
Aerodynamic Modeling of Coaxial Counter-Rotating UAV Propellers

Moritz Thiele
M.Sc.

Martin Obster
M.Sc.

Mirko Hornung
Prof. Dr.-Ing.

Institute of Aircraft Design – Technical University of Munich – Munich, Germany

ABSTRACT

While coaxial rotor systems experience complex aerodynamic effects, an application to eVTOL UAV can entail posi-
tive consequences for the overall system. Aerodynamic calculation of coaxial counter-rotating rotors is carried out and
the knowledge gained is used to analyze a wingtip pusher propeller configuration. The aerodynamical model based on
the BEMT is adapted to the use cases presented and includes azimuthal inflow and induced velocity components as
well as the Prandtl tip loss factor. Wake contraction is calculated using an empirical model for the tip vortex. Moments
acting on the rotor hub and oblique inflow can be considered by the discretization of the rotors at arbitrary azimuthal
positions. Subsequently, the methods were validated against measurement data from literature and were found in good
accordance. Based on aerodynamic parameters, the implemented methods and configurations can be used for rotor
and propeller design and modifications.

NOTATION

Abbreviations
AoA . . Angle of Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [−]
BEMT Blade Element Momentum Theory . . . . . . . . . . . . [−]
ESC . . . Electronic Speed Controller . . . . . . . . . . . . . . . . . . [−]
eVTOL electrical Vertical Take-Off and Landing . . . . . . . [−]
FVA . . . Free Vortex Analysis . . . . . . . . . . . . . . . . . . . . . . . . [−]
MTOW Maximum Take-Off Weight . . . . . . . . . . . . . . . . . . [−]
SARF . Synthesis and Analysis Rotor Framework . . . . . . [−]
UAV . . Unmanned Aerial Vehicle . . . . . . . . . . . . . . . . . . . . [−]

Letters
A . . . . . Rotor swept area . . . . . . . . . . . . . . . . . . . . . . . . . . . [m2]
b . . . . . . Wingspan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [m]
c . . . . . . Sectional chord length . . . . . . . . . . . . . . . . . . . . . . . [m]
cd . . . . . Sectional drag coefficient . . . . . . . . . . . . . . . . . . . . [−]
cl . . . . . Sectional lift coefficient . . . . . . . . . . . . . . . . . . . . . . [−]
CP . . . . Rotor Power coefficient . . . . . . . . . . . . . . . . . . . . . . [−]
cP . . . . . Sectional Power coefficient . . . . . . . . . . . . . . . . . . [−]
CQ . . . . Rotor Torque coefficient . . . . . . . . . . . . . . . . . . . . . [−]
CT . . . . Rotor Thrust coefficient . . . . . . . . . . . . . . . . . . . . . . [−]
cT . . . . Sectional Thrust coefficient . . . . . . . . . . . . . . . . . . [−]
D . . . . . Drag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [N]
F . . . . . Prandtl tip loss factor . . . . . . . . . . . . . . . . . . . . . . . . [−]
FM . . . Figure of Merit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [−]
L . . . . . Lift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [N]
l . . . . . . Sectional lift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [N]
l1 . . . . . Lower rotor inner area . . . . . . . . . . . . . . . . . . . . . . . [−]
l2 . . . . . Lower rotor outer area . . . . . . . . . . . . . . . . . . . . . . . [−]
Nb . . . . Number of Blades . . . . . . . . . . . . . . . . . . . . . . . . . . . [−]
P . . . . . Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [W ]
R . . . . . Rotor tip radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [m]
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r . . . . . . Radial coordinate . . . . . . . . . . . . . . . . . . . . . . . . . . . [m]
rpm . . . Revolutions per minute . . . . . . . . . . . . . . . . . . . . . [ 1

min ]

rps . . . . Revolutions per second. . . . . . . . . . . . . . . . . . . . . . . [ 1
s ]

T . . . . . Thrust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [N]
t . . . . . . Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [s]
U . . . . . Velocity Component . . . . . . . . . . . . . . . . . . . . . . . . . [m

s ]
V . . . . . Total Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [m

s ]
w . . . . . Induced velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . [m

s ]
xwing . . Distance wing leading edge to rotor disk . . . . . . . [m]

Greek Symbols
α . . . . . Angle of attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . [rad]
β . . . . . Blade or sectional pitch . . . . . . . . . . . . . . . . . . . . [rad]
η . . . . . Propulsive efficiency . . . . . . . . . . . . . . . . . . . . . . . . [−]
Γ . . . . . Circulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [m2

s ]
λ∞ . . . . Tip speed ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [−]
Ω . . . . . Rotational speed . . . . . . . . . . . . . . . . . . . . . . . . . . . [ rad

s ]
φ . . . . . Inflow angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [rad]
Ψw . . . . Wake angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [rad]
ρ . . . . . Density of air . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [ kg

m3 ]
σ . . . . . Rotor solidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [−]
θ . . . . . Blade azimuth angle . . . . . . . . . . . . . . . . . . . . . . . [rad]
θb . . . . . Angle between two adjacent blades . . . . . . . . . . [rad]
Θlin . . . Linear Blade Twist . . . . . . . . . . . . . . . . . . . . . . . . [rad]

Indices
θ . . . . . . Azimuthal direction . . . . . . . . . . . . . . . . . . . . . . . . . [−]
c . . . . . . Contracted Wake . . . . . . . . . . . . . . . . . . . . . . . . . . . . [−]
Hub . . . . Rotor Hub . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [−]
In f low . . Inflow on Rotor Disk . . . . . . . . . . . . . . . . . . . . . . . . [−]
r . . . . . . Radial direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [−]
S . . . . . . Wake Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . [−]
Tip . . . . Rotor Tip. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [−]
u/l . . . . Upper / Lower rotor . . . . . . . . . . . . . . . . . . . . . . . . . [−]
wt . . . . . Wingtip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [−]
z . . . . . . Axial direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [−]
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INTRODUCTION

The increasing use of civil and military eVTOL UAVs re-
quires highly safe, reliable and efficient UAV configurations.
Key components concerning UAV reliability are the motors
used for hover propulsion. While inherently redundant elec-
trical motors, possibly wired with 6 redundant phases, are still
rare and heavy, a coaxial rotor system can enable higher re-
dundancy while also maintaining a small areal footprint.

By providing sufficient lift in a small installation space this
rotor arrangement may be used to reduce failure probabilities
and meet safety requirements. Still, complex aerodynamic ef-
fects occur between the two rotors which consist of flow in-
teraction and turbulent vortex structures.

Calculation of coaxial rotors has been the topic of several pub-
lications with most approaching the subject using a solver
of the underlying Navier-Stokes equations as written by Ho
(Ref. 1) and Barbely (Ref. 2). The theory used here is based
on the model by Leishman and Ananthan (Ref. 3) for coaxial
rotors in hover and axial flight. However, losses due to swirl
and the effect on blade design as well as the influence of the
lower rotor on the upper rotor are not incorporated in these
calculations. This theory was used and improved to include
the circumferential induced velocities proposed by Modarres
and Peters (Ref. 4) as well as Giovanetti (Ref. 5). Those con-
clusions are adapted to calculate the local performance values
at arbitrary azimuthal positions separately using the propeller
calculation environment SARF, first described in (Ref. 6) and
refined in (Ref. 7) to also consider oblique or arbitrary quasi
stationary inflow. The goal was to use an underlying Blade El-
ement Momentum Theory (BEMT) solution that differs from
that proposed by Adkins and Liebeck (Ref. 8) which is already
included in the SARF environment in also being valid while
in hovering flight.

Validation for coaxial rotors relies mostly on the work of Har-
rington (Ref. 9) and Dingeldein (Ref. 10). Both use a full
scale coaxial rotor in a wind-tunnel. Further validation of the
method used here should also be carried out using the work of
McAlister (Ref. 11) who used smaller rotors which are well
suited for the intended purpose of designing VTOL UAV with
this publication’s calculations.

A major point of interest besides the calculation of classical
coaxial rotor systems is the assessment of certain other con-
figuration layouts which experience similar flow effects as the
coaxial counter-rotating rotors.

For a eVTOL UAV to reach high endurance it is necessary
to transition into a cruise flight state where the lift produced
is supplied by wings as opposed to hover rotors on a multi-
copter. With electrical propulsion it is easy to mount a motor
at the wing tip gaining an undisturbed flow over a very large
part of the wing which increases efficiency. An exemplary
concept for this kind of propulsion is the EVIATION ”Orca”
UAV. Additionally the wingtip propulsion can be used for yaw
authority and thus eliminate the need for a separate rudder.

A wingtip mounted propeller can be used in a pusher or a
tractor configuration. The pusher configuration promises to

deliver some aerodynamic advantages where the propeller is
operating in the wingtip vortex which positively influences the
local inflow angle on the propeller blades. Additionally, by
working against the wingtip vortex the propeller is actively
reducing the wing’s induced drag.

This alignment of the propeller and vortex present at the
wingtip can be described similarly to a coaxial rotor and will
be discussed below.

TECHNICAL APPROACH

The coaxial rotor system is described as two separate rotors
operating in close proximity. The aerodynamic model is de-
fined in a modular manner to enable a transfer of the model
to configurations of equivalent modes of action like wingtip
mounted pusher propellers.

Aerodynamic Modeling

Each rotor is modeled individually using a modified Blade El-
ement Momentum Theory (BEMT) that includes additional
azimuthal swirl components primarily following the approach
developed by Giovanetti (Ref. 5). Subsequently the models of
the two rotors are coupled while also considering the mutual
interference effects and arbitrary inflow phenomena.

Blade Element Momentum Theory Following the classical
BEMT approach each blade is discretized in a certain num-
ber of blade sections along the radius. These sections are de-
scribed using the parameters shown in the upper half of figure
1. Additional information used for computation include the
airfoil type and polars, chordlength and local blade sweep.

A rotor with rotational speed Ω is operating on a UAV in an ar-
bitrary flight state. The inflow VIn f low observed is examined in
a local coordinate system turning with a rotor blade and can be
written as the sum of three perpendicular components in ax-
ial (z), azimuthal (θ ) and radial (r) directions. The magnitude
and direction of VIn f low is calculated using the functionality
provided in SARF which was developed by Ost (Ref. 12).

VIn f low =
√

U2
z +U2

θ
+U2

r (1)

The component in radial direction Ur is not considered for the
BEMT but will be used for the calculation of oblique inflow
phenomena.

To calculate the local sectional forces dL
dr and dD

dr the local
relative inflow velocity Vrel has to be determined for each ra-
dial and azimuthal position according to the velocity vectors
shown in the lower half of figure 1 by

Vrel =

√
U2

z +(Ωr+Uθ )
2−w2 (2)

This enables the calculation of the relative local flow angle φ :
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φ

α

β

Ω r

Vrel

Rotor Plane

Vin f low

w

Ω r

φ

UΘ

Uz

w
φ

w sin(φ)

V
rel = √

U 2z +
(Ω r+U

Θ ) 2−w 2

dL

dD

Fig. 1: Geometry of the flow at a blade section, including axial
and swirl components of velocity

sinφ =
Uz ·Vrel +w · (Ωr+Uθ )

U2
z +(Ωr+Uθ )2 (3)

cosφ =
(Ωr+Uθ ) ·Vrel−w ·Uz

U2
z +(Ωr+Uθ )2 (4)

According to (Ref. 4) the sectional lift dL
dr and profile drag

dDpro f ile
dr which are acting perpendicular and parallel to Vrel are

obtained with a momentum balance.

dL
dr

= 4πρF [Uz +wcosφ ] w r (5)

dDpro f ile

dr
=

1
2

ρNb Vrel c cd (6)

The Prandtl Tip loss factor F is incorporated to consider tip
losses.

By resolving this force in axial and azimuthal components and
normalizing all velocities and lengths denoted with an overbar
by Ω rTip and rTip respectively according to (Ref. 5), the equa-
tions of the non-dimensional local coefficients cT and cP are
obtained. These have to be integrated in radial and azimuthal
directions and lead to the thrust and power coefficients of the
rotor CT and CP.

CT =
∫ 2π

0

∫ 1

r̄Hub

4F (Ūz + w̄cosφ) w̄cosφ r̄

− sinφ
Nbc̄cd

2π

(
Ū2

z +(r̄+Ūθ )
2− w̄2) dr̄

(7)

CP =
∫ 2π

0

∫ 1

r̄Hub

4F (Ūz + w̄cosφ) w̄sinφ r̄ (r̄+Ūθ )

+ cosφ
Nbc̄cd

2π

(
Ū2

z +(r̄+Ūθ )
2− w̄2) (r̄+Ūθ ) dr̄ .

(8)

In order to assess the rotor performance it is necessary to mea-
sure the efficiency. While this model is valid for the hover-
ing as well as an axial or forward flight state, it is important
to distinguish between those flight states when assessing the
propulsive efficiency.

When operating in hover, the Figure of Merit (FM) is an ad-
equate efficiency metric, however it is not valid in axial or
forward flight (U∞ 6= 0) and can only be used for the compar-
ison of rotors with a similar disk loading (DL). It is defined,
while hovering, as the ideal power required divided by the ac-
tual power required and can be calculated with:

FM =
C3/2

T
2CP

(9)

For axial and forward flight the propulsive efficiency is given
by

η =
TU∞

TU∞ +Pi +P0
. (10)

The thrust T and power P=Pi+P0 as the sum of profile power
and induced power are defined based on the non dimensional
coefficients:

T =CT ρAΩ
2r2

Tip (11)

P =CPρAΩ
3r3

Tip (12)

Calculation of the Induced Velocity A remaining variable
for the calculation is the induced velocity w. The induced ve-
locity is produced by the lift of the rotor blades and is aligned
in the opposite direction of the lift vector.

The base for the model used here is the BEMT where one
key characteristic is the assumption that all radial annuli are
independent and do not influence each other. From this the
induced velocity at each blade section can be calculated by
relating it to the local lift coefficient produced by the rotor.
Depending on the relation between the rotational speed, the
axial and the oblique inflow, it is possible for certain sec-
tions to produce a negative lift at certain azimuthal positions
which has to be considered when calculating the total thrust
and torque produced by the rotor.

The Blade Element Theory yields an expression for the nor-
malized lift produced at each blade section:

dL̄
dr̄

=

(
Nbρ c̄cl

2

) (
r̄2 +Ū2

z − w̄2) . (13)
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This can be extended to also consider azimuthal velocities Uθ

and connected with the normalized equation (5) to:

4πρF [Ūz + w̄cosφ ] w̄ r =

=

(
Nbρ c̄cl

2

) (
(r̄+Ūθ )

2
+Ū2

z − w̄2
) (14)

This quadratic equation of the induced velocity can be solved
using the standard approach:

w̄1,(2) =
−b±

√
b2−4ac

2a
(15)

with the parameters a,b and c being:

a = 8Fπ r̄ cosφ + c̄Nbcl

b = 8Fπ r̄Ūz

c =−c̄Nbcl

(
(r̄+Ūθ )

2
+Ū2

z

) (16)

The positive solution of equation (15) results in the induced
velocity of a rotor for a given inflow angle φ and local lift
coefficient cl . The induced velocity will be negative and thus
pointed upward where negative lift is produced on the blade.
As the local inflow angle φ , the resulting AoA α and the lo-
cal lift coefficient cl are themselves dependent of the induced
velocity an iterative approach is used to solve the system for
each rotor with a start value of the induced velocity that is
required.

This start value is calculated based on the model proposed by
Betz (Ref. 13) which describes the optimum inflow distribu-
tion for a maximum efficiency propeller. From this inflow dis-
tribution on an ideal rotor the postulated normalized induced
velocity distribution over the blade can be extracted to be:

w̄(r) =
w(r)
ΩrTip

= w̄0 cos(φ) (17)

with w̄0 =
w0

Ω rTip
being a normalized nominal induced inflow

velocity corresponding to an infinite rotor radius.

Relating the induced velocity to the inflow of the optimal rotor
yields:

w̄(r) =
w̄0r√

(V̄rel + w̄0)
2
+ r2

. (18)

To get an appropriate sectional start value for w̄(r) a con-
stant value w̄0 = 0.07 for an optimal rotor in static condi-
tions (hover) is taken from literature (Ref. 4). As this value
is merely used to calculate the start value of w̄(r), it is also
used for a non hovering operational state.

An iterative process for the calculation of rotor performance
values can be set up for the given geometry of a rotor and
its external inflow and is shown in the flowchart depicted in
figure 2.

Initialize rotor(
Ω,R,c,βglobal, . . .

)
Initialize w̄0

Compute preliminary induced
inflow w̄(r) with Betz distribution

Compute φ

Compute cl and cd

Compute factors a, b, c, . . .
(BEMT incl. swirl)

Compute new and sec-
tional induced inflow w̄new

Appropriate
convergence

Rotor Performance
(CT , CP) and results

Update induced
inflow w̄ = w̄new

yes

no

Iteration Process

Fig. 2: Iterative process for the calculation of a single rotor

After the initialization of the rotor operating on a UAV an ini-
tial w̄0 is chosen to calculate w̄(r) using the Betz distribu-
tion. In the following iterative process the airfoil coefficients
cl and cd are calculated for the local AoA α which depends
on the inflow angle φ which is calculated in equation (3) and
(4) considering all inflow velocities including the induced ve-
locity. The resulting induced velocity w̄(r) can be determined
with these coefficients and can be compared to the previous
value until appropriate convergence is acquired. During this
iteration process the Prandtl tip loss factor F is neglected to
prevent an overshoot of the induced velocity of the outermost
sections. It is again included in the calculation when the ro-
tor performance values CT and CP are being determined using
equations (7) and (8).

This model for a single rotor in an arbitrary flight state is then
adapted to a coaxial rotor system.

Application to the Coaxial Rotor System A coaxial rotor
system as shown in the schematic figure 3 is characterized
by two distinct rotors separated by the distance zul in axial
direction. When modeling this system the mutual influence of
the two rotors has to be considered. The lower rotor (denoted
by the subscript l) is operating in part in the slipstream of the
upper rotor (subscript u).
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U∞

Upper Rotor

Lower Rotor

wu +Uuzadd

wl +Ul1add

wl wl

Tu

Tl

contracted wake
(Upper Rotor)

contracted wake
(Lower Rotor)

rc

rlTip

ruTip

z u
l

z

y

l1 l2

Fig. 3: Schematic of a coaxial rotor system with acting veloc-
ities

The upper rotor is experiencing an additional induced flow ve-
locity Ūuzadd due to its location in the induced inflow velocity
field of the lower rotor. This velocity is only considered in ax-
ial direction following a model by McAllister (Ref. 11) which
is based on the Biot-Savart Law. It is generated by a helical
vortex ring originating at the tip of the lower rotor blades. The
axial additional velocity acting on the upper rotor at the radial
position r = 0 at a distance z̄ = z̄ul from the lower rotor plane
is calculated with this model by

Ūuzadd

Ūlz|z̄=0
= 1+

(
|z̄|√

1+ z̄2

)k

sign(z̄) (19)

With Ūlz|z̄=0 being the average induced axial velocity of the
lower rotor.

Ūlz|z̄=0 = mean(w̄lz) (20)

Following (Ref. 5) the value of the empirical parameter k is set
to 0.5 as the upper influenced rotor resides above the lower ro-
tor. The velocity Ūuzadd is considered as an uniform additional
axial inflow velocity influencing the entire upper rotor plane.
The reason behind this approach is the expanded area of in-
flow drafted by the dashed lines in figure 3 originating from
the momentum balance of the lower rotor.

Meanwhile the wake of the upper rotor will contract while
traveling in the direction of the lower rotor. When the lower

Fig. 4: Schematic rotor wake structure (Ref. 14)

rotor has a radius rlTip greater than rc as shown in figure 3 the
inner portion l1 of the lower rotor with the radius rc spanning
the area Ac = r2

c π will be affected by an additional inflow ve-
locity Ūl1add from the contracted wake while the outer portion
l2 will experience no influence by the upper rotor.

The additional inflow originates from the velocity induced by
the upper rotor w̄u and is calculated in axial and azimuthal
direction with a model by Giovanetti (Ref. 5) where w̄uz and
w̄uθ are the velocities induced by the upper rotor at its rotor
plane.

Ūl1zadd = w̄uz

(
A
Ac

)
(21)

Ūl1θadd = w̄uθ

(
A
Ac

)3/2

(22)

The calculation of radius rc is based on a simple generalized
empirical model developed by Landgrebe (Ref. 14) for rotors
in hover producing static thrust.

The model by Landgrebe divides the wake of a rotor in two
distinct components as depicted in figure 4:

1. A tip vortex originating from the roll up of the vortex
sheet at the tip of the rotor

2. A vortex sheet being shed from the trailing edge of the
rotor blade over the whole radius.
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Through experiments Landgrebe developed equations de-
scribing the axial and radial coordinates of those two wake
structures based on the wake angle Ψw which is defined as the
angle the rotor blade traveled since shedding the particular
wake vortex element.

To calculate the radius of the contracted wake of the upper
rotor when impacting the lower rotor only the tip vortex model
of (Ref. 14) is used and modified to include the propagation
of the wake vortex tube.

As the model was developed for a rotor in hover, the wake is
assumed to experience a stretching effect caused by the inflow
velocity Uz. This modification only considers the axial prop-
agation distance z̄S of the vortex tube as a lateral propagation
is not assumed to change the wake contraction behavior but
rather move the contracted wake in a lateral direction which
is considered together with the oblique inflow considerations.

According to Landgrebe, a vortex element shed by the blade
will travel downstream and inward, but not in azimuthal direc-
tion with the velocity induced by the rotor while the blade will
continue rotating. As soon as the following blade has passed
over the position of the element, the downwash produced by
this blade will increase its axial velocity.

Thus, the normalized axial coordinate z̄Tip, defined with the
positive direction pointing upward towards the inflow, is cal-
culated differently when the following blade has traveled the
angular distance between two blades Ψw = θb = 2π

Nb
. This

leads to the equations:

z̄T =


k1Ψw− z̄S for 0≤Ψw ≤ θb

(z̄T )|Ψw=θb
+ k2 (Ψw−θb)− z̄S for Ψw ≥ θb

(23)

with constants k1 and k2 defined in (Ref. 14) as:

k1 =−0.25
(

CT

σ
+0.001Θulin

)
(24)

k2 =−(1.41+0.0141Θulin)

√
CT

2
(25)

where Θulin is the linear blade twist calculated by

Θulin =
βTip−βHub

rTip
(26)

For each case, the additional distance z̄S will expand the wake
depending on the inflow velocity. It is calculated using the age
of the wake which is is dependent on the angular velocity of
the rotor and the wake angle: t = Ψw/Ω.

z̄S = Ūz t̄ = Ūz t Ω = ŪzΨw (27)

As the axial distance z̄T = z̄ul between the rotors is known and
constant, equation (23) can be solved for the wake angle Ψw.

Depending on the angle traveled by the blades until the vortex
element reached z̄ul this leads to:

Ψw =


z̄T

k1−Ūz
for 0≤Ψw ≤ θb

z̄T − (z̄T )Ψw=θb + k2 ·θb

k2−Ūz
for Ψw ≥ θb

(28)

This angle can be used in the formula of the radial tip coordi-
nate given in (Ref. 14)

r̄c = rcmax +(1− rcmax) e−λΨw (29)

With the parameter rcmax being the maximum contraction ra-
dius found to be rcmax = 0.707 by (Ref. 15) and (Ref. 3) and
the parameter λ relating r̄ and CT is:

λ = 0.145+27CT (30)

Subsequently the wake contraction radius r̄c of the upper rotor
at the position of the lower rotor can be calculated and used
for the calculation of the additional inflow velocities.

This enables the application of the equations (7) and (8) to
coaxial rotors.

The inflow velocities Uz and Uθ have to be modified to incor-
porate the additional velocities.

For the upper rotor Ūuzadd is calculated using equation (19)
and added to the axial inflow. The azimuthal inflow Ūuθ is not
modified. The integration in radial direction is carried out for
the whole blade [rinner,router] = [rHub,rTip].

The calculation of the lower rotor has to be split at radius
rc. For the inner part l1, the additional velocities calcu-
lated in equations (21) and (22) have to be added to the ax-
ial and azimuthal inflow velocities. This part is integrated
in radial direction from the hub to the contraction radius:
[rinner,router] = [rHub,rc]. The outer part l2 is calculated with-
out any additional inflow velocities and is integrated from rc
to the blade tip: [rinner,router] = [rc,rTip].

This leads to the velocities Ūu/l
ztotal and Ūu/l

θtotal
respectively de-

pending on the rotor part calculated.

Ūu/l
ztotal = Ūu/l

z +Ūu/l
zadd (31)

Ūu/l
θtotal

= Ūu/l
θ

+Ūu/l
θadd

(32)

which can be written into the final equations for CT and CP
by inserting the respective inflow velocities for the upper (u),
lower inner (l1) or lower outer (l2) rotor.

CT =
∫ 2π

0

∫ r̄outer

r̄inner

4F (Ūztotal + w̄cosφ) w̄cosφ r̄

−sinφ
Nbc̄cd

2π

(
Ū2

ztotal
+(r̄+Ūθtotal )

2− w̄2) dr̄

(33)
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CP =
∫ 2π

0

∫ r̄outer

r̄inner

4F (Ūztotal + w̄cosφ) w̄sinφ r̄
(
r̄+Ūθtotal

)

+cosφ
Nbc̄cd

2π

(
Ū2

ztotal
+(r̄+Ūθtotal )

2− w̄2) (r̄+Ūθtotal ) dr̄

(34)

Similar to the single rotor above, the efficiency of the coaxial
system has to be considered. As both rotors can take a differ-
ent share of the total thrust e.g. when both rotors are tuned to
balance the total torque Qcoax = 0 this has to be considered in
the combined efficiency metric.

Leishman and Ananthan (Ref. 16) define this metric combin-
ing hovering condition and axial flight and thus also being
valid for U∞ = 0:

ηc =
CT λ∞ +CPuideal +CPlideal

CT λ∞ +CPu +CPl
. (35)

With the tip speed ratio λ∞ = U∞/ΩrTip, the ideal power co-
efficients for both rotors are given by:

CPuideal =CTu

(
1
2

√
λ 2

∞ +2CTu−
λ∞

2

)
(36)

CPlideal =CT l

(
1
2

√
λ 2

∞ +2CT l−
λ∞

2

)
(37)

Using these equations and the iterative process described
above enables the assessment of a coaxial rotor system. The
numerical approach will be described below.

Numerical Modeling

The mathematical model described above has to be adapted
to fit the numerical scheme present in the SARF environment
(Ref. 7).

In this environment a rotor is defined in an object-oriented
hierarchical class structure shown in figure 5 where all infor-
mation on geometry, location in the UAV and environmental
conditions is stored.

Multiple rotors on a UAV such as a coaxial rotor can be de-
scribed separately to incorporate the application of the devel-
oped methods to the calculation of a wingtip pusher configu-
ration.

Discretization and Integration Schemes As described
above an arbitrary flight state will lead to an inflow that will
vary in radial and azimuthal direction.

In azimuthal direction the rotor parameters are calculated at
a variable number of azimuthal positions evenly distributed
over one rotor revolution. The local varying flow conditions
are considered at each position in a quasi static manner where

Rotor Inflow

FreeStream
Rotor Movement

Rotor Movement

UAV Movement
Moving Rotor Mount

UAV Movement

Flight state
Roll rate
Pitch rate
Yaw rate

UAV Configuration

rotorGeometry
rotorWake
rotorInflow
Environment

UAV Rotor

Rotor Blades
RPM

Rotor Wake

Contracted Wake

Rotor Blade

Blade Sections
Radius
Blade Pitch

Blade Section

Airfoil
Chordlength
Section Pitch
Radial Position

FreeStream

Wind
Gusts

Fig. 5: Hierarchical class structure to represent the UAV

each state is considered static and no relaxation effects be-
tween different azimuthal position occur. The resulting forces
can be resolved locally to calculate moments acting on the
rotor hubs or can be integrated over the whole annulus.

Thrust and torque produced by the whole rotor are integrated
first in azimuthal direction from θ = [0,2π]. These averaged
values are then integrated in radial direction for the global per-
formance values.

Inherent to the BEMT the discretization of the rotor in ra-
dial direction is done by placing multiple radial blade sections
along the radius. The structure depicted in figure 5 permits the
placement of an arbitrary amount of sections at arbitrary ra-
dial positions.

This flexibility is needed for additional sections that have to
be placed in the lower rotor at the position where the wake of
the upper rotor impinges on the lower rotor.

As shown in figure 6 the thrust- and other coefficients are
calculated by trapezoidal integration between each section
placed in radial direction. Due to the rapid change in axial and
azimuthal inflow velocities at the radius rc, the local thrust co-
efficient cT will experience a step at this radius. By placing an
additional section at r = rc the accuracy of the integrals of for-
mulas (33) and (34) will be greatly increased as an integration
boundary can only be considered at an existing section.

When including this additional section in the discretization
all geometrical parameters will be interpolated between the
two adjacent original sections. However, in case two differ-
ent airfoil shapes with different airfoil coefficients cl and cd
are present, a simple interpolation will not suffice. Instead the

7



CT

r
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additional sections

trapezoidal integration

dCT
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Fig. 6: Trend of dCT/dr on the lower rotor of a coaxial rotor
system, with inserted additional sections

airfoil coefficients of the new interpolated airfoil will be de-
termined using an algorithm developed by Frank in (Ref. 17).

Iteration Scheme of the Coaxial System The iterative
scheme shown in figure 2 is used for the individual rotors of
the coaxial system. Because of the mutual influences another
outer iteration loop has to be carried out.

After initializing both rotors the initial flow state of the up-
per rotor will be calculated first, according to figure 2 while
not considering the additional inflow velocity induced by the
lower rotor. With the results the wake contraction radius rc of
the upper rotor will be calculated at the position of the lower
rotor z̄ul using formula (29).

Using this radius, the additional inflow velocities Ūlzadd and
Ūlθadd will be calculated and added to the nominal inflow act-
ing on the lower rotor using equations (21) and (22). Here, the
scheme depicted in figure 2 is executed for the inner and outer
part separately. Once convergence on both parts is achieved
the additional velocity Ūuzadd is determined by formula (19)
and the iteration for the upper rotor is started anew.

This process is repeated until all additional induced velocities
converge at every section and azimuthal position. Then the
performance values of the individual rotors and the coaxial
system can be determined.

Application to Wingtip Pusher Propellers

The knowledge gained in the previous sections is now applied
to another rotor configuration shown in figure 7 that experi-
ences equivalent flows: When mounting a pusher propeller at
the wingtip of a fixed-wing UAV the propeller operates in the
slipstream of the separating vortex.

This tip vortex depicted in figure 8 starts at the leading edge
of the wing with the span b and expands with further distance
to the wing. It will consist of a vortex core with radius rcore,
where the induced axial velocity will resemble rigid body ro-
tation and an outer part where the induced velocity is depen-
dent on the vortex strength Γ according to the Biot-Savart-
Law.

Fig. 7: Visualization of a wingtip mounted pusher propeller at
a fixed-wing UAV (TUM-LLS, 2018)

U∞

rcore

rimp

Propeller
Tip vortex

xwing

rtip

b
2

Wing

x

y

Movement

Fig. 8: Draft of a wingtip-mounted pusher propeller, with an
inflow U∞

As the distance between the propeller and the leading edge
xwing will be rather small, the vortex expansion will generally
be less than the total propeller radius. When using a simple
Biot-Savart model for the induced azimuthal velocity the in-
fluenced area expands infinitely. However it is also possible
to define a limit of the influenced area which leads to an outer
boundary rimp where no influence is exerted for radii greater
than rimp. Figure 8 also shows an inclined flow U∞ impact-
ing the wing which can be experienced when the UAV is in
yawed flight. This phenomenon impacts the wingtip vortex
in a similar manner than an inclined inflow to a coaxial rotor
system.

The system will induce an additional axial and azimuthal ve-
locity on the part of the propeller disk which resides in its area
of influence. Together these phenomena can be applied to the
coaxial rotor model described above where the upper rotor is
replaced by the wingtip vortex.

Using either the model described below or any other suit-
able method to determine the additional inflow velocities on
the wingtip propeller Ūwtzadd and Ūwtθadd , the total velocities
Ūwtztotal and Ūwtθtotal can be calculated. These are used in the
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scheme shown in figure 2 for the lower rotors inner and outer
area separated by rimp to get the performance values with the
equations (33) and (34).

The influence of the propeller on the wing is not considered
here but can be assessed similarly to the influence exerted on
the upper by the lower rotor of the coaxial system when using
a more sophisticated model to calculate the vorticity on the
wing.

Velocities Induced on Pusher Propeller To determine the
velocities induced on the propeller, Prandtl’s simple lift-
ing line theory is used. Following the approach of Beguin
(Ref. 18) and analogous to the discretization used for the ro-
tor blades, the total lift L produced by the wing of a UAV is
calculated by integrating the sectional lift l(y):

L =
∫ b

2

− b
2

l(y) dy (38)

The Kutta-Joukowski Theorem states that lift can only be pro-
duced by a bound vortex Γ(y) on the wing. It is related to the
lift distribution by:

Γ(y) =
l(y)
ρU∞

(39)

The local lift can be expressed by the lift coefficient cl

l(y) =
1
2

cl c(y)ρU2
∞ (40)

and this term substituted in equation (39) to relate the bound
vorticity to the local lift coefficient:

Γ(y) =
1
2

cl c(y)U∞ (41)

This bound vorticity can be used to calculate the influence on
the propeller.

Wing Vortex Influence The additional velocities acting on
the propeller Ūwtzadd and Ūwtθadd are calculated based on a
model by Garmann and Visbal (Ref. 19).

The azimuthal component originating from the rotational vor-
ticity is induced according to the vortex core model by Lamb-
Oseen used by Bhagwat and Leishman (Ref. 20) inside the
core radius rcore and decreases exponentially following equa-
tion 42 outside the core.

Ūwtθadd (r) =
Γ

2πr

[
1− exp

(
− r2

r2
core

)]
(42)

The core radius rcore of the vortex according to the core model
is expanding while traveling downstream of the wing and is
given at the location of the propeller xwing:

rcore =

√
r2

core0 +4αν
xwing

Ux
(43)

Here, α is the Oseen Parameter of the vortex core model and
is fixed to α = 1.25643. The initial vortex core radius is de-
pendent on the geometry where the vortex originates and is
set to the trailing edge thickness of the wing.
Knowing the azimuthal component it is possible to determine
the axial component of the wingtip vortex.

Ūwtzadd =U∞ +∆uexp
(
− r2

r2
core

)
(44)

The axial velocity deficit ∆u is defined by Garmann and Vis-
bal (Ref. 19) being proportional to the maximum azimuthal
velocity max(Ūwtθadd ) using a swirl parameter q which is set
to be greater than

√
2:

q≈ 1.567
max(Ūwtθadd )

∆u
(45)

With this model being based on the Biot-Savart-Law there is
no outer boundary rimp limiting the influence of the wingtip
vortex. However when a model is used where an outer in-
fluential boundary is present it can be easily incorporated as
described above.

Computational Results and Validation

The results of the model are validated using the HR1 rotor
which was examined by Harrington (Ref. 9). Although the
HR1 is a full scale coaxial helicopter rotor it is used for vali-
dation as detailed measurement data as well as a detailed de-
scription of the geometry are publically available. It is also
used by many other publications concerning coaxial rotors
and thus is well suited to compare different methods. After
determining the correctness of the proposed models the appli-
cation to wingtip pusher propellers is shown by comparing the
pusher performance to that of a propeller operating in undis-
turbed flow.

Coaxial Validation Leishman and Ananthan (Ref. 3) used
the HR1 measurements to validate their BEMT model which
does not consider azimuthal components of the induced ve-
locity. This was done using the deviation of a free vortex
analysis (FVA) as the original data collected by Harrington
does not include sectional thrust and torque coefficient mea-
surements. Leishman determined the correct calculation of
the FVA by comparing the global thrust and torque measure-
ments with the measured data by Harrington. As the data was
in good agreement with the measurements, he compared the
sectional values obtained by the FVA with his implementation
of the BEMT. While the prediction of the BEMT for the thrust
coefficient was only slightly under predicted, the torque coef-
ficients were slightly more underestimated. As it is desired
to validate the sectional values of the BEMT used here these
results will be used for comparison rather than the original
measured data by Harrington.
Harrington used two geometrically equal two bladed rotors
for the measurements as shown in figure 9. They consisted of
untwisted blades with linear taper and 4-digit NACA airfoils.
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Fig. 9: Blade planform of Harrington Rotor 1 (Ref. 2)

Table 1: Geometric parameters of the Harrington Rotor 1 in
hover

Parameter Value

RTip/RHub 3.81m/0.507m
Nb 2
c linear taper [0.0767;0.03]
zul 0.71m
VTip 152.4m/s
σ per rotor 0.027
Twist none
Airfoils 4 digit NACA
Direction upper rotor Clockwise
Direction lower rotor Counter-clockwise

The detailed geometry is listed in table 1. The blades are
mounted on a variable pitch hub and able to adjust their global
pitch angle βglobal

The operating conditions used by Leishman are characterized
by both rotors operating at torque balance where the total
torque coefficient CQ = CQu +CQl is zero. This is achieved
with the upper rotor producing more thrust (CTu/CT l = 1.25)
and both rotors operating at the tip speed indicated in table 1.

When replicating these operating conditions with the model
described above the data can be compared. Figure 10 shows
the thrust coefficient of the upper rotor over the radius.

The sectional positions of the calculation are marked with a
cross starting at the rotor hub. At a radial position of r̄ ≈ 0.8
one can clearly see two sections being closer together. This
is due to the wake contraction radius rc where two additional
sections are added directly left and right of rc as discussed
in figure 6. Due to the implementation, the sections are also
added to the upper rotor. Furthermore the data generated by
Leishman is cut off at a radial position of r̄ = 0.2 whereas this
model is calculated up to the rotor hub.

The trend is in very good agreement with the reference data.
There are small deviations for the outermost sections which
can be explained by a different tip loss behavior.

Subsequently figure 11 shows the thrust coefficient of the
lower rotor. One can clearly see the jump where the wake
of the upper rotor impinges on the lower rotor and the two
sections placed at this position.
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Fig. 10: Thrust dCT/dr over r/R of the Upper HR1 in hover,
comparison with data from Leishman
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Fig. 11: Thrust dCT/dr over r/R of the lower HR1 in hover,
comparison with data from Leishman

The magnitude of the contraction radius rc is determined and
the adjacent sections are adjusted in every iteration. The pro-
gression of the radius, which can be seen in figure 12, is
very stable and settles rather quickly. The converged result
of r̄c = 0.809 has a difference of less than 1% to the value of
r̄c = 0.811 determined by Leishman.

The overall trend of the lower thrust coefficient is also in good
agreement with the data. The thrust coefficient is slightly
overpredicted at the inner sections which can be explained by
the additional consideration of azimuthal induced velocities

0 5 10 15 20 25 30
Coaxial Iteration Loops

0.79
0.8

0.81
0.82

r c

Contraction Radius Development

Fig. 12: Development of the Contraction Radius rc with each
iteration.
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Fig. 13: Torque dCQ/dr over r/R of the upper HR1 in hover,
comparison with data from Leishman
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Fig. 14: Torque dCQ/dr over r/R of the lower HR1 in hover,
comparison with data from Leishman

which lowers the local inflow angle φ and thus increases the
local AoA α . This will produce a higher thrust coefficient
which can be seen here.

As the outer sections are not affected by the additional in-
duced velocity there is no overprediction. The model rather
experiences similar behavior to the upper rotor where a differ-
ent consideration of the tip losses leads to small deviations.

The torque coefficient corresponding to the power consump-
tion of the rotors is also considered. Figure 13 shows the
torque coefficient of the upper rotor and figure 14 of the lower
rotor. Due to the additional azimuthal velocity components
the local inflow is tilted compared to the BEMT by Leishman.
This increases the torque required to turn the rotor greatly.

As described in (Ref. 3) the reference data used here predicts
less thrust than the FVA that was tuned to match the exper-
imental results. The overestimation of the torque coefficient
calculated here is compensating the underestimation residing
in the underlying data.

Overall the data show a good agreement with the measure-
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Fig. 15: Rotor thrust coefficient CT over wingtip inflow ve-
locity

ments and also show the effect of the additional azimuthal
velocities.

Wingtip Propeller Performance As discussed above, when
analyzing a pusher propeller operating behind the wingtip of
a fixed wing the azimuthal velocities that are additionally af-
fecting the rotor will reduce the inflow angle φ and increase
the AoA α . This leads to a higher thrust generation compared
to a propeller with an undisturbed inflow. However, as seen in
figure 14 it will also greatly increase the required torque and
thus the power consumption.

The usefulness of this effect depends entirely on the rest of
the configuration and the propeller that is used and cannot be
predicted here as the efficiency of a powertrain (ESC, motor
and propeller) is not varying in a linear manner. Simply re-
ducing the throttle setting will usually not result in an overall
reduction of required energy. However, the wingtip effect can
have other consequences.

In general, when designing a small eVTOL UAV it is often
desired to operate in a certain regulatory environment which
depends on the MTOW. This leads to a design goal where the
MTOW is a fixed value that cannot be exceeded. Addition-
ally, for any task except the transport of variable payloads the
payload mass is also fixed which results in any residual mass
possibly being invested in battery mass.

The pusher configuration will reduce the induced drag of the
wing by acting against the vortex. This leads to a smaller
thrust required. Additionally the higher thrust produced can
lead to a smaller powertrain being sufficient for the design
mission. Investing this mass reduction in more battery mass
can deliver more energy than the increased energy consump-
tion of the propeller compared to the undisturbed flow will
use. In this case a wingtip pusher propeller is beneficial to the
UAV design.

These considerations can also be seen in figure 15. For this
calculation a 8x6 propeller with a diameter of 8 inch and a
blade pitch of 6 inch is used while each blade is turned by an
additional pitch of 10 degrees. As described above the model
used for the wingtip vortex does not have an outer vortex
boundary and the core radius is rather small, thus the whole
annulus of the propeller is affected by the vortex with a radi-
ally decreasing induced velocity.

11



10 12 14 16 18 20 22 24 26 28 30
Inflow Velocity U [m/s]

1.5
2

2.5
3

3.5
4

4.5
5

5.5
Po

w
er

co
ef

fic
ie

nt
C

P
[-

]
CP undisturbed/wingtip propeller×10−3

Undisturbed Propeller
Wingtip Propeller

Fig. 16: Rotor Power coefficient CP over wingtip inflow ve-
locity

Figure 15 shows the thrust coefficient of an undisturbed pro-
peller operating with free inflow as a dashed line. This data
was calculated using the process described in figure 2 for a
single rotor. The other line depicts the same propeller behind
a wingtip with an impinging vortex.

The wingtip pusher propulsion system is operated at a con-
stant rpm = 7200 for different cruise velocities. According to
equation (39) the vortex strength is a function of the lift pro-
duced by the wing and decreases with an increasing incoming
velocity. This can be seen as the thrust coefficient difference
between the wingtip and the undisturbed propeller is decreas-
ing with a faster inflow velocity.

The propeller exhibits a reduced CT in the slow flying region
as the pitch is quite high which results in a high AoA and sub-
sequently stalled sections near the hub producing less thrust.
The thrust coefficient increases with the inflow velocity while
more sections are operated at optimal AoA. It can clearly be
seen that the azimuthal velocity components caused by the
wingtip vortex increase the local AoA and thus increase the
thrust coefficient.

However the required torque is also higher than for the undis-
turbed inflow which is shown in figure 16. An increased AoA
is leading to greater profile drag which increases the power
coefficient CP. However as stated above when the required
thrust is fixed, the rotor can be operated at a lower rotational
speed which redeems additional power.

Whether this process results in less power consumed by the
propeller or the energy consumption staying constant depends
on the propeller and the airfoils that are used. Figure 17 shows
the relative efficiency difference ∆η in percent between the
two operating states over the nominal operating rpm range at
an exemplary inflow velocity of Ux = 14 m

s :

∆η =
ηwt −η f ree

ηwt
[%] (46)

The propeller efficiencies are almost equal over a wide rpm
range and also over a wide velocity range. When the rotational
speed is reduced, there are no gains in required energy for this
specific propeller. However the propeller operating behind the
wingtip is still reducing the induced drag of the wing and thus
reducing the overall thrust required by the UAV configuration
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Fig. 17: Rotor efficiency difference ∆η over different rpm at
Ux = 14 m

s

which is beneficial for the endurance. A different propeller
with different airfoils that are optimized for this flight state
might also gain efficiency when operated behind a wingtip
and thus further increase the endurance of the UAV.

CONCLUSIONS

The models developed show very promising results for the
calculation of various flow states related to coaxial propulsion.
The scheme devised for the single rotor (figure 2) can be the
baseline calculation scheme for an individual rotor operating
in hover, axial climb and cruise flight with prevalent oblique
rotor inflow.

Because the impact of a vortex structure existing in the inflow
can be calculated, various other rotor configurations can be
assessed by applying this scheme to coaxial counter-rotating
rotors or wingtip propulsion.

However, it is important to heed the constraints of the mod-
els which can also be addressed in future work on the topic.
The interference between a rotor and its environment is only
considered using the induced velocities. There is no calcula-
tion of a true wake vortex structure. Thus, there is also no
consideration of wake turbulence.

As a result, the models proposed show only a limited applica-
bility to coaxial co-rotating rotors like the hover rotors used
for the UBER Common Reference Model 001. An extension
of the calculations for this scenario would enable a detailed
assessment of the advantages and disadvantages of the rota-
tional direction.

With the calculations based on the BEMT the model uses
a well established discretization basis for the geometry and
show good agreement with the reference data.

This enables the fast calculation of a configuration for a given
flight state without the need for manual geometry meshing
activity. Thus this model can easily be incorporated in an
optimization strategy with the aim to develop optimal rotor
geometries for a given UAV and its mission.
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