle/Isar sources;
on a theoretical level, a collection of definitions, constants, theorems, and other logical content.
A theory file is a sequence of Isar commands that alter the logical theory. I will frequently
refer to the actual Isabelle source files that accompany this thesis as the formalization.

Higher-level tools in Isabelle are usually referred to as packages. For example, the two
facilities that enable functional programming are the function and thedatatype packages [18,
69, 70]. A simple example of their interplay is given in Listing 2.1. Because in the architecture
of Isabelle, all of these tools need to justify their constructions against the Isabelle kernel. An
implementation error would not produce an unsound theory; instead, the kernel would print
an error that some construction failed.

Besides theorems, the second foundational ingredient of an Isabelle theory are constants.
Contrary to what the name suggests, the type of a constant can also be a function type. The
logical distinction between constants and variables in Isabelle is that constants may have
definition (or multiple, see §2.3), whereas variables may not. Datatype constructors and

16



2.3 Type system

functions, as in Listing 2.1, are also constants, as far as the kernel is concerned; even though
they have no user-accessible definition. Still, they are internally constructed and defined by
their respective packages.

Internally, Isabelle keeps track of a special kind of variable: schematic variables. Schematic
variables can be instantiated with arbitrary terms. This is an implementation trick to avoid
quantifiers in many situations.

A theory can be augmented with arbitrary auxiliary data. A particular extension is referred
to as a proof context, or context for short. Contexts, for example, keep track of fixed variables
and their types, and local assumptions that are not valid on the global theory level. Most
frequently, Isabelle users encounter contexts when they write a structured proof. Furthermore,
contexts enable modular reasoning (§4.1.3).

Certifying and verified routines Consider a routine that takes a value 𝑥, transforms it
according to a function 𝑓, and ensures that the result 𝑦 = 𝑓 𝑥 satisfies a predicate 𝑃. In proof
assistants, there are two ways to implement this:

1. A block of ML code analyses the value 𝑥, defines a new object 𝑦 and carries out a proof
that 𝑃 𝑦. This proof may fail if the ML code has an error, or if some precondition is not
satisfied.

2. The function 𝑓 is implemented inside the logic, together with a proof that 𝑃 (𝑓 𝑥) holds
for all 𝑥. This is less flexible, but the routine has been shown to be correct once and for
all.

The first strategy is known as certifying, because after each run, it produces a single certificate
that the generated object is valid. Contrary to that, the second one is called as verified ,
because the implementer has given a full correctness proof. Both approaches have their own
(dis)advantages, which means they are often mixed, such as in this formalization.

Notational conventions As can be observed in Listing 2.1, Isar notation is similar to that
of programming languages like Haskell or ML. For easier readability, code samples are slightly
modified from their actual representation that can be processed by Isabelle.

By convention, types and constants are set in typewriter font. Term variables are, as is
usual in mathematics, set in italics.

An actual Isabelle source file (a theory) is composed of a sequence of commands. Commands
are set in sans-serif. Special syntactic constructs in terms, like branching, are written as
if 𝑃 then 𝑥 else 𝑦.

2.3 Type system
Isabelle implements an ML-style simple type system with schematic polymorphism. Types can
be formed by type constructors (e.g. list) and type variables (𝛼, 𝛽, …). Composite types are
written in postfix notation, i.e., a list of integers is written as int list. All types in HOL are
non-empty, that is, they have at least one inhabitant.
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consts size :: 𝛼 ⇒ nat

overloading size_list ≡ size :: 𝛼 list ⇒ nat

begin

definition size_list where
size_list = List.length

end

Listing 2.2: Declaration of a constant and overloaded definitions

Polymorphism Isabelle supports type schemes (or polytypes in recent literature) [55, 90]:
types can be quantified at the outermost level. For example, ∀𝜏 . 𝜏 list is a valid type scheme
for the empty list []. In contrast, (∀𝜏 . 𝜏 list) list is not admissible as a type scheme for the
list containing the empty list [[]], because the quantifier is nested inside a type constructor;
i.e., no second-rank polymorphism is allowed [82].

To implement this, Pure does not provide an explicit type quantifier; instead, it uses
schematic polymorphism. In addition to type variables, there are also schematic type variables
that can be instantiated. Those are prefixed with a question mark: ?𝛼. This distinction
becomes important later for technical reasons (§3.1.3). Users can largely ignore schematic
type variables, as the system automatically introduces them.

Overloading Isabelle supports overloading of constants based on their type. It is possible
to declare a constant with a polymorphic type and then give definitions for a specific instanti-
ation [78]. As an example, consider Listing 2.2 that declares a function that should represent
the “size” of a value. As defined there, it works for lists and can be extended for other types.

This mechanism is very flexible, but is hardly employed directly by users. Instead, the
system implements type classes based on overloading. Type classes are widely used in the
Isabelle community and require special treatment for the purpose of this thesis (§3.1).

2.4 Executability
Specifications formalized in Isabelle/HOL – a classical logic – are not necessarily executable.
This affects proofs who may use classical constructs like law of excluded middle and Hilbert
choice. However, this thesis is concerned with generating a functional program that can be
compiled to machine code from Isabelle specifications.

This mismatch can be reconciled by identifying an executable subset of types and definitions
that can be translated into a functional program. Importantly, this is not a new concept and
can be traced back to previous work in this area, most recently by Haftmann [48, 49]. In
general, that subset can be characterized as “functional program in, functional program out”.
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However, there are a few notable exceptions: HOL is more expressive than programming
languages; for example, it is possible to quantify over an infinite set, which is naturally not
executable. By default, specifications that are created by datatype and function and that
only use other executable functions are themselves executable: these packages have been
designed with executability in mind.

Apart from function, which enables definition of recursive functions, there is also the
definition command. It only supports non-recursive, non-pattern-matching definitions. For
the purposes of this thesis, their internal implementation differences are not relevant: both
allow introducing constants into a theory based on defining equations.

Isabelle’s code generator also supports post-hoc introduction of executability of a specifica-
tion. Sometimes it can be more convenient to specify a constant using the non-executable
fragment, for example using an unconstrained quantifier. Later on, a code equation can be
added to the theory, which will then be used instead of the original defining equation (§3.1.2.1).
Code equations can override any existing definition. In a nutshell, a specification is executable
if its transitive set of code equations only use recursion and pattern matching. In this thesis,
the term defining equation is preferred, because the point at which they are introduced into
the theory does not matter to the compiler.

Even though the term “executability” suggests some form of efficient program on hardware,
it is not necessary that executable code has to be executed outside of Isabelle. Most notably,
the simplifier can be set up to only use the defining equations, which could be used to emulate
a graph-reduction style [57] evaluation inside the Isabelle kernel. �

Lazy_EvalWhen designing a specification, it is advantageous to stay within the executable fragment
of HOL. Many Isabelle tools aimed at developer productivity work better (or only work)
in such cases. The prime example is quickcheck [24], which is able to uncover flaws in
theorem statements by running an automated counterexample finder. This saves a lot of time
by preventing one from trying to prove false statements. Consequently, in many parts of this
thesis, I made design decisions supporting these tools (for example in §2.7), even though at
times it complicates the specifications.

2.5 Inductive predicates

Both in formal and informal mathematics, the notion of inductively defined, or inductive predi-
cates is pervasive. Winskel [131] gives a comprehensive introduction into their mathematical
background. Parts of this will be revisited in later chapters, notably well-founded induction.

Listing 2.3 presents a simple inductive characterization of even numbers. The two rules
declare that 0 is even, and if 𝑛 is even, so is 𝑛 + 2. The result of this abstract specification is
the smallest predicate even ∶∶ nat ⇒ bool satisfying the given rules, i.e., the least fixed point.
Literature commonly uses inductive sets instead of predicates; however, the types 𝛼 set and
𝛼 ⇒ bool are isomorphic to each other.

�
In Isabelle post-2012 versions, sets and predicates are distinct types and many libraries
are duplicated for both. In this formalization, predicates are preferred, unless finitary
constraints need to be enforced.
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2 Background

even 0

even 𝑛

even (𝑛 + 2)

(2.3.a) Mathematical characterization

inductive even :: nat ⇒ bool where
even 0 |

even n ⟹ even (n + 2)

(2.3.b) Isabelle notation

even 𝑥 𝑃 0 (∀𝑛. even 𝑛 ⟹ 𝑃 𝑛 ⟹ 𝑃 (Suc 𝑛))

𝑃 𝑥

(2.3.c) Induction principle

Listing 2.3: A simple inductively defined predicate

In Isabelle, the inductive package can be used to introduce inductive predicates. The induc-
tive command automates the internal construction of a least fixed-point based on the given
rules, which are referred to as introduction rules. Conversely, there are also elimination rules.
They can be used to prove properties like even (𝑛 + 2) ⟹ even 𝑛.

The command also generates an induction schema. In the even example, it can be used to
prove properties of the form even 𝑛 ⟹ 𝑃 𝑛 for arbitrary 𝑃. This is usually referred to as
rule induction.

Inductively defined predicates are the most important ingredient for defining semantics.
Nipkow and Klein [97, §4.5] give further explanations of how those work in Isabelle. In fact,
the example in Listing 2.3 is taken from their book.

Semantics for non-trivial languages, including CakeML, are not purely specified as inductive
predicates. Frequently, they are based on semantic functions which are used to carry out
substitution, matching, and other fundamental operations.

Inductive predicates are convenient to use because contrary to function definitions, users
need not care about termination. For example, one can define a big-step semantics for a
programming language that admits non-terminating programs. It is not possible to define
this in an equational way without additional tricks [102, 115].

�

There are still constraints on the kinds of rules that can constitute a least-fixed point, but
these can often be automatically discharged by the inductive package. When higher-
order predicates are involved (for example predlist ∶∶ (𝛼 ⇒ bool) ⇒ 𝛼 list ⇒ bool),
monotonicity has to be proved by the user first.

The obvious downside resulting from that convenience is that inductive predicates are by
default not executable (§2.4). Berghofer et al. [8] have introduced a predicate compiler which
can transform a large fragment of inductive specifications into executable code. While it
works mostly automatically, it is tricky to use and has several edge cases; as such, I consider
it to be a feature of last resort and prefer equational definitions where possible.
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2.6 Term rewriting

datatype term =

Const string |

Free string |

Abs term |

Bound nat |

App term term

(2.4.a) Abstract syntax of
de Bruijn terms

Step
(lhs, rhs) ∈ R match lhs 𝑡 = Some 𝜎

R ⊢ 𝑡 ⟶ subst 𝜎 rhs

Beta
R ⊢ (Λ𝑡) $ 𝑡′ ⟶ 𝑡[𝑡′]

Fun
R ⊢ 𝑡 ⟶ 𝑡′

R ⊢ 𝑡 $ 𝑢 ⟶ 𝑡′ $ 𝑢

Arg
R ⊢ 𝑢 ⟶ 𝑢′

R ⊢ 𝑡 $ 𝑢 ⟶ 𝑡 $ 𝑢′

(2.4.b) Small-step semantics

Listing 2.4: Overview of the deeply embedded de Bruijn term type

�

In the even example, the predicate compiler produces code equations that terminate for
even numbers – correctly answering True – but fail to terminate for odd numbers. The
reason is that the compiler does not know that the search for an 𝑛′ such that 𝑛 = 𝑛′ + 2 is
bounded.

The categorical dual, coinductive predicates, are only needed at single point in the formalization
(Listing 6.11). Because of their only brief appearance, an explanation of coinduction is out of
the scope for this thesis. I refer the reader to the literature for more details [42, 110].

2.6 Term rewriting

Based on the internal definition of terms in Isabelle/Pure, one can model terms as a datatype
in HOL: the deeply embedded term language is depicted in Listing 2.4.a. Similarly to the Pure
type, it uses de Bruijn indices [23], but omits types and schematic variables.

The embedded HOL term type uses the same conventions as its ML counterpart. I write
App 𝑡 𝑢 as 𝑡 $ 𝑢 and Abs 𝑡 as Λ 𝑡. The notation 𝑡[𝑡′] represents 𝛽-reduction, that is, substitution
of the innermost bound variable (i.e. with index zero) in 𝑡 with 𝑡′ (the implementation of
𝛽-reduction will be revisited in §4.3.1). Throughout this thesis, I will use an upper-case Λ to
refer to the concrete syntax of abstraction in the embedded term language, whereas lower-
case 𝜆 is used for Pure abstractions. More details on this and other term types can be found
in §4.

Observe that types are not preserved in this embedded language. In Pure, the Const, Free,
and Abs constructors carry type information, each for a different purpose: constants can
be polymorphic (the type specifies the instantiation of the type scheme), free variables are
identified by their name and their type (there may be multiple variables with the same name
but different types), and finally, abstractions specify the type of the bound variable.
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�

While type checking admits multiple variables with the same name and differing types, it
rarely happens in practice because type inference rejects such terms. If a user was to feed,
for example, the term 𝑥 # 𝑥 into Isabelle (where # is list cons), type inference would report
a unification failure, because 𝛼 and 𝛼 list cannot be unified. Consequently, it is no real
restriction that the model presented here does not handle such odd terms.

For abstractions, type erasure is unproblematic, because they are assumed to be parametric;
i.e., for a polymorphic parameter, they may not behave differently depending on the concrete
instantiation. However, it becomes impossible to distinguish between different instantiations
of constants. This is problematic because of overloading (§2.3). I employ the so-called
dictionary construction (§3.1) to avoid this problem.

Listing 2.4.b specifies the small-step semantics for terms. It is reminiscent of higher-
order term rewriting, and modelled closely after equality in HOL. The basic idea is that if the
proposition 𝑡 = 𝑢 can be proved equationally in HOL (without symmetry), then R ⊢ ⟨𝑡⟩ ⟶∗ ⟨𝑢⟩
holds, where R contains all defining equations. The angle brackets denote the deep-embedding
operator that will be explained in more detail in §5.

In the semantic for terms with de Bruijn indices, substitution under binders, i.e., rewriting
below an abstraction, can be easily implemented: there are no bound variable names that
could capture free variables of the term that is substituted. Still, the semantics in Listing 2.4.b
does not recurse below binders; only below application. The reason for that is twofold:

1. during the process of the compiler, new term types are introduced that carry explicit
bound variable names (§4.3), and

2. in the CakeML semantics, substitution does not happen below binders (§6.8).

This model of term rewriting in HOL coincides by design with the notion of executability. All
defining equations can be lifted into the set R, which will then be transformed in later stages
of the compiler.

2.7 CakeML/Isabelle integration
Because the Lem specification of CakeML assumes some special features of HOL4, some
adaptations were necessary:

• Fabian Immler and Johannes Åman Pohjola have contributed to the adaptation of
machine words and floating-point arithmetic.

• Pohjola has contributed the s-expression printer that converts CakeML programs into
string form, which can subsequently be consumed by the CakeML compiler.

• The functional big step semantics is implemented using a special function to enforce
monotonically decreasing clocks according to Kumar and Myreen [73, §3.2]. This makes�

Evaluate_Clock the termination proof simpler, but complicates reasoning about the semantics. Proofs
�

Big_Step_Fun_

Equiv

from HOL4 that rephrase the semantics without that function had to be ported to
Isabelle. Additionally, the equivalence proofs between big step and functional big step
semantics were ported.
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2.7 CakeML/Isabelle integration

• In general, Isabelle tools and automation work better with nested recursive definitions
instead of mutually recursive definitions. Additionally, my formalization ignores certain �

Evaluate_

Single
features of CakeML; notably mutable cells, modules, and literals. Consequently, I have
derived a smaller, executable version of the original CakeML semantics, together with
an equivalence proof, called CupCakeML (§6.8). Portions of this have been implemented �

CupCake_

Semantics
by Yu Zhang.

• Where necessary, I have set up code equations and quickcheck for more rapid devel-
opment of theories. In general, the functional big step semantics is better suited for �

CakeML_

Quickcheck
executability than the relational variant, because it is defined as a function.

In order to obtain a full toolchain from Isabelle definitions tomachine code, I have implemented
a small pretty-printer of the CupCakeML fragment to concrete CakeML syntax, which is part
of the trusted code base. The resulting source text can then be fed into the CakeML compiler. �

CakeML_

Compiler
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3 Preprocessing definitions
Axiomatic type classes are definitional.
Type definitions are axiomatic.

(Old Isabelle proverb)
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3 Preprocessing definitions

Before definitions can be processed by the compiler, a preprocessing phase needs to modify
them to remove unsupported features. This chapter explains these steps, starting with the
elimination of type classes (§3.1), followed by lazy evaluation of case combinators (§3.2) and
partially applied constructors (§3.3). Finally, it deals with restrictions on pattern matching
(§3.4) and other limitations (§3.5).

3.1 Dictionary construction

�

Portions of this section appear in the AFP entry “Dictionary Construction” (Hupel [63]),
and the preprint “Certifying Dictionary Construction in Isabelle/HOL” (Hupel [61]). Users
are recommended to refer to that AFP entry for latest documentation.

Isabelle/Pure features type classes [50, 128]. These are built into the kernel and are used
extensively in theory developments. The code generator, when targeting Standard ML,
performs the well-known dictionary construction or dictionary translation [49]. This works
by replacing type classes with records, instances with values, and occurrences with explicit
parameters.

Similarly to Standard ML, CakeML does not support type classes. To avoid complicating the
correctness proofs, I decided to also not support them in the embedded term language (§2.6).
Instead, a dictionary construction eliminates classes and instances before embedding into the
term language. This section deals with the chosen encoding of type classes and instances, the
certifying translation, and treatment of partial functions.

3.1.1 Preliminaries

In Isabelle parlance, the term class refers to a type class; a concept known from Haskell [50,
126]. A class can fix a type 𝛼 and some constants whose type contains 𝛼. Those constants are
officially referred to as class parameters. Classes and parameters live in different name spaces.
In the example in Listing 3.1, plus is a parameter of the plus class. In this section, I will
use the term class constant instead of class parameter, to avoid the ambiguity with function
parameters.

A set of classes is called a sort . Type variables may carry sort constraints, which are preceded
by double colons: 𝛼 ∶∶ {plus, times}. Formally, a sort is an intersection of classes: the set of
types that satisfy the sort {plus, times} is the set of the types have both a plus and a times
instance. Constants are said to have sort constrains if their types contain type variables with
sort constraints. Sort constraints can be omitted by the user and will be inferred. If they are
provided by the user, it is sufficient to specify them once per type variable.

As an example, consider the function f 𝑥 = 𝑥 + 𝑥. In HOL, the + operator is defined in the
type class plus. This means that the type of f is (𝛼 ∶∶ plus) ⇒ 𝛼.

Classes can extend other classes, with the inheritance relationship forming a directed
acyclic graph (and with it, a partial order). Sorts can be normalized according to this partial
order. Assuming that the class group extends both zero and plus, the sort {group, zero} can
equivalently be written as {group}. I always assume that sorts are normal.
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3.1 Dictionary construction

class plus =

fixes plus :: 𝛼 ⇒ 𝛼 ⇒ 𝛼 (infixl + 65)

definition f :: 𝛼::plus ⇒ 𝛼 where
f x = x + x

(3.1.a) Source program

type 'a plus = {plus : 'a -> 'a -> 'a};

val plus = #plus : 'a plus -> 'a -> 'a -> 'a;

fun f dict x = plus dict x x;

(3.1.b) Target program (Standard ML)

Listing 3.1: Dictionary construction in Isabelle (current state)

Largely, classes work similarly in Haskell – Haskell98, to be specific – and Isabelle (see
also §3.1.7). Isabelle’s type system does not admit type constructor classes, nor other exten-
sions like multi-parameter classes or undecidable instances. However, Isabelle offers major
enhancements over Haskell:

• Isabelle being a proof assistant allows class axioms that must be proved for every type
that wishes to instantiate the class. The precise axioms are irrelevant for the dictionary
construction (§3.1.2.3); they are abstracted as a predicate.

• It is possible to add edges in the inheritance relationship after the definition of the
classes, as long as the user is able to produce a proof that the subclass axioms imply
the superclass axioms.

�
While parts of the dictionary construction are implemented incrementally, modifications in
the class graph after their records have already been generated are not supported.

3.1.2 Elimination of classes
The basic idea is to replace classes by dictionaries containing all class constants and to replace
instances by values. Constants with sort constraints are rewritten in a way that they require
additional dictionary parameters.

This transformation is an integral part of Isabelle’s code generator. It is described in detail
by Haftmann and Nipkow [49, §4], together with an informal correctness proof.

A complete example for f 𝑥 = 𝑥 + 𝑥 is reproduced in Listing 3.1. Note that this translation
is only required for target languages that do not support type classes (OCaml, Standard ML).
For other languages (Haskell, Scala), type classes are preserved with only minor syntactic
changes.
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3 Preprocessing definitions

datatype 𝛼 dict_plus = mk_plus (const_plus: 𝛼 ⇒ 𝛼 ⇒ 𝛼)

definition cert_plus :: 𝛼::plus dict_plus ⇒ bool where
cert_plus dict = (const_plus dict = plus)

fun f' :: 𝛼 dict_plus ⇒ 𝛼 ⇒ 𝛼 where
f' dict x = const_plus dict x x

lemma f'_eq: cert_plus dict ⟹ f' dict = f

(* proof omitted *)

Listing 3.2: Source program after dictionary construction in HOL (certifying translation)

3.1.2.1 Current state

In the code generator, the dictionary construction happens outside the logic. It starts with a set
of defining equations that represent the program to be exported. These equations are proper
theorems and are generated automatically by various commands for datatype and function
definitions. To improve efficiency, the user may provide alternative (verified) equations, for
example, to replace a naive recursive implementation of a function by a more stack-efficient
tail-recursive definition.

Then, these equations are internalized into an intermediate language. The dictionary
construction then proceeds in this internal language, following the approach outlined by Hall
et al. [52].

3.1.2.2 Certifying translation

In this work, dictionary translation is performed before internalizing the defining equations
into the deeply embedded term language. It is a procedure implemented in ML which takes
existing HOL definitions and produces new, derived HOL definitions, coupled with theorems
certifying their equivalence.

To continue with the above example: My mechanism introduces a derived constant f' with
an additional dictionary parameter dict ∶∶ 𝛼 dict_plus. Then, it proves a theorem stating
that for any valid dictionary dict , f' is equivalent to f:

cert_plus dict ⟹ f' dict = f

Validity of a dictionary is captured by the cert_plus predicate. Intuitively, cert_𝑐 dict means
that dict represents a known and lawful instance of class 𝑐. The precise notion of “validity” is
mainly dictated by technical considerations and discussed in the following section.

Additionally, for each type class instance 𝜅∶∶(𝑠1, … , 𝑠𝑘) 𝑐, where 𝜅 is an 𝑘-ary type constructor
and 𝑠𝑖 = {𝑐𝑖,1, … , 𝑐𝑖,𝑛𝑖} are sorts, a new constant inst_𝑐_𝜅 is defined. Given the dictionaries for
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3.1 Dictionary construction

the 𝑠𝑖, it computes the dictionary for 𝜅 ∶∶ 𝑐. Its correctness theorem is of the form

(
𝑘
⋀
𝑖=1

𝑛𝑖
⋀
𝑗=1

cert_𝑐𝑖,𝑗 dict1,1) ⟹ cert_𝑐 (inst_𝑐_𝜅 dict1,1 … dict1,𝑛1 … dict𝑘,1 … dict𝑘,𝑛𝑘)

For both instances and constants, each constituent class of each type variable’s sort constraints
gets assigned a dictionary argument and a premise certifying its validity.

The resulting program (as it would have been written by a user) is reproduced in Listing 3.2.
My procedure defines the types and constants through the ML interfaces of various Isabelle
packages, that is, users never see its results directly. Instead, users would write declassify f,
which is a command that has the same effect as the hand-written definitions in Listing 3.2.

3.1.2.3 Possible encodings

The choice of the representation of dictionaries is straightforward: I can model it as a datatype,
along with functions returning values of that type. The alternative here would have been to
use Isabelle’s extensible records [95]. The obvious advantage of records is that I could easily
model subclass relationships through record inheritance. However, records do not support
multiple inheritance. Consequently, records offer no advantage over datatypes. Instead, I
opted for the more modern datatype command [18]. As of Isabelle2018, I have also introduced
a datatype_record command that provides a subset of the syntax of records, but internally
constructs a datatype. �

Datatype_

Records
A more controversial design question is how to represent dictionary certificates. For

example, given a value of type nat dict_plus, how can one know that this is a faithful
representation of the plus instance for nat?

1. Florian Haftmann, in private communication, proposed a shallow encoding. It works by
exploiting the internal treatment of constants with sort constraints in the Isabelle kernel.
Constants themselves do not carry sort constraints, only their defining equations. The
fact that a constant only appears with these constraints on the surface of the system is
a feature of type inference.
Instead, I can instruct the system to ignore these constraints. Isabelle’s logic supports
definitions of subtypes: a type copy of an existing type that imposes additional con-
straints on values. For example, non-empty lists can be defined as a copy of lists with
the constraint xs ≠ []. Because HOL is a total logic, i.e., all types are non-empty, the
system demands a witness satisfying the constraint.
Applied to this situation, the key idea is to introduce a new type with a parameter 𝛼
and the constraint that 𝛼 implements a type class. However, this is ultimately futile:
The nonemptiness proof requires a witness of a valid dictionary for an arbitrary, but
fixed type 𝛼, which is of course not possible, because type classes in general cannot be
instantiated for all types. �

Impossibility2. The certificates contain the class axioms directly. For example, the semigroup_add

class requires (𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐). Such certificates are already defined for each class
by Isabelle. Transferred to this setting, they would like this:

29

https://isabelle.in.tum.de/website-Isabelle2018/dist/library/HOL/HOL-Library/Datatype_Records.html
https://isabelle.in.tum.de/website-Isabelle2018/dist/library/HOL/HOL-Library/Datatype_Records.html
https://www.isa-afp.org/browser_info/current/AFP/Dict_Construction/Impossibility.html
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definition cert_plus :: 𝛼 dict_plus ⇒ bool where
cert_plus dict = (∀x y z. const_plus dict (const_plus dict x y) z =

const_plus dict x (const_plus dict y z))

Proving that instances satisfy this certificate is trivial. However, the equality proof of a
constant before and after the construction is impossible: they are simply not equal in
general. Nothing would prevent someone from defining an alternative dictionary using
multiplication instead of addition and the certificate would still hold; but obviously
functions using plus on numbers would expect addition. Intuitively, this makes sense:
the above notion of certificate establishes no connection between original instantiation
and newly generated dictionaries.

Instead of proving equality, one would need to lift all existing theorems over the old
constants to the new constants. This requires proof terms and replaying all proofs
accordingly, which would be prohibitively expensive.

3. In order for equality between new and old constants to hold, the certificate needs to
capture that the dictionary corresponds exactly to the class constants. This is achieved
by the representation in Listing 3.2. It literally states that the fields of the dictionary
are equal to the class constants. The condition of the resulting equation can only be
instantiated with dictionaries corresponding to existing class instances. This consti-
tutes a closed world assumption, i.e., callers of generated code may not invent own
instantiations.

My choice of representation is the third of these possibilities: I expect dictionaries to be iden-
tical to the class constants. For the user, that means that the conditions of the equivalence
theorems (f' dict = f) can only be instantiated with existing class instantiations. Uncondi-
tional equivalences can be achieved by monomorphizing constants. Applied to the example in
Listing 3.1, that would mean defining a constant fnat ∶∶ nat ⇒ nat. Its correctness theorem
is unconditional, because no sort constraints occur in the type of f.

3.1.3 Implementation

Themechanism that transforms defining equations is similar to the one described by Haftmann
and Nipkow [49, §4], which is presently used by the code generator to target OCaml and
Standard ML.

Translating constants is the top-level operation in the dictionary construction. The user
invokes it with a set of constants. Internally, the procedure uses existing mechanisms in
Isabelle to obtain the code graph of that set. That graph contains all defining equations of the
set and of all its transitive dependencies (i.e., other constants). Each of these dependencies
has to be re-defined as a new constant in some way, depending on whether or not it is a class
constant.
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3.1 Dictionary construction

class plus =

fixes plus :: 𝛼 ⇒ 𝛼 ⇒ 𝛼

instantiation nat :: plus

begin

fun plus_nat where
0 + n = (n::nat)
Suc m + n = Suc (m + n)

instance ..

end

definition f :: 𝛼::plus ⇒ 𝛼 where
f x = x + x

(* f specialized to nat *)

definition g :: nat ⇒ nat where
g x = f x

Figure 3.1: A slightly extended (from Listing 3.1) source program and its code graph

�

Strictly speaking, data constructors are also constants that may have class constraints. The
dictionary construction does not support those in general. Additionally, the underlying
type definition based on bounded natural functors largely ignores sort constraints.a Conse-
quently, they do not participate in the dictionary construction and are not relevant for this
section.

ahttps://lists.cam.ac.uk/pipermail/cl-isabelle-users/2018-May/msg00065.html

Along the way, auxiliary objects must be defined, for example the dictionary types for classes.
Unlike with the existing code generator, all of these steps need to be carried out inside the logic
and are hence bound by its constraints. Most notably, all definitions must be sequentialized
to avoid forward references. This means the implementation comprises mutually recursive,
state-updating functions.

The code graph of a small program is given in Figure 3.1. As can be seen, the constant g
depends on the constant f and the instance nat ∶∶ plus. The data constructors Suc and 0 are
greyed out. The graph has to be traversed in topological order.

�

Readers familiar with Isabelle’s internals will notice that the code graph has been slightly
redacted: The zero constructor for nat is actually the overloaded constant zero from the
type class zero. This introduces technical complications, but does not in principle affect
the dictionary construction.
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3 Preprocessing definitions

datatype 𝛼 dict_c = mk_c
(super_𝑐1: 𝛼 dict_𝑐1) (super_𝑐2: 𝛼 dict_𝑐2) … (super_𝑐𝑛: 𝛼 dict_𝑐𝑛)
(const_𝑓1: J𝜏1K) (const_𝑓2: J𝜏2K) … (const_𝑓𝑚: J𝜏𝑚K)

definition cert_c :: 𝛼::c dict_c ⇒ bool where
cert_c dict =

(cert_𝑐1 (super_𝑐1 dict) ∧ cert_𝑐2 (super_𝑐2 dict) ∧ … cert_𝑐𝑛 (super_𝑐𝑛 dict) ∧
const_𝑓1 dict = 𝑓1 ∧ const_𝑓2 dict = 𝑓2 ∧ … ∧ const_𝑓𝑚 dict = 𝑓𝑚)

Listing 3.3: Dictionary datatype and certificate predicate

Throughout this section, the overloaded notations J⋅K and ⦇⋅⦈ are used to describe the trans-
lation of various kinds of objects. I will first explain how types and classes themselves are
processed. Then, assuming a translation for terms exists, I will give a translation for type
schemes and constants. Lastly, the knot is tied by explaining how terms are processed. In the
actual implementation, all of these steps are intertwined.

3.1.3.1 Types

Recall that Isabelle distinguishes between type variables and schematic type variables (§2.3).
Simple types, i.e., types that contain no schematic type variables, can be translated very
easily: J𝜏K forgets all sort constraints. This is possible because those cannot have intrinsic
sort constraints; those are imposed from the context and will be introduced accordingly when
dealing with type schemes, which will be explained later.

3.1.3.2 Classes

A class 𝑐 over a type variable 𝛼may have superclasses 𝑐1, 𝑐2, … , 𝑐𝑛 and constants 𝑓1∶∶𝜏1, … , 𝑓𝑚∶∶
𝜏𝑚. Assuming the set {𝑐1, 𝑐2, … , 𝑐𝑛} is normal, this generates the definitions in Listing 3.3. Note
that the only type variable that may occur in the 𝜏𝑖 is 𝛼 itself, which is an Isabelle restriction.
Consequently, it is not necessary to perform a recursive dictionary translation on the class
constants, and I can get away with using the translation for simple types.

This newly introduced constructor and its fields have the following types:

mk_𝑐 ∶∶ 𝛼 dict_𝑐1 ⇒ … ⇒ 𝛼 dict_𝑐𝑛 ⇒ 𝛼 dict_𝑐
const_𝑓𝑖 ∶∶ 𝛼 dict_𝑐 ⇒ J𝜏𝑖K
super_𝑐𝑖 ∶∶ 𝛼 dict_𝑐 ⇒ 𝛼 dict_𝑐𝑖
cert_𝑐 ∶∶ 𝛼 ∶∶ 𝑐 ⇒ bool

Apart from the certificate definition (which is only required for the correctness proofs), no
sort constraints are left.
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3.1 Dictionary construction

class ab_semigroup_add = semigroup_add +
  assumes "add_commute": "⋀a b. a + b = b + a"

class plus = type +
  fixes plus :: "'a ⇒ 'a ⇒ 'a" 

class semigroup_add = plus +
  assumes "add_assoc": "⋀a b c. a + b + c = a + (b + c)"

class semigroup_mult = times +
  assumes "mult_assoc": "⋀a b c. a * b * c = a * (b * c)"

class semiring = ab_semigroup_add + semigroup_mult +
  assumes
    "distrib_right": "⋀a b c. (a + b) * c = a * c + b * c"
  assumes
    "distrib_left": "⋀a b c. a * (b + c) = a * b + a * c"

class times = type +
  fixes times :: "'a ⇒ 'a ⇒ 'a" 

type

Figure 3.2: Class hierarchy for the comm_semigroup_add class

For any class constant 𝑓 of a class c, let ⦇𝑓⦈ denote the corresponding constant field. If 𝑑 is
a direct superclass of 𝑐, I use ⦇𝑐 𝑑⦈ to denote the corresponding superclass field. In other
words, ⦇𝑓⦈ = c.const_𝑓 and ⦇𝑐 𝑑⦈ = c.super_𝑑.

3.1.3.3 Superclass paths

The class hierarchy in HOL is rather complex. An excerpt, relating to the running example,
is reproduced in Figure 3.2. For example, to obtain the plus operation from a semiring

constraint, one has to follow three subclass–superclasses edges.

In general, for any two classes 𝑐 and 𝑑, there may be multiple different paths from the
subclass 𝑐 and the (possibly indirect) superclass 𝑑. It is not obvious that the choice of path
is irrelevant for the semantics of the generated program, i.e., that the system is coherent
according to Jones [68]. Isabelle’s type system guarantees coherence [98, 99], which the
dictionary construction assumes. If that assumption were violated, the equivalence proof
(§3.1.6) would fail. Coherence is consequently a meta-theorem and not internalised in the
logic.

For the purpose of this presentation, it is sufficient to assume that the implementation uses
the “first” path according to the kernel-defined order of superclasses. It is straightforward to
extend the notation ⦇𝑐 𝑑⦈ ∶∶ 𝛼 dict_𝑐 ⇒ 𝛼 dict_𝑑 for an indirect superclass 𝑑 of 𝑐, where
the edges are conjoined using the function composition operator ∘.
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3 Preprocessing definitions

3.1.3.4 Non-class constants

Class constants can be easily distinguished from non-class ones: The former have no defining
equations. They are only given meaning by an instance of a class.

In the example in Figure 3.1, the constants f, g and plus_nat are non-class constants,
whereas plus is a class constant. This is reflected in the graph: the box for plus has no
defining equations. Note that while plus_nat participates in the instantiation of a type class,
it is itself not considered to be a class constant.

Assume a transformation of a non-class constant 𝑓 with a set of defining equations eq𝑖.
Each of the eq𝑖 is of the form 𝑓 𝑝𝑖,1 𝑝𝑖,2 … 𝑝𝑖,𝑛𝑖 ≡ rhs𝑖, with the 𝑝𝑖,𝑗 being constructor patterns.
Furthermore, the type of 𝑓 is a type scheme, i.e., it is of the form ∀𝛼1 ∶∶ 𝑠1…∀𝛼𝑘 ∶∶ 𝑠𝑘. 𝜏. Each of
the schematic type variables 𝛼𝑖 may carry a sort constraint 𝑠𝑖 = {𝑐𝑖,1, … , 𝑐𝑖,𝑚𝑖

} that is assumed
to be normal.

Let J𝑡KΓ denote the translation of terms in a context Γ (to be defined later). Also, let ⦇𝑓⦈
mean a fresh name, e.g. 𝑓 ′ to refer to the newly defined constant.

I can now explain the translation of the defining equations. Each equation eq𝑖 gives rise to
a new equation Jeq𝑖K as follows:

• For every class constraint of every type variable, a new parameter is introduced.

• The existing parameters stay unchanged, because data constructors do not participate
in the dictionary construction.

• The right-hand side is translated with all new parameters as context.

Formally:

Jeq𝑖K = (lhs′𝑖 ≡ Jrhs𝑖KΓ)
Γ = [dict_𝑐1,1, … , dict_𝑐𝑘,𝑚𝑘

]

lhs′𝑖 = ⦇𝑓⦈ (dict_𝑐1,1 ∶∶ 𝛼1 dict_𝑐1,1) … (dict_𝑐𝑘,𝑚𝑘
∶∶ 𝛼𝑘 dict_𝑐𝑘,𝑚𝑘

) 𝑝𝑖,1 𝑝𝑖,2 … 𝑝𝑖,𝑛𝑖

Note that the translation for left-hand and right-hand sides differs: left-hand sides, consisting
only of patterns, need no context.

All resulting equations are considered as defining equations for ⦇𝑓⦈. Subsequently, they are
fed into the internal interface of the function command to produce a new logical constant.
The additional technical challenges of this are documented in the following sections.

3.1.3.5 Instance definitions and composition

An instance 𝜅 ∶∶ (𝑠1, … , 𝑠𝑘) 𝑐 is treated as if it is a (non-class) constant with no arguments,
returning a dictionary containing instantiations of all class constants. Consequently, each
instance gives rise to a new definition that I refer to as ⦇𝜅 ∶∶ 𝑐⦈.

However, it is also necessary to compose instances from contexts. This might mean
a combination of following along superclass paths and applying instance definitions to
arguments. I use J𝜏 ∶∶ 𝑐KΓ as notation for this, where 𝜏 is a simple type and Γ a context.

I will first describe the (deterministic) algorithm to obtain J𝜏 ∶∶ 𝑐KΓ.
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3.1 Dictionary construction

1. If 𝜏 is a type variable, find an instance dict for 𝜏 ∶∶ 𝑐′ in Γ where 𝑐′ is a subclass of 𝑐.
Then, J𝜏 ∶∶ 𝑐KΓ = ⦇𝑐′  𝑐⦈ dict .

2. Otherwise, 𝜏 is of the form (𝜏1, … , 𝜏𝑘) 𝜅, i.e., a 𝑘-ary type constructor 𝜅 applied to 𝑘 types.
Find an instance definition 𝜅 ∶∶ (𝑠1, … , 𝑠𝑘) 𝑐

′ where:
• 𝑐′ is a subclass of 𝑐 and
• for each constraint 𝜏𝑖 ∶∶ 𝑐𝑖,𝑗 stemming from the 𝑠𝑖, 𝑟𝑖,𝑗 = J𝜏𝑖 ∶∶ 𝑐𝑖,𝑗KΓ is defined

Then, J𝜏 ∶∶ 𝑐KΓ = ⦇𝑐′  𝑐⦈ (⦇𝜅 ∶∶ 𝑐′⦈ 𝑟1,1 … 𝑟𝑘,𝑚𝑘
).

3. If no suitable instance exists, fail.

For any well-sorted judgement 𝜏∶∶𝑐, this algorithm is guaranteed to find at least one composed
instance. Similar to finding superclass paths, the choice of instance is irrelevant. This is a
meta-theorem based on the coregularity property that is guaranteed by Isabelle’s type system
[98, 99].

It remains to treat instance definitions ⦇𝜅 ∶∶ 𝑐⦈. Assuming the same naming conventions as
above, the generated definition is of the following form:

⦇𝜅 ∶∶ 𝑐⦈ dict1,1 … = mk_𝑐 J(𝛼1, … , 𝛼𝑘) 𝜅 ∶∶ 𝑐1KΓ … J(𝛼1, … , 𝛼𝑘) 𝜅 ∶∶ 𝑐𝑛KΓ J𝑓1KΓ … J𝑓𝑚KΓ

3.1.3.6 Terms

I define the translation of terms J𝑡K that are not constants recursively as follows:

J𝑥KΓ = 𝑥 (where 𝑥 is a variable)
J𝑡 𝑢KΓ = J𝑡KΓ J𝑢KΓ

J𝜆𝑥. 𝑡KΓ = 𝜆𝑥. J𝑡KΓ

The rule for constants is a bit more involved. Let 𝑓 be a constant with 𝑘 type parameters, i.e.,
of type scheme ∀𝛼1 ∶∶ 𝑠1…∀𝛼𝑘 ∶∶ 𝑠𝑘. In any occurrence of 𝑓 in a term, these type parameters
are instantiated with simple types 𝜏1, … , 𝜏𝑘.

J𝑓KΓ = ⦇𝑓⦈ J𝜏1 ∶∶ 𝑐1,1KΓ … J𝜏𝑘 ∶∶ 𝑐𝑘,𝑚𝑘
KΓ

3.1.3.7 Challenges

In the standard case, where the user has not performed a custom code setup, the resulting
function looks similar to its original definition. But the user may have also changed the
implementation of a function significantly afterwards. This poses some challenges:

• The new constants need to be proven terminating. The routine heuristically transfers
the original termination proof to the new definitions (§3.1.4). This only works when
the termination condition does not rely on class axioms.

• The domain of functions must be tracked, because even though HOL is a total logic,
functions may be under-specified. Congruence rules are used to construct an inductive
predicate (§2.5) representing the side condition of a function (§3.1.5).
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fun f :: nat ⇒ nat where
f 0 = 0
f (Suc n) = f n

lemma [code]: f x = f x by simp

Listing 3.4: Pathological example of a non-terminating defining equation

• In order to fine-tune executable code, the code generator allows users to specify different
constructors of a datatype than those it has been defined with, or even to introduce
constructors for non-datatypes. However, the function command does not support
that in general (§3.5). But even if it did, the equivalence of old and new definition may
become conditional on invariants, which is conceptually not supported (§3.5).

• The set of defining equations must be non-overlapping to ensure determinism. Addi-
tionally, to accommodate for later phases in the compiler (§6.3), some pattern variables
need to be renamed (§3.4).

3.1.4 Preservation of termination

As indicated above, the newly defined functions must be proven terminating. In general, I
cannot reuse the original termination proof, as the example in Listing 3.4 illustrates. While
the original function is primitively recursive, and hence trivially proved to be terminating,
the user has added a defining equation that characterizes a non-terminating implementation.
My construction cannot deal with such pathological cases, but fortunately they are rare in
practice. The invocation of the dictionary construction would just fail for this example.

Instead, based on my experience, the most common cases are that users either

• do not adapt the defining equations at all,

• adapt them without changing the termination scheme, or

• adapt them to use different recursive calls, while still being terminating.

For the last case, it is impossible to port the existing termination proof, because it is not
applicable any more. Hence, the construction falls back to use the same automated proof
method as the function package.

However, the other cases are more interesting. In the remainder of this section, I will
illustrate the first case, which is a specialization of the second one. The original termination�

Termination proof should intuitively be still applicable.
The running example will be a function that sums up values in a list.

fun sum_list :: 𝛼::{plus,zero} list ⇒ 𝛼 where
sum_list [] = 0
sum_list (x # xs) = x + sum_list xs
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3.1 Dictionary construction

This function carries two distinct class constraints – arising from the use of addition and zero,
both of which are provided by a class in Isabelle – which are translated into two dictionary
parameters:

sum_list' dict_plus dict_zero [] =

const_zero dict_zero
sum_list' dict_plus dict_zero (x # xs) =

const_plus dict_plus x (sum_list' dict_plus dict_zero xs)

Here, the termination argument has not changed: While two additional parameters have been
introduced, they remain unchanged in between recursive calls. Observe that whenever sort
constraints are present, the dictionary construction always introduces new arguments, but
keeps the termination scheme.

Now, the termination of sum_list' must be proved. The function package analyses the
structure of recursive calls and collects them into a set of constraints.

As a notation for constraints, I will use ̄𝑝  ̄𝑥. ̄𝑝 stands for the (tupled) patterns on the
left-hand side of an equation and ̄𝑥 for the (also tupled) actual parameters passed to a recursive
invocation. Only variables bound in ̄𝑝 may appear in ̄𝑥.

�

The function command not only tracks the parameters passed to a recursive call, but also,
under which conditions such a call appears. For example, a recursive call may appear in
a then or else branch. To properly represent that, the notation needs to be extended to
allow for arbitrary predicates. For explaining the termination heuristics, this generality is
not needed; but it will be revisited for another purpose in §3.1.5.

For the above example, this looks as follows:

{(𝑥 # xs) xs} (sum_list)
{(dict_plus, dict_zero, 𝑥 # xs) (dict_plus, dict_zero, xs)} (sum_list')

Internally, for every function 𝑓 ∶∶ 𝜎1 ⇒ 𝜎2 ⇒ … ⇒ 𝜎𝑛 ⇒ 𝜏, the package defines an inductive
relation 𝑓_rel ∶∶ (𝜎1, 𝜎2, … , 𝜎𝑛) ⇒ (𝜎1, 𝜎2, … , 𝜎𝑛) ⇒ bool with one introduction rule per
constraint. Note that the arguments are tupled, i.e. all function arguments participate in the
definition of this termination relation.

In the example, the predicate sum_list_rel is defined by the following introduction rule:

sum_list_rel xs (𝑥 # xs)

For details on how the function package assembles the termination relation based on the
constraints, in particular for more complicated recursion schemes, refer to Krauss’ thesis [69].

To prove that a function terminates, it is sufficient to show that its termination relation is
well-founded. In the majority of cases, this happens by supplying a suitable measure function
that maps the arguments to natural numbers and decreases for each recursive call. The
function package is able to try out various measure functions automatically.

In this setting however, the termination of 𝑓 has already been proved, either automatically
or by the user. The construction tries to re-use that proof, i.e., the well-foundedness theorem
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𝑥1 𝑥2 𝑥3𝑃 …

𝑥′1 𝑥′2 𝑥′3𝑃 ′ …

𝑔 𝑔 𝑔

Figure 3.3: Well-founded simulation

of 𝑓_rel, for the proof of well-foundedness of 𝑓 ′_rel, where 𝑓 ′ is the result of applying the
dictionary construction to 𝑓. Except for the additional (unchanging) dictionary arguments,
these relations are more or less equivalent to each other.

Lemma 3.1 (Well-founded simulation). Let 𝑃 ∶∶ 𝜏 ⇒ 𝜏 ⇒ bool be a well-founded relation
and 𝑔 ∶∶ 𝜎 ⇒ 𝜏 a function such that

∀𝑥 𝑦. 𝑃 ′ 𝑥 𝑦 ⟹ 𝑃 (𝑔 𝑥) (𝑔 𝑦)

Then, 𝑃 ′ ∶∶ 𝜎 ⇒ 𝜎 ⇒ bool is also a well-founded relation.

This theorem allows to simulate the structure of the recursive calls of 𝑓 ′ with those of 𝑓
(depicted in Figure 3.3). There is an important difference, though: 𝑓_rel may have sort
constraints, 𝑓 ′_rel does not.

Instantiating the above lemmawith the two termination relations entails choosing a suitable
function 𝑔 that maps arguments of sum_list' to arguments of sum_list, i.e., a function of
type

(𝛼 dict_plus × 𝛼 dict_zero × 𝛼 list) ⇒ (𝛽 ∶∶ {plus, zero}) list
for an arbitrary type 𝛽. Obviously, 𝑔 can drop the first two elements of the tuple. The challenge
arises when trying to map a list with element type 𝛼 to one with element type 𝛽. I cannot
instantiate 𝛽 = 𝛼, because 𝛽 carries a sort constraint.

In a parametric setting, this would be the end of it, because it is impossible to write such
a function [41, 85, 109]. Isabelle however offers an escape hatch: recall that all types are
non-empty. The polymorphic constant undefined ∶∶ 𝛼 can serve as a witness for an arbitrary
type. Assuming that there is at least one concrete type 𝜏 that satisfies the sort constraints of
𝛽, I can instantiate 𝛽 = 𝜏. The desired mapping function can now be specified as follows:

𝑔 (_, _, xs) = map (𝜆_. undefined ∶∶ 𝜏) xs

In case there is no such concrete 𝜏, the above expressions fails to type check, causing the
heuristic to fail.

It remains to show how the premise of the well-founded simulation theorem is proved in
this particular case:

∀𝑥 𝑦. sum_list'_rel 𝑥 𝑦 ⟹ sum_list_rel (𝑔 𝑥) (𝑔 𝑦)
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3.1 Dictionary construction

Theproof proceeds by induction using the induction principle of the sum_list'_rel inductive
predicate, which gives one case per introduction rule, that is:

∀d_plus d_zero 𝑥 xs. sum_list_rel (𝑔 (d_plus, d_zero, xs)) (𝑔 (d_plus, d_zero, 𝑥 # xs))

After unfolding the definition of 𝑔:

∀xs. sum_list_rel (map (𝜆_. undefined) xs) (undefined # map (𝜆_. undefined) xs)

This can now trivially be proved by using the introduction rule of sum_list_rel.

�

This construction critically depends on the non-emptiness of types and that there is at least
one type satisfying the sort constraints of a function. In that sense, it only works because
HOL admits non-parametric definitions [41, 85, 109].

More generally, this construction allows the proof of well-foundedness of any relation

𝑅′ ∶∶ (𝛽1 × … × 𝛽𝑛 × (𝛼1, … , 𝛼𝑘) 𝜏 ) ⇒ (𝛽1 × … × 𝛽𝑛 × (𝛼1, … , 𝛼𝑘) 𝜏 ) ⇒ bool

given a well-founded relation

𝑅 ∶∶ (𝛼1, … , 𝛼𝑘) 𝜏
′ ⇒ (𝛼1, … , 𝛼𝑘) 𝜏

′ ⇒ bool

where 𝜏 is a suitable type constructor equipped with a functorial map𝜏, 𝜏 and 𝜏 ′ differ only in
sort constraints, 𝑅 and 𝑅′ are structurally equivalent and parametric in all 𝛼𝑖.

�
The precise nature of “suitability” is not relevant for the discussion. In the implementation,
bounded natural functors as introduced by Blanchette et al. [16, 18] without dead variables
are considered suitable.

The mapping function 𝑔 is defined as follows:

𝑔 ∶∶ (𝛽1 × … × 𝛽𝑛 × (𝛼1, … , 𝛼𝑘) 𝜏 ) ⇒ (𝛼1, … , 𝛼𝑘) 𝜏
′

𝑔 (_, … , _, 𝑡) = map𝜏 (𝜆_. undefined) … (𝜆_. undefined)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
one for each 𝛼𝑖

𝑡

3.1.5 Partially specified functions
HOL is a total logic, that is, it is always possible to assign a value to a function 𝑓 ∶∶ 𝛼 ⇒ 𝛽
applied to any argument 𝑥∶∶𝛼. This immediately raises the question how to represent partially
specified (or under-specified) functions, e.g. to obtain the head of a list:

fun hd :: 𝛼 list ⇒ 𝛼 where
hd (x # xs) = x

Obviously, in this function definition, the case for the empty list is omitted. Note that under-
specification and non-termination are different kinds of partiality; the latter of which is not
supported by this work.
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�

It is possible to define and reason about non-terminating functions in Isabelle. However,
both the dictionary construction and the deep embedding steps (§5) are unable to process
such definitions. Other steps of the pipeline, in particular the verified part (§6), do not
presuppose termination of the original equations.

There are various ways to deal with under-specification (a more detailed survey is given in
§3.1.7):

1. Lift the result type into option, i.e. 𝛼 ⇒ 𝛽 turns into 𝛼 ⇒ 𝛽 option. Arguments
for which the function is not specified get assigned a None value. The domain of the
function dom𝑓 can conveniently be expressed as a set {𝑥 ∣ 𝑓 𝑥 ≠ None}.

2. Function definitions are “artificially” completed to be always specified. InHOL, undefined
is an unspecified constant of arbitrary type. The meta-theorem about this unspeci-
fied constant is that for all predicates 𝑃, 𝑃 undefined is provable if and only if 𝑃 𝑥 is
provable for all 𝑥.

3. Based on the function equations, derive a set carrying the side condition of the function
and allow reasoning over a function application 𝑓 𝑥 only if 𝑥 ∈ side𝑓 holds. This is
comparable to refinement types [43], but where the constraints are external and not
part of the type.

I will examine the specification of the hd function for each of the different approaches.

Lifting This approach is preferred in many functional programming languages, like Haskell,
where types may be non-empty (ignoring exceptions). The major problem is that it may lead
to complicated proof statements when reasoning about such functions.

fun hd :: 𝛼 list ⇒ 𝛼 option where
hd (x # xs) = Some x
hd [] = None

In this setting, this would require non-trivial transformation of existing defining equations.
Wimmer et al. [130] solve a similar problem in the context of memoization: they lift functions
into the state monad. The main weakness is that higher-order functions need to be lifted
manually. Because many existing Isabelle formalizations make use of custom combinators,
their approach is not feasible here.

Completion Isabelle’s function package uses this approach by default. For any given
function definition, a catch-all clause is added (a process called completion):

fun hd :: 𝛼 list ⇒ 𝛼 where
hd (x # xs) = x
hd _ = undefined

As far as the function package is concerned, this function is now specified for all input values.
To avoid leaking this implementation detail to users, Isabelle’s simplifier will not rewrite the

term hd [] to undefined. But the completion is visible in the generated induction principle
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hd.induct:
∀𝑥 xs. 𝑃 (𝑥 # xs) 𝑃 []

𝑃 𝑎

The premise 𝑃 [] is necessary for this theorem to hold. Otherwise, 𝑃 xs = (xs ≠ []) would be a
counterexample.

While this approach is conceptually simple, it poses a significant challenge for the dictio-
nary construction and associated proof tactics. The reason is as profound as it is technical:
Applications of functions to values on which they are not specified are practically “opaque”; in
the sense that it is difficult to rewrite or prove anything about them. To make matters worse,
identities like undefined 𝑥 = undefined are unprovable, meaning undefined behaves differ-
ently than e.g. ⊥ in Haskell (where ⊥ 𝑥 = ⊥ holds). It is hence an insufficient approximation
of under-specification for the purposes of code generation.

Side conditions To avoid modifying the internal mechanics of the function package, and
consistent with Myreen and Owens’ approach [94], I have chosen to track side conditions of
functions. They are represented as inductive predicates. In the case of the head function, the
predicate is specified as follows:

hd_side (𝑥 # xs)

When producing a certificate for the dictionary translation (§3.1.2.2) for an under-specified
function f, the routine introduces a new premise:

cert_plus dict ⟹ f_side 𝑥 ⟹ f' dict 𝑥 = f 𝑥

A more subtle change is that the theorem now has to be stated in 𝜂-expanded form. This may
limit its applicability in higher-order position, e.g. map f.

Before describing the construction of the inductive predicates for side conditions, I will
rehash the concept of congruence rules.

3.1.5.1 Congruence rules

The notion of congruence rules goes back to the literature on term rewriting [36, 37]. Later,
they have become instrumental in the context of admitting recursive definitions in higher-
order logics [69, 70, 113].

Definition 3.2 (Congruence rule). A congruence rule for the function c is a theorem of the
form

𝑃1 ⋯ 𝑃𝑛
c 𝑥1 … 𝑥𝑛 = c 𝑦1 … 𝑦𝑛

where the 𝑃𝑖 may refer to arbitrary 𝑥𝑖 and 𝑦𝑖.

Usually, the 𝑃𝑖 takes either of these two forms:
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• 𝑄𝑖 ⟹ 𝑥𝑖 = 𝑦𝑖, when 𝑥𝑖 ∶∶ 𝜏 and 𝜏 is not a function type

• ∀ ̄𝑧. 𝑄𝑖 ̄𝑧 ⟹ 𝑥𝑖 ̄𝑧 = 𝑦𝑖 ̄𝑧, otherwise

Slind [113, §2.7.1] calls a congruence rule where no functions are passed as arguments simple.
Two examples of those are given below:

𝐶1 = 𝐶2 𝐶1 ⟹ 𝑥1 = 𝑥2 ¬𝐶1 ⟹ 𝑦1 = 𝑦2
if 𝐶1 then 𝑥1 then 𝑦1 = if 𝐶2 then 𝑥2 then 𝑦2

𝐴1 = 𝐴2 𝐴1 ⟹ 𝐵1 = 𝐵2
𝐴1 ∧ 𝐵1 = 𝐴2 ∧ 𝐵2

The purpose of these rules is to track evaluation context. This is important because HOL
itself has no notion of evaluation order, but target languages do. In particular, both in Slind’s
recdef and Krauss’ function package, congruence rules are used to determine the termination
relation of a function. Both take the 𝑄𝑖 of the rules into account to guard recursive invocations,
like in the following example:

fun fac :: nat ⇒ nat where
fac n = (if n = 0 then 1 else n * fac (n - 1))

A naive termination analysis would complain that fac never terminates, because there is
always a recursive call. The function package however derives the following termination
relation:

𝑛 ≠ 0

fac_rel (𝑛 − 1) 𝑛

This is clearly well-founded, i.e. fac terminates on all inputs, because there is no 𝑛′ such that
fac_rel 𝑛′ 0.

Extending the notation from §3.1.4 with arbitrary conditions, the above relation can be
more succinctly expressed as:

{𝑛
𝑛≠0
 (𝑛 − 1)}

More complex cases arise when higher-order recursion is present. Consider this datatype and
function:

datatype 𝛼 tree = Fork (𝛼 tree list) | Leaf 𝛼

fun map_tree where
map_tree f (Fork ts) = Fork (map (map_tree f) ts)
map_tree f (Leaf x) = Leaf (f x)

It takes more work to understand this nested recursion principle. It is not directly obvious on
which values map_tree is called recursively, because it only appears in partially applied form
in the function body. The function package uses the higher-order congruence rule for map
to deduce the termination relation:
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∀𝑥. 𝑥 ∈ set xs ⟹ 𝑓 𝑥 = 𝑔 𝑥 xs = ys

map 𝑓 xs = map 𝑔 ys

Intuitively speaking, this represents the fact that the function passed to map is applied to each
element in the set of xs, where set is a function that turns a list into a set. Consequently, the
termination relation states exactly that:

𝑡 ∈ set ts

map_tree_rel (𝑓 , 𝑡) (𝑓 , Fork ts)

The notation starts to break down for this example, because the recursive call depends
on a variable (here: 𝑡) that is not bound by the patterns of the defining equation (here: ts).
Consequently, in the remainder of this section, I will only use the rule-based notation to
represent inductive predicates.

Well-foundedness can be proved by appealing to the size of the arguments. The datatype
package provides a size𝜏 function for each type constructor 𝜏 that counts the number of data
constructors in the value. Consequently, if 𝑡 is an element of ts, then the size of 𝑡 is smaller
than the size of Fork ts.

All of the necessary infrastructure for this is fully automated in Isabelle:

• generation of map_𝜏 and set_𝜏 functions for datatypes and bounded natural functors 𝜏,

• proof of a suitable higher-order congruence rule,

• generation of size_𝜏 functions for datatypes 𝜏,

• setup of the function package.

The only occasion when a user has to adjust the setup is when they introduce a custom
higher-order recursion combinator, or when a function definition uses a more complicated
termination measure than the size of the inputs.

3.1.5.2 Specifiedness

Congruence rules can also be used to determine on which inputs functions are specified. A
similar routine as in the function package can be employed to analyse function definitions.
Here, the goal is to construct an inductive predicate capturing the set of arguments for which
a function is specified.

For example, consider the following (contrived) function definition:

fun hd_tl :: 𝛼 list list ⇒ 𝛼 list

hd_tl [] = []

hd_tl (x # xs) = map hd xs

The function itself has no obvious unspecified behaviour, because all possible inputs are
covered by pattern matching. However, the function hd is unspecified for empty lists. The
desired side condition is:
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type rule = {rule: thm, concl: term, prems: term list, proper: bool}

type ctx = (string * typ) list * term list

datatype ctx_tree = Tree of (term * (rule * (ctx * ctx_tree) list) option)

Listing 3.5: Type of context trees

hd_tl_side []

∀𝑥. 𝑥 ∈ set xs ⟹ hd_side 𝑥

hd_tl_side (𝑥 # xs)

This can further be simplified by noting that hd_side 𝑥 ⟺ 𝑥 ≠ []. This inductive definition
can be obtained by performing a recursive analysis on the defining equations of a constant.
Each equation of f gives rise to a rule in f_side.

Note that as far as Isabelle’s total logic is concerned, this function is total: The hd function
just returns undefined on empty lists. Because of this, any notion of specifiedness cannot
be fully formalized and has to be – to some extent – a heuristic. A good intuition is that I
want to characterize all inputs 𝑥 to a function f such that evaluation after code generation to
a target language does not yield a run-time exception.

Transformation to forest The routine starts by importing the (unstructured) set of con-
gruence rules into a dedicated data structure (Listing 3.5). Then, the right-hand sides of all
defining equations are converted into a context tree. Each node of the tree is labelled with a
term and optionally, a congruence rule, and may have arbitrarily many children. An edge
from a node to a child is labelled with a context: a list of variables and of assumptions.

�
In usual Isabelle parlance, a “context” would refer to a Proof.context that may contain
arbitrary data; in this case, it is just fixed variables and assumptions.

An example based on the hd_tl function is given in Figure 3.4. It illustrates how the congru-
ence rule of map participates in the transformation.

The transformation algorithm itself can be summarized as follows. For a term 𝑡, a node is
generated. Then, it adds children to the node by case distinction on the shape of 𝑡:

• If 𝑡 is atomic, it becomes a leaf node.

• If 𝑡 is a function application f 𝑥1 … 𝑥𝑛, it tries to find a congruence rule that matches
the term. 𝑘 children are added to the node according to the 𝑘 premises of the rule,
tracking their variables and assumptions as context of the respective child. If there
is no matching rule, the function and its arguments are considered separately, hence
creating 𝑛 + 1 children.

• Otherwise, 𝑡 is an abstraction 𝜆𝑥. 𝑢. One child for 𝑢 is added with 𝑥 as context.
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[] map hd xs

hd 𝑥

𝑥 ∶∶ 𝛼
𝑥 ∈ set xs

xs

(a) Forest with congruence rule for map

hd_tl_side []

map_side hd xs ∀𝑥. 𝑥 ∈ set xs ⟹ hd_side 𝑥

hd_tl_side (𝑥 # xs)

(b) Side condition with congruence rule for map

[] map hd xs

map hd xs

(c) Forest without congruence rule for map

hd_tl_side []

map_side hd xs ∀𝑥. hd_side 𝑥

hd_tl_side (𝑥 # xs)

(d) Side condition without congruence rule for map

Figure 3.4: Context forests and resulting side conditions of hd_tl

In Figure 3.4a, there are two trees.

• hd_tl [] = [] gives rise to the tree with just a leaf node [], because [] is an atomic
constant.

• hd_tl (𝑥 # xs) = map hd xs produces a node with two children, after applying the
congruence rule for map. The left child has a context enriched with a variable and
assumption, whereas the right child is the atomic xs.

Ignoring the congruence rule results in the forest in Figure 3.4c, where three children are
generated for the binary call to map.

Transformation to predicate Finally, the tree is transformed into a set of introduction
rules for the inductive predicate representing the specifiedness. Figure 3.4b illustrates the
result of the transformation. In a tree, each path from root to the side condition generates
one assumption in the side condition based on the pre-existing side conditions, unless:

• it is the first child of a function application with no matching congruence rule (nothing
is known about that function call), or

• it is a free variable (always specified), or

• no side condition is known about the term (assumed total).

Crucially, each layer of the tree still contributes to the side condition. In the running example,
this means that the root node contributes the assumption map_side hd xs.

A special case arises in Figure 3.4d, where an assumption is generated for the node hd.
Because the forest has been created without a suitable congruence rule, there is no variable
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in the context of the node. The transformation hence introduces a synthetic variable and
universally quantifies over it (marked brown in the figure). It can be proved that ∀𝑥. hd_side 𝑥
is false, because there is a list that violates hd_side: the empty list. In general, absence of
congruence rules or congruence rules that are too weak may lead to vacuous side conditions.

The side condition for undefined is a prime example for being vacuous by definition: there
are no defining equations, hence no context trees, hence the inductive predicate is the empty
least-fixed point. The inductive package admits such empty predicates. They are logically
vacuous, i.e., undefined_side ⟺ False.

Simplification To avoid overly complicated side conditions, there are two strategies to
simplify them. The routine tries to:

1. prove totality, i.e. ∀𝑥1…𝑥𝑛. f_side 𝑥1 … 𝑥𝑛, and

2. discharge auxiliary side conditions, e.g. hd_side (𝑥 # xs) = True.

Both work by suitable preprocessing of the goal, then running Isabelle’s full simplifier. While
this can make the result unpredictable, I have found that this prevents many redundant
assumptions.

For the example in Figure 3.4, this removes the assumption map_side hd xs, because
map_side can be proved to be total.

�

It is important to note that the generated side conditions are shallow, that is, they only
characterize the specifiedness of one function, but not any other non-constant functions,
i.e. functions that are passed in as parameters, that are called along the way. This is nicely
illustrated by this example: While the map function is obviously fully specified, it can be
used in a partially specified way; namely, when the mapping function is only partially
specified. The challenges to fully capture specifiedness are described in §3.5.

3.1.5.3 Differences to Krauss’ routine

As indicated above, the function package employs a similar routine. The differences are
mainly technical in nature, but are significant enough to prevent code reuse.

• The internally produced congruence tree is not exported as a data structure.

• Traversal happens on an intermediate constant that represents all functions in a mu-
tually recursive bundle with tupled arguments. For example, simultaneous recursive
definitions of odd and even functions would internally be presented as a single function
of type (nat + nat) ⇒ (bool + bool), where 𝛼 + 𝛽 denotes the sum type of 𝛼 and 𝛽.

• Side conditions of auxiliary constants (in the running example: map and hd) are not
considered: after defining and proving a function to be terminating, it is “total” by
virtue of completion.

Notably, the extraction of a termination relation – just like specifiedness – critically depends
on the presence of appropriate congruence rules. Similarly to the special case described above,
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absence of congruence rules may lead to unprovable termination relations. Consequently, it
is reasonable to assume that a user of the function package is aware of this required setup;
hence, it is not an extra burden to require the same setup for the dictionary construction.

3.1.6 Correctness proofs
There are two kinds of propositions that need to be proved in the routine: dictionary certificates
and equivalence theorems (§3.1.2.3). In general, they are of the form:

… ⟹ cert_𝑐 (inst_𝑐_𝜅 dict1 …)
… ⟹ f' dict1 … 𝑥1 … = f 𝑥1 …

Both can carry preconditions for auxiliary dictionary certificates, and in the case of the
equivalence theorems, also side conditions of the arguments 𝑥𝑖 (§3.1.5). The proof strategies
for both kinds of theorems differ, so I will discuss them separately. Both strategies have in
common that they require the proofs to happen in exactly the same (topological) order as
the dictionary construction itself (Figure 3.1). At any point during a sequence of proofs, the
previous correctness theorems are referred to as base theorems.

Dictionary certificates Recall the definition of cert_𝑐 and ⦇𝜅 ∶∶ 𝑐⦈. The latter is a plain
constructor application (mk_𝑐); the former inspects each field. In other words, ⦇𝜅∶∶𝑐⦈ “bundles”
existing constants into a dictionary. Consequently, the proof proceeds by simple application
of the base theorems.

Equivalence theorems In general, these theorems need to be proved by induction using
the induction scheme generated by the side condition, or if the side condition is trivial, the
termination relation of the function. Both are similar, so I focus on the latter.

Applying the induction principle creates one proof obligation per defining equation.Recall
the sum_list function from §3.1.4. The proof obligations after induction are (dictionary
certificates omitted):

sum_list' d1 d2 [] = sum_list []
sum_list' d1 d2 xs = sum_list xs ⟹ sum_list' d1 d2 (𝑥 # xs) = sum_list (𝑥 # xs)

These can be discharged by first unfolding the defining equations of sum_list' and sum_list.
Then, base theorems and induction hypotheses are applied by walking the congruence tree.
Note that the base theorems include equivalences for class constants and the corresponding
dictionary fields.

�

The reality is a bit more complicated: one equation may create multiple defining equations,
because the function command disambiguates equations. For example, consider the
definition single [𝑥] = True and single xs = False. The package instantiates the second
equation (xs = 𝑦 # ys and xs = []) to avoid ambiguities.
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3.1.7 Related work
Dictionary construction Type classes have been pioneered by the Haskell programming
language [92, 126]. There, a very similar construction to here is used, replacing classes by
records and instances by functions [3, 26, 105]. Additional complications arise because Haskell
admits cyclic dependencies between class instances [80], which are prohibited in Isabelle
and hence pose no problem for this work. A further simplification compared with Haskell is
that Isabelle only features an ML-style simply typed polymorphic lambda calculus without
constructor or multi-parameter classes.

Idris, a dependently typed functional language, generalizes the concept of type classes to
classes that can be parametrized by any value. In more recent versions of Idris, they are called
interfaces. Still, the elaboration of expressions with class constraints and class and instance
declarations is surprisingly similar to here [21].

In Scala, type classes are represented in an object-oriented style with objects and implic-
its [101]. Type classes are just regular classes that are subject to the same compilation process
to the Java Virtual Machine (and other backends). Instances are also regular functions and
constraints regular function arguments. However, programmers do not need to pass instances
manually; the compiler fills them in automatically. The end result again is similar to that of
Haskell and Idris, albeit it is mostly visible in the surface syntax instead of hidden in some
intermediate compiler representation.

For Isabelle, Haftmann and Nipkow give a pen-and-paper correctness proof of the dictionary
construction construction [49, §4.1], based on a notion of higher-order rewrite systems. The
resulting theorem states that any well-typed term is reduction-equivalent before and after
class elimination. In this work, the dictionary construction is performed in a certified fashion,
that is, the equivalence is a theorem inside the logic.

Partially specified functions The notion of functions that are not defined universally for
all possible (i.e. type-correct inputs) is pervasive in programming languages. For example,
major functional languages, like Haskell, Scala, and OCaml admit introduction of unspecified
behaviour by allowing incomplete pattern matches. The respective run-time environments
throw an exception which can be caught by the caller of an underspecified function. This
is not generally how it works in total logics, where it is impossible to carry out non-trivial
proofs about unspecified values.

However, much work on modelling partiality in proof assistants is centred around partiality
induced by non-termination, instead of under-specification. Finn et al. [38] introduce an
approach for the LAMBDA system that tackles both issues in a similar way as Isabelle/HOL.
The undefined or arbitrary constant can be defined in terms of Hilbert’s choice operator:
under the assumption that 𝜏 is inhabited, 𝜖𝑥 ∶∶ 𝜏 . False delivers a value of type 𝜏 that is
otherwise unspecified. The authors use a similar example (head of a list) and point out that
the usual axioms of classical logic still apply; for example, hd [] = 5 ∨ hd [] ≠ 5 is provable
regardless of the unspecified result of retrieving the head of an empty list. They also give a
routine that, given a set of recursive equations, defines a domain predicate and a function
that is qualified on that predicate. My approach (§3.1.5.2) is similar to the one by Finn et al.,
with the notable improvement that I support higher-order recursion.
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Cheng and Jones [27] give a survey of the treatment of partial functions, with the focus on
usability. They examine a total of eight different approaches: restricting functions to a set
while defining them, treating functions as relations, employing a different notion of equality,
extending logical operators to handle undefined values, three-valued logics, introducing
a distinction between strict and total and non-strict and non-commutative connectives,
introducing a distinction between computation and reasoning, and finally, adding a separate
judgement for definedness. My approach is most closely related to the last of these, which has
initially been described by Plotkin as Partial Function Logic [27, §9]. The notable difference is
that the definedness judgement is represented as “normal” boolean predicates in the logics.

3.2 Lazy evaluation

�
Portions of this section appear in the AFP entry “Lazifying case constants”, authored by
Hupel [64]. Users are recommended to refer to that AFP entry for the latest documentation.

HOL has no built-in notion of pattern matching. Since my initial term type (§2.6) is modelled
after it, this restriction applies there too.

Instead, what looks like pattern matching in the input syntax, is in fact syntax sugar for
case functions. For example, the expression

case xs of [] ⇒ 𝑎 ∣ 𝑦 # 𝑦𝑠 ⇒ 𝑏 𝑦 ys

is internally represented as
case_list 𝑎 𝑏 𝑥𝑠

Every datatype 𝜏 comes equipped with a corresponding case function case_𝜏. Nested
pattern matches are translated to nested case function applications. if-then-else expressions
are a special case of pattern matching, namely it can be directly represented as a case_bool.

A naive translation of nested function applications would yield strict evaluation of matches
and if-then-else. This is in conflict to the semantics of these constructs in CakeML.Therefore,
I introduce unit-abstraction to defer evaluation of the cases. �

Lazy_CaseFor a datatype 𝜏, the type of case_𝜏 is (𝜅1,1 ⇒ … ⇒ 𝜅1,𝑛1 ⇒ 𝛼) ⇒ … ⇒ (𝜅𝑘,1 ⇒ … ⇒
𝜅𝑘,𝑛1 ⇒ 𝛼) ⇒ 𝜏 ⇒ 𝛼. That is, it is a higher-order function, where the first 𝑘 arguments are
functions from 𝑛𝑖 constructor parameters to 𝛼. I insert a “dummy” unit argument for each
constructor that has no parameters.

Consider the factorial function:

fact 𝑛 = if 𝑛 = 0 then 1 else 𝑛 ∗ fact (𝑛 − 1)

It can be rewritten to use pattern matching:

fact 𝑛 = (case 𝑛 = 0 of True ⇒ 1 ∣ False ⇒ 𝑛 ∗ fact (𝑛 − 1))

After preprocessing:

fact 𝑛 = case_bool' (𝜆(𝑢 ∶∶ unit). 1) (𝜆(𝑢 ∶∶ unit). 𝑛 ∗ fact (𝑛 − 1)) (𝑛 = 0)
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The definition of case_bool' itself is straightforward:

case_bool' True 𝑡 𝑓 = 𝑡 ()
case_bool' False 𝑡 𝑓 = 𝑓 ()

This scheme means that CakeML’s conditional expressions will never occur in generated code.
However, pattern matching will be used, because case functions are regular functions and as
such subjects to the pattern compilation phase (§6.3).

Another way to avoid the problem of strict evaluation would be to add a pattern-matching
construction inside the term type. However, this would instead have meant special treatment
of the case functions in the deep embedding (§5), because Isabelle’s term type also does not
have pattern matching.

3.3 Constructor functions

�
Portions of this section appear in the AFP entry “Constructor Functions”, authored by
Hupel [62]. Users are recommended to refer to that AFP entry for the latest documentation.

For each data constructor C𝑖 of datatype 𝜏 (as exemplified above), Isabelle generates a function
C𝑖 ∶∶ 𝜅𝑖,1 ⇒ … ⇒ 𝜅𝑖,𝑛𝑖 ⇒ 𝜏. It behaves like a regular function, in that it can be passed to a
higher-order function, partially applied, and generally be treated as a value.

In implementations of programming languages, data constructors behave differently: An
application of C𝑖 to 𝑛𝑖 arguments cannot be reduced further, but instead creates an “atomic”
value. Hence, the question arises on how to represent partially applied constructors.

Different functional languages answer this question differently. OCaml disallows partial
application and forces users to explicitly write an anonymous function, e.g. 𝜆𝑥. C𝑖 𝑡1 … 𝑡𝑛𝑖−1 𝑥,
as does CakeML. Standard ML however allows that and internally constructs such a function.
The naive approach of plain eta-expansion does not work in Isabelle, because many routines,
including code preprocessing, spontaneously eta-contract terms.

To bridge the gap, preprocessing introduces synthetic constructor functions. For each data
constructor C𝑖, it defines an additional function C'𝑖 as C'𝑖 𝑡1 … 𝑡𝑛𝑖 = C𝑖 𝑡1 … 𝑡𝑛𝑖 , having the same
type as C𝑖. Every occurrences of C𝑖 is replaced by C'𝑖, except in the definition of C'𝑖. Thus, it is
statically guaranteed that each constructor call is fully applied.

For example, the term map ((#) 1) is rewritten to map ((#′) 1). Unfolding the synthetic
definition of (#′) yields the expression map (𝜆𝑥. 1 # 𝑥). There, # appears in fully-applied form.

3.4 Pattern compatibility
The pattern elimination phase of the compiler (§6.3) demands a stronger guarantee than non-
overlapping patterns. The reason for that is deferred until that section, whereas here, I will
explain how this requirement is ensured during preprocessing.

Definition 3.3 (Overlapping patterns). Two patterns 𝑡1 and 𝑡2 overlap if there is a term 𝑢 that
is matched by both 𝑡1 and 𝑡2.
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�
The definition for overlapping patterns given above differs from the one used in the formal-
ization. A refined version based on different primitives is presented in §4.2.4.4.

Definition 3.4 (Pattern compatibility). Two patterns 𝑡 and 𝑢 are compatible:

• if both are applications, i.e., there are 𝑡1, 𝑡2, 𝑢1, and 𝑢2 such that 𝑡 = 𝑡1 𝑡2 and 𝑢 = 𝑢1 𝑢2,
then

1. 𝑡1 and 𝑢1 must be compatible, and

2. if 𝑡1 = 𝑢1, then 𝑡2 and 𝑢2 must be compatible,

• otherwise,

1. 𝑡 = 𝑢, or
2. 𝑡 and 𝑢 do not overlap.

For example, the following function definition does not satisfy pattern compatibility, because
the first parameter is named differently in the two equations:
fun map where
map f [] = []

map g (x # xs) = (* ... *)

Lemma 3.5 (Reflexivity). 𝑡 is compatible to itself.

Lemma 3.6. For two compatible patterns 𝑡 and 𝑢, they are either equal or do not overlap.

Proof. I first prove the weaker result that 𝑡 and 𝑢 are equal or do not overlap by induction on
the definition of pattern compatibility. The actual lemma follows together with reflexivity.

Consider the case where both 𝑡 and 𝑢 are not applications. Then, by definition, 𝑡 = 𝑢 or 𝑡
and 𝑢 do not overlap.

The remaining case is where both are applications, i.e., 𝑡 = 𝑡1 𝑡2 and 𝑢 = 𝑢1 𝑢2. By definition,
𝑡1 and 𝑢1 must be compatible. I perform a case distinction on 𝑡1 = 𝑢1 ∧ 𝑢1 = 𝑢2.

• If 𝑡1 = 𝑢1 ∧ 𝑢1 = 𝑢2, then 𝑡 = 𝑢.
• If 𝑡1 = 𝑢1, then 𝑡2 ≠ 𝑢2. By definition, 𝑡2 and 𝑢2 are also compatible. Applying the
induction hypothesis yields that 𝑡2 = 𝑢2 (contradiction) or 𝑡2 and 𝑢2 do not overlap.
Hence, 𝑡1 𝑡2 and 𝑢1 𝑢2 do not overlap.

• Otherwise, I know that 𝑡1 ≠ 𝑢1. Applying the induction hypothesis on the fact that 𝑡1
and 𝑢1 are compatible yields that 𝑡1 = 𝑢1 (contradiction) or 𝑡1 and 𝑢1 do not overlap.
Hence, 𝑡1 𝑡2 and 𝑢1 𝑢2 do not overlap.

The preprocessing will rename 𝑔 to 𝑓 to ensure that matching sub-patterns are also equal.
This does not work in all cases (§3.5).

The algorithm itself is rather simple: starting out with an empty set of defining equations,
each defining equation gets added to the set. Before adding, it is compared with all existing
equations in the set and variables are renamed if necessary and possible. The resulting set are
the new defining equations.

A more formal definition of pattern compatibility will be given in §4.2.4.5.
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3.5 Limitations
This section discusses the limitations of the preprocessing phase. Here, limitation can either
mean that a particular step in preprocessing fails to work on a particular set of definitions, or
that it produces a result that is less general than expected. Most limitations can be avoided
with specific workarounds.

3.5.1 Specifiedness
A particularly thorny issue is presented by functions that return other functions. While
currying itself is a common idiom in functional programming, manipulation of partially applied
functions would require a non-trivial data flow analysis. As a synthetic example, consider
the expression map (div) xs ∶∶ (nat ⇒ nat) list, with div being the division operator on
natural numbers. Clearly, the expression is fully specified for all xs, but its resulting list of
functions is not: Passing in 0 to any of the resulting functions yields unspecified behaviour,
or at run-time in a target language, throw an exception.

The underlying problem is that the congruence rule for map can only be used to extract side
conditions when the return type of the function that is passed to it is not itself a function type.
More formally, the heuristic requires that no type variables are instantiated with a function
type in order to work correctly.

A similar situation arises in practice in the commonly used show derivation framework
by Sternagel and Thiemann [119]. They employ Hughes’ difference list representation of
strings [59]. Luckily, all these functions are fully specified, i.e. the side condition is always
true.

3.5.2 Patterns in function definitions
The function package, by default, allows only function definitions where the left-hand side
matches on constructors. Consider as an example treating list as “snoc lists” instead of “cons
lists”, i.e., a pair of init and last instead of head and tail. A complete example is given in
Listing 3.6. It first introduces the datatype for cons lists and defines the append and Snoc

functions. Then, it instructs the code generator to use Nil and Snoc in the target language
representation.

However, the code generator cannot export code for the append function, because it is
defined in terms of Cons, and aborts with an error message that Cons is not a constructor on
the left-hand side of the defining equation.

To fix this, Listing 3.6 demonstrates how to add defining equations for append that are
defined in terms of Snoc. But now the function package would not accept such a definition
of append, because while Snoc is a constructor as far as the code generator is concerned, it
is still not a constructor as far as the datatype package is concerned. The key problem is
that both subsystems may have diverging notions of exactly which constructors a datatype is
comprised of.

The workaround for this problem is that it is possible to use the function package in a
mode which allows to use arbitrary patterns on the left-hand side of a defining equation. It is
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datatype 𝛼 list = Cons 𝛼 (𝛼 list) | Nil

fun append :: 𝛼 list ⇒ 𝛼 list ⇒ 𝛼 list where
append Nil ys = ys
append (Cons x xs) ys = Cons x (append xs ys)

fun Snoc :: 𝛼 list ⇒ 𝛼 ⇒ 𝛼 list where
Snoc xs x = append xs [x]

code_datatype Nil Snoc

(3.6.a) Full definition of a “cons list”

datatype 'a list = Snoc of 'a list * 'a | Nil;

(3.6.b) Generated datatype definition in Standard ML

lemma [code]:

append xs Nil = xs
append xs (Snoc ys y) = Snoc (append xs ys) y

(* proof *)

(3.6.c) Defining equations for append

Listing 3.6: Adapting a datatype to a different representation

only a workaround because the package demands some additional proofs (exhaustiveness,
well-definedness) that are tedious to do by hand and impossible to automate in general.

For that reason, any type adaptations, including data refinement [51], are not supported by
this work.

3.5.3 Pattern compatibility

The classic example for a set of equations with patterns that are difficult to deal with is the
diagonal function [106, 113]:

fun diagonal :: bool ⇒ bool ⇒ bool ⇒ nat where
diagonal x True False = 1

diagonal False y True = 2

diagonal True False z = 3

The difficulty arises from the overlapping patterns. There is no possible renaming of variables
such that this set of equations satisfies the pattern compatibility constraint. Consequently,
the preprocessing step will produce an error message.

The workaround is to instantiate the first two equations with {True, False}, which can be
achieved with modest effort in Isabelle:
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diagonal True True False = 1

diagonal False True False = 1

diagonal False True True = 2

diagonal False False True = 2

diagonal True False z = 3

The process could also be automated, but because it is potentially an expensive operation, the
user has the choice how to deal with the situation.

3.5.4 Congruence rules with constraints
Consider a variant of the sum_list function that first applies a function before summing up
the values:

fun sum_by :: (𝛼 ⇒ 𝛽::{plus,zero}) ⇒ 𝛼 by ⇒ 𝛽 where
sum_by _ [] = 0
sum_by f (x # xs) = f x + sum_by f xs

In order to use this function in a higher-order recursion, a congruence rule needs to be proved.
The resulting rule is very similar to the congruence rule of map:

∀𝑥. 𝑥 ∈ set xs ⟹ 𝑓 𝑥 = 𝑔 𝑥 xs = ys

sum_by 𝑓 xs = sum_by 𝑔 ys

Since sum_by has sort constraints, the dictionary construction will introduce additional
parameters.

Now suppose that another function h uses sum_by. Dictionary construction replaces
occurrences of sum_by in h by sum_by'. But sum_by' has no congruence rule, which means
that the termination proof of h must fail.

Besides the termination heuristic, I have also implemented a heuristic method to transfer
congruence rules to the new constants. The function package only accepts unconditional
congruence rules; consequently, this only works when a function equipped with a congruence
rule is fully specified and has no visible sort constraints.

For that reason, a function like sum_by cannot be used as a higher-order recursion combina-
tor. Instead, it needs to be split into two parts: mapping and summing. This can be registered
in the code generator as follows:

lemma sum_by[code_unfold]: sum_by f = sum_list ∘ sum_by f
(* proof *)

3.5.5 Preservation of termination
The following pathological example exhibits the problem that some functions cannot be
proved to terminate after elimination of sort constraints:

function sum_set :: 𝛼::{finite,comm_monoid_add,linorder} set ⇒ 𝛼 where
sum_set S = (if S = {} then 0 else Min S + sum_set (S - {Min S}))
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This function, analogously to sum_list, should compute the sum of a set. It can only be
proved terminating because of the sort constraints: otherwise, there may be infinitely many
elements in 𝑆, no well-defined minimum element, or the result may be depending on the order.
With the constraint, the termination relation is the cardinality of the set which decreases with
each recursive call.

However, the termination heuristics cannot cope with this example. The dictionary con-
struction removes all sort constraints from the type variables; instead introducing value
parameters. The dictionary type for finite would be isomorphic to unit, because the class
does not have any parameters. But now, the new termination relation cannot be simulated by
the old one: it has to deal with arbitrary, possibly infinite sets.

Fortunately, function definitions like this are rare. If necessary, they can be replaced by a
recursion on lists as follows:

lemma sum_set_set[code_unfold]: sum_set (set xs) = sum_list (remdups xs)
(* proof *)

This replaces all occurrences of sum_set applied to a finite set of elements xs by an application
of sum_list (after removing duplicate elements). After the automatic preprocessing phase of
the code generator, no traces of recursion through sets will be left. This pattern of replacing
logical recursion on sets by executable recursion on lists is common in Isabelle’s standard
libraries.

Furthermore, the heuristic cannot prove all function definitions that are still terminating
after class elimination to be terminating. The following circumstances prevent a termination
proof to be ported:

• Recursive calls that receive the result of another recursive call as an argument. A classic
example is McCarthy’s 91 function [86], which is defined as follows:

f91 𝑛 = (if 100 < 𝑛 then 𝑛 − 10 else f91 (f91 (𝑛 + 11)))

The termination proof requires an additional lemma that gives an estimate on the
return value. Krauss’ function package can deal with this specification [69, §2.7.2]. My
heuristic cannot, because the generated termination condition mentions the function
itself.

• Functions with at least one polymorphic parameter that is not a suitable type constructor.
The termination heuristic will ask the datatype package to deliver a map function from
the new relation to the old relation, which is impossible in some cases.

When the heuristic fails, the system falls back to an automatic termination proof using the
lexicographic order method. Presently, for technical reasons, it is impossible to give a manual
proof when the automatic proof also fails.
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Terms and conditions apply.

(Every business, ever.)
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The compiler transforms the initial type of terms through various stages. This section intro-
duces necessary terminology (§4.1) and gives an overview of the intermediate types (§4.3).
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All of them support similar notions such as “free variables”, “matching” and “substitution”.
This is abstracted in a term algebra (§4.2).

4.1 Preliminaries

Throughout this chapter, the concept of mappings is pervasive. I use the type notation 𝛼 ⇀ 𝛽
to denote a function 𝛼 ⇒ 𝛽 option with a finite domain. In certain contexts, a mapping may
also be called an environment .

Mapping literals are written using brackets: [𝑎 ↦ 𝑥, 𝑏 ↦ 𝑦,…]. If it is clear from the
context that 𝜎 is defined on 𝑎, the lookup 𝜎 𝑎 can be treated as returning a value of type 𝛽.
The pair (𝑎, 𝑏) is also called an entry of the mapping. A mapping can be constructed from a
list or set of entries with the function map_of.

The functions dom ∶∶ (𝛼 ⇀ 𝛽) ⇒ 𝛼 set and range ∶∶ (𝛼 ⇀ 𝛽) ⇒ 𝛽 set return the domain
and range of a mapping, respectively. In this context, domain refers to the set of all keys in a
mapping and is not to be confused with the domain of a function (§3.1.5).

Dropping entries from a mapping is denoted by 𝜎 − 𝑘, where 𝜎 is a mapping and 𝑘 is either
a single key or a set of keys. I use 𝜎 ′ ⊆ 𝜎 to denote that 𝜎 ′ is a sub-mapping of 𝜎, that is,
the set of entries of 𝜎 ′ is a subset of the set of entries of 𝜎; formally: dom 𝜎 ′ ⊆ dom 𝜎 and
∀𝑎 ∈ dom 𝜎 ′. 𝜎 ′ 𝑎 = 𝜎 𝑎.

Adding two mappings 𝜎 and 𝜌 is denoted with 𝜎 ++ 𝜌. It constructs a new mapping with the
union domain of 𝜎 and 𝜌. Entries from 𝜌 override entries from 𝜎. That is, 𝜌 ⊆ 𝜎 ++ 𝜌 holds, but
not necessarily 𝜎 ⊆ 𝜎 ++ 𝜌.

All mappings and sets are assumed to be finite. In the formalization, this is enforced
by using subtypes of ⇀ and set. In fact, nesting recursion through ⇀ and set would be�

Finite_Map unsound [10, 11, 46]. I leverage facilities of Blanchette et al.’s datatype command to construct
the various term types [18].

The term abstraction, when used in the context of terms, refers to a 𝜆-abstraction. An
abstraction – in general of the form 𝜆𝑥. 𝑡 – binds a variable 𝑥 in 𝑡. Variables that are not bound
are free.

4.1.1 Names

Constant and variable names are modelled as strings. The full flexibility of that type (i.e.
string manipulations) is only required where fresh names are being produced (§6.2.1).

Otherwise, only a linear order on terms is needed, which in turn needs a linear order
on names. Conveniently, Sternagel and Thiemann [117] provide tooling to automatically
generate such a lexicographic order on types generated by the datatype package. It requires
existing orderings for all constituent types of a datatype.

In Isabelle, string is a synonym for char list; i.e., a list of characters. However, there is no
default order on lists, as there could bemultiple reasonable implementations: e.g. lexicographic
and point-wise. For both choices, users can import the corresponding instantiation. In Isabelle,
only at most one implementation of a given type class for a given type may be present in the
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same theory. Consequently, I avoided importing a list ordering from the library, because it
may cause conflicts with users who use another ordering.

The general approach for these situations is to introduce a type copy. I have created a name
type that wraps strings and requires no other instances to work. For simplicity, I will use
just string in this thesis. The ordering on names is a copy of the lexicographic order on lists.

4.1.2 Common functions
All type constructors used in this formalization (⇀, set, list, option, …) support the
common operations map and rel. For a type constructor 𝜏 with a single type variables 𝛼, these
two functions have the following types:

map𝜏∶∶(𝛼 ⇒ 𝛽) ⇒ 𝛼 𝜏 ⇒ 𝛽 𝜏
rel𝜏∶∶(𝛼 ⇒ 𝛽 ⇒ bool) ⇒ 𝛼 𝜏 ⇒ 𝛽 𝜏 ⇒ bool

If the type constructor is obvious from the context, it is omitted.
For parametrized datatypes like lists, map𝜏 is the usual functorial map. The intuition behind

rel𝜏 is to lift a binary predicate 𝑃 ∶∶ 𝛼 ⇒ 𝛽 ⇒ bool to the type constructor 𝜏. This lifted
relation is the relator for a particular type. Its definition is structural, based on the constructors:

rellist 𝑃 [] []

rellist 𝑃 xs ys 𝑃 𝑥 𝑦

rellist 𝑃 (𝑥 # 𝑥𝑠) (𝑦 # 𝑦𝑠)

For other types, the situation is a bit more complicated. The types of mapset and relset
are as expected. Mapping a set applies a function to all elements; an operation usually known
as image of a function under a set.

Definition 4.1 (Set relator). For each element 𝑎 ∈ 𝐴, there must be a corresponding element
𝑏 ∈ 𝐵 such that 𝑃 𝑎 𝑏, and vice versa. Formally:

relset 𝑃 𝐴 𝐵 ⟺ (∀𝑥 ∈ 𝐴. ∃𝑦 ∈ 𝐵. 𝑃 𝑥 𝑦) ∧ (∀𝑦 ∈ 𝐵. ∃𝑥 ∈ 𝐴. 𝑃 𝑥 𝑦)

Finally, consider mappings. The map function has the type (𝛽 ⇒ 𝛾) ⇒ (𝛼 ⇀ 𝛽) ⇒ (𝛼 ⇀ 𝛾).
It leaves the domain unchanged, but applies a function to the range of the mapping. In other
words, the keys do not participate in this operation.

Definition 4.2 (Mapping relator). Two maps 𝑚1 and 𝑚2 are related with respect to 𝑃 if for all
values 𝑘:

reloption 𝑃 (𝑚1 𝑘) (𝑚2 𝑘)

Corollary 4.3. Related maps share a common domain. Formally:

rel⇀ 𝑚 𝑛 ⟹ dom 𝑚 = dom 𝑛
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locale simple_syntactic_and =

fixes P :: 𝛼::term ⇒ bool

assumes P_app: P (app t u) = P t ∧ P u
begin

lemma list_comb: P (list_comb f xs) = P f ∧ list_all P xs
(* proof *)

end

interpretation no_abs: simple_syntactic_and no_abs

(* proof *)

Listing 4.1: Example locale

4.1.3 Modularity

The formalization relies on two of Isabelle’s modularization concepts: classes and locales [5].
Both of them represent named contexts: they can be used to bundle one or more types together
with operations and their properties.

Classes are briefly introduced in §3.1.1, in the context of the dictionary construction. Here,
I will focus on them as a mechanism to organize a formalization abstractly.

Locales are a generalization of that concept. They allow arbitrarily many fixed types and
support more complex inheritance relationships. In the formalization, this is used extensively
to avoid duplication.

An example locale is shown in Listing 4.1. It introduces the locale simple_syntactic_and
(§4.2.4.3) that fixes a variable and assumes a property. In the body (Isabelle parlance: locale
context), a lemma is stated; the proof may refer to the locale assumptions. Finally, the locale
is interpreted , i.e., the variables instantiated and assumptions proved.

Interpretations may occur at various places in Isabelle theories. Notably, they can appear
in other locale contexts; then, they are called sublocale interpretations. Sublocales do not
suffer from the same restriction as subclasses: parameters can be instantiated freely and need
not be shared.

4.1.4 Monad syntax

Many operations on terms are partial, i.e., they are not specified on some inputs. To avoid
carrying around too many constraints, I have decided to model some as returning options.
As a notational convenience, Isabelle provides monad syntax that is similar to Haskell’s do
notation [87, §3.14].�

Monad_Syntax In the case of the option type constructor, the expression do {𝑥 ← 𝑓 ; 𝑔 𝑥} is desugared
to bindoption 𝑓 (𝜆𝑥. 𝑔 𝑥), where bind is defined as follows:
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fun bind :: 𝛼 option ⇒ (𝛼 ⇒ 𝛽 option) ⇒ 𝛽 option

bind None f = None

bind (Some x) f = f x

The desugaring process is iterated until all statements in the do block are replaced by bind.
In other words, a do block can be interpreted as a series of let expressions that “short-

circuit” the expression to None if any of the statements evaluates to None.
The monad syntax also allows monads other than option. In this chapter, only option is

used; this choice will be revisited in §6.2.

4.2 An algebra for terms

�
Portions of this section appear in the AFP entry “An Algebra for Higher-Order Terms”,
authored by Hupel [60].

Terms can be thought of as consisting of a generic (free variables, constants, application) and
a specific part. The generic part is shared, whereas the specific part varies across different
term types. This opens the opportunity to use a type class to abstract over these types. In this �

Term_Classsection, I introduce the term class, explain its axioms, and describe the resulting theory.

�
In Isabelle, classes and types live in different namespaces. The term type and the term class
are separate entities.

4.2.1 Basic term operations
Definition 4.4. A term type 𝜏 supports the operations

const ∶∶ string ⇒ 𝜏 frees ∶∶ 𝜏 ⇒ string set

free ∶∶ string ⇒ 𝜏 consts ∶∶ 𝜏 ⇒ string set

app ∶∶ 𝜏 ⇒ 𝜏 ⇒ 𝜏 subst ∶∶ (string⇀ 𝜏) ⇒ 𝜏 ⇒ 𝜏
abs_pred ∶∶ (𝜏 ⇒ bool) ⇒ (𝜏 ⇒ bool) size ∶∶ 𝜏 ⇒ nat

The const, free, and app functions are the generic constructors, that is, they behave like
regular datatype constructors, but are polymorphic in the constructed type. I abbreviate
app 𝑡1 𝑡2 as 𝑡1 $ 𝑡2. Conversely, there are also three corresponding destructors that can be
defined in terms of Hilbert’s choice operator:

unconst 𝑡 = (if ∃𝑥.𝑡 = const 𝑥 then Some (SOME 𝑥′. 𝑡 = const 𝑥) else None)

In this formalization, I have instead opted to let instances define destructors directly, which is
simpler for execution purposes (see §2.4 for the advantages).

Consequently, the basic class axioms mandate that the three pairs of constructors and
destructors behave – except for exhaustiveness – like a freely constructed datatype (Listing 4.2)
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app 𝑡1 𝑡2 ≠ const 𝑥
app 𝑡1 𝑡2 ≠ free 𝑥
const 𝑦 ≠ free 𝑥

free 𝑥1 = free 𝑥2 ⟹ 𝑥1 = 𝑥2
const 𝑥1 = const 𝑥2 ⟹ 𝑥1 = 𝑥2
app 𝑡1 𝑡2 = app 𝑢1 𝑢2 ⟹ 𝑡1 = 𝑢1 ∧ 𝑡2 = 𝑢2

(4.2.a) Free constructors

unfree (free 𝑥) = Some 𝑥
unconst (const 𝑥) = Some 𝑥
unapp (app 𝑡1 𝑡2) = Some (𝑡1, 𝑡2)

unfree 𝑡 = Some 𝑥 ⟹ 𝑡 = free 𝑥
unconst 𝑡 = Some 𝑥 ⟹ 𝑡 = const 𝑥

unapp 𝑡 = Some (𝑡1, 𝑡2) ⟹ 𝑡 = app 𝑡1 𝑡2

(4.2.b) Destructors

frees (free 𝑥) = {𝑥}
frees (const 𝑥) = ∅
frees (app 𝑡1 𝑡2) = frees 𝑡1 ∪ frees 𝑡2

consts (free 𝑥) = ∅
consts (const 𝑥) = {𝑥}
consts (app 𝑡1 𝑡2) = consts 𝑡1 ∪ consts 𝑡2

(4.2.c) Partial definitions

size (app 𝑡1 𝑡2) = 1 + size 𝑡1 + size 𝑡2

(4.2.d) Wellfoundedness

Listing 4.2: Axioms for the basic operations of the term class

[18, §3]: they are distinct and injective. Thewellfoundedness axiom is required so that functions
over abstract terms that recurse into applications can be proved to be terminating. Most
other properties that would otherwise be generated by the datatype package follow from
these axioms. Also, discriminators can be defined easily by checking if the corresponding
destructor returns Some.

The frees and consts functions select the set of free variables and constants in a term.
For constants, abstractions need not be considered, because they only bind variables. The
basic axioms strictly prescribe the behaviour of both functions for the generic constructors.
For convenience, closed 𝑡 abbreviates frees 𝑡 = ∅.

Types defined through datatype are equipped with a size function that counts the number
of constructors in the value. size itself is a class constant from the size class. Consequently,
the term class extends size and assumes that the size constant behaves exactly like expected
for app.

The subst function substitutes free variables in a term. As arguments, it takes a mapping
from names to terms and the term to be substituted.

�

Substituting termswith free variables into a term is underspecified: some axioms (Listing 4.4)
require terms to be closed as a precondition. Term types are not required to implement
𝛼-renaming to prevent capturing of variables. This is consistent with the assumptions on
term rewriting outlined in §2.6.
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const = Const frees (Abs 𝑡) = frees 𝑡
free = Free frees (Bound 𝑛) = ∅
app = App subst 𝜎 (Abs 𝑡) = Abs (subst 𝜎 𝑡)

consts (Abs 𝑡) = consts 𝑡 subst 𝜎 (Bound 𝑛) = Bound 𝑛
consts (Bound 𝑛) = ∅
abs_pred 𝑃 𝑡 = ((∀𝑛. 𝑡 = Bound 𝑛 ⟹ 𝑃 𝑡) ∧ (∀𝑡′. 𝑡 = Abs 𝑡′ ⟹ 𝑃 𝑡′ ⟹ 𝑃 𝑡))

Listing 4.3: Implementation of the term operations for the term type

Finally, abs_pred is a partial induction predicate, covering the remaining cases not covered
by const, free and app. The reasoning behind this and the necessary axiom is explained in
§4.2.3.

A sample implementation for the initial term type term (Listing 2.4.a) is given in Listing 4.3.
For brevity, the cases that are fully specified by the axioms are omitted.

4.2.2 Matching
Taking only the above definitions already admits a generic definition of matching a pattern
with a term. Importantly, the type of patterns is neither generic, nor a dedicated pattern type;
instead, it is term itself. I chose this representation for two reasons:

1. Patterns are a proper subset of terms, with the restriction that no abstractions may
occur and there must be at most a single occurrence of any variable (usually known as
linearity). The first restriction can be modelled in a datatype, the second cannot. Hence,
I define a predicate linear ∶∶ term ⇒ bool that captures both properties.

2. The logical requirements of patterns do not change throughout – including the CakeML
backend (§6.8) – the formalization. In particular, it is never allowed to match against
an abstraction. Consequently, it is not necessary to change types midway through the
compilation pipeline.

The above reasoning notwithstanding, a dedicated pat type is present in the formalization
and will be motivated and described in §4.3.6.

The linearity constraint is represented as a recursive function on terms:

fun linear :: term ⇒ bool where
linear (Free _) ⟺ True

linear (Const _) ⟺ True

linear (𝑡1 $ 𝑡2) ⟺ linear 𝑡1 ∧ linear 𝑡2 ∧ disjoint (frees 𝑡1) (frees 𝑡2) ∧ ¬ is_free 𝑡1
linear _ ⟺ False

Equipped with this, it becomes possible to define a generic matching function using monad
syntax (§4.1.4):
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fun match :: term ⇒ 𝛼 ⇒ (string ⇀ 𝛼) option where
match (Const x) t = do {

y ← unconst t
if x = y then Some [] else None

}

match (𝑡1 $ 𝑡2) u = do {

(𝑢1, 𝑢2) ← unapp u
𝜎1 ← match 𝑡1 𝑢1
𝜎2 ← match 𝑡2 𝑢2
Some (𝜎1 ++ 𝜎2)

}

match (Free s) t = Some [s ↦ t]
match _ _ = None

The first argument denotes the pattern, the second the object . Matching yields an optional
mapping of type string ⇀ 𝛼 from free variable names to terms. The object is traversed
according to the destructors as defined by a concrete implementation of the term type. In
particular, it is only necessary to distinguish between constants, applications, and “everything
else”. Taking free variables into account would enable defining a generic unification algorithm,
which is not needed here, but would be an opportunity for future work.

�

There are two notable deviations from term rewriting literature:

1. The result of matching is not directly a substitution 𝜎 ∶∶ 𝛼 ⇒ 𝛼, but rather a mapping
that needs to be applied by a substitution function.

2. When joining the sub-results of matching a function application, there is no check
that they are consistent. Luckily, consistency is a consequence of linearity. The
result of matching any object against a non-linear pattern is unspecified; but no
target language of the code generator even supports it.

Corollary 4.5 (Domain of matching). If the object matches a pattern 𝑡 with environment 𝜎,
then dom 𝜎 = frees 𝑡.

Naturally, the definitions of linear and match can be lifted to a list of terms:

definition freess :: 𝛼 list ⇒ string set where
freess ts = ⋃ (set (map frees ts))

fun linears :: term list ⇒ bool where
linears [] ⟺ True

linears (t # ts) ⟺ linear t ∧ fdisjoint (frees t) (freess ts) ∧ linears ts

fun matchs :: term list ⇒ 𝛼 list ⇒ (string ⇀ 𝛼) option where
matchs [] [] = Some []

matchs (t # ts) (u # us) = do {

𝜎1 ← match t u
𝜎2 ← matchs ts us
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subst 𝜎 (const 𝑥) = const 𝑥
subst 𝜎 (free 𝑥) = (if 𝑥 ∈ dom 𝜎 then 𝜎 𝑥 else free 𝑥)
subst 𝜎 (𝑡1 $ 𝑡2) = subst 𝜎 𝑡1 $ subst 𝜎 𝑡2

(4.4.a) Partial definition

id_env 𝜎 ⟹ subst 𝜎 𝑡 = 𝑡 (4.6)
𝑥 ∉ frees 𝑡 ⟹ subst (𝜎 − 𝑥) 𝑡 = subst 𝜎 𝑡 (4.7)

closed 𝜎2 ∧ disjoint 𝜎1 𝜎2 ⟹ subst (𝜎1 ++ 𝜎2) 𝑡 = subst 𝜎1 (subst 𝜎2 𝑡) (4.8)
closed 𝜎 ⟹ frees (subst 𝜎 𝑡) = frees 𝑡 − dom 𝜎 (4.9)

consts (subst 𝜎 𝑡) = consts 𝑡 ∪ ⋃
𝑥∈frees 𝑡
𝑥∈dom 𝜎

consts (𝜎 𝑥)

(4.10)

where: id_env 𝜎 = (∀𝑥 𝑡. 𝜎 𝑥 = Some 𝑡 ⟹ 𝑡 = free 𝑥)
closed 𝜎 = (∀𝑡 ∈ range 𝜎. frees 𝑡 = ∅)

disjoint 𝜎1 𝜎2 = disjoint (dom 𝜎1) (dom 𝜎2)

(4.4.b) Non-trivial properties

Listing 4.4: Axioms for the subst operation

Some (𝜎1 ++ 𝜎2)
}

matchs _ _ = None

An obvious consequence is that successful matching of two lists requires that both lists have
the same length.

4.2.3 Substitution axioms

In contrast to matching, substitution cannot solely be defined in terms of the generic construc-
tors of a term type, because the term class provides no combinators to work with abstractions.
Instead, Listing 4.4 provides two sets of axioms: partial definition for the constructor cases,
and additional, non-trivial properties that any implementation must adhere to.

To make proofs of the latter simpler, it is only required to prove them for the non-generic
cases. This works by requiring instantiations to provide the higher-order predicate abs_pred,
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together with the following axiom:

∀𝑥. 𝑃 (const 𝑥)
∀𝑥. 𝑃 (free 𝑥) ∀𝑡1 𝑡2. 𝑃 𝑡1 ⟹ 𝑃 𝑡2 ⟹ 𝑃 (𝑡1 $ 𝑡2) ∀𝑡. abs_pred 𝑃 𝑡

𝑃 𝑡
(4.11)

This axiom resembles an induction schema. It also explains why abs_pred was introduced
earlier as a partial induction predicate: it is used to establish exhaustiveness of the generic
and specific parts of the concrete term type. Compare this to the induction principle of term:

∀𝑥. 𝑃 (Const 𝑥) ∀𝑥. 𝑃 (Free 𝑥)
∀𝑡1 𝑡2. 𝑃 𝑡1 ⟹ 𝑃 𝑡2 ⟹ 𝑃 (App 𝑡1 𝑡2) ∀𝑡. 𝑃 𝑡 ⟹ 𝑃 (Abs 𝑡) ∀𝑥. 𝑃 (Bound 𝑥)

𝑃 𝑡

The abs_pred predicate covers exactly the cases for Abs and Bound.
Interestingly, this axiom enables fully generic induction proofs on abstract terms. The

principle can be illustrated with an example property from Listing 4.4.b. The actual class
axiom is not Axiom 4.6:

id_env 𝜎 ⟹ subst 𝜎 𝑡 = 𝑡

but rather the more technical

abs_pred (𝜆𝑡. ∀𝜎 . id_env 𝜎 ⟹ subst 𝑡 𝜎 = 𝑡) 𝑡

where the desired property is explicitly quantified and wrapped into abs_pred. This is similar
for the other axioms: all of them are phrased in terms of abs_pred. The desired properties as
given in Listing 4.4.b can then be derived by induction using the above schema (Axiom 4.11),
together with the partial definitions (Listing 4.4.a). The notable exception is Axiom 4.8, which
requires more background theory and will be revisited later (§4.2.4.4).

It remains to explain how the technical abs_pred axioms are proved in the instantiations.
In the case of term ∶∶ term, they can be easily discharged by simplification, because there,
substitution needs not deal with bound variable names (Listing 4.3). For other term types,
these properties require more complicated proofs, which will be explained in §4.3.

4.2.4 Derived operations & theory
Based on the operations specified in the term class, a wide range of polymorphic functions
can be defined.

4.2.4.1 Combinators

To simplify definition of functions performing a case analysis on terms, a case combinator is
useful. Its structure follows case combinators generated by the datatype package; however,
it has to ensure exhaustiveness by taking an additional default:
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definition term_cases ::

(string ⇒ 𝛽) ⇒ (string ⇒ 𝛽) ⇒ (𝛼 ⇒ 𝛼 ⇒ 𝛽) ⇒ 𝛽 ⇒ 𝛼 ⇒ 𝛽 where
term_cases if_const if_free if_app otherwise t =

(case unconst t of
Some name ⇒ if_const name |

None ⇒ (case unfree t of
Some name ⇒ if_free name |

None ⇒
(case unapp t of

Some (t, u) ⇒ if_app t u
| None ⇒ otherwise)))

Equipped with this function and corresponding congruence rule (§3.1.5.1), it becomes possible
to easily define a conversion functions between arbitrary term types:

fun convert_term :: 𝛼 ⇒ 𝛽 where
convert_term t = term_cases const free (𝜆t u. app (to_term t) (to_term u)) undefined t

This function is partially specified (in the sense of §3.1.5). Its domain can be characterized by
the following function:

fun no_abs :: 𝛼 ⇒ bool where
no_abs t = term_cases (𝜆_. True) (𝜆_. True) (𝜆t u. no_abs t ∧ no_abs u) False t

Thanks to the wellfoundedness axiom (Listing 4.2.d), termination of such functions can be
proved automatically.

�
The no_abs function is a misnomer: judging by the name, it should be true for a term 𝑡 that
does not contain an abstraction. But for the term instantiation, it is also false if the term
contains a bound variable.

Lemma 4.12. The image of convert_term over its domain is its domain.

Lemma 4.13. Assuming the arguments are in its domain, convert_term is

• idempotent,

• injective, and

• for all type instantiations 𝛼 = 𝛽, the identity function.

Proof. Injectivity follows from the injectivity of the generic constructors (Listing 4.2.a).

Lemma 4.14 (Preservation of matches).

match 𝑡 𝑢 = Some 𝜎 ⟹ match 𝑡 (convert_term 𝑢) = Some (map convert_term 𝜎)

Term conversions that are restricted to terms not containing abstractions becomes useful in
parts of the compiler with complicated correspondence relations between terms. It can be
used to show that on terms without abstractions, they collapse to convert_term (or equality,
e.g. §6.3.3).
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4.2.4.2 Applicative term structure

Function applications with multiple arguments can be expressed as repeated application with
a single argument. Operations to create and destructure those are named according to Isabelle
terminology:
fun list_comb :: 𝛼 ⇒ 𝛼 list ⇒ 𝛼 where
list_comb f [] = f
list_comb f (t # ts) = list_comb (app f t) ts

fun strip_comb :: 𝛼 ⇒ 𝛼 × 𝛼 list where
strip_comb t =

(case unapp t of
Some (t, u) ⇒ (let (f, args) = strip_comb t in (f, args @ [u]))

| None ⇒ (t, []))

The most common variant of list_comb – a constant is used as function – is abbreviated
with $$, i.e., 𝑓 $$ xs = list_comb (const 𝑓 ) xs. Left-hand sides of defining equations are
structured in such a way, where xs are patterns.
Lemma 4.15. strip_comb and list_comb are inverses:

list_comb (fst (strip_comb 𝑡)) (snd (strip_comb 𝑡)) = 𝑡
strip_comb (list_comb 𝑓 ys) = (fst (strip_comb 𝑓 ), snd (strip_comb 𝑓 ) @ 𝑦𝑠)

strip_comb (𝑓 $$ ys) = (const 𝑓 , ys)

Observe that list_comb produces applications that are nested to the left. With the following
definition, it is possible to prove that list_comb is injective in its second argument:
Definition 4.16 (Left nesting). A term has a left nesting of 𝑛 if None is reached after 𝑛 recursive
applications of unapp, proceeding with the left branch. Formally:

left_nesting 𝑡 = term_cases (𝜆_. 0) (𝜆_. 0) (𝜆𝑡 𝑢. 1 + left_nesting 𝑡) 0 𝑡

Lemma 4.17 (Conditional injectivity). Assuming that left_nesting 𝑓 = left_nesting 𝑔
and list_comb 𝑓 xs = list_comb 𝑔 ys, then 𝑓 = 𝑔 and xs = ys.

Proof. By induction on xs, generalizing all other variables. Injectivity follows fromListing 4.2.a.

Corollary 4.18 (Injectivity). The (partially applied) function list_comb 𝑓 is injective.
Corollary 4.19. If xs and ys have the same length and list_comb 𝑓 xs = list_comb 𝑔 ys,
then 𝑓 = 𝑔 and xs = ys.

Of course, it is possible to establish a connection between match and matchs using list_comb:
Lemma 4.20.

match (name $$ xs) (name $$ ys) = matchs xs ys

This lemma is a consequence of a more general statement for arbitrary functions, which
is too technical to be reproduced here. Observe that this lemma requires the instantiation
term∶∶term, because it uses list_comb as a pattern. But like the other results on list_comb,
it is polymorphic (here: in ys ∶∶ 𝛼 ∶∶ term).
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simple_syntactic_and

term_struct_rel

term_struct_rel_strong

𝑃 ∶∶ 𝛼 ⇒ bool

𝑃 (𝑡 $ 𝑢) = 𝑃 𝑡 ∧ 𝑃 𝑢

𝑃 ∶∶ 𝛼 ⇒ 𝛽 ⇒ bool

𝑃 𝑡 (const 𝑥) ⟹ 𝑡 = const 𝑥
𝑃 (const 𝑥) (const 𝑥)
𝑃 𝑡 (𝑢1 $ 𝑢2) ⟹ ∃𝑡1 𝑡2. 𝑡 = 𝑡1 $ 𝑡2 ∧ 𝑃 𝑡1 𝑢1 ∧ 𝑃 𝑡2 𝑢2
𝑃 𝑡1 𝑢1 ⟹ 𝑃 𝑡2 𝑢2 ⟹ 𝑃 (𝑡1 $ 𝑡2) (𝑢1 $ 𝑢2)

𝑃 (const 𝑥) 𝑡 ⟹ 𝑡 = const 𝑥
𝑃 (𝑢1 $ 𝑢2) 𝑡 ⟹ ∃𝑡1 𝑡2. 𝑡 = 𝑡1 $ 𝑡2 ∧ 𝑃 𝑡1 𝑢1 ∧ 𝑃 𝑡2 𝑢2

Locale Parameters & Assumptions

sublocale

Figure 4.1: Syntactic locales on terms

4.2.4.3 Syntactic predicates and relations

Predicates and relations on term types that can follow a simple syntactic structure admit
lifting of theorems through match. Figure 4.1 gives an overview over the locales and their
relationships.

Corollary 4.21. The predicates closed and no_abs implement simple_syntactic_and.

Lemma 4.22. For all predicates 𝑃 implementing simple_syntactic_and: If an object 𝑡 for
which 𝑃 𝑡 holds matches a pattern with resulting environment 𝜎, then 𝑃 holds for the range of 𝜎.

Proof. By induction on the termination relation of match. The object gets decomposed only
according to unapp. If 𝑃 holds for the entire object, it also holds for all such sub-terms.

The assumptions of term_struct_rel are right-biased: it means that the structure of the sec-
ond argument determines the structure of the first argument. The locale term_struct_rel_
strong strengthens this to work symmetrically.

Lemma 4.23. For all relations 𝑃 implementing term_struct_rel: If 𝑃 𝑡1 𝑡2 and matching 𝑡2
against a pattern 𝑝 yields an environment 𝜎2, then matching 𝑡1 against 𝑝 yields an environment
𝜎1 where rel 𝑃 𝜎1 𝜎2.

The statement becomes stronger when assuming the symmetric locale:

Lemma 4.24. For all relations 𝑃 implementing term_struct_rel_strong: If 𝑃 𝑡1 𝑡2, then
rel (rel 𝑃) (match 𝑝 𝑡1) (match 𝑝 𝑡2).
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Unfortunately, no general relational properties about subst can be proved, because neither the
locales nor the term class assume any behaviour on termswith abstractions. A counterexample
would be a predicate 𝑃 ensuring that there are no nested abstractions. A term containing an
abstraction could be substituted below an abstraction in another term, creating a term that
contains nested abstractions. Proving a restricted result on terms that contain no abstractions
however is possible, but not useful enough.

4.2.4.4 Substitution

The lack of general relational results about substitution notwithstanding (§4.2.4.3), it is possible
to prove some equational properties of substitution.

Corollary 4.25 (Substitution of non-occurring variables). If frees 𝑡 and dom 𝜎 are disjoint,
then subst 𝜎 𝑡 = 𝑡.

Proof. Iterate Axiom 4.7 until the empty environment is reached. id_env [] obviously holds,
hence subst 𝜎 𝑡 = 𝑡 with Axiom 4.6.

Corollary 4.26 (Substitution of a closed term). Substituting any environment into a closed
term yields the same term.

The above results are properties on substitutions that ignore variables that occur freely in a
term, leaving the term unchanged. Conversely, it is also possible to restrict substitutions to the
set of free variables, having the same result as substituting the full environment. restrict 𝑆 𝜎
restricts the domain of a map 𝜎 to the set 𝑆, i.e., mappings outside of 𝑆 are dropped.

Lemma 4.27 (Substitution of restricted environment). Let 𝜎 ′ = restrict (frees 𝑡) 𝜎. Then,
subst 𝜎 ′ 𝑡 = subst 𝜎 𝑡.

Proof. Clearly, the variables dropped from 𝜎 are not in frees 𝑡. In other words, 𝜎 ′ = 𝜎 −
(dom 𝜎 − frees 𝑡). Iterate Axiom 4.7 until 𝜎 ′ is reached.

Corollary 4.28 (Substitution congruence). If 𝜎1 and 𝜎2 agree on all free variables in 𝑡, then
subst 𝜎1 𝑡 = subst 𝜎2 𝑡. Formally:

∀𝑥 ∈ frees 𝑡 . 𝜎1 𝑥 = 𝜎2 𝑥 ⟹ subst 𝜎1 𝑡 = subst 𝜎2 𝑡

Recall Axiom 4.8:

closed 𝜎2 ∧ disjoint 𝜎1 𝜎2 ⟹ subst (𝜎1 ++ 𝜎2) 𝑡 = subst 𝜎1 (subst 𝜎2 𝑡)

It is now possible to prove this, assuming only the abs_pred case that needs to be proved
individually for all term instantiations:

Proof. By induction using Axiom 4.11.

Const/App Structural using partial definition axioms (Listing 4.4.a).

Free Let 𝑡 = free 𝑥. Proof by case distinction on 𝑥 ∈ dom 𝜎2.
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• If 𝑥 ∈ dom 𝜎2, then let 𝑢 = 𝜎 𝑥. But because 𝜎2 is closed, so is 𝑢. With Corollary 4.26,
obtain 𝑢 = subst 𝜎1 𝑢.

• Otherwise, show that subst (𝜎1 ++ 𝜎2) 𝑡 = subst 𝜎1 𝑡. This follows directly from
another case distinction on 𝑥 ∈ dom 𝜎1.

In a second step, the assumption that both environments are disjoint can be discharged:

Lemma 4.29 (Substitution independence).

closed 𝜎2 ⟹ subst (𝜎1 ++ 𝜎2) 𝑡 = subst 𝜎1 (subst 𝜎2 𝑡)

Proof.

subst (𝜎1 ++ 𝜎2) 𝑡
= subst (restrict (frees 𝑡) (𝜎1 ++ 𝜎2)) 𝑡 (Lemma 4.27)
= subst (restrict (frees 𝑡) 𝜎1 ++ 𝜎2) 𝑡 (Corollary 4.28)
= subst (restrict (frees 𝑡 − dom 𝜎2) 𝜎1 ++ 𝜎2) 𝑡 (Corollary 4.28)
= subst (restrict (frees 𝑡 − dom 𝜎2) 𝜎1) (subst 𝜎2 𝑡) (Axiom 4.8)†

= subst (restrict (frees (subst 𝜎2 𝑡)) 𝜎1) (subst 𝜎2 𝑡) (Axiom 4.9)
= subst 𝜎1 (subst 𝜎2 𝑡) (Lemma 4.27)

Applying the independence axiom requires proving its assumption (†): I need to show that
restrict (frees 𝑡 − dom 𝜎2) 𝜎1 and 𝜎2 are disjoint. This follows because 𝜎1 is restricted to a
set that does not contain the domain of 𝜎2.

The reason why it is kept as an assumption in Axiom 4.8 is that it makes the instantiation
proofs simpler.

Finally, it is possible to prove abstractly that matching and substitution behave as expected:

• If an object matches a pattern, substituting the resulting environment into the pattern
should yield the object.

• Otherwise, there is no substitution that yields the object.

In this formalization, the naive translation of this proposition into Isabelle type checks, but is
not as general as expected:

match 𝑡 𝑢 = Some 𝜎 ⟹ subst 𝑡 𝜎 = 𝑢

Because of the premise, the pattern 𝑡 is fixed to be of type term and because of the conclusion,
𝑡 and 𝑢 must have the same type. But the desired property should work for all term types, i.e.
𝑢 ∶∶ 𝛼 ∶∶ term. The key idea is to use convert_term to transfer the pattern into an arbitrary
term type. Additionally, both parts of the correctness property must be stated simultaneously;
otherwise the induction is not general enough.
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Lemma 4.30 (Correctness of matching and substitution). Let 𝑡 ∶∶ term be a linear pattern. The
following property holds:

case match 𝑡 𝑢 of
None ⇒ ∀𝜎. subst 𝜎 (convert_term 𝑡) ≠ 𝑢
Some 𝜎 ⇒ subst 𝜎 (convert_term 𝑡) = 𝑢

Proof. By induction on 𝑡, generalizing 𝑢. Note that because 𝑡 is linear, it falls within the domain
of convert_term.

Const/Free Trivial.

Abs If 𝑡 is an abstraction, then 𝑡 cannot be linear. Contradiction.

App Let 𝑡 = 𝑡1 $ 𝑡2. Hence, 𝑡′ = subst 𝜎 (convert_term 𝑡) is an application for arbitrary 𝜎.
This case can be proved by a series of case distinctions.

• If 𝑢 is not an application, then matching fails. But because 𝑡′ is always an applica-
tion, 𝑡′ ≠ 𝑢.

• Otherwise, 𝑢 = 𝑢1 $ 𝑢2.
If 𝑡1 and 𝑢1 do not match, then there is no 𝜎1 that transforms 𝑡1 into 𝑢1, according
to the induction hypothesis. With injectivity (Listing 4.2.a), there can be no 𝜎 that
transforms 𝑡 into 𝑢.
Similarly for the case when 𝑡2 and 𝑢2 do not match.

• Otherwise, 𝑡1 matches 𝑢1 with 𝜎1 and 𝑡2 matches 𝑢2 with 𝜎2. I know from the
induction hypotheses that subst 𝜎𝑖 (convert_term 𝑡𝑖) = 𝑢𝑖. It remains to show
that the environment resulting from matching 𝑡 and 𝑢, namely 𝜎 = 𝜎1 ++ 𝜎2, trans-
forms 𝑡 into 𝑢. From Corollary 4.5, I know that dom 𝜎𝑖 = frees 𝑡𝑖. Consequently,
restrict (frees 𝑡𝑖) 𝜎 = 𝜎𝑖. With Lemma 4.27, the substitution of 𝑡𝑖 can be lifted
from 𝜎𝑖 to 𝜎.

Recall Definition 3.3 (overlapping patterns). It was defined on a high level: two patterns and
overlap if there is an object that is matched by both. In fact, this is not how it is defined in
the formalization, but it is a consequence of the actual definition. The underlying primitives
are defined as follows:
definition matches :: 𝛼 ⇒ 𝛼 ⇒ bool (infix ≲ 50) where
t ≲ u ⟺ (∃𝜎. subst 𝜎 t = u)

definition overlapping :: 𝛼 ⇒ 𝛼 ⇒ bool where
overlapping s t ⟺ (∃u. s ≲ u ∧ t ≲ u)

Observe that the match function does not appear there. The advantage of that phrasing is
that it works for arbitrary term types. The desired definition of overlapping patterns now
follows as a corollary:

Corollary 4.31 (Overlapping patterns). If two linear patterns both match the same object, then
they overlap.
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Proof. First, let 𝑝1 and 𝑝2 be linear patterns and 𝑢 be the object; assume that matching with 𝑝1
and 𝑝2 yields the environments 𝜎1 and 𝜎2. Observe that 𝑢 is polymorphic, and so are 𝜎1 and
𝜎2. Define 𝜎 ′𝑖 = map convert_term 𝜎𝑖, where the target type of the conversion is term. Using
Lemma 4.14, obtain that match 𝑝𝑖 (convert_term 𝑢) = Some 𝜎 ′𝑖 . The conclusion follows from
Lemma 4.30.

Corollary 4.32. If two linear and compatible patterns (Definition 3.4) both match the same
object, then they are equal to each other.

Proof. Corollary 4.31 establishes that the two patterns overlap. But since they are compatible
by assumption, Lemma 3.6 implies that they are equal to each other.

4.2.4.5 Matching and rewriting

The matching operation can be lifted to a list of pairs of patterns and arbitrary data. If the data
are terms – which is usually the case –, this list is referred to as clauses. The first matching
pattern is selected.

fun find_match :: (term × 𝛼) list ⇒ 𝛼 ⇒ ((string ⇀ 𝛼) × term × 𝛼) option where
find_match [] _ = None

find_match ((pat, rhs) # cs) t =

(case match pat t of Some 𝜎 ⇒ Some (𝜎, pat, rhs) | None ⇒ find_match cs t)

Results from §4.2.4.3, in particular Lemma 4.24, can be lifted from match to find_match.
A particularly noteworthy consequence of Corollary 4.32 is that the result of find_match

is uniquely determined:

Lemma 4.33. Let cs be clauses such that:

• all patterns are mutually compatible,

• all patterns are linear, and

• there are no two clauses with equal pattern but different terms.

Furthermore, let (𝑝, 𝑢) ∈ cs be a clause. If 𝑡 matches 𝑝 yielding environment 𝜎, then find_match

returns (𝜎 , 𝑝, 𝑢).

A single rewrite step comprises matching a term 𝑡1 against a pattern 𝑝, producing an environ-
ment 𝜎, and subsequent substitution of a term 𝑡2 with that environment. This notion occurs
frequently in the formalization.

Recall §4.2.4.2. There, operations to split and combine terms and patterns were introduced.
This can be used to define equations in the context of term rewriting:

Definition 4.34. An equation is a pair of a pattern (left-hand side) and a term (right-hand
side), where the pattern is of the form 𝑓 $$ ps. 𝑓 is referred to as the head of the equation.

Following term rewriting terminology, I sometimes refer to an equation as rule, and a collection
thereof as rules or rule set . Mostly, it is assumed that the left-hand side of a rule is linear.
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Note that this definition of equation is largely similar to the kind of equations other tools
in Isabelle expect (i.e., the function package and the code generator, §2.4).

In a particular compiler phase (§6.3), equations need to be transformed according to the
structure of their left-hand sides. For that, it is necessary to split those into a pair of head and
patterns. In this section, I will now establish a connection between pattern compatibility and
the match operation lifted to lists (§4.2.2).

Recall the informal definition of pattern compatibility (Definition 3.4). Formally, it is defined
as follows:
fun pattern_compatible :: term ⇒ term ⇒ bool where
pattern_compatible (𝑡1 $ 𝑡2) (𝑢1 $ 𝑢2) ⟺

pattern_compatible 𝑡1 𝑢1 ∧ (𝑡1 = 𝑢1 ⟹ pattern_compatible 𝑡2 𝑢2)
pattern_compatible t u ⟺

t = u ∨ ¬ overlapping t u

Note that pattern compatibility could logically be defined on arbitrary term types. However,
it is only ever used on term; consequently, I have restricted it to term.

This notion can also be lifted to lists, using a predicate combinator:

rev_accum_rel 𝑅 [] []

xs = ys ⟹ 𝑅 𝑥 𝑦 rev_accum_rel 𝑅 xs ys

rev_accum_rel 𝑅 (xs @ [𝑥]) (ys @ [𝑦])

definition patterns_compatible :: term list ⇒ term list ⇒ bool where
patterns_compatible = rev_accum_rel pattern_compatible

This definition is admittedly non-obvious. It can be justified by the structure of list_comb
and pattern compatibility. In fact, I have defined it in such a way that the following lemma is
provable:

Lemma 4.35.

patterns_compatible xs ys pattern_compatible 𝑓 𝑔

pattern_compatible (list_comb 𝑓 xs) (list_comb 𝑔 ys)

The proof works by rule induction on rev_accum_rel and requires Corollary 4.19.
Finally, the main result can be proved:

Corollary 4.36. Let ts1 and ts2 two linear and compatible lists of terms. If matchs ts𝑖 us =
Some 𝜎𝑖 for 𝑖 ∈ {1, 2}, then ts1 = ts2.

Proof. This can be proved using dummy heads. Let name be an arbitrary string that will serve
as a dummy head. Using Lemma 4.20, establish that match (name$$ts𝑖) (name$$us) = Some 𝜎𝑖.
Also, from assumptions, deduce that ts1 and ts2 have the same length. With Lemma 4.35,
obtain that name $$ ts1 and name $$ ts2 are compatible.

Because these two patterns are compatible, linear, and match the same object, I can use
Corollary 4.32 to show that they must be equal to each other. It remains to show that ts1 = ts2.
This follows from injectivity of 𝜆ts. name $$ ts (Corollary 4.18).
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datatype nterm =

Nconst string |

Nvar string |

Nabs string nterm |

Napp nterm nterm

(4.5.a) Explicit bound variable names

datatype pterm =

Pconst string |

Pvar string |

Pabs ((term × pterm) set) |

Papp pterm pterm

(4.5.b) Explicit pattern matching

datatype sterm =

Sconst string |

Svar string |

Sabs ((term × sterm) list) |

Sapp sterm sterm

(4.5.c) Ordered clauses

datatype value =

Vconstr string (value list) |

Vabs ((term × sterm) list)

(string ⇀ value) |

Vrecabs (string ⇀ ((term × sterm) list))

string

(string ⇀ value)

(4.5.d) Values

Listing 4.5: Intermediate term types

4.3 Term types

�

Portions of this section are based on the publications “AVerified Compiler from Isabelle/HOL
to CakeML”, authored by Hupel and Nipkow [65], and the AFP entry “An Algebra for
Higher-Order Terms”, authored by Hupel [60].

The original term type was already given in Listing 2.4.a. The intermediate types are depicted
in Listing 4.5. In this section, I will briefly describe them and explain how they differ from
each other. The proofs of the term algebra laws (§4.2) are mostly technical, so I omit them
here.

4.3.1 de Bruijn terms (term)
The definition of term is almost an exact copy of Isabelle’s internal term type, with the notable
omissions of type information (§2.6). The implementation of 𝛽-reduction is straightforward
via index shifting of bound variables (Listing 4.6). Substitution of free variables does not
require any additional assumptions, because capture is impossible. The full instantiation of
the term class has already been given in Listing 4.3.

4.3.2 Explicit names (nterm)
The nterm type is similar to term, but removes the distinction between bound and free
variables (Listing 4.5.a). Instead, there are only named variables. To avoid capture during
substitution, there is an additional constraint that only closed terms may be substituted into
terms. This is reflected in the precondition of Axiom 4.9 of the term class.
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definition shift_nat :: nat ⇒ int ⇒ nat where
shift_nat n k = if k ≥ 0 then n + nat k else n - nat |k|

fun incr_bounds :: int ⇒ nat ⇒ term ⇒ term where
incr_bounds inc lev (Bound i) =

(if i ≥ lev then Bound (shift_nat i inc) else Bound i)
incr_bounds inc lev (Λ u) = Λ incr_bounds inc (lev + 1) u
incr_bounds inc lev (𝑡1 $ 𝑡2) = incr_bounds inc lev 𝑡1 $ incr_bounds inc lev 𝑡2
incr_bounds _ _ t = t

fun replace_bound :: nat ⇒ term ⇒ term ⇒ term where
replace_bound lev (Bound i) t =

if i < lev then Bound i
else if i = lev then incr_bounds (int lev) 0 t
else Bound (i - 1)

replace_bound lev (𝑡1 $ 𝑡2) t = replace_bound lev 𝑡1 t $ replace_bound lev 𝑡2 t
replace_bound lev (Λ u) t = Λ replace_bound (lev + 1) u t
replace_bound _ t _ = t

abbreviation 𝛽_reduce :: term ⇒ term ⇒ term (_ [_]) where
t [u] ≡ replace_bound 0 t u

Listing 4.6: 𝛽-reduction on terms using index shifting

Looking at the bigger picture, this is reasonable, because substitutions are only performed
with closed terms. However, for proofs, it might still be necessary, so appropriate preconditions
need to control when substitution is safe.

The instantiation nterm ∶∶ term is given below:

const = Nconst consts (Nabs 𝑥 𝑡) = consts 𝑡
free = Nvar frees (Nabs 𝑥 𝑡) = frees 𝑡 − {𝑥}
app = Napp subst 𝜎 (Nabs 𝑥 𝑡) = Nabs (subst (𝜎 − 𝑥) 𝑡)

abs_pred 𝑃 𝑡 = (∀𝑥 𝑡′. 𝑡 = Nabs 𝑥 𝑡′ ⟹ 𝑃 𝑡′ ⟹ 𝑃 𝑡)

The main difference to the term type is that the bound variable name affects substitution, i.e.,
it needs to be dropped from the environment.

4.3.3 Explicit pattern matching (pterm)
Functions in Isabelle are usually defined using implicit pattern matching, that is, the terms 𝑝𝑖
occurring on the left-hand side 𝑓 𝑝1 … 𝑝𝑛 of an equation may be constructor patterns. This is
also common among functional programming languages like Haskell or OCaml. CakeML only
supports explicit pattern matching using case expressions. A function definition consisting of
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multiple defining equations must hence be translated to the form 𝑓 = 𝜆𝑥. case 𝑥 of …. The
elimination proceeds by iteratively removing the last parameter in the block of equations
until none are left (§6.3).

In my formalization, I have decided to conflate the notion of “abstraction” and “case
expression”, yielding case abstractions, represented as the Pabs constructor in Listing 4.5.b.
This is similar to the fn construct in Standard ML, which denotes an anonymous function
that immediately matches on its argument [91]. The same construct also exists in Haskell
with the LambdaCase language extension in Haskell.1 As in §4.2.4.5, the pairs of patterns and
terms are referred to as clauses.

I chose this representation for these reasons:

1. It allows for a simpler language grammar because there is only one (shared) constructor
for abstraction and case expression.

2. The elimination procedure outlined above does not need to introduce fresh names in
the process. Later, when translating to CakeML syntax, fresh names are introduced
and proved correct in a separate step (§6.8).

Furthermore, observe that the clauses are unordered and are hence a set. This stems from the
unordered nature of the term-rewriting semantics (Listing 2.4.b): if a rule matches, it can be
applied, no matter what order the rules were defined in.

As a short-hand notation, Λ{𝑝1 ⇒ 𝑡1, 𝑝2 ⇒ 𝑡2, …} represents Pabs {(𝑝1, 𝑡1), (𝑝2, 𝑡2), …}.
The instantiation pterm ∶∶ term is a bit more complicated than for nterm, because it has to

take multiple clauses into account:

consts (Pabs cs) = ⋃
(𝑝,𝑡)∈cs

consts 𝑡

frees (Pabs cs) = ⋃
(𝑝,𝑡)∈cs

frees 𝑡 − frees 𝑝

subst 𝜎 (Pabs cs) = Pabs {(𝑝, subst (𝜎 − frees 𝑝) 𝑡) ∣ (𝑝, 𝑡) ∈ cs}
abs_pred 𝑃 𝑡 = (∀cs. 𝑡 = Pabs cs ⟹ (∀ 𝑝 𝑡. (𝑝, 𝑡) ∈ cs ⟹ 𝑃 𝑡) ⟹ 𝑃 𝑡)

As for nterms, substitution is only supported for closed terms.

4.3.4 Ordered clauses (sterm)
For CakeML, the clauses need to be applied in a deterministic order, i.e., sequentially. The
sterm type only differs from pterm by using list instead of set (Listing 4.5.c). Hence, case
abstractions use list brackets: Λ[𝑝1 ⇒ 𝑡1, 𝑝2 ⇒ 𝑡2, …].

The instantiation sterm ∶∶ term is largely similar to above.
The proofs of Axioms 4.9 and 4.10 can be shared between sterm and pterm with a simple

trick. First, I define a function that converts from sterm to pterm; call it sterm_to_pterm
(the implementation is given in Listing 6.7). This is always possible, because one can always
discard an ordering, i.e., turn a list into a set. Next, I prove that this conversion function

1https://downloads.haskell.org/~ghc/7.8.4/docs/html/users_guide/syntax-extns.html
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is total and that the free variables and constants are preserved by it. Finally, the following
lemma allows to transfer results from sterm to pterm:

Lemma 4.37.

subst (map sterm_to_pterm 𝜎) (sterm_to_pterm 𝑡) = sterm_to_pterm (subst 𝜎 𝑡)

Taken to its conclusion, this trick could eventually be used to define pterm as a quotient type
of sterm [58].

�

For all terms that do not contain abstractions, sterm_to_pterm coincides with
convert_term. This applies to all conversion functions between term types that are used
in the compiler (§6).

4.3.5 Irreducible terms (value)

CakeML distinguishes between expressions and values. Whereas expressions may contain free
variables or 𝛽-redexes, values are closed and fully evaluated. Both have a notion of abstraction,
but values differ from expressions in that they contain an environment binding free variables.

Consider the expression (𝜆𝑥.𝜆𝑦.𝑥) (𝜆𝑧.𝑧), which can be rewritten to 𝜆𝑦.𝜆𝑧.𝑧 by 𝛽-reduction.
Note how the bound variable 𝑥 disappears, since it gets substituted. This is contrary to how
programming languages are usually implemented: Evaluation does not happen by substituting
the argument term 𝑡 for the bound variable 𝑥, but by recording the binding 𝑥 ↦ 𝑡 in an
environment [74]. A pair of an abstraction and an environment is usually called a closure [81,
123]. Similarly to pterm and sterm, pattern matching is immediate, which is why the body of
a closure is a list of clauses.

In CakeML, this means that evaluation of the above expression results in the closure
(𝜆𝑦.𝑥, ["x" ↦ (𝜆𝑧.𝑧, [])]). Note the nested structure of the closure, whose environment itself
contains a closure.

To reflect this in the formalization, I introduce a value type (Listing 4.5.d) which distin-
guishes between:

Vconstr constructor values: a data constructor applied to multiple values

Vabs closures: clauses combined with an environment mapping variables to values

Vrecabs recursive closures: a group of mutually recursive function bodies with an environ-
ment mapping variables to values

The above example evaluates to the closure

Vabs [ ⟨𝑦⟩ ⇒ ⟨𝑥⟩ ] ["x" ↦ Vabs [⟨𝑧⟩ ⇒ ⟨𝑧⟩] []]

78



4.3 Term types

Recursive closures The third case for recursive closures only becomes relevant late in the
compiler (§6.7). In the initial term-rewriting semantics, there is a clear distinction between
constants and variables. Constants and their definitions are recorded in the rule set rs.
Consequently, recursive calls are straightforward: The appropriate definition for the constant
can be looked up there. CakeML knows no such distinction between constants and variables,
hence everything has to reside in a single environment 𝜎.

This can be illustrated with the following example. Consider the defining equations of odd
and even:

odd 0 = False

odd (Suc 𝑛) = even 𝑛
even 0 = True

even (Suc 𝑛) = odd 𝑛

When evaluating the term odd 𝑘, the definitions of even and odd themselves must be available
in the environment captured in the definition of odd. However, there is no way in Isabelle to
inductively construct such a Vabs that refers to itself, because that would be an infinite object.
Instead, the expressions used to define odd and even are captured in a recursive closure. There
might be an alternative design using coinduction, but I have chosen to follow the same path
as CakeML, where it is modelled in a similar way as here.

For the above example, this would result in the following global environment:

["odd" ↦ Vrecabs css "odd" [], "even" ↦ Vrecabs css "even" []]

where css = ["odd" ↦ [⟨0⟩ ⇒ ⟨False⟩ , ⟨Suc 𝑛⟩ ⇒ ⟨even 𝑛⟩],
"even" ↦ [⟨0⟩ ⇒ ⟨True⟩ , ⟨Suc 𝑛⟩ ⇒ ⟨odd 𝑛⟩]]

Note that in the first line, the right-hand sides are values, but in css, they are expressions. The
additional string argument denotes the active function. The semantics then takes care to add
those to the environment as appropriate.

4.3.5.1 Conversions

The lack of a suitable term instantiation notwithstanding, it is possible to establish a rela-
tionship with sterms by defining conversion functions. Similar to how linear characterizes
terms that lie within the pattern fragment, is_value characterizes sterms that lie within the
value fragment.

is_value (Λ cs)

name ∈ C ∀𝑡 ∈ ts. is_value 𝑡

is_value (name $$ ts)

Informally, a term that satisfies that predicate is referred to as a term-value. Observe that this
definition is parametrized on C, which is the set of all constructor names in any given theory.
This set is automatically generated during deep embedding (§5.2).

The actual conversion from values to terms can be described as executing the substitution
from the captured environments:
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4 Terms, patterns, and values

fun value_to_sterm :: value ⇒ sterm where
value_to_sterm (Vconstr name vs) =

list_comb (Sconst name) (map value_to_sterm vs)
value_to_sterm (Vabs cs 𝜎) =

Λ [(pat, subst (map value_to_sterm 𝜎 − frees pat) t)) | (pat, t) ← cs]
value_to_sterm (Vrecabs css name 𝜎) =

Λ [(pat, subst (map value_to_sterm 𝜎 − frees pat) t)) | (pat, t) ← css name]

The opposite direction does not need to perform any substitution, but it has to traverse a term
according to its applicative structure (§4.2.4.2):

fun sterm_to_value :: sterm ⇒ value where
sterm_to_value t = case strip_comb t of

(Sconst name, args) ⇒ Vconstr name (map sterm_to_value args)
(Sabs cs, []) ⇒ Vabs cs [])

Note that if the term is an abstraction, the result is a closure with an empty environment.

�

That function to convert from terms to values is underspecified. Its domain is a superset
of all terms-values; specifically, terms that contain non-constructor constants are allowed.
All other terms yield an unspecified result. For the purpose of this thesis, it is sufficient to
assume that is_value is the domain of sterm_to_value.

Lemma 4.38. For all term-values 𝑡, value_to_sterm (sterm_to_value 𝑡) = 𝑡.

Unfortunately, the converse direction does not hold: when transforming values to terms, the
distinction between recursive and non-recursive closures is lost.

4.3.5.2 Syntactic predicates and relations

§4.2.4.3 describes locales providing syntactic predicates on term types. Unfortunately, the
value type cannot be made an instance of the term class, because it has no notion of free
variables: values are always thought to be closed.

Nonetheless, just like for terms, there needs to be some predicate that can be used to enforce
syntactic properties on values, because the clauses in a closure may be of arbitrary shape.
Figure 4.2 lists two locales: value_pred introduces a generic predicate pred for wellformed-
ness checks (§6.1) on values and value_sterm_pred establishes a connection to predicates
on sterms. Contrary to the locales on terms, value_pred is used to construct a predicate
of type value ⇒ bool, instead of providing more results about existing predicates. The
motivation behind this is that recursion on values – because of their complicated structure – is
cumbersome and repetitive, especially termination proofs. This locale avoids such duplication.

The locale parameters and the definition of pred itself is sufficiently technical to warrant
a high-level explanation. 𝑃 checks a list of clauses against an environment. This can, for
example, be used to ensure that all free variables in the clauses are bound in the environment.
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value_pred

value_sterm_pred

𝑃 ∶∶ (string⇀ value) ⇒ (term × sterm) list ⇒ bool

𝑄 ∶∶ string ⇒ bool

𝑅 ∶∶ string set ⇒ bool

𝑆 ∶∶ sterm ⇒ bool

pred 𝑣 ⟹ 𝑆 (value_to_sterm 𝑣)

Locale Parameters & Assumptions

sublocale

where: pred (Vconstr name vs) = 𝑄 name ∧ (∀𝑣 ∈ vs. pred 𝑣)
pred (Vabs cs Γ) = 𝑃 Γ cs ∧ (∀𝑣 ∈ range Γ. pred 𝑣)

pred (Vrecabs css name Γ) = (∀𝑣 ∈ range Γ. pred 𝑣) ∧ name ∈ dom css ∧
𝑅 (dom css) ∧ (∀name ∈ dom css. 𝑃 Γ (Γ name))

Figure 4.2: Syntactic locales on values (predicates)

Consequently, the instantiation

𝑃 Γ cs = (∀(𝑝, 𝑡) ∈ cs. frees 𝑡 ⊆ (dom Γ ∪ frees 𝑝))
𝑄 name = True

𝑅 names = True

yields a predicate that is true if and only if a value is closed.
𝑄 and 𝑅 check the names of the constructor and the closures. This is used to avoid collisions

with other kinds of constants. In the compiler, this becomes relevant at multiple stages; for
example, to ensure that no constant with a definition is also, say, a data constructor (see also
§5 for details).

�
The pred meta-predicate always checks, regardless of the concrete instantiation, that in a
recursive closure, the active function is present. This has merely been done for convenience.

Continuing with the above example, the second locale value_sterm_pred can be instantiated
by defining 𝑆 = closed. It remains to be proved that pred 𝑣 implies closed (value_to_sterm
𝑣), which is mostly technical and uninteresting.

Figure 4.3 introduces a locale for structural relations between values. The ≃ relation
represents a basic structural equality that only considers the shape of the value; and in the
case of constructors, recursively.

Lemma 4.39. If 𝑡 ≃ 𝑢 and 𝑡 or 𝑢 contain no closures, then 𝑡 = 𝑢.

Corollary 4.40. If 𝑄 𝑡 𝑢 and 𝑡 or 𝑢 contain no closures, then 𝑡 = 𝑢.
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4 Terms, patterns, and values

value_struct_rel

𝑄 ∶∶ value ⇒ value ⇒ bool

𝑄 𝑡1 𝑡2 ⟹ 𝑡1 ≃ 𝑡2
Vconstr name1 ts1 ≃ Vconstr name2 ts2 ⟺

name1 = name2 ∧ rel 𝑄 ts1 ts2

Locale Parameters & Assumptions

where:

Vabs cs1 Γ1 ≃ Vabs cs2 Γ2 Vrecabs css1 name1 Γ1 ≃ Vrecabs css2 name2 Γ2

rel (≃) ts us

Vconstr name ts ≃ Vconstr name us

Figure 4.3: Syntactic locale on values (relation)

Corollary 4.41. ≃ itself is a structural value relation.

A predicate that ensures the absence of closures can be easily obtained by instantiating pred

as follows:

𝑃 Γ cs = False

𝑄 name = True

𝑅 names = False

All three locales provide further results about matching, but this requires additional material
on patterns. I will revisit this in §4.3.6.

4.3.5.3 Extensional equivalence

A special kind of structural relation on terms is extensionality (Listing 4.7). It compares the
captured environments based on the identifiers that occur in the body of the closure. The set
of identifiers comprises the sets of free variables and constants: ids 𝑡 = frees 𝑡 ∪ consts 𝑡.

As outlined earlier in this section, the closures cases of the value type are thought to
contain environments mapping variables to values. This is only true up until a particular
phase in the compiler (§6.7). From that part on, the environments contain mappings for both
variables and constants. This explains why the extensional equivalence relation uses the set
of identifiers to compare the environments.

Lemma 4.42. Extensional equivalence is reflexive and a structural value relation.

4.3.6 Proper patterns (pat)
The value type, instead of using binary function application as all other term types, uses 𝑛-
ary constructor application. This introduces a conceptual mismatch between (binary) patterns
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rel (≈e) vs us

Vconstr name vs ≈e Vconstr name us

∀𝑥 ∈ ids (Λ cs). 𝜎1 𝑥 ≈e 𝜎2 𝑥

Vabs cs 𝜎1 ≈e Vabs cs 𝜎2

∀cs ∈ range css. ∀𝑥 ∈ ids (Λ cs). 𝜎1 𝑥 ≈e 𝜎2 𝑥

Vrecabs css name 𝜎1 ≈v Vrecabs css name 𝜎2

Listing 4.7: Extensional equivalence of values

and values. To make some proofs easier, and to introduce an intermediate layer between term

patterns and CakeML patterns, I have introduced a dedicated pattern type of 𝑛-ary patterns
(Listing 4.8). The function mk_pat ∶∶ term ⇒ pat converts from binary to 𝑛-ary patterns.

�

Note that the function is underspecified. Its domain is a superset of all linear terms;
specifically, terms that are “almost” linear but in which the same variable occurs twice are
allowed. All other terms yield an unspecified result.

The remainder of this section is concerned with defining a matching function and establishing
a correspondence to match; more specifically, for the sterm instantiation of match. This
works in two steps: first, I define a function that matches a pat and an sterm, then, a function
for pat and value.

Because patterns have a nested recursion structure, it becomes necessary to introduce some
library functions that deal with lists:

those ∶∶ 𝛼 option list ⇒ 𝛼 list option

map2 ∶∶ (𝛼 ⇒ 𝛽 ⇒ 𝛾) ⇒ 𝛼 list ⇒ 𝛽 list ⇒ 𝛾 list

With them, it is now possible to define the intermediate matching function:

fun match' :: pat ⇒ sterm ⇒ (string ⇀ sterm) option where
match' (Patvar name) t = Some [name ↦ t]
match' (Patconstr name ps) t = case strip_comb t of
(Sconst name’, vs) ⇒

if name = name’ ∧ length ps = length vs then
map (foldl (++) []) (those (map2 match' ps vs))

else
None

_ ⇒
None

Lemma 4.43. For all linear patterns 𝑝 and term-values 𝑡: match 𝑝 𝑡 is equal to match' (mk_pat
𝑝) 𝑡.

The proof requires a custom induction rule on linear patterns:
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datatype pat =

Patvar string |

Patconstr string (pat list)

fun mk_pat :: term ⇒ pat where
mk_pat pat = case strip_comb pat of

(Const s, args) ⇒ Patconstr s (map mk_pat args)
(Free s, []) ⇒ Patvar s

Listing 4.8: Proper patterns

Lemma 4.44 (Linear induction).

linear 𝑡 ∀𝑠. 𝑃 (Free 𝑠)
∀name args. linears args ⟹ (∀arg ∈ args. 𝑃 arg) ⟹ 𝑃 (name $$ args)

𝑃 𝑡

Proof. The proof proceeds by well-founded induction on the size measure. Clearly, in the
recursive case, all constituent patterns are smaller than their combination. Because 𝑡 is linear,
the cases are exhaustive.

Finally, the desired matching function, together with its correctness statement, can be defined:
fun vmatch :: pat ⇒ value ⇒ (string ⇀ value) option where
vmatch (Patvar name) v = Some [name ↦ v]
vmatch (Patconstr name ps) (Vconstr name’ vs) =

if name = name’ ∧ length ps = length vs then
map (foldl op ++ []) (those (map2 vmatch ps vs))

else
None

vmatch _ _ = None

Lemma 4.45 (𝑛-ary vs. binary patterns). For all linear patterns, the result of vmatch corre-
sponds (with respect to value_to_sterm) to match. Formally:

linear 𝑝 ⟹ rel (rel (𝜆𝑣 𝑡. 𝑡 = value_to_sterm 𝑣)) 𝜎1 𝜎2
where 𝜎1 = vmatch (mk_pat 𝑝) 𝑣

𝜎2 = match 𝑝 (value_to_sterm 𝑣)

The proof first establishes a correspondence between match' and vmatch and then composes
the result with Lemma 4.43.

Having introduced proper patterns and matching of values with patterns, Lemma 4.22 can
be adapted accordingly in the context of the predicate locale (Figure 4.2):

Lemma 4.46. If a value 𝑣 for which pred 𝑣 holds matches a pattern with resulting environment
𝜎, then pred holds for the range of 𝜎.
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Similarly to §4.2.4.3, the relation locale (Figure 4.3) admits relational results on matching. For
example, the equivalent to Lemma 4.24 is:

Lemma 4.47. For all structural value relations 𝑄: If 𝑄 𝑡1 𝑡2, then

rel (rel 𝑄) (vmatch 𝑝 𝑡1) (vmatch 𝑝 𝑡2)

4.4 Related work
Term rewriting The field of term rewriting is a rich area of research. For the purpose of
this thesis, I would like to restrict the analysis of related work to Isabelle formalizations. Most
notably in this space is the IsaFoR/CeTA project: “An Isabelle/HOL Formalization of Rewriting
for Certified Tool Assertions”.2 The project consists of multiple modules, some of which are
available in the Archive of Formal Proofs:

Abstract Rewriting Sternagel and Thiemann [116] give abstract characterizations of term
rewriting systems, in particular definitions of properties like completeness and normal-
ization. There is no fixed type of terms that are prescribed for rewriting; all definitions
operate on arbitrary relations.

First-Order Terms The same authors [118] provide a general definition of first-order terms,
i.e., composed of variables and function applications. Based on this, they introduce
matching and unification algorithms.

Z Property Felgenhauer et al. [35] formalized the Z property based on work by Dehornoy
and van Oostrom [32]. As an example application, they prove that lambda calculus has
the Church–Rosser property [29]. Unfortunately, this formalization of higher-order
terms does not include the notion of constants.

Term algebras Schmidt-Schauß and Siekmann [111] discuss the concept of unification
algebras. They generalize terms to objects and substitutions tomappings. A unification problem
can be rephrased to finding a mapping such that a set of objects are mapped to the same object.
The advantage of this generalization is that other – superficially unrelated – problems like
solving algebraic equations or querying logic programs can be seen as unification problems.

In particular, the authors note that among the similarities of such problems are that “objects
[have] variables” whose “names do not matter” and “there exists an operation like substituting
objects into variables” [111, §1]. The major difference between my formalization in §4.2 and
the work by Schmidt-Schauß and Siekmann is that I use concrete types for variables and
mappings. Otherwise, some similarities to here can be found.

Eder [33] discusses properties of substitutions with a special focus on a partial ordering
between substitutions. However, Eder constructs and uses a concrete type of first-order terms,
similarly to Sternagel and Thiemann [118].

Williams [129] defines substitutions as elements in a monoid. In this setting, instantiations
can be represented as monoid actions. Williams then proceeds to define – for arbitrary sets of

2http://cl-informatik.uibk.ac.at/isafor/
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4 Terms, patterns, and values

terms and variables – the notion of instantiation systems, heavily drawing on notation from
Schmidt-Schauß and Siekmann. Some of the presented axioms [129, §2] are also present in
my formalization. Consequently, generic theorems can be derived from those axioms: for
example Corollary 4.25,3 Lemma 4.27,4 or Axiom 4.8.5

Higher-order terms Blanchette et al. have formalized 𝜆-free higher-order terms in Isa-
belle [6, 17]. Their main application are term orders that are used in automated theorem
proving. The formalization is relevant insofar as their term type can be made an instance of
the generic term class.�

Lambda_Free_

Compat

4.5 Conclusion
In this section, I have presented a formalization of a term algebra that abstracts over operations
that are common in term rewriting. This itself is not a novel idea, but it – to the best
of my knowledge – the first implementation in a proof assistant. I have demonstrated its
applicability to other term formalizations, too, which could then benefit from a wealth of
results.

Further work in this topic includes a generalized implementation of unification. While this
is not strictly necessary for this formalization, it would avoid duplicated formalization efforts
for other applications.

The algebra also allows pain-free definition of different varieties of term types. This
simplifies the correctness proofs of the compiler phases, because each phase can use a tailored
term type.

3Corollary 3.8B: 𝑡𝜎 = 𝑡, if var(𝑡) ∩ dom(𝑎) = ∅
4Corollary 3.8A: 𝑡𝜎 = 𝑡(𝜎 |var(𝑡))
5Corollary 3.8D: 𝜎 + 𝜏 = 𝜎𝜏, if cdm(𝜎) ∩ dom(𝜏 ) = ∅
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5 Deep embedding of terms

Deep down, I happen to be very shallow.

(Pat Paulsen)

The deep embedding phase happens after preprocessing (§3) and is special: whereas prepro-
cessing stays entirely within the realm of ML to alter (or derive new) HOL definitions and the
compiler (§6) stays entirely within the realm of term languages modelled in Isabelle, deep
embedding lifts definitions into a model. It bridges the gap between the ML and the HOL
world.

Starting with a HOL definition, this phase constructs a reified definition in the deeply
embedded term language given in Listing 2.4.a. This term language corresponds closely to
the term data type of Isabelle’s implementation (using de Bruijn indices [23]), but without
types and schematic variables. To establish a formal connection between the original and
the reified definitions, a “family of relations” is used, “defined by induction on types” [120].
This concept of a logical relation is well-understood in literature [54, 120] and can be nicely
implemented in HOL using type classes.

This compiler phase can be structured into three parts: the mapping – implemented in ML –
between raw Isabelle terms and deeply-embedded terms (§5.1), the HOL relations that certify
correspondence between both representations (§5.2), and the proof tactics – also implemented
in ML – that establish theorems about concrete mappings (§5.3).

5.1 Embedding operation
The embedding operations lifts HOL definitions into the term type. I use angle brackets
to denote an embedded term: ⟨𝑡⟩, where 𝑡 is an arbitrary HOL expression of any type and
the result ⟨𝑡⟩ is a HOL value of type term. It is a purely syntactic transformation, without
preliminary evaluation or reduction, and discards type information. The following examples
illustrate the operation and its typographical conventions:

⟨𝑥⟩ = Free "x"

⟨f⟩ = Const "f"

⟨𝑥 # xs⟩ = Const "List.list.Cons" $ ⟨𝑥⟩ $ ⟨xs⟩
⟨𝜆𝑥𝑦. f 𝑦 𝑥⟩ = Λ (Λ (⟨f⟩ $ Bound 0 $ Bound 1))

Contrary to the formalization, I will use the ⟨𝑡⟩ notation in a more flexible way and allow it to
also represent values of the other term types (§4.3), e.g. pterm.
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The correspondence between an embedded term 𝑡 to a HOL term 𝑎 of type 𝜏 is expressed
with the syntax R ⊢ 𝑡 ↓ 𝑎. The relation can be described as “using the rule set R, the term 𝑡 can
be rewritten to ⟨𝑎⟩”. Most importantly, this means the correspondence relation is aware of
the term-rewriting semantics of term (Listing 2.4.b), where R is the set of all known defining
equations. Furthermore, the notation R ⊢ 𝑡 ↓ 𝑎 actually represents a family of relations.
Abstractly, it is defined in the embed type class.

Before the relations are discussed in detail in §5.2, I will show an example of the embedding
operation and explain its implementation.

Example Consider the map function on lists:

map 𝑓 [] = []
map 𝑓 (𝑥 # xs) = 𝑓 𝑥 # map 𝑓 xs

The result of embedding this function is a set of rules map'. If written directly by the user, it
would look as follows:
definition map' :: (term × term) set where
map' =

{(Const "List.list.map" $ Free "f" $ (Const "List.list.Cons" $ Free "x" $ Free "xs"),

Const "List.list.Cons" $ (Free "f" $ Free "x") $ …),
(Const "List.list.map" $ Free "f" $ Const "List.list.Nil",

Const "List.list.Nil")}

Additionally, the theorem map' ⊢ Const "List.list.map" ↓ map is proved using a custom
tactic (§5.3). Constant names like List.list.map come from the fully qualified internal
names in Isabelle.

Implementation Listing 5.1 shows the Isabelle/ML implementation of the embedding
operation on terms. It lifts the Pure term constructors to their equivalents in the term type.

Note that the term type only knows free variables, but no schematic variables. Depending
on the context where this function is used, either schematic or free variables are mapped to
free variables in term.

This function can then be subsequently used to lift sets of equations. As illustrated by the
example, the resulting type is (term × term) set: equations are split into left- and right-hand
side (Definition 4.34). The set contains all transitive dependencies according to the code graph
(§3.1.3).

Because the set of embedded defining equations is now subject to a term-rewriting seman-
tics, I will refer to it as a rule set (§4.2.4.5).

Observe that both constructor names (e.g. Cons) and function names (e.g. map) look the
same in this representation. But just like in the dictionary construction (§3.1), they require
different treatment in some phases of the compiler. For that reason, the deep embedding also
produces a set of constructor names, which is a subset of all constants that occur. This is
captured in the constructors locale (Listing 5.2). The constructor information consists of
name, arity, and name of the type that it belongs to.

Additionally, there is also a locale that fixes a rule set and assumes some wellformedness
conditions (§6.1). It is a sublocale of constants, which ensures that there are no constants
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fun embed schematic t =

let
fun
aux (Const (n, _)) = @{term Const} $ HOLogic.mk_string n

| aux (Free (n, _)) =

if schematic then
error "free variables are not supported"

else
@{term Free} $ HOLogic.mk_string n

| aux (Bound i) = @{term Bound} $ HOLogic.mk_number @{typ nat} i

| aux (t $ u) = @{term App} $ aux t $ aux u

| aux (Abs (_, _, t)) = @{term Abs} $ aux t

| aux (Var ((n, i), _)) =

if schematic then
@{term Free} $ HOLogic.mk_string (n ^ "." ^ Value.print_int i)

else
error "schematic variables are not supported"

in aux t end

Listing 5.1: Full ML implementation of the embedding operation on terms

that are both constructors and head of a defining equation. More broadly speaking, the
embedding operation does not just define a set of equations, but declares an interpretation of
the locale and proves all conditions. Ill-formed rule sets would be flagged at this point.

�

Deep embedding – being a purely syntactic operation – does not respect referential trans-
parency [25, 108]. In particular, constants’ names become part of the embedded definition.
As an example, consider the two functions id1 𝑥 = 𝑥 and id2 𝑥 = 𝑥. Both can be proved to
be equal according to HOL’s extensional function equality. However, their deep embed-
dings differ from each other. For practical purposes, this bears little relevance, because
users of the compiler would not routinely alter either the embedding or the generated
theorems.

5.2 Embedding relations

The embed type class (Listing 5.3) introduces two distinct relations: ≈ (ground embedding)
and ↓ (equational embedding). The latter has already been briefly introduced in the previous
section. To make the type explicit, both relations can be indexed: ≈𝜏 and ↓𝜏. Both also use
the same syntax: An embedded term corresponds to a HOL term 𝑎 of type 𝜏 with respect to a
rule set R is written as R ⊢ 𝑡 ≈ 𝑎 or R ⊢ 𝑡 ↓ 𝑎. However, both differ in the sets of terms 𝑡 that
correspond to 𝑎.
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type_synonym c_info = nat × string

locale constructors =

fixes C_info :: string ⇀ c_info

begin

definition C :: string set where
C = dom C_info

end

locale constants = constructors +

fixes heads :: string set

assumes heads ∩ C = ∅
begin

definition all_consts :: string set where
all_consts = heads ∪ C

end

Listing 5.2: Definitions of the constructors and constants locales

� The definitions for ↓ and ≈ are part of the trusted base, i.e., one needs to be confident in
them in order to be confident of the main theorems.

Ground embedding For ground types, an embedding relation can be defined easily. For
example, the following two rules define ≈nat:

R ⊢ ⟨Groups.zero_class.zero⟩ ≈nat 0

R ⊢ ⟨𝑡⟩ ≈nat 𝑛

R ⊢ ⟨Nat.Suc 𝑡⟩ ≈nat Suc 𝑛

Definitions of ≈ for arbitrary data types without nested recursion can be derived mechanically
in the same fashion as for nat, where they constitute one-to-one relations. Every datatype is
defined by a set of constructors:

(𝛼1, … , 𝛼𝑛) 𝜏 = C1 𝜅1,1 … 𝜅1,𝑛1 ∣ ⋯ ∣ C𝑘 𝜅1,𝑘 … 𝜅1,𝑛𝑘
Consequently, the predicate

≈𝜏 ∶∶(term × term) set ⇒ term ⇒ (𝛼1 ∶∶ embed, … , 𝛼𝑛 ∶∶ embed) 𝜏 ⇒ bool

is defined with one rule per constructor:

R ⊢ 𝑡1 ≈ 𝑥1 ⋯ R ⊢ 𝑡𝑛𝑖 ≈ 𝑥𝑛𝑖
R ⊢ ⟨C𝑖⟩ $ 𝑡1 $ … $ 𝑡𝑛𝑖 ≈𝜏 C𝑖 𝑥1 … 𝑥𝑛𝑖
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class embed =

fixes embed :: (term × term) set ⇒ term ⇒ 𝛼 ⇒ bool (_ ⊢ _ ≈ _)

assumes R ⊢ t ≈ a ⟹ wellformed t
begin

definition embed' :: (term × term) set ⇒ term ⇒ 𝛼 ⇒ bool (_ ⊢ _ ↓ _) where
R ⊢ t ↓ a ⟺ wellformed t ∧ (∃ 𝑡′. R ⊢ t ⟶∗ 𝑡′ ∧ R ⊢ 𝑡′ ≈ a)

end

Listing 5.3: embed class

Proving the axiom of the type class is trivial, because it only requires wellformedness of
terms. A term is wellformed if there are no dangling de Bruijn indices. In this case, no bound
variables occur in the definition of ≈𝜏.

An implementation restriction is that currently, nested recursion is not supported. Instead,
such datatypes must be expressed with mutual recursion [46], which is supported by the
current datatype command [18, §2].

Note that for such types, ≈ ignores R, because no rewriting happens. The reason why ≈
must be parametrized on R will become clear in a moment.

For function types, I follow Myreen and Owen’s approach [94]. The statement R ⊢ 𝑡 ≈ 𝑓
can be interpreted as “𝑡 $ ⟨𝑎⟩ can be rewritten to ⟨𝑓 𝑎⟩”. Because this might involve applying a
function definition from R and beta reduction, the ≈ relation must be indexed by the rule set.
This is where equational embedding comes into play.

Equational embedding The equational embedding relation R ⊢ 𝑡 ↓ 𝑥 is defined to mean
that there is a 𝑡′ such that 𝑡 can be rewritten to 𝑡′ in R where R ⊢ 𝑡′ ≈ 𝑥. This is apparent in
the formalization (Listing 5.3). Formally:

R ⊢ 𝑡 ↓ 𝑎 ⟺ wellformed 𝑡 ∧ (∃𝑡′. R ⊢ 𝑡 ⟶∗ 𝑡′ ∧ 𝑅 ⊢ 𝑡′ ≈ 𝑎)

Equipped with this, it becomes possible to define ≈ for function types:

wellformed 𝑡 ∀ 𝑥 𝑢. R ⊢ 𝑢 ↓𝜏1 𝑥 ⟹ R ⊢ 𝑡 $ 𝑢 ↓𝜏2 𝑓 𝑥

R ⊢ 𝑡 ≈𝜏1⇒𝜏2 𝑓

This definition is easily motivated: Embedding a constant f yields a rule set R, containing
rewrite rules for f and all other required constants. The embedding routine will produce the
theorem R ⊢ ⟨f⟩ ≈ f. After applying extensionality, one still needs to apply the rewrite rules
to obtain the corresponding function values. Note that ⟨f⟩ itself, without being applied to
parameters, cannot be rewritten.
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5.3 Embedding proofs
The proofs for the correctness of the embedding are fully automatic. To illustrate the mechan-
ics, I will prove the embedding for a list concatenation function:

append [] ys = ys
append (x # xs) ys = x # append xs ys

In this simple example, the function is total (according to §3.1.5). Consequently, the final
theorem is unconditional and in 𝜂-contracted form:

R ⊢ ⟨append⟩ ≈ append

In order to prove this statement, the definition of ≈ for functions needs to be unfolded twice:

R ⊢ 𝑡xs ↓ xs R ⊢ 𝑡ys ↓ ys

∃𝑡′. R ⊢ ⟨append⟩ $ 𝑡xs $ 𝑡ys ⟶
∗ 𝑡′ ∧ 𝑅 ⊢ 𝑡′ ≈ append xs ys

The append function now appears in fully-expanded application form.

�

The variables 𝑡xs ∶∶ term and 𝑡ys ∶∶ term are metavariables. As such, they do not stand for
term-level variables Free xs or Free ys, but rather for arbitrary terms. The naming is
chosen to illustrate the relationship between 𝑡𝑥 and 𝑥.

However, the term ⟨append⟩ $ 𝑡xs $ 𝑡ys cannot be rewritten, because no rule in R matches.
In this case, applying induction on xs is sufficient; in general, induction on the termination
relation of the function is required.

Consider the case where xs = []. The assumption for 𝑡xs is instantiated as R ⊢ 𝑡xs ↓ [].
Expanding ↓ means that there is a 𝑡′ such that 𝑡xs can be rewritten to 𝑡′ and R ⊢ 𝑡′ ≈
[]. According to the definition of ≈list, i.e., the ground embedding of list, 𝑡′ = ⟨[]⟩ =
Const "List.list.Nil". Now, consider the rewriting of ⟨append⟩ $ 𝑡xs $ 𝑡ys again:

⟨append⟩ $ 𝑡xs $ 𝑡ys ⟶
∗ ⟨append⟩ $ ⟨[]⟩ $ 𝑡ys

⟶∗ 𝑡ys

Since R ⊢ 𝑡ys ↓ ys is known, the existential quantifier in the conclusion can be instantiated by
𝑡′ = 𝑡ys , solving the case.

For the case xs = 𝑧 $ zs, the approach is similar. The only difference is that unfolding the
definition of ≈list reveals information on both 𝑧 and zs, meaning the final rewrite chain
becomes longer.

5.4 Related work
Fallenstein and Kumar [34] have presented a model of HOL inside HOL including a reflection
proof principle. The principle states that for any proposition 𝜑, if the syntactic encoding of
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5.4 Related work

𝜑 is provable, then 𝜑 holds. This covers the entirety of of higher-order logic and requires
the existence of a large cardinal. The work has been carried out in HOL4. In this thesis, I
restrict myself to only the term-rewriting fragment of higher-order logic, meaning that the
full generality of the reflection principle is not required.

Kunčar and Popescu [78, 79] introduce a mechanism to turn statements on types into
statements on sets, exploiting the common set-theory-based semantics of higher-order logic.
They perform a low-level dictionary construction using an extension of the logic. In this work,
no extension is required; instead, derived constants are re-defined through the function
package (§3.1).
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6 Compiling HOL terms to CakeML
expressions

“The time has come”, the Walrus said,
“To talk of many things”

(Lewis Carroll, The Walrus and The Carpenter)
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�
Portions of this chapter are based on the publication “A Verified Compiler from Isabelle/HOL
to CakeML”, authored by Hupel and Nipkow [65].

In this section, I will discuss the progression from the de Bruijn based term language with its
small-step semantics given in Listing 2.4.a to the final CakeML semantics. The compiler starts
out with a term-rewrite system on type term and applies multiple phases to eliminate features
that are not present in the CakeML source language. The types term, nterm and pterm each
have a small-step semantics only. The type sterm has a small-step and several intermediate
big-step semantics that bridge the gap to CakeML. An overview of the intermediate semantics
and compiler phases is given in Figure 6.1. The left-hand column gives an overview of the
different phases. The right-hand column gives the types of the rule set and the syntax and
semantics for each phase.

6.1 Side conditions
All of the semantics presented in this chapter require some side conditions on the rule set.
These conditions are purely syntactic. For example, these are the conditions for the correctness
of the first compiler phase:

• Patterns must be linear, and constructors in patterns must be fully applied.
• Definitions must have at least one parameter on the left-hand side (§6.6).
• The right-hand side of an equation refers only to free variables occurring in patterns
on the left-hand side and contains no dangling de Bruijn indices.

• There are no two defining equations lhs = rhs1 and lhs = rhs2 such that rhs1 ≠ rhs2.
• For each pair of equations that define the same constant, their arity must be equal and
their patterns must be compatible (§6.3).

• There is at least one equation.
• Variable names occurring in patterns must not overlap with constant names (§6.7).
• Any occurring constants must either be defined by an equation or be a constructor.

The conditions for the subsequent phases are sufficiently similar that I do not list them again.
In the formalization, I use locales to fix the rules and assumptions over them. Each phase

has its own locale, together with a sublocale proof that after compilation, the conditions are
preserved in the new semantics. Some of the correspondence relations are defined within
the locale, so that they can access the fixed rules (and potentially additional parameters). For
technical reasons, the semantics are usually defined outside of the locales. In the subsequent
sections, the modelling as locales and the sublocale proofs are largely ignored, since they
offer no new insights into the formalization.
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6.1 Side conditions

rules

nrules

crules

irules

prules

srules

vrules

§6.2

§6.3.2

§6.3.2

§6.3.1
§6.3.2

§6.4

R ∶∶ (term × term) set, 𝑡 , 𝑡′ ∶∶ term

R ⊢ 𝑡 ⟶ 𝑡′

R ∶∶ (term × nterm) set, 𝑡 , 𝑡′ ∶∶ nterm

R ⊢ 𝑡 ⟶ 𝑡′

R ∶∶ (string × (term list × nterm) set) set
(no semantics, combined proof with next phase)

R ∶∶ (string × (term list × pterm) set) set
𝑡 , 𝑡′ ∶∶ nterm

R ⊢ 𝑡 ⟶ 𝑡′

R ∶∶ (string × pterm) set, 𝑡 , 𝑡′ ∶∶ pterm

R ⊢ 𝑡 ⟶ 𝑡′

rs ∶∶ (string × pterm) list, 𝑡 , 𝑡′ ∶∶ sterm

rs ⊢ 𝑡 ⟶ 𝑡′

rs ∶∶ (string× sterm) list, 𝜎 ∶∶ string⇀ sterm

𝑡 , 𝑢 ∶∶ sterm

rs, 𝜎 ⊢ 𝑡 ↓ 𝑢

§6.5

rs ∶∶ (string× value) list, 𝜎 ∶∶ string⇀ value

𝑡 ∶∶ sterm, 𝑢 ∶∶ value

rs, 𝜎 ⊢ 𝑡 ↓ 𝑢

§6.6

𝜎 ∶∶ string⇀ value

𝑡 ∶∶ sterm, 𝑢 ∶∶ value

𝜎 ⊢ 𝑡 ↓ 𝑢

§6.7

Locale Types & Semantics

Theorems 6.14 and 6.15

Theorems 6.23 and 6.25

Theorems 6.31 and 6.32

§6.3.6

Theorem 6.35

Theorem 6.39

Theorem 6.48

compiler phase; pseudo-phase
locale belonging to the semantics; correctness/completeness proof

Figure 6.1: Intermediate semantics and compiler phases
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6 Compiling HOL terms to CakeML expressions

Step
(lhs, rhs) ∈ R match lhs 𝑡 = Some 𝜎

R ⊢ 𝑡 ⟶ subst 𝜎 rhs
Beta

R ⊢ (Λ𝑥. 𝑡) $ 𝑡′ ⟶ subst [𝑥 ↦ 𝑡′] 𝑡

Fun
R ⊢ 𝑡 ⟶ 𝑡′

R ⊢ 𝑡 $ 𝑢 ⟶ 𝑡′ $ 𝑢
Arg

R ⊢ 𝑢 ⟶ 𝑢′

R ⊢ 𝑡 $ 𝑢 ⟶ 𝑡 $ 𝑢′

Listing 6.1: Small-step semantics with explicit bound variable names

6.2 Naming bound variables

�

Some proofs in this section have been contributed by Yu Zhang.

Portions of this section appear in the AFP entry “An Algebra for Higher-Order Terms”,
authored by Hupel [60].

Isabelle uses de Bruijn indices in the term language for the following two reasons: First, for
substitution, there is no need to rename bound variables. Second, 𝛼-equivalent terms are
equal.

In implementations of programming languages, these advantages are not required: Typi-
cally, substitutions do not happen inside abstractions, and there is no notion of equality of
functions. CakeML is no exception and therefore it uses named variables. In this compilation
step, de Bruijn indices are removed.

The named semantics is based on the nterm type (Listing 4.5). The rules are given in
Listing 6.1. Notably, 𝛽-reduction reuses the substitution function.

For the correctness proof, I establish a correspondence between terms and nterms. Trans-
lation from nterm to term is trivial: Replace bound variables by the number of abstractions
between occurrence and where they were bound in, and keep free variables as they are. This
function is called nterm_to_term.

The other direction is not unique and requires introduction of fresh names for bound
variables. In the formalization, I have chosen to use a monad to produce these names (§6.2.1).
This function is called term_to_nterm.

Both functions should behave in such a way that conversion back and forth yields the
same term. For converting from term to nterm and back, this is trivial to ensure (§6.2.2).
However, the other direction is harder, because when converting from nterm to term, the
original variable names get lost.

6.2.1 The freshmonad
Generation of fresh names in general can be thought of as picking a string that is not an
element of a (finite) set of already existing names. For Isabelle, the Nominal framework [124,
125] provides support for reasoning over fresh names, but unfortunately, its definitions are
not executable.
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6.2 Naming bound variables

Instead, I chose to model generation of fresh names as a monad 𝛼 fresh with the following
high-level interface:

Fresh.create∶∶string fresh

Fresh.return∶∶𝛼 ⇒ 𝛼 fresh

Fresh.bind∶∶𝛼 fresh ⇒ (𝛼 ⇒ 𝛽 fresh) ⇒ 𝛽 fresh

Fresh.run∶∶𝛼 fresh ⇒ string set ⇒ 𝛼

Fresh.returnFresh.runFresh.bindWith this, it becomes possible to write programs using
do-notation. Note that such a program only tracks the known names via the argument passed
into run; it is not possible to declare further names inside the program. This is sufficient for
the compiler, because the set of all reserved names is known in advance: I take the union of
all known constant names, including constructors.

In the formalization, this is implemented using the state monad, i.e., 𝛼 fresh is a type
synonym for a function string ⇒ (𝛼 × string). Perhaps counter-intuitively, the state type
is just a single string instead of a string set. It is used to track the highest used name
according to the lexicographic order of strings.

Abstractly, this is modelled as a locale that expects two operations next ∶∶ 𝛼 ⇒ 𝛼 and
arb ∶∶ 𝛼 with the axiom next 𝑥 > 𝑥. The high-level Fresh.create operation can then be
defined as 𝜆𝑥. (next 𝑥, next 𝑥).

It remains to be explained how run can be implemented, i.e., how the highest used name is
computed. The locale expects 𝛼 to be a linorder. Using the Max ∶∶ 𝛼 ⇒ 𝛼 set combinator
from Isabelle’s library and the arb operation, a derived operation to compute the successor of
a set of names can be defined as follows:
definition Next :: 𝛼 set ⇒ 𝛼 where
Next S = (if S = ∅ then arb else next (Max S))

Consequently, Fresh.run is merely an abbreviation for first computing the successor of the
input set of names, then running the state function with that successor.

Definition 6.1 (Freshness). A name 𝑠′ is fresh in a set 𝑆 if all 𝑠 ∈ 𝑆 are smaller than 𝑠′.

Lemma 6.2. Next 𝑆 is fresh in 𝑆, i.e., ∀𝑠 ∈ 𝑆. Next 𝑆 > 𝑠.

Corollary 6.3. Next 𝑆 ∉ 𝑆.

This abstract specification of fresh name generation has multiple advantages:

• There may be multiple implementations for a single type; here, I chose suffixing an
underscore to the highest name for computing the successor.

• All existing combinators and lemmas on the state monad can be reused.
• Reasoning about freshness of names can be reduced to monotonicity arguments.

The disadvantage is that it is harder to provide an implementation that uses a fixed scheme
for fresh names, e.g. "a" with a suffixed number. In particular, it requires a modified linear
order for names.
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fun term_to_nterm :: string list ⇒ term ⇒ nterm fresh where
term_to_nterm _ (Const name) = Fresh.return (Nconst name)
term_to_nterm _ (Free name) = Fresh.return (Nvar name)
term_to_nterm Γ (Bound n) = Fresh.return (Nvar (Γ ! n))
term_to_nterm Γ (Λ t) = do {

n ← Fresh.create;

e ← term_to_nterm (n # Γ) t;

Fresh.return (Λ n. e)
}

term_to_nterm Γ (𝑡1 $ 𝑡2) = do {

𝑒1 ← term_to_nterm Γ 𝑡1;
𝑒2 ← term_to_nterm Γ 𝑡2;
Fresh.return (𝑒1 $ 𝑒2)

}

fun nterm_to_term :: string list ⇒ nterm ⇒ term where
nterm_to_term _ (Nconst name) = Const name
nterm_to_term Γ (Nvar name) = case find_first name Γ of

Some n ⇒ Bound n
None ⇒ Free name

nterm_to_term Γ (t $ u) = nterm_to_term Γ t $ nterm_to_term Γ u
nterm_to_term Γ (Λ x. t) = Λ nterm_to_term (x # Γ) t

Listing 6.2: Translations between terms and nterms

6.2.2 Translations between term and nterm

Both translations are recursive functions on the structure of the input terms, with an additional
parameter Γ that records the context of bound variable names (Listing 6.2).

For terms that contain no abstractions, term_to_nterm coincides with convert_term for
all Γ; the opposite direction coincides only for Γ = [].

Lemma 6.4. Let 𝑡 be a wellformed term (i.e., without dangling de Bruijn indices). Then, the
translation of 𝑡 from term to nterm is reversible:

nterm_to_term [] (run (term_to_nterm [] 𝑡) 𝑆) = 𝑡,

where frees 𝑡 ⊆ 𝑆.

The basic proof idea is to use induction over 𝑡 after suitable generalization for an arbitrary
context Γ.

As already indicated earlier, the correctness property of the opposite direction requires
𝛼-equivalence. Its definition is given in Listing 6.3. A slight deviation from literature is that
I use an explicit context of renamings instead of substituting directly. This is merely for
convenience. Two terms can be said to be 𝛼-equivalent if there is a context of renamings that
transforms one into the other.
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6.2 Naming bound variables

Γ ⊢ Nconst 𝑥 ≈𝛼 Nconst 𝑥

𝑥 ∉ dom Γ 𝑥 ∉ range Γ

Γ ⊢ Nvar 𝑥 ≈𝛼 Nvar 𝑥

Γ 𝑥 = Some 𝑦

Γ ⊢ Nvar 𝑥 ≈𝛼 Nvar 𝑦

Γ ++ [𝑥 ↦ 𝑦] ⊢ 𝑡 ≈𝛼 𝑢

Γ ⊢ Λ𝑥. 𝑡 ≈𝛼 Λ𝑦. 𝑢

Γ ⊢ 𝑡1 ≈𝛼 𝑢1 Γ ⊢ 𝑡2 ≈𝛼 𝑢2
Γ ⊢ 𝑡1 $ 𝑡2 ≈𝛼 𝑢1 $ 𝑢2

Listing 6.3: 𝛼-equivalence between terms

Corollary 6.5 (Reflexivity). For all terms 𝑡, [] ⊢ 𝑡 ≈𝛼 𝑡 holds.

The correctness property can now be phrased accordingly. Because the term that is translated
may not be closed, it is necessary for this direction to take contexts into account:

Lemma 6.6. Let 𝑡 be a nterm and Γ, Γ′ be contexts with the same length and frees 𝑡 ⊆ Γ.
Then, the translation of 𝑡 from nterm to term (with context Γ′) and back (with context Γ) is
𝛼-equivalent to 𝑡. The corresponding renaming is the pairing of Γ and Γ′. Formally:

map_of (zip Γ Γ′) ⊢ Fresh.run (term_to_nterm Γ′ (nterm_to_term Γ 𝑡)) 𝑆 ≈𝛼 𝑡

Note that this lemma also constructs the renaming. For closed terms, the following simplified
corollary can be obtained:

Corollary 6.7. Let 𝑡 be a closed nterm. Then, the translation of 𝑡 from nterm to term and back
is 𝛼-equivalent to 𝑡:

[] ⊢ Fresh.run (term_to_nterm [] (nterm_to_term [] 𝑡)) 𝑆 ≈𝛼 𝑡

Furthermore, it is possible to prove that two translation runs from term to ntermwith different
contexts yield 𝛼-equivalent terms.

Lemma 6.8. Let Γ1 and Γ2 be two contexts with the same length such that both Γ1 and Γ2 have
no duplicate elements. Let 𝑡 be a closed term. Let 𝑠1 and 𝑠2 be names that are fresh in Γ1 and Γ2,
respectively. Then:

map_of (zip Γ1 Γ2) ⊢ fst (term_to_nterm Γ1 𝑡 𝑠1) ≈𝛼 fst (term_to_nterm Γ2 𝑡 𝑠2)

�

In the above statement, term_to_nterm is used as a function with three arguments, because
fresh is implemented as a state monad, which is in turn a function of one argument. In
this case, the third argument is a simple string. Fresh.run is not used, because it expects
a string set.
An instantiated version of this lemma with Γ1 = Γ2 = [] would make little sense: it yields a
special case of Corollary 6.5.

As usual, the proof proceeds by generalization and subsequent induction over the term.
In the remainder of this section, I will explain the relationship between terms and their

translations with respect to matching and substitution.
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Definition 6.9. A term 𝑡 and an nterm 𝑢 are related wrt Γ if 𝑡 = nterm_to_term Γ 𝑢.

Corollary 6.10. Definition 6.9 is a strong structural term relation (§4.2.4.3) for all Γ.

From this corollary, it follows that matching behaves identically on terms and their translations.
However, there are no generic lemmas over substitution (§4.2.4.3).

Lemma 6.11. Let 𝜎1 and 𝜎2 be closed and related environments wrt Γ. If Γ and the domain of
𝜎1 are disjoint, then nterm_to_term and subst commute. Formally:

subst 𝜎1 (nterm_to_term Γ 𝑡) = nterm_to_term Γ (subst 𝜎2 𝑡)

The proof proceeds by induction on 𝑡 and crucially depends on the 𝜎𝑖 being closed.
The next lemma establishes a connection between 𝛽-reduction (§2.6) and substitution:

Lemma 6.12. If 𝑡′ is closed, then:

nterm_to_term Γ (subst [𝑥 ↦ 𝑡′] 𝑡) = (nterm_to_term (𝑥 # Γ) 𝑡)[nterm_to_term Γ 𝑡′]

Informally speaking, this means that one can either substitute 𝑡′ for 𝑥 in 𝑡 and then translate
the resulting term back, or translate both 𝑡 and 𝑡′ back and then perform 𝛽-reduction.

6.2.3 Compilation, correctness, & completeness
Having established a low-level translation function from term to nterm that invents bound
variable names based on names from a context, it remains to explain how full rule sets are
compiled. The idea is rather straightforward: translate the right-hand side of all rules while
leaving the left-hand sides unchanged. The left-hand side is still represented as term, for the
reason outlined in §4.2.2.

Formally, compilation is defined as follows:

compile R = {(𝑝, Fresh.run (term_to_nterm [] 𝑡) (all_consts ∪ frees 𝑝)) ∣ (𝑝, 𝑡) ∈ R}

The fresh monad receives two sets of known names. Naturally, names bound by the patterns
must be avoided (frees 𝑝). To avoid collisions of names further down in the compilation
pipeline, additionally all the known constant names are supplied (all_consts). Recall that
that set comprises two subsets (Listing 5.2):

• the names of all constructors from the constructors locale

• the names of all equation heads (heads_of R)

The side conditions of the locale (§6.1) ensure that heads_of R is equal to the set heads
defined during deep embedding (Listing 5.2).

Corollary 6.13 (Invariance of heads). The heads of R remain unchanged after compilation.

102



6.3 Explicit pattern matching

Theorem 6.14 (Correctness of compilation). Assuming a step can be taken with the compiled
rule set, this step can be reproduced with the original rule set.

compile R ⊢ 𝑡 ⟶ 𝑡′ closed 𝑡

R ⊢ nterm_to_term 𝑡 ⟶ nterm_to_term 𝑡′

Proof. By rule induction over the semantics (Listing 6.1). The interesting cases are Step and
Beta.

Step This follows from Corollary 6.10 and Lemma 6.11.

Beta This follows from Lemma 6.12.

Theorem 6.15 (Completeness of compilation). Assuming a step can be taken in the original
rule set, this step can be reproduced in the compiled rule set to obtain an 𝛼-equivalent term.
Formally: if R ⊢ 𝑡 ⟶ 𝑡′ where 𝑡 is closed and wellformed, then there is a term 𝑢′ such that:

compile R ⊢ term_to_nterm [] 𝑡 𝑠 ⟶ 𝑢′ ∧ [] ⊢ 𝑢′ ≈𝛼 term_to_nterm [] 𝑡′ 𝑠′

6.3 Explicit pattern matching
In this step, rule sets are transformed from implicit to explicit pattern matching (§4.3.3). This
is an iterative algorithm that requires two fundamental invariants: all defining equations of
one function must

1. have the same number of parameters (guaranteed by the function command during
preprocessing) and

2. be pattern-compatible (Definition 3.4)

If either invariant is violated, the result of an iteration is unspecified; therefore, they form
additional assumptions (§6.1).

Defining equations after elimination of implicit patterns will have the form ⟨f⟩ = Λ C,
where C is a set of clauses. The right-hand side contains 𝑛 nested abstractions, where 𝑛 is the
number of parameters of the defining equations of f.

The implementation strategy requires successive elimination of a single parameter from
right to left, in a similar fashion as Slind’s pattern matching compiler [113, §3.3.1]. There is
an alternative implementation that will be discussed in §6.3.6. Explanation of the semantics
in this phase is dependent upon understanding of the elimination procedure, which is why I
defer this to §6.3.2.

The running example in this section is the map function from §5.1. It has arity 2. I omit the
brackets ⟨⟩ for brevity. Recall its definition:

map 𝑓 [] = []
map 𝑓 (𝑥 # xs) = 𝑓 𝑥 # map 𝑓 xs
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First, the list parameter is eliminated:

map 𝑓 = 𝜆 [] ⇒ []
| 𝑥 # xs ⇒ 𝑓 𝑥 # map 𝑓 xs

Finally, the function parameter is eliminated:

map = 𝜆 𝑓 ⇒ (𝜆 [] ⇒ []
| 𝑥 # xs ⇒ 𝑓 𝑥 # map 𝑓 xs)

This final equation has arity zero and is defined by a twice-nested abstraction.
From this example, it becomes obvious why the first invariant has to hold: the elimination

procedure would get stuck for jagged arrays. The second invariant is more subtle. Consider
an equivalent definition of map, where the function parameter has a different name in the
second equation:

map 𝑓 [] = []
map 𝑔 (𝑥 # xs) = 𝑔 𝑥 # map 𝑔 xs

Through elimination, this would turn into:

map = 𝜆 𝑓 ⇒ (𝜆 [] ⇒ [])
| 𝑔 ⇒ (𝜆 𝑥 # 𝑥𝑠 ⇒ 𝑓 𝑥 # map 𝑓 𝑥𝑠)

Even though the original equations were non-overlapping, the resulting abstraction has
overlapping patterns. Slind observed a similar problem [113, §3.3.2] in his algorithm. Therefore,
he only permits uniform equations, as defined by Wadler [106, §5.5]. In the formalization, I am
able to give a formal characterization of the requirements as a computable function on pairs
of patterns (§4.2.4.5). This compatibility constraint ensures that any two overlapping patterns
at the same parameter position are equal and are thus appropriately grouped together in the
elimination procedure.

While this rules out some theoretically possible pattern combinations (see also §3.5), in
practice, I have not found this to be a problem. If a function’s parameters cannot be renamed
accordingly, users can transform a set of equations into a single equation using case combi-
nators with the case_of_simps command by Noschinski and Klein.�

Simps_Case_

Conv

6.3.1 Elimination procedure
The elimination procedure can be described as an iterative matrix transformation. Functions
are processed one at a time. In a similar fashion as Slind’s pattern matching compiler [113,
§3.3.1], I view the set of defining equations of c as a matrix where each row represents an
equation.

c 𝑝1,1 … 𝑝1,𝑛 = rhs1
c 𝑝2,1 … 𝑝2,𝑛 = rhs2

⋮
c 𝑝𝑚,1 … 𝑝𝑚,𝑛 = rhsm

⇝
⎛
⎜
⎜
⎝

𝑝1,1 𝑝1,2 ⋯ 𝑝1,𝑛 rhs1
𝑝2,1 𝑝2,2 ⋯ 𝑝2,𝑛 rhs2
⋮ ⋮ ⋱ ⋮ ⋮

𝑝𝑚,1 𝑝𝑚,2 ⋯ 𝑝𝑚,𝑛 rhs𝑚

⎞
⎟
⎟
⎠
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6.3 Explicit pattern matching

Definition 6.16 (Arity). The arity of a function is the unique number of patterns in each of its
defining equations, if it exists, or unspecified otherwise. Two equations are arity-compatible if
they define different functions or have the same number of patterns.

Applied to the above example, the arity of c is 𝑛.
In each step, the equations are grouped by the initial 𝑛−1 patterns (the prefix). More formally,

I treat a row in the matrix as an (𝑛 + 1)-tuple (𝑝𝑖,1, … , 𝑝𝑖,𝑛, rhs𝑖) and define an equivalence
relation ≡𝑝 such that

(𝑝𝑖,1, … , 𝑝𝑖,𝑛, rhs𝑖) ≡𝑝 (𝑝𝑗,1, … , 𝑝𝑗,𝑛, rhs𝑗) ⟺ (𝑝𝑖,1, … , 𝑝𝑖,𝑛−1) = (𝑝𝑗,1, … , 𝑝𝑗,𝑛−1)

The new matrix is constructed from the set of equivalence classes. It consists of 𝑛 columns
and one row per equivalence class. The first 𝑛 − 1 columns contain the unique 𝑝𝑖,1, … , 𝑝𝑖,𝑛−1,
whereas the last column is an abstraction with the set 𝑆𝑖 of all (𝑝𝑘,𝑛, rhs𝑘) in the equivalence
class as the set of clauses.

⎛
⎜
⎜
⎝

𝑝′1,1 𝑝′1,2 ⋯ 𝑝′1,𝑛−1 Λ 𝑆1
𝑝′2,1 𝑝′2,2 ⋯ 𝑝′2,𝑛−1 Λ 𝑆2
⋮ ⋮ ⋱ ⋮ ⋮

𝑝′𝑚′,1 𝑝′𝑚′,2 ⋯ 𝑝′𝑚′,𝑛−1 Λ 𝑆𝑚′

⎞
⎟
⎟
⎠

Lemma 6.17 (Invariant). Given a set of arity- and pattern-compatible equations, the elimination
procedure produces another set of arity- and pattern-compatible equations.

Proof. Consider a set of equations with the same head c. Assume arity of c is nonzero.

1. Obvious from the matrix construction.
2. Let Rc ∶∶ (term list × pterm) set be all equations for c. Also, let R′c be the set after a

single elimination. To establish pattern compatibility of a set, pick any two equations
(ps1, rhs1) and (ps2, rhs2) in R

′
c and prove their pattern compatibility. Consider the origin

of these two equations: There must be (at least) one equation (ps𝑖@[𝑝′𝑖 ], rhs
′
𝑖 ) ∈ Rc that

gave rise to (ps1, rhs1) for 𝑖 ∈ {1, 2}. Consequently, using the invariant for Rc, ps1@[𝑝′1]
and ps2 @ [𝑝′2] must be compatible.
It remains to be proved that ps1 and ps2 are compatible. This follows directly from the
definition of rev_accum_rel (§4.2.4.5).

Lemma 6.18 (Termination). For each function in a rule set R, its arity is zero or decreases by
one after a single elimination step.

Corollary 6.19. Let c be the function with the maximum arity 𝑛 in a rule set R. Eliminating
patterns in R for 𝑛 times yields a rule set R′ where each function has arity zero.

6.3.2 Compilation
After transformation to nterm, equations are represented as a tuple term × nterm. But recall
from Figure 6.1 that the type of R in this phase is (string × (term list × pterm) set) set.
The full compilation goes through multiple sub-phases:
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Step

(name, C) ∈ R
([𝑝1, … , 𝑝𝑛], rhs) ∈ 𝐶 match (Pconst name $ 𝑝1 $ … $ 𝑝𝑛) 𝑡 = Some 𝜎

R ⊢ 𝑡 ⟶ subst 𝜎 rhs

Beta
(pat , rhs) ∈ C match pat 𝑡 = Some 𝜎 closed 𝑡

R ⊢ (Λ C) $ 𝑡 ⟶ subst 𝜎 rhs

Fun
R ⊢ 𝑡 ⟶ 𝑡′

R ⊢ 𝑡 $ 𝑢 ⟶ 𝑡′ $ 𝑢
Arg

R ⊢ 𝑢 ⟶ 𝑢′

R ⊢ 𝑡 $ 𝑢 ⟶ 𝑡 $ 𝑢′

(6.4.a) Combined implicit and explicit pattern matching

Step’
(name, rhs) ∈ R

R ⊢ Pconst name ⟶ rhs

(6.4.b) Modified Step rule for explicit-only pattern matching

Listing 6.4: Small-step semantics with pattern matching

1. The left-hand side of each equation (of type term) is destructured into a tuple (name,
pats) ∶∶ string × term list, where name represents the head of the equation and pats
the list of patterns.

2. The right-hand side (of type nterm) can be trivially embedded into pterm: An nterm-
abstraction Λ𝑥. 𝑡 is translated to the pterm-abstraction Λ{⟨𝑥⟩ ⇒ 𝑡}, i.e., a case abstrac-
tion with the single clause (Pvar 𝑥, 𝑡).

3. Equations with the same head are grouped together. Different groups are processed
separately. A single group has the type (term list × pterm) set. This corresponds to
the initial matrix representation as depicted in §6.3.1.

4. For each function (i.e. for each group) that has an arity greater than zero, the elimination
procedure is applied. The type does not change here. This can be iterated until all
functions have arity zero (Corollary 6.19).

For correctness and completeness purposes, all but the last step have purely syntactic proofs,
that is, they do not require arguing about the semantics.

The target semantics has two variants and is given in Listing 6.4. The first variant with the
Step rule performs both implicit and explicit pattern matching, to account for functions that
may have nonzero arity.

The second variant applies after a post-processing step. When all functions in the rule
set are of arity zero, the implicit pattern lists are all empty. Consequently, the rule set
can be trivially converted to type (string × pterm) set by stripping the pattern lists. To
accommodate for this, the modified Step’ rule merely replaces a constant by its definition,
without taking arguments into account. Only the Beta rule performs pattern matching.
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Const
Pconst 𝑛 ≈p Pconst 𝑛

Var
Pvar 𝑛 ≈p Pvar 𝑛

Comb
𝑡1 ≈p 𝑡2 𝑢1 ≈p 𝑢2
𝑡1 $ 𝑢1 ≈p 𝑡2 $ 𝑢2

Ext
rel (𝜆(𝑝1, 𝑡1) (𝑝2, 𝑡2). 𝑝1 = 𝑝2 ∧ 𝑡1 ≈p 𝑡2) C1 C2

Λ C1 ≈p Λ C2

Defer

∀𝑖. closed 𝑡𝑖 (𝑓 , R𝑓) ∈ R
arity R𝑓 > 0 rel (𝜆(𝑝1, 𝑡1) (𝑝2, 𝑡2). 𝑝1 = 𝑝2 ∧ 𝑡1 ≈p 𝑡2) (deferred [𝑡1, … , 𝑡𝑛] R𝑓) C

Pconst 𝑓 $ 𝑡1 $ … $ 𝑡𝑛 ≈p Λ C

deferred ts 𝑅𝑓 = {(𝑝𝑛+1,subst 𝜎 rhs) ∣

([𝑝1, 𝑝2, … , 𝑝𝑛+1], rhs) ∈ R𝑓 ∧ matchs [𝑝1, … , 𝑝𝑛] ts = Some 𝜎}

Listing 6.5: Left-deferred correspondence

The remainder of this section is concerned with the proofs for the elimination procedure. I
will briefly revisit the initial and post-processing steps in §6.3.6.

6.3.3 Correspondence relation
The statement of the semantic correctness property is more difficult than in the previous
phase. The obvious property does not hold:

compile R ⊢ 𝑡 ⟶ 𝑢 closed 𝑡

R ⊢ 𝑡 ⟶ 𝑢

Consider the map function again. After eliminating once, the defining equation of map is of the
form ⟨map 𝑓⟩ = Λ 𝐶, which means that the term ⟨map id⟩ can be rewritten to Λ 𝐶. However,
this rewrite step cannot be taken in the original rule set, because the second argument is
missing.

Because of the absence of a direct correspondence, I have introduced a relation ≈p (Sec-
tion 6.3.3). The ultimate goal is that the following correctness property holds:

compile_single R ⊢ 𝑢 ⟶ 𝑢′ 𝑡 ≈p 𝑢 closed 𝑡

∃𝑡′. R ⊢ 𝑡 ⟶∗ 𝑡′ ∧ 𝑡′ ≈p 𝑢′

where compile_single is a single application of the elimination procedure. For this to work,
≈p must take the rule set into account.

I will illustrate the meaning of this relation based on the map example. Consider its matrix
representation:

𝑅map = ( ⟨𝑓⟩ ⟨[]⟩ ⟨[]⟩
⟨𝑓⟩ ⟨𝑥 # xs⟩ ⟨𝑓 𝑥 # map 𝑓 xs⟩ )
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After an elimination step:

𝑅′map = ( ⟨𝑓⟩ ⟨
𝜆 [] ⇒ []
| 𝑥 # xs ⇒ (𝜆𝑦. 𝑦) 𝑥 # map (𝜆𝑦. 𝑦) xs

⟩ )

In this modified rule set, the term ⟨map (𝜆𝑦. 𝑦)⟩ can be rewritten. In the original rule set, it
cannot. I refer to such a rewriting as a half-step. Using the Defer rule, the un-reduced and
the reduced term are related:

⟨map (𝜆𝑦. 𝑦)⟩ ≈p ⟨
𝜆 [] ⇒ []
| 𝑥 # xs ⇒ (𝜆𝑦. 𝑦) 𝑥 # map (𝜆𝑦. 𝑦) xs

⟩

The Defer rule can be explained by examining the deferred function. Given a function
application for 𝑛 parameters ⟨c 𝑡1 … 𝑡𝑛⟩ of a function with arity 𝑛 + 1, it selects all defining
equations that so far match these arguments (minus the 𝑛 + 1-st one). Each of these equations
⟨c 𝑝1 … 𝑝𝑛 𝑝𝑛+1 = 𝑡⟩ carries an additional pattern 𝑝𝑛+1 for the (𝑛 + 1)st argument which has
to be supplied eventually. From these equations, I construct a Λ-abstraction comprising pairs
(⟨𝑝𝑛+1⟩ , subst 𝜎 ⟨𝑡⟩), where 𝜎 is the result of matching the initial 𝑛 patterns.

Based on this understanding, the ≈p can be described as a left-deferred or a right-extensional
correspondence.

In the case of abstraction-free terms, the relation collapses to equality:

Lemma 6.20. If 𝑡 ≈p 𝑢 and 𝑢 is abstraction-free, then 𝑡 = 𝑢.

Proof. By rule induction on ≈p. Neither the Ext nor the Defer rule are applicable; conse-
quently, only Const, Var, and Comb are left. They describe an equality relation.

This lemma becomes important when considering the iterated elimination, because ≈p is not
transitive.

Lemma 6.21. ≈p is reflexive. ≈p is a structural term relation (§4.2.4.3).

�

≈p is an example of a structural term relation that is not also a strong structural relation:
If 𝑡 and 𝑢 are related through the Defer rule, then 𝑡 may be an application or a constant,
whereas 𝑢 is an abstraction, hence having different shapes. Consequently, Lemma 4.24
would be violated.

Lemma 6.22 (Substitution). Let 𝑡1 and 𝑡2 be related terms. Also, let 𝜎1 and 𝜎2 be closed and
related environments. Then, the results of substitution are also related. Formally: subst 𝜎1 𝑡1 ≈p
subst 𝜎2 𝑡2.

6.3.4 Correctness
Recall the desired correctness property as stated in §6.3.3:

Theorem 6.23.

compile_single R ⊢ 𝑢 ⟶ 𝑢′ 𝑡 ≈p 𝑢 closed 𝑡

∃𝑡′. R ⊢ 𝑡 ⟶∗ 𝑡′ ∧ 𝑡′ ≈p 𝑢′
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Observe that the conclusion uses the starred rewrite relation, i.e., its reflexive-transitive
closure. The reason is simple: one step in the transformed rule set may correspond to zero or
one step in the original rule set.

Proof. By rule induction over the semantics (Listing 6.4). Similarly to the proof ofTheorem 6.14,
the interesting cases are Step and Beta.

Step In this case, 𝑢 is an application of a constant to a number of arguments. It holds that
compile_single 𝑅 ⊢ ⟨c 𝑢1 … 𝑢𝑛⟩ ⟶ 𝑢′ for some 𝑢′ and 𝑢𝑖. Case distinction on c’s
arity in R:

• If c already had arity zero, nothing changed during compilation. In particular,
there is a rule in R that matches and can rewrite the function application to 𝑢′.
The same rewrite step needs to be taken from a 𝑡 where 𝑡 ≈p 𝑢. This follows from
Lemmas 6.21 and 6.22. Consequently, R ⊢ ⟨c 𝑡1 … 𝑡𝑛⟩ ⟶ 𝑡′ where 𝑡′ ≈p 𝑢′ with
a single rewrite step.

• If not, the arity of c decreased. This case requires establishing the correctness
of the deferred set: the transformed rule set is able to perform a half-step,
whereas R cannot. Hence, set 𝑡′ = 𝑡 with R ⊢ 𝑡 ⟶∗ 𝑡′ because of the reflexive-
transitive closure. It remains to be shown that 𝑡 ≈p 𝑢′. This requires Lemma 6.22
and Corollary 4.36.

Beta In this case, 𝑢 is an application where the function is a case abstraction, i.e., there is
an 𝑥 such that 𝑢 = (Λ 𝐶) $ 𝑥 and compile_single 𝑅 ⊢ (Λ 𝐶) 𝑥 ⟶ 𝑢′ for some 𝑢′.
𝑢′ is the result of matching 𝑥 to a pattern 𝑝 in 𝐶 and subsequent substitution. Now, 𝑡
is a term such that 𝑡 ≈p (Λ 𝐶) $ 𝑥. Using the Comb rule, there must be 𝑡1 and 𝑡2 with
𝑡 = 𝑡1 $ 𝑡2 and 𝑡1 ≈p Λ 𝐶 and 𝑡2 ≈p 𝑥. There are two possible cases in ≈p that could give
rise to 𝑡1 ≈p Λ 𝐶:

Ext This is the simple case, because it reveals that 𝑡1 has an identical structure to Λ 𝐶.
Hence, there is an equivalent pattern 𝑝′ in 𝑡1 as in 𝐶. The result follows from
Lemmas 6.21 and 6.22.

Defer The situation is that 𝑡1 is an application of a constant to a list of arguments. The
rewrite step could not be completed because the number of arguments is one less
than the arity of that constant. However, since 𝑡 = 𝑡1 $ 𝑡2, the step can now be
completed, because 𝑡2 is available as an extra argument. On the other side, Λ 𝐶 are
precisely the clauses that have been deferred. It now remains to find the matching
pattern 𝑝 in 𝐶 and establish the existence of a corresponding equation in R. The
technical challenge is that the right-hand sides in 𝐶 have already been partially
substituted by the half-step. This can be solved by using Lemmas 4.20 and 4.29,
which allow to split the matching and substitution into two parts: first the 𝑛-ary
prefix and then the additional pattern 𝑝.

Combining this result with Lemma 6.20 yields:
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Corollary 6.24 (Correctness for abstraction-free results).
compile_single R ⊢ 𝑡 ⟶ 𝑢 closed 𝑡 no_abs 𝑢

R ⊢ 𝑡 ⟶∗ 𝑢
This corollary can be lifted to compile, i.e., the iterated application of compile_single.

6.3.5 Completeness

� The proof in this section has been contributed by Yu Zhang.

The opposite direction can be stated directly, without the use of an additional relation:
Theorem 6.25.

R ⊢ 𝑡 ⟶ 𝑡′ closed 𝑡

compile_single R ⊢ 𝑡 ⟶∗ 𝑡′

Whereas the correctness requires the original semantics to perform zero or one step, com-
pleteness requires the new semantics to perform one or two steps: if the arity of one constant
has been reduced during pattern elimination, both half-steps need to be executed in order.
This is also the idea of the proof for the Step case; the other cases are trivial.

6.3.6 Discussion
This compilation phase is both non-trivial and has some minor restrictions on the set of
function definitions that can be processed. Instead of eliminating patterns from right to left,
patterns could also alternatively be grouped into tuples. The map example would be translated
into:

map = 𝜆 (𝑓 , []) ⇒ []
| (𝑓 , 𝑥 # xs) ⇒ 𝑓 𝑥 # map 𝑓 xs

The compilation of patterns would then be left for the CakeML compiler, which has no pattern
compatibility restriction.

Despite the simpler idea behind the algorithm, there are two disadvantages:
• the compiler phase would require the knowledge of a tuple type in the term language,
which is otherwise unaware of concrete datatypes

• the correspondence relation would be harder to specify, because the alternative transla-
tion goes directly from arity 𝑛 to 0.

Finally, I will review the complexity of the proofs in this section. Recall the detailed structure
of this compiler phase as outlined in §6.3.2.

The vast majority of the complexity is caused by the iterative elimination procedure. The
other parts, namely the massaging of nterms to arrive at a syntactically equivalent rule set
of pterms, and similarly to remove empty implicit pattern lists, only require some basic
reasoning on sets. But all steps share the requirement for classical logic. Frequently, I have
resorted to using choice operators, for example, when determining the arity of a function
definition. Nonetheless, the entire routine is executable (§2.4).
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Step
(name, rhs) ∈ set rs

rs ⊢ Sconst name ⟶ rhs
Beta

find_match cs 𝑡 = Some (𝜎 , rhs)

rs ⊢ (Λ cs) $ 𝑡 ⟶ subst 𝜎 rhs

Fun
rs ⊢ 𝑡 ⟶ 𝑡′

rs ⊢ 𝑡 $ 𝑢 ⟶ 𝑡′ $ 𝑢
Arg

rs ⊢ 𝑢 ⟶ 𝑢′

rs ⊢ 𝑡 $ 𝑢 ⟶ 𝑡 $ 𝑢′

Listing 6.6: Small-step semantics with ordered clauses

6.4 Sequentialization

� Some proofs in this section have been contributed by Yu Zhang.

The semantics of pterm and sterm (Listing 6.6) differ only in rule Beta. Instead of any
matching clause, the first matching clause in a case abstraction is picked. For technical
reasons, the Step rule is phrased using an additional inductive relation in the formalization.
Because the rule set is now a rule list, I use the naming convention rs instead of R.

For the correctness proof, the order of clauses does not matter: I only need to prove that
a step taken in the sequential semantics can be reproduced in the unordered semantics. As
long as no rules are dropped, this is trivially true. For that reason, the compiler can choose an
arbitrary ordering.

�
This semantics only sequentializes pattern matching: Rewriting may still be non-
deterministic because if there are multiple redexes in a term, either can be picked.

6.4.1 Translations between pterm and sterm

Similarly to §6.2.2, both directions are recursive functions on the structure of the input terms
(Listing 6.7). However, no name context is required. For terms that contain no abstractions,
both directions also coincide with convert_term.

I will first explain the technically more interesting conversion from pterm to sterm, as
this requires imposing an ordering on the unordered set of clauses. For simplicity, I have
chosen to use the lexicographic order on the patterns, i.e., terms. Then, the problem can be
generalized to finding a function ((𝛼 ∶∶ linorder) × 𝛽) set ⇒ (𝛼 × 𝛽) list.

definition ordered_map :: (𝛼::linorder × 𝛽) set ⇒ (𝛼 × 𝛽) list where
ordered_map S = [

(k, the_elem {(k’, v) | (k’, v) ∈ S ∧ k = k’}) |

k ← sorted_list_of_set {k | (k, v) ∈ S})
]

The functions the_elem ∶∶ 𝛼 set ⇒ 𝛼 and sorted_list_of_set ∶∶ 𝛼 ∶∶ linorder set ⇒
𝛼 list are defined in the Isabelle library and return the element of a singleton set and the
sorted list of elements of a set. Using these functions, ordered_map first produces an ordered
list of keys, which are then associated with the values from the input set.
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fun pterm_to_sterm :: pterm ⇒ sterm where
pterm_to_sterm (Pconst name) = Sconst name
pterm_to_sterm (Pvar name) = Svar name
pterm_to_sterm (t $ u) = pterm_to_sterm t $ pterm_to_sterm u
pterm_to_sterm (Pabs cs) = Sabs (ordered_map {(p, pterm_to_sterm t) | (p, t) ∈ cs})

fun sterm_to_pterm :: sterm ⇒ pterm where
sterm_to_pterm (Sconst name) = Pconst name
sterm_to_pterm (Svar name) = Pvar name
sterm_to_pterm (t $ u) = sterm_to_pterm t $ sterm_to_pterm u
sterm_to_pterm (Sabs cs) = Pabs (set (map (mapprod id sterm_to_pterm) cs))

Listing 6.7: Translations between pterms and sterms

Naturally, this requires that the input set is a set of pairs where the first elements are unique.
This is guaranteed by a side condition (§6.1). Otherwise, the result is unspecified.

Lemma 6.26. For suitable 𝑆, set (ordered_map 𝑆) = 𝑆.

The opposite direction is much simpler and has already been explained in §4.3.4.

Corollary 6.27. For wellformed 𝑡, sterm_to_pterm (pterm_to_sterm 𝑡) = 𝑡.

The reverse property does not hold directly, because an sterm may contain non-ordered
clause lists. This property would require some form of 𝛼-equivalence that disregards ordering.

Similarly to §6.2.2, I have used the translation functions to establish term correspondence.

Definition 6.28. A pterm 𝑡 is related to an sterm 𝑢 if 𝑡 = sterm_to_pterm 𝑢.

Definition 6.29. An sterm 𝑢 is related to a pterm 𝑡 if pterm_to_sterm 𝑡 = 𝑢.

Corollary 6.30. Definitions 6.28 and 6.29 are strong structural term relations (§4.2.4.3).

Corresponding versions of Lemma 6.11 can also be proved for these relations.

6.4.2 Compilation, correctness, & completeness

At the same time the terms are translated, the rules also have to be converted from type
(string×pterm) set to (string×sterm) list. Fortunately, the same ordered_map function
can be used for that, because string ∶∶ lexorder:

definition compile :: (string × pterm) set ⇒ (string × sterm) list where
compile R = ordered_map {(name, pterm_to_sterm t) | (name, t) ∈ R}

This looks very similar to the Pabs case in pterm_to_sterm (Listing 6.7).

112



6.5 Big-step semantics

Const
(name, rhs) ∈ rs

rs, 𝜎 ⊢ Sconst name ↓ rhs
Var

𝜎 name = Some 𝑣

rs, 𝜎 ⊢ Svar name ↓ 𝑣
Abs

rs, 𝜎 ⊢ Λ cs ↓ Λ [(pat , subst (𝜎 − frees pat) 𝑡 ∣ (pat , 𝑡) ← 𝑐𝑠]

Comb

rs, 𝜎 ⊢ 𝑡 ↓ Λ cs
rs, 𝜎 ⊢ 𝑢 ↓ 𝑢′ find_match cs 𝑢′ = Some (𝜎 ′, rhs) rs, 𝜎 ++ 𝜎 ′ ⊢ rhs ↓ 𝑣

rs, 𝜎 ⊢ 𝑡 $ 𝑢 ↓ 𝑣

Constr
name ∈ C rs, 𝜎 ⊢ 𝑡1 ↓ 𝑢1 ⋯ rs, 𝜎 ⊢ 𝑡𝑛 ↓ 𝑢𝑛

rs, 𝜎 ⊢ Sconst name $ 𝑡1 $ … $ 𝑡𝑛 ↓ Sconst name $ 𝑢1 $ … $ 𝑢𝑛

Listing 6.8: Big-step semantics for sterm

�

Observe that the ordered_map function is used twice in this section, but with different
type instantiations. This is the reason why this compiler phase and the proofs are not
parametrized on the concrete sequentialization strategy, because locales in Isabelle do not
allow polymorphic parameters.

Luckily, both the correctness and the completeness property of this phase are easily stated
and proved:

Theorem 6.31 (Correctness).

compile R ⊢ 𝑡 ⟶ 𝑢

R ⊢ sterm_to_pterm 𝑡 ⟶ sterm_to_pterm 𝑢

Proof. By rule induction on the new semantics (Listing 6.6). As described in the introduction,
any step taken in the sequential semantics can trivially be taken in the unordered semantics
too.

Theorem 6.32 (Completeness).

R ⊢ 𝑡 ⟶ 𝑢

compile R ⊢ pterm_to_sterm 𝑡 ⟶ pterm_to_sterm 𝑢

Proof. By rule induction on the previous semantics (Listing 6.4.b). The challenge here lies
within the Beta case, where it needs to be proved that the arbitrary step taken by the previous
semantics also corresponds to the first matching clause in the ordered term. But this is
guaranteed by Lemma 4.33.

6.5 Big-step semantics
This big-step semantics for sterm is not a compiler phase but moves towards the desired
evaluation semantics. In this step, I reuse the sterm type for evaluation results, instead of
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6 Compiling HOL terms to CakeML expressions

evaluating to the separate type value (§4.3.5). This means that I can ignore environment
capture in closures for now.

All previous ⟶ relations were parametrized by a rule set. Now the big-step predicate is
of the form rs, 𝜎 ⊢ 𝑡 ↓ 𝑡′ where 𝜎 ∶∶ string ⇀ sterm is a variable environment. The intended
invariant is that evaluated terms are closed when 𝜎 is closed.

This semantics also requires the distinction between constructors and defined constants,
which I have already touched on in §5.1. If c is a constructor, the term ⟨c 𝑡1 … 𝑡𝑛⟩ is evaluated
to ⟨c 𝑡′1 … 𝑡′𝑛⟩ where the 𝑡′𝑖 are the results of evaluating the 𝑡𝑖. This imposes additional
restrictions on the rule set: A constant must not be a constructor and a definition at the same
time. The semantics is parametrized on the set C of all data constructors via the constructors
locale (Listing 5.2).

The full set of rules is shown in Listing 6.8. They deserve a short explanation:

Const Constants are retrieved from the rule set rs.

Var Variables are retrieved from the environment 𝜎.

Abs In order to achieve the intended invariant, abstractions are evaluated to their fully
substituted form. Observe the obvious similarity between this rule and the definition
of substitution for sterm (§4.3.4).

Comb Function application 𝑡 $ 𝑢 first requires evaluation of 𝑡 into an abstraction Λ cs and
evaluation of 𝑢 into an arbitrary term 𝑢′. Afterwards, a clause matching 𝑢′ in cs is
searched, which produces a local variable environment 𝜎 ′, possibly overwriting existing
variables in 𝜎. Finally, the right-hand side of the clause is evaluated with the combined
global and local variable environment.

Constr For a constructor application ⟨c 𝑡1 …⟩, evaluate all 𝑡𝑖.

Lemma 6.33 (Closedness invariant). If 𝜎 is closed, frees 𝑡 ⊆ dom 𝜎 and rs, 𝜎 ⊢ 𝑡 ↓ 𝑡′, then 𝑡′
is closed.

Because of the unchanged term type in this and the previous semantics, the generalized
correctness property is easily phrased:

Lemma 6.34. For any closed environment 𝜎 with frees 𝑡 ⊆ dom 𝜎,

rs, 𝜎 ⊢ 𝑡 ↓ 𝑢 ⟹ rs ⊢ subst 𝜎 𝑡 ⟶∗ 𝑢

This can be proved easily by rule induction on the big-step semantics. The correctness theorem
can be obtained by instantiating 𝜎 = []:

Theorem 6.35 (Correctness). rs, [] ⊢ 𝑡 ↓ 𝑢 ∧ closed 𝑡 ⟹ rs ⊢ 𝑡 ⟶∗ 𝑢

The semantics also satisfies some further properties. Even though they are only required
in the subsequent proofs, I will describe the statements and their proofs here, because they
frequently refer to the rules of the semantics.
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Lemma 6.36 (Idempotence). For all closed term-values (§4.3.5.1), big-step evaluation is idem-
potent. Formally: rs, 𝜎 ⊢ 𝑡 ↓ 𝑡.

Proof. By rule induction on term-values. The Abs case requires Corollary 4.26.

Lemma 6.37 (Pre-substitution). Let 𝜎 be a closed term-value environment. Big-step evaluation
of a term 𝑡 with 𝜎 does not change if 𝑡 is first substituted with a environment 𝜎 ′ ⊆ 𝜎. Formally:

rs, 𝜎 ⊢ 𝑡 ↓ 𝑡′ ⟹ rs, 𝜎 ⊢ subst 𝜎 ′ 𝑡 ↓ 𝑡′

Proof. By rule induction on the semantics.

Var If the variable name is defined in 𝜎 ′, then substitution of Svar name yields 𝜎 ′ name,
which thenwill be evaluated again. But since 𝜎 ′ is a term-value environment, Lemma 6.36
guarantees that it evaluates to itself.

Const Substituting a constant results in the same constant, therefore the induction hypothe-
sis immediately applies.

Abs It must hold that

rs, 𝜎 ⊢ subst 𝜎 ′ (Λ cs) ↓ Λ [(pat , subst (𝜎 − frees pat) 𝑡 ∣ (pat , 𝑡) ← 𝑐𝑠]

This can be proved in two steps:
1. By applying the Abs rule and unfolding the definition of subst, obtain

rs, 𝜎 ⊢ subst 𝜎 ′ (Λ cs) ↓ subst 𝜎 (subst 𝜎 ′ (Λ 𝑐𝑠))

2. Generalize the necessary equality

subst 𝜎 (subst 𝜎 ′ (Λ 𝑐𝑠)) = subst 𝜎 (Λ cs)

to arbitrary terms. This follows from Corollary 4.28 and Lemma 4.29 and the
representation of the larger environment 𝜎 as 𝜎 ++ 𝜎 ′.

The other cases are uninteresting.

Lemma 6.38 (Environment coincidence). Let 𝜎, 𝜎 ′ be two closed environments who coincide
on the set 𝑆. Formally:

𝑆 ⊆ dom 𝜎 ∧ 𝑆 ⊆ dom 𝜎 ′ ∧ ∀𝑎 ∈ 𝑆. 𝜎 𝑎 = 𝜎 ′ 𝑎

Then, if frees 𝑡 ⊆ 𝑆, evaluation in both environments yields the same result:

rs, 𝜎 ⊢ 𝑡 ↓ 𝑢 ⟺ rs, 𝜎 ′ ⊢ 𝑡 ↓ 𝑢

The lemma itself is obvious and even desirable for the semantics of a programming language.
Its proof is mainly technical; it requires set-theoretic reasoning about domains of mappings.
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Const
(name, rhs) ∈ rs

rs, 𝜎 ⊢ Sconst name ↓ rhs
Var

𝜎 name = Some 𝑣

rs, 𝜎 ⊢ Svar name ↓ 𝑣
Abs

rs, 𝜎 ⊢ Λ cs ↓ Vabs cs 𝜎

Comb

rs, 𝜎 ⊢ 𝑡 ↓ Vabs cs 𝜎 ′
rs, 𝜎 ⊢ 𝑢 ↓ 𝑣 find_match cs 𝑣 = Some (𝜎″, rhs) rs, 𝜎 ′ ++ 𝜎″ ⊢ rhs ↓ 𝑣′

rs, 𝜎 ⊢ 𝑡 $ 𝑢 ↓ 𝑣′

RecComb

rs, 𝜎 ⊢ 𝑡 ↓ Vrecabs css name 𝜎 ′ css name = Some cs
rs, 𝜎 ⊢ 𝑢 ↓ 𝑣 find_match cs 𝑣 = Some (𝜎″, rhs) rs, 𝜎 ′ ++ 𝜎″ ⊢ rhs ↓ 𝑣′

rs, 𝜎 ⊢ 𝑡 $ 𝑢 ↓ 𝑣′

Constr
name ∈ C rs, 𝜎 ⊢ 𝑡1 ↓ 𝑣1 ⋯ rs, 𝜎 ⊢ 𝑡𝑛 ↓ 𝑣𝑛

rs, 𝜎 ⊢ Sconst name $ 𝑡1 $ … $ 𝑡𝑛 ↓ Vconstr name [𝑣1, … , 𝑣𝑛]

Listing 6.9: Evaluation semantics

6.6 Evaluation semantics
The previous big-step semantic evaluates sterms to sterms. Now, I introduce the concept of
values into the semantics, while still keeping the rule set (for constants) and the environment
(for variables) separate. The evaluation rules are specified in Listing 6.9. They represent a
departure from the original rewriting semantics: a term does not evaluate to another term
but to an object of a different type, a value. I still use ↓ as notation, because big-step and
evaluation semantics can be disambiguated by their types.

The evaluation model itself is fairly straightforward. As explained in §4.3.5, abstraction
terms are evaluated to closures capturing the current variable environment.

I will now examine each rule that has changed substantially from the previous semantics.

Abs Abstraction terms are evaluated to a closure capturing the current environment. The
resulting value Vabs cs 𝜎 is closed if 𝜎 is closed and the free variables occurring in cs
are a subset of dom 𝜎.

Comb As before, in an application 𝑡 $𝑢, 𝑡must evaluate to a closure Vabs cs 𝜎 ′. The evaluation
result of 𝑢 is then matched against the clauses cs, producing an environment 𝜎″. The
right-hand side of the clause is then evaluated using 𝜎 ′ ++ 𝜎″; the original environment
𝜎 is effectively discarded.

RecComb Similar to Comb. Finding the matching clause is a two-step process: First, the
appropriate clause list is selected by name of the currently active function. Then,
matching is performed.

�
In this semantics, recursive closures are not treated differently from non-recursive closures.
In a later stage, when rs and 𝜎 are merged, this distinction becomes relevant (§6.7).
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The semantics uses a variant of find_match that matches a value against a pattern by first
converting it from term to pat (§4.3.6). This merely simplifies proofs and could be removed
completely by fusing the vmatch and mk_pat functions.

The translations between sterm and value have already been discussed in §4.3.5.1.
Recall the definition of value_to_sterm. The translation rules for Vabs and Vrecabs

are intentionally similar to the Abs rule from the big-step semantics (Listing 6.8). Roughly
speaking, the big-step semantics always keeps terms fully substituted, whereas the evaluation
semantics defers substitution.

6.6.1 Correctness
The proof of the correctness theorem requires many of the properties proved in §6.5.

Theorem 6.39. Let 𝜎 be a closed environment and 𝑡 a term which only contains free variables
in dom 𝜎. Then, an evaluation to a value rs, 𝜎 ⊢ 𝑡 ↓ 𝑣 can be reproduced in the big-step semantics
as rs0, 𝜎0 ⊢ 𝑡 ↓ value_to_sterm 𝑣, where

rs0 = map (mapprod id value_to_sterm) rs
𝜎0 = map value_to_sterm 𝜎

Proof. By rule induction on the evaluation semantics. The interesting cases are Comb and
RecComb. Both are roughly identical, save for the additional complication that RecComb
has an extra selection step to find the clause set. I will omit that for brevity and focus on the
Comb case.

In this case, I need to show that function application behaves the same way in both
semantics. Formally:

rs0, map value_to_sterm 𝜎 ⊢ 𝑡 $ 𝑢 ↓ value_to_sterm 𝑣′

The following induction hypotheses are available (side conditions omitted):

rs0, map value_to_sterm 𝜎 ⊢ 𝑡 ↓ value_to_sterm (Vabs cs 𝜎 ′)
rs0, map value_to_sterm 𝜎 ⊢ 𝑢 ↓ value_to_sterm 𝑣
rs0, map value_to_sterm (𝜎 ′ ++ 𝜎″) ⊢ rhs ↓ value_to_sterm 𝑣′

as well as these premises stemming from the Comb rule:

rs, 𝜎 ⊢ 𝑡 ↓ Vabs cs 𝜎 ′

rs, 𝜎 ⊢ 𝑢 ↓ 𝑣
rs, 𝜎 ′ ++ 𝜎″ ⊢ rhs ↓ 𝑣′

Furthermore, it is known that find_match cs 𝑣 = Some (𝜎″, rhs). Obtain the corresponding
pattern pat such that (pat , rhs) ∈ cs.

The first two facts from the hypotheses and the premises line up nicely. Themajor difference
between the two different Comb rules is that in the evaluation semantics, the evaluation of
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𝑡 to a closure reveals a hidden environment 𝜎 ′ that is subsequently used in the evaluation
of rhs. That hidden environment may bear no relation to the active environment 𝜎 which is
used in the big-step semantics. Hence, I use a trick: Pre-substitute in rhs (Lemma 6.37). Then
use Lemma 6.38 to replace 𝜎 ′ for 𝜎:

Comb
⋯ † Lemma 6.38

Lemma 6.37

IH
rs0, map value_to_sterm (𝜎 ′ ++ 𝜎″) ⊢ rhs ↓ value_to_sterm 𝑣′

rs0, map value_to_sterm (𝜎 ′ ++ 𝜎″) ⊢ rhs𝜎 ′ ↓ value_to_sterm 𝑣′

rs0, map value_to_sterm (𝜎 ++ 𝜎″) ⊢ rhs𝜎 ′ ↓ value_to_sterm 𝑣′

rs0, map value_to_sterm 𝜎 ⊢ 𝑡 $ 𝑢 ↓ value_to_sterm 𝑣′

where rhs𝜎 ′ = subst (map value_to_sterm 𝜎 ′ − frees pat) rhs. I specifically chose this
value for rhs𝜎 ′ to be able to combine both lemmas and to coincide with the definition of
value_to_sterm. The evaluations of 𝑡 and 𝑢 in the Comb rule have been omitted (†), because
they are trivial.

Recall that the precondition for Lemma 6.37 (instantiated to this case) is that 𝜎 ′−frees pat ⊆
𝜎 ′++𝜎″. However, when adding two environments, the entries on the right override the entries
on the left. But from the premises and the term axioms, it is known that dom 𝜎″ = frees pat .
It follows that 𝜎 ′ − frees pat contains no entries that are also contained in 𝜎″, proving the
precondition.

The situation is similar for the application of Lemma 6.38. I can instantiate 𝑆with frees pat
and must show that 𝜎 ′ ++ 𝜎″ and 𝜎 ++ 𝜎″ agree on this set. This again follows immediately
from dom 𝜎″ = frees pat .

The remainder of the proof ismostly clerical and takes care of lining up further preconditions.

6.6.2 Discussion
The correctness theorem states that, for any given evaluation of a term 𝑡 with given rs, 𝜎
containing values, that evaluation can be reproduced in the big-step semantics using a
derived list of rules rs0 and an environment 𝜎0 containing sterms that are generated by the
value_to_sterm function. But recall the diagram in Figure 6.1. In the formalization, it starts
with a given rule set of sterms that has been compiled from a rule set of terms. Hence, the
correctness theorem only deals with the opposite direction.

It remains to construct a suitable rs such that applying value_to_sterm to it yields the
given sterm rule set. I exploit the side condition (§6.1) that all bindings define proper functions,
i.e., the right-hand sides are abstractions:
Definition 6.40 (Global clause set). The mapping

global_css ∶∶ string ⇀ ((term × sterm) list)

is obtained by stripping the Sabs constructors from all definitions and converting the resulting
list to a mapping. For each non-constructor constant c, define its closure representation as

vc = Vrecabs global_css 𝑐 []
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where 𝑐 is the string representation of the name c.

In other words, each function is now represented by a recursive closure bundling all functions.

Lemma 6.41. Let (𝑐, Λ cs) ∈ rs. Applying value_to_sterm to vc returns the original definition
of c. Formally: value_to_sterm vc = Λ cs.

Let rs denote the original sterm rule set and rsv the environment mapping all constants to
their closure representations.

Corollary 6.42. rs = map (mapprod id value_to_sterm) rsv

Furthermore, the variable environments 𝜎 and 𝜎 ′ can safely be set to the empty mapping,
because top-level terms are evaluated without any free variable bindings. Combined, this
enables instantiation of Theorem 6.39:

Corollary 6.43 (Correctness). rsv, [] ⊢ 𝑡 ↓ 𝑣 ⟹ rs, [] ⊢ 𝑡 ↓ value_to_sterm 𝑣

Even though rsv is executable (§2.4), this step is not part of the compiler. Instead, it is a
refinement of the semantics to support a more modular correctness proof.

Example Recall the odd and even example from §4.3.5. After compilation to sterm, the
rule set looks like this:

rs = {("odd", Sabs [⟨0⟩ ⇒ ⟨False⟩ , ⟨Suc 𝑛⟩ ⇒ ⟨even 𝑛⟩]),
("even", Sabs [⟨0⟩ ⇒ ⟨True⟩ , ⟨Suc 𝑛⟩ ⇒ ⟨odd 𝑛⟩])}

This can be easily transformed into the following global clause set:

global_css = ["odd" ↦ [⟨0⟩ ⇒ ⟨False⟩ , ⟨Suc 𝑛⟩ ⇒ ⟨even 𝑛⟩],
"even" ↦ [⟨0⟩ ⇒ ⟨True⟩ , ⟨Suc 𝑛⟩ ⇒ ⟨odd 𝑛⟩]]

Finally, rsv is computed by creating a recursive closure for each function:

rsv = ["odd" ↦ Vrecabs global_css "odd" [],
"even" ↦ Vrecabs global_css "even" []]

6.7 Evaluation with recursive closures
CakeML distinguishes between non-recursive and recursive closures [94]. This distinction is
also present in the value type. In this step, I will close that gap by conflating variables with
constants. This necessitates a special treatment of recursive closures. Therefore I introduce a
new predicate 𝜎 ⊢ 𝑡 ↓ 𝑣 (Listing 6.10) that – in contrast to the previous semantics – only has
one environment.

As usual, I will explain the rules that have changed significantly from the previous semantics
here:
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Const
name ∉ C 𝜎 name = Some 𝑣

𝜎 ⊢ Sconst name ↓ 𝑣

Var
𝜎 name = Some 𝑣

𝜎 ⊢ Svar name ↓ 𝑣
Abs

𝜎 ⊢ Λ cs ↓ Vabs cs 𝜎

Comb

𝜎 ⊢ 𝑡 ↓ Vabs cs 𝜎 ′
𝜎 ⊢ 𝑢 ↓ 𝑣 find_match cs 𝑣 = Some (𝜎″, rhs) 𝜎 ′ ++ 𝜎″ ⊢ rhs ↓ 𝑣′

𝜎 ⊢ 𝑡 $ 𝑢 ↓ 𝑣′

RecComb

𝜎 ⊢ 𝑡 ↓ Vrecabs css name 𝜎 ′ css name = Some cs 𝜎 ⊢ 𝑢 ↓ 𝑣
find_match cs 𝑣 = Some (𝜎″, rhs) 𝜎 ′ ++ mk_rec_env css 𝜎 ′ ++ 𝜎″ ⊢ rhs ↓ 𝑣′

𝜎 ⊢ 𝑡 $ 𝑢 ↓ 𝑣′

Constr
name ∈ C 𝜎 ⊢ 𝑡1 ↓ 𝑣1 ⋯ 𝜎 ⊢ 𝑡𝑛 ↓ 𝑣𝑛

𝜎 ⊢ Sconst name $ 𝑡1 $ … $ 𝑡𝑛 ↓ Vconstr name [𝑣1, … , 𝑣𝑛]

mk_rec_env css 𝜎 = map_of {Vrecabs css name 𝜎 ∣ (name, _) ∈ css}

Listing 6.10: ML-style evaluation semantics

Const/Var Constant definition and variable values are both retrieved from the same en-
vironment 𝜎. I have chosen to keep the distinction between constants and variables
in the sterm type to avoid the introduction of another intermediate term type. This
gap will be closed in the final phase (§6.8). For technical reasons, the Const case here
now requires an additional check that it is a non-constructor constant, which was not
required in the previous semantics.

Abs Identical to the previous evaluation semantics. Evaluation never creates recursive
closures at run-time. Anonymous functions, e.g. in the term ⟨map (𝜆𝑥. 𝑥)⟩, are evaluated
to non-recursive closures. Combined with the fact that in my source language, the set of
definitions is fixed before running the compiler, it follows that the evaluation semantics
never needs to construct a hitherto unseen Vrecabs value: these are constructed by
the compiler (§6.6.2).

RecComb Almost identical to the evaluation semantics. Additionally, for each function
(name, cs) ∈ css, a new recursive closure Vrecabs css name 𝜎 ′ is constructed and
inserted into the environment. Observe that the cs is ignored during construction,
because it is contained in css itself. This ensures that after the first call to a recursive
function, the function itself is present in the environment to be called recursively,
without having to introduce coinductive environments. Still, some proofs require
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coinductive reasoning at a later point (Theorem 6.48). The strategy itself is similar to
how it is implemented in the CakeML semantics.

By merging the rule set rs with the variable environment 𝜎, it becomes necessary to discuss
possible clashes. Previously, the syntactic distinction between Svar and Sconst meant that
⟨𝑥⟩ (the syntactic variable “x”) and ⟨x⟩ (the syntactic constant “x”) are not ambiguous: all
semantics up to the evaluation semantics clearly specify where to look for the substitute. This
is not the case in functional languages where definitions and variables are not distinguished
syntactically.

Instead, I rely on the fact that the initial rule set only defines constants. All variables are
introduced by matching before 𝛽-reduction (that is, in the Comb and RecComb rules). The Abs
rule does not change the environment. Hence it suffices to assume that variables in patterns
must not overlap with constant names, which is guaranteed by a side-condition (§6.1).

The following lemma shows the direct correspondence between rsv (§6.6.2) and mk_rec_env
(Listing 6.10).

Lemma 6.44. map_of rsv = mk_rec_env global_css []

The proof is technical and requires no further assumptions about the rule set.

Lemma 6.45 (Extensionality). Evaluation is invariant under extensional equivalence (§4.3.5.3).

Example Reusing the example from §6.6.2, I will demonstrate the evaluation of the term
⟨odd (Suc 0)⟩. Since it is a closed term, there are no free variables that need to have a value.
Let 𝜎 = rsv from that example.

RecComb
⋯

†

RecComb
⋯

Var
𝜎 ++ [𝑛 ↦ ⟨0⟩] ⊢ ⟨𝑛⟩ ↓ ⟨0⟩

𝜎 ++ [𝑛 ↦ ⟨0⟩] ⊢ ⟨even 𝑛⟩ ↓ ⟨True⟩

[] ++ mk_rec_env css [] ++ [𝑛 ↦ ⟨0⟩] ⊢ ⟨even 𝑛⟩ ↓ ⟨True⟩

𝜎 ⊢ ⟨odd (Suc 0)⟩ ↓ ⟨True⟩

The tree is annotated with the rules from the semantics. The step † is not a rule application,
but a simplification, because mk_rec_env css [] = 𝜎. This example illustrates that mk_rec_env
allows recursive calls without introducing cyclic environments.

6.7.1 Correspondence relation
Both constant definitions and values of variables are recorded in a single environment 𝜎. This
also applies to the environment contained in a closure. The correspondence relation thus
needs to take a different sets of bindings in closures into account.

Hence, I define a coinductive relation ≈v that uses the computed rule set rsv (§6.6.2) and
compares environments (Listing 6.11). I call it right-conflating, because in a correspondence
𝑣 ≈v 𝑢, any bound environment in 𝑢 is thought to contain both variables and constants (i.e., the
environment is conflated), whereas in 𝑣, any bound environment contains only variables. In
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6 Compiling HOL terms to CakeML expressions

rel (≈v) vs us

Vconstr name vs ≈v Vconstr name us

∀𝑥 ∈ frees (Λ cs). 𝜎1 𝑥 ≈v 𝜎2 𝑥 ∀𝑥 ∈ consts (Λ cs). rs 𝑥 ≈v 𝜎2 𝑥

Vabs cs 𝜎1 ≈v Vabs cs 𝜎2
∀cs ∈ range css. ∀𝑥 ∈ frees (Λ cs). 𝜎1 𝑥 ≈v 𝜎2 𝑥

∀cs ∈ range css. ∀𝑥 ∈ consts (Λ cs). rsv 𝑥 ≈v (𝜎2 ++ mk_rec_env css 𝜎2) 𝑥

Vrecabs css name 𝜎1 ≈v Vrecabs css name 𝜎2

Listing 6.11: Right-conflating correspondence (coinductive)

the correctness property, 𝑣 and 𝑢 will originate from the previous and the ML-style semantics,
respectively.

It is worth examining the definition of ≈v:

Vconstr Constructors are compared structurally.

Vabs Non-recursive closures must have identical clauses cs. The bound environment 𝜎2 of
the right closure is compared on two subsets:

• on the free variables of cs, it must correspond to the bound environment 𝜎1 of the
left closure, and

• on the constants of cs, it must correspond to the rules rs of the global environment.

Vrecabs Recursive closures are treated similarly to non-recursive closures, with one excep-
tion: In the constants of the clauses set css, 𝜎2 is first augmented with mk_rec_env css 𝜎2
before relating to rs. This corresponds to the RecComb rule of the semantics. It is also
the reason why this relation must be coinductive: any derivation tree involving recur-
sive closures will be infinite, because the recursive environment keeps being inserted
into 𝜎2.

This relation has some perhaps surprising properties. Most importantly, it is not reflexive.
For example, assuming a constant a is defined, the following proposition does not hold:

Vabs cs [] ≈v Vabs cs [] where cs = [⟨𝑥⟩ ⇒ ⟨a⟩]

Fortunately, ≈v fits into the usual scheme of relations:

Corollary 6.46. ≈v is a structural value relation (§4.3.5.2).

Similarly to ≈p (Listing 6.5), this somewhat technical definition implies a more intuitive
property:

Lemma 6.47. 𝑢 ≈v 𝑣 ⟹ value_to_sterm 𝑢 = value_to_sterm 𝑣

Corollary 4.40 also applies; i.e., for closure-free values, ≈v collapses to equality.
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6.7.2 Correctness
Theorem 6.48. Let 𝜎 be an environment, 𝑡 be a closed term and 𝑣 a value such that 𝜎 ⊢ 𝑡 ↓ 𝑣. If
for all constants 𝑥 occurring in 𝑡, rs 𝑥 ≈v 𝜎 𝑥 holds, then there is an 𝑢 such that rs, [] ⊢ 𝑡 ↓ 𝑢 and
𝑢 ≈v 𝑣.
As usual, the proof proceeds via induction over the semantics (Listing 6.10). It is important to
note that the global clause set construction (§6.6.2) satisfies the preconditions of the theorem:
Lemma 6.49. If name ∈ dom global_css, then:

Vrecabs global_css name [] ≈v Vrecabs global_css name []

Proof. Because ≈v is defined coinductively, the proof of this precondition proceeds by coin-
duction. In essence, I have to use the Vrecabs rule of ≈v. But because 𝜎1 = 𝜎2 = [], the first
premise of the rule is trivial and the second one collapses to a correspondence between rsv
and mk_rec_env global_css. This is a direct consequence of Lemma 6.44, which shows an
equality between those two maps.

6.8 CakeML
CakeML’s semantics has been formalised in Lem [93]. For the correctness proof of the CakeML
compiler, its authors have extracted this into HOL theories. In this work, I directly target
CakeML abstract syntax trees (thereby bypassing the parser) and use its big-step semantics,
which I have extracted into Isabelle [66].

Consequently, there is not a single correctness result in Isabelle, but rather two parts: A
frontend from Isabelle to CakeML, and a backend from CakeML to machine code, the latter of
which is provided by the ongoing work on CakeML [121].

In order to execute the Isabelle-generated CakeML syntax trees, there are three choices:
1. turning CakeML’s big step semantics into an executable function within Isabelle using

the predicate compiler [8],
2. executing the functional big-step semantics directly within Isabelle [102], and
3. printing the tree as an s-expression and compiling it with the official CakeML compiler. �

CakeML_

Compiler
6.8.1 CakeML’s semantic functions
In §2.7, I have outlined the work that was required to integrate the Lem export of CakeML
with Isabelle. Notwithstanding that, the CakeML theories describe an entirely separate
universe from the definitions in §4. Notably, it is not possible to instantiate the term class for
CakeML expressions. In this section, I will discuss the differences between my and CakeML’s
implementation of term operations.

Almost all of CakeML’s semantic functions take (a fragment of) an environment into account.
An environment consists of two namespaces: the value and the constructor namespace. The
value namespace records existing bindings. It is comparable to the Γ and 𝜎 used in the various
intermediate semantics. The constructor namespace keeps track of defined datatypes and
their constructors, including their arities.
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6 Compiling HOL terms to CakeML expressions

fun pat_to_cake :: pat ⇒ Cake.pat where
pat_to_cake (Patvar s) = Cake.Pvar s
pat_to_cake (Patconstr s args) =

Cake.Pcon (Some (Cake.Short s)) (map pat_to_cake args)

Listing 6.12: Translation between patterns

6.8.1.1 CupCakeML: A purely-functional subset of CakeML

The core of CakeML’s big-step semantics is organized in three mutually recursive inductive
predicates (evaluating an expression, a list of expressions, and a match expression) with a
total of over thirty rules. It is that large because it has to deal with exceptions, modules, step
counters, and other features that their compiler supports, but I do not need in the formalization.
For that reason, I have defined the subset CupCakeML which only allows the syntactic forms
known from the sterm type. It also enforces that all occurring values have an empty module
environment and a consistent datatype environment.

I define a smaller big-step semantics comprising a single inductive predicate with twelve
cases. Then, I prove equivalence to the original semantics, that is, both correctness and
completeness, under the assumption that the expression and initial environments are in
the supported fragment. The supported fragment has also been proved to be closed under
evaluation.

The namespaces are allowed to vary in closures, since CakeML supports introducing new
type definitions inside a program. Tracking this would greatly complicate the proofs. Hence,
I assume a fixed constructor namespace and enforce that all values use exactly that one.
This information is provided by the C_info parameter (Listing 5.2) that is generated during
embedding.

6.8.1.2 Patterns and matching

CakeML defines three distinct datatypes for patterns, expressions and values. Because they
model the syntax of a real-world programming language, they are much more complex than
the types required for term rewriting.

The most notable difference in types is that patterns and constructor values in CakeML are
𝑛-ary. This corresponds closely to the value (§4.3.5) and pat (§4.3.6) types that I introduced
for the evaluation semantics (§6.6). Consequently, a conversion function between the pattern
types is easily defined (Listing 6.12). Additional CakeML complexities, for example pattern
wildcards (case 𝑡 of _ ⇒ 𝑢) or qualified names (Module.name) are excluded from the
CupCakeML fragment.

CakeML’smatching function has three possible results: Match, No_match, and Match_type_
error. The latter result may occur when the pattern and the object disagree about their arity.
For example, consider the ill-typed program case T 𝑥 of T ⇒ 𝑦. In my implementation,
matching T 𝑥 to T would result in None. However, in CakeML it returns Match_type_error.
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A similar check happens when constructing constructor values, too. In short, data construc-
tors must always occur with all arguments supplied on right-hand and left-hand sides.

During embedding (§5), all type information is erased. Fully applied constructors in terms
can be easily guaranteed by the introduction of constructor functions (§3.3). For patterns
however, this must be ensured throughout the compilation pipeline; it is (like other syntactic
constraints) another side condition imposed on the rule set (§6.1).

For the purposes of the correctness proof, a CakeML type error is treated equivalently to
non-termination. This means that should the evaluation of a program end in a type error,
there are no guarantees. However, I avoid this problem by running the CakeML type checker
on the generated programs (§7.1).

An additional complication comes from the shallow nature of the typing check. Not all
ill-typed constructors yield a type error. For example, matching the object T U2 (V 𝑥) against
the pattern T U1 V would result in No_match. U2 and U1 do not match. At that point, the
matching function does not proceed further and the arity mismatch in the second argument
remains hidden.

Similarly to my implementation of matching, CakeML does not check for linearity of
patterns. However, the linearity check happens in the big-step semantics, so it needs to be
dealt with there.

6.8.1.3 Closures

Closures are syntactically similar between the two different semantics. In particular, the
mk_rec_env function I introduced for the ML-style evaluation semantics (§6.7) has been
modelled after its counterpart in the CakeML semantics.

It remains to deal with application of closures to values. CakeML models function applica-
tion as a binary operator, similarly to other operators such as addition on machine words.
The CupCakeML fragment enforces that application is the only operator that may occur in
generated code, since my formalization never emits operations on machine types. The com-
plication here is that in my semantics, application always requires matching. In CakeML,
closures always take exactly one argument which is not matched, but directly bound as a
variable. The body then may or may not perform a matching step. I will explain this later
when introducing an appropriate correspondence relation (Listing 6.15).

6.8.2 Translation from sterm to exp

After the series of translations described in the earlier sections, the terms in my formalization
are syntactically close to CakeML’s terms (Cake.exp). The only remaining differences are
outlined below:

• CakeML does not combine abstraction and pattern matching. For that reason, I need
to translate Λ [𝑝1 ⇒ 𝑡1, …] into Λ𝑥. case 𝑥 of 𝑝1 ⇒ 𝑡1 ∣ …, where 𝑥 is a fresh variable
name. I reuse the fresh monad (§6.2.1) to obtain a bound variable name.

• CakeML has two distinct syntactic categories for identifiers (that can represent variables
or constants) and data constructors. My term types however have two distinct syntactic
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6 Compiling HOL terms to CakeML expressions

fun
sterm_to_cake :: string set ⇒ sterm ⇒ Cake.exp and
clauses_to_cake :: string set ⇒ (term × sterm) list ⇒ (Cake.pat × Cake.exp) list

where
sterm_to_cake _ (Svar s) = Cake.Var (Cake.Short s)
sterm_to_cake _ (Sconst s) = Cake.Var (Cake.Short s)
sterm_to_cake S (𝑡1 $ 𝑡2) =

Cake.App Cake.Opapp [sterm_to_cake S 𝑡1, sterm_to_cake S 𝑡2]
sterm_to_cake S (Sabs cs) =

let n = Fresh.run Fresh.create (S ∪ constructors) in
Cake.Fun n (Cake.Mat (Cake.Var (Cake.Short n)) (clauses_to_cake S cs))

clauses_to_cake S cs =

[(pat_to_cake (mk_pat pat), sterm_to_cake (frees pat ∪ S) t)) | (pat, t) ← cs]

Listing 6.13: Translation from sterms to exps

categories for constants (that can represent function definitions or data constructors)
and variables. The necessary prerequisites to deal with this are already present in the
ML-style evaluation semantics (§6.7) which conflates constants and variables, but has a
dedicated Constr rule for data constructors.

The corresponding translation functions are given in Listing 6.13 (the type prefix Cake indicates
a CakeML type).

In the Sabs case, is not necessary to thread through already created variable names, only
existing names. The reason is simple: a generated variable is bound and then immediately
used in the body. Shadowing the name somewhere in the body does not cause any problems.
This is in contrast to the term_to_nterm function (Listing 6.2), which needs to track all bound
variable names.

The 𝑆 parameter then needs to be initialized with all existing constants; similarly to §6.2.3,
this can be achieved with all_consts.

6.8.3 Correspondence relations

I define two different correspondence relations: one for expressions and one for values. Both
share the ≈ operator (where is the official CakeML icon), because they can be disambiguated
by types. There is no separate relation for patterns, because their translation is simple.

First, I will examine the expression correspondence (Listing 6.14).

Var Variables are directly related by identical name.

Const Recall that constructors are treated specially in CakeML. In order to not confuse
functions or variables with data constructors themselves, the relation demands that the
constant name is not a constructor.
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Var
Svar 𝑛 ≈ Cake.Var 𝑛

Const
𝑛 ∉ C

Sconst 𝑛 ≈ Cake.Var 𝑛

Constr
𝑛 ∈ C rel (≈ ) ts us

name $$ ts ≈ Cake.Con (Some (Cake.Short name) us)

App
𝑡1 ≈ 𝑢1 𝑡2 ≈ 𝑢2

𝑡1 $ 𝑡2 ≈ Cake.App Cake.Opapp [𝑢1, 𝑢2]

Fun

𝑛 ∉ ids (Λ cs) 𝑛 ∉ all_consts

rellist (relprod (𝜆 𝑡 𝑝. 𝑝 = term_to_pat (pat_to_cake 𝑡)) (≈ )) cs ml_cs

Λ cs ≈ Cake.Fun 𝑛 (Cake.Mat (Cake.Var 𝑛)) ml_cs

Mat
𝑡 ≈ 𝑢 rellist (relprod (𝜆 𝑡 𝑝. 𝑝 = term_to_pat (pat_to_cake 𝑡)) (≈ )) cs ml_cs

Λ cs $ 𝑡 ≈ Cake.Mat 𝑢 ml_cs

Listing 6.14: Expression correspondence

Constr Constructors are directly related by identical name, and recursively related argu-
ments.

App CakeML does not just support general function application but also unary and binary
operators. In fact, function application is represented by the binary operator Opapp.
The sterm_to_exp translation function never generates other operators. Consequently,
the correspondence is restricted to Opapp.

Fun/Mat Observe the symmetry between these two cases: In my term language, matching
and abstraction are combined, which is not the case in CakeML. This means relating
a case abstraction to a CakeML function containing a match, and a case abstraction
applied to a value to just a CakeML match. The additional requirement is that the bound
variable name in a CakeML function must not occur in the clauses nor be a known
constant name (Listing 5.2).

The value correspondence is structurally simpler, but unfortunately, syntactically noisier
(Listing 6.15).

Constr Constructor values are compared recursively.

Abs Comparing closures has multiple requirements:

• the CakeML closure must take a parameter with the bound variable name 𝑛 that
is immediately matched,

• 𝑛 must be a fresh variable,

• the clauses must correspond according to the expression correspondence, and
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Constr
rel (≈ ) vs us

Vconstr name vs ≈ Cake.Conv (Some (name, type) us)

Abs

𝑛 ∉ ids (Λ cs) 𝑛 ∉ all_consts

rellist (relprod (𝜆 𝑡 𝑝. 𝑝 = term_to_pat (pat_to_cake 𝑡)) (≈ )) cs ml_cs
∀𝑥 ∈ ids (Λ cs). Γ 𝑥 ≈ map_of env 𝑥

Vabs cs Γ ≈ Cake.Closure env 𝑛 (Cake.Mat (Cake.Var 𝑛) ml_cs)

Listing 6.15: Value correspondence

• the environments must correspond recursively, but only on the identifiers that
occur in the clauses.

RecAbs This case is identical to non-recursive closures, but lifted to lists of clauses. It is
omitted in Listing 6.15 because of its syntactic size.

6.8.4 Correctness

Lemma 6.50 (Correctness of sterm_to_cake).

𝑡 ≈ sterm_to_cake (ids 𝑡 ∪ all_consts) 𝑡

Lemma 6.51 (Composition of value and extensional correspondence).

𝑣 ≈ 𝑢 ∧ 𝑣′ ≈e 𝑣 ⟹ 𝑣′ ≈ 𝑢

I use the same trick as in §6.6.2 to obtain a suitable environment for CakeML evaluation
based on the rule set rs. Assuming this environment, the correctness theorem can be stated
as follows:

Theorem 6.52 (Correctness). If a CakeML expression 𝑒 terminates with a value 𝑢 in the CakeML
semantics and 𝑡 ≈ 𝑒 there is a value 𝑣 such that 𝑣 ≈ 𝑢 and 𝑡 evaluates to 𝑣.

Proof. The proof proceeds by induction on the CakeML evaluation. I will discuss some of the
ideas here.

The most interesting case is application. By assumption, 𝑡 = 𝑡1 $ 𝑡2 (similarly for 𝑒). By
induction hypothesis, 𝑡1 evaluates to a (possibly recursive) closure. I need to show that 𝑡
evaluates to a value 𝑣 ∶∶ value corresponding to 𝑢.

Assume that 𝑒1 evaluates to a non-recursive closure. The recursive case is similar.
Consequently, according to Listing 6.14, the closure must take a variable with a fresh name

and immediately match it against a list of clauses. This additional variable gets added to the
environment; hence, Lemmas 6.45 and 6.51 must be used to establish correspondence.
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6.9 Composition
After having described the complete compiler pipeline in the previous sections, I will give a
high-level overview of how all phases fit together here.

The actual compiler can be characterized with two functions. Firstly, the translation of
term to Cake.exp is a simple composition of each term translation function:

definition term_to_cake :: term ⇒ Cake.exp where
term_to_cake = sterm_to_cake ∘ pterm_to_sterm ∘ nterm_to_pterm ∘ term_to_nterm

Secondly, the function that translates function definitions by composing the phases as outlined
in Figure 6.1, including iterated application of pattern elimination:

definition compile :: (term × term) set ⇒ Cake.dec where
compile = Cake.Dletrec ∘ compile_srules_to_cake ∘ compile_prules_to_srules ∘
compile_irules_to_srules ∘ compile_irules_iter ∘ compile_crules_to_irules ∘
consts_of ∘ compile_rules_to_nrules

Each function compile_* corresponds to one compiler phase; the remaining functions are
trivial.

This produces a CakeML top-level declaration. I prove that evaluating this declaration
in the top-level semantics (evaluate_prog) results in an environment cake_sem_env. But
cake_sem_env can also be computed via another instance of the global clause set trick (§6.6.2).

Correctness is justified for each phase between intermediate semantics and correspondence
relations, most of which are rather technical. Whereas the compiler may be complex and
impenetrable, the trustworthiness of the constructions hinges on the obviousness of those
correspondence relations.

Fortunately, under the assumption that terms to be evaluated and the resulting values
do not contain abstractions – or closures, respectively – all of the correspondence relations
collapse to simple structural equality.

Equipped with these functions and relations, I can state the final correctness theorem:

theorem compiled_correct:

(* If CakeML evaluation of a term succeeds ... *)

assumes evaluate False cake_sem_env s (term_to_cake t) (s’, Rval v)
(* ... producing a constructor term without closures ... *)

assumes cake_no_abs v
(* ... and some syntactic properties of the involved terms hold ... *)

assumes closed t and ¬ shadows_consts t and welldefined t and wellformed t
(* ... then this evaluation can be reproduced in the term-rewriting semantics *)

shows rs ⊢ t →∗ cake_to_term v

This theorem directly relates the evaluation of a term 𝑡 in the full CakeML (including mutability
and exceptions) to the evaluation in the initial higher-order term rewriting semantics. The
evaluation of 𝑡 happens using the environment produced from the initial rule set. Hence, the
theorem can be interpreted as the correctness of the pseudo-ML expression let rec rs in 𝑡.

Observe that in the assumption, the conversion goes frommy terms to CakeML expressions,
whereas in the conclusion, the conversion goes the opposite direction.
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6.10 Related work
There is existing work in the Coq [1, 40] and HOL [94] communities for proof producing or
verified extraction of functions defined in the logic. Anand et al. [1] present work in progress
on a verified compiler from Gallina (Coq’s specification language) via untyped intermediate
languages to CompCert C light. They plan to connect their extraction routine to the CompCert
compiler [83].

Compilation of pattern matching is well understood in literature [2, 106, 113]. In this work,
I contribute a transformation of sets of equations with pattern matching on the left-hand
side into a single equation with nested pattern matching on the right-hand side. This is
implemented and verified inside Isabelle.

Besides CakeML, there are many projects for verified compilers for functional programming
languages of various degrees of sophistication and realism [7, 28, 39]. Particularly modular is
the work by Neis et al. [96] on a verified compiler for the ML-like imperative source language
Pilsner. The main distinguishing feature of this work is that I start from a set of higher-order
recursion equations with pattern matching on the left-hand side rather than a lambda calculus
with pattern matching on the right-hand side. On the other hand I stand on the shoulders of
CakeML which allows me to bypass all complications of machine code generation. Note that
much of the formalization is not specific to CakeML and that it would be possible to retarget
it to, for example, Pilsner abstract syntax with moderate effort.
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7 Conclusion
In this thesis, I have covered the design and implementation of a verified compiler from
Isabelle/HOL to CakeML. In this final chapter, I discuss the results and possible avenues for
further research.

7.1 Results
The result of this thesis is a substantial formalization of a real-world compiler.

Component Size (ML) Size (Isar)
Dictionary Construction 2,100 800
Higher-Order Term Algebra n/a 3,800
CakeML (excluding generated parts) 300 4,100
CupCakeML n/a 900
Preprocessing 1,100 300
Compiler n/a 14,100

3,500 24,000

The compiler is able to emit concrete syntax (using s-expressions, §6.8) of CakeML that can
be consumed by the CakeML compiler, version 2.0. It comes with a correctness proof that
covers all phases and a completeness proof that only covers some phases. For that reason, it
is not advisable to turn off type inference when running the CakeML compiler.

A remaining issue is performance of the compiler. In particular, the dictionary construction
and the deep embedding are expensive operations. The former needs to define new functions
which are subject to the overhead of the function command. The latter carries out proofs by
induction, potentially handling large terms. Luckily, both can be sped up by using parallelism,
which is easily achieved with Isabelle/ML.

7.2 Future work
Dictionary construction Currently, there are heuristics for both termination and speci-
fiedness of functions. Neither of them allow customization. For the former, allowing users to
carry out manual proofs is a technical, but not theoretical, challenge. The latter admits some
basic tuning by providing different congruence rules. It is an interesting research question
how far the detection of specifiedness can be automated without these congruence rules. The
most difficult challenge is posed by functions that are polymorphic in the return type, i.e.
where type variables can be instantiated with functions that may influence the specifiedness
of a returned function.
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CakeML integration OpenTheory is an exchange format between different provers in the
HOL family [67]. It is relevant to this thesis in two ways:

1. Large parts of the CakeML formalization and proofs are not available in Lem; instead,
they are implemented directly in HOL4. An OpenTheory import tool could make this
simpler and eliminate the need for Lem. There is an existing import tool,1 but major
technical obstacles prevent it from being used on large projects like CakeML.

2. Presently, there is no export tool from Isabelle to OpenTheory because of various
features that the Isabelle kernel supports, but that are not present in OpenTheory. In
the future, the dictionary construction (§3.1) could play a role in implementing such a
tool.

OpenTheory could eventually be used to import the full CakeML formalization into Isabelle,
avoiding the verification gap between the CakeML compiler proof and this work. Alternatively,
it could be feasible to load HOL4 as an Isabelle application, providing its full kernel as
a wrapper around the Isabelle/Pure logic.2 It is not yet clear which is the more promising
approach.

Pattern compilation As discussed in §6.3.6, there is an alternative compilation scheme
of patterns occurring on the left-hand side of equations. Using that scheme means that the
conflation of abstraction and matching in pterm and sterm could be removed. This would not
require changes to the term algebra, but it would require changes to the correctness proofs of
all phases after nterm.

Targetting machine types While CakeML supports operations on machine types, e.g.
words, my compilation toolchain never emits such operations (§6.8.1.1). The reason is simple:
the intermediate term types have no notion of machine types, just terms and values composed
out of datatype constructors and abstractions. There are two ways to fix this:

1. Keep the intermediate types as they are and implement a heuristic in the final phase
that detects machine operations.

2. Introduce a notion of machine values and operations into the intermediate term types.

I estimate the implementation and verification effort for the first option to be much higher
than for the second option. Therefore, I will briefly sketch the implementation approach for
the second option.

• The intermediate term types have to be made polymorphic over a type variable 𝜇 that
denotes the type of machine values. This keeps the formalization abstract over the
concrete set of types that are supported. In the simplest case, this could be instantiated
as 𝜇 = 32 word for just 32-bit integers.

1https://github.com/xrchz/isabelle-opentheory
2https://web.archive.org/web/20190204170746/https://sourceforge.net/p/hol/mailman/

message/36404016/
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7.2 Future work

• A sublocale machine_term must be added to the term class. It needs to be a locale,
because it deals with two type variables, where 𝛼 is the term type and 𝜇 the machine type.
The locale provides extensions to the substitution axioms and translations to CakeML
literals (Listing 1.1). An open question is whether matching should be extended to
allow native values in patterns. If not, this must be removed in a suitable preprocessing
step, for which there is precedent in Isabelle [47, §7.3].

• Machine operations are still modelled as constants. Because they require special
treatment, they must not have defining equations (similarly to constructors). The
constructors locale needs to be extended with a set of machine operations.

• The rewriting semantics need to be parametrized over an oracle that assigns meaning
to machine operations applied to machine values. For example, the term ⟨3 + 5⟩ where
3 and 5 are words cannot be evaluated using term rewriting. The oracle would provide
the arity of the + operation and evaluate 3 + 5 to 8.

• The embedding phase needs to be made aware of native values and perform the deep
embedding accordingly. Some non-datatypes such as words can then be made instances
of the embed class.

• The final compiler phase that emits CakeML code can then produce machine literals. It’s
correctness would need be parametrized on the native_term locale and the operations
oracle.
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Λ (symbol), 21
⟨⟩ (symbol), 87
⇀ (symbol), 58
# (symbol), 22
$ (symbol), 21
$$ (symbol), 68

Abs (constant), 21
abs_pred (constant), 61
abstraction, 58
all_consts (constant), 90
App (constant), 21
app (constant), 62
arb (constant), 99
arity, 105
arity compatibility, 105

𝛽_reduce (constant), 76
𝛽-reduction, 21, 76, 98
bind (constant), 60

C (constant), 90
C_info (constant), 90
certifying, 12, 17
class, 26
class axiom, 27
class constant, 26
class parameter, see class constant
clause, 73
clauses_to_cake (constant), 126
closed (constant), 65
closure, 78
closure, recursive, 79
congruence rule, 41
Const (ML identifier), 21
const (constant), 62

consts (constant), 62
convert_term (constant), 67

datatype (command), 16, 19
de Bruijn index, 21
deep embedding, 13, 87
definition (command), 19
dictionary, 27
dictionary construction, 13, 26
dom (constant), 58
domain, 58

elimination rule, 20
embedding, equational, 89, 91
embedding, ground, 89, 90
entry, 58
environment, 58
equation (rewriting), 73
equation, code, 19
equation, defining, 19
executability, see executable
executable, 18

find_match (constant), 73
Free (ML identifier), 21
free (constant), 62
frees (constant), 62
fresh, 98, 99
fresh (type), 99
Fresh.create (constant), 99
function (command), 16, 19
function, active, 79

generic constructor, 61
global clause set, 118, 123
global_css (constant), 118
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head, 73
heads (constant), 90

identifier, 82, 125
ids (constant), 82
inductive (command), 20
instance, 26
introduction rule, 20
is_value (constant), 79

left_nesting (constant), 68
linear (constant), 63
linearity, 63
linears (constant), 65
list_comb (constant), 68
locale, 60
locale interpretation, 60

map (constant), 59
map_of (constant), 58
mapping, 58
match (constant), 61, 64
matches (constant), 72
matching, 63
matchs (constant), 65
mk_pat (constant), 84
mk_rec_env (constant), 120

Next (constant), 99
next (constant), 99
no_abs (constant), 67
nterm (type), 75
nterm_to_term (constant), 98, 100

object, 64
ordered_map (constant), 111
overlapping (constant), 72

pat (type), 82
pat_to_cake (constant), 124
pattern, 63
pattern compatibility, 51, 53, 74
pattern overlap, 50
pattern_compatible (constant), 74
patterns_compatible (constant), 74
predicate, coinductive, 21

predicate, inductive, 19
pterm (type), 75, 76
pterm_to_sterm (constant), 112

quickcheck (command), 19

range, 58
range (constant), 58
reification, 87
rel (constant), 59
relator, 59
rellist (definition), 59
relmap (definition), 59
relset (definition), 59
restrict (constant), 70
rev_accum_rel (constant), 74
rule, 73
rule induction, 20
rule set, 73, 88

schematic variable, 17, 18, 32
semantic function, 20
sort, 26
sort constraint, 26
sterm (type), 75, 77
sterm_to_cake (constant), 126
sterm_to_pterm (constant), 112
sterm_to_value (constant), 80
strip_comb (constant), 68
sublocale, 60
subst (constant), 61

term (class), 61
term (type), 21, 75
term (ML identifier), 21
term-value, 79
term_cases (constant), 67
term_to_nterm (constant), 98, 100
theory, 16, 17
type class, see class
type scheme, 18

unapp (constant), 62
unconst (constant), 62
undefined (constant), 38
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unfree (constant), 62

value (type), 75, 78
value_to_sterm (constant), 80
variable, bound, 58
variable, free, 58
verified, 12, 17
vmatch (constant), 84
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