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ABSTRACT:

In this paper we present a new calibration approach for focused plenoptic cameras. We derive a new mathematical projection model of a
focused plenoptic camera which considers lateral as well as depth distortion. Therefore, we derive a new depth distortion model directly
from the theory of depth estimation in a focused plenoptic camera. In total the model consists of five intrinsic parameters, the parameters
for radial and tangential distortion in the image plane and two new depth distortion parameters. In the proposed calibration we perform
a complete bundle adjustment based on a 3D calibration target. The residual of our optimization approach is three dimensional, where
the depth residual is defined by a scaled version of the inverse virtual depth difference and thus conforms well to the measured data.
Our method is evaluated based on different camera setups and shows good accuracy. For a better characterization of our approach we
evaluate the accuracy of virtual image points projected back to 3D space.

1. INTRODUCTION

In the last years light-field (or plenoptic) cameras became more
and more popular. One reason therefor is the availability of such
camera systems on the market.

Plenoptic cameras capture, different from regular cameras, not
only a 2D image of a scene, but a complete 4D light-field repre-
sentation (Adelson and Wang, 1992, Gortler et al., 1996). Due
to this additional information plenoptic cameras find usage for a
variety of applications in photogrammetry as well as computer
vision. Here, plenoptic cameras replace for example other depth
sensors like stereo camera systems.

To use such a depth sensor for instance in photogrammetric ap-
plications a precise metric calibration is mandatory. While the
calibration of monocular cameras and stereo camera systems has
been studied over the last decades, there is no overall accepted
mathematical model available for plenoptic cameras yet. There-
fore, this paper introduces a new model for focused plenoptic
cameras (Lumsdaine and Georgiev, 2009, Perwaß and Wietzke,
2012) and presents how this model can be precisely determined
in a metric calibration process using a 3D calibration target.

1.1 Related Work

During the last years different methods where published to cali-
brate a plenoptic camera. This section lists calibration meth-
ods for unfocused plenoptic cameras (Adelson and Wang, 1992,
Ng et al., 2005) and focused plenoptic cameras (Lumsdaine and
Georgiev, 2009, Perwaß and Wietzke, 2012) separately.

Until today the unfocused plenoptic camera is mostly used in
consumer or image processing applications where a precise met-
ric relation between object and image space is not mandatorily
needed. Ng and Hanrahan for instance presented a method for

correcting aberrations of the main lens on the recorded 4D light-
field inside the camera (Ng and Hanrahan, 2006).

In 2013 Dansereau et al. presented the first complete mathemati-
cal model of an unfocused plenoptic camera (Dansereau et al.,
2013). Their model consists of 15 parameters which include, be-
sides the projection from object space to the sensor, the micro
lens array (MLA) orientation as well as a distortion model for the
main lens.

Bok et al. proposed a method which does not use point features
to solve for the calibration model but line features extracted from
the micro images (Bok et al., 2014).

A first calibration method for focused plenoptic cameras was pro-
posed by Johannsen et al. (Johannsen et al., 2013). They pro-
posed a camera model tailored especially for Raytrix cameras
which consists of 15 parameters. This model considers lateral
distortion (image distortion) as well as depth distortion and shows
reasonable results for the evaluated distances from 36 cm to 50 cm.

The method of Johannsen et al. was further developed by Heinze
et al. and resulted in an automated metric calibration method
(Heinze et al., 2015). In their method calibration is performed
based on a planar object which is moved freely in front of the
camera.

In a previous work, Zeller et al. focused on developing efficient
calibration methods for larger object distances (> 50 cm) (Zeller
et al., 2014). They present three different models to define the
relationship between object distance and the virtual depth which
is estimated based on the light-field. Besides, the calibration pro-
cess is split into two parts, where the optical path and the depth
are handled separately.

1.2 Contribution of this Work

This paper proposes a new model of a focused plenoptic cam-
era which considers lateral distortion of the intensity image as
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Figure 1. Cross view of the two possible configurations (Keple-
rian and Galilean) of a focused plenoptic camera.

well as virtual depth distortion. While the model shows similarity
with respect to the one in (Heinze et al., 2015) some significant
changes were made which adapt the model better to the physical
camera.

Firstly, we consider lateral distortion after projecting all virtual
image points, which are the image points created by the main
lens, back to a mutual image plane, along their central ray. In
contrast, Heinze et al. apply lateral distortion directly on the vir-
tual image. Thereby, we receive a model for lateral distortion
which conforms better to the reality since the virtual image is not
formed on a plane but on an undulating surface defined by the
image distance (distance to the main lens) of each point. Besides,
we show that the depth distortion can be derived from the lat-
eral distortion model since in a plenoptic camera the depth map
is based on disparity estimation in the raw image.

We are using a 3D target in order to obtain precise calibration
parameters by performing a bundle adjustment on feature points.

In our optimization approach the depth residual is defined by a
scaled version of the inverse virtual depth difference which con-
forms better to the measured data.

In contrast to previous methods we show that our calibration gives
good results up to object distances of a few meters. In addition,
we evaluate the accuracy of points projected back to object space
in 3D, which has not been done in any of the previous publica-
tions.

The main part of this paper is structured as follows. Section 2
briefly presents the concept of a focused plenoptic camera. The
camera model derived based on this concept is presented in Sec-
tion 3. In Section 4 we formulate the non-linear problem which
is optimized to obtain the plenoptic camera model. Section 5
presents the complete calibration workflow. Section 6 evaluates
the calibration based on real data and Section 7 draws conclu-
sion.

2. THE FOCUSED PLENOPTIC CAMERA

Even though there exist different concepts of MLA based plenop-
tic camera (Ng et al., 2005, Adelson and Wang, 1992) we will
focus here only on the concept of a focused plenoptic camera
(Lumsdaine and Georgiev, 2009).

As proposed by (Lumsdaine and Georgiev, 2008, Lumsdaine and
Georgiev, 2009) a focused plenoptic camera can be set up in two
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Figure 2. Optical path inside a focused plenoptic camera based
on the Galilean configuration.

Figure 3. Section of the micro lens images (raw image) of a
Raytrix camera. Different micro lens types are marked by dif-
ferent colors.

different configurations. The Keplerian and the Galilean config-
uration (Fig. 1). While in the Keplerian configuration MLA and
sensor are placed behind the focused image created by the main
lens (Fig. 1a), in the Galilean configuration MLA and sensor are
placed in front of the focused main lens image (Fig. 1b). Since
in the Galilean configuration the main lens image exists only as a
virtual image, we will call it as such in the following.

The camera model presented in this paper was developed based
on a Raytrix camera, which is a plenoptic camera in the Galilean
configuration. Nevertheless, by slightly adapting the model pro-
posed in Section 3 a similar calibration can be applied to cameras
in the Keplerian configuration.

An image point in a micro image is composed only by a sub-
bundle of all rays tracing through the main lens aperture. Con-
sequently the micro images have already a larger depth of field
(DOF) than a regular camera with the same aperture. In a Raytrix
camera the DOF is further increased by using an interlaced MLA
in a hexagonal arrangement (see Fig. 3). This MLA consists of
three different micro lens types, where each type has as different
focal length and thus focuses a different virtual image distance
(resp. object distance) on the sensor. The DOFs of the three
micro lens types are chosen such that they are just adjacent to
each other. Thus, the effective DOF of the camera is increased
compared to an MLA with only one type of micro lenses. In the
sensor image shown in Figure 3 the blue micro images are in fo-
cus while the green and red ones are blurred. Since each virtual
image point is projected to multiple micro images it can be as-
sured that each point is recorded in focus at least once and thus
a complete focused image can be reconstructed. This also can
be seen from Figure 3, where similar structures occur in adjacent
micro images. For more details we refer to (Perwaß and Wietzke,
2012).

In the following part of this section we will discuss the projec-
tion process in a focused plenoptic camera based on the Galilean
configuration. For the main lens a thin lens model is used, while
each of the micro lenses is modeled by a pinhole.

It is well known that for an ideal thin lens the relation between
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object distance aL and image distance bL is defined dependent
on the focal length fL by the following equation:

1

fL
=

1

aL
+

1

bL
(1)

Furthermore, for each point projected from object space to image
space a so called virtual depth v can be estimated based on the
disparity px of corresponding points in the micro images (Perwaß
and Wietzke, 2012). Therefor various algorithms can be used
(Zeller et al., 2015, Bishop and Favaro, 2009). The relationship
between the virtual depth v and the estimated disparity px is given
by the following equation:

v =
b

B
=

d

px
(2)

As one can see, the virtual depth is just a scaled version of the
distance b between a virtual image point pV and the plane of the
MLA. In this eq. (2) B is the distance between MLA and sen-
sor and d defines the distance between the principal points of the
respective micro lenses on the sensor. In general a virtual image
point pV is projected to more than two micro images (see Fig. 2)
and thus multiple virtual depth observations with different base-
line distances d are received. Here, d is a multiple of the micro
lens aperture DM (d = k · DM with k ≥ 1). Due to the 2D
arrangement of the MLA the multiple k is not mandatory an in-
teger.

3. CAMERA MODEL

This section presents the developed model for a focused plenoptic
camera which will be used in the calibration process (Section 5).

The thin lens model and the pinhole model were used to repre-
sent the main lens and the micro lenses respectively. In reality
of course the main lens does not satisfy the model of a thin lens.
Nevertheless, this simplification does not effect the overall pro-
jection from object space to virtual image space.

To handle the imperfection of the main lens a distortion model
for the virtual image space is defined. This model consists of
lateral as well as depth distortion. One could argue that also the
micro lenses add distortion to the projection. Nevertheless, since
for the camera used in our research one micro lens has a very
narrow field of view and only about 23 pixels in diameter, any
distortion on the pixel coordinates generated by the micro lenses
can be neglected.

3.1 Projection Model without Distortion

Unlike regular cameras, where a 3D object space is projected to a
2D image plane, in a focused plenoptic camera a 3D object space
is projected to a 3D image space. This virtual image space is
indirectly captured in the 4D light-field.

In the following derivation we will consider the object space to
be aligned to the camera frame. Thus, a point in object space
pO is defined by its homogeneous 3D camera coordinates XC =
(xC , yC , zC , 1)T . The camera coordinate system has its origin
in the optical center of the main lens, while the z-axis is pointing
towards the object (zC > 0), the y-axis is pointing downwards
and the x-axis is pointing to the right.

For the virtual image space we define a mirrored coordinate sys-
tem, which means that all unit vectors are pointing in the opposite
direction as those of the camera coordinate system. Here a virtual
image point pV is defined by the homogeneous 3D coordinates

XV = (xV , yV , zV , 1)T . The virtual image coordinates have
their origin on the intersection of the optical axis with the plane
of the MLA. Both camera coordinates XC as well as virtual im-
age coordinates XV have metric dimensions.

Using the ideal thin lens model for the main lens a virtual image
point, defined by the coordinates XV , can be calculated based
on the corresponding object point coordinates XC , as given in
eq. (3).

λ ·XV = K ·XC

λ ·


xV
yV
zV
1

 =


bL 0 0 0
0 bL 0 0
0 0 b 0
0 0 1 0

 ·

xC
yC
zC
1

 (3)

In eq. (3) the matrix coefficients bL and b, which conform to the
ones in Figure 2, are dependent on the object distance aL = zC
and are defined as follows:

bL =

(
1

fL
− 1

zC

)−1

= B · v + bL0 (4)

b = bL − bL0 (5)

The introduced scaling factor λ is just the object distance zC :

λ = zC (6)

To receive the virtual image coordinates in the dimensions they
are measured X ′V = (x′V , y

′
V , v, 1)

T , a scaling of the axis as
well as a translation along the x- and y-axis has to be performed
(x′V and y′V are defined in pixels), as defined in eq. (7).

X ′V = KS ·XV
x′V
y′V
v
1

 =


s−1
x 0 0 cx
0 s−1

y 0 cy
0 0 B−1 0
0 0 0 1

 ·

xV
yV
zV
1

 (7)

Here sx and sy define the size of a pixel, while B is the distance
between MLA and sensor.

By combining the matrix K and KS one can define the complete
transform from camera coordinates XC to virtual image coordi-
nates X ′V , as given in eq. (8).

λ ·X ′V = KS ·K ·XC (8)

Since the pixel size (sx, sy) for a certain sensor is known in gen-
eral, there are five parameters left which have to be estimated.
These parameters are the principal point (cx, cy) expressed in
pixels, the distance between MLA and sensor B, the distance
from optical main lens center to MLA bL0 and the main lens fo-
cal length fL.

3.2 Distortion Model

Section 3.1 defines the projection from an object point pO to the
corresponding virtual image point pV without considering any
imperfection in the lens or the setup. In this section we will define
a lens distortion model which corrects the position of a virtual
image point pV in x, y and z direction.

To implement the distortion model another coordinate system
with the homogeneous coordinates XI = (xI , yI , zI , 1) is de-
fined. The coordinates XI actually define the pinhole projection
which would be performed in a conventional camera. Here an im-
age point pI is defined as the intersection of a central ray through
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the main lens with an image plane. In the presented model the
image plane is chosen to be the same as the MLA plane. Thus,
by splitting up the matrix K into KI and KV (eq. (9)) the image
coordinates XI result as defined in eq. (10).

K = KV ·KI

=


bL
bL0

0 0 0

0 bL
bL0

0 0

0 0 1 0
0 0 0 1

 ·

bL0 0 0 0
0 bL0 0 0
0 0 b 0
0 0 1 0

 (9)

λ ·XI = KI ·XC (10)

By the introduction of image coordinates XI we are able to in-
troduce a lateral distortion model on this image plane, similar as
for a regular camera. From eq. (9) and (10) one can see that the z-
coordinates in the spaces defined by XI and XV are equivalent
(zI = zV ).

In the following we define our distortion model, which is split
into lateral and depth distortion.

3.2.1 Lateral Distortion For lateral distortion a model which
consists of radial symmetric as well as tangential distortion is de-
fined. This is one of the most commonly used models in pho-
togrammetry.

The radial symmetric distortion is defined by a polynomial of the
variable r, as defined in eq. (11).

∆rrad = A0r
3 +A1r

5 +A2r
7 + · · · (11)

Here r is the distance between the principal point and the coordi-
nates on the image plane:

r =
√
x2
I + y2

I (12)

This results in the correction terms ∆xrad and ∆yrad as given in
eq. (13) and (14).

∆xrad = xI
∆rrad
r

= xI ·
(
A0r

2 +A1r
4 +A2r

6 + · · ·
)

(13)

∆yrad = yI
∆rrad
r

= yI ·
(
A0r

2 +A1r
4 +A2r

6 + · · ·
)

(14)

In our implementation we use a radial distortion model consisting
of three coefficients (A0 toA2). Besides, for tangential distortion
we used the model defined in (Brown, 1966) using only the two
first parameters B0 and B1. The terms given in eq. (15) and (16)
are defined.

∆xtan = B0 ·
(
r2 + 2x2

I

)
+ 2B1xIyI (15)

∆ytan = B1 ·
(
r2 + 2y2

I

)
+ 2B0xIyI (16)

Based on the correction terms the distorted image coordinates xId
and yId are calculated from the ideal projection as follows:

xId = xI + ∆xrad + ∆xtan (17)
yId = yI + ∆yrad + ∆ytan (18)

3.2.2 Depth Distortion To describe the depth distortion a new
model is defined. While other calibration methods define the
depth distortion by just adding a polynomial based correction

term (Johannsen et al., 2013, Heinze et al., 2015), our goal was
to find an analytical expression describing the depth distortion as
a function of the lateral distortion and thus reflecting the physi-
cal reality. Therefore, in the following the depth correction term
∆v is derived from the relation between the virtual depth v and
the corresponding estimated disparity px. In the following equa-
tions all parameters with subscript d refer to distorted parameters
which are actually measured, while the parameters without a sub-
script are the undistorted ones resulting from the ideal projection.

Equation (19) defines, similar to eq. (2), the estimated virtual
depth based on corresponding points xdi in the micro images and
its micro image centers cdi. Here the pixel coordinates as well as
the micro lens centers are affected by the distortion.

vd =
dd
pxd

=
‖cd2 − cd1‖

‖xd2 − xd1 − (cd2 − cd1) ‖ (19)

In general both, xdi and cdi can be defined as pixel coordinates
on the sensor (in the raw image).

Due to epipolar geometry and rectified micro images, the differ-
ence vectors (cd2 − cd1) and (xd2 − xd1) point always in the
same direction. In addition, since eq. (19) is only defined for pos-
itive virtual depths, ‖cd2 − cd1‖ ≥ ‖xd2 − xd1‖ always holds.
Therefore, eq. (19) can be simplified as follows:

vd =
‖cd2 − cd1‖

‖cd2 − cd1‖ − ‖xd2 − xd1‖
(20)

Replacing the distorted coordinates by the sum of undistorted co-
ordinates and their correction terms results in eq. (21). Here one
can assume that a micro lens center ci undergoes the same dis-
tortion ∆xi as the underlying image point xi since both have
similar coordinates.

vd =
‖c2 + ∆x2 − c1 −∆x1‖(

‖c2 + ∆x2 − c1 −∆x1‖
− ‖x2 + ∆x2 − x1 −∆x1‖

) (21)

Under the assumption that only radial symmetric distortion is
present and that ‖∆x2‖

‖x2‖
≈ ‖∆x1‖

‖x1‖
, as well as ‖∆x2‖

‖c2‖
≈ ‖∆x1‖

‖c1‖
holds, eq. (21) can be simplified as follows:

vd ≈
‖c2 − c1‖ ± ‖∆x2 −∆x1‖
‖c2 − c1‖ − ‖x2 − x1‖

=
d

px
± ‖∆x2 −∆x1‖

px
(22)

Here the ± considers the two cases that the vector ∆x2 − ∆x1

is pointing in the same direction as the vector c2 − c1 or in the
opposite direction.

The assumption which was made above holds well for micro
lenses which are far from the principal point. For close points the
distortion anyway is small and thus can be neglected. Besides,
radial symmetric distortion in general is dominant over other dis-
tortion terms.

From eq. (22) one obtains that the distorted virtual depth vd can
be defined as the sum of the undistorted virtual depth v and a
correction term ∆v, as defined in eq. (23).

∆v = ±‖∆x2 −∆x1‖
px

(23)

Presuming that the vectors ∆x1 and ∆x2 are pointing in more or
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less the same direction, eq. (23) can be approximated as follows:

∆v = ±‖∆x2 −∆x1‖
px

≈ ∆rrad(r2)−∆rrad(r1)

px
(24)

with r1 ≈ r − d
2

and r2 ≈ r + d
2

. The assumption that ∆x2

and ∆x1 point in the same direction again holds well for large
image coordinates xi. The radius r defines the distance from the
principal point to the orthogonal projection of the virtual image
point pV on the sensor plane.

To simplify the depth distortion model only the first coefficient of
the radial distortion A0, defined in eq. (11), is considered to be
significant. Thus, based on eq. (11) the following definition for
∆v is received:

∆v =
A0

px

((
r +

d

2

)3

−
(
r − d

2

)3
)

=
A0

px

(
3dr2 +

d3

4

)
(25)

Replacing px by d
v

(see eq. (2)) results in the following equation:

∆v =
A0 · v
d

(
3dr2 +

d3

4

)
= A0 · v

(
3r2 +

d2

4

)
(26)

For a virtual image point pV with virtual depth v all micro lenses
which see this point lie within a circle with diameter DM · v
around the orthogonal projection of the virtual image point pV
on the MLA plane. Thus, in first approximation the maximum
baseline distance used for depth estimation is equivalent to this
diameter. Therefore, we replace d by DM · v which results in the
final definition of our depth distortion model, as given in eq. (27).

∆v = 3A0 · v · r2 +
A0 ·D2

M

4
· v3

= D0 · v · r2 +D1 · v3 (27)

Since the distortion is just defined by additive terms they can be
represented by a translation matrix KD as defined in eq. (28).

KD =


1 0 0 ∆xrad + ∆xtan
0 1 0 ∆yrad + ∆ytan
0 0 1 B∆v
0 0 0 1

 (28)

This matrix consists of seven distortion parameters (A0, A1, A2,
B0,B1,D0 andD1) which have to be estimated in the calibration
process.

3.3 Complete Camera Model

Under consideration of the projection as well as the distortion, the
complete projection from an object point in camera coordinates
XC to the corresponding virtual image point in distorted coordi-
nates X ′V d, which are actually measured, is defined as follows:

λ ·X ′V d = KS ·KV ·KD ·KI ·XC (29)

The projection model defined in eq. (29) consists of 12 unknown
intrinsic parameters which have to be estimated during calibra-
tion.

4. NON-LINEAR OPTIMIZATION PROBLEM

To estimate the camera model an optimization problem has to be
define, which can be solved based on recorded reference points.

We define this optimization problem as a bundle adjustment, where
the intrinsic as well as extrinsic camera parameters are estimated
based on multiple recordings of a 3D target.

The relation between an object point p{i}O with homogeneous
world coordinates X{i}W and the corresponding virtual image point
in the j-th frame p{i,j}V is defined based on the model presented
in Section 3 as follows:

X
′{i,j}
V d =

1

λij
·KS ·KV ·KD ·KI ·Gj ·X{i}W (30)

Here Gj ∈ SE(3) defines the rigid body transform (special Eu-
clidean transform) from world coordinates X

{i}
W to the camera

coordinates of the j-th frame X
{i,j}
C . Besides, λij is defined by

z
{i,j}
C (see eq. (6)).

In the following we will denote a virtual image point X ′V d which
was calculated based on the projection given in eq. (30) by the
coordinates xproj , yproj , and vproj , while we denote the corre-
sponding reference point measured from the recorded image by
the coordinates xmeas, ymeas, and vmeas.

Based on the projected as well as measured points the cost func-
tion given in eq. (31) can be defined.

C =

N∑
i=1

M∑
j=1

θij‖εij‖2 (31)

Here N defines the number of 3D points in object space, while
M is the number of frames used for calibration. The function θij
represents the visibility of an object point in a certain frame (see
eq. (32)).

θij =

{
1, if p{i}O is visible in j-th image,
0, if not.

(32)

The vector εij is defined as given in the following equations:

εij =
(
ε
{i,j}
x ε

{i,j}
y ε

{i,j}
v

)T
(33)

ε{i,j}x = x
{i,j}
proj − x

{i,j}
meas (34)

ε{i,j}y = y
{i,j}
proj − y

{i,j}
meas (35)

ε{i,j}v =

((
v
{i,j}
proj

)−1

−
(
v{i,j}meas

)−1
)
· v{i,j}proj · w (36)

The residual of the virtual depth εv is defined as given since the
virtual depth v is inverse proportional to the disparity px esti-
mated from the micro images (see eq. (2)) and thus the inverse
virtual depth can be considered to be Gaussian distributed (as an-
alyzed in (Zeller et al., 2015)). As already stated in Section 3.2.2,
the baseline distance d is on average proportional to the estimated
virtual depth v. Thus, the difference in the inverse virtual depth
is scaled by the virtual depth v itself. The parameter w is just a
constant factor which defines the weight between εx, εy , and εv .

5. CALIBRATION PROCESS

To perform the calibration, we use a 3D calibration target, as
shown in Figure 5a. The complete calibration process is visu-
alized in the flow chart shown in Figure 4.
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Raw images

Image processing / depth estimation

Totally focused image Virtual depth map

Features detection
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Projection parameters initialization

Initial projection parameters

Projection parameters optimization

Final projection parameters

Figure 4. Flow chart of the calibration process.

5.1 Preprocessing

In a preprocessing step from the recorded raw images virtual
depth maps are estimated as well as totally focused intensity im-
ages are synthesized. For the experiments presented in Section 6.1
the algorithm implemented in the Raytrix API was used for depth
estimation. Figure 5 shows an example of the input images (to-
tally focused intensity image and virtual depth map) for the cali-
bration process. Based on the totally focused intensity image fea-
ture points of the calibration target are extracted.

5.2 Intrinsic and Extrinsic Parameters Initialization

After the preprocessing initial intrinsic and extrinsic parameters
are estimated based on the feature points. Hence, we perform
a bundle adjustment based on a proprietary calibration software
(Aicon 3D Systems, 1990) only using the totally focused images.
In the bundle adjustment a regular pinhole camera model is used.
Of course this does not correspond to reality but good initial pa-
rameters are received.

In that way, beside the initial extrinsic orientation for each frame
(ω, φ, κ, tx, ty , tz) and the 3D points in world coordinates (Fig.
6), the intrinsic camera parameters of a pinhole camera are re-
ceived. These intrinsic parameters are the principal distance f ,
the principal point (cx, cy), as well as radial and tangential dis-
tortion parameters. In a first approximation the principal distance
is assumed to be equal to the main lens focal length fL = f .
This assumption is sufficient to receive an initial parameter for
the main lens focal length.

There are still two missing parameters to initialize the plenoptic
camera model. Those parameters are bL0, the distance between
the main lens and the MLA, and B, the distance between the
MLA and the sensor (Fig. 2). To estimate the initial values of
those two parameters, we used the physical model of the camera
as explained in (Zeller et al., 2014). Here the parameters bL0 and
B are received by solving the linear equation given in expres-
sion (37) which is obtained from eq. (4).

bL = b+ bL0 = v ·B + bL0 (37)

This is done by using all feature points in all recorded frames.
Based on the initial value for the focal length of the main lens
fL and the z-component of the camera coordinates zC the cor-
responding image distance bL is calculated using the thin lens
equation (eq. (4)). Finally, based on the image distances bL, cal-
culated for all feature points, and the corresponding virtual depth

(a) Totally focused image (b) Color coded virtual depth

Figure 5. Sample image of the 3D calibration target.

Figure 6. Calibration points and camera poses in 3D object space.
Camera poses are represented by the three orthogonal unit vectors
of the camera coordinates.

v, received from the depth maps, the parameters B and bL0 are
estimated.

5.3 Optimization based on Plenoptic Camera Model

After the initialization the plenoptic camera model is solved in a
non-linear optimization process. In this optimization process all
intrinsic as well as extrinsic parameters are adjusted based on the
optimization problem defined in Section 4. Evaluations showed,
that the 3D points received from the software have sub-millimeter
accuracy and therefore will not to be adjusted in the optimization.

The cost function C, defined in eq. (31), is optimized with re-
spect to the intrinsic and extrinsic parameters by the Levenberg-
Marquardt algorithm implemented in the Ceres-Solver library
(Agarwal et al., 2010).

6. EVALUATION

In this section we evaluate our proposed calibration method. Here,
we want to evaluate on one side the validity of the proposed
model and on the other side to accuracy of the plenoptic camera
itself as a depth sensor.

All experiments were performed based on a Raytrix R5 camera.
Three setups with different main lens focal lengths (fL = 35 mm,
fL = 16 mm, fL = 12.5 mm) were used.

6.1 Experiments

6.1.1 Estimating the Camera Parameters In a first experi-
ment for all three different main lens focal lengths the plenoptic
camera model was estimated based on the proposed calibration
method. Here for the fL = 35 mm focal length 99 frames, for the
fL = 16 mm focal length 63 frames, and for the fL = 12.5 mm
focal length 50 frames were recorded and used for calibration.
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(a) Totally focused image (b) Color coded virtual depth

Figure 7. Sample scene recorded with focal length fL = 35 mm
used for qualitative evaluation.

6.1.2 Measuring Metric 3D Accuracy In a second experi-
ment we evaluate the measuring accuracy of the plenoptic camera
itself, using our camera model. During the calibration we were
not able to record frames for an object distance closer than ap-
proximately 1 m. For close distances the camera does not capture
enough feature points to calculate meaningful statistics. Because
of that reason, and since the depth range strongly decays with de-
creasing main lens focal length fL we were only able to record
meaningful statistics for the fL = 35 mm focal length.

Thus, in this second experiment we evaluate the deviation of a
virtual image point, measured by the camera and projected back
to 3D space, from the actual ground truth which we received from
our 3D calibration object.

Therefore, based on the recorded data we calculate the 3D pro-
jection error of the point with index i in the j-th frame ∆X

{i,j}
C ,

as given in eq. (39).

X
{i,j}
C = (KS ·KV ·KD ·KI ·)−1 · λij ·X ′{i,j}V d (38)

∆X
{i,j}
C = X

{i,j}
C −Gj ·X{i}W (39)

Here, X{i,j}C is the measured virtual image point X ′{i,j}V d pro-
jected back to 3D space as defined in eq. (38), while X

{i}
W is the

corresponding 3D reference point in world coordinates (ground
truth).

The 3D projection error ∆X
{i,j}
C is evaluated for object dis-

tances zC from 1.4 m up to 5 m.

6.1.3 Calculating the Point Cloud of Real Scene In a last
experiment we recorded a real scene and calculate the 3D metric
point cloud out of it for a qualitative evaluation of the model.
Therefore, the 3D metric point cloud was calculated for the scene
shown in Figure 5 which was recorded with the fL = 35 mm
setup.

6.2 Results

6.2.1 Estimating the Camera Parameters Table 1 shows the
resulting parameters of the estimated plenoptic camera model
for all three setups (fL = 35 mm, fL = 16 mm, and fL =
12.5 mm). As one can see, for all three focal lengths the esti-
mated parameter fL is quite similar to the nominal focal length
of the respective lens. The parameter B, which actually should
not be dependent on the setup, stays quite constant over all setups
and thus confirms the plausibility of the estimated parameters.
The slight deviation in the parameter B for fL = 12.5 mm prob-
ably can be explained by a too short range in which the virtual
depth values of the feature points are distributed. Here, recording
feature points for closer object distances could be beneficial.

lens 35 mm 16 mm 12.5 mm

fL (in mm) 34.85 16.26 12.61
bL0 (in mm) 34.01 15.30 11.55
B (in mm) 0.3600 0.3695 0.4654
cx (in pixel) 508.4 510.2 502.5
cy (in pixel) 514.9 523.6 520.8

Table 1. Estimated intrinsic parameters of the proposed focused
plenoptic camera model for different main lens focal length.

lens 35 mm 16 mm 12.5 mm

pinhole cam. (in pixel) 1.365 5.346 8.118
our model (in pixel) 0.069 0.068 0.078

Table 2. Comparison of the reprojection error using a pinhole
camera model as well as our proposed focused plenoptic camera
model for different main lens focal length.

Another indication for plausible parameters is, that to focus an
image up to an object distance of infinity the condition fL ≤
2 ·B + bL0 has to be fulfilled (see (Perwaß and Wietzke, 2012)),
which is the case for all three setups.

Furthermore, the reprojection error calculated from the feature
points confirms the validity of our model. In Table 2 we compare
the error for a regular pinhole camera model and for the proposed
focused plenoptic camera model. As one can see, the error is im-
proved by some orders of magnitude by introducing the plenop-
tic camera model. One can see that for a shorter main lens focal
length fL the reprojection error increases. This is the case, since
here the projection in the plenoptic camera stronger deviates from
the pinhole camera projection.

6.2.2 Measuring Metric 3D Accuracy Figure 8 shows the
RMSE between the reference points and the back projected points
in 3D object space for object distances from zC = 1.4 m up to
zC = 5 m, using the fL = 35 mm focal length. We calculated the
RMSE for each coordinate separately as well as for the complete
3D error vector ∆XC .

As could be expected, the error along the x- and y-coordinate is
much smaller than the one in z-direction. Nevertheless, all three
errors increase approximately proportional to each other with in-
creasing object distance zC . This is quite obvious, since the co-
ordinates xC and yC are linearly dependent on zC and thus also
effected by the depth error.

The overall error in 3D space ranges from 50 mm at an object
distance of 1.4 m up to 300 mm at 5 m distance. This conforms
quite well to the evaluations made in other publications as well as
to the specifications given by Raytrix (see (Zeller et al., 2014)).

6.2.3 Calculating the Point Cloud of Real Scene Finally,
Figure 9 shows the calculated metric point cloud for the sample
scene given in Figure 7. Here one can see, that the cup which oc-
curs quite large in the perspective image is scaled down to its met-
ric size. Besides, the compressed virtual depth range is stretched
to real metric depths.

In the figure are some artifacts visible on the right side of the
scene. This artifacts result from wrong depth values which oc-
cur on one hand due to textureless regions in the scene and on
the other hand due to very far object distances. For textureless
regions no depth can be estimated and therefore the depth map
is filled by interpolation based on neighboring depth pixels. The
artifacts on the ”Multiple View Geometry” book result from the
headphone cable in the front of the book (see Fig.7).
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Figure 8. RMSE of feature points projected back to 3D object
space.

Figure 9. 3D metric point cloud of a sample scene (Fig. 7) calcu-
lated based on our focused plenoptic camera model.

7. CONCLUSION

In this paper we presented a new model for a focused plenoptic
camera as well as a metrical calibration approach based on a 3D
target. Different to priorly published models we consider lens
distortion to be constant along a central ray through the main lens.
Besides, we derived a depth distortion model directly from the
theory of depth estimation in a focused plenoptic camera.

We applied our calibration to three different setups which all gave
good results. In addition we measured the accuracy of the focused
plenoptic camera for different object distances. The measured
accuracy conforms quite well to what is theoretically expected.

In future work we want to further improve our calibration ap-
proach. On one hand our calibration target has to be adapted to
be able to get feature points for object distances closer than 1 m.
Besides, a denser feature point pattern is needed to reliably esti-
mated depth distortion.
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