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Abstract

In the last years, machine learning based approaches have seen tremendous success at solving

challenging tasks in a plethora of disciplines due to their potential to generate accurate

prediction models, leveraging on empirical information extracted from large amounts of data.

Medical image analysis has not been the exception, and machine learning based approaches

now dominate a variety of tasks including computer assisted diagnosis, image segmentation,

image registration and computer assisted interventions. The success of machine learning

paired with an increase on the availability of digital image records and computational power

calls for an exploration of how novel machine learning approaches can be developed to address

key questions in the medical image analysis field.

In this thesis, we present a number of novel machine learning based methods for diverse

medical image analysis tasks. Our first contribution is a novel framework based on an age

estimation model, used to detect brain abnormalities caused by neuropathologies. We propose

a model which measure deviations from the mean healthy aging trajectory using uncertainty

based metrics and we showcase its ability to measure brain abnormality caused by autism,

mild cognitive impairment and Alzheimer’s disease. In our second contribution, we tackle

the problem of training machine learning models using limited amounts of labeled data.

We formulate the efficient selection of a training dataset from big repositories of medical

data as a multi-armed bandit problem. Our method is able to select relevant samples, based

solely on meta information associated to the images leading to accurate models trained

with only a fraction of the available data. Our third and final contribution is a machine

learning based framework for the registration of multimodal images. Our approach models the

problem of multimodal image registration not as that of learning a similarity metric between

images from different modalities, but it rather aims at learning directly the transformation

parameters bringing the images into spatial alignment. This approach leads to a fast and

accurate multimodal registration metric, which can be easily optimized using simple gradient

descent optimization.

This dissertation aims to generate discussion about the potential of machine learning tech-

niques to solve a variety of medical image analysis tasks, and also to highlight and address

some of the critical challenges which have so far limited the success of machine learning in

medical image analysis when compared to other disciplines.
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Zusammenfassung

In den letzten Jahren hat maschinelles Lernen einen enormen Erfolg in vielen Disziplinen

erzielt. Die Verfügbarkeit großen Datenmengen und die Erhöhung der Rechenleistung haben

zum Erfolg von Modellen für maschinelles Lernen beigetragen.

Die medizinische Bildanalyse ist nicht die Ausnahme, und maschinelles Lernen dominiert

heute Aufgaben wie computergestützte Diagnose, Bildsegmentierung, Bildregistrierung und

computergestützte Interventionen. Der Durchbruch des Maschinellen Lernens, die zunehmen-

de Verfügbarkeit von digitalen Bildaufzeichnungen und die erhöhte Rechenleistung erfordern

neue Ansätze im Bereich der medizinischen Bildanalyse.

In dieser Thesis stellen wir neuartige maschinelle Lernmethoden für die medizinische Bildana-

lyse vor.

Unser erster Beitrag ist eine Methode zur Beurteilung von Hirnanomalien, die durch Autismus

oder Alzheimer verursacht werden. Diese Anomalien werden mit der Messunsicherheit eines

Gauß-Prozesses gemessen. Wir zeigen die Vorteile unseres Ansatzes verglichen mit Standard-

methoden zur Altersbestimmung. In unserem zweiten Beitrag befassen wir uns mit folgender

Problematik: die Erstellung von Modellen für maschinelles Lernen mit begrenzten Mengen an

vorklassifizierten Daten. Wir formulieren die effiziente Datenauswahl eines Trainingsdatensat-

zes aus großen Repositorien medizinischer Daten als mehrarmiges Banditenproblem.

Unsere Methode ermöglicht, relevante Beispiele auszuwählen. Diese Auswahl basiert aus-

schließlich auf Metainformationen, die den Bildern zugeordnet sind. Diese Methode zur

Datenauswahl schafft präzise Modelle, die mit einem Bruchteil der verfügbaren Daten trainiert

werden.

Unser dritter und letzter Beitrag ist ein maschinell lernbasierter Rahmen für die Registrierung

multimodaler Bilder. Unsere Methode lernt unmittelbar die Transformationsparameter unter

Verwendung eines Datensatzes von ausgerichteten multimodalen Bildern. Dieser Ansatz führt

zu einer schnellen und präzisen multimodalen Registrierungsmetrik, die durch die Optimierung

des Gradientenabfalls optimiert werden kann.
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1.1 A Brief History of Medical Image Analysis

1.1.1 Medical Imaging

Although ever present in current clinical settings, the use of medical images as a tool assisting

diagnosis and medical interventions is relatively novel when seen in the larger context of

the long history of medical care. The now taken for granted ability to look inside the human

body and take images of it in a non-invasive way was only possible for the first time by the

end of the XIX century after the breakthrough discovery of x-rays by Wilhelm C. Röntgen

[78]. The potential of using x-rays as a new tool to visualize the human body was almost

immediately recognized by the medical community which started to make significant efforts

to understand how this new technology could help the diagnosis and treatment of multiple

medical conditions. As a matter of fact it took less than a year for the scientific community

to produce the first medical imaging studies, appearing as part of the journal "Archives of

(Clinical) Skiagraphy". This journal mainly contained illustrations of different orthopedic

cases [70], and served to summarize the first approaches that opportunities this new discovery

presented to assist diagnosis and interventions.

From these early applications , it became obvious that the benefits that could be obtained

from medical images were highly dependent both in the quality of the acquired images and

on the ability of the radiologist of the clinician to extract relevant information from them [39].

In order to unleash the huge potential that medical images offered, the scientific community

faced the challenge to exploit the informaton contained in x-ray images. These images are

only a representation of the real anatomy of the patient, which means that in order to obtain
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valuable insights, clinicians need to have a clear understanding on how the information

encoded in the image relates to the real anatomy of the patient. Therefore early radiological

research in the medical field focused on reporting diagnostic cases [8, 11, 83] and in obtaining

x-ray images of either phantoms [95] or ex-vivo organs [4]. A further impulse was given to

the medical imaging field in the 1940’s with the introduction of ultrasound (US) images as a

further tool to look into the human body [72]. US served as a complement to x-ray images

due to its ability to image soft tissue, and it gained popularity in many medical disciplines,

particularly in obstetrics due to its safety and non-invasiveness.

1.1.2 Digital Medical Image Analysis

After the birth of medical imaging as a discipline and the successful first adoption of x-ray

and US images as new tools to assist medical care, a major technological breakthrough in

the medical imaging field arrived with the introduction of computers able to process medical

images. Different to the introduction of x-rays and US, which had an almost immediate

impact in medicine, the use of digital computers to process and analyze medical images took a

relatively long time to mature and its utility was exploited at a slower pace. Although as early

as 1955, Lusted discussed the potential use of computers in the analysis of medical images

[60], most of the first attempts to use computers to perform analysis on digital images date

to the beginning of the 1960’s. These first attempts mainly aimed at image enhancing tasks

such as background subtraction, contrast correction and filtering [7, 86], which mainly helped

in producing images more suitable to be analyzed by radiologists. However, even at these

early years with limited computing power and rudimentary image digitalization techniques,

there existed early attempts of aiding diagnosis based on quantitative measures obtained from

medical images. For example, Becker [5] describes a method to automatically measure the

cardiothoracic ratio based on digitally scanned chest radiographies. By the end of the decade,

the first conferences dedicated exclusively to the field of medical image processing were born;

most notably the "International Conference in Information Processing in Sinctigraphy" born in

1969 , which later changed its name to "International Conference in Information Processing in

Medical Imaging" and is still one of the leading conferences in the field today [96].

The use of computers to perform medical image processing gained momentum by the start of

the 1970’s. An important reason behind this was the rapid increase in computational power

available to researchers. But the real breakthrough in the use of digital processing techniques

was the development of the Computed Tomography (CT) scanner [50]. CT scanners offered

the possibility to obtain 3D tomographic images of the body and were quickly developed and

commercialized, with up to 400 scanners existing in the United States by the mid 1970’s [75].

This led the medical imaging community to realize the high impact digital processing could

have in the medical imaging field, and also lead to an increase on the available amount of

digital images.

The period between 1970’s and the 1990’s saw an increase in the digitalization of medical

images, and a group of researchers with backgrounds in computer vision started to apply

their methods and algorithms to the analysis of digital medical images [96]. This led to the

creation of a new sub-discipline of computer science now known as medical image analysis.

Medical image analysis was born as an area of study which focuses on the development of

2 Chapter 1 Introduction



computational and mathematical methods assisting the interpretation of medical images.

These methods include the delineation of organs or regions of interest (segmentation), spatial

alignment of two or more images representing the same anatomy (registration), computer

assisted diagnosis tools, shape analysis, among several others. Thanks to the efforts of the

medical image analysis community, digital medical images are now a quintessential part of

routine clinical practices and medical image analysis is not only a gimmick but a fundamental

tool in all stages of clinical care.

The successful adoption of medical images, and the increased availability of image databases

obtained all over the world has brought new areas of opportunity to improve the medical

image analysis, and with it facilitate the labor of extracting meaningful information from

images. A radiologist is now able not only to obtain images of a patient using different

imaging modalities (CTs, Magnetic Resonance Images (MRI), Ultrasound US,Possitron Emision

Tomography (PET), etc.), but also potentially has an almost endless amount of similar images

obtained in different clinics or hospitals. Needless to say, it is not only impractical but also

close to impossible for even the most qualified physician to leverage on information at such

scale; the task of extracting relevant information from clinical images is no longer one that

can be solely be performed by direct human interaction.

1.1.3 Machine Learning for Medical Image Analysis

The discovery of x-ray and ultrasound allowed us the ability to look into the human body.

Digital image processing has provided ways to improve the quality of these images, and tools

to make the extraction of information from them an easier task for radiologists and clinicians.

In a similar way, a recent change of the digital medical image processing paradigm has opened

new possibilities to the way we interact with medical images, and how we can extract valuable

information from them. An increased availability of medical images, paired with an explosion

in computational resources has led to the popularity of machine learning based methods for

medical image analysis. Machine learning - which we explore in chapter 2 - is the study of

algorithms which are able to learn complex non-linear relationships or patterns based on

empirical data [69]. Machine learning algorithms have nowadays outperformed rule-based

methods in several medical image analysis applications and are nowadays the main area of

research in medical image analysis. Machine learning brings the promise of accurate models

which can leverage on the large amounts of available medical data and computational power

available today, and which could potentiate the utility of medical image analysis tasks in

routine clinical practice.

Applying machine learning to the analysis of medical images is not a trivial task due to the

complexity of medical images, the large variability of anatomies between populations, the

differences in scanner protocols and the relative lack of curated and manually annotated

medical image datasets. Inspired by these challenges, and by recent developments in the

application of machine learning in medical imaging, we present in this dissertation three

contributions which constitute novel machine learning approaches to solve diverse challenges

faced in typical medical image analysis tasks.

1.1 A Brief History of Medical Image Analysis 3



1.2 Summary of contributions

1.2.1 Gaussian Process Uncertainty in Age Estimation as a

Measure of Brain Abnormality

One of the most common tasks of medical image analysis is that of creating Computer Aided

Diagnosis (CADx) system. A CADx system aims at assisting the clinician in the task of

summarizing image based information in order to perform a diagnosis i.e. defining if a patient

is healthy or suffers from a disease. A recent approach to produce a CADx model is that of

training age prediction models. These models are built on cohorts of healthy subjects to reflect

normal aging patterns. The application of these age prediction models to diseased subjects

usually results in high prediction errors, under the hypothesis that diseases follow similar

patterns as those of accelerated or decelerated aging. In our contribution we propose the

use of metrics based on uncertainty in a Gaussian process age regression model as a way to

measure abnormalities associated to neuropathologies.

1.2.2 Guiding Multimodal Registration with Learned

Optimization Updates

. Multimodal image registration is a critical task in medical image analysis which consists

on the spatial alignment of images acquired using different imaging modalities. Multimodal

image registration is a challenging task because the relationship between the intensities of

both images is unknown a priori, and therefore defining an energy function capable of relating

both modalities is difficult. Our first contribution - first presented as a conference paper at the

International Conference on Medical Image Computing and Computer-assisted Intervention in

2016 [46], where it was awarded the Young Scientist Award, and then expanded as a journal

paper in the special issue of Medical Image Analysis [45] - presents a novel approach where

the multimodal registration problem is posed as a supervised regression task, with joint image

descriptors defining the relationship between both modalities as input and the parameters of

the transformation that guides the moving image towards alignment as an output.

1.2.3 A Multi-Armed Bandit to Smartly Select a Training Set

from Big Medical Data

The increasing availability of medical images and the emergence of machine learning tech-

niques has brought an increasing interest in applying these techniques to medical image

analysis tasks. However, one of the main difficulties these approaches encounter is that

although big imaging datasets exist, the availability of annotated data is scarce. In an effort to

tackle this problem, we present a method to smartly select training samples from large imaging

datasets. Our approach is based on exploiting meta information associated to medical images

such as phenotypic information of the patient (age, gender, weight, etc), or information about

the image acquisition process (scanner, site, etc) in order to define which images are relevant
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to train a model for a specific task. The full text of these contributions can be found in the

Appendix of this dissertation.

1.3 Thesis organization

This thesis is structured as follows. This chapter has presented a quick introduction to the

medical image analysis field, and presented an overview of the main contributions of this

thesis. Chapter 2 constitutes an introduction to machine learning in medical image analysis;

machine learning is a broad field, and covering all possible machine learning paradigms and

methods escapes the scope of this thesis. We focus instead on presenting an introduction to

machine learning as a discipline, and we give an overview of the machine learning algorithms

used in the contributions presented on this thesis. In Chapter 3 we present a introduction

to medical image registration; we start by defining the image registration problem and we

describe the main components of intensity based image registration algorithms. The last

subsection of this chapter is an overview of the evolution of the medical image registration

field, starting from the very first approaches to manually register images and finishing with

machine learning based methods.In chapter 4, we present the conclusions of the dissertation

and an outlook of the current status of machine learning in medical image analysis. The full

texts of the contributions can be found in the appendix.

1.3 Thesis organization 5
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2.1 Introduction to Machine Learning

The term machine learning first coined by Arthur Samuel in 1959 [81] can be defined as

the use of statistics to give computers the ability to learn to perform a given task. Machine

learning is different to other types of algorithms, since instead of directly coding a set of rules

to solve a particular task, these rules are derived in a statistical data-driven manner. Lets walk

through a simple example to illustrate the difference between these two approaches: imagine

that we are given the task to design an algorithm that takes as an input a set of characteristics

of a dog - for example its weight, tail length, fur color, etc. - and gives as an output a guess

of the breed of the dog. If we approach this problem using a rule based approach we would

need to manually define a set of rules which characterize each breed: for example, we could

design a rule stating that a very small brown and black dog is a Yorkshire terrier, and another

rule defining a big white dog as an Akita. This approach could however be problematic, since

defining the rules that distinguish between different dog breeds may not straight forward or

we may lack the required expertise on dogs to define clear rules. An alternative approach

would be to design and algorithm which learns these rules directly from the data: this would

involve creating a dataset of measurements of dogs, and extracting meaningful statistics from

them. With this statistical approach our algorithm may learn by itself that a Yorkshire’s mean

weight is 1.5 kg and is 80% of the time brown, while the mean weight of an Akita is 40 kg

and is always white. This statistical information can afterwards be used to define meaningful

rules to make a decision.
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Machine learning, as defined by Tom Mitchell [69] is the ability of a computer program to

learn from experience E to perform a particular task T according to a performance measure

P . Following our example, a computer can learn the task T of identifying the breed of a dog

through the experience E of observing a dataset of measurements associated to different dog

breed. A measure P would indicate how accurate is the prediction of our algorithm when

predicting the breed of a dog given its characteristics. Depending on the amount of interaction

between the algorithm learning to perform a task and the user, machine learning techniques

can be classified between supervised and unsupervised methods.

Figure 2.1 Supervised learning can be seen as the problem of finding a function f(x) mapping a feature vector x

to a label y. The function f(x) is usually defined using a vector of parameters θ which act as a set of
knobs adjusting the behavior of the function f . For example, a predictor function f(x)can map a set of
characteristics of a dog to a vector of labels indicating its breed and age.

2.1.1 Supervised Learning

Supervised learning algorithms are those where an algorithm is trained to perform a task

based on experience extracted from previous observations given by the algorithm in the form

of a training set. This training set has the form {Xi, Yi}
n

i=1, where X ∈ R
m×n is a matrix

containing N different observations, and Y ∈ R
p×n is a matrix of labels associated to each one

of these observations. The numbers m and n correspond to the size of each feature vector x

and n is the number of observations.

Supervised learning algorithms can be formalized as the problem of finding the mapping:

ŷ = f(x) (2.1)

where ŷ corresponds to a prediction and x is a feature vector. The operator f can be seen

then as a machine that is able to process input x in order to give a prediction. The response of

this machine can be changed by adjusting a set of "knobs", which adjust the behaviour of the

8 Chapter 2 Machine Learning in Medical Image Analysis



machine. These knobs are the model parameters θ ∈ R. The problem of supervised machine

learning then can be reduced to that of finding the optimal values for the parameters θ such

that we obtain accurate values of y, according to a performance metric.

Lets illustrate this by continuing with our simple example 2.1. Given the task of predicting the

breed of a dog given a set of characteristics describing it such as its height, weight, snout size,

legs length, color and age. An observation x would correspond to a vector containing these

values for a particular dog, and the label vector y corresponds to the breed and age of the dog.

We can build a training dataset by acquiring many of these observations i.e. dog characteristics

paired with their age and breed. During training, a supervised learning algorithm would

adjust its parameters θ by optimizing an objective function, which in this case would be a

measure of the proportion of times the algorithm predicts the breed of the dogs in the training

set accurately and the mean squared error of the age prediction. Depending on the nature of

the prediction, supervised learning algorithms are divided in classification, when the predicted

value y corresponds to a categorical value (i.e. the breed), and regression when the prediction

corresponds to a real number y ∈ R (i.e. the age).

2.1.2 Unsupervised Learning

Different to supervised learning, in unsupervised learning our training set lacks any sort of

labels y. This means that unsupervised learning algorithms need to acquire information

about the structure of the data without any intervention or guidance from the user. The most

common tasks in unsupervised learning are finding the probability distribution of the feature

vectors P (X), or clustering which corresponds to finding homogeneous groups of data that

have similar features x. In this thesis we limit the discussion to only supervised learning

algorithms.

2.2 Machine Learning algorithms

2.2.1 Linear regression

Linear regression is arguably the simplest machine learning algorithm to perform regression

tasks. In linear regression the mapping function f corresponds to a simple linear combination

of the elements of the feature vector x :

ŷ = f(x, θ) = xT
θ + θ0. (2.2)
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in linear regression the model parameters θi correspond to a weigh for each feature xi and

an intercept term θ0. In order to find the vector of parameters θ
T which best fits the training

data X, Y, we can minimize the mean squared error loss:

L =
1

N

N
∑

i=1

(yi − ŷi)
2. (2.3)

the parameters θ minimizing L can be easily obtained by using the closed form:

θ
∗ = (XT X)−1XT Y (2.4)

An important property of linear regression models that makes them popular in many appli-

cation is that the learned parameters θ have a meaning directly related to each one of the

features θ and are therefore easily interpretable. As an example, we show a regression model

based on the popular boston dataset 1. This dataset contains information concerning housing

in the area of Boston. In figure 2.2 we show a linear regression model fitted to predict a

variable yval corresponding to the median value of homes in $ 1000’s, and which takes as

features xrooms which indicates the number of rooms per dwelling and xcrime which measures

the per capita crime rate of the area. By fitting a linear regression model using equation 2.4 we

obtain parameters θrooms = 3.80 and θcrime = −0.10. This means that adding an extra room

to the house increases a value by 3800 and that an 0.10 increase per capita crime decreases

the house value by 100. Due to their fast training and their easy interpretability, we use linear

regression to build age prediction models as part of our contribution "A Multi-armed Bandit to

Smartly Select a Training Set from Big Medical Data".

Although linear regression offers a simple and easy to interpret machine learning model,

relationships between feature vectors x and labels y are often non-linear. This means that

linear regression can be insufficient to build accurate machine learning models, and therefore

several strategies have been devised to build non-linear models.

Figure 2.2 A linear regression model fitted on the boston dataset. The label y corresponds to the mean price
of properties, while the feature vector x contains the average number of rooms per dwelling. The
parameters θ correspond to the weight each one of these elements has on predicting the outcome
variable.

1https://www.cs.toronto.edu/delve/data/boston/bostonDetail.html
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2.2.2 Decision trees

Decision trees are a machine learning algorithm based on partitioning the feature space in

a hierarchical manner. The structure of a decision tree is a a graph consisting of nodes and

edges. In the case of nodes they can correspond to either internal nodes, or terminal nodes.

The graph structure of the tree has two important characteristics: 1) in a decision tree there

are no loops and 2) each node in the tree has exactly one incoming edge. In binary decision

trees, which are the most commonly used and the ones presented in this thesis each node has

two outcoming edges.

A decision tree can make a prediction by passing a feature vector through the tree structure.

Starting from the root node, the decision tree algorithm makes a test at each internal node.

Each one of these tests are defined by a split function g of the form:

g(x, h, T ) = xh ≥ T (2.5)

where x is a feature vector, h ∈ N is a position of the feature vector and T ∈ R is a threshold.

If the result of the split function is 1, the feature vector will be passed to the right out-coming

edge; if the condition is false, the feature vector is passed to the left out-coming edge. This

operation is repeated until the feature vector reaches a terminal node. When performing

classification or regression tasks, each terminal node has assigned a particular label y. A

prediction is made by assigning the label of the terminal node to the feature vector reaching

it.

We show an example of a decision tree in figure 2.3. Following our initial example, we want to

predict the breed of a dog using a decision tree. A decision tree would ask a series of questions

based on the attributes of each dog, corresponding to the split functions g. Starting at root

node 0 we would first evaluate the split function g0 = x1 > 25 where x1 is an element of

the feature vector x corresponding to the weight of the dog. Since the dog weights 35 kg,

the feature vector x is passed to the right edge and arrives to internal node 4. Node 4 has

assigned the split function g4 = x0 > 0.5 where x0 is a feature measuring the proportion of

the body of the dog that is white. Again the condition is true, and therefore the feature vector

would be passed to the right edge. After this, we would arrive to a terminal node. This means

that no further split function will be made, and the dog will be assigned label y = 4, which

corresponds to the breed akita.

The most important factor in the design of a decision tree is the definition of the split functions

g. In this simple scenario, we could achieve a good result by simply engineering split functions

based on our previous knowledge about dog breeds. However, a machine learning approach

would involve finding this split functions based on observations of the training data.

The procedure to define these split functions - or train a decision tree - is to pass grouped

training vectors x together with their ground truth labels y. Borrowing the notation by

Criminisi et al. [24], the subset of data points arriving a node is denoted as Sa. Each decision

node splits subset Sa assigning some of its elements to the right Sr or the left Sl subset. At
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Figure 2.3 A decision tree is an algorithm which performs predictions based on a sequence of hierarchical split
functions. In this example a decision tree determines the breed y of a dog based on a feature vector x

describing its amount of white fur and its weight.

each node, a decision function g as that maximizing the energy I = I(Sr, Sl, Sa, g). This

means that the optimal parameters θ = [h, T ] at each decision node are obtained by doing:

θ
∗ = [h, T ] = arg max

θ

(I) (2.6)

During training, the decision tree is grown and decision functions are optimized iteratively

splitting the training data until a stopping criterion is reached. Typical stopping criteria are

reaching a predetermined tree depth or a minimum number of training examples reaching

a node. Obtaining the optimal features θ = [h, T ] at each node can be costly, particular in

situations where training is done on large dimensional vectors x. A typical strategy to mitigate

the cost of this computation is to perform randomized node optimization [24]. Randomized

node optimization consists on making available only a subset θj ∈ θ of the parameters at

at each node j. This strategy not only reduces the training time of decision trees, but also

introduces a random element during training which is useful in the training of random forests

(more on this in the following subsection where we discuss ensembles of decision trees).

A decision tree can be used to perform different tasks, including regression, classification

or even unsupervised tasks like density estimation. The decision tree structure can remain

unchanged for each one of this tasks, and the only thing that needs to be altered is the choice
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of the energy function I. In the case of classification tasks a common choice is information

gain defined as:

IIG = H(Sa) − wrH(Sr) − wlH(Sl) (2.7)

where H(S) =
∑K

k=1 P (yk|S)log(P (yk|S)) is a measure of the entropy of the set S and

wl = |Sl|/|Sa| and wr = |Sr|/|Sa|. For regression tasks, minimization of the trace of the

sample covariance is a typical choice:

ISC = trΣSl
+ trΣSr

(2.8)

where ΣSl
and ΣSr

are the covariance matrices of the labels Y assigned to the left and right

edge respectively.

An important characteristic of decision trees is that different to other common machine

learning algorithms such as linear models or support vector machines, they do not require the

computation of all possible features xh ∈ x in advance. This makes them particularly useful in

situations where feature spaces are of very high dimensionality, or when the computation of

features is costly. Thanks to this property, we make use of decision tress in our multimodal

registration approach, where infinitely dimensional feature vectors describing images to be

registered are processed using decision trees.

Ensembles of decision trees

Decision trees are seldom used on their own to perform predictions in machine learning

scenarios. Instead they are usually combined through the use of an ensemble method.

Ensemble methods are not machine learning algorithms by themselves, but rather a procedure

to combine the predictions of several methods in order to obtain a more accurate predictor

or one less prone to overfitting. Two ensemble methods to aggregate predictions made by

individual trees are random forests and gradient boosting.

Random forests are based on the observation that several decorrelated trees provides better

generalization than a prediction made by a single decision tree [36]. Decorrelated trees

are obtained by either randomly feeding subsets of training data to each tree and/or by

performing randomized node optimization of the objective function at each node as we

discussed previously. During testing, a single prediction ŷ obtained by averaging the individual

predictions ŷt of each decision tree :

ŷ =
1

T

∑

t∈T

ŷt (2.9)

A second approach to aggregate predictions from individual decision trees is gradient boosting.

Gradient Boosted Trees (GBT) have shown to have lower prediction errors to random forests

in a variety of scenarios [12]. Different to random forests where each decision tree is trained

independently, gradient boosted trees are trained sequentially. The main concept behind GBTs
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is that each sequentially trained weak predictor tries to minimize the error of the previously

trained tree.

The prediction ŷ in a GBT predictor is obtained via the weighted sum of functions:

ŷ =
∑

t∈T

βŷt), (2.10)

where β is a scalar weighting each regression tree. Different to regression forests, where

decision trees are trained independently, in gradient boosted trees the prediction is built

sequentially as:

ŷ = ŷt−1 + β(ŷt). (2.11)

where each tree minimizes a loss between the current prediction and the ground truth.

2.2.3 Gaussian processes

Gaussian processes (GP) are defined as a collection of random variables, any finite number of

which have a joint Gaussian distribution[76]. Different to the machine learning algorithms we

have previously described, GPs are non parametric models. What this means is that instead of

having a fix number theta of parameters to optimize, GPs make predictions by directly map

the training set to the observations for which we intend to make predictions.

Gaussian processes are therefore defined not by a set of fixed of parameters but by the

following two elements: a mean function m(x) = E(f(x) and a covariance function k(x, x′) =

E[f(x) − m(x)f(x′) − m(x′)], where x and x′ are two feature vectors. For simplicity, we

will assume the mean function to be zero. Therefore a GP is solely defined by its covariance

function k. The covariance function can be seen as a way to measure the similarity between

two different data points. A common choice for the covariance function is the squared

exponential function of the form:

k(xi, xj) = δ2
f

K
∑

k=1

exp

[

−(xk
i − xk

j )2

2l2
k

]

+ σ2
nδ(xi, xj), (2.12)

When training a GP model, we aim at defining this covariance function. Vectors xi and

xj simply correspond to the feature vectors in the training set. The rest of the parameters

allow GP models to include prior information about the expected behaviour of the predictive

function. The maximum allowable covariance δ2
f controls the range of expected variance in the

labels y. The variance δ2
n is the expected noise in the observations x; the parameter l is known

as length scale. Intuitively, we want the prediction of a test point x′ to be influenced only by

those examples which have similar feature vectors, and we want very dissimilar observations

to have a negligible influence on the prediction. Therefore the length scale parameter controls

how much influence a sample with feature vector x has in the prediction of x′. Additionally,

the smaller an element lk is, the more dependent the label y is to the feature element xk.
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Given the covariance matrix, we can model the joint distribution between the training and

testing data as:







y

y′






∼ N

(

0,







K(X, X) K(X, X′)

K(X′, X) K(X′, X′)







)

. (2.13)

The elements of the joint distribution in Eq.(2.13) can be summarized as follows:

• an intra-covariance matrix of the training set K(X, X) ∈ R
mxm ,

• an intra-covariance matrix of the testing set K(X′, X′) ∈ R
nxn,

• an inter-covariance matrix between the training and testing set K(X, X′) ∈ R
mxn,

• a training labels vector y ∈ R
m, and

• a testing labels vector y′ ∈ R
n,

where m corresponds to the number of training samples and n to the number of testing

samples. Using this conditional distribution, a GP model can perform predictions on unseen

data by:

ŷ′ = E[ŷ′|X, ŷ, X′] = K(X′, X)K(X, X)−1y (2.14)

and

cov(ŷ) = K(X′, X′) − K(X′, X)K(X, X)−1K(X, X′), , (2.15)

which correspond to the estimation of the labels and an estimated covariance. The estimated

covariance can also be seen as a measure of uncertainty of the predicted values. This property

of Gaussian process models to provide uncertainty measurements is the core of "Gaussian

process uncertainty in age estimation as a measure of brain abnormality" where uncertainty of

Gaussian process regression for age estimation is used to detect brain abnormalities caused by

neuropathologies.

2.3 Machine Learning in Medical Imaging

Not surprisingly, applying machine learning methods to medical imaging analysis problems is a

much more challenging task when compared to the simple examples we have analyzed in our

introduction to machine learning algorithms. First, medical images are more scarcely available
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when compared to other types of data like natural images in computer vision or pieces of text

for natural language processing. One reason behind this is the sensitive nature of medical

data, and therefore it is in general not possible to make data publicly available without the

informed consent of the patient, anonymization and previous ethical approval. Additionally,

acquiring medical images is a costly process which involves expensive equipment and the

involvement of highly qualified personal. For some particular imaging modalities such as CT,

a risk to the patient health is also involved. Second, manual annotations of medical images

required for supervised learning methods are hard to get due to the tedious and complicated

nature of the task, and crowd sourcing annotations common in computer vision applications

are not feasible due to the training required to properly annotate medical images. Third,

the correct interpretation of medical images involves not only the observation of the images

themselves, but should also integrate knowledge about the patient such as their demographic

information, phenotype, symptoms, diagnosis or even other complex sources of information

such as genetic data. Finally, compared to computer vision applications, in many cases medical

images are not 2-dimensional but rather present a tomographic 3-D representation of the

anatomy. This increased dimensionality make most common image processing algorithms to

require a considerably larger amount of computational resources.

Despite these challenges, machine learning has found its place in most medical imaging

analysis applications and in recent years, machine learning methods have dominated the

research in the field. There are two key factors which have proved critical in this increase of

popularity: the first one is the rise of deep learning as a tool which has proven to outperform

most traditional image analysis approaches in a variety of tasks, and the second one is an

increased effort by the scientific community to make available large collections of medical

data. This is particularly true in the case of neuroimaging, where many publicly available

datasets are now available such as the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

[53], the Open Access Series of Imaging Studies (OASIS) [64], the Autism Brain Imaging Data

Exchange (ABIDE) [25], among others.

In recent years, machine learning has had a notable influence in several medical image

analysis applications. In the following section we will present an introduction of the appli-

cations covered by the contributions of this thesis: computer assisted diagnosis and image

registration.

2.3.1 Computer assisted diagnosis

Diagnosis can be understood as the identification of an illness or other medical problem by

examination of the symptoms. Before the introduction of medical images, it was only possible

to observe these symptoms by simple observation, physically examination of the patient or

through simple interviews to the patient (does it hurt? are you feeling dizzy?). The main

objective of these observations is to observe a pattern in the body function of the patient that

deviates from the normal function of the healthy population. Medical images opened the

possibility to observe these abnormalities by opening a window to observe directly into the

patients bodies, allowing them to compare the appearance of the healthy population against

that of patients diagnosed with a particular disease.
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Performing these comparisons between images obtained from healthy or diseased populations

is extremely challenging and highly dependent on the experience level of the person doing

the observation and the amount of time allowed to perform a diagnosis. Computer Aided

Diagnosis (CADx) systems, aim at assisting clinicians in this task by summarizing large

amounts of imaging data paired with corresponding meta information of the patient such as

their phenotype (sex, gender, age), their environmental conditions or even genetic information.

As mentioned in the review of CADx tools in medical imaging by Doi [26] CADx diagnosis was

already attempted with little success as early as the 1960’s [59, 67], but CADx systems only

start to gain steam after the usefulness of CADx systems was demonstrated for diagnosis in

chest radiographies in the early 2000’s [1].

A typical CADx system is based on the elements shown in figure 2.4. A medical image is

acquired and regions of interest are segmented. This segmentation can either correspond to a

delineation of a particular organ, to a structure of interest or to an abnormality in the scan

(tumor, micro-calcifications, etc.). Given these segmentations and the acquired image, a set

of features can be extracted such as morphological features of the structure of interest [91]

or texture descriptors [65]. The extracted features can be summarized in a feature matrix X

which can then be analyzed using machine learning methods as the ones described in this

chapter.

Figure 2.4 A typical Computer Aided Diagnosis (CADx) pipeline consists of 1) the acquisition of an image 2) the
segmentation of structures of interest 3) extraction of features given the segmentation and 4) an analysis
of the generated features.

2.3.2 Computer assisted diagnosis models based on age

estimation

Most CADx methods based on machine learning models discussed so far are based on either

a classification model which aims at predicting a discrete label corresponding to different

diagnosis or in a regression model which gives an estimate of a particular variable that can be

associated to a diagnosis. For example, several classification algorithms have been applied

to the task of discriminating between structural MRI images of the brain corresponding

to healthy controls (HC), individuals suffering from Mild Cognitive Impairment (MCI) or

Alzheimer’s disease (AD) [27, 32, 66] while other approaches aim at estimating continuous

clinical variables associated to the AD pathology [29, 94, 102].

One limitation of these discriminative models is that they require the acquisition of images

corresponding to subjects at different stages of the disease as well as healthy controls. As we
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have mentioned earlier in this chapter, the acquisition and labelling of these images poses

important challenges, and for this reason images corresponding to individuals affected by a

particular disease are typically scarce, increasing the risk of overfitting.

An alternative to this direct discriminative models has been proposed in the form of age

estimation models, first introduced as a method to measure abnormalities in brain development

caused by the onset of Alzheimer’s disease [34]. The main assumption behind age estimation

models is that disease patterns associated to several diseases are actually similar to an

accelerated aging pattern. This would mean, for example, that the brain of a 60 year old

individual suffering of Alzheimer’s disease would be similar to that of a healthy 80 year old

person. A big advantage of age estimation based models is that they require only images

obtained from healthy individuals to be trained. This means that on the one hand images

are easier to get by and that the same trained model could potentially be used to measure

abnormal development caused by different diseases, even when they were not included in the

training set. CADx methods based on the age estimation model paradigm have shown to have

the ability to measure brain abnormalities caused not only by Alzheimer’s disease but also

bipolar disorder [71],diabetes mellitus [35], schizophrenia, depression [56] among others.

An overview of an age estimation based CADx model used to predict the onset of Alzheimer’s

disease is shown in figure 2.5. First, a prediction model corresponding to the function y = f(x)

is trained. The label y corresponds to the chronological age of the subject and x is a feature

vector extracted from an image. All feature vectors x are obtained from subjects which are

deemed healthy i.e. have not been diagnosed with a particular condition. Once the age

prediction model is trained it can be used to predict an estimation ŷ of the age of previously

unseen subjects. Since the chronological age of the subjects is usually known, we can easily

obtain the prediction error ǫ = y − ŷ, corresponding to the difference between the real age

of the subject and the one estimated by the model. Following the assumption that disease

processes are similar to that of accelerated aging, an age estimation based model uses the

prediction error ǫ a proxy measure of brain abnormality. Higher values of ǫ indicate an

accelerated aging process different to the typical pattern of healthy aging.

Although this approach of modeling pathologies as accelerated or decelerated aging has

gained increased popularity due to its simplicity, it unfortunately does not capture accurately

the underlying mechanisms relating ageing and pathologies [98]. The reason behind this is

that although changes of morphology caused by disease and ageing are partially overlapping,

they are distinct and affect different brain areas at different ratios [32]. In "Gaussian process

uncertainty in age estimation as a measure of brain abnormality" we present an alternative

approach to detect abnormalities based on age regression models. Instead of using prediction

error as a measure of abnormality, we propose to use of prediction uncertainty. This alterna-

tive approach avoids making the strong assumption that accelerated aging and disease are

equivalent processes, and leads to more accurate separation between scans obtained from

healthy individuals and diseased subjects.
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Figure 2.5 An overview of a CADx pipeline based on the age estimation paradigm. A prediction model f(x; `) is
trained using only images of healthy subjects. During testing, disease prediction is performed by using
age prediction error as a measure of accelerated aging.

2.3.3 Learning from limited label data

The digitalization of medical images and the ever increasing willingness of research institutions

and health centers to share data has dramatically increased the availability of medical data

in the last years, the implementation of machine learning algorithms in CADx systems is

still constrained by the small availability of annotated data. Labeled medical images are

particularly scarce because they require manual annotations performed by highly trained

radiologist or clinicians.

The problem of learning from limited amounts of labeled data has been explored using

different paradigms. As we discussed on section 2.1.2, unsupervised learning algorithms build

prediction models without the use of annotated data. Unsupervised models however lack a

mechanism to introduce limited amounts of training data when available. Weakly supervised

learning covers methods that train models feeding them with incomplete, inexact or inaccurate

labels [103]. Active learning eases the annotation of data by implementing algorithms which

recommend to the manual annotator which instances of the training data are more relevant

for the problem at hand [20]. We will focus our discussion on learning from limited amount

of data to the active learning paradigm, since it is the one closely related to the contributions

proposed in this dissertation.

Several active learning approaches have been proposed to assist medical image analysis tasks.

One of the most common applications of active learning in the field has been that of interactive

segmentation frameworks such as the one by Wang et al. [93] to perform segmentation

of the placenta in fetal MRI, or [89] where active learning is used to assist interactive 3D

segmentation of CT images. Active learning approaches have also been applied as a way

to better train data hungry deep learning approaches. Cicek et al. present an approach to

train a model to perform 3D segmentations based on 2D sparse segmentations [18], Yan et al.

present an active learning approach to discover local regions in an image which are highly

discriminative [99] and [92].

The problem of selecting which samples have to be annotated in an active learning framework

is a challenging one. One of the main reasons for this is that in order to select an appropriate

set of samples to be annotated we have to balance two contradicting properties of the training
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set. On one side we want the training samples to be annotated to be general, meaning that

we want to have a diverse set of samples that can cover as much as variation as possible so

that the trained model generalizes to unseen data. On the other hand we have a limited

budget of samples that can be annotated, and therefore we would like to annotate those which

improve the most the accuracy of our model. These contradictive conditions are known as

an exploration/exploitation dilemma, where we aim to have an optimal balance between

exploring the space of possible solutions and exploiting those which are more rewarding.

Solving an exploration/exploitation problem constitutes an active area of research [6].

Multi-armed bandit. One of the most known instances of the exploration/exploitation

dilemma is the multi-armed bandit problem. The multi-armed bandit problem owns its name

to an hypothetical situation, where a gambler arrives to a casino with a limited amount

of playing tokens and wants to spend them playing in some slot machines (also known

as one-armed bandits). Thanks to an insider tip from a friend working at the casino, he

knows that each slot machine gives rewards at a different rate: this means that while some

machines rarely give a prize, there are others which give prices more often. Naturally, he now

wants to play with the machine that gives rewards more often, but unfortunately for him,

he has no idea of which machine is the one that gives the higher rewards. This is a typical

exploration/exploitation dilemma where he has a limited amount of resources (his playing

tokens), that he has to use to explore which machines give more rewards while at the same

time playing as often as possible on the machines that give the maximum reward.

Figure 2.6 Illustration of the Multi-armed bandit problem. A gambler plays different slot machines Ki each one
with a fixed reward distribution Πi. The goal of the gambler is to play the machines in order to maximize
his earnings, by exploring which machines are the ones that give larger rewards and exploiting this
information to play those machines with higher reward distributions.

The multi-armed bandit problem (see Fig. 2.6) can be modeled as follows: we have a set of

arms K = {1, ..., k}, each one with a fixed reward distribution Π1, ..., Πk and mean expected

rewards µ1, ..., µk. Since the gambler does not know which ones are the machines that give

more money, these reward distributions are unknown to him a priori. Every time t, the gambler

plays an arm an obtains a reward rk
t according to distribution Πk. In a simple scenario where

rewards are binary - the slot machines either give a fix amount of money, or they do not give

any return at all - the reward distribution can be modeled using a Bernoulli distribution where

the arm gives a reward 1 with probability p or −1 otherwise.

An algorithm that aims at solving the multi-armed bandit problem has to make a decision at

each time step t on which arm to play. Some naive strategies would be to play any arm K with

equal probability at each time t, or to pick an arm K and play it all the time. However, smarter

strategies can be designed if we take into account that every time an arm Ki is played, the
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gambler obtains some information about the hidden distributions Πi. Intuitively, the gambler

would like to keep playing with those machines which tend to give more money, and spend

fewer tokens on those machines that do not give rewards. Therefore the decision on which

arm K to play can also be designed based on the previous experience obtained from the t − 1

plays.

Every time the glamber plays arm Ki, he obtains a reward r(t) Πk. and the objective of the

glamber is to minimize a regret function

ρ(t, k) = Tµ∗ − ΣT
t=1rk

t (2.16)

which is defined as the expected difference between the reward sum associated with an

optimal strategy (always playing the bandit with the higher expected reward µ∗ ) and the sum

of the collected rewards. The goal of the gambler should consequently be to minimize this

regret function.

Several strategies have been proposed to minimize the regret function including the ǫ-greedy

algorithm [13], the Upper Confidence Bounds (UCB) family of algorithms [2] and Thompson

Sampling [88]. The latter has shown to be a very effective heuristic to approach the multi-

armed bandit problem due to its easiness of implementation and lack of tuning parameters

[14].

Thompson sampling. The reasoning behind the Thompson sampling algorithm for binary

rewards is to keep track of the acquired knowledge about the reward distributions Π by

maintaining a prior on the Bernoulli means µ. A natural choice of priors for Bernoulli rewards

corresponds to the Beta distribution, which corresponds to the conjugate distribution of the

Binomial distribution. The prior distribution P tracking the rewards for each arm is then

defined as:

Pi(πi|αi, βi) =
Γ(αi + βi)

Γ(αi)Γ(βi)
(1 − πi)

(β+i−1)π
(αi−1)
i . (2.17)

where Γ is the gamma function.

In the Thompson sampling algorithm, these prior distributions are the mechanism that the

gambler has to keep track of the experience he has acquired by playing the slot machines.

Every time an arm is played, the prior distribution is updated by changing the parameters

αi and βi by making αi the number of times a reward was obtained and βi the number of

failures. In figure 2.7 we can observe how the updates of the parameters αi and βi model

the knowledge acquired by playing the arms. The top row corresponds to the updated prior

distributions resulting from playing an arm which returns a reward with p = 0.75, while

the bottom one shows an arm which returns a reward with p = 0.1. At t = 0 the gambler

knows nothing about the hidden reward distributions Π and therefore the estimated priors are

equivalent to an uniform distribution. By playing the arms an updating the prior distributions,

the gambler is able to approximate the real mean of the hidden reward distribution with a

high degree of uncertainty.
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Figure 2.7 Updates of the prior distribution Pi using the Thompson sampling algorithm. Each row corresponds
to a different arm, each one with a hidden reward probability µ. By playing each arm, and updating
parameters α and β according to the observed rewards, we can approximate the real hidden probability
distribution.

Given that the priors Pi are an approximation of the hidden distributions Πi they can be used

to guide the decision process of the gambler. At any time t the gambler can draw a sample

πi at random for each one of the prior distributions Πi, and play which yields the maximum

value. With this stochastic strategy the gambler will always tend to play those bandits that

have shown a higher probability to yield a reward in the past, while at the same time keeping

his options open to keep exploring the rest of the arms. The algorithm for thompson sampling

for binary rewards are summarized in algorithm 1.

Algorithm 1 Thompson Sampling for Binary Rewards

1: αi = 1, βi = 1, ∀i ∈ {1, . . . , N}

2: for t = 1, 2, ... do

3: for i = 1, . . . , N do

4: Draw sample π̂i from Pi(αi, βi).

5: Play arm i(t) := argmaxiπi(t) and observe reward rt.

6: if rt == 1 then αj = αj + 1

7: else βj = βj + 1

We can draw parallels between the exploration/exploitation dilemma of the gambler which

aims at maximizing his profit and a computer scientist looking to train a powerful machine

learning model for medical image analysis using limited amounts of training data. While the

gambler wants to find a way to effectively find those slot machines which are likely to give

the higher rewards, the scientist requires to find which images are going to be helpful in the

training of a model. Both have a limited budget, since the gambler has a finite amount of

tokens and the scientist does not have the time to manually annotate all possible images.
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Our contribution "A Multi-armed Bandit to Smartly Select a Training Set from Big Medical

Data" follows this reasoning. We pose the problem of an efficient selection of a training set

from big medical image data as a multi-armed bandit problem, and we propose a sample

selection strategy based on the Thompson sampling algorithm. Our algorithm is based on an

exploration/exploitation paradigm, since we aim at simultaneously exploiting data sources

high chances of yielding useful images and exploring varied data sources to avoid overfitting

during training.
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3.1 Introduction to Medical Image Registration

The ultimate goal of medical image analysis as a discipline is to try to understand the anatomy

of a patient through the information obtained from images of their body. Although medical

imaging is an invaluable tool in modern routine clinical practice, any given image is limited

in the amount of information that can provide to the clinician; the main reason behind this

limitation is that an image is a partial view of the anatomy of the patient. These limitations

are mostly caused by the physics behind the imaging process; in general medical images can

only provide images of a spatially constrained region of interest, at a finite resolution and

have different sensitivities depending on the type of tissue being imaged.

Due to the limited view provided by any possible image source, integrating information ob-

tained from different images is of critical importance to aid diagnosis and to assist interventions

with image based information. These different sources can either be images corresponding to

the same anatomical region from different subjects, images of the same subject at different

time points in a longitudinal study or images of the same anatomy obtained using different

imaging modalities. In all these cases where information coming from different images has

to be integrated in order to assist diagnosis or interventions, it is of critical importance to

bring the images involved in the analysis into spatial alignment and/or to find anatomical

correspondences between images.

This process of bringing two or more images into spatial alignment is commonly known as

image registration. Image registration is the process of aligning two images so that correspond-

ing features in both images correspond to the same anatomical position. Image registration is

a critical step in many medical image processing task such as combining information obtained

from different imaging modalities (CT, MRI, US,etc), to monitor changes in anatomy across
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Figure 3.1 The anatomy of a patient exists within a coordinate framework defined by world coordinates. An image
I(x) corresponds to the intensities obtained at certain world coordinates defined in a domain Ω. In the
figure a world coordinate x is mapped to location xi for image Ii and location xj for image Ij. Although
xi and xj correspond to a similar spatial location, intensities Ii(xi) and Ij(xj) are completely different.

time for a particular individual, or to relate the anatomy of one patient to that of another

subject or to an standarized atlas [47].

3.1.1 Components of an Image Registration Algorithm

As a starting point to explain a typical image registration algorithm we will present some basic

definitions and notations. The first concept we present is that of world coordinates. As their

name implies, world coordinates represent spatial locations in the real world, which means

they represent specific positions at the patient anatomy. A world coordinate x is therefore a

spatial point represented by their cartesian coordinates (x, y, z) with respect to an arbitrary

origin (Fig. 3.1).

The second important concept to introduce is that of an image. If a world coordinate corre-

sponds to a specific location of the anatomy of a patient, when a medical device is used to

take an image, what we are actually doing is to obtain a mapping of some of these world

coordinates x to intensity values. These points correspond to those within the field of view (or

domain Ω) of the image. In this context, an image can be formalized as

I : x ∈ Ω ⊂ R
3 7→ I(x) ⊂ R. (3.1)

In image registration we aim at aligning two images. These images are usually known as the

fixed image If ∈ Ωf and the moving image Im ∈ Ωm. Although each point x is unique since it

corresponds to a specific spatial location of the anatomy of the patient, the mapping I(x) will

in general have different values for If and Im. For example, while the skull of a patient can

correspond to a bright value in a CT scan it would correspond to a dark value in an US scan

due to the high reflection of US in bone . Also, an image I(x) has a limited domain Ω both in
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terms of its field of view an the resolution of the imaging device. This means that an image is

defined only for a finite number of world coordinates.

The next element to define is that of an image transformation. An image transformation, which

we define using the operator T , is a displacement of the world coordinates corresponding to

an image.

T : x 7→ x′ ⇔ T (x) = x′. (3.2)

The transformation operator T is therefore the mechanism that an image registration algorithm

has to move Im in order to bring it into alignment with If . The nature of the transformation

operator T can vary depending on the application and can range from rigid registration where

only rotations and translations are allowed to a free-form deformation, where every point x

is allowed to move to any position without any restriction. These transformations can also

be represented by a parameter vector p ∈ R
Np , which fully describes the transformation

operator. For example, in the simple case of a 2D rigid transformation p corresponds to a

vector containing the spatial translations and rotation [tx, ty, θ] which have to be applied

to each point x. On the case of the complex case of a free-form deformation p contains a

series of position updates [δ(x0), . . . , δ(xn)] for each point in an image. In general for larger

cardinalities Np of the parameter vector, the transformation operator has more freedom to

transform the moving image.

Another element in image registration which is often implied and not given much attention

is the resampling operation. Although world coordinates correspond to real positions in the

anatomy of the patient and therefore are continuous, the domains of the images Ωf and Ωm

are discrete, and therefore are only defined for a limited subset of world coordinates. This

is problematic since this means that points sampled by the moving and fixed image would

rarely correspond to the exact same position in world coordinates. In order to solve this, a

resampling operation is needed.

I : I(x) ∈ Ω ⊂ R
3 7→ Imf (xmf ) ∈ Ωmf ⊂ R

3. (3.3)

3.2 The standard image based registration

algorithm

Given the elements of image based registration described in section 3.1.1, we can now present

the standard image registration algorithm. An image registration algorithm aims at aligning If

and Im so that corresponding points in both images correspond to the same world coordinates

x. A typical image-based registration algorithm (see Fig. 3.2) iteratively performs the following

operations:

• Transform the moving image Im using the parameters p.
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Figure 3.2 Image registration is based on two main operations: A spatial transformation T which corresponds to a
movement of the spatial coordinates assigned to the moving image Im, and resampling R which consists
on obtaining the values of an image in another domain with a different set of spatial coordinates.

• Resample Im and If into a common domain Ω.

• Measure the similarity between Im and If in this domain Ω.

• Update the transformation parameters p in order to maximize the similarity measurement

between the two images.

We have already presented the transformation and resampling operations in the previous

section. The main problems to solve in an image registration problem are: how to perform the

similarity measurement between Im and If and how to update the transformation parameters

p accordingly. These problems are solved through the optimization of an energy function

(also known as similarity metric) comparing the intensity values of the fixed image and the

resampled moving image given a transformation T . The optimal alignment between these two

images can be obtained by finding the parameter vector p maximizing this energy function:

p∗ = arg max
p

E(If , R(T (Im))), (3.4)

3.3 Classification of Image Registration Algorithms

Most image-based registration algorithms follow roughly the algorithm described in section

3.2. However, the field of medical image registration has been divided in several categories

to study particular image registration problems (See figure 3.3 for an overview). According

to the classification shown in figure 3.3, which is in turn an adaptation of the classification

first proposed in [63], image based registration methods can be classified according to three

different criteria:

• The characteristics of the images If and Im.

• The type of transformation T .
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Figure 3.3 Classification of medical image registration algorithms. Methods can be mainly classified according to
the type of images involved in the registration (blue), the type of transformation applied to the moving
image (green), and the strategy used for optimization of the energy function (orange).

• The amount of interaction or feedback required by the human operator during the

registration process.

Since most image registration tasks can be summarized to the formulation of equation 3.4,

most research in medical image registration has also focused on a few common trends. Most

fundamental research on the field of medical image registration has focused on the following

trends:

• The design or choice of a similarity metric. A similarity metric can be defined as a

measure of how compatible are images If and Im.

• The parametrization used to define the transformation T .

• The optimization strategy to find the maximum of the energy function E.

3.4 Evolution of the Medical Image Registration

Field

In 1896, less than a year after the discovery of x-rays, the first case of the use of an x-ray

image in a clinical application was documented [33]. This case was that of a woman with a

needle in her hand which had to be extracted. A x-ray image of the hand was obtained and

the physician proceeded to align this image to the hand of the patient in order to guide the

extraction. This alignment between the hand and the x-ray image was evidently performed

manually, only with the visual information of the hand of the patient and the image. Although

this image-patient alignment was good enough for minor procedures, it soon became evident

that precise methods for image registration would enhance the use of medical images. Due to

this need, several techniques were proposed for the alignment of images to patients. The first

widely used method for image to patient registration was the stereotactic frame [84], which

allowed the alignment first of x-ray images and later of CT scans to the head of the patient
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during neurosurgery. A stereotactic frame is rigidly attached to the skull and can be used to

define a coordinate system for both the images and the patient. Although stereotactic frames

provide reasonably accurate registration between patient and images, attaching a frame to the

patient is invasive and restricts the movement of the neurosurgeons during a surgery and the

types of images that can be acquired. Therefore, a need existed to develop methods which

were able to perform registration based only on the information contained in the images

themselves, without the need of any external device.

With the invention of digital computers, the medical imaging field saw an increased use of

computational methods to assist in a variety of image processing tasks. As mentioned in

chapter I, computers were first used to perform easy preprocessing tasks such as background

subtraction and contrast correction, but by the 1980’s they started to be used to perform

basic first retrospective computer based image registration methods started to be proposed.

Retrospective image registration methods aim at aligning images after they have been acquired,

without any aid of markers or external devices. Therefore they rely only in the information

contained in the images themselves [97]. Due to the computational cost of performing

operations across images and the relatively lack of computational power at the time, these first

methods required larges amount of user interaction in order to guarantee reliable registration

results [15]. Also, early methods mainly relied on reducing the search space by not comparing

the intensity values of all the pixels in the images to be aligned, but rather on performing

a geometric alignment of either a few landmarks on each image corresponding to salient

locations [31, 49] or curves describing the surface of regions of interest [3, 41].

With an increase of computational power, image-based registration techniques gained increas-

ing popularity. Research in image-based registration methods focused mainly on two different

areas: i) the development of cost functions able to compute similarities between images based

solely on image information and ii) on improvements on the optimization algorithm of these

cost functions. Research in cost functions saw the development of image-based similarity

measures based on the sum of squared differences (SSD) and its variations [37, 48]. The

main assumption of these measures is that the same object in both images should have the

same intensities. These first approaches soon proved to be limited, since this requires not

only that both images correspond to the same imaging modality, but is also dependent on

acquisition settings which guarantee that intensity levels for both images are comparable. To

try to overcome this limitation, approaches based on computing cross-correlations of image

intensities between both images were proposed [19, 22, 58]. Cross correlation based metrics

do not assume that the same intensities should be observed at both images, but rather rely

on observing linear relationships between the intensities of the same object at each image.

Although these approaches proved to be effective and fast metrics to perform mono-modal

registration, the mentioned assumptions meant that these metrics were not suitable in the

multi-modal registration setting. A breakthrough in the registration of multimodal images

arrived with the introduction of mutual information as a similarity metric by Viola and Wells

[90] and successive modifications to their approach [61, 85]. Mutual information proved to be

so reliable that it became the de facto standard metric for multi-modal registration. Only a few

years after its introduction, a review dedicated exclusively to the use of mutual information

for medical image registration [74] included 165 papers.
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In parallel to the development of novel similarity metrics, the field pushed towards optimiza-

tion methods which could leverage on these similarity metrics to perform more accurate

image registrations, with a reduced need of human interaction. Of particular importance

was the development of methods which were able to perform non-rigid registration between

images. Arguably the first popular approach to perform automatic non-rigid registration

between medical images was the Automated Nonlinear Image Matching and Anatomical

Labelling (ANIMAL) algorithm [23]. This approach became popular not only because of its

high accuracy, but also because of its availabilaity as an out of the box registration tool to

perform brain segmentation based on registering images to an atlas, and then transferring

the labels. Given the success of ANIMAL, the following years saw the development of new

algorithms to perform efficient image registration. In 1998, Thirion presented the demons

algorithm, which provided fast non-rigid registration based on optical flow using an image

based similarity metric (SSD) [87]. One year after, Rueckert et al. presented a new approach

to perform image based non rigid registration using a parametrization based on free form

deformation [80]. In contrast to the demons method, free-form deformations do not require

that the intensities of tissues between images remain constant. An alternative formulation

to the free form deformation is that of the large deformation registration framework [17].

The idea is to model the problem of image registration as a simulation of a viscous fluid. In

contrast to the free form deformation approach, this formulation allows large deformations

to be achieved. The large deformation framework has also been widely used in the field of

computational anatomy [40] which studies anatomical shape variations within a population.

3.5 Machine Learning for Medical Image

Registration

In the last few years, the field of medical image registration has been greatly influenced

by the introduction of machine learning methods. These methods aim at introducing prior

information about the images to be aligned in order to aid the registration algorithm. In a

general sense, two strategies have been used to introduce machine learning methods in the

medical image registration field: 1) using machine learning methods to estimate similarity

measures between two images or 2) to directly predict deformation fields or transformation

parameters.

The first family of approaches, commonly known as similarity learning obtain a priori

information in the form of a training set of aligned examples. For example, the approaches by

Jiang et al. [54] Lee et al. [57] and Michel et al. [68] posed the similarity learning problem

in a discriminative manner by training a classification model able to discriminate between

aligned and misaligned examples. With the advent of deep learning techniques, several

approaches have been proposed for the use of deep learning architectures to learn similarity

metrics. Among them Cheng et al. [16] proposed the use of stacked auto-encoders to learn

similarities between CT and MRI images. In 2016 we proposed the use of convolutional neural

networks to directly learn similarities between multimodal images [82].

The second group of approaches aim at estimating directly the transformation parameters

given the joint appearance of the fixed and moving images. Due to the increased difficulty

3.5 Machine Learning for Medical Image Registration 31



of this task, early learning based approaches were limited to a monomodal case. Kim et al.

[55] learn updates of the transformation parameters to perform 2D-3D registration. Hu et al.

propose to learn a deformation field to register monomodal images of the fetal brain [51].

Learning based registration methods for multimodal registration focused mainly on learning

similarity metrics relating the intensities of one image modality to another. Although these

approaches shown that it was possible to learn complex relationships between two different

modalities they had two major limitations: 1) they relied on local relationships at a patch

level between the two modalities and 2) they lack a mechanism to obtain the gradient of

the metric directly, requiring the need of local gradient approximations or gradient free

methods. As part of this thesis we propose to address multimodal registration as a supervised

regression task where joint image descriptors are used as the input, and the parameters of

the transformation aligning both images are obtained as the output. We model the joint

appearance between the two images using context aware descriptors that capture both local

an global clues simultaneously in both modalities. This method was presented first as a

conference submission at MICCAI 2016 [46] and was further expanded as a full journal

version in the special issue of medical image analysis [45]. The text of the latter is included in

its full version as part of this thesis.
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4Conclusion and Outlook

In this dissertation we have aimed at discussing the impact of machine learning based ap-

proaches for medical image analysis tasks, in particular to the fields of computer assisted

diagnosis and multimodal image registration. We have also presented three novel contribu-

tions, which leverage on machine learning approaches to tackle these tasks. We would now

like to summarize these contributions, to present a discussion on the topics addressed in this

thesis, and to present a short outlook on current trends related to our contributions.

As a first contribution we presented a CADx model based on an age estimation model. Age

estimation models based on imaging data have gained increased popularity as a tool to measure

brain abnormalities caused by heteregeneous factors, ranging from obvious factors such as

neuropathology to systemic diseases (e.g. diabetes, obesity) or even environmental conditions

[21]. However, we have demonstrated in our contribution that these approaches are limited

by their use of age estimation error as a measure of deviation from healthy aging. Our model

uses uncertainty based measures to assess abnormality caused by neuropathologies. Different

to purely discriminative approaches, our method can be trained using only data acquired from

healthy subjects. This allows us to use the same model to assess brain abnormalities caused by

different unrelated diseases, as demonstrated in our experiments where we use our model

to find morphological changes caused by autism or by Alzheimer’s disease. Measuring and

using model uncertainty has become an active area of research, particularly for deep network

models for classification [38] and segmentation [79].

The second contribution consisted is a method for the efficient and intelligent acquisition of

samples to construct a training dataset obtained from large scale medical records. Our method

is based on the multi-armed bandit problem, and was solved using Thompson sampling. The

main characteristic that separates our approach when compared to previous active learning

approaches([103], [93], [89]) is that our approach relies only on meta data assigned to

each one of the images and does not require the access and processing of imaging data.

This approach can be particularly advantageous on situations where data acquisition and

processing is cumbersome or expensive, but also in cases where imaging data is censored due

to ethical constraints. Given the explosion on the availability of medical data we consider

that active learning will be required to smartly train models in a smarter directed manner.

The medical image analysis community has already shown interest in pursuing this directions

as demonstrated in recent approaches. We highlight in particular the work by Maicas et al.

[62] who presents an approach to train tumor detection models using small training sets is

demonstrated, Wang et al. [92] shows the use of active learning models to train deep learning

models for medical image segmentation and Hu et al. [52] who demonstrate the potential to

deploy learning based multimodal image registration using weakly labelled data.
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In our third contribution we presented a novel formulation using ensembles of decision trees to

perform multimodal registration. We shown that our approach based on learning optimization

updates is able to perform accurate segmentations between images coming from very different

modalities such as US, MRI or histology. Additionally, our method based on estimating

directly the transformation parameters is able to perform fast registration using different

parametrizations. Although not included as part of this thesis, we further explored the idea of

learning directly the gradient of the transformation using a deep learning architecture [82]

and more recent works have further explored this direction [9, 10, 30, 100, 101]. We hope

that further advancements in machine learning algorithms, particularly in regression methods

based on deep learning architectures lead to further developments in this direction.

Medical imaging analysis is a discipline that has been highly impacted first by the introduction

of digital imaging and in recent years by the introduction of machine learning methods. The

current trend of the medical image analysis community has been the adoption of machine

learning algorithms to approach segmentation, registration, shape analysis and diagnosis, with

a large fraction of them being computer vision approaches adapted to medical image analysis

tasks. Despite the ample success of these approaches in scientific venues, major hurdles still

exist to translate these methods into applications which can be used in routine clinical care.

First, it is of critical importance to understand that although medical image analysis tasks

share common challenges with computer vision, they present particular characteristics that

require holistic approaches which leverage on the ample knowledge of radiologists, clinicians,

biologists and other related disciplines. Second, the community has to put concrete and strong

efforts to be able to communicate the strengths and limitations of machine learning models

and to make sure that experts from other areas do not not see machine learning boxes as a

magical black box able to perform predictions out of thin air.
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A B S T R A C T

Multivariate regression models for age estimation are a powerful tool for assessing abnormal brain morphology

associated to neuropathology. Age prediction models are built on cohorts of healthy subjects and are built to

reflect normal aging patterns. The application of these multivariate models to diseased subjects usually results in

high prediction errors, under the hypothesis that neuropathology presents a similar degenerative pattern as that of

accelerated aging. In this work, we propose an alternative to the idea that pathology follows a similar trajectory

than normal aging. Instead, we propose the use of metrics which measure deviations from the mean aging tra-

jectory. We propose to measure these deviations using two different metrics: uncertainty in a Gaussian process

regression model and a newly proposed age weighted uncertainty measure. Consequently, our approach assumes

that pathologic brain patterns are different to those of normal aging. We present results for subjects with autism,

mild cognitive impairment and Alzheimer’s disease to highlight the versatility of the approach to different dis-

eases and age ranges. We evaluate volume, thickness, and VBM features for quantifying brain morphology. Our

evaluations are performed on a large number of images obtained from a variety of publicly available neuro-

imaging databases. Across all features, our uncertainty based measurements yield a better separation between

diseased subjects and healthy individuals than the prediction error. Finally, we illustrate differences in the disease

pattern to normal aging, supporting the application of uncertainty as a measure of neuropathology.

Introduction

The brain is a complex organ whose morphology varies substantially

across the population. The causes of morphological variation have not yet

been fully understood, but several studies have reported on potential

causal factors including age (Guttmann et al., 1998; Franke et al., 2010;

Ziegler et al., 2012; Wachinger et al., 2015), sex (Ingalhalikar et al.,

2014), pathologies like dementia (Gaser et al., 2013; Wachinger et al.,

2016), and even environmental factors such as education and physical

activity (Steffener et al., 2016). Among all these variables, age was shown

to be the main factor determining brain morphology (Potvin et al., 2017).

Due to the wide impact of aging on brain morphology, multivariate

regression methods using features based on brain morphology can in turn

be used to estimate a subject’s age. A recent volume of work has focused

on modeling the normal aging of healthy individuals to predict a sub-

ject’s age. Obtaining a prediction of the age with imaging features was
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shown to be useful to derive imaging biomarkers, which can potentially

be used to predict brain anomaly caused by disease (Cole and Franke,

2017).

The task of predicting age from brain images has been formulated as

multivariate regression, where a predictive model is trained to relate

structural information obtained from brain MR images to the chrono-

logical age of healthy subjects (Gaser et al., 2013; Wang et al., 2014;

Kondo et al., 2015; Valizadeh et al., 2017; Liem et al., 2017). The pre-

diction from these models is interpreted as an estimate of a subject’s

biological age, in contrast to a subject’s chronological age. Of particular

interest is the prediction error, which is defined as the difference between

the biological and chronological age (Fig. 1). When predicting the age of

healthy subjects, the prediction error is assumed to be small, while the

prediction on subjects with neuropathology is assumed to result in large

positive prediction errors. The error could therefore serve as a person-

alized marker of pathological processes (Franke et al., 2010; Gaser et al.,

2013). The main assumption behind using the prediction error as a

measure of pathology is that changes caused by neuropathology are

equivalent to an accelerated aging process. Following this hypothesis,

Gaser et al. (2013) and Habes et al. (2016) showed that changes related

to Alzheimer’s disease (AD) resemble accelerated aging, since differences

between biological and chronological age are larger for individuals with

AD than for healthy controls. Similar results on age differences have also

been reported for individuals diagnosed with schizophrenia (Nenadic

et al., 2017) and depression (Koutsouleris et al., 2013). In these studies,

the age prediction model is trained using only images from healthy in-

dividuals. This means that contrary to their discriminative counterparts,

a single age prediction model can be used to assess differences between

healthy controls and individuals diagnosed with different conditions.

Although the findings of these studies show the big potential of using

models of healthy aging to assess brain abnormality, a potentially

limiting factor when quantifying neuropathology through the difference

between chronological and predicted age, is the assumption that

morphological changes caused by disease follow an accelerated aging

Fig. 1. Comparison between the three evaluated anomaly metrics: prediction error ε, GPR uncertainty covðbyÞ and GPR age-weighted uncertainty covwðbyÞ.
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process. The assumption that brain anomaly is equivalent to accelerated

aging may hold true for specific brain regions that accommodate neural

systems with high susceptibility to deleterious factors, which are there-

fore affected by aging and disease processes. However, the assumption of

accelerated aging does likely not extend to the whole brain, given that

differences in brain morphology are caused by a variety of neurobio-

logical processes that are complex and non-linear (Fjell et al., 2014;

Buckner, 2004; Hedden and Gabrieli, 2004). This is potentially prob-

lematic, as current approaches for predicting the brain age are based on

multivariate regression models that operate on gray matter maps or

morphological features across the entire brain.

In this work, we build on the idea of modeling neuropathology as

deviations from the healthy development of the brain. Our main hy-

pothesis is that disease and aging result in brain-wide patterns of change.

These patterns are not independent from each other and are essentially

similar for several brain regions where disease results in patterns

resembling accelerated aging. However, these accelerated aging patterns

do not extend to the whole brain, making the assessment of deviations

from healthy aging solely through prediction error problematic. We

propose instead the use of Gaussian process regression (GPR). GPR can

measure how a new subject deviates from previous observations used to

construct the model by means of the posterior prediction uncertainty.

Different to prediction error, GPR uncertainty is able to measure de-

viations from the healthy aging model without the implicit assumption of

a brain-wide accelerated aging pattern. Particularly for the task of age

prediction, we introduce a variation to traditional Gaussian processes

regression that takes the known chronological age into account. This

modification yields a weighted uncertainty measure. We evaluate our

new method on a large collection of images obtained from several public

datasets for assessing the variation to normal aging in mild cognitive

impairment, Alzheimer’s disease, and autism. Our results support the use

of Gaussian process uncertainty and the age weighted uncertainty as

tools to measure neuropathological patterns that deviate from healthy

aging. Similar to previous age prediction models, our evaluations are

done with a single age prediction model which is trained only on healthy

controls, showing its versatility across different age ranges and diseases.

Materials and methods

Method overview

In this section, we describe our method for assessing neuropathology

based on GPR uncertainty. Fig. 2 presents an overview of our method,

which consists of two stages. In the training stage (top section of Fig. 2),

we build a GPR model that estimates the chronological age of healthy

subjects. This model is built using a dataset of MRI scans of healthy

controls (section 2.2). Images are processed and segmented to extract a

set of features describing brain morphology (section 2.3). Finally, a GPR

model mapping the extracted features to a predicted age is trained on

these features (section 2.4).

In the testing stage (bottom section of Fig. 2), we use the GPR model

trained on healthy subjects to quantify deviations from the normal aging

pattern on previously unseen subjects. In this stage, morphological fea-

tures are extracted from the MR images of the test subjects, and these

features are then used to obtain an estimate of the age of the subject using

the GPR model. From the GPR model, we obtain the estimated age by , an
uncertainty measure of the estimation covðbyÞ, and a weighted uncer-

tainty measure covwðbyÞ (see section 2.4.1 for details on these measure-

ments). We will show in our experiments (section 3) that these

measurements based on the uncertainty of the GPR model can be used to

assess the similarity between subjects in the testing set and the healthy

population in the training set.

Data

Similar to previous work on age prediction, we train an age regression

model based on T1-MR images of healthy individuals. The training im-

ages for our age regression model are extracted from three different

databases: IXI ,2 ABIDE (Di Martino et al., 2014), and AIBL (Ellis et al.,

2009). Details for each training dataset are shown in Table 1. We perform

evaluation on 3 different test datasets summarized in Table 2. The

Fig. 2. Overview of our brain anomaly prediction model. The top part corresponds to the training stage where a set of images from healthy individuals is used to build

a GPR age prediction model. The bottom part corresponds to the age prediction stage where the GPR model is used to predict the age of a set of test images. A predicted

age by as well as the uncertainty measures covðbyÞ and covwðbyÞ are obtained. These measurements can be used to find differences between the HC and Dx groups.

2 http://brain-development.org/ixi-dataset/.
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training and testing groups are therefore extracted from different data-

bases and are independent from each other. For the first and second

groups, obtained from the OASIS (Marcus et al., 2007) and ADNI (Jack

et al., 2008) datasets, we aim at finding differences between Healthy

Controls (HC), individuals diagnosed with Mild Cognitive Impairment

(MCI), and subjects diagnosed with Alzheimer’s disease (AD). For the

third dataset, ABIDE II, we look for differences between HC and in-

dividuals diagnosed with autism. In total, 1543 images were used for

training and 4819 images for testing.

Feature extraction

As mentioned in the overview section of our method, we require to

extract features from structural MR images to quantify the brain

morphology. Several image based features have previously been used for

the age estimation task: Good et al. (2001), Franke et al. (2010) and

Gaser et al. (2013) used Voxel Based Morphometry (VBM) features,

which identify differences on the composition of brain tissue by regis-

tering all structural images to the same space. After segmenting gray and

white matter, the voxel values of the gray matter extracted images are

used as features. Finally the dimensionality of the feature space is

reduced using Principal Component Analysis (PCA) and keeping only the

principal modes of variation. Valizadeh et al. (2017) and Wang et al.

(2014) use volumetric, thickness and curvature measurements of the

brain, derived from the brain segmentation with FreeSurfer (Fischl,

2012). These different sets of features have been presented in separate

studies but, to the best of our knowledge, have not yet been directly

compared on the same age estimation task. In summary, we use three

different types of features in our approach:

� VBM features (50 Principal Components),

� Thickness of 70 cortical structures.

� Volume of 50 brain structures.

Additionally we build a prediction model combining VBM, thickness

and volume features together. VBM features were extracted using the

CAT12 toolbox 3 together with the SPM12 toolbox 4 for segmentation.

The preprocessing of the images, the segmentation of gray matter, and

post processing were implemented in line with the pipeline proposed by

Franke et al. (2010). Dimensionality reduction was performed using the

PCA library included in the scikit-learn toolbox (Pedregosa et al., 2011).

The principal component directions were estimated using only the

training sample, and the testing data was projected to this estimated

lower dimensional space. For all the analyses on thickness and volume

features, FreeSurfer version 5.3 was used. The default Deskian/Killiany

atlas was used for the parcellation to obtain thickness measurements. We

are using all subcortical volume measurements as provided by FreeSurfer

and described in the FreeSurfer subcortical segmentation pipeline.

Uncertainty estimation with Gaussian process regression

Several multivariate regression techniques have been previously used

for the task of age prediction from brain MR images. A detailed com-

parison of the performance of neural networks, random forests, k-nearest

neighbors, support vector machines, multiple linear regression and ridge

regression was presented by (Valizadeh et al., 2017). In the work by

Franke et al. (2010) relevance vector regression was preferred.

In our case, we are interested in modeling the age regression problem

with a model that does not only provide estimates of the biological age,

but also provides uncertainties of these estimates. Gaussian process

regression achieves a comparable accuracy in age regression than stan-

dard regression techniques, while offering the advantage of providing an

estimate of the uncertainty of each prediction. GPR models have been

used successfully before as age prediction models (Cole et al., 2015,

2016), but the potential of using uncertainty based measurements as

biomarkers has not been explored yet. In this section, we will briefly

introduce GPR models, focusing particularly on the calculation of un-

certainty, where we refer the reader to (Rasmussen and Williams, 2005)

for a more detailed explanation, and introduce our modification for

computing an age-weighted uncertainty.

Gaussian process

A Gaussian process is defined as a collection of random variables, any

finite number of which have a joint Gaussian distribution (Rasmussen

and Williams, 2005) with:

� a mean function mðxÞ ¼ E½f ðxÞ�,

� and a covariance function kðx;x0Þ ¼ E½f ðxÞ� mðxÞf ðx0Þ� mðx0Þ�.

Although not necessary, it is often assumed that the mean function

mðxÞ of the GPR is zero. Therefore the design of a GPR is focused on the

selection of an appropriate covariance function kðx; x0Þ measuring the

similarity between data points. This covariance function is equivalent to

a similarity measure between two data points, giving small values for

points that are close to each other and large values otherwise. In our case

we define the covariance function as a squared exponential function of

the form:

k
�
xi; xj

�
¼

XK

k¼1

exp

2

64
�
�
xki � xkj

�2

2l2k

3

75þ σ
2
nδ
�
xi; xj

�
; (1)

where σ2n is the noise variance, lk is the length scale of the k-th feature,

and δ is the Kronecker delta function. We can think of the length scale

vector l 2 ℝ
K as a parameter controlling how close should two data

points xi and xj should be in order to influence each other. In general, the

smaller an element lk is, the more dependent y is to the feature element

xk.

We model the joint distribution of the training and test outputs as:

�
y
y0

�
� N

�
0;

�
KðX;XÞ KðX;X0Þ
KðX0

;XÞ KðX0
;X0Þ

�	
: (2)

The elements of the joint distribution in Eq.(2) can be summarized as

follows:

Table 1

Summary of the datasets used for training the age prediction model.

Training

dataset

No.

Images

Female/

Male

Age (Min-

Max)

Age quantiles

IXI 581 311/270 19–87 33.7–48.6 -

62.2

ABIDE I 573 99/474 6–64 14.6–17.0 -

20.1

AIBL 409 209/200 55–92 67.0–73.0 -

79.0

Table 2

Summary of the datasets used for testing.

Testing

dataset

No.

Images

Female/

Male

Age (Min-

Max)

Age quantiles Target

Dx

ADNI 3591 1422/

2169

54–90 71.2–75.1

-79.7

MCI -

AD

OASIS 196 129/67 60–82 71.0–76.0 -

82.0

MCI -

AD

ABIDE II 1032 247/785 5–64 9.5–11.4 -

15.2

Autism

3 http://www.neuro.uni-jena.de/cat/.
4 http://www.fil.ion.ucl.ac.uk/spm/.
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� an intra-covariance matrix of the training set KðX;XÞ 2 ℝ
mxm ,

� an intra-covariance matrix of the testing set KðX0
;X0Þ 2 ℝ

nxn,

� an inter-covariance matrix between the training and testing set KðX;

X0Þ 2 ℝ
mxn,

� a training labels vector y 2 ℝ
m, and

� a testing labels vector y0 2 ℝ
n,

where m corresponds to the number of training samples and n to the

number of testing samples. The matrices KðX;XÞ have the form:

K ¼

2

664

kðx1; x1Þ kðx1; x2Þ … kðx1; xnÞ
kðx2; x1Þ kðx2; x2Þ … kðx2; xnÞ

⋮ ⋮ ⋱ ⋮

kðxm; x1Þ kðxm; x2Þ … kðxm; xnÞ

3

775; (3)

where each element kðx1; x2Þ corresponds to a measure of the similarity

between two feature vectors xi and xj. We are interested in predicting the

values for the test labels y0, which have the following conditional dis-

tribution:

y0


y;X;X0 � N

�
KðX0

;XÞ;KðX;XÞ�1
y;KðX0

;X0Þ

� KðX0
;XÞKðX;XÞ�1

KðX;X0Þ
�
: (4)

Using this conditional distribution we can derive the predictive

equations of a GPR:

by0 ¼ E
� by0



X; by;X0
�
¼ KðX0

;XÞKðX;XÞ�1
y (5)

covðbyÞ ¼ KðX0
;X0Þ � KðX0

;XÞKðX;XÞ�1
KðX;X0Þ; (6)

which correspond to the predicted labels and to the estimated covari-

ance, respectively. The estimated covariance can also be thought as a

measure of uncertainty for the predicted values. This uncertainty esti-

mate is usually used in the GPR framework to measure the degree of

confidence of a predicted value by ' by measuring the similarity of a new

observation with respect to the previous observations in the training set.

When training a GPR model, the parameters θ ¼ fl; σng have to be

tuned in order to fit the training data. This is done by maximizing the

marginal likelihood of the model given by:

logðpðyjX; θÞÞ ¼ �
1

2
yTKðX;XÞy�

1

2
logðKðX;XÞÞ �

n

2
logð2πÞ: (7)

By finding the parameters θ that maximize the marginal likelihood,

we can obtain a GPR model that best fits the training data.

Age-weighted uncertainty

The uncertainty measurement of the GPR covðbyÞ is solely defined

with respect to the feature vectors x. In a common regression scenario

this is a natural approach since the real values of the labels are unknown.

However, in the case of an age estimation framework, we do possess the

real values of the labels, which correspond to the chronological age of the

patient.

We can introduce the age information into the GPR framework by

creating age-weighted similarity matrices KwðX;X
0
;y;y0Þ. Similar to the

GPR covariance matrices we can construct three different similarity

matrices:

� a weighted intra-similarity matrix for the training samples

KwðX;X;y;yÞ 2 ℝ
mxm ,

� a weighted intra-similarity matrix for the testing samples KwðX
0
;X0

;y;

y0Þ 2 ℝ
nxn, and

� a weighted inter-similarity matrix between the training and test

samples KwðX;X
0
;y;y0Þ 2 ℝ

mxn.

These similarity matrices are constructed in the same manner as the

covariance matrices presented in section 2.4.1. The only difference

consists in a modification of the kernel to take into account differences in

age. This is achieved by creating an age weighted similarity kernel of the

form:

kw
�
xi; xj;yi;yj

�
¼ s

�
yi; yj

�
k
�
xi; xj

�
; (8)

where kðxi; xjÞ corresponds to the kernel defined in Eq.(1) and sðyi;yjÞ

corresponds to an age similarity term defined as:

s
�
yi; yj

�
¼ exp

"
�
�
yi � yj

�2

2l2y

#
þ σ

2
yδ
�
yi;yj

�
: (9)

where ly corresponds to the age length scale, which is a parameter con-

trolling the effect of the age weighting. By using this updated kernel kw,

we obtain a weighted uncertainty term covwðyÞ which takes into account

the age of the subjects to define similarities between subjects. This

weighted uncertainty is obtained similar to the regular uncertainty pre-

sented in Eq. (6):

covwðy
0Þ ¼ KwðX

0
;X0Þ � KwðX

0
;XÞKwðX;XÞ

�1
KwðX;X

0Þ: (10)

Prediction error, uncertainty and age-weighted uncertainty

In this work, we compare three age regression based metrics in order

to measure their usefulness as a biomarker to distinguish between

healthy controls and subjects with different neuropathologies. These

metrics are the commonly used prediction error ε ¼ by � y (Franke et al.,

2010), the GPR uncertainty covðyÞ, and the GPR age-weighted uncer-

tainty covwðyÞ. As discussed in the introduction, the prediction error has

previously been used to assess differences between healthy and

non-healthy populations. The prediction error is the difference between

the predicted and chronological age, as shown in Fig. 1. A higher pre-

diction error is assumed to indicate an accelerated aging process (Franke

et al., 2010; Gaser et al., 2013).

The computation of the GPR uncertainty covðbyÞ was presented in

section 2.4.1. It can be thought of as a metric on how close a testing point

is to all the training points in the feature space, illustrated in Fig. 1. The

scatter plot represents a set of subjects in a 2-dimensional space

composed of the volume of two different structures. By training a GPR on

a set of training points (represented by circles), we obtain a measure of

uncertainty covðbyÞ for every point in the 2D-space. This covariance

matrix is represented by the shading of the grid, where darker regions

correspond to regions where the predictor has higher confidence on its

prediction. When performing prediction on previously unseen points

(Test Subject 1 and Test Subject 2), we can obtain both a predicted age by
and its confidence covðbyÞ. In Fig. 1, we observe that even though both

test subjects get similar predicted values, the confidence of the prediction

for subject two is higher due to its proximity to the training set.

The third metric, the age-weighted uncertainty covwðbyÞ expands

upon the notion of uncertainty by taking into account the subject’s age.

Measuring covwðbyÞ is equivalent to adding a further dimension to the

distance measured by the normal GPR uncertainty. The reasoning behind

this is to give higher similarity to individuals which have similar

morphological features to healthy individuals of similar ages. For

example, we see in Fig. 1 that a healthy testing point (blue) is close to

training points with similar features and age; the testing point would

therefore have a high covwðbyÞ value. On the other hand, the Testing

Point corresponding to a diseased subject (red point) would have a low

covwðbyÞ value because even though there are individuals in the training

set with similar feature values, they correspond to subjects with a

different age range. Both proposed metrics are closely related. In fact,

covðbyÞ is equivalent to covwðbyÞ for the special case when ly ¼ ∞.
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Aging and disease assessment

As discussed in the introduction, several studies have demonstrated

that aging is a complex process, which affects different brain structures

and regions at different rates of change. It has also been reported that

deleterious changes caused by neurodegenerative disease follow a

pattern that resembles an accelerated aging process. In order to evaluate

how aging and neurodegenerative disease affect different brain regions,

we performed an analysis of the volumetric features obtained from our

training set. To facilitate this analysis we restricted our analysis to images

obtained from the ADNI database. To assess which individual structures

are affected either by aging, disease or both factors, a series of simple

linear fixed effects model were fitted to our data. In each one of these

models, the dependent variable corresponds to the volume of a different

brain structure, and the independent variables correspond to age, sex,

diagnosis (0¼ healthy, 1¼MCI/AD) and an interaction term between

diagnosis and age.

Results

Assessing the effect of aging and disease on brain development

In this section we present the results obtained after fitting the aging

and disease model described in section 2.6. In Table 3, we present the

regression coefficients for age, diagnosis and the age/diagnosis interac-

tion term as well as their corresponding p-values for the linear fixed ef-

fects model. The table is sorted by descending p-value for the diagnostic

coefficient, which means that the structures at the top of the table are

those which present more significant volume alterations caused by dis-

ease. Age and volume variables were normalized in order to make the

coefficients of different structures comparable. In the case of bilateral

structures we only show the values for the left hemisphere in order to

simplify our analysis. Plots showing the progress of the hippocampus and

cerebellum white matter across different ages for both healthy and in-

dividuals with MCI/AD are also presented to illustrate our results in

Fig. 3. The hippocampus was selected since it was the structure which

had the most evident effects of age and disease. On the other hand, the

cerebellum white matter was selected as a structure which showed sig-

nificant effects of aging but is apparently not largely affected by Alz-

heimer’s disease.

There are a couple of relevant observations that can be extracted from

Table 3. First, the regression coefficients for age and diagnosis always

have the same sign for structures with significant associations, and there

exist significant interactions between aging and diagnosis for most of the

analyzed structures. This supports the hypothesis that disease and aging

are overlapping processes that affect the brain structures in the same

direction. However, we can also observe in Table 3 that there exist some

structures that although largely affected by aging do not present signif-

icant disease effects (i.e. cerebellum white matter). This can also be

observed on the box plots in the top of Fig. 3, where a clear difference

between the HC and Dx groups is evident for all age ranges in the case of

the hippocampus, whereas for the cerebellumwhite matter no significant

differences exist between both groups.

To further illustrate the point that aging and disease are processes

that affect different regions of the brain at different rates, we show the

progress of pairs of features for both the HC and Dx groups (bottom of

Fig. 3). By looking at the central plot, where the volume of left and right

hippocampus is shown, we can understand the reasoning behind the

accelerated aging hypothesis of previous age estimation works. Indeed,

by looking only at these features, we would be tempted to conclude that

the brain of a healthy 80 year old is essentially similar to that of a

diseased 60 year old. However, this observation contrasts with the left

plot, where the left and right cerebellum white matter volumes are

shown. By looking at these features alone, we would draw a different

conclusion, since it would appear that there are no differences between

the brains of healthy and diseased subjects of the same age. By looking at

the left hippocampus and left cerebellum white matter simultaneously

(right in Fig. 3), we can observe that disease produce changes in the brain

that are essentially different to those of accelerated aging, causing the

overall appearance of the brain of an average 60 year old diagnosed with

AD to be different to a healthy individual of any age. These observations

support our hypothesis that morphological changes associated to AD and

MCI are complex and that a model of accelerated aging across the whole

brain may be too simplistic to model the specific effects of disease and

aging at specific brain structures.

Training of the age prediction model

Using the training datasets summarized in Table 1, we train 4

different GPR models, each one with a different set of features as

described in section 2.3. Each one of the GPR models is trained to esti-

mate the age of healthy subjects based on either volume, thickness, VBM

features or a combination of all features. Our models were implemented

using python together with the scikit-learn toolbox. In Table 4, we show

the Mean Absolute Error (MAE) and R2 score for the training set, using a

5-fold cross validation. Our model presents similar MAE and R2 when

compared to previous work on age estimation (Valizadeh et al., 2017;

Cole et al., 2016). Similar to previously reported results (Valizadeh et al.,

2017), we observed higher R2 score and lowerMAE for the model trained

using an ensemble of all available features. The chronological and

Table 3

Coefficients and p-values corresponding to the linear models fitted to predict volume of individual structures. Structures are sorted by descending p-value for diagnostic.

Structure Age Coefficient Dx Coefficient Age � Dx Coefficient Age p-value Dx p-value Age � Dx p-value

Left.Hippocampus �0.30 �0.53 0.03 9:12� 10�107 4:04� 10�291 2:87� 10�02

Left.Amygdala �0.21 �0.41 0.07 4:13� 10�50 1:53� 10�169 1:67� 10�05

Left.Inf.Lat.Vent 0.27 0.38 �0.07 1:77� 10�70 1:50� 10�141 3:00� 10�05

Left.Lateral.Ventricle 0.22 0.24 �0.09 8:38� 10�46 1:84� 10�57 1:32� 10�07

CSF 0.16 0.22 �0.11 1:07� 10�23 1:85� 10�46 5:95� 10�11

Left.Accumbens.area �0.30 �0.22 0.07 2:75� 10�75 1:48� 10�43 7:89� 10�05

3rd.Ventricle 0.27 0.19 �0.13 1:04� 10�70 1:53� 10�36 3:49� 10�15

Left.choroid.plexus 0.14 0.17 �0.04 2:04� 10�18 1:59� 10�27 2:16� 10�02

Left.Putamen �0.15 �0.14 0.02 9:84� 10�21 2:15� 10�17 0.30

Left.VentralDC �0.27 �0.11 �0.03 7:09� 10�71 3:38� 10�14 3:00� 10�02

Left.Thalamus.Proper �0.32 �0.11 �0.01 6:28� 10�97 2:65� 10�13 0.48

Left.Cerebellum.Cortex �0.26 �0.07 �0.03 1:98� 10�65 5:01� 10�06 9:02� 10�02

Brain.Stem �0.23 �0.06 �0.02 1:15� 10�48 1:60� 10�05 0.13

Left.Caudate 0.07 0.04 0.03 7:89� 10�06 1:93� 10�02 0.12

Left.Cerebellum.White.Matter �0.30 �0.03 0.00 1:60� 10�74 0.10 0.86

Left.Pallidum �0.06 �0.02 �0.04 4:84� 10�04 0.23 1:31� 10�02

4th.Ventricle 0.09 0.00 �0.08 2:38� 10�07 0.83 1:13� 10�05

Left.vessel 0.12 0.00 �0.02 1:05� 10�12 0.93 0.37
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predicted age for each subject in the training set are presented in the

scatter plots in Fig. 4.

Evaluation of Gaussian process uncertainty as a measure of brain

abnormality

In this section, we present results of our experiments comparing the

use of prediction error ε, uncertainty covðbyÞ and age-weighted uncer-

tainty covwðbyÞ as a biomarker for differentiating between healthy con-

trols and patients with MCI, AD or autism. We performed three different

experiments: the first two experiments are targeted at finding differences

between HC, MCI and AD groups in both the ADNI and OASIS databases;

the third experiment is performed on the ABIDE II database where dif-

ferences between autism and healthy groups are evaluated. Note that as

summarized in tables 1 and 2, the datasets used for testing are different to

those used for training. For all experiments we assessed differences be-

tween groups both by performing non-parametric Wilcoxon rank-sum

tests (Mann and Whitney, 1947) and by measuring the classification

performance in a per subject basis by generating Receiver Operating

Characteristic (ROC) curves with their corresponding Area Under the

Curve (AUC) values. For all experiments, results are shown for four

different sets of features: volume, thickness and VBM, as well as for the

combination of all three feature sets. Our proposed GPR uncertainty

based metrics are compared to the prediction error ε, obtained in a

similar fashion as previous work on age estimation (Franke et al., 2010).

An appropriate age length scale parameter ly for the covwðbyÞ metric was

set independently for each experiment by performing evaluations at

different scales an keeping the best performing results (See Fig. 5).

Experiment 1: ADNI dataset

For our first experiment we measure the separation between HC, MCI

and AD groups for images obtained from the ADNI database. Due to the

very large dataset size of this testing scenario, all the p-values reported in

Table 5 are statistically significant (p-value < 6� 10�5). The reported

AUC values in Table 6 and the ROC curves in Fig. 6 show consistently a

better performance of the uncertainty based metrics covðbyÞ and covwðbyÞ
with respect to ε. In general covðbyÞ and covwðbyÞ presented similar per-

formance, but adding the age term resulted in larger AUC values for the

experiments on volume and VBM features. Box plots for each feature set

and each diagnostic group are also shown in Fig. 7. The results using

uncertainty based measures covðbyÞ and covwðbyÞ were strongly corre-

lated (R¼ 0.95). In contrast, correlations of 0.35 and 0.37 were obtained

between ε-covðbyÞ and ε-covwðbyÞ, respectively.

Experiment 2: OASIS dataset

Our second experiment is similar to experiment 1, but our evaluation

is performed on images obtained from the OASIS database. In order to

ensure similar age ranges for the HC, MCI and AD groups, all individuals

under 60 years were removed from the testing dataset. Tables 7 and 8

summarize the numerical results of the comparisons between HC-MCI

and MCI-AD groups. Similar to previous results (Franke et al., 2010),

we observed that prediction error ε is a useful biomarker in this particular

dataset. According to the results in tables 7 and 8, ε presented larger AUC

values and smaller p-values for the models trained using volume and

thickness features when discriminating between HC and MCI groups.

Fig. 3. Top: Box plots showing changes in left cerebellum white matter volume and hippocampus volume for individuals between 50 and 80 years old. Bottom: Plots

showing age progression of feature pairs for three different cases; left: structures that are not affected by disease; center: structures affected by disease that show an

accelerated aging pattern; right: one structure affected by disease (left hippocampus) and one structure with no significant disease effect (left cerebellum

white matter).

Table 4

Mean Absolute Error (MAE) and R2 score of the age prediction models trained

with different sets of features. Measurements are obtained using a 5-fold cross

validation on the training set.

Feature Set MAE R2

Volume 5.52 0.87

Thickness 6.50 0.80

VBM 5.65 0.86

All 3.86 0.93
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However for all the rest of the evaluations on the OASIS database, covðbyÞ
and covwðbyÞ presented the best performance amongst the evaluated

metrics. Correlation coefficients between the metrics were 0.99 for

covðbyÞ-covwðbyÞ, 0.38 for ε-covðbyÞ and 0.38 for ε-covwðbyÞ. Notice that in
this case the results for covðbyÞ and covwðbyÞ are strongly correlated due to

the very large value assigned to the age length scale parameter ly . The

ROC curves in Fig. 8 and the box plots in Fig. 9 confirm these

observations.

Experiment 3: ABIDE II dataset

For our third experiment, we evaluate the age prediction on the

ABIDE II dataset that contains subjects with autism. To the best of our

knowledge, no previous age prediction based approach has been used for

studying autism. However, previous studies have suggested abnormal

brain development in patients diagnosed with autism Courchesne et al.

(2001). By observing Figs 11 and 10 it is clear that differences between

HC and MCI groups are considerably less noticeable than in the previous

Fig. 4. Scatter plots showing the prediction results of the age prediction models trained using different feature sets.

Fig. 5. AUC values obtained by using the covwðbyÞ metric for different age length scales ly . According to this curves, a different length scale was selected for each

experiment (ADNI: ly ¼ 1� 102, OASIS: ly ¼ 1� 105, ABIDE: ly ¼ 1). The selected length scales are highlighted in red in each plot.

Table 5

p-values corresponding to the statistical tests performed on the experiments

comparing the HC, MCI and AD groups on the ADNI dataset.

HC-MCI MCI-AD

ε covðbyÞ covwðbyÞ ε covðbyÞ covwðbyÞ

Volume 6:82�

10�19

2:07�

10�29

1:85�

10�311

3:36�

10�60

4:54�

10�69

2:05�

10�74

Thickness 2:18�

10�18

3:53�

10�27

2:92�

10�24

3:98�

10�38

6:03�

10�105

1:45�

10�101

VBM 3:10�

10�07

6:12�

10�30

1:20�

10�34

5:61�

10�22

2:92�

10�77

1:17�

10�76

All 5:63�

10�05

5:16�

10�36

5:10�

10�37

9:46�

10�23

2:76�

10�103

1:02�

10�103

Table 6

Area Under the Curve (AUC) values corresponding to the statistical tests per-

formed on the experiments comparing the HC, MCI and AD groups on the ADNI

dataset.

HC-MCI MCI-AD

ε covðbyÞ covwðbyÞ ε covðbyÞ covwðbyÞ

Volume 0.67 0.71 0.72 0.73 0.76 0.77

Thickness 0.66 0.71 0.71 0.69 0.80 0.80

VBM 0.60 0.71 0.72 0.64 0.77 0.77

All 0.59 0.74 0.74 0.64 0.81 0.81
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two experiments. In fact, by analyzing the AUC results in Table 10 and

the p-values in Table 9, we can observe that no significant differences

between groups were found using the standard prediction error approach

using ε as a predictive variable. In contrast, both uncertainty based

measurements showed significant differences between HC and autistic

groups. Also different to the previous two experiments, the weighted

uncertainty based measurement covwðbyÞ showed a better performance

than the standard uncertainty covðbyÞ. In this case correlation coefficients

between the metrics were 0.64 for covðbyÞ-covwðbyÞ, 0.30 for ε-covðbyÞ
and 0.49 for ε-covwðbyÞ. The lower correlation between covðbyÞ-covwðbyÞ

and the larger correlation between ε-covwðbyÞ when compared to the two

previous experiments are caused by the smaller value of ly .

Discussion

In this work, we have proposed to use uncertainty in GPR as a mea-

sure of neuropathology. In contrast to previous work based on the pre-

diction error, which assumes similar trajectories between aging and

disease processes, the GPR uncertainty handles differences in

morphology of diseased brains that do not necessarily lie on a healthy

Fig. 6. Receiver Operating Characteristic (ROC) curves for the prediction of the presence of MCI/AD (Top) or the presence of AD (Bottom) evaluated on the ADNI

dataset. Columns correspond to the different evaluated features.

Fig. 7. Box plots showing prediction results for ε (top), covðbyÞ (middle) and covwðbyÞ (bottom) for HC, MCI and AD groups on the ADNI dataset. Columns correspond

to the different evaluated features.
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aging trajectory. If we consider predicted age as an aging biomarker, GPR

uncertainty can be seen as a measure of uncertainty of the aging

biomarker. We have evaluated the ability of GPR uncertainty to

discriminate subjects with pathology for two very different diseases:

Alzheimer’s disease where we worked with a cohort of advanced age

individuals, and autism where we operated on a younger cohort. To the

best of our knowledge, this is the first time that uncertainty in a GPR

model is used as a measure of neuropathology and it is also the first

application of an age regression model for autism. For both applications,

we work with a single model that was trained on healthy subjects from a

wide age range. This distinguishes our work from discriminative ap-

proaches, which require the inclusion of images of patients diagnosed

with a particular disease in the training set.

In this work, we build age prediction models using three different

types of brain features: VBM, volume and thickness as well as a combi-

nation of all of them. Based on our results, we have observed that none of

the features outperformed the others across all our evaluations. However,

combining all features resulted on a model with the lowest prediction

error and consistently achieved the best results when performing sepa-

ration between healthy and disease groups. This is in line with previous

work (Valizadeh et al., 2017; Liem et al., 2017), where it has been

observed that extended feature sets which give models a larger variety of

measurements to base the prediction on, result in more accurate age

estimation models. Although the main goal of this paper is not to present

a state-of-the-art age prediction method, we have observed that our

proposed GPR model has a high prediction accuracy, comparable to that

of current age estimation approaches (Valizadeh et al., 2017; Cole et al.,

2016).

We have also demonstrated the generalization ability of our method

by training and testing our model in completely independent datasets.

Our training dataset was built based on the IXI, ABIDE and AIBL data-

bases while testing was performed on the OASIS, ADNI and ABIDE II

databases. Using different datasets for training and testing complicates

the age prediction problem, as undesired dataset biases can impact the

result (Wachinger and Reuter, 2016; Guti�errez et al., 2017). However,

such experiments model a scenario that is more realistic, as the trans-

lation to the clinic requires the accurate deployment of our method on

data that differs from the training set.

Based on GPR uncertainty, we have introduced two metrics to assess

the similarity of a test subject to a model of healthy aging: the uncertainty

of the predictions of the GPR covðbyÞ and an age-weighted uncertainty

measurement covwðbyÞ. We have shown in our experiments in section 3

that both measures find statistically significant differences between HC,

MCI and AD groups as well as between autism and HC groups. We have

compared these results to the commonly used prediction error ε, and we

have shown that the proposed metrics yield a better separation between

groups. The age-weighted uncertainty measurement can be seen as an

extension to the standard uncertainty measure, with the inclusion of a

weighting parameter based on the chronological age of the test subject.

The effect of this weighting is controlled by the age-length scale

parameter ly . We have analyzed the effect of ly in the performance of the

Table 7

p-values corresponding to the statistical tests performed on the experiments

comparing the HC, MCI and AD groups on the OASIS dataset. The highlighted

values correspond to p values with significance levels under 0.05 (light back-

ground), 0.01 (middle background) and 0.001 (dark background).

HC-MCI MCI-AD

ε covðbyÞ covwðbyÞ ε covðbyÞ covwðbyÞ

Volume <0.0001 <0.0001 <0.0001 0.0611 0.0065 0.0067

Thickness 0.0005 0.1186 0.1123 0.0707 0.0002 0.0002

VBM 0.0075 <0.0001 <0.0001 0.0225 0.0003 0.0003

All 0.0015 <0.0001 <0.0001 0.0707 0.0020 0.0020

Table 8

Area Under the Curve (AUC) values corresponding to the statistical tests per-

formed on the experiments comparing the HC, MCI and AD groups on the OASIS

dataset.

HC-MCI MCI-AD

ε covðbyÞ covwðbyÞ ε covðbyÞ covwðbyÞ

Volume 0.77 0.73 0.73 0.73 0.75 0.75

Thickness 0.68 0.62 0.62 0.68 0.76 0.76

VBM 0.64 0.72 0.72 0.68 0.77 0.77

All 0.67 0.74 0.74 0.68 0.77 0.77

Fig. 8. Receiver Operating Characteristic (ROC) curves for the prediction of the presence of MCI/AD (Top) or the presence of AD (Bottom) evaluated on the OASIS

dataset. Columns correspond to the different evaluated features.
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age-weighted uncertainty measurement and we have observed that

although the use of the age-weighting had a limited effect in the case of

the MCI/AD experiments there was a clear improvement in the case of

autism. We hypothesize that these differences in performance of covwðbyÞ
can be attributed to the different age ranges of the testing cohorts, since

age prediction models present smaller prediction errors when testing on

younger cohorts compared to the prediction error presented on datasets

consisting of older individuals (Cole and Franke, 2017).

For the experiment on autism, our proposed uncertainty based met-

rics showed its ability to discriminate between autistic and healthy

groups. We find these results particularly encouraging since the predic-

tion error based approach showed to be insufficient to find differences for

this particular disease. Given the analysis performed in section 3.1 and

the results of our experiments, we believe that the main reason of the

better performance of our uncertainty based measures is that they do not

model brain anomaly as an accelerated aging process, but rather as de-

viations from healthy aging. As discussed before, the complex effects of

aging and disease follow trajectories that affect different areas of the

brain at different rates. The more relaxed assumptions, which our pro-

posed uncertainty based measures are based on, are therefore better

suited to account for the complex impact of aging and disease across the

entire brain.

We have not performed direct quantitative comparisons between our

uncertainty based measures and discriminative approaches. The main

reason behind this is that discriminative approaches require training

images not only from healthy individuals but also from patients. This

means that separate models have to be trained for each specific disease.

In contrast, age-prediction based models are only built on images from

healthy individuals. This allows to have a flexible model which can be

used for different diseases without any need to retrain or adjust the

model. We demonstrated this in our experiments, where we used the

same age prediction model to predict brain anomaly both on patients

with Alzheimer’s disease and patients with autism.

Conclusions

We introduced the prediction uncertainty in age estimation as a

measure of neuropathology, based on a multivariate age prediction

model based on Gaussian process regression. Our measure does not make

a priori specific assumptions about the nature of the changes caused by

disease, but rather models these changes as deviations from healthy

aging. The method is therefore not limited to a specific pathology or age

Fig. 9. Box plots showing prediction results for ε (top), covðbyÞ (middle) and covwðbyÞ (bottom) for HC, MCI and AD groups on the OASIS dataset. Columns correspond

to the different evaluated features.

Fig. 10. Receiver Operating Characteristic (ROC) curves for the prediction of the presence of Autism. Columns correspond to the different evaluated features.

B. Gutierrez Becker et al. NeuroImage 175 (2018) 246–258

256



range, as demonstrated in our experiments on patients with Alzheimer’s

disease and patients with autism. Our method is also flexible to work

with different sets of features, as we have illustrated in our experiments

using volume, thickness, and VBM features. We have introduced an

extension of the Gaussian process uncertainty measure for age estimation

that also takes the chronological age into account, resulting in a weighted

uncertainty measure, and we have demonstrated that the inclusion of this

weighted measure can potentially be helpful for some applications. In

comparison to the commonly used prediction error, the prediction un-

certainty yielded an improved separation of diagnostic groups across all

feature types and for different applications. It is also important to point

out that in contrast to discriminative approaches, age prediction based

models only require images of healthy individuals for training, which

may allow for incorporating scans from large population-based studies in

the future. The results presented in this paper encourage us to further

explore the potential of uncertainty based measures and to apply our

method to different diseases or conditions that might have complex ef-

fects in the anatomy of the brain. We are further interested in investi-

gating the relationship between the prediction uncertainty and cognitive

and clinical characteristics, as well as, future health outcomes.
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a b s t r a c t 

In this paper, we address the multimodal registration problem from a novel perspective, aiming to predict 

the transformation aligning images directly from their visual appearance. We formulate the prediction as 

a supervised regression task, with joint image descriptors as input and the output are the parameters of 

the transformation that guide the moving image towards alignment. We model the joint local appearance 

with context aware descriptors that capture both local and global cues simultaneously in the two modal- 

ities, while the regression function is based on the gradient boosted trees method capable of handling 

the very large contextual feature space. The good properties of our predictions allow us to couple them 

with a simple gradient-based optimization for the final registration. Our approach can be applied to any 

transformation parametrization as well as a broad range of modality pairs. Our method learns the rela- 

tionship between the intensity distributions of a pair of modalities by using prior knowledge in the form 

of a small training set of aligned image pairs (in the order of 1–5 in our experiments). We demonstrate 

the flexibility and generality of our method by evaluating its performance on a variety of multimodal 

imaging pairs obtained from two publicly available datasets, RIRE (brain MR, CT and PET) and IXI (brain 

MR). We also show results for the very challenging deformable registration of Intravascular Ultrasound 

and Histology images. In these experiments, our approach has a larger capture range when compared to 

other state-of-the-art methods, while improving registration accuracy in complex cases. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Multimodal image registration is a fundamental task in med- 

ical image analysis, consisting in the alignment of two images 

of a given anatomical location acquired with different modalities. 

Multimodal registration is an important tool in clinical diagnosis, 

image-guided interventions, medical augmented reality, as well as 

in the validation of new imaging modalities ( Markelj et al., 2012; 

Navab et al., 2016 ). In all these applications multimodal registra- 

tion plays the key role of bringing and presenting complementary 

information in a spatially consistent way. In addition to the chal- 

lenges of the monomodal case, multimodal registration has to deal 

with the potentially large appearance differences that result from 

each modality’s acquisition principles. As the relation between the 

intensities from the two modalities is unknown and often neither 

linear nor bijective, an open question is the definition of a general 

∗ Corresponding author at: Computer Aided Medical Procedures (CAMP), Technis- 

che Universität München, Boltzmanstr. 3 85748, Garching, Germany. 

E-mail addresses: gutierrez.becker@tum.de (B. Gutierrez-Becker), mateus@in. 

tum.de (D. Mateus), peter@in.tum.de (L. Peter), navab@in.tum.de (N. Navab). 

energy function capable of relating the two modalities and guiding 

a multi-modal registration algorithm. 

For instance, one common approach is to define similarity en- 

ergy functions that map the appearance of both images to a scalar 

value ( Fig. 2 . left). Once the function is defined, the optimal spa- 

tial transformation between the images is computed maximizing 

the similarity. Under well-behaved energies (convex, smooth, etc .), 

the optimal transformation can be reached with simple gradient- 

based optimization algorithms, which compute iterative updates 

based on the energy gradient with respect to the transformation 

parameters ( Fig. 2 . right). 

Unfortunately, explicitly defining a general and well-behaved 

energy function that models the unknown intensity relation- 

ship between the two modalities is not straightforward. Current 

multi-modal similarity standards based on information theory 

( Pluim et al., 2004 ), structural information ( Heinrich et al., 2013; 

Wachinger and Navab, 2012 ) or metric learning ( Michel et al., 

2011; Simonovsky et al., 2016 ) rely on the strong assumption that 

the same structures are visible in both modalities ( Fig. 3 ). In the 

latter case, such similarities do not have an analytical gradient 

nor guarantee the desired properties for an optimization energy. 

Therefore, their gradient-based optimization calls for local gradient 

http://dx.doi.org/10.1016/j.media.2017.05.002 

1361-8415/© 2017 Elsevier B.V. All rights reserved. 
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Fig. 1. Method Overview. Training stage (left) : A set of aligned multimodal images is used to generate a training set of images with known transformations. From this 

training set we train an ensemble of trees mapping the joint appearance of the images to displacement vectors. Testing stage (right) : We register a pair of multimodal 

images by predicting with our trained ensemble the required displacements δ for alignment at different locations z . The predicted displacements are then used to devise 

the updates of the transformation parameters to be applied to the moving image. The procedure is repeated until convergence is achieved. 

Fig. 2. Exemplary energy function E . Left : Continuous, convex and smooth behavior of E w.r.t. a transformation parameter. Right : Parameter update obtained by obtaining 

the derivative of the energy function with respect to a transformation parameter. 

approximations or gradient free methods, which require advanced 

updates rules and an increased number of evaluations of the 

similarity metric. 

In this work, we design a multimodal energy function that: i) is 

general, since it can create models capturing complex relationships 

between a wide range of modality pairs by using a small set of 

aligned examples, ii) can model such relationships based on global 

and local appearance, iii) can be easily optimized using a gradient- 

based method, and iv) that adapts to different transformation pa- 

rameterizations. We model multimodal registration as a supervised 

regression problem, where given a pair of misaligned images we 

predict updates of the transformation parameters towards the cor- 

rect alignment ( c.f Fig. 1 ). 

The joint appearance of the images is represented via a multi- 

modal version of the Haar-like features ( Criminisi et al., 2009 ) ex- 

tracted from a sampling grid, which allows describing both the 

local and global-range context of each point. The regression task 

is formalized with gradient boosted trees, capable of handling the 

very high-dimensional Haar-like feature space, as well as of accu- 

rately approximating the transformation updates. 

Our work is to the best of our knowledge, the first approach 

aiming at learning functions that map multimodal appearance to 

motion predictions, and showing how to effectively integrate them 

into a simple optimization scheme. 

This paper is based on our previous work ( Gutiérrez-Becker 

et al., 2016 ) but includes several extensions. First, we modify the 

method in order to predict not only the optimal update direction, 

but also the magnitude of the update vector in each iteration of 

the gradient-based optimizer. Second, we replace the regression 

model from random forest to gradient boosted trees ( Friedman, 

2001 ). We show how these two modifications lead to faster con- 

vergence times during testing as well as to an accurate registration. 

In addition, we include an evaluation of the improved properties 

of our method in terms of convergence and its training require- 

ments using the IXI dataset. To demonstrate the generality of our 

method, we also extended our experiments to the publicly avail- 
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Fig. 3. Corresponding CT ( left ) and MR-T1 ( middle ) images of the brain obtained from the RIRE dataset. The highlighted regions are corresponding areas between both 

images ( right ). Some multimodal similarity metrics rely on structural similarities between images obtained using different modalities, like the ones inside the blue boxes. 

However in many cases structures which are clearly visible in one imaging modality correspond to regions with homogeneous voxel values in the other modality (red and 

green boxes). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

able and widely used RIRE dataset (West, et al., 1997) for the rigid 

registration of three additional modalities: Computed Tomography 

(CT), Magnetic Resonance (MR) as well as Positron Emission To- 

mography (PET). We performed quantitative comparisons on the 

convergence of the proposed energy with a baseline ( Mattes et al., 

2001 ) and a state-of-the-art method ( Heinrich et al., 2013 ). 

2. Related work 

Borrowing the classification of Sotiras et al. (2013) , previous ap- 

proaches to multimodal-registration fall in one among three cat- 

egories. The first category comprises the information-theoretic (IT) 

methods like mutual information ( Maes et al., 1997 ) and its vari- 

ations ( Wells et al., 1996; Mattes et al., 2001 ), which are arguably 

the most widely used methods given their simple implementation 

and their effectiveness to register different modalities ( Pluim et al., 

2003 ). Assuming that a global mapping between the intensities 

of the two modalities exists, such methods look for the transfor- 

mation that maximizes the information of the intensity distribu- 

tions. However, they are typically non-convex and suffer from the 

discrete approximations of the densities. Furthermore, IT methods 

suffer from a limited capture range and thus require a good initial 

transformation in order to converge. 

A second family of approaches seeks to reduce the multimodal 

registration problem to a monomodal one. This can be done by 

synthesizing one modality from the other ( Wein et al., 2007; 

Coupé et al., 2012 ) or by building an intermediate representation 

common to the two modalities ( Wachinger and Navab, 2012; Hein- 

rich et al., 2013; 2012 ). 

Learning has also been used for both synthesis ( Van Nguyen 

et al., 2015 ) or to build intermediate representations ( Oktay et al., 

2015 ). These methods have been shown to achieve lower registra- 

tion errors compared to information theoretic approaches in a va- 

riety of applications ( Sotiras et al., 2013 ). However, they are usually 

designed to register a specific pair of modalities or rely on strong 

structural similarities between the modalities to be registered. 

The third category corresponds to similarity learning approaches 

that leverage on a priori information in the form of a training set 

of aligned examples. Among these, Generative approaches approx- 

imate the joint intensity distribution of the images and minimize 

the difference of a new test pair of images to the learned distribu- 

tion ( Sabuncu and Ramadge, 2008 ), possibly in a Bayesian Frame- 

work ( Zöllei and Wells, 2006 ). Discriminative methods, on the other 

hand, model the similarity learning problem as the classification 

of positive (aligned) and negative (misaligned) examples, discrim- 

ination typically done at the patch level ( Jiang et al., 2008; Lee 

et al., 2009; Michel et al., 2011 ). Different strategies have been 

explored to approximate such similarities, including margin-based 

approaches ( Lee et al., 2009 ), boosting ( Michel et al., 2011 ) and 

most recently, deep learning ( Simonovsky et al., 2016; Cheng et al., 

2016 ). In contrast to the discriminative approaches above which 

aim at discerning between aligned and misaligned patches, we fo- 

cus on regressing a motion predictor that guides the registration 

process towards alignment. 

In the Computer Vision community, prior work has used motion 

predictions for monomodal tracking and pose-estimation. Jurie and 

Dhome (2002) proposed a linear predictor for template tracking, 

which relates the difference between the compared images to vari- 

ations in template position. Dollár et al. (2010) introduced a cas- 

caded regression approach to learn a mapping from image features 

to object pose parameters. The cascaded approach reduces the pa- 

rameter error progressively by means of an ensemble of boosted 

regressors (ferns) that re-computes the features at each iteration. 

Xiong and De la Torre (2013) provides a generalization of the cas- 

caded method of Dollar et al. to solving non-linear least squared 

problems via a supervised descent method in the context of face 

alignment. In practice, Xiong and De la Torre (2013) implements 

the supervised descent approach as a sequence of linear regressors 

that link the differences in appearance (SIFT descriptors) to the dis- 

tance between landmarks. In this paper, we formulate the multi- 

modal registration problem in terms of a quadratic alignment er- 

ror between the two images. We optimize this function iteratively 

using a gradient-based scheme. Similar to Xiong and De la Torre 

(2013) , we learn to predict the parameter updates at each iteration, 

although with gradient-boosting trees instead of linear regressors 

in order to be able to handle the higher dimensionality and larger 

complexity of the multi-modal task. This means that a boosted 

sequence of prediction takes place at each iteration of the gradi- 

ent optimization approach. Such two level regression approach also 

bears some similarities to the work of Cao et al. (2014) , who use 

two levels of gradient boosting regression together with feature se- 

lection and sparse coding to regress the whole facial shape in a 

non-parametric manner. 

In the context of registration of medical images, Chou et al. 

(2013) presented an approach for learning updates of the transfor- 

mation parameters in the context of 2D-3D monomodal registra- 

tion. Similarly, Kim et al. (2012) , proposed the prediction of a de- 

formation field for registration initialization, achieved by modeling 

the statistical correlation between image appearances and defor- 

mation fields with Support Vector Regression. Hu et al. (2016) pro- 

posed a regression model which can predict a deformation field 

given changes of appearance on monomodal images of the fetal 
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brain. Similarly to Hu et al., our work uses motion prediction for 

registration but does it for the multimodal case. To the best of our 

knowledge, our work is the first approach aiming at predicting mo- 

tion for the registration of medical multimodal images. 

From a higher-level perspective, our work is also related to 

contemporary methods combining learning motion predictions 

with optimization methods, such as the approach of Ghesu et al. 

(2016) to predict the next search direction towards an anatom- 

ical landmark based on reinforcement learning or the approach 

by Yang et al. (2016) using a deep patch-wise network to predict 

mono-modal image deformations. 

3. Background: gradient-based optimization 

The simplest form of optimization for a smooth and uncon- 

strained continuous energy is an iterative gradient-based search 

( Nocedal and Wright, 2006 ). Starting at iteration k = 0 and from 

an initial estimate p k , gradient-based optimization algorithms fol- 

low the next steps: 

(i) Convergence test: if conditions satisfied stop and use p k as 

the solution. 

(ii) Compute the search direction vector �k ∈ R N p . 

(iii) Compute the step length, a positive scalar αk such that 

E(p k − αk �k ) < E(p k ) . 

(iv) Update k = k + 1 and p k = p k −1 − α�k , and go back to step 

(i). 

The various algorithms mainly differ in the way to compute 

the search direction �k and the step size αk . Usually, the update 

direction is set as the gradient of the energy function �k = 
∂E 
∂p 

at the current point p k . 
1 The step size may be considered as a 

hyper-parameter or estimated with the help of heuristics or ap- 

proximate optimizations. One such approximation known as New- 

ton approach, takes into account the energy’s second derivatives 

(the Hessian H ( E )) to determine the update: 

p k = p k −1 − H (E) −1 ∂E 

∂p 
. (1) 

Newton’s improved convergence rates comes at the price of an 

increased computational cost, as the estimation of the inverse of 

the Hessian can be expensive and ill-conditioned, in particular, for 

high dimensional problems. Computing the Hessian can be avoided 

by using quasi-Newton methods which approximate the Hessian 

matrix using an update rule leading to a faster computation. How- 

ever such approximations can require a higher number of itera- 

tions when compared to the full Newton method if the approxi- 

mation of the Hessian is not accurate. 

4. Method 

Multimodal registration is the problem of finding the optimal 

transformation W (p ) that brings into alignment a fixed image 

I f : � f ⊂ R 3 → R and a moving image I m : �m ⊂ R 3 → R , each of 

a different modality. Let the transformation be described by a vec- 

tor of parameters p ∈ R N p . Then, the problem is formalized as that 

of finding the optimal displacement vector p ∗ such that: 

p ∗ = arg max 
p 

E(I , I ′ p ) , (2) 

where I ′ p stands for the moving image transformed to a joint do- 

main � ⊂ R 3 by W(p ) , I is the fixed image also resampled in �, 

and E is an energy measuring the similarity between I and I ′ p . 

1 This is the update direction to find the minimum of the energy function. The 

same formulation can be used to maximize an energy function by using the update 

rule p k + αk �k minimizing E . 

Fig. 4. The transformation W can be defined by the local displacements 
−→ 
δ (z i ) at 

the grid positions z . These local displacement vectors 
−→ 
δ (z i ) point towards corre- 

sponding locations in the fixed and moving image. 

In this work, we describe a multimodal energy E compatible 

with simple gradient-based optimization algorithms. The resultant 

updates, including search direction and step-size are effectively 

learned from a training set of aligned images. The problem is mod- 

eled as a supervised regression task. During the training phase, we 

learn to predict the search direction and step size given the lo- 

cal joint appearance of the two images. During the test phase, we 

aggregate local predictions towards a global parameter update. An 

overview of the method is presented in Fig. 1 . 

4.1. An optimization-aware energy for registration. 

Without loss of generality, 2 we consider the transformation be- 

tween the two multi-modal images as a discrete deformation field 

anchored to the elements of a set of control points { z i } 
N samples 
i =1 

on 

a joint domain � (see Fig 4 ). Formally, the deformation field is 

described by parameters p = [ 
−→ 
δ (z 1 ) , . . . , 

−→ 
δ (z i ) , . . . , 

−→ 
δ (z N samples 

)] ⊤ , 

where each displacement 
−→ 
δ (z i ) is a vector in R 3 and the num- 

ber of parameters equates that of the “control” points times three, 

i.e. N p = N samples × 3 . 

The displacement field connects anatomical corresponding 

points z i ∼ z ′ 
i in the two images such that z ′ 

i = z i + 
−→ 
δ (z i ) , with 

{ z ′ 
i } 

N samples 
i =1 

. We then define the registration energy function as the 

sum of distances between the corresponding points 
∑ 

z i ∈ �
|| z i −

z ′ 
i || 

2 , or equivalently as the L2-norm of the displacement field: 

E(I , I ′ p ) = 
1 

2 

∑ 

z i ∈ �

|| 
−→ 
δ (z i ) || 

2 (3) 

The energy in Eq. (3) is convex, has a smooth gradient, and leads 

to gradient-based parameter updates pointing towards the global 

minimum, and thus favors fast convergence. The global minimum 

is located at the transformation for which all the displacement up- 

dates 
−→ 
δ (z i ) = 0 , which corresponds to a perfect alignment. 

We can easily compute the energy gradient ∂E 
∂p i 

= 
∂E 

∂ 
−→ 
δ

= 
−→ 
δ (z i ) 

as well as the Hessian given by the 3 × 3 identity matrix H (z ) = I 3 . 

Leading to a Newton-like update ( Eq. (1) ): 

p k = p k −1 −
∑ 

z i ∈ �

−→ 
δ (z i ) (4) 

Our definition of E is so far based on the assumption that 

correspondences z i ∼ z ′ 
i are given. In the real registration setting, 

2 In Section 4.2.4 we explain how to generalize the method to other parameteri- 

zations. 
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Fig. 5. Generating a displacement field. The vector � δ relates corresponding points 

x ∼ x ′ after they have been moved to locations z ∼ z ′ by applying transformations 

{W j , W ′ 
j } . During training, vector 

� δ becomes the regression target required at loca- 

tion z to bring I ′ p into alignment with I . 

correspondences are unknown. However, instead of addressing 

the correspondence problem and explicitly defining E , we focus 

on predicting directly from the images the displacement field 

{ 
−→ 
δ (z i ) } . We interpret this field in the context of a gradient-based 

optimization, as the next search direction and step-size of the 

parameter updates towards alignment. Such a formulation is 

independent of the image intensities of each modality and their 

relationship, while allowing for an iterative refinement of the pre- 

dictions. Furthermore and as we show later, given an appropriate 

predictor, the behavior of the updates will be close to that of an 

ideal energy function. 

4.2. Learning multimodal motion predictors 

In Eq. (3) , we model the registration energy as the squared sum 

of local offsets 
−→ 
δ between corresponding points in both images. 

In practice, since for a new pair of images these offsets are un- 

known, we estimate them by learning a regression function f (z ) : 

�(z , I , I ′ p ) 	→ 
−→ 
δ (z ) . The input to f is a feature vector �(z , I , I ′ p ) de- 

scribing the joint appearance of the point z in both modalities. 

Hereafter, we denote it �( z ) for simplicity. In the following sub- 

sections we describe in details the different steps of our method: 

(i) Creating a training dataset X = { �( z n ) , � δn } 
N points 
n =1 from multi- 

modal images under known misalignments ( Section 4.2.1 ). 

(ii) Defining a descriptor for the joint appearance features �( z ) 

( Section 4.2.2 ). 

(iii) Modeling and fitting the regression function f (z ) : �(z ) 	→ 
−→ 
δ (z ) ( Section 4.2.3 ). 

(iv) Generalizing the motion predictions to other transformation 

parameterizations ( Section 4.2.4 ). 

(v) Using predicted parameter updates to solve the multi-modal 

registration problem during test time ( Section 4.2.5 ). 

4.2.1. Generating the training set 

We assume we are given prior knowledge about the relation- 

ship between the intensity distributions of the two modalities in 

the form of aligned image pairs. To generate the training set X , 

we apply multiple known transformations {W j , W ′ 
j } 
N transfo 
j=1 

to the 

aligned images, mapping the coordinates of two originally super- 

posed points x ∈ �f and x 
′ ∈ �m to distinct locations in a common 

image domain z , z ′ ∈ � ⊂ R 3 (see Fig. 5 ). 

Because the applied transformations are known, we can deter- 

mine the ground truth displacement � δn ∈ R 3 needed to find the 

originally corresponding point z ′ n in the moving image, and bring it 

into alignment with z , i.e. � δn = z ′ n − z n . With this information and 

sampling N points from the transformed images, we build a training 

Fig. 6. Generating the training dataset. Pairs of aligned images are generated and 

arbitrary known transformations are applied to them. The region surrounding a 

point, here depicted with dotted lines, is characterized using the feature vec- 

tor � described in Section 4.2.2 . To each feature vector we assign the displace- 

ment � δ required to bring the image at location z into alignment. The training set 

X is built from the collection of features and their corresponding displacements, 

i.e. X = { �( z n ) , � δn } 
N points 
n =1 . 

set consisting of pairs of feature vectors � and their corresponding 

offset vector � δ, i.e. X = { �( z n ) , � δn } 
N points 
n =1 . The process is illustrated 

in Fig. 6 . 

4.2.2. Describing joint appearance with context-aware multimodal 

features. 

We characterize the joint appearance of a pair of images around 

a location z by means of a feature vector �(z ) ∈ R H . We model 

�( z ) with a multi-modal adaptation to the context-aware Haar-like 

features ( Criminisi et al., 2009 ). We use such rich high-dimensional 

descriptors to be able to encode the very large input space con- 

sisting of the joint local appearance of all image regions under all 

considered transformations. 

The feature descriptor �( z ) is built as a collection of H scalar 

features [ θ1 , . . . , θh , . . . , θH ] 
⊤ , where each θh is computed as an op- 

eration on a pair of boxes located at given offset locations relative 

to the point z . More formally, θh is characterized by two boxes b 1 , 

b 2 ( c.f Fig. 7 -left), parametrized by: 

• Their relative position and size ( v 1 , v 2 ∈ R 3 , w 1 , h 1 , w 2 , h 2 , d 1 , 

d 2 ∈ R ) ( c.f Fig. 7 , top right). The position and size of the boxes 

are allowed to range from a couple of pixels to half of the size 

of the image. Using small boxes close to the sample location z 

allows the feature vector to accurately describe the local joint 

appearance around the point. Larger boxes and further posi- 

tions instead capture the global context, which is important to 

perform registration when little or no overlap between images 

exist or when ambiguities can not be resolved using local ap- 

pearance. 
• The modality where the box operates m = { 0 , 1 } ( c.f Fig. 7 - 

middle-right). If m has the same value for both boxes we can 

capture the spatial context of each point within an image. If 

the value of m is different for each box, the feature is able to 

capture the functional relation across modalities. 
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Fig. 7. Context-aware features. Each element of the feature vector �( z ) is con- 

structed by obtaining a pair of boxes at different positions relative to a location 

z (left). These boxes are described by its position and size (right, top), the modality 

that they describe (right, middle) and an operation between boxes (right, bottom). 

• An operation 0 between boxes taken from the set : D = { � μb 1 , 

� μb 2 , � μb 1 + � μb 2 , � μb 1 − � μb 2 , | � μb 1 − � μb 2 | , � μb 1 > � μb 2 }, where 

the overline denotes the mean over the box intensities. 

Considering the combinatorial nature of the parameters above, 

we face an infinite-dimensional feature space R H , which could 

be inefficient for learning. However, such high-dimensional fea- 

ture spaces can be naturally handled by ensemble trees with axis- 

aligned splits, which enable individual features θh to be computed 

on the fly during training instead of precomputing the full vectors 

�( z ). In addition, feature calculation is sped up by using precom- 

puted integral volumes. 

4.2.3. Displacement prediction with ensemble methods 

In this subsection, we explain how to predict the offsets 
−→ 
δ (z ) ∈ 

R 3 from the features �( z ) by approximating a function f (z ) : 

�(z ) 	→ 
−→ 
δ (z ) . We model f ( z ) with an ensemble of regression trees, 

given their ability to handle high-dimensional feature spaces. A re- 

gression tree is a binary tree consisting of a set of nodes and leaves 

( Criminisi and Shotton, 2013 ). Each internal node splits the fea- 

ture space into two parts according to an axis-aligned test func- 

tion g ( �( z ), h, T ), where θh designates one of the dimensions of 

the feature vector �( z ) and T ∈ R is a threshold. Given a subset of 

training samples S ⊂ X arriving to a given node, the split function 

creates a partition S = { S L , S R } , where S L corresponds to the set θh 

< T and conversely, S R to the set of features for which θh > T . Fi- 

nally, nodes without children are called leaves, and in the case of 

regression trees store a continuous value, i.e. 
ˆ −→ 
δ (z ) ∈ R 3 . 

During training , a set of labeled examples X = { �( z n ) , � δn } 
N points 
n =1 

is passed through all of the trees, and the parameters of the node 

splitting functions h, T are optimized to minimize the prediction 

error. The criteria used to determine the best split parameters is 

the minimization of the sample covariance: 

θ ∗
h , T 

∗ = arg min 
θh ,T 

trace ( �S L ) + trace ( �S R ) , (5) 

where �| S L,R | 
stands for the covariance matrix of the training off- 

sets { � δk } 
| S L,R | 

k =1 
of the features falling in each subset. Computing the 

trace instead of the full covariance matrix allows a faster compu- 

tation of the splitting criteria. To preserve the generalization bene- 

fits of randomized splits over the forest the parameters are usually 

obtained through randomized node optimization. However, given 

the high dimensionality of �( z ), we opt instead for the automatic 

scale selection strategy proposed by Peter et al. (2015) , which en- 

ables us to optimize the value for the box parameters responsible 

for the position and scale. This choice has a positive impact on the 

performance of our method. 

During testing , the prediction of the displacement � δ at a given 

location z is computed by passing the feature vector through the 

ensemble, and summing the individual tree predictions. The pre- 

diction at each node is performed independently, without explic- 

itly taking into account the spatial position of each grid point. 

We considered two approaches for ensemble tree regression. 

The first approach is a regression forest (RF), as presented in our 

previous work ( Gutiérrez-Becker et al., 2016 ), where the predic- 

tions of the individual trees are combined through a simple av- 

erage f (z ) = 
∑ N trees 

t=1 
1 

N trees 
T t (z ) . Here, each tree is independent of 

each other, allowing for their parallelization during both training 

and prediction. 

The second regression approach is based on Gradient Boosted 

Trees (GBT), introduced by Friedman (2001) . GBT has shown to 

have lower prediction errors when compared to general random 

forests when tuned correctly in a variety of scenarios ( Caruana and 

Niculescu-Mizil, 2006 ). 

The predictor f in GBT is a weighted sum of functions: 

f (z ) = 

N trees ∑ 

t=1 

βT t (z ) , (6) 

where each T t corresponds to a regression tree and β is a scalar 

weighting each regression tree. However, Different to regression 

forests, where the training of each tree is independent, in GBT the 

function f ( z ) is built sequentially as: 

f t (z ) = f t−1 (z ) + βt T t (z ) . (7) 

At each stage t , a tree in GBT T t minimizes the squared loss be- 

tween the currently predicted displacement and the ground truth 

|| f t−1 (z n ) −
� δn || 2 , instead of trying to recover the � δn directly. Apart 

from the change in the target value, each regression tree is trained 

as before finding the splits that reduce the sample covariance trace 

( c.f Eq. (5) ). Even though GBT requires a sequential training and 

therefore individual trees can not be trained in parallel, the se- 

quential aggregation allows for shallower trees when compared to 

the forests, leading also to comparable training times with lower 

prediction errors. 

4.2.4. Generalizing to arbitrary transformations 

Notice that so far we have chosen � δn as the regression targets 
instead of the transformation parameters. This choice is compat- 

ible with having the transformation parametrized as a displace- 

ment field. However, we now show that by the simple chain rule 

of derivatives, the results of Eq. (4) can be generalized to other 

types of transformation while keeping the learning stage indepen- 

dent of the parametrization. Indeed, using the chain rule the gra- 

dient of the energy may be split as ∂E 
∂p 

= 
∂E 

∂ 
−→ 
δ

∂ 
−→ 
δ

∂p 
, where ∂E 

∂ 
−→ 
δ

are 

the spatial derivatives and ∂ 
−→ 
δ

∂p 
corresponds to a Jacobian relating 

the displacement to the transformation parameters which we de- 

note hereafter J (z ) for simplicity. The Jacobian is only dependent 

on the chosen parametrization and therefore does not change dur- 

ing the optimization. This means that we only require computing 
∂E 

∂ 
−→ 
δ

at each iteration in order to retrieve the update direction. In 

the same way the Hessian of E will be computed as : 

H = 
∂ 2 E 

∂ 
−→ 
δ

2 

∂ 2 
−→ 
δ

∂p 2 
(8) 

4.2.5. Using multimodal motion predictors for registration 

Once the regression function f (z ) : �(z ) 	→ 
−→ 
δ (z ) is trained, we 

use it to perform multimodal registration on a pair of previously 

unseen images I f and I m . We follow a standard gradient-based op- 

timization ( c.f Section 3 ), where we calculate the search direction 

vector � and the optimal step size α at every iteration k . The 
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iterative procedure is illustrated in Fig. 1 . First, a set of testing 

points { z m } 
N test 
m =1 ∈ � is randomly sampled from the fixed image. We 

then extract the feature vectors for the point set { �(z m ) } 
N test 
m =1 and 

pass them through the tree ensemble. The output of the ensemble 

are the predicted local displacement estimates { ̂ � δm } 
N test 
m =1 . We then 

compute the global update ( c.f Eq. (4) ) by adding the contribu- 

tion of each local displacement to the transformation parameters 

ˆ � = 
∑ N test 

m =1 
ˆ � δm J(z) . Finally, a convergence test is performed and if 

necessary the procedure is repeated. In our case we stop the opti- 

mization when the difference of the energy function between iter- 

ations E falls below a threshold ǫ. 
We have seen in Section 4.1 that with perfect displacement pre- 

dictions, the Hessian estimate of the step length for our method is 

α = 1 . However, as we expect the predictions to have some error 

we reduce the step size by a factor λ, which we empirically evalu- 

ate. 

5. Experiments and results 

To evaluate the performance of our method under different sce- 

narios we perform three series of experiments on different multi- 

modal datasets. 

Our first experiments rely on pairs of multi-modal MR images 

of the brain from the IXI dataset. 3 The focus is on studying the 

amount of data required for training the regression of the displace- 

ment field as well as on demonstrating the fast convergence of our 

registration approach. 

The second series of experiments evaluates the performance of 

our method both in terms of registration accuracy and capture 

range for a variety of imaging modality pairs. To this end, we per- 

formed rigid registration on the publicly available RIRE dataset 4 

(West, et al., 1997) , consisting of images of adult brains obtained 

using different MR protocols as well as CT and PET. We evaluated 

our algorithm using all the modality pairs available in the RIRE 

database, which includes: CT-T1, CT-T2, CT-PD, PET-T1, PET-T2 and 

PET-PD pairs, showing the generality of our approach. 

In the third experiment , we use our method for the deformable 

registration of two complex modalities: Intravascular Ultrasound 

images and histological slices ( Katouzian et al., 2007 ) (see Fig. 16 ). 

This dataset is particularly challenging, first, because the images 

are noisy and have acquisition artifacts, and second, because the 

underlying assumptions of most similarity metrics, like local struc- 

tural similarities between statistics on the intensities of the im- 

ages, are not valid. During these experiments, we do a compar- 

ative evaluation of our method with respect to two other simi- 

larity metrics, namely Normalized Mutual Information (NMI) and 

the Self-Similarity Context descriptor (SSC) ( Heinrich et al., 2013 ). 

We show that our learning based approach improves the results 

of multimodal registration in terms of accuracy and capture range. 

We also provide a detailed analysis of the properties of our method 

in terms of smoothness of the optimization updates and fast con- 

vergence. Finally, for all experiments, we also compare the behav- 

ior of our initial regression using random forest (LOU) and the new 

one based on gradient boosted trees (LOU2), where LOU stands for 

Learning Optimization Updates. 

5.1. Implementation details 

Our registration framework was implemented using the Insight 

Segmentation and Registration Toolkit (ITK). 5 For all our experi- 

ments we performed optimization using a simple gradient descent 

3 http://brain- development.org/ixi- dataset/ . 
4 http://www.insight-journal.org/rire/ . 
5 https://itk.org/ . 

optimizer and the same parameterizations were used for all meth- 

ods. In the case of NMI we used the Mattes Mutual Information 

Metric included on the ITK framework and in the case of SSC we 

adapted the implementation provided by the authors to our frame- 

work. In all cases the control points to evaluate the similarity met- 

rics were sampled randomly, taking approximately a proportion of 

0.1 of the total voxels in the image. All metrics were evaluated us- 

ing the same number of control points to ensure a fair compar- 

ison. Interpolation between control points was performed with a 

b-spline interpolation. The size of the boxes and offsets for the 

Haar-like features was limited to a maximum of half the size of 

the image in each dimension. 

Images were processed by performing histogram matching to a 

reference image. This was done in order to reduce the amount of 

possible intensity variations observed during training and testing. 

5.2. Evaluation on the IXI dataset: convergence and amount of 

training data 

Our first experimental setup is based on the IXI dataset, which 

contains T1, T2 and PD-weighted images of the brain from healthy 

subjects. We perform two different types of experiments. First, we 

evaluate the registration accuracy of our method given different 

training dataset sizes ( c.f Section 5.2.1 ). Second, we study the con- 

vergence of our algorithm in terms of number of iterations re- 

quired for convergence as well as for different step sizes α ( c.f 

Section 5.2.2 ). 

For the purpose of these experiments, we extract a dataset con- 

sisting of pairs of corresponding T1-T2 images from 10 subjects. 

We pre-processed the images with skull-stripping and performed 

histogram matching to a reference image. We carefully selected 

pairs of images with little or no misalignment between the T1-T2 

images. We further removed any residual alignment error by align- 

ing manually placed landmarks in both images. 

5.2.1. Dataset size 

Here, we evaluate the number of aligned images required to 

build a regression model capable of performing accurate registra- 

tions. 

Training: We split our dataset into two groups: 5 image pairs 

for training and 5 for testing. We then train 5 different regres- 

sion models, each with an increasing number of training images. 

To each image pair, we apply a random transformation, sampled 

from a uniform distribution in the range of ± size for translations 

and ± 1 rad for rotations, where size corresponds to the size of the 

image. In total 1250 image pairs are generated for each modality 

pair and 10% of their voxels are taken at random for training. 

Testing: We perform rigid registration using the 5 different re- 

gression models on the 5 images left out for testing. In order to 

assess the robustness of our algorithm to different initializations, 

we perform 30 registrations per image pair, each one at a differ- 

ent initial position for the moving image in a range between ±

size for translations and ± 1 rad for rotations. We evaluate models 

created using both our previously presented method using random 

forests (LOU) and our new approach based on gradient boosted 

trees (LOU2). The results are shown in the box plots in Fig. 8 . For 

reference, we perform registration on the same set of images using 

NMI and SSC as a similarity metric and using the same simple gra- 

dient descent optimizer and we plot the median registration error 

as a dotted line. 

The box plots show that our method is able to accurately regis- 

ter the test image pairs under a large range of initializations. The 

median registration error was comparable to the error obtained us- 

ing NMI and SSC, even when the number of training images was 

reduced to a single pair of aligned images. Including additional 

images into the training dataset helps our regression model to 



B. Gutierrez-Becker et al. / Medical Image Analysis 41 (2017) 2–17 9 

Fig. 8. Comparison of registration error for models trained using different dataset sizes for LOU and LOU2. The dotted blue line indicates the median registration error for 

registration in the same images using Normalized Mutual Information and the green line the median registration error for registration using SSC. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 

reduce the final registration error even further. We also observe 

that LOU2 produces slightly lower registration errors when com- 

pared to LOU, and that, LOU2 is able to reduce the registration 

error using a lower number of training images. This can be at- 

tributed to the lower prediction error obtained using Gradient 

Boosted Trees as an ensemble technique when compared to Ran- 

dom Forests. 

5.2.2. Convergence 

For our second experiment with IXI, we take the models trained 

on 5 images (last box plot in Fig. 8 -right) and perform rigid regis- 

tration for a test pair of images with an arbitrary initial transfor- 

mation. For clarity, we illustrate the behavior of the updates inde- 

pendently for different parameters. To this end, we perform two 

separate experiments. First, we initialize the moving image with a 

50 mm translation offset in the axial direction. In the second ex- 

periment, we rotate the moving image around the axial axis by 

0.5 rad for LOU and LOU2, but only by 0.25 rad for NMI given its 

smaller capture range. We show in Fig. 9 the evolution of the error 

over the iterations in each case and for both our methods and NMI 

using the same gradient-based optimizer. 

In order to assess the influence of the step size α for each 

method, we present three curves with different step sizes. The step 

size shown in the red corresponds to the step size that presented 

the lowest final error after a line search in the parameter α. 

We can draw some interesting observations from the results in 

Fig. 9 . The path across the energy function for LOU and LOU2 is 

smoother and reaches a transformation close the global optimum 

in just a few iterations. In general LOU and LOU2 were able to find 

an accurate solution after no more than 10 iterations compared to 

the hundreds required using NMI. 

The longer optimization time can be explained by the noisy ap- 

proximations of the gradient of NMI. This noisy gradient forces the 

optimization algorithm to use a very small step size in order to 

ensure that the optimization converges to a solution close to the 

global optimum. For this reason, the convergence times for LOU 

( ∼ 10 s) and LOU2 ( ∼ 5 s) were an order of magnitude faster when 

compared to NMI ( ∼ 100 s). 

5.3. Evaluation on the public dataset (RIRE) 

In order to demonstrate the flexibility and generality of our 

multi-modal registration dataset, we train an independent regres- 

sion model for each available modality pair in the publicly avail- 

able RIRE dataset (CT-T1, CT-T2, CT-PD, PET-T1, PET-T2 and PET- 

PD). Only the single pre-aligned image pairs provided in the RIRE 

dataset are used for training. 

We report the average Target Registration Error (TRE) as ob- 

tained from the online RIRE evaluation platform and compare the 

results for both our LOU and LOU2 methods with respect to Nor- 

malized Mutual Information (NMI) and the Self-Similarity Context 

descriptor (SSC) ( Heinrich et al., 2013 ). 

Training: We follow a similar procedure as for the IXI experi- 

ments. We again generate transformations using translations rang- 

ing from ± size and rotations from ± 1 rad . However, this time 

we consider the raw images without skull stripping. The only pre- 

processing step is histogram matching between the test images 

and the training image in order to account for differences in the 

dynamic range of the images. 

Testing: For each testing image pair (in total 33 image pairs) 

in the dataset we perform rigid registration 30 times, each start- 

ing from a different initial misalignment of the moving image. This 

initial transformation is sampled at random from a uniform distri- 

bution in the range of ± 0.5 ∗size for translation in each of the axis 

and rotations of ± 0.5 rad. 

Results of our evaluation are shown in Fig. 11 . The box plots 

indicate the final registration error after convergence for the four 

compared methods and all combinations of image modality pairs. 

In the case of CT-MR , we observe that the final median registration 

error is comparable across the different methods. When the initial- 

ization is close to the optimum solution, SSC, LOU and LOU2 lead 

to comparable low registration error. However, NMI and SSC result 

more often in higher registration errors when the initial transfor- 

mation is large. As such transformations are not covered by cap- 

ture range of the algorithm, the optimizer converges to a local 

optimum. We performed Mann–Whitney U statistical tests ( Mann 

and Whitney, 1947 ) between each pair of methods for all modality 

pairs. Almost all of these tests resulted on a significant difference 

between methods ( p < 0.05) with the exception of the test be- 

tween LOU and LOU2 on the CT-PD data where the null hypothesis 

was not rejected. 

LOU and LOU2 are more robust to the initial alignment between 

the images and converged to a low registration error for a broader 

range of initial transformations. In the case of registering PET- MR 

images, the registration error of SSC is higher, which can be at- 

tributed to the poor structural information in PET images. LOU and 

LOU2 result in lower errors for all the PET experiments. Among our 

two methods, LOU2 has a broader capture range resulting in lower 

registration errors. 

In order to assess the accuracy of each one of the methods for a 

standard initialization we also performed registration for each pair 

of images with the initial position given by the RIRE database. Our 

results are shown in Table 1 and are also available online on the 
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Fig. 9. Behavior of a gradient descent optimizer using different strategies to calculate parameter updates. ( Top ) Gradient of NMI. ( Middle ) Updates calculated using LOU. 

( Bottom ) Updates from LOU2. Each plot line corresponds to a different step size α. Our methods have a faster convergence ( ∼ 10 iterations) and a smoother behavior when 

compared to NMI. (For interpretation of the references to color in the text, the reader is referred to the web version of this article.) 

Table 1 

Median TRE obtained after registering the image pairs of the RIRE dataset without 

initialization. 

NMI SSC LOU LOU2 

CT-T1 1.06 ± 1.16 2.06 ± 1.17 0.95 ± 1.30 0.89 ± 0.90 

CT-T2 4.07 ± 7.74 5.53 ± 11.67 3.80 ± 4.17 3.07 ± 3.62 

CT-PD 1.07 ± 12.46 1.58 ± 1.43 3.49 ± 1.91 3.07 ± 1.89 

PET-T1 4.10 ± 1.83 8.11 ± 3.21 5.22 ± 3.48 5.29 ± 3.70 

PET-T2 3.72 ± 2.66 7.29 ± 7.75 3.27 ± 2.91 4.17 ± 1.91 

PET-PD 4.07 ± 2.11 2.62 ± 2.81 3.46 ± 2.39 2.98 ± 2.24 

Table 2 

Experiment ID in the RIRE database for the experiments in Table 1 . 

NMI SSC LOU LOU2 

CT-T1 185750 185753 185752 185751 

CT-T2 185754 185755 185808 185756 

CT-PD 185762 185763 185764 185759 

PET-T1 185769 185771 185804 185777 

PET-T2 185773 185772 185784 185785 

PET-PD 185767 185766 185801 185800 

RIRE website using the ids shown in Table 2 . We observe that given 

a good initialization all methods presented a similar final accu- 

racy. The main advantage of our method in this dataset lies there- 

fore the increased capture range as observed in Fig. 11 and the 

fastest convergence times due to the reduced number of required 

iterations for convergence. Qualitative results of these experiment 

are also shown on Fig. 10 where a pair of images from the RIRE 

database are shown before and after registration using LOU2 

One of our driving hypothesis is that the prior knowledge used 

in our learning-based approach should serve to increase the cap- 

ture range for multimodal registration. To demonstrate this hy- 

pothesis is verified, we compute our predicted updates for differ- 

ent initial misalignments and compare them with the gradient- 

based updates of NMI. The update plots are shown in Fig. 12 for 

one pair of PET-MR images and in Fig. 13 for one CT-MR pair. 

For NMI, the updates based on the similarity gradient tend 

to be smooth for the range of parameters close to the optimal 

transformation, but noisy when the transformation parameters are 

far from the optimal alignment. This behavior causes the NMI 

gradient-based registration algorithm to fail when the initializa- 

tion is far from the optimal solution. Furthermore, the optimal step 

size for NMI is small, 6 leading the gradient-ascent algorithm to 

converge in a larger number of iterations when compared to our 

method. 

6 Found through line search seeking to maximize the capture range of NMI while 

keeping a comparable error to our method. 
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Fig. 10. Exemplary results of registered images of the RIRE database using our method (LOU2). In each box the image of the left corresponds to the initial position given by 

the RIRE database and the image of the right corresponds to the image after registration. Top left: PET-PD; Bottom Left: PET-T2; Top left: CT-T2; Bottom left: CT-T1. 

Fig. 11. Final registration error for the RIRE dataset. The width of the violin plot represents the distribution of the TRE, the red line indicates the median and the black 

line the mean. Results are shown for registration on PET - MR image pairs and CT- MR image pairs. The plot summarizes the results for all patients from 30 different 

initializations. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 12. Comparison of estimated parameter updates using different methods for PET-MR pairs: NMI, updates calculated using the gradient of NMI with respect to trans- 

formation parameters; LOU, updates calculated using our approach presented on Gutiérrez-Becker et al. (2016) ; LOU2: updates calculated using the presented method. The 

updates with our method are smoother and the estimated step size is close to the optimal. 

For the learning-based methods, LOU and LOU2 , the optimiza- 

tion updates generated by our metric are smoother for all modality 

pairs. Additionally, in the case of LOU2, the predicted step size con- 

forms to the ideal optimal step ( c.f Fig. 2 ) for a wide capture range. 

The fact that the update is proportional to the distance to the opti- 

mal solution, allows the gradient-based algorithm to converge with 

the fewest iterations. The differences among the updates of differ- 

ent are most notable for the PET-MR pair ( Fig. 12 ), most proba- 

bly given the lack of structural similarity between the modalities. 

Similar behavior was observed for all converged instances of the 

algorithm given different image pairs and initializations. 

5.3.1. Feature relevance 

We analyze which features are more relevant for the registra- 

tion task by analyzing how many times each feature type is se- 

lected in the training process. In Fig. 14 we observe the frequency 

at which different types of features were selected at different trees 

in a gradient boosting ensemble trained for the registration of CT 

and T1 images of the brain. The histograms of the first column cor- 

respond to the first trained tree of the ensemble, while the second 

and third columns correspond to the 30th and 100th tree respec- 

tively. 

We can observe that in general features with short offsets and 

small boxes are favored by the ensemble of regression trees. How- 

ever, features corresponding to long range appearance are still use- 

ful and are considered by the trees. We observed that in gen- 

eral, early trees tended to select a broader range of scales, while 

trees corresponding to later stages of the boosted ensemble se- 

lected mostly short range features. This behavior occurs because 

long range features are useful to perform a rough initialization for 

images with large initial misalignments but are less useful for the 

posterior fine alignment of the images. The first few trees of the 
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Fig. 13. Comparison of estimated parameter updates using different methods for CT-MR pairs: NMI, updates calculated using the gradient of NMI with respect to trans- 

formation parameters; LOU, updates calculated using our approach presented on Gutiérrez-Becker et al. (2016) ; LOU2: updates calculated using the presented method. The 

updates with our method are smoother and the estimated step size is close to the optimal. 

ensemble are therefore able to perform a rough alignment of the 

images and later trees added to the ensemble reduce the final reg- 

istration error. 

In the third row of Fig. 14 we also show the proportion of times 

that trees select boxes from either the fixed or the moving image, 

or both images simultaneously. By observing the histograms we 

can conclude that our method extracts information within a single 

image to determine the relative position of each control point in 

the image and simultaneously obtains information from both im- 

ages to determine the relationship of the intensities of both modal- 

ities. Interestingly while the first trees tend to select all features in 

an even distribution, further trees tend to rely more on features 

that take both modalities into account at the same time. 

In the bottom row of Fig. 14 we show which operations be- 

tween boxes are selected. All operations seem to have equal im- 

portance on the first trained trees with the exception of the binary 

operation between boxes. The low importance of binary operations 

between boxes can be explained by the high importance of the re- 

lationship between the intensity values of both modalities. Later 

trees tend to prefer operations between boxes instead of opera- 

tions using a single box. This is related to the previous observation 

that trees trained on the later stages of the ensemble require more 

information on the local intensity relationship between images in 

order to reduce registration error. 

5.4. IVUS-Histology deformable registration 

For our third set of experiments, we perform deformable 

multi-modal registration in a dataset of IVUS and histology image 

pairs. Registration of IVUS and histology pairs is important for the 
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Fig. 14. Histograms showing the distribution of the selected features during the training of a boosting ensemble for CT-T1 registration. The top row corresponds to the size 

of the offsets, the second row to the size of the boxes, the third row to the image where the features are extracted from and the fourth row to the operation between boxes. 

characterization of artherosclerotic tissues ( Katouzian et al., 2012 ). 

To build the training set we align the IVUS and histological slices 

using the method presented in Katouzian et al. (2012) , which is 

based on the alignment of manually-segmented structures. We 

then generate 100 transformations of each aligned pair by deform- 

ing the images using a B-spline with random parameters in a range 

between ± 20 for the B-spline coefficients , leading to a training 

set of 5 initially aligned images and 500 transformed images. We 

train our model following the same settings as for the RIRE ex- 

periments, but this time using a mask around the region actually 

containing tissue in the histological image. Please note that the 

synthetic transformations have only been used for training pur- 

poses, but testing was performed on pairs of histology and IVUS 

images without any additional transformations applied to them. 

We quantitatively compare our approach against other methods 

by measuring the overlap (DICE) of segmented stenosis regions 

both in IVUS and the histology images. Even though using overlap 

measures is not the ideal measure to assess registration accuracy, 

it is still reliable for distinguishing between reasonable from 

inaccurate registrations ( Rohlfing, 2012 ). For testing, we use again 

gradient-based optimization and we parametrize the transfor- 

mation with a 3rd-order B-spline with 5 nodes per dimension 

distributed uniformly along the image. We do a 2-fold cross- 

validation evaluation with the 10 image pairs. The DICE scores 

after registration are shown in Fig. 15 . Here, NMI and SSC present, 

in general, lower overlap measures when compared to our two 

supervised methods. Reasons for the comparably lower scores are 

the complex relationship between the intensities of both modali- 

ties which is difficult to capture by the joint histogram of mutual 

information, and the lack of structure which can be leveraged on 

by SSC. Our supervised approaches, on the other hand, result in 

much larger DICE values, indicating more accurate registration. 

After performing a Mann–Whitney U test between our method, 

SSC and NMI, our approach proved to yield a statistical significant 

Fig. 15. Results of the multi-modal deformable registration of IVUS-Histology im- 

ages. The registration success of the different methods is measured by means of 

the DICE score, indicating the overlap between the IVUS and Histology tissue masks 

after registration. The box plot shows the results of a 2-fold cross-validation exper- 

iment on ten images. 

improvement in the registration error ( p < 0.05). The median reg- 

istration error was similar between our two approaches, but the 

Gradient Boosted trees of LOU2 reduces the maximum registration 

error. Visual examples of the experiment are illustrated in Fig. 16 , 

where we show overlays of IVUS and histology pairs before and 

after registration as well as the generated deformation fields. 

5.5. Amount of training data 

Similar to the experiments performed on the IXI dataset, we 

evaluated the differences on the performance of our trained mod- 

els depending on the amount of aligned images used to generate 
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Fig. 16. Results of the IVUS-Histology deformable registration experiment. On the top box the example with the highest DICE score after registration using LOU2 

(DICE = 0.81), and in the bottom box an example with a low DICE score after registration (DICE = 0.65). On top of each box the IVUS and histology images prior to 

registration and the deformation field obtained after the first iteration of LOU2. The red and blue boxes show corresponding regions in both images. In the bottom left part 

of the box, an overlay of the images before registration is shown. The arrows point towards the same regions in the boxes on the top. On the bottom right of each box, 

we show the overlay of the registered images using our method (LOU2), with the arrows indicating how the previously mismatching regions overlap after registration. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

the training set. As the IVUS-Histology dataset presents a bigger 

variation both in terms of appearance and deformations, we expect 

that increasing the dataset size has a bigger impact in registra- 

tion accuracy when compared to previous experiments. We there- 

fore evaluated 5 different models, each one trained using different 

number of aligned images ranging from 1 to 5. In Fig. 17 we can 

observe the results of this evaluation. Similar to our previous ex- 

periments, increasing the number of images improved the registra- 

tion accuracy in the IVUS-Histology dataset. We can observe that 

our method is able to perform a more accurate registration when 

compared to NMI and SSC even after a single training image is in- 

cluded. However adding extra images on the training set allowed 

our method both to reduce the number of registration outliers as 

well as to reduce the final registration error. 

6. Conclusions 

In this work, we have a presented a novel approach to solving 

the multimodal registration problem based on a supervised regres- 

sion and a gradient-based optimizer. Different to prior methods 

based on similarity design or learning, we directly target the pre- 

diction of the optimizer updates. To this end, we first show how 

the updates are related to the displacement field aligning the two 

images. We then demonstrate that using a training set of image 

pairs under known misalignments it is possible to train a regressor 

predicting the displacement fields from changes in the joint visual 

appearance of the images. Finally, we described how the predicted 

displacements can be generalized to other transformation parame- 

terizations, and how the transformation updates can be inscribed 

within a simple gradient-based optimizer. 

In the experimental evaluation, we have shown the flexibility 

and generality of our method to work on scenarios with very dif- 

ferent modality pairs. Our method achieves comparable registra- 

tion accuracy for several modality pairs were other methods have 

proven to be successful (for example, CT to MR). However, we have 

also shown that the same method is able to accurately register dif- 

ficult pairs of modalities, such as IVUS to histology, for which other 

multimodal registration methods tend to fail (IVUS to Histology). 
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Fig. 17. Results of the multi-modal deformable registration of IVUS-Histology im- 

ages using LOU2 as a function of the number of aligned images used for training. 

We can observe an increase of registration accuracy. The blue dotted line represents 

the median DICE score obtained after registration using NMI and the red line the 

DICE score after registration with SSC. (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.) 

Indeed, the supervised regression allows our method to deal with 

modalities displaying very different appearances and with weak 

structural similarities. 

Our method requires sets of aligned images to train our su- 

pervised method. Nevertheless, we have observed that LOU and 

LOU2 are able to perform reliable registrations even when the 

training set size is very small. For example, the low reported errors 

in the RIRE experiments resulted from our model being trained on 

a single pair of aligned images transformed 100 times. The extra 

effort of generating such training sets can be justified in large scale 

studies, or when the ability of our method to perform registration 

on complex modality pairs is required ( i.e. when other metrics fail). 

Adding extra pairs of aligned images to the training set enhances 

the accuracy of our method over other multimodal registration ap- 

proaches, but it is not a requirement if focusing on our method’s 

large capture range for comparable registration errors. 

We have also shown that our method can easily be adapted to 

work with different parametrizations. By modeling our transforma- 

tion using a displacement field we were able to easily integrate 

both a rigid registration parametrization and a deformable b-spline 

parametrization. Although this has not been thoroughly explored 

on this work, an additional advantage to parametrize our transfor- 

mation as a displacement field is that a spatial regularization term 

could be easily applied to the displacement fields estimated by our 

regression model. Such a regularization term could prove impor- 

tant for the success of our method in scenarios where larger defor- 

mations are expected. At this point, it is important to mention that 

generating training sets for a highly deformable registration setting 

is not trivial and is an issue that has not yet been thoroughly ex- 

plored in the supervised learning of similarity metrics. Generating 

training sets for deformable registration that are both realistic and 

extensive is an area to be addressed in order to extend our method 

to other scenarios and is an interesting area for future research. 

The experiments have also shown that our method has an in- 

creased capture range and a faster convergence than the compared 

approaches. This is the result of modeling our metric as a motion 

prediction problem which takes the optimization into account. In 

the case of rigid registration, our method was able to converge in a 

maximum of 10 iterations, while 50 iterations were enough for an 

accurate deformable registration of the IVUS-Histology database. In 

both cases, the registration was successful even when the initial 

transformations were far from the optimal solution. 

Our experiments mainly focused on registration on imaging set- 

tings on which acquisition protocols can be controlled and remain 

fairly homogeneous. However an open challenge still to be ad- 

dressed by our method and other learning based approaches is 

that of highly variable environments, such as deformable registra- 

tion of multimodal images in an intraoperative setting or registra- 

tion of US images acquired at arbitrary positions and acquisition 

angles. The main reasons we have not yet tackled this challenge 

are the requirement to generate ground truth data which can be 

used to train our regression models and the difficulty of modeling 

the large difference in appearance which occur in an intra opera- 

tive scenario. However our experiments so far have shown that our 

method is able to handle multiple modalities as well as different 

parametrization, which encourage us to further explore solutions 

which can tackle more challenging cases. 

In the future, we plan to test our method in other scenarios 

where prior knowledge is required to improve registration accu- 

racy, for instance, for the registration of intra-operative 2D ultra- 

sound images to pre-operative MR for surgical navigation. We also 

believe the approach can contribute to mono-modal and volume- 

to-slice registration problems. 
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Abstract. With the availability of big medical image data, the selec-
tion of an adequate training set is becoming more important to address
the heterogeneity of different datasets. Simply including all the data
does not only incur high processing costs but can even harm the predic-
tion. We formulate the smart and efficient selection of a training dataset
from big medical image data as a multi-armed bandit problem, solved
by Thompson sampling. Our method assumes that image features are
not available at the time of the selection of the samples, and therefore
relies only on meta information associated with the images. Our strategy
simultaneously exploits data sources with high chances of yielding useful
samples and explores new data regions. For our evaluation, we focus on
the application of estimating the age from a brain MRI. Our results on
7,250 subjects from 10 datasets show that our approach leads to higher
accuracy while only requiring a fraction of the training data.

1 Introduction

Machine learning has been one of the driving forces for the huge progress in
medical imaging analysis over the last years. Of key importance for learning-
based techniques is the training dataset that is used for estimating the model
parameters. Including all available data in a training set is becoming increasingly
impractical, since processing the data to create training models can be very time
consuming on huge datasets. In addition, most processing may be unnecessary
because it does not help the model estimation for a given task. In this work,
we propose a method to select a subset of the data for training that is most
relevant for a specific task. Foreshadowing some of our results, such a guided
selection of a subset for training can lead to a higher performance than using all
the available data while requiring only a fraction of the processing time.

The task of selecting a subset of the data for training is challenging because at
the time of making the decision, we do not yet have processed the data and we do
therefore not know how the inclusion of the sample would affect the prediction.
On the other hand, in many scenarios each image is assigned metadata about
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the subject (sex, diagnosis, age, etc.) or the image acquisition (dataset of origin,
location, imaging device, etc.). We hypothetize that some of this information
can be useful to guide the selection of samples but it is a priori not clear which
information is most relevant and how it should be used to guide the selection
process. To address this, we formulate the selection of the samples to be included
in a training set as reinforcement learning problem, where a trade-off must be
reached between the exploration of new sources of data and the exploitation of
sources that have been shown to lead to informative data points in the past.
More specifically, we model this as a multi-armed bandit problem solved with
Thompson sampling, where each arm of the bandit corresponds to a cluster of
samples generated using meta information.

In this paper, we apply our sample selection method to brain age estima-
tion [7] from MRI T1 images. The estimated age serves as a proxy for biological
age, whose difference to the chronological age can be used as indicator of dis-
ease [6]. The age estimation is a well-suited application for testing our algorithm
as it allows us to work with a large number of datasets, since the subject’s age
is one of the few variables that is included in every neuroimaging dataset.

1.1 Related Work

Our work is mostly related to active learning approaches, whose aim is to select
samples to be labeled out of a pool of unlabeled data. Examples of active learning
approaches applied to medical imaging tasks include the work by Hoi et al. [9],
where a batch mode active learning approach was presented for selecting med-
ical images for manually labeling the image category. Another active learning
approach was proposed for the selection of histopathological slices for manual
annotation in [21]. The problem was formulated as constrained submodular opti-
mization problem and solved with a greedy algorithm. To select a diverse set of
slices, the patient identity was used as meta information. From a methodological
point of view, our work relates to the work of Bouneffouf et al. [1], where an active
learning strategy based on contextual multi-armed bandits is proposed. The main
difference between all these active learning approaches and our method is that
image features are not available a priori in our application, and therefore can not
be used in the sample selection process. Our work also relates to domain adap-
tation [15,20]. In instance weighting, the training samples are assigned weights
according to the distribution of the labels (class imbalance) [10] and the distri-
bution of the observations (covariate shift) [16]. Again these methods are not
directly applicable in our scenario because the distribution of the metadata is
not always defined on the target dataset.

2 Method

2.1 Incremental Sample Selection

In supervised learning, we model a predictive function f : (x,p) �→ y depending
on a parameter vector p, relating an observation x to its label y. In our appli-
cation, x ∈ R

m is a vector with m quantitative brain measurements from the
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image and y ∈ R is the age of the subject. The parameters p are estimated by
using a training set ST = {s1, s2, . . . , sNtrain

}, where each sample s = (x, y) is
a pair of a feature vector and its associated true label. Once the parameters are
estimated, we can predict the label ỹ for a new observation x̃ with ỹ = f(x̃,p∗),
where the prediction depends on the estimated parameters and therefore the
training dataset. In our scenario, the samples to be included in the training set
ST are selected from a large source set S = {h1, h2, .., hNtotal

} containing hidden

samples of the form h = {x̂, ŷ,m}. Each h contains hidden features x̂ and label ŷ

that can only be revealed after processing the sample. In addition, each hidden
sample possesses a d-dimensional vector of metadata m ∈ Z

d that encodes char-
acteristics of the patient or the image such as sex, diagnosis, and dataset of
origin. In contrast to x̂ and ŷ, m is known a priori and can be observed at no
cost. To include a sample h from set S into ST , first its features and labels have
to be revealed, which comes at a high cost. Consequently, we would like to find
a sampling strategy that minimizes the cost by selecting only the most relevant
samples according to the metadata m.

2.2 Multiple Partitions of the Source Data

In order to guide our sample selection algorithm, we create multiple partitions
of the source dataset, where each one considers different information from the
metadata m. Considering the j-th meta information (1 ≤ j ≤ d), we create
the j-th partition S = ∪

ηj

i=1C
j
i with ηj a predefined number of bins for m[j].

As a concrete example, sex could be used for partitioning the data, so S =
Csex

female ∪ Csex
male and ηsex = 2. In the case of continuous variables such as age,

partitions can be done by quantizing the variable into bins. All the clusters
generated using different meta information are merged into a set of clusters
C = {Cj

ι }. Since partitions can be done using different elements of m a sample
can be assigned to more than one cluster.

We hypothesize that given this partitioning, there exist clusters Ci ∈ C that
contain more relevant samples than others for a specific task. Intuitively, we
would like to draw samples h from clusters with a higher probability of returning
a relevant sample. However, since the relationship between the metadata and
the task is uncertain, the utility of each cluster for a specific task is unknown
beforehand. We will now describe a strategy that simultaneously explores the
clusters to find out which ones contain more relevant information and exploits

them by extracting as many samples from relevant clusters as possible.

2.3 Sample Selection as a Multi-armed Bandit Problem

We model the task of sequential sample selection as a multi-armed bandit prob-
lem. At each iteration t, a new sample is added to the training dataset ST . For
adding a sample, the algorithm decides which cluster Ci ∈ C to exploit and ran-
domly draws a training sample st from cluster Ci. The corresponding feature
vector xt and label yt are revealed and the usefulness of the sample st for the
given task is evaluated, yielding a reward rt ∈ {−1, 1}. A reward rt = 1 is given
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if adding the sample improves the prediction accuracy of the model and rt = −1
otherwise.

At t = 0, we do not possess knowledge about the utility of any cluster.
This knowledge is incrementally built as more and more samples are drawn and
their rewards are revealed. To this end, each cluster is assigned a distribution
of rewards Πi. With every sample the distribution better approximates the true
expected reward of the cluster, but every new sample also incurs a cost. There-
fore, a strategy needs to be designed that explores the distribution for each of
the clusters, while at the same time exploiting as often as possible the most
rewarding sources.

To solve the problem of selecting from which Ci to sample at every iteration
t, we follow a strategy based on Thompson sampling [17] with binary rewards. In
this setting, the expected rewards are modeled using a probability Pi following
a Bernoulli distribution with parameter πi ∈ [0, 1]. We maintain an estimate
of the likelihood of each πi given the number of successes αi and failures βi

observed for the cluster Ci so far. Successes (r = 1) and failures (r = −1)
are defined based on the reward of the current iteration. It can be shown that
this likelihood follows the conjugate distribution of a Bernoulli law, i.e., a Beta
distribution Beta(αi, βi) so that

P (πi|αi, βi) =
Γ (αi + βi)

Γ (αi)Γ (βi)
(1 − πi)

βi−1παi−1
i . (1)

with the gamma function Γ . At each iteration, π̂i is drawn from each cluster
distribution Pi and the cluster with the maximum π̂i is chosen. The procedure
is summarized in Algorithm 1.

Algorithm 1. Thompson Sampling for Sample Selection

1: αi = 1, βi = 1, ∀i ∈ {1, . . . , N}
2: for t = 1, 2, ... do

3: for i = 1, . . . , N do

4: Draw π̂i from Beta(αi, βi).
5: Reveal sample ht = {xt, yt,mt} from cluster Cj where j := arg maxi π̂i.
6: Add sample ht to ST and remove from all clusters.
7: Obtain new model parameters p∗ from updated training set ST .
8: Compute reward rt based on new prediction ỹ = f(x,p∗).
9: if rt == 1 then αj = αj + 1

10: else βj = βj + 1

3 Results

In order to showcase the advantages of the multi-armed bandit sampling algo-
rithm (MABS), we evaluate our method in estimating the biological age of a
subject given a set of volume and thickness features of the brain. We choose this
task because of the big number of available brain scans in public databases and
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the relevance of age estimation as a diagnostic tool for neurodegenerative dis-
eases [18]. For predicting the age, we reconstruct brain scans with FreeSurfer [5]
and extract volume and thickness measurements to create feature vectors x.
Based on these features, we train a regression model for predicting the age of
previously unseen subjects.

3.1 Data

We work on MRI T1 brain scans from 10 large-scale public datasets: ABIDE [3],
ADHD200 [14], AIBL [4], COBRE [13], IXI1, GSP [2], HCP [19], MCIC [8],
PPMI [12] and OASIS [11]. From all of these datasets, we obtain a total number
of 7,250 images, which is to the best of our knowledge the largest dataset ever
used for brain age prediction. Since each one of these datasets is targeted towards
different applications, the selected population is heterogeneous in terms of age,
sex, and health status. For the extraction of thickness and volume measurements,
we process the images with FreeSurfer. Even though this is a fully automatic tool,
the feature extraction is a computationally intensive task, which is by far the
bottleneck of our age prediction regression model.

3.2 Age Estimation

We perform age estimation on two different testing scenarios. In the first, we
create a testing dataset by randomly selecting subsets from all the datasets. The
aim of this experiment is to show that our method is capable of selecting samples
that will create a model that can generalize well to a heterogeneous population.
In the second scenario, the testing dataset corresponds to a single dataset. In
this scenario, we show that the sample selection permits tailoring the training
dataset to a specific target dataset.

Experiment 1. For the first experiment we take all the images in the dataset
and we divide them randomly into three sets: (1) a small validation set of 2% of
all samples to compute the rewards given to MABS, (2) a large testing set of 48%
to measure the performance of our age regression task, and (3) a large hidden
training set of 50%, from which samples are taken sequentially using MABS.
We perform the sequential sample selection described in Algorithm 1 using the
following metadata to construct the clusters C: age, dataset, diagnosis, and sex.
We experiment with considering all of the metadata separately, to investigate the
importance of each one, and the joint modeling considering all partitions at once.
We opted to use ridge regression as our learning algorithm because of its fast
training and good performance for our task, but other regression models can be
easily plugged into our method. Rewards r are given to each bandit by estimating
and observing if the r2 score of the prediction in the validation set increases. It is
important to emphasize that the testing set is not observed by the bandits in the
process of giving rewards. Every experiment is repeated 20 times using different

1 http://brain-development.org/ixi-dataset/.

http://brain-development.org/ixi-dataset/
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random splits and the mean results are shown. We compare with two baselines:
the first one (RANDOM) consists of obtaining samples at random from the
hidden set and adding them sequentially to the training set. As a second baseline
(AGE PRIOR), we add samples sequentially by following the age distribution
of the testing set. The results of this first experiment are shown in Fig. 1 (top
left). In almost all of the cases, using MABS as a selection strategy performed
better than the baselines. Notably, an increase in performance is obtained not
only when the relationships between the metadata and the task are direct, like in
the case of the clusters constructed by age, but also when this relationship is not
clear, like in the case of clustering the images using only dataset or diagnostic
information. Another important aspect is that even when the meta information
is not informative, like in the case of the clusters generated by sex, the prediction
using MABS is not affected.

Fig. 1. Results of our age prediction experiments in terms of r2 score. A comparison
is made between MABS using different strategies to build the clusters C, a random
selection of samples, and a random selection based on the age distribution of the test
data. To improve the presentation of the results, we limit the plot to 4,000 samples.

Experiment 2. For our second experiment, we perform age estimation with the
test data being a specific dataset. This experiment follows the same methodology
as the previous one with the important difference of how the datasets are split.
This time the split is done by choosing: (1) a small validation set, taken only
from the target dataset, (2) a testing set, which corresponds to the remaining
samples in the target dataset not included in the validation set, and (3) a hid-
den dataset containing all the samples from the remaining datasets. The goal of
this experiment is to show that our approach can be applied to selecting samples



44 B. Gutiérrez et al.

according to a specific population and prediction task. Figure1 shows the results
for three different target datasets. We observe that bandits operating on single
metadata like diagnosis or dataset can perform very well for the sample selection.
However, the best metadata is different for each of the presented datasets. We
also observe that MABS using all available metadata extracts informative sam-
ples more efficiently than the baselines and always close to the best performing
single metadata MABS. This strengthens our hypothesis that it is difficult to
define an a priori relationship between the metadata and the task. Consequently,
it is a better strategy to pass all the metadata from multiple sources to MABS
and let it select the most relevant information.

4 Conclusion

We have proposed a method for efficiently and intelligently sampling a training
dataset from a large pool of data. The problem was formulated as reinforcement
learning, where the training dataset was sequentially built after evaluating a
reward function at every step. Concretely, we used a multi-armed bandit model
that was solved with Thompson sampling. The intelligent selection considered
metadata of the scan to construct a distribution about the expected reward
of a training sample. Our results showed that the selective sampling approach
leads to higher accuracy than using all the data, while requiring less time for
processing the data. We demonstrated that our technique can either be used to
build a general model or to adapt to a specific target dataset, depending on the
composition of the test dataset. Since our method does not require to observe the
information contained in the images, it could also be applied to predict useful
samples even before the images are acquired, guiding the recruitment of subjects.
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Functional imaging of the hemodynamic sensory gating response in schizophrenia.
Hum. Brain Mapp. 34(9), 2302–2312 (2013)

14. Milham, M.P., Fair, D., Mennes, M., Mostofsky, S.H., et al.: The ADHD-200 con-
sortium: a model to advance the translational potential of neuroimaging in clinical
neuroscience. Frontiers Syst. Neurosci. 6, 62 (2012)

15. Pan, S., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng.
22(10), 1345–1359 (2010)

16. Shimodaira, H.: Improving predictive inference under covariate shift by weighting
the log-likelihood function. J. Stat. Plan. Inference 90(2), 227–244 (2000)

17. Thompson, W.R.: On the likelihood that one unknown probability exceeds another
in view of the evidence of two samples. Biometrika 25(3/4), 285–294 (1933)

18. Valizadeh, S., Hänggi, J., Mérillat, S., Jäncke, L.: Age prediction on the basis of
brain anatomical measures. Hum. Brain Mapp. 38(2), 997–1008 (2017)

19. Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T., Yacoub, E., Ugurbil, K.,
WU-Minn HCP Consortium, et al: The WU-Minn human connectome project: an
overview. Neuroimage 80, 62–79 (2013)

20. Wachinger, C., Reuter, M.: Domain adaptation for alzheimer’s disease diagnostics.
Neuroimage 139, 470–479 (2016)

21. Zhu, Y., Zhang, S., Liu, W., Metaxas, D.N.: Scalable histopathological image analy-
sis via active learning. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe,
R. (eds.) MICCAI 2014. LNCS, vol. 8675, pp. 369–376. Springer, Cham (2014).
doi:10.1007/978-3-319-10443-0 47

http://dx.doi.org/10.1007/978-3-319-10443-0_47

	Titlepage
	Abstract
	Acknowledgments
	1 Introduction
	1.1 A Brief History of Medical Image Analysis
	1.1.1 Medical Imaging
	1.1.2 Digital Medical Image Analysis
	1.1.3 Machine Learning for Medical Image Analysis

	1.2 Summary of contributions
	1.2.1 Gaussian Process Uncertainty in Age Estimation as a Measure of Brain Abnormality
	1.2.2 Guiding Multimodal Registration with Learned Optimization Updates
	1.2.3 A Multi-Armed Bandit to Smartly Select a Training Set from Big Medical Data

	1.3 Thesis organization

	2 Machine Learning in Medical Image Analysis
	2.1 Introduction to Machine Learning
	2.1.1 Supervised Learning
	2.1.2 Unsupervised Learning

	2.2 Machine Learning algorithms
	2.2.1 Linear regression
	2.2.2 Decision trees
	2.2.3 Gaussian processes

	2.3 Machine Learning in Medical Imaging
	2.3.1 Computer assisted diagnosis
	2.3.2 Computer assisted diagnosis models based on age estimation
	2.3.3 Learning from limited label data


	3 Machine Learning for Medical Image Registration
	3.1 Introduction to Medical Image Registration
	3.1.1 Components of an Image Registration Algorithm

	3.2 The standard image based registration algorithm
	3.3 Classification of Image Registration Algorithms
	3.4 Evolution of the Medical Image Registration Field
	3.5 Machine Learning for Medical Image Registration

	4 Conclusion and Outlook
	5 List of Authored and Co-authored Publications
	Bibliography
	List of Figures
	I Appendix: Full text of Contributions
	Gaussian process uncertainty in age estimation as a measure of brain abnormality
	Introduction
	Materials and methods
	Method overview
	Data
	Feature extraction
	Uncertainty estimation with Gaussian process regression
	Gaussian process
	Age-weighted uncertainty

	Prediction error, uncertainty and age-weighted uncertainty
	Aging and disease assessment

	Results
	Assessing the effect of aging and disease on brain development
	Training of the age prediction model
	Evaluation of Gaussian process uncertainty as a measure of brain abnormality
	Experiment 1: ADNI dataset
	Experiment 2: OASIS dataset
	Experiment 3: ABIDE II dataset


	Discussion
	Conclusions
	Acknowledgements
	References

	Guiding multimodal registration with learned optimization updates
	1 Introduction
	2 Related work
	3 Background: gradient-based optimization
	4 Method
	4.1 An optimization-aware energy for registration.
	4.2 Learning multimodal motion predictors
	4.2.1 Generating the training set
	4.2.2 Describing joint appearance with context-aware multimodal features.
	4.2.3 Displacement prediction with ensemble methods
	4.2.4 Generalizing to arbitrary transformations
	4.2.5 Using multimodal motion predictors for registration


	5 Experiments and results
	5.1 Implementation details
	5.2 Evaluation on the IXI dataset: convergence and amount of training data
	5.2.1 Dataset size
	5.2.2 Convergence

	5.3 Evaluation on the public dataset (RIRE)
	5.3.1 Feature relevance

	5.4 IVUS-Histology deformable registration
	5.5 Amount of training data

	6 Conclusions
	 Acknowledgments
	 References

	A Multi-armed Bandit to Smartly Select a Training Set from Big Medical Data
	1 Introduction
	1.1 Related Work

	2 Method
	2.1 Incremental Sample Selection
	2.2 Multiple Partitions of the Source Data
	2.3 Sample Selection as a Multi-armed Bandit Problem

	3 Results
	3.1 Data
	3.2 Age Estimation

	4 Conclusion
	References


