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Removing intra-1 Hz covariant error to improve
altimetric profiles of �0 and sea surface height

Graham Quartly, Walter Smith and Marcello Passaro

Abstract—Waveform retracking is the process by which a
simple mathematical model is fitted to altimeter returns. Over
the ocean the waveform location, amplitude and shape can be
fitted by models with 3-5 free parameters, which may in turn
be linked to geophysical properties of the surface of interest
� principally sea surface height, wave height and normalized
backscatter strength (�0, related to wind speed). However ran-
dom multiplicative noise, which is due to the summation of power
from multiple differently orientated surfaces, produces errors
in the estimation of these model parameters. Examination of
the correlations among parameters estimated for each waveform
leads to simple empirical corrections that reduce the waveform-
to-waveform noise in geophysical estimates, resulting in smoother
(and more realistic) along-track profiles of �0 and sea surface
height. These adjustments are fundamentally dependent upon the
waveform model and retracker implemented, but when applied
show improved agreement between near-simultaneous measure-
ments from different altimeter missions. The effectiveness of these
empirical adjustments is documented fully for MLE-4 retracking
of the Jason-3 altimeter, with reduction in the 1-second variance
of �0 by 97%. However, the ideas are applicable and beneficial
for data from other altimeters, with small improvements in �0

for MLE-3 and for AltiKa at Ka-band, whilst reductions in range
variance of ⇠40% are noted for most retrackers evaluated.

Index Terms—Waveform retracking, MLE-4, MLE-3, high-
frequency correlations, spectral analysis, Jason-3, AltiKa

I. INTRODUCTION

IN the early decades of satellite altimetry of ocean surfaces,
the altimetric sea surface height error budget was dom-

inated by inadequate knowledge or modeling of spacecraft
orbits, ocean tides, radar path delays, and other phenomena
extrinsic to the altimeter itself (see Fig. 1 in [1]). These errors
typically had long (order 100 km and more) correlation lengths
along the satellite’s path, limiting applications of the data to
large-scale studies, unless along-track differences of the radar
range data could be exploited without external corrections [2].
More recently, extrinsic errors are no longer the dominant
limitation, and as the signal-to-noise frontier has moved to
shorter and shorter spatial scales there is increasing interest in
mitigating errors arising within the altimeter measurement pro-
cess itself. This paper is about exploiting intrinsic correlations
in altimeter measurement errors to partially mitigate those
errors. Here, we expand upon previous studies ([3], [4], [5],
[6], extending their work to several altimeters and retrackers,
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and presenting a method that can be applied generally to any
altimeter and retracker.

A. Background and Previous Studies

A spaceborne radar altimeter operates by emitting short
radio wave pulses and recording their echoes from near-
nadir locations on the Earth. Over the open ocean, the pulse
may usually be considered to be randomly scattered from a
”homogeneously rough” surface, meaning that the probability
of echo power is directly proportional to the surface area
illuminated by the pulse. In this case, the statistical expectation
for the backscattered power as a function of time elapsing
within the echo has a simple mathematical formulation [7],
[8], [9]. This will not be the case, if the instrument footprint
also contains inhomogeneities, whether due to land, falling
rain [10], very calm (”glassy”) seas [11], patchy sea-ice, oil
slicks [12], or large internal solitary waves [13]. Furthermore,
given that the vertical scale of variations due to wind waves
and swell in the scattering area (the radar’s ”footprint”) greatly
exceeds the radar wavelength (22 mm for Ku-band), the
random power fluctuations in each echo (see Fig. 1a) will have
an exponential distribution, such that the fluctuation variance
is equal to the square of the mean power, a phenomenon often
called ”speckle” in the radar literature.

A conventional altimeter emits pulses at a pulse repetition
frequency (PRF) of a few kHz, a rate expected to yield a
sequence of echoes with little or no echo-to-echo correlation
in the random variations in speckle [7], [14], [15], [16], [17],
[18]. It forms the simple (”incoherent”) average of the power
received in a sequence of typically 50-100 echoes obtained
over about 0.05 seconds, producing a ”waveform” (see Fig.
1a). Empirical studies of conventional altimeter waveforms
confirm that the random fluctuations in power behave as if each
echo had realized independent speckle, except for waveform
samples at the beginning of the leading edge, where there
may be some correlations in returns [19], although this is not
a problem for moderate and large wave heights [15], [18].

By fitting parametric models to altimeter waveforms, a pro-
cess called ”retracking”, one may estimate various parameters
of geophysical interest. Nearly all retracking schemes aim to
estimate sea surface height, h, significant wave height, Hs, and
normalised backscatter strength, �0, from which wind speed
above the ocean may be estimated. Some studies have also
estimated the square of an apparent antenna mispointing angle
( 2, [20]), skewness of the surface roughness distribution [9],
[21], [22], background instrument noise, or other parameters.
Since each waveform is an average of the realizations of a ran-
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Fig. 1. a) Illustration of a typical Jason-3 20 Hz waveform (in blue), with a long-period average (in black) indicative of the fitted model. The scatter of
observations about the mean waveform is fading noise due to speckle, which is expected to be random and uncorrelated between neighbouring bins and
between successive waveforms. b) Comparison of the mean waveform shape for Hs=2 m from Jason-3 and AltiKa. Note both datasets have 104 waveform
bins, but the width of the window (in time) is smaller for AltiKa because the sampling rate is every 2 ns, instead of every 3.125 ns as for most Ku-band
altimeters. The waveform power rises from background to a maximum and then decays at a rate dependent on the antenna gain pattern. AltiKa, operating in
Ka-band, has a decay rate nearly three times that of Jason-3, at Ku-band.

dom scattering process, each estimated geophysical parameter
is also a random variable.

Previous studies have found that there is inevitable correla-
tion in the random estimation errors in the parameter estimates
of interest. Sandwell and Smith [3] showed that h and Hs must
have correlated errors. Quartly [4] examined the correlation
between the 20 Hz residuals in �0 and  2, and subsequently
showed that similar results could be obtained by comparing
Jason-1 and Jason-2 20 Hz data during their joint tandem
mission [5]. Zaron and de Carvalho [6] did an equivalent
analysis for the connection between h and Hs values for Jason-
1 and -2 (except that they only used 1 Hz values), producing an
adjustment that varied with mean Hs conditions. The concept
of exploiting the high-frequency correlations between �0 and
 2 and between h and Hs was showcased at the Ocean Surface
Topography Science Team meeting in 2016 [23]; the present
paper develops on those ideas with a more robust analysis.

The mathematical model for the waveform expectation is
non-linear in the primary geophysical parameters, and so pa-
rameter estimation proceeds by an iterative process that aims to
optimize the misfit between the model and the waveform; this
process must inevitably take a guided random walk through
the model parameter space. Retracking algorithms differ in
whether or not they use weighted optimization, whether or
not the optimization they use is unconstrained (as is the case
for ”MLE-3” (3-parameter fit with a so-called ”Maximum
Likelihood Estimator”) [24], ”MLE-4” [20] and ”PISTACH”)
or constrained (as used by Rodriguez and Martin [21], and
whether they apply ”two-pass retracking” [3], [25], [26]), and
what the criteria are for stopping their iterations. Therefore
the correlations among the errors in geophysical parameters
are dependent on the retracking algorithm as well as on the
nature of the ocean scattering.

Recalling that the instrument footprint has considerable
overlap between successive waveforms, we investigate the

correlated errors in the high-rate retrievals in order to derive
empirical corrections. This paper first repeats the work done
by Quartly [4] on �0 values from Jason-2 data to show the
consistent effect in the latest processing of Jason-2 and Jason-
3 data, and then progresses to show how the effect is different
for AltiKa. Section IV then extends the work to correcting the
derivation of range, and again demonstrates that the resultant
adjusted values show less noise and more consistency than
the standard MLE-4 or MLE-3 products. Section V shows
that this empirical adjustment, although simple, needs to be
separately defined for each altimeter and each retracker applied
to it. Section VI summarises the work and discusses the
applications.

II. REPRISE OF �0 ADJUSTMENT

Most modern altimetric satellites have good attitude control
such that the boresight of the instrument is pointing directly
down to the nadir point, and thus the irradiation pattern is
centered on the location giving the earliest returns. In such a
case the expected waveform shape is very well described by
a model using the three parameters (h, Hs and �0). However,
Jason-1 developed problems with its attitude control, such
that it ”mis-pointed” by a significant fraction of the antenna
beamwidth. This led to changes in the slope of the waveform
trailing edge that were proportional to the square of that
mispointing (hereafter  2).

Amarouche et al. [20] introduced the MLE-4 algorithm,
which also fits  2 as a fourth unknown, and this approach
has become standard. However, as noted by Challenor and
Srokosz [27] adding this free variable also affects the con-
straints on the fitting of �0. Consequently independent 20
Hz estimates of  2 and �0 show significant along-track
variability that is not physically reasonable, since neither is
the platform changing its attitude markedly every 0.05s nor are
the backscatter estimates for highly-overlapping footprints that
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different. Quartly [4] showed that the anomalies (i.e. deviations
from the mean) noted for  2 and �0 were highly correlated,
and later demonstrated that applying similar corrections to
both Jason-1 and Jason-2 improved the consistency of their
�0 values by a factor of three [5].

A. Analysis of correlation for MLE-4 estimates from Jason-3

In Fig. 2, we demonstrate that this is still the case for Jason-
3, with the latest processing, with the example time series (Fig.
2a) showing a high correlation (regression slope, ↵=10.02,
r2=0.9756, Fig. 2b). From analysing 10 cycles of Jason-3
data (i.e. over 1 million 1-Hz records in 99 days), we note
that the slope has a median value, ↵ of 11.02 (Fig. 2c) with
a weak dependency on Hs at very low winds (high �0, see
Fig. 2d). The spread of values of ↵ (as shown in Fig. 2c) is
broadly the same for all extant combinations of �0 and Hs.
This analysis has been repeated for data from the latest version
of the Jason-2 GDR (Geophysical Data Record, version E)
with essentially the same results. Analysis of a specimen cycle
of Jason-2 data from each of its 9 years of mission to-date
shows no discernible differences with instrument aging; this
is not surprising, as the correlation is principally a result of
the chosen retracking approach (as will be shown later).

B. Comparison with MLE-3

Quartly [4] proposed that a more useful estimate of Jason-
2’s �0 values could be achieved by correcting for this observed
correlation:

�0
adj = �0

MLE4 � ↵ 2 (1)

with the expectation that �0
adj (the ”adjusted value”) would be

like the estimates from MLE-3 (i.e. fitting with  2 constrained
to a fixed value), as the output of that reduced model was not
then available. As both MLE-4 and MLE-3 estimates are avail-
able on the current Jason-3 data stream, it is easy to compare
them. Regressing 20 Hz values of �0

MLE4 � �0
MLE3 against

 2, we find a very high correlation for the values within an
individual 1 Hz ensemble (r2=0.9999, for the example shown
in Fig. 3a) and that the regression slope calculated from these
many independent ensembles has a mean value of 11.50, with
a very narrow range of values (S.D.=0.10).

The slightly asymmetric histogram of observed slopes (Fig.
3b) is due to a variation in the mean value with wave height
(Fig. 3c) combined with an intrinsic variability (S.D.) of about
0.08 for a given set of conditions. Thus although the MLE-4
and MLE-3 estimates of �0 come from separate retracking
algorithms, the output from the MLE-3 retracker can be
reliably predicted from the MLE-4 one, as the difference
between the two is almost fully specified by the adjustment
↵4�3 

2 (where ↵4�3=11.50), which explains 99.97% of the
variance of their difference. The value for ↵ corresponding
to the change from �0

MLE4 to �0
MLE3 is slightly greater than

that to neutralize the dependency on  2. Thus, in some sense,
�0
MLE3 appears slightly over-corrected for the effects of  2.
Quartly [4] had also derived a correction factor for the

C-band estimate, �0
C , which was at that time based on an

MLE-3 solution using the value of  2 determined from the
MLE-4 applied to Ku-band. In the current version of Jason-2
and Jason-3 data it is based on an MLE-3 retracker with no
input from the Ku-band estimates, and the derived values for
↵C are close to zero (mean=-0.02, S.D.=1.08), and thus we
recommend no correction to these values.

C. Reduction in variability of �0

Given that the aim of this empirical adjustment is to
reduce the very small scale variability, it is not surprising
that correction using the simple mean value of ↵ reduces
the S.D. within the 1 Hz ensembles; however the scale of
the improvement is impressive (Fig. 4), as the S.D. values
noted for MLE-4 are typically reduced by a factor of six. This
implies a significant reduction in the standard error of the 1
Hz mean values. The intra-1 Hz consistency achieved by this
simple correction is also slightly better than that for the MLE-
3 estimations. (Note the C-band values, also obtained from
an MLE-3 estimator are larger than the MLE-3 for Ku-band,
because there are far fewer pulses averaged, and thus much
more sensitivity to the vagaries of the fading noise.)

An interesting demonstration of the improvement in �0

values is the much greater consistency between simultaneous
estimates at Ku- and C-band. In many ways the two different
frequencies of Jason-3 can be seen as separate instruments
observing the same location simultaneously, although probing
at different wavelengths of sea surface roughness. Although
some physical factors affect the two frequencies differently,
an improved agreement of the observations at Ku- and C-band
should indicate that the effects of instrument noise have been
minimised. The close correspondence between �0

Ku and �0
C is

the root of altimetric rain-flagging provided as quality control
indicators in the 1 Hz data streams; therefore we demonstrate
the effect of implementing �0

adj using the 1 Hz values at Ku-
and C-band. As Eq. (1) is a linear relation, it is readily applied
using the mean of each set of 20  2 values.

The scatter of the �0
Ku values from the MLE-4 algorithm

for a given �0
C value are much greater than the scatter for �0

adj

(Fig. 5b), with especially large variations at high �0
C values.

This is because in such calm conditions the spatial scales
associated with reflectivity changes are much smaller, so that
significant variations within the instrument footprint are likely.
This leads to much higher variability in  2 at low wind speeds
(Fig. 5a). In contrast, the MLE-3 estimates show essentially the
same scatter as �0

adj . An earlier processing of the Jason-2 data
did not contain �0

MLE3, but again �0
adj showed much greater

consistency between the two frequencies than did the MLE-4
estimates (Fig. 3b of [29]). Since the magnitude of intrinsic
scatter affects the threshold on the detection of rain �0

MLE3
and �0

adj offer almost the same performance, which is much
better than using �0

MLE4. Thus any useful dual-frequency rain
flagging [30] should be based on one of these robust estimates
of �0.

D. Spectra of variations in �0

To examine the spatial scales affected by this adjustment,
spectra were calculated for sections free from land or ice, using
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Fig. 2. Correlation of �0
Ku and  2. a) An example of 20 observations within a 1 Hz record. b) Scatter plot of those values, with regression slope, ↵, =

10.02. c) Histogram of observed values of ↵ for 10 cycles of Jason-3. d) Variation of mean value of ↵ with wind-wave conditions (characterized by Hs and
�0).

the Welch method with Hamming weighting. Figure 6a shows
the mean of 1445 sections for conditions with Hs=2 m, with
similar results (not shown) for other wave height regimes. The
spectrum for ”adjusted” values of MLE-4 (Eq. 1) shows much
less variability than its parent retracker at scales smaller than
48 km, and shows very little of the ”excess power” feature at
10-48 km.

The reduction in the noise floor at short wavelengths is by
a factor of ⇠50, consistent with the values found for Jason-
2 [4]. Note, the spectra for �0

MLE3 and its adjusted version
are almost the same as for �0

adj . This shows that the spectral
shape is not particularly sensitive to whether the correction
was with a value of ↵ of 11.02 or 11.50, and indicates that
it is not important to model the slight variation of ↵ with
environmental conditions (Fig. 2d).

A further test of the quality of the correction is afforded by
comparisons between Jason-2 and Jason-3 observations during
their tandem mission. To avoid interpolation, which effectively
applies a smoothing filter to one of the datasets, we compare
the satellites using their nearest neighbour points. As Jason-2
provides 20 measurements every 1.020s, whilst those of Jason-
3 are every 1.019s, there is a slight mismatch in the spacing,
so we constrained the length of observation sections to 1024
points in order that the locations of each would match to within

200 m along track.
There is a little bias between the two instruments ( 0.25 dB),

which has not been removed here; instead, for each of the 4
flavours of �0 being considered, we computed the standard
deviation of the 1024 differences, and the spectrum of those
differences. The mean spectrum for the MLE-4 evaluation is
much noisier at all wavelengths considered, whilst the other
three curves are very similar (Fig. 6b). We note an apparent
feature at a wavelength of 6 km (and also faintly visible in
the spectra of the individual �0 profiles (Fig. 6a). This feature
was present in ⇠1% of the difference spectra, but prominent
enough to be manifest in the mean; we have not been able to
identify its cause.

III. APPLICATION TO ALTIKA

AltiKa is a very different instrument from Jason-3: it is
a single-frequency Ka-band altimeter on board the SARAL
spacecraft [31]. As the radar frequency is nearly three times
that of Jason-3, the operating beamwidth is much smaller,
and thus the decay on the trailing edge of the waveform
much greater (see Fig. 1b). The width of the emitted pulses is
narrower (in terms of travel time), so the slope of the leading
edge is slightly steeper for given wave height conditions;
the bin-sampling interval is correspondingly finer, so the
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full recorded waveform is shorter in extent. To allow finer
spatial resolution it records 40 average waveforms per second
(as opposed to ⇠20 for most altimeters), but the speckle
characteristics are similar because the higher radar frequency
permits a higher rate of independent pulses, and thus a similar
number are averaged in each mean waveform. However, the
standard processing on the GDRs uses the same MLE-4 code
[32], albeit tuned for the different instrument parameters. We
carried out a similar analysis as for Jason-3 to determine the
association between the high-frequency variations in �0 and
 2 for AltiKa.

For the 40 geophysical estimates within any 1-second en-
semble, there is usually a significant correlation between  2

and �0, but not with as high r2 values as shown for Jason-3
(Figs. 2b, 3a). The overall distribution of ↵ values for AltiKa
does show a broad uni-modal distribution, but the breadth of
the distribution is greater than the mean or median values (Fig.
7a). The mean is markedly lower than the median due to a
long negative tail to the distribution, particularly associated
with calm conditions (AltiKa’s �0 >13 dB). A simple overall
adjustment of the �0 values using Eq. 1 with ↵=8.51 makes a
marginal improvement in the consistency of the 40 values in
each 1 Hz record (Fig. 7b), but does not reduce the intra-1Hz
variability of those records that were already highly variable.
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IV. EXTENSION OF ANALYSIS TO CORRELATIONS OF
RANGE AND WAVE HEIGHT

The bins on the leading edge of the waveform contribute
significantly to both the estimation of significant wave height,
Hs (linked to the slope of the leading edge) and to the epoch
(the position of the waveform, which is used to infer the range)
[3]. (A host of geophysical and instrumental corrections are
added to this latter value to produce the sea surface height
(SSH).) A similar intra-1Hz correlation analysis is carried out
to examine the links between these 2 variables estimated from
the leading edge. Rather than use some estimate of SSH that
would require selections of geophysical corrections and their
interpolation from 1 Hz values, we concentrate on the raw
records of altitude minus range, which are fully present at 20
Hz. As there are large-scale along-track changes in altitude
minus range due to the varying geoid as well as oceanographic
features, the connection between epoch and Hs within a 1-
second record is more easily shown by removing a linear trend
from both sets of 20 measurements.

An example set of measurements is illustrated in Fig. 8a,
with a clear anti-correlation between the two series; the display
as a scatter plot (Fig. 8b) shows a regression slope, �, of -
0.119, which is determined by ordinary least squares. However
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the scatter is much greater than for the �0 �  2 comparison
(Fig. 2b), with a correspondingly lower value for r2. The
relationship is nonetheless statistically significant, and there
is a high consistency amongst the regression slopes found in
analysis of 10 cycles of Jason-3 data (Fig. 8c) with a median
value for � of -0.102. There is also a clear variation with wave
height (Fig. 8d), which explains the slight skewness observed
in the histogram. Similar analysis for the C-band estimates
gives a median value for its regression slope, �C , of -0.094
and the MLE3 estimates gives a median value for �MLE3 of
-0.091. In the following, we implement an ”adjustment” to
altitude minus range of �Hs, and investigate the implications:

⇣adj = ⇣MLE4 � �Hs (2)

where ⇣ = (Altitude-Range), and � is a simple constant
for each retracker. (Note that as we implement this using
absolute values of Hs, rather than anomalies, there is an effect
on the large-scale variation of ⇣; this should eventually be
accompanied by an improved sea state bias model.) A common
measure of the variability within 1 Hz records is �h, which
is the standard deviation of ⇣ once a linear trend has been
removed. Applying the adjustment using a simple constant
value for � of -0.102 makes a marked improvement for all
wave height conditions, with reductions in the variance by

30-40%. (Although the appropriate value of � does vary with
Hs, as shown in Fig. 8d, the extra improvement for modelling
this variation is minuscule in comparison with the gain from
the simple implementation.)

Figure 9a shows a comparison of the spectra of ⇣; as there
has been no removal of the geoid, all the curves converge for
large wavelengths. Of the conventional retracking solutions,
MLE-4 can be seen to provide a lower noise level than
MLE-3, especially in the 6-24 km range associated with the
”spectral bump” [33]. However the proposed adjustment of
Eq. 2 reduces the noise levels of both these retrackers over all
scales less than 24 km, with the noise level at sub-kilometer
scales being 30% less. This improvement is equally clear when
applied to the differences between matched observations of
Jason-2 and Jason-3 during the tandem phase (Fig. 9b). In this
case the geoid and all geophysical corrections are in common
and cancel out.

V. APPLICATION TO OTHER RETRACKERS

A. Assumptions of alternative retrackers

Although the MLE-4 is the standard inversion technique
applied on the GDRs of most current altimeters, a number
of other retrackers have been developed to offer improved
performance in various scenarios. Of particular interest has
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been ALES [26], [34], which is an adaptive leading-edge sub-
waveform retracker designed principally for use in the coastal
zone. It reduces the impact of land reflections, which start
to manifest themselves in the trailing edge of the waveform,
by focussing the inversion only on those waveform bins
straddling the leading edge. Consequently it does not attempt
to estimate  2, as the relevant bins for that are in the trailing
edge. However, it does use the bins on the leading edge for
the determination of both range and wave height. The wave
height estimates from the ALES retracker have been separately
validated [35].

Another variant has been the use of a fully measured shape
for the emitted pulse (rather than a Gaussian approximation),
which has been implemented within the PEACHI project [36].
This project has implemented two different computational
approaches to locating the fitted waveform with the least error:
Newton-Raphson (N-R) and Nelder-Mead (N-M). (The N-
R is an unweighted fit driving the iteration with gradient-
minimizing steps, and so behaves essentially as MLE-4 but
with the numerical point target response, rather than its Gaus-
sian approximation; the N-M is a weighted fit with iterations
driven by a downhill simplex crawl; the primary difference
in the results of the two methods comes from the weighting
of N-M and non-weighting of N-R, rather than from the
iteration scheme. The difference between an actual PTR and
its Gaussian approximation is irrelevant except at the lowest
possible values of Hs.)
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Fig. 10. Variation of � with Hs for various different combinations of
altimeters and algorithms.

We have evaluated the association between small-scale
anomalies in SSH and wave height for each of these retrackers,
and explored how the regression coefficient varies with wave
height, since that is the parameter that most governs the shape
of the waveform. In Fig. 10 we show the variation in � with
Hs for these different retrackers, with a summary of the results
for others also included in Table 1.

B. Regression results

The magnitude of the regression coefficient is very much
dependent upon the choice of retracker, so there is no simple
correction just for each altimeter, but rather for the combina-
tion of altimeter and retracker. As would be expected, the ↵
and � values for Jason-2 and Jason-3 are almost the same.
Also, for an earlier processing, Quartly [5] showed the mean
↵MLE4 value for Jason-1 to be similar to Jason-2. For �0,
the S.D. of the adjusted values for Jason-2 and Jason-3 are
effectively the same for both MLE-4 and MLE-3 at ⇠0.060
dB, with the histogram of the values being also close to that
for the original MLE-3 estimates (see Fig. 4). Although the
median value of ↵ for AltiKa is 8.51, the spread of values
is larger, and thus the reduction in variance achieved is only
4%.

For the S.D. of detrended SSH, the empirical adjustment
according to Eq. (2) reduces the variance for most retrackers
by between 35% and 44%, roughly equivalent to the factor
of 1.5 to 1.6 noted by Garcia at el. [25] for their two-
pass processing. The ALES retracker, which was designed for
greater resilience in the coastal zone, has a slightly larger
�h value than the MLE-4 or MLE-3 retrackers when its
original data are evaluated over the open ocean. However,
as its inversion only uses bins from the first half of the
waveform, its � value (showing the correlation of anomalies
in Hs and range) is different, and ultimately the ”adjusted
ALES” retracking solution gives a median �h slightly less
than the adjusted forms for MLE-4 and MLE-3. The noise
reduction in 1-Hz ensembles for C-band and Ka-band is also
within that range.



IEEE TRANS. GEOSCI. REM. SENS. (SUBMITTED) 9

0

1000

2000

3000

4000

N
o

. 
o

f 
o

b
s

-1.25

-1.0

-0.75

-0.5

-0.25

b
et

a_
ic

e-
2

0

0.5

1

1.5

2

2.5

3

S
.D

. 
o

f 
H

t 
(m

)

5

10

15

20

25

30

Leading Edge Width (m)

%
 V

ar
ia

n
ce

a)

b)

c)

ice-2
ice-2 adjusted

0 1 32 4 5

Fig. 11. Example over ice from RA-2 on Envisat. a) Mean value of �ice2
as a function of leading edge width. (Background plot shows histogram of
observations used.) b) Std. dev. of detrended 20 Hz height measurements
before and after empirical correction. c) Percentage reduction in variance.

The concept of adjusting for the observed intra-1 Hz
correlations may also be translated to non-marine surfaces.
The GDRs for Envisat contain the output of a number of
different retrackers implemented over all surfaces although
they might have specific regions of intended applicability.
One such is ”ice-2”, which is a modification of the Brown
model for use over continental ice surfaces, for which there
will be some contribution from volume scattering as well
as surface scattering. The front half of the shape model is
a Gaussian, with the tail described by a fitted exponential.
From the Gaussian part are derived the range and leading edge
width (LEW). Over marine surfaces LEW 2 approximates to
(H2

s +1.02)/2.82 (with both LEW and Hs in meters), since
both are just descriptors of the slope.

Regression of the intra-1 Hz anomalies over the deep ocean
gives a median value for � of ⇠0.56; application over polar
ice shelves (selected as being poleward of 60� and height over
2000 m) gives a median value of ⇠0.48. This small change
reflects the different typical waveform shape and thus the error
characteristics of the waveform space around the minimum
model fit error. Apart from at very low LEW, the effective
mean �ice2 varies between -0.75 and -0.5 according to LEW
(Fig. 11a). An adjustment using simply �ice2 = -0.48 reduces
the variance within the 1 Hz ensembles by 15-30% (Fig. 11c).

VI. SUMMARY, DISCUSSION AND IMPLICATIONS

A. Adjustments to �0

In this work we have first recapped on the work of [4],
[5] on the intra-1 Hz correlations between MLE-4 estimates
of �0 and waveform-derived mispointing. Neither property
is expected to vary rapidly on such short scales, so their
correlation can be used to derive an adjustment that improves
the quality of the �0 data. This is particularly pertinent for
analyses that look at small-scale variability, such as analysis
of altimeter data for rain and for oil slicks, or for comparison
with point measurements such as meteorological buoys. For

climate studies of the large-scale wind patterns or comparison
with models (where averages over 50-100 km are used),
the adjustment is not usually relevant as the true platform
mispointing is normally very small, and thus the waveform-
derived values average to near zero over such scales.

Another application of high-frequency �0 data has been in
the use of wind speed in calculating sea state bias (SSB).
This contribution to SSH is normally computed using 1 Hz
averages of �0 and Hs, but could be implemented using 20
Hz data [37]. As both the algorithm for converting �0 to wind
speed and wind speed to SSB are non-linear, the fluctuations in
�0 associated with the MLE-4 retracker will produce a small
residual error in the SSB correction.

Version E of the Jason GDRs also provided MLE-3 esti-
mates of the parameters, enabling us to show that although
derived from a separate retracking process, �0

MLE3 was es-
sentially equivalent to �0

MLE4 � ↵4�3. 
2. The extension of

the analysis to AltiKa showed that a major change in the
waveform shape leads to a different regression coefficient.
The investigation of AltiKa waveforms also revealed that as
the waveform bins sampled a greater part of the decay in the
trailing edge, the perceived effects of changes in backscatter
strength and mispointing became more separable. The corre-
lation coefficients for individual 1 Hz samples was then much
less (not shown), and a wider range of regression coefficients
encountered (Fig. 7a). Consequently the benefits of applying
an empirical adjustment are much less (see Fig. 7b and Table
1).

B. Adjustments to ⇣
For decades there has been concern about errors in altimeter

range connected to wave height, with the term ”sea state
bias” being the combined effect of three terms. These are
skewness (the real physical distribution of the sea surface, with
typically sharper wave crests than troughs), electromagnetic
bias (different reflecting properties of facets of the sea surface
at crests from those at troughs) and retracker bias (an effect
inherent to the retracker applied). The work covered in this
paper addresses the third term.

Considering first the MLE-4 retracker for Jason-3, we note
that while the r2 value linking ⇣ and Hs for a typical 1-
second ensemble (Fig. 8b) is not as large as that linking �0

and  2, it is not only statistically significant, but also there is a
strong consistency between the regression slopes determined
for all valid ensembles (Fig. 8c). Although there is a clear
but small dependency on Hs, for simplicity we implement the
”adjustment” to sea surface height as a simple linear function
(Eq. 2). This is sufficient to make a clear reduction in �h (the
S.D. of the 1 Hz ensemble), and thus in the standard error of
the altimetric range. This is further manifested by a reduction
in the SSH spectra at scales below 48 km (Fig. 9a), and
especially in the difference between Jason-2 and Jason-3 in
the tandem phase. Section V demonstrates that different values
for � are required for different combinations of altimeter
and retracker, bringing together for the first time analysis
of Jason altimeters, Envisat, AltiKa and Sentinel-3, along
with discussion of different retracking strategies, including the
focus of ALES on waveform bins near the leading edge.
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TABLE I
MEDIAN VALUES OF SENSITIVITY COEFFICIENTS ↵ AND � FOR VARIOUS DIFFERENT COMBINATIONS OF ALTIMETERS AND ALGORITHMS, AND THEIR

EFFECT ON ESTIMATES OF VARIABILITY WITHIN 1 HZ RECORDS.

Altimeter / Al-
gorithm

Median ↵ % Variance
explained

Resultant
S.D. of �0

adj

Median � % Variance
explained

Resultant �h
of hadj

Jason-3/MLE-4 11.02 97% 0.060 -0.102 38% 0.068

Jason-3/MLE-3 -0.48 6.5% 0.059 -0.091 35% 0.065

Jason-2/MLE-4 11.01 97% 0.060 -0.101 38% 0.067

Jason-2/MLE-3 -0.48 6.5% 0.060 -0.091 35% 0.064

Jason-2/ALES -0.117 50% 0.061

Jason-2/N-R -0.102 19% 0.111

Jason-2/N-M -0.252 28% 0.101

S-3A/PLRM 7.84 90% 0.070 -0.095 40% 0.084

S-3A/SARM -0.095 13% 0.052

Jason-3/C-band -0.02 ⇠0 0.141 -0.094 44% 0.137

Jason-2/C-band -0.02 ⇠0 0.140 -0.092 44% 0.135

AltiKa/MLE-4 8.51 4.2% 0.094 -0.116 43% 0.050
* Note the values in columns 4 and 7 represent the S.D. within each 1 Hz ensemble; if one assumes the remaining errors are uncorrelated, the standard error

(i.e. the uncertainty in the 1 Hz mean) will be less by a factor of
p
19 (or

p
39 for AltiKa).

* Values for MLE-4, MLE-3 have been determined from a global analysis; data for N-M, N-R and ALES were from the regional datasets provided.

These correlated errors have been noted previously by other
researchers and estimated or mitigated in different ways.
Sandwell and Smith [3] were the first to demonstrate the
correlation between estimation errors in ⇣ and Hs, and partic-
ularly how the regression coefficient was markedly different
if the retracking used a weighting scheme rather than uniform
weighting. Their solution was to run the retracking process
over the extent of waveform data of interest, calculate a
running mean Hs (over a scale length of order 50 km) and
then retrack all waveforms again with all fitted waveforms
constrained to have Hs matching the appropriate smoothed
value. Garcia et al. [25] demonstrated that this methodology
removed the ”spectral bump”. The process suggested in this
paper avoids the need for a ”two-pass” approach, but achieves
similar reductions in noise levels and loss of that bump (see
Fig. 9).

Another landmark paper is that by Zaron and de Caravalho
[6] who tackled the issue starting from a comparison of the 1-
Hz near-simultaneous measurements of Jason-1 and Jason-2,
but also investigated the implications for repeat-track analysis,
and the change in SSH spectra at short wavelengths. Their
results also showed a smaller regression coefficient at low Hs

(compare our Fig. 10 and their Fig. 2), although our analysis
documents the variation more clearly, since each individual
second of data contributes a value for the regression slope, thus
permitting more information in the rarer sea state conditions.
By starting explicitly at the shortest spatial scales, we have
demonstrated an approach that is not dependent upon tandem
missions or repeat track operations, and is readily run on large
volumes of data to enable the variation with Hs to be better
elucidated. The coastal altimetry community is increasingly
interested in finer resolution data from individual waveforms;
our adjustments, being derived from such high-rate data, will
address their need for corrections evaluated at 20 Hz over all
likely values of �0 and Hs.

Such ideas have also been pioneered in the cryospheric
community, where correlations between LEW and range are
used to correct for the effect of different penetration depth
[38], [39], [40]. They use repeat-track analysis, but with
full 20 Hz data. Of those published analyses with an LEW-
based correction, few show the magnitude of the regression
coefficient; however Fig. 3b of [39] shows mainly values of
around -0.8 to -0.4 over the Antarctic Plateau. They were
interested in a purely empirical correction to compensate for
changing local surface conditions, but the values they derived
overlap with the range we obtain for our short-scale analysis
of the error for the ice-2 retracker.

The magnitudes of the corrections are principally dependent
on the retracker applied, rather than the design characteristics
of the instrument itself. However, Egido and Smith [18]
have shown that for Ku-band altimeters with a PRF of ⇠2
kHz, there is some correlation of the fluctuations in speckle,
especially for bins on the leading edge of the waveform; new
retrackers may be envisaged that compensate for this by means
of weighted least squares with an error covariance matrix.
In such a case, the instrument specification may also have
a strong effect on the correlations observed.

The implementation of �0
adj is fairly straightforward in

an operational processing scheme (because there is gen-
erally no large-scale variation in  2) and so this was
readily incorporated within the RADS processing system
(http://rads.tudelft.nl). However, the implementation of ⇣0adj (or
an adjusted range) will lead to large-scale changes, because
the mean field of wave height varies regionally. Zaron and de
Caravalho [6] suggest that the correction be applied to a high-
pass filtered version of Hs, with scales above 100 km removed.
An alternative non-trivial solution is to implement the simple
form in Eq. 2 globally as a correction for short-scale variability
due to retracker bias and then re-derive a sea state bias model
for the residual terms. Then this SSB model would have to be
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applied to a moving-average mean of Hs that represented the
genuine scales of variation of Hs, assuming that skewness and
electromagnetic bias do really vary on those scales. Given that
these latter two terms should be instrument-independent for all
Ku-band altimeters, one may anticipate that the separation and
removal of altimeter-specific retracker bias should enable the
unification of SSB models, and allow more effort to be spent
on understanding the physical interpretation of the skewness
and electromagnetic bias terms.

The benefits of resolving the issues of tracker bias are
principally for short-scale studies, where data are not being
averaged for 50 km or more along-track or being interpolated
to a broad grid. The removal of tracker bias will greatly
assist work to derive bathymetry (e.g. [3]), which relies
on differentials of along-track SSH profiles. This empirical
adjustment to SSH data should also aid point comparisons
with insitu tide gauges or bottom-pressure recorders. It is
probably not applicable over rivers and small lakes, as the
waveforms there require dedicated processing to account for
their different shape.
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