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selection gain is expected. We empirically investigated 
genome-based prediction of grain yield, plant height and 
thousand kernel weight within and across four selection 
cycles of a hybrid rye breeding program. Prediction per-
formance was assessed using genomic and pedigree-based 
best linear unbiased prediction (GBLUP and PBLUP). 
A total of 1040 S2 lines were genotyped with 16 k SNPs 
and each year testcrosses of 260 S2 lines were phenotyped 
in seven or eight locations. The performance gap between 
GBLUP and PBLUP increased significantly for all traits 
when model calibration was performed on aggregated data 
from several cycles. Prediction accuracies obtained from 
cross-validation were in the order of 0.70 for all traits when 
data from all cycles (NCS = 832) were used for model train-
ing and exceeded within-cycle accuracies in all cases. As 
long as selection cycles are connected by a sufficient num-
ber of common ancestors and prediction accuracy has not 
reached a plateau when increasing sample size, aggregat-
ing data from several preceding cycles is recommended 
for predicting genetic values in subsequent cycles despite 
decreasing relatedness over time.

Introduction

Rye (Secale cereale L.) is a small grain cereal used for 
food, feed and in growing demands also for ethanol and 
biomethane production (Geiger and Miedaner 2009). Due 
to its ability to tolerate adverse growing conditions such 
as severe cold, drought or hostile soils rye is highly valu-
able for expanding cereal production to a wide range of 
agro-climatic conditions (Schlegel 2014). In contrast to 
other small grain cereals such as wheat, barley and oats, 
genetic progress in the cross-pollinated species rye is gen-
erated in selection schemes combining development of 
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elite lines as hybrid components and population improve-
ment through recurrent selection (Geiger 2007; Tomerius 
and Geiger 2001; Wilde 1996). Within each of two popula-
tions, the seed and the pollen parent pool, inbred lines are 
developed from crosses of elite parents with subsequent 
selfing, and selection candidates are evaluated for their 
combining ability as testcrosses. In the seed parent pool, 
promising selection candidates need to be transferred to a 
reliable cytoplasmic male sterility system before they can 
be crossed to a tester from the opposite pool. In the pol-
len parent pool, inbred lines need to carry efficient fertil-
ity restoration genes. As a consequence of high inbreeding 
depression, rye inbred lines are only selfed for a limited 
number of generations and exhibit substantial residual 
heterozygosity, compared to crops with an established 
doubled-haploid system as maize or barley. Because rye is 
mainly cultivated as a winter cereal, generation intervals 
are long and the development of hybrid components takes 
many years. Therefore, one major focus of rye breed-
ing research lies on utilizing genomic tools to accelerate 
breeding progress.

The molecular toolbox of rye has constantly grown and 
enabled genome enhanced breeding during the last years. 
High-density genotyping platforms such as the Rye5k array 
(Haseneyer et al. 2011) and a custom 16k Infinium iSelect 
HD BeadChip (Illumina®) are available. A comprehen-
sive expressed sequence tag (EST) resource was generated 
(Haseneyer et  al. 2011) and whole genome sequencing is 
currently in progress (Bauer et  al. 2015). While marker-
assisted backcrossing as well as selection for individual 
genes with diagnostic markers have become routine appli-
cations, the efficiency of whole-genome based prediction 
(GP) in rye breeding populations still needs to be evaluated.

A key objective of GP is the accurate prediction of the 
genetic value of yet unphenotyped lines based on their 
DNA profile. In population improvement, essentially two 
prediction scenarios arise: (1) within breeding cycles, i.e., 
prediction of genetic values of progeny derived from the 
same or related crosses within the breeding cycle in which 
model training is performed and (2) across breeding cycles, 
i.e., prediction of consecutive generations of progeny gen-
erated from crosses with variable levels of relatedness to 
current genetic material. Various studies have reported 
prediction performance that encourages the implementa-
tion of genome-based prediction in breeding programs. In 
a wide range of crops, prediction accuracies ranged from 
intermediate to high (Lin et  al. 2014; Zhao et  al. 2015). 
Many of these studies were conducted on large biparen-
tal populations (Krchov et  al. 2015), highly unbalanced 
historical data sets (Sallam et  al. 2015) or closed popula-
tions employed in recurrent selection (Li et  al. 2015) and 
their results are not directly transferable to advanced-
cycle breeding populations as these populations have very 

different family structures, effective population size, allele 
frequency spectra, linkage disequilibrium and quality of 
phenotypes.

First promising results for genome-based prediction 
have been attained for rye by Bernal-Vasquez et al. (2014). 
They reported prediction accuracies obtained from cross-
validation within selection cycles and years. These esti-
mates must be considered as upper bound because of close 
familial relatedness and shared environmental conditions 
between the calibration and the validation data sets. It is 
the prediction of the genotypic value of selection candi-
dates of the next cycles, from which the strongest impact 
of genome-based prediction can be expected. A study per-
formed on data from two consecutive breeding cycles in 
sugar beet (Beta vulgaris L.) showed that across-cycle pre-
diction accuracy depended on the trait under study and the 
authors pointed out that within-cycle prediction accuracy 
was not suited as indicator for the performance of across-
cycle prediction (Hofheinz et  al. 2012). For maize (Zea 
mays L.), prediction accuracies across subsequent cycles 
of selection were only slightly reduced for grain yield and 
dry matter content, compared to accuracies obtained with 
cross-validation within the same cycle when effects arising 
from population structure and choice of tester were mod-
eled appropriately (Albrecht et  al. 2014). In a study on 
five breeding cycles of bread wheat, Michel et  al. (2016) 
reported a substantial decrease of prediction accuracy for 
three traits when predicting across instead of within selec-
tion cycles.

To investigate the factors influencing across-cycle pre-
diction accuracy, we built a unique data set comprising 
high-precision phenotypes and high-density genotypes rep-
resenting multiple interconnected rye breeding populations. 
We focused on three main objectives, (1) to comparatively 
assess the prediction performance of pedigree-based and 
genomic best linear unbiased prediction within and across 
breeding cycles, (2) to gain insight into the main compo-
nents driving prediction performance across subsequent 
breeding cycles, and (3) to develop recommendations for 
model training to obtain maximum across-cycle prediction 
accuracies.

Methods

Genetic material

The genetic material used in this study consists of four 
data sets of advanced-cycle inbred lines (S2) from subse-
quent cycles (Cycle 1 to Cycle 4) of a commercial hybrid 
rye breeding program. The four data sets comprised a total 
of 1416 S2 lines for which up to ten generations of pedi-
gree information was available. To represent each selection 
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cycle by the same number of progenies, 260 S2 lines were 
randomly chosen from each of the four data sets, resulting 
in 1040 S2 inbred lines and all subsequent representations 
of results are based on these 1040 S2 lines representing 
progenies from 430 crosses of 203 parental lines. Genetic 
relatedness between the four data sets is given through a 
minimum of eight and a maximum of 21 common parental 
lines (Figure S1). On average, two inbred lines (min = 1, 
max = 24) were derived per cross, with 400 crosses yield-
ing five or fewer inbred lines. To obtain testcross seed, 
each S2 line was crossed to two out of eight F1 pollen-ster-
ile testers (T1–T8, see Table  S1) showing different levels 
of relatedness. Testers represent a gametic sample of the 
complementary heterotic seed parent pool. Plant materials 
described in this study are proprietary to KWS LOCHOW 
GMBH.

Phenotypic data analysis

Testcrosses of S2 lines were evaluated in seven or eight 
locations in the years 2009–2012, with several trial loca-
tions in Germany and one location in Poland. Within loca-
tions and separately for each tester, testcrosses were allo-
cated to a series of trials laid out as α-lattice designs with 
two replicates on 5.5  m2 plots, connected by four elite 
hybrid checks. A general representation of the allocation of 
testers and locations within each of the four breeding cycles 
is given in Table S1. Locations and testers were confounded 
in Cycle 3, whereas the two testers shared one to two com-
mon locations in the other three cycles. In the following, 
the combination of location and tester is denoted location.
tester. Testcross performance was evaluated for the traits 
grain dry matter yield (GDY, dt ha−1), plant height (PHT, 
cm), and thousand kernel weight (TKW, g), with TKW 
measured in all trials with one replication only. Phenotypic 
data were analyzed following a two-stage approach. In the 
first stage, adjusted entry means for genotypes (testcrosses 
of S2 lines) were calculated separately for each location and 
for each of the two testers by standard lattice analysis (Utz 
2004). In the second stage, best linear unbiased estimates 
(BLUEs) of genotypes were calculated across testers and 
locations based on adjusted entry means obtained from the 
first stage using a mixed model including genotype as fixed 
effect and location.tester and genotype × location.tester 
interaction as random effects. Adjusted means from the first 
stage were weighted as described in method 1 of Möhring 
and Piepho (2009). Outlier detection was performed by 
consecutively detecting and removing outliers on the basis 
of maximum deviate residuals according to Grubbs (1950). 
For estimation of variance components the same models 
were used as for the calculation of adjusted means, except 
that genotypes were treated as random effects. Broad sense 
heritabilities (h2) were calculated on a progeny-mean basis 

as described in method 1 of Estaghvirou et al. (2013). Cal-
culations were performed using R (R Core Team 2015) or 
ASReml R (Butler et al. 2009).

Genotyping

S2 lines were genotyped using a custom Rye 16 k Infinium 
iSelect HD BeadChip (Illumina, San Diego, CA, USA). 
Only high-quality SNPs with a GenTrain score ≥0.7 and 
a call rate ≥0.9 were used. SNPs with a minor allele fre-
quency (MAF) < 0.01 or >10 % missing values were dis-
carded, resulting in 10,416 useful SNPs. For 5607 SNPs 
the genetic map position was available (Figure  S2A). 
Missing values of mapped SNPs were imputed based on 
flanking markers using Beagle (Browning and Brown-
ing 2009) and missing values of unmapped SNPs by sam-
pling from marginal allele distributions using the synbreed 
R package (Wimmer et  al. 2012). Linkage disequilibrium 
(LD) between marker pairs was calculated for genetically 
mapped markers as r2 (Hill and Robertson 1968).

Prediction methods

To predict the testcross performance of S2 lines we applied 
pedigree (PBLUP) and genomic (GBLUP) best linear unbi-
ased prediction which differ in the variance–covariance 
structure used to model random testcross effects. The two 
models can be written as

where y is the vector of adjusted means from the second 
stage of the phenotypic analysis, β is a vector of fixed 
effects containing four factor levels for selection cycle, 
X and Z are incidence matrices, assigning the adjusted 
means to fixed and random effects, respectively. In the 
PBLUP model t is the vector of random testcross effects, 
assumed to be normally distributed with t ∼ N(0,Kσ 2

t ). K 
denotes the matrix of expected kinship coefficients calcu-
lated on the basis of pedigree information, with σ 2

t  being 
the testcross variance pertaining to the PBLUP model. 
Residuals e are assumed to be independent and normally 
distributed with e ∼ N(0, Iσ 2

p ), where I denotes an iden-
tity matrix and σ 2

p  the residual variance. The expected 
kinship matrix (K) was calculated as K = 0.5A, where 
A denotes the additive genetic relationship matrix calcu-
lated according to standard procedures (Lynch and Walsh 
1998) implemented in the synbreed R package (Wim-
mer et  al. 2012). Assuming a single seed descent selfing 
scheme, the dimensionality of the respective A matrix can 
be reduced by omitting the selfing steps when building the 
A matrix and modeling the diagonal element of individual 

PBLUP : y = Xβ + Zt + e

GBLUP : y = Xβ + Zu+ e
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, with Aii being 

the diagonal element of A for individual i, x the number 
of selfing generations, and Agh being twice the kinship 
coefficient between the parents (g and h) of individual i 
in generation S0, i.e., before selfing. For S2 lines derived 
from S1 plants we set x = 1. In the GBLUP model, random 
testcross effects u are assumed to be normally distributed 
with u ∼ N(0,Uσ 2

u ). U denotes the realized kinship matrix 
calculated on the basis of the marker data (Habier et  al. 
2007), with σ 2

u  being the testcross variance pertaining to the 
GBLUP model. Residuals e are assumed to be independent 
and normally distributed with e ∼ N(0, Iσ 2

m), where σ 2
m is 

the residual variance.

Cross‑validation schemes and prediction accuracies

Prediction accuracies were estimated applying different 
cross-validation scenarios (CV1-3, Fig.  1). Within-cycle 
(CV1) prediction accuracies were calculated by applying 
ten times replicated fivefold CV with random sampling 
using 80 % of the lines of a given cycle as calibration set 
(CS) and 20 % as validation set (VS) (Albrecht et al. 2011; 
Wimmer et  al. 2012). In the across-cycle scenario (CV2), 
prediction accuracies were estimated using lines from 
one or multiple cycles as calibration set and lines from a 

different cycle as validation set. Three different scenarios 
were possible for CV2: in CV2.1 the calibration set was 
sampled from one, in CV2.2 from two, and in CV2.3 from 
three cycles. The third scenario (CV3) included randomly 
sampled lines from all four cycles in the calibration set 
except those lines included in the corresponding valida-
tion set. To allow a direct comparison of prediction accura-
cies, the allocation of genotypes to the validation sets was 
the same for all CV scenarios. When lines from multiple 
cycles constituted the calibration set, the same number of 
lines was sampled from each cycle. To evaluate the effect 
of sample size on prediction accuracy when aggregating 
data from multiple cycles, calibration set size in CV2.3 
and CV3 was varied with NCS =  208, 416, 624, and 832 
(the latter only in CV3). CV2 and CV3 scenarios include 
all possible forward, as well as backward predictions in 
time. Variance components of PBLUP and GBLUP mod-
els were estimated by REML for each calibration set. For 
each CV scenario, prediction accuracy in validation set v 

was obtained by r
Q̂Gv

= ρ
Q̂Pv√
h2v

, where ρ
Q̂Pv

 denotes the pre-

dictive ability calculated as Pearson correlation coefficient 
between predicted (Q̂) and observed (P) testcross values 
and h2v the broad sense heritability for the respective trait 
and selection cycle from which validation set v was sam-
pled (Dekkers 2007). To assess pairwise differences in 
accuracies between prediction models, a paired t-test was 
applied after Fisher’s Z transformation.

Analysis of germplasm

The relatedness of S2 lines in the calibration and vali-
dation set was analyzed for CV1 and for each of the 12 
possible CV2.1 scenarios based on the average maxi-
mum realized kinship coefficient (Umax) (Saatchi et  al. 
2011) derived from marker information. We calculated 
Umax,i = max(Uij) with Uij being the realized kinship coef-
ficient between line i and line j for i ∈ VS and j ∈ CS . 
Averaging over S2 lines in the validation set resulted in a 
mean Ūmax value for the respective combinations of cali-
bration and validation set. To detect hidden population 
substructure within breeding cycles, we performed a prin-
cipal coordinate analysis (Gower 1966) based on Rogers’ 
distance (Rogers 1972) using the marker genotypes of the 
S2 lines.

Results

Germplasm structure

The 5607 mapped SNP markers were equally distributed 
across the genome with SNP numbers varying between 

Fig. 1   Cross-validation (CV) scenarios. CV1 within-cycle CV with 
lines in calibration and validation from the same breeding cycle (grey 
boxes). Eighty percent of the lines from one cycle were used for cali-
bration and twenty percent for validation. CV2 across-cycle CV, where 
the calibration set comprised lines from other cycles than the valida-
tion set. CV2 calibration sets consisted of lines from one (CV2.1), two 
(CV2.2) or three (CV2.3) cycles (different shades of blue) with equal 
numbers of S2 lines from each cycle. CV3 joint across- and within-
cycle CV, where lines from all four cycles constituted the calibration 
set (blue and grey boxes), and lines from one of the cycles (grey) con-
stituted the validation set. Lines from the validation set were not repre-
sented in the calibration set (color figure online)
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457 on chromosome 7R to 1091 on chromosome 5R (Fig-
ure  S2A). LD decayed rapidly with 68  % of the marker 
pairs showing r2 ≤ 0.2 within 1 cM (Figure S2B). As rye 
is an outcrossing species with low ancestral LD, a rapid 
decline of LD was expected in this data set of S2 lines 
derived from many crosses of at least partially unrelated 
parents. Heatmaps of the expected (K) and realized (U) 
kinship coefficients of the 1040 S2 lines are given in Fig-
ure S3. Within each cycle, family substructures are visible, 
but the principal coordinate analysis based on marker data 
indicated no major population substructure except for one 
large family in Cycle 1 (Figure S2C and D). Ūmax coeffi-
cients within cycles ranged from 0.27 to 0.29 and were sub-
stantially larger than Ūmax coefficients of the across-cycle 
scenarios ranging from 0.13 to 0.17.

Phenotypic analyses

Testcross means for all traits differed significantly (p < 0.01) 
between breeding cycles (Table 1). For all traits and cycles, 
genotypic and genotype × location.tester (σ2

g×l) variance 
components were highly significant (p < 0.01) and estimates 
of σ2

g×l were always smaller than the genotypic variance 
component. Trait heritabilities (h2) on a progeny-mean basis 
were intermediate to high (Table 1). In Cycle 3, trait herita-
bilities were consistently lower compared to the other cycles.

Within‑cycle prediction accuracies

In CV1, calibration and validation sets originate from the 
same selection cycle, were crossed to the same two test-
ers, and were evaluated in the same year. Within-cycle 
prediction accuracies for GDY obtained with PBLUP and 
GBLUP are shown in Fig. 2. GBLUP consistently outper-
formed PBLUP for all three traits. Averaged over the four 
cycles, mean prediction accuracies of GBLUP and PBLUP 
were highest for GDY (0.68 and 0.61), followed by TKW 
(0.63 and 0.52) and PHT (0.63 and 0.46). For GDY, the rel-
ative advantage of GBLUP over PBLUP was only marginal 

in Cycles 2 and 3. In contrast to Cycle 1 these two cycles 
comprised no large biparental family and had a higher aver-
age level of relatedness than Cycle 4.

Across‑cycle prediction accuracies

Single‑cycle calibration sets

In CV2.1, the calibration and validation sets originate from 
different selection cycles, were crossed to different testers, 
and were evaluated in different years (Table S1). Averaged 
across the six possible single-cycle forward predictions in 
CV2.1 with sample size NCS = 208, accuracies amounted 
to r̄

Q̂G
= 0.50 for GBLUP compared to r̄

Q̂G
= 0.35 for 

PBLUP. For PHT and TKW across-cycle prediction based 
on pedigree information was not possible with average for-
ward prediction accuracies of 0.06 and 0.13, respectively. 
Genome-based prediction, on the other hand, yielded inter-
mediate prediction accuracies of 0.35 for PHT and 0.40 
for TKW. In all cases, genome-based prediction accuracies 
across cycles were smaller than within cycles except for 
TKW where some predictions involving Cycle 4 as cali-
bration or validation set yielded slightly higher accuracies 
across than within cycles (Fig. 3).

The effect of relatedness of the calibration and valida-
tion set in the 12 possible single-cycle CV2.1 scenarios was 
assessed by calculating the Pearson correlation between 
Ūmax coefficients and the corresponding across-cycle pre-
diction accuracies (Fig.  4). For GDY, a significant posi-
tive correlation (p < 0.01) was observed but it was mainly 
driven by the low relatedness and prediction accuracies of 
Cycle 1 and Cycle 4. For traits PHT and TKW correlations 
were not significant.

Multiple‑cycle calibration sets

To investigate the effect of combining lines from multiple 
cycles in the calibration set on prediction accuracies, we 
compared GBLUP model training based on calibration 

Table 1   Testcross means with standard errors (S.E.), broad sense heritabilities (h2) and variance components for grain dry matter yield (GDY), 
plant height (PHT) and thousand kernel weight (TKW) for four breeding cycles and N = 260 entries per cycle, respectively

a  For number of locations, testers and year see Table S1
b  Genotypic variance component
c  Genotype × location.tester interaction variance component

Cyclea GDY PHT TKW

Mean ± S.E. h2 σg
2 b σ2

g×l
c Mean ± S.E. h2 σg

2 σ2
g×l Mean ± S.E. h2 σg

2 σ2
g×l

1 90.8 ± 0.19 0.86 14.59 7.59 130.4 ± 0.26 0.91 35.73 11.75 36.4 ± 0.11 0.90 4.76 0.89

2 78.3 ± 0.23 0.86 15.77 3.77 126.7 ± 0.29 0.94 46.61 7.71 33.1 ± 0.11 0.80 6.71 4.31

3 81.6 ± 0.20 0.77 18.47 16.14 109.5 ± 0.28 0.89 38.09 23.10 37.0 ± 0.11 0.76 4.88 2.95

4 91.5 ± 0.23 0.83 22.96 16.51 124.3 ± 0.21 0.94 26.23 5.04 34.6 ± 0.10 0.87 4.85 2.09
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sets sampled from one, two or three cycles with a constant 
calibration set size of NCS =  208. Mean prediction accu-
racies increased slightly for all three traits when sampling 
was performed from multiple cycles compared to sampling 
from one cycle only (Figure S5). PBLUP accuracies were 
substantially lower (values for CV2.1 see Figure S4 and for 
CV2.3 see Fig. 5) and showed a similar trend as GBLUP 
accuracies when predicting with multiple-cycle calibration 
sets.

A major advantage of combining data from multi-
ple cycles for training the prediction model lies in the 
increased sample size of the aggregated calibration set as 
compared to data from the most recent preceding cycle 
only. By increasing the calibration set size from NCS = 208 
to 416 and 624 in CV2.3, we observed a clear positive 
trend of mean GBLUP prediction accuracies for all three 
traits (Fig. 5). At maximum sample size, average prediction 
accuracies increased to 0.54 for GDY, 0.55 for TKW and 
0.47 for PHT. These accuracies were significantly higher 
(p  <  0.01) compared to average accuracies obtained with 
single-cycle CV2.1 scenarios and similar as (GDY and 
PHT) or higher than (TKW) the best of the 12 single-cycle 
CV2.1 predictions given in Fig. 3. PBLUP predictions ben-
efitted only slightly (TKW) or not at all (GDY, PHT) from 
the increase in sample size of the calibration set.

The effect of combining within- and across-cycle data 
for model calibration is shown in Table  2. While CV2.3 
scenarios with NCS = 624 could not reach average within-
cycle accuracies for any of the three traits, prediction accu-
racies in CV3 outperformed those of CV1 with NCS = 624 
and even more so using the maximum possible population 
size NCS = 832.

Discussion

Evaluation of the potential of genome-wide prediction in 
plant breeding programs requires data sets that account for 
the specific properties of the employed selection schemes 
and populations. The data set employed here represents 
four advanced-cycle breeding populations of small effective 
population size with similar allele frequency spectra and 
extent of linkage disequilibrium. As the required time from 
recombination to the first performance test is five years, 
none of the four selection cycles comprised direct descend-
ants of lines tested in earlier cycles. In contrast to recurrent 
selection on closed populations where pedigree relation-
ships are reduced by half each generation, the relatedness 
of subsequent advanced-cycle plant populations depends on 
decisions made by the breeder with respect to the number 
of common parents and the influx of new genetic material. 

Fig. 2   Within-cycle (CV1) prediction accuracies of four breeding 
cycles for a grain dry matter yield (GDY), b plant height (PHT) and 
c thousand kernel weight (TKW) obtained with PBLUP (left) and 
GBLUP (right). Boxplots show the median (horizontal line), mean 
(×), upper and lower quartile, and whiskers (vertical bars) of 10 × 5 
fold cross-validation with random sampling and a constant calibration 
(N = 208) and validation set (N = 52) size. Points above and below 
the whiskers indicate values ±1.5 times the interquartile range
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Thus, the relative advantage of genome- over pedigree-
based prediction methods is difficult to assess theoretically 
and needs to be investigated with experimental data.

Pedigree‑ and genome‑based prediction across cycles

We showed that the performance gap between GBLUP and 
PBLUP increased significantly for all three traits when 
model training was performed on aggregated data from 
several selection cycles, indicating that accuracy of predic-
tion will increase as information accumulates over time. 
For GDY, both prediction models (PBLUP and GBLUP) 
yielded intermediate prediction accuracies within and 
across cycles. As the average family size was rather small 
for many crosses, the moderate difference between PBLUP 
and GBLUP accuracies for GDY was not surprising. When 
decreasing the number of markers in the GBLUP model 
from 10,416 to 500, prediction accuracies were quite sta-
ble for GDY (data not shown) indicating that genome-
wide relatedness and not so much marker-trait associa-
tions in specific genomic regions had a strong influence 
on prediction accuracy of this trait. This was supported by 
a significant correlation between the level of relatedness 
of the validation and calibration set with the correspond-
ing across-cycle prediction accuracies for GDY in CV2.1 
(Fig. 4).

For the two traits PHT and TKW, PBLUP and GBLUP 
prediction accuracies were intermediate to high within 
cycles but pedigree-based prediction averaged close to zero 
across cycles. We hypothesize that family-specific QTL 
with large or intermediate effects are segregating for the 
two traits. To support this hypothesis we compared marker 
effects estimated for the three traits in the full set of 1040 
S2 lines using the Bayesian model BayesCπ (Habier et al. 
2011) (Figure  S6). For PHT and TKW more and larger 
marker-trait associations were detected than for GDY. We 

Fig. 3   Within-(CV1, diagonal elements) and across-(CV2.1 off-
diagonal elements) cycle prediction accuracies for a grain dry mat-
ter yield (GDY), b plant height (PHT) and c thousand kernel weight 
(TKW) from GBLUP performing 10 ×  5 fold cross-validation with 
constant calibration (N  =  208) and validation set (N  =  52) sizes. 
Upper (lower) triangular matrices constitute the forward (backward) 
across-cycle prediction direction

Fig. 4   Across-cycle (CV2.1) prediction accuracies for grain dry mat-
ter yield (GDY) from GBLUP plotted against the average maximum 
kinship Ūmax (r, p < 0.01). Shaded triangles indicate cycles in cali-
bration/validation set and forward/backward ( ) prediction direc-
tion. Results are shown for all possible pairwise cycle combinations, 
with one cycle forming the calibration (N = 208) and one cycle the 
validation set (N = 52), respectively
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assume that pedigree-based prediction could model these 
effects within cycles based on close familial relation-
ships, while this was not possible across cycles with more 
distantly related genetic material. On the other hand, the 
GBLUP model could capture some of these larger effects 
through LD that persisted in the across-cycle scenarios. 
Our hypothesis of different genetic architecture of GDY 
and PHT is supported by a study on genome-based predic-
tion in a biparental rye population derived from two elite 
parents (Wang et  al. 2014) where QTL based prediction 

of PHT performed quite similar to genome-wide predic-
tion while for GDY there was a large difference in predic-
tion accuracy between the two approaches. Findings from 
QTL analyses point in the same direction (Miedaner et al. 
2012). As genomic data will accumulate over time it will 
be attractive to use these data not only for prediction of 
genetic values but also for inference on marker effects. The 
discussion on which statistical methods are appropriate for 
inference on marker effects has just started (Kemper et al. 
2015; Kumar et al. 2016) and warrants further research.

When aggregating data across selection cycles, GBLUP 
prediction accuracy increased while PBLUP performance 
remained constant or increased only slightly (TKW). By 
increasing the sample size of the calibration set and mod-
eling marker effects over several testers and years through 
data aggregation, not only an increase in mean prediction 
accuracy was achieved but also a slight reduction in pre-
diction variance (Figure  S5). Uncertainty of prediction is 
an important factor in optimization of breeding schemes 
but is often neglected in the discussion on the potential of 
genome-based selection. We conclude that the reduced var-
iance of prediction is a further argument in favor of model 
training across several selection cycles.

Fig. 5   Across-cycle (CV2.3) 
prediction accuracies for grain 
dry matter yield (GDY), plant 
height (PHT), and thousand 
kernel weight (TKW) obtained 
with PBLUP and GBLUP 
with lines from three cycles 
forming the calibration set. 
Boxplots show the median 
(horizontal line), mean (×), 
upper and lower quartile, and 
whiskers (vertical bars) from 
10 × 5 fold cross-validation 
with random sampling and 
increasing calibration set sizes 
of N = 208, 416 and 624 lines 
at constant validation set sizes 
of N = 52. For each pair of 
boxplots the left shows PBLUP 
and the right GBLUP. Points 
above and below the whiskers 
indicate values ± 1.5 times the 
interquartile range

Table 2   Effect of calibration set (CS) sample size on prediction 
accuracies of GBLUP in the joint across- and within-cycle (CV3) 
scenario with lines from four cycles in the calibration set

Results for grain dry matter yield (GDY), plant height (PHT) and 
thousand kernel weight (TKW) were obtained by performing 10 × 5 
fold cross-validation with constant validation set sizes (N = 52)

CS sample size GDY PHT TKW

208 0.60 0.52 0.56

416 0.64 0.60 0.64

624 0.68 0.65 0.68

832 0.70 0.69 0.70
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Factors influencing the accuracy of genome‑based 
prediction across cycles

In across-cycle scenarios, the average maximum kinship 
of calibration and validation sets was about half that of 
within-cycle scenarios. As expected, a decrease in accu-
racy was found for CV2 compared to CV1 for both pre-
diction models (PBLUP and GBLUP). When the breeding 
program advances, it can be assumed that selection cycles 
share fewer common ancestors. This was the case here with 
8 (11) common parents of crosses for Cycle 4 and Cycle 1 
(Cycle  4 and Cycle  2) compared to 18–21 common par-
ents for the other pairwise combinations. This decrease in 
common ancestors over time was reflected in reduced kin-
ship and significantly reduced accuracy when predicting 
lines from Cycle 4 with a model trained in Cycle 1. How-
ever, the relationship between average maximum kinship 
(Ūmax) and prediction accuracy was intermediate for GDY 
(p < 0.01) and not significant for the other traits. This is in 
contrast to other studies where a strong linear relationship 
between average maximum kinship and prediction accu-
racy was found (Albrecht et al. 2014; Habier et al. 2010). 
In plant populations with influx of unrelated material, the 
average maximum kinship must be interpreted with cau-
tion as a predictor for accuracy even for complex traits like 
GDY. If the calibration set comprises a few entries that are 
highly related to many entries of the validation set, this will 
lead to high average maximum kinship but not necessarily 
to high prediction accuracy.

In several studies a decrease in prediction accuracy was 
reported when unrelated lines were added to the calibration 
set. These studies generally involved structured populations 
such as different animal breeds (e.g., Lund et al. 2014), dif-
ferent plant breeding programs (Lorenz and Smith 2015) or 
large biparental families (Riedelsheimer et al. 2013). In this 
study, we did not observe a decrease in prediction accu-
racy when aggregating data from several cycles which is 
expected from theory because unrelated or distantly related 
lines contribute almost nothing to prediction performance 
(de los Campos et al. 2013). Thus, we conclude that as long 
as selection cycles are connected by a sufficient number of 
common ancestors and prediction accuracy has not reached 
a plateau with respect to increases in sample size, aggregat-
ing data from several selection cycles is advisable for pre-
dicting the phenotypes of subsequent selection candidates 
despite decreasing relatedness over time. The set-up of 
optimum experimental designs to reach sufficient connec-
tivity between breeding cycles for genome-based selection 
requires further research.

To separate the effect of increased precision of SNP 
effects due to i) larger sample size of the calibration set 
and ii) replication of alleles over years and testers, CV2 
was performed with constant (NCS =  208) and cumulated 

sample size of the calibration set (NCS = 416, NCS = 624). 
Mean prediction accuracies were very similar when sam-
pling the same number of lines from one, two or three 
cycles, respectively. This indicates that the increase in 
prediction accuracy over cycles was mainly driven by an 
increase in sample size of the calibration set and that esti-
mating marker effects based on testcrosses with more test-
ers and evaluated in more years was of minor importance. 
With the given data it was not possible to separate the 
effects of across-cycle relatedness, genotype  ×  year and 
genotype ×  tester interaction on prediction accuracy. We 
hypothesize that when averaging across two single-cross 
testers, specific combining ability effects can be assumed 
to be negligible. In addition, all S2 lines were evaluated 
in seven to eight locations in each year yielding very high 
progeny-mean heritabilities. Thus, we assume that geno-
type ×  location interactions within cycles could account 
to a large extent also for genotype  ×  year interactions. 
The high precision of phenotypic data in our study might 
explain some of the discrepancies to studies on genome-
based prediction in self-pollinating crops where merging 
data sets from subsequent progeny sets was rarely advanta-
geous (e.g., Sallam et  al. 2015). In self-pollinating crops, 
populations employed in model training frequently repre-
sent highly unbalanced historical data sets with many lines 
phenotypically evaluated at low intensity enhancing predic-
tion accuracy only marginally.

The effect of sample size and replication on GBLUP 
prediction accuracy was investigated in a simulation study 
by Lorenz (2013) and a high degree of flexibility in the 
allocation of the two factors was observed. For experi-
mental plant populations of small effective population size 
it was also shown that prediction accuracy could not be 
increased beyond a certain level despite increases in sample 
size (Albrecht et  al. 2011; Jan et  al. 2016). In this study, 
GBLUP predictive ability for GDY increased steadily till a 
sample size of about 800 S2 lines was reached (Figure S7). 
Thus, our data provide an excellent base for investigating 
the effect of allocation of resources for maximizing selec-
tion gain from genome-based selection per unit time and 
budget.

Implementation of genome‑based prediction in hybrid 
rye breeding

Mean prediction accuracies found in this study were 
greater 0.47 for all traits when aggregating data across 
three independent cycles (NCS =  624, CV2.3) and could 
be increased to 0.69–0.70 in CV3 (NCS = 832). Based on 
these results we conclude that genome-based prediction 
will be an important instrument in hybrid rye breeding 
to increase selection gain. How to implement genome-
based prediction with maximum efficiency requires further 
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research. The data employed here were taken from the first 
stage of a multi-stage selection scheme with strong priority 
on precision phenotypes and risk prevention in first selec-
tion steps (Wilde 1996). Such a selection scheme leads 
to slightly lower expected selection gains and to lower 
variance in gains in comparison to scenarios with higher 
selection but lower testing intensity. Implementation of 
genome-based prediction will require breeders to revisit 
their decisions on optimal allocation of resources. It can 
open new opportunities such as (1) to reduce cycle length 
from actual five  years to four or even three years, (2) to 
change from phenotypic selection to more accurate indices 
combining both genomic and phenotypic information, and 
(3) to make full use of the genetic variance segregating in a 
selection scheme based on early testing of partially inbred 
families. On the other hand including genome-based pre-
diction will require a more sophisticated management and 
design of crosses and familial structures than selection on 
phenotypes alone. A thorough investigation of resource 
allocation to phenotyping and genotyping is mandatory 
to maximize short- and long-term gain from selection. 
Insights derived from this study provide an excellent start-
ing point for optimization of breeding schemes integrat-
ing genome-based prediction in hybrid rye breeding. The 
magnitude of prediction accuracies found is encouraging, 
suggesting that genomic prediction in rye is a worthwhile 
endeavor.

Conclusion

We assessed the prediction performance of pedigree- and 
genome-based prediction within and across four breeding 
cycles of a hybrid rye program and found that the rela-
tive advantage of GBLUP over PBLUP increased signifi-
cantly when model training was performed on aggregated 
data from several selection cycles. We conclude that as 
long as selection cycles are connected by a sufficient num-
ber of common ancestors and prediction accuracy has not 
reached a plateau with respect to increases in sample size, 
aggregating data from several preceding cycles is advis-
able for predicting phenotypes of selection candidates 
despite decreasing relatedness over time. Implementation 
of genome-based prediction will open new opportunities 
such as reducing selection cycle length and making full use 
of the genetic variance in each cycle. On the other hand, it 
will require a more sophisticated management and design 
of crosses and familial structures than selection on pheno-
types alone. As genomic and phenotypic data will accumu-
late over time they will not only be useful for prediction 
of phenotypes but also for inferences on marker effects and 
genomic regions contributing to expression of quantitative 
traits.
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